entry_point
stringlengths 1
65
| original_triton_code
stringlengths 4.5k
619k
| python_code
stringlengths 208
60.9k
| triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
listlengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|---|
SequenceClassifier
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/wj/cwj6mseepwwsl64zrhfvnzd4gkux6dcys7drtkhi2dsgv2axk6do.py
# Topologically Sorted Source Nodes: [pooled_sum, pooled_mean], Original ATen: [aten.sum, aten.div]
# Source node to ATen node mapping:
# pooled_mean => div
# pooled_sum => sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%primals_1, [1]), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 4), kwargs = {})
triton_poi_fused_div_sum_0 = async_compile.triton('triton_poi_fused_div_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ey/cey6dsgmzj2byupf73e6nwt5fetf5ne2sa57kzcmy7ejvaqhqb72.py
# Topologically Sorted Source Nodes: [output_states_2], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# output_states_2 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/4n/c4nc446yqbrtfyayl4mzt4mxucu6lyinpbl5i77rrpgokfkjfnsn.py
# Topologically Sorted Source Nodes: [output_states_4], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# output_states_4 => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [-1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/e5/ce5suhs2e2ygw6kp4ycmsbsq4xfgw573srqfqshl4crsnmymkvfl.py
# Topologically Sorted Source Nodes: [output_states_4], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# output_states_4 => exp, log, sub_1, sum_2
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_2,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_3 = async_compile.triton('triton_poi_fused__log_softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pooled_sum, pooled_mean], Original ATen: [aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_sum_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [output_states_2], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_3, buf6, 64, grid=grid(64), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_states_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_states_4], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf3, buf4, 64, grid=grid(64), stream=stream0)
buf5 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [output_states_4], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_3.run(buf4, buf5, 64, grid=grid(64), stream=stream0)
del buf4
return (buf5, buf0, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
def transformer_weights_init(module, std_init_range=0.02, xavier=True):
"""
Initialize different weights in Transformer model.
Args:
module: torch.nn.Module to be initialized
std_init_range: standard deviation of normal initializer
xavier: if True, xavier initializer will be used in Linear layers
as was proposed in AIAYN paper, otherwise normal initializer
will be used (like in BERT paper)
"""
if isinstance(module, nn.Linear):
if xavier:
nn.init.xavier_uniform_(module.weight)
else:
nn.init.normal_(module.weight, mean=0.0, std=std_init_range)
if module.bias is not None:
nn.init.constant_(module.bias, 0.0)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=std_init_range)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.weight, 1.0)
nn.init.constant_(module.bias, 0.0)
class SelfAttention(nn.Module):
def __init__(self, hidden_size, batch_first=True):
super(SelfAttention, self).__init__()
self.hidden_size = hidden_size
self.batch_first = batch_first
self.register_parameter('att_weights', nn.Parameter(torch.Tensor(1,
hidden_size), requires_grad=True))
nn.init.xavier_uniform_(self.att_weights.data)
def get_mask(self):
pass
def forward(self, hidden_states, attention_mask=None):
if self.batch_first:
batch_size, _max_len = hidden_states.size()[:2]
else:
_max_len, batch_size = hidden_states.size()[:2]
weights = torch.bmm(hidden_states, self.att_weights.permute(1, 0).
unsqueeze(0).repeat(batch_size, 1, 1))
attentions = F.softmax(torch.tanh(weights.squeeze()), dim=-1)
masked = attentions * attention_mask
if len(attentions.shape) == 1:
attentions = attentions.unsqueeze(0)
_sums = masked.sum(-1, keepdim=True).expand(attentions.shape)
attentions = masked.div(_sums)
weighted = torch.mul(hidden_states, attentions.unsqueeze(-1).
expand_as(hidden_states))
representations = weighted.sum(1).squeeze(dim=1)
return representations, attentions
class MultiLayerPerceptron(torch.nn.Module):
"""
A simple MLP that can either be used independently or put on top
of pretrained models (such as BERT) and act as a classifier.
Args:
hidden_size (int): the size of each layer
num_classes (int): number of output classes
num_layers (int): number of layers
activation (str): type of activations for layers in between
log_softmax (bool): whether to add a log_softmax layer before output
"""
def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers:
'int'=2, activation: 'str'='relu', log_softmax: 'bool'=True):
super().__init__()
self.layers = 0
activations = {'relu': nn.ReLU(), 'gelu': nn.GELU(), 'sigmoid': nn.
Sigmoid(), 'tanh': nn.Tanh()}
for _ in range(num_layers - 1):
layer = torch.nn.Linear(hidden_size, hidden_size)
setattr(self, f'layer{self.layers}', layer)
setattr(self, f'layer{self.layers + 1}', activations[activation])
self.layers += 2
layer = torch.nn.Linear(hidden_size, num_classes)
setattr(self, f'layer{self.layers}', layer)
self.layers += 1
self.log_softmax = log_softmax
@property
def last_linear_layer(self):
return getattr(self, f'layer{self.layers - 1}')
def forward(self, hidden_states):
output_states = hidden_states[:]
for i in range(self.layers):
output_states = getattr(self, f'layer{i}')(output_states)
if self.log_softmax:
output_states = torch.log_softmax(output_states, dim=-1)
else:
output_states = torch.softmax(output_states, dim=-1)
return output_states
class SequenceClassifier(nn.Module):
def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers:
'int'=2, activation: 'str'='relu', log_softmax: 'bool'=True,
dropout: 'float'=0.0, use_transformer_init: 'bool'=True, pooling:
'str'='mean', idx_conditioned_on: 'int'=None):
"""
Initializes the SequenceClassifier module.
Args:
hidden_size: the hidden size of the mlp head on the top of the encoder
num_classes: number of the classes to predict
num_layers: number of the linear layers of the mlp head on the top of the encoder
activation: type of activations between layers of the mlp head
log_softmax: applies the log softmax on the output
dropout: the dropout used for the mlp head
use_transformer_init: initializes the weights with the same approach used in Transformer
idx_conditioned_on: index of the token to use as the sequence representation for the classification task, default is the first token
"""
super().__init__()
self.log_softmax = log_softmax
self._idx_conditioned_on = idx_conditioned_on
self.pooling = pooling
self.mlp = MultiLayerPerceptron(hidden_size=hidden_size * 2 if
pooling == 'mean_max' else hidden_size, num_classes=num_classes,
num_layers=num_layers, activation=activation, log_softmax=
log_softmax)
self.dropout = nn.Dropout(dropout)
if use_transformer_init:
self.apply(lambda module: transformer_weights_init(module,
xavier=False))
if pooling == 'attention':
self.attention = SelfAttention(hidden_size)
def forward(self, hidden_states, attention_mask=None):
hidden_states = self.dropout(hidden_states)
if self.pooling == 'token':
pooled = hidden_states[:, self._idx_conditioned_on]
elif self.pooling == 'attention':
pooled, _att = self.attention(hidden_states, attention_mask)
else:
if attention_mask is None:
ct = hidden_states.shape[1]
else:
hidden_states = hidden_states * attention_mask.unsqueeze(2)
ct = torch.sum(attention_mask, axis=1).unsqueeze(1)
pooled_sum = torch.sum(hidden_states, axis=1)
if self.pooling == 'mean' or self.pooling == 'mean_max':
pooled_mean = torch.div(pooled_sum, ct)
if self.pooling == 'max' or self.pooling == 'mean_max':
pooled_max = torch.max(hidden_states, axis=1)[0]
pooled = (pooled_mean if self.pooling == 'mean' else pooled_max if
self.pooling == 'max' else torch.cat([pooled_mean,
pooled_max], axis=-1))
logits = self.mlp(pooled)
return logits, pooled
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4, 'num_classes': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_sum_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(64)](buf2,
primals_3, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__log_softmax_2[grid(64)](buf3, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = reinterpret_tensor(buf3, (4, 4, 4), (16, 4, 1), 0)
del buf3
triton_poi_fused__log_softmax_3[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf4
return buf5, buf0, reinterpret_tensor(buf0, (16, 4), (4, 1), 0
), reinterpret_tensor(buf2, (16, 4), (4, 1), 0), buf5, primals_4, buf6
def transformer_weights_init(module, std_init_range=0.02, xavier=True):
"""
Initialize different weights in Transformer model.
Args:
module: torch.nn.Module to be initialized
std_init_range: standard deviation of normal initializer
xavier: if True, xavier initializer will be used in Linear layers
as was proposed in AIAYN paper, otherwise normal initializer
will be used (like in BERT paper)
"""
if isinstance(module, nn.Linear):
if xavier:
nn.init.xavier_uniform_(module.weight)
else:
nn.init.normal_(module.weight, mean=0.0, std=std_init_range)
if module.bias is not None:
nn.init.constant_(module.bias, 0.0)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=std_init_range)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.weight, 1.0)
nn.init.constant_(module.bias, 0.0)
class SelfAttention(nn.Module):
def __init__(self, hidden_size, batch_first=True):
super(SelfAttention, self).__init__()
self.hidden_size = hidden_size
self.batch_first = batch_first
self.register_parameter('att_weights', nn.Parameter(torch.Tensor(1,
hidden_size), requires_grad=True))
nn.init.xavier_uniform_(self.att_weights.data)
def get_mask(self):
pass
def forward(self, hidden_states, attention_mask=None):
if self.batch_first:
batch_size, _max_len = hidden_states.size()[:2]
else:
_max_len, batch_size = hidden_states.size()[:2]
weights = torch.bmm(hidden_states, self.att_weights.permute(1, 0).
unsqueeze(0).repeat(batch_size, 1, 1))
attentions = F.softmax(torch.tanh(weights.squeeze()), dim=-1)
masked = attentions * attention_mask
if len(attentions.shape) == 1:
attentions = attentions.unsqueeze(0)
_sums = masked.sum(-1, keepdim=True).expand(attentions.shape)
attentions = masked.div(_sums)
weighted = torch.mul(hidden_states, attentions.unsqueeze(-1).
expand_as(hidden_states))
representations = weighted.sum(1).squeeze(dim=1)
return representations, attentions
class MultiLayerPerceptron(torch.nn.Module):
"""
A simple MLP that can either be used independently or put on top
of pretrained models (such as BERT) and act as a classifier.
Args:
hidden_size (int): the size of each layer
num_classes (int): number of output classes
num_layers (int): number of layers
activation (str): type of activations for layers in between
log_softmax (bool): whether to add a log_softmax layer before output
"""
def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers:
'int'=2, activation: 'str'='relu', log_softmax: 'bool'=True):
super().__init__()
self.layers = 0
activations = {'relu': nn.ReLU(), 'gelu': nn.GELU(), 'sigmoid': nn.
Sigmoid(), 'tanh': nn.Tanh()}
for _ in range(num_layers - 1):
layer = torch.nn.Linear(hidden_size, hidden_size)
setattr(self, f'layer{self.layers}', layer)
setattr(self, f'layer{self.layers + 1}', activations[activation])
self.layers += 2
layer = torch.nn.Linear(hidden_size, num_classes)
setattr(self, f'layer{self.layers}', layer)
self.layers += 1
self.log_softmax = log_softmax
@property
def last_linear_layer(self):
return getattr(self, f'layer{self.layers - 1}')
def forward(self, hidden_states):
output_states = hidden_states[:]
for i in range(self.layers):
output_states = getattr(self, f'layer{i}')(output_states)
if self.log_softmax:
output_states = torch.log_softmax(output_states, dim=-1)
else:
output_states = torch.softmax(output_states, dim=-1)
return output_states
class SequenceClassifierNew(nn.Module):
def __init__(self, hidden_size: 'int', num_classes: 'int', num_layers:
'int'=2, activation: 'str'='relu', log_softmax: 'bool'=True,
dropout: 'float'=0.0, use_transformer_init: 'bool'=True, pooling:
'str'='mean', idx_conditioned_on: 'int'=None):
"""
Initializes the SequenceClassifier module.
Args:
hidden_size: the hidden size of the mlp head on the top of the encoder
num_classes: number of the classes to predict
num_layers: number of the linear layers of the mlp head on the top of the encoder
activation: type of activations between layers of the mlp head
log_softmax: applies the log softmax on the output
dropout: the dropout used for the mlp head
use_transformer_init: initializes the weights with the same approach used in Transformer
idx_conditioned_on: index of the token to use as the sequence representation for the classification task, default is the first token
"""
super().__init__()
self.log_softmax = log_softmax
self._idx_conditioned_on = idx_conditioned_on
self.pooling = pooling
self.mlp = MultiLayerPerceptron(hidden_size=hidden_size * 2 if
pooling == 'mean_max' else hidden_size, num_classes=num_classes,
num_layers=num_layers, activation=activation, log_softmax=
log_softmax)
self.dropout = nn.Dropout(dropout)
if use_transformer_init:
self.apply(lambda module: transformer_weights_init(module,
xavier=False))
if pooling == 'attention':
self.attention = SelfAttention(hidden_size)
def forward(self, input_0):
primals_2 = self.mlp.layer0.weight
primals_3 = self.mlp.layer0.bias
primals_4 = self.mlp.layer2.weight
primals_5 = self.mlp.layer2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0], output[1]
|
ngxingyu/Domain-Transfer-for-Punctuation-Retrieval
|
SequenceClassifier
| false | 7,340 |
[
"Apache-2.0"
] | 1 |
f5aa0ea0946c68aaf7fcf49a5085e6c823766a2f
|
https://github.com/ngxingyu/Domain-Transfer-for-Punctuation-Retrieval/tree/f5aa0ea0946c68aaf7fcf49a5085e6c823766a2f
|
ScaleNorm
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/5i/c5iachkxsftg5m5zniolyz4aeojcm42muwsrb2a34ygecaxk5f47.py
# Topologically Sorted Source Nodes: [norm, clamp, norm_1], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div]
# Source node to ATen node mapping:
# clamp => clamp_min
# norm => pow_1, pow_2, sum_1
# norm_1 => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-05), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %clamp_min), kwargs = {})
triton_poi_fused_clamp_div_linalg_vector_norm_0 = async_compile.triton('triton_poi_fused_clamp_div_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = libdevice.sqrt(tmp12)
tmp14 = 1e-05
tmp15 = triton_helpers.maximum(tmp13, tmp14)
tmp16 = tmp1 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/pq/cpqdtx3g3pyjzwakdnj54l47sm3lyvtzkr3iagg7am3bkbp6ommo.py
# Topologically Sorted Source Nodes: [norm, clamp, norm_1, mul], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div, aten.mul]
# Source node to ATen node mapping:
# clamp => clamp_min
# mul => mul
# norm => pow_1, pow_2, sum_1
# norm_1 => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [-1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-05), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %clamp_min), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
triton_poi_fused_clamp_div_linalg_vector_norm_mul_1 = async_compile.triton('triton_poi_fused_clamp_div_linalg_vector_norm_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_linalg_vector_norm_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [norm, clamp, norm_1], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_0.run(primals_1, primals_2, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm, clamp, norm_1, mul], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div, aten.mul]
triton_poi_fused_clamp_div_linalg_vector_norm_mul_1.run(primals_2, buf0, buf1, 256, grid=grid(256), stream=stream0)
del buf0
return (buf1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import torch.nn as nn
class ScaleNorm(nn.Module):
"""ScaleNorm"""
"""All g’s in SCALE NORM are initialized to sqrt(d)"""
def __init__(self, scale, eps=1e-05):
super(ScaleNorm, self).__init__()
self.scale = nn.Parameter(torch.tensor(math.sqrt(scale)))
self.eps = eps
def forward(self, x):
norm = self.scale / torch.norm(x, dim=-1, keepdim=True).clamp(min=
self.eps)
return x * norm
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'scale': 1.0}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = libdevice.sqrt(tmp12)
tmp14 = 1e-05
tmp15 = triton_helpers.maximum(tmp13, tmp14)
tmp16 = tmp1 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_mul_1(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_0[grid(64)](primals_1,
primals_2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clamp_div_linalg_vector_norm_mul_1[grid(256)](
primals_2, buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
return buf1, primals_2
class ScaleNormNew(nn.Module):
"""ScaleNorm"""
"""All g’s in SCALE NORM are initialized to sqrt(d)"""
def __init__(self, scale, eps=1e-05):
super(ScaleNormNew, self).__init__()
self.scale = nn.Parameter(torch.tensor(math.sqrt(scale)))
self.eps = eps
def forward(self, input_0):
primals_1 = self.scale
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
nigelnnk/MATCh-sensitivity
|
ScaleNorm
| false | 7,341 |
[
"MIT"
] | 1 |
aaf2b924ac98c8c5925bbf431481724d11a102f8
|
https://github.com/nigelnnk/MATCh-sensitivity/tree/aaf2b924ac98c8c5925bbf431481724d11a102f8
|
StyleResidual
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nj/cnjqvzdxcui5ygocv2a5nlfxiqfekt6jgipfoplz34gwfzo2zd5f.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_4, %squeeze), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 4), (16, 4, 1))
buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf1, primals_4, primals_2, 16, grid=grid(16), stream=stream0)
del primals_2
del primals_4
return (buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.utils.data
import torch.optim
class StyleResidual(nn.Module):
"""Styling."""
def __init__(self, d_channel: 'int', d_style: 'int', kernel_size: 'int'=1):
super().__init__()
self.rs = nn.Conv1d(in_channels=d_style, out_channels=d_channel,
kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor') ->torch.Tensor:
"""`x`: [B,C,T], `s`: [B,S,T] => [B,C,T]."""
return x + self.rs(s)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'d_channel': 4, 'd_style': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.utils.data
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 4), (16, 4, 1), 0), primals_1, stride=(1,), padding=(0,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf0, (1, 4, 4), (16, 4, 1))
buf1 = reinterpret_tensor(buf0, (4, 4), (4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(16)](buf1, primals_4, primals_2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
del primals_4
return buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4,
1), 0)
class StyleResidualNew(nn.Module):
"""Styling."""
def __init__(self, d_channel: 'int', d_style: 'int', kernel_size: 'int'=1):
super().__init__()
self.rs = nn.Conv1d(in_channels=d_style, out_channels=d_channel,
kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
def forward(self, input_0, input_1):
primals_1 = self.rs.weight
primals_2 = self.rs.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
niklub/NeMo
|
StyleResidual
| false | 7,342 |
[
"Apache-2.0"
] | 1 |
4bcb2321cd16835f63afe3dfe993e6d56bcf2c0c
|
https://github.com/niklub/NeMo/tree/4bcb2321cd16835f63afe3dfe993e6d56bcf2c0c
|
CQLAgent
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nq/cnqjufcqn3ur3s7xvlb2i747nyf24md4zaiatlwgkasynplfjstu.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 64), (64, 1))
assert_size_stride(primals_5, (16, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse
buf3 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf3, 4096, grid=grid(4096), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [q], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 16), (1, 64), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (reinterpret_tensor(buf2, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), primals_4, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from scipy import optimize
class CQLAgent(nn.Module):
def __init__(self, input_shape, n_actions, n_opponent_actions,
hidden_dim=64):
super(CQLAgent, self).__init__()
self.fc1 = nn.Linear(input_shape, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, n_actions * n_opponent_actions)
self.n_actions = n_actions
self.n_opponent_actions = n_opponent_actions
def forward(self, inputs):
x = F.relu(self.fc1(inputs))
q = self.fc2(x)
q = q.view(-1, self.n_opponent_actions, self.n_actions)
return q
"""
@param:
inputs: [batch, input_shape]
policy_disc: whether to use the discrete policy
@ retval: problem distributions of the action shape: [batch, n_actions] type:np.array
"""
def get_policy(self, inputs, policy_disc=True):
qvals = self.forward(inputs)
if policy_disc:
qvals = th.min(qvals, axis=1)[0]
actions = th.argmax(qvals, axis=1)
policys = F.one_hot(actions, num_classes=self.n_actions).float(
).detach()
else:
policys = []
qvals = qvals.detach().numpy()
for qval_sample in qvals:
c = np.array([0] * self.n_actions + [-1])
A_ub = np.concatenate((-qval_sample, np.ones((self.
n_opponent_actions, 1))), axis=1)
B_ub = np.zeros(self.n_opponent_actions)
A_eq = np.array([[1] * self.n_actions + [0]])
B_eq = np.array([1])
bounds = []
for a in range(self.n_actions):
bounds.append((0, 1))
bounds.append((None, None))
res = optimize.linprog(c, A_ub, B_ub, A_eq, B_eq, bounds=
tuple(bounds))
policy = res['x']
policys.append(policy[:-1])
policys = th.tensor(policys, dtype=th.float32)
return policys
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_shape': 4, 'n_actions': 4, 'n_opponent_actions': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from scipy import optimize
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (16, 64), (64, 1))
assert_size_stride(primals_5, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf0
buf3 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool
)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf1,
primals_2, buf3, 4096, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 64),
(64, 1), 0), reinterpret_tensor(primals_4, (64, 16), (1, 64), 0
), alpha=1, beta=1, out=buf2)
del primals_5
return reinterpret_tensor(buf2, (64, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), primals_4, buf3
class CQLAgentNew(nn.Module):
def __init__(self, input_shape, n_actions, n_opponent_actions,
hidden_dim=64):
super(CQLAgentNew, self).__init__()
self.fc1 = nn.Linear(input_shape, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, n_actions * n_opponent_actions)
self.n_actions = n_actions
self.n_opponent_actions = n_opponent_actions
"""
@param:
inputs: [batch, input_shape]
policy_disc: whether to use the discrete policy
@ retval: problem distributions of the action shape: [batch, n_actions] type:np.array
"""
def get_policy(self, inputs, policy_disc=True):
qvals = self.forward(inputs)
if policy_disc:
qvals = th.min(qvals, axis=1)[0]
actions = th.argmax(qvals, axis=1)
policys = F.one_hot(actions, num_classes=self.n_actions).float(
).detach()
else:
policys = []
qvals = qvals.detach().numpy()
for qval_sample in qvals:
c = np.array([0] * self.n_actions + [-1])
A_ub = np.concatenate((-qval_sample, np.ones((self.
n_opponent_actions, 1))), axis=1)
B_ub = np.zeros(self.n_opponent_actions)
A_eq = np.array([[1] * self.n_actions + [0]])
B_eq = np.array([1])
bounds = []
for a in range(self.n_actions):
bounds.append((0, 1))
bounds.append((None, None))
res = optimize.linprog(c, A_ub, B_ub, A_eq, B_eq, bounds=
tuple(bounds))
policy = res['x']
policys.append(policy[:-1])
policys = th.tensor(policys, dtype=th.float32)
return policys
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
netlab-lcy/CMIX
|
CQLAgent
| false | 7,343 |
[
"MIT"
] | 1 |
53e2d8794af2b380295efe06dcb05235089953c1
|
https://github.com/netlab-lcy/CMIX/tree/53e2d8794af2b380295efe06dcb05235089953c1
|
MultiHeadAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/u7/cu7vpvizjd4aqykmop7o4bb3wko4x255a6cbzzzpnk3hxneiqhcw.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = (xindex // 128) % 16
x2 = (xindex // 2048)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (128*x2) + (512*x1)), None)
tmp1 = tl.load(in_ptr1 + (x0 + (128*x2)), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py
# Topologically Sorted Source Nodes: [attn_distribution], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_distribution => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [2], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py
# Topologically Sorted Source Nodes: [attn_distribution], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_distribution => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7q/c7q5bvn7twuxhcrmxt4henfecjupsuo5yrwvo2hhumobsmaauisq.py
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# combined => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_9, %primals_2], 2), kwargs = {})
triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 516
x3 = (xindex // 516)
x2 = (xindex // 2064)
x4 = xindex % 2064
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 512, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((128*x3) + (2048*((x0 // 128) % 4)) + (x0 % 128)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 516, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x3) + ((-512) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x4 + (2080*x2)), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wf/cwfbwzeyrr36zca5qiiebhnejmrgzdsjwmzyit7xy4nubbdp6hnq.py
# Topologically Sorted Source Nodes: [combined, view_6], Original ATen: [aten.cat, aten.view]
# Source node to ATen node mapping:
# combined => cat
# view_6 => view_10
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_9, %primals_2], 2), kwargs = {})
# %view_10 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%cat, [-1, 8]), kwargs = {})
triton_poi_fused_cat_view_4 = async_compile.triton('triton_poi_fused_cat_view_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_view_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_view_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + ((2080*(x0 // 2064)) + (x0 % 2064)), xmask)
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ag/cagrpzpgi7zvecwkentweyxoalabxs5bqjnsvvbboefkenvqapba.py
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh, aten.tanh_backward]
# Source node to ATen node mapping:
# tanh => tanh
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_8), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %tanh), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %mul), kwargs = {})
triton_poi_fused_tanh_tanh_backward_5 = async_compile.triton('triton_poi_fused_tanh_tanh_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_tanh_backward_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_tanh_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp3 * tmp3
tmp5 = 1.0
tmp6 = tmp5 - tmp4
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (512, 4), (4, 1))
assert_size_stride(primals_4, (512, ), (1, ))
assert_size_stride(primals_5, (512, 4), (4, 1))
assert_size_stride(primals_6, (512, ), (1, ))
assert_size_stride(primals_7, (4, 8), (8, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 512), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 512), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_4, buf2, 8192, grid=grid(8192), stream=stream0)
del primals_4
buf3 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, primals_6, buf3, 8192, grid=grid(8192), stream=stream0)
del primals_6
buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_score], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 128), (512, 128, 1), 0), reinterpret_tensor(buf3, (16, 128, 4), (512, 1, 128), 0), out=buf4)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attn_distribution], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [attn_distribution], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
del buf5
buf7 = reinterpret_tensor(buf1, (16, 4, 128), (512, 128, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf3, (16, 4, 128), (512, 128, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 516), (2080, 516, 1), torch.float32)
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat]
triton_poi_fused_cat_3.run(buf7, primals_2, buf8, 8256, grid=grid(8256), stream=stream0)
del buf7
buf9 = empty_strided_cuda((1032, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [combined, view_6], Original ATen: [aten.cat, aten.view]
triton_poi_fused_cat_view_4.run(buf8, buf9, 8256, grid=grid(8256), stream=stream0)
del buf8
buf10 = empty_strided_cuda((1032, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf9, reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), out=buf10)
buf11 = buf10; del buf10 # reuse
buf12 = empty_strided_cuda((1032, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh, aten.tanh_backward]
triton_poi_fused_tanh_tanh_backward_5.run(buf11, primals_8, buf12, 4128, grid=grid(4128), stream=stream0)
del primals_8
return (reinterpret_tensor(buf11, (4, 258, 4), (1032, 4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(buf3, (16, 128, 4), (512, 1, 128), 0), buf6, buf9, buf12, primals_7, reinterpret_tensor(buf2, (16, 128, 4), (512, 1, 128), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((512, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((512, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class MultiHeadAttention(nn.Module):
"""
Applies an multi-head attention mechanism on the output features from the decoder.
Refer to 「State-of-the-art Speech Recognition With Sequence-to-Sequence Models」 Paper
https://arxiv.org/abs/1712.01769
Args:
in_features (int): The number of expected features in the output
n_head (int): number of heads. (default: 4)
dim (int): dimension size of sub heads. (default: 128)
Inputs: query, key
- **query** (batch, output_len, dimensions): tensor containing the output features from the decoder.
- **key** (batch, input_len, dimensions): tensor containing features of the encoded input sequence.
Returns: output
- **output** (batch, output_len, dimensions): tensor containing the attended output features from the decoder.
Examples::
>>> attention = MultiHeadAttention(in_features, n_head=4, dim=128)
>>> output = attention(query, key)
"""
def __init__(self, in_features, n_head=4, dim=128):
super(MultiHeadAttention, self).__init__()
self.in_features = in_features
self.linear_q = nn.Linear(in_features, dim * n_head)
self.linear_k = nn.Linear(in_features, dim * n_head)
self.n_head = n_head
self.dim = dim
self.out = nn.Linear(in_features << 1, in_features)
def forward(self, query, key):
batch_size = key.size(0)
query_length = query.size(1)
key_length = key.size(1)
preserved = query
query = self.linear_q(query).view(batch_size, query_length, self.
n_head, self.dim).permute(2, 0, 1, 3)
key = self.linear_k(key).view(batch_size, key_length, self.n_head,
self.dim).permute(2, 0, 1, 3)
query = query.contiguous().view(-1, query_length, self.dim)
key = key.contiguous().view(-1, key_length, self.dim)
attn_score = torch.bmm(query, key.transpose(1, 2))
attn_distribution = F.softmax(attn_score, dim=2)
context = torch.bmm(attn_distribution, key).view(self.n_head,
batch_size, query_length, self.dim)
context = context.permute(1, 2, 0, 3).contiguous().view(batch_size,
query_length, -1)
combined = torch.cat([context, preserved], dim=2)
output = torch.tanh(self.out(combined.view(-1, 2 * self.in_features))
).view(batch_size, -1, self.in_features)
return output
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = xindex // 128 % 16
x2 = xindex // 2048
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 128 * x2 + 512 * x1), None)
tmp1 = tl.load(in_ptr1 + (x0 + 128 * x2), None, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 8256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 516
x3 = xindex // 516
x2 = xindex // 2064
x4 = xindex % 2064
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 512, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (128 * x3 + 2048 * (x0 // 128 % 4) + x0 % 128),
tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 516, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x3 + (-512 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x4 + 2080 * x2), tmp10, xmask)
@triton.jit
def triton_poi_fused_cat_view_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 8256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (2080 * (x0 // 2064) + x0 % 2064), xmask)
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_tanh_tanh_backward_5(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp3 * tmp3
tmp5 = 1.0
tmp6 = tmp5 - tmp4
tl.store(in_out_ptr0 + x2, tmp3, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (512, 4), (4, 1))
assert_size_stride(primals_4, (512,), (1,))
assert_size_stride(primals_5, (512, 4), (4, 1))
assert_size_stride(primals_6, (512,), (1,))
assert_size_stride(primals_7, (4, 8), (8, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 512), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 512), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(8192)](buf0, primals_4, buf2, 8192,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
buf3 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(8192)](buf1, primals_6, buf3, 8192,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 128), (512, 128,
1), 0), reinterpret_tensor(buf3, (16, 128, 4), (512, 1, 128), 0
), out=buf4)
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf5
buf7 = reinterpret_tensor(buf1, (16, 4, 128), (512, 128, 1), 0)
del buf1
extern_kernels.bmm(buf6, reinterpret_tensor(buf3, (16, 4, 128), (
512, 128, 1), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 516), (2080, 516, 1), torch.float32)
triton_poi_fused_cat_3[grid(8256)](buf7, primals_2, buf8, 8256,
XBLOCK=256, num_warps=4, num_stages=1)
del buf7
buf9 = empty_strided_cuda((1032, 8), (8, 1), torch.float32)
triton_poi_fused_cat_view_4[grid(8256)](buf8, buf9, 8256, XBLOCK=
256, num_warps=4, num_stages=1)
del buf8
buf10 = empty_strided_cuda((1032, 4), (4, 1), torch.float32)
extern_kernels.mm(buf9, reinterpret_tensor(primals_7, (8, 4), (1, 8
), 0), out=buf10)
buf11 = buf10
del buf10
buf12 = empty_strided_cuda((1032, 4), (4, 1), torch.float32)
triton_poi_fused_tanh_tanh_backward_5[grid(4128)](buf11, primals_8,
buf12, 4128, XBLOCK=128, num_warps=4, num_stages=1)
del primals_8
return reinterpret_tensor(buf11, (4, 258, 4), (1032, 4, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), reinterpret_tensor(buf3, (16, 128, 4), (512, 1, 128), 0
), buf6, buf9, buf12, primals_7, reinterpret_tensor(buf2, (16, 128,
4), (512, 1, 128), 0)
class MultiHeadAttentionNew(nn.Module):
"""
Applies an multi-head attention mechanism on the output features from the decoder.
Refer to 「State-of-the-art Speech Recognition With Sequence-to-Sequence Models」 Paper
https://arxiv.org/abs/1712.01769
Args:
in_features (int): The number of expected features in the output
n_head (int): number of heads. (default: 4)
dim (int): dimension size of sub heads. (default: 128)
Inputs: query, key
- **query** (batch, output_len, dimensions): tensor containing the output features from the decoder.
- **key** (batch, input_len, dimensions): tensor containing features of the encoded input sequence.
Returns: output
- **output** (batch, output_len, dimensions): tensor containing the attended output features from the decoder.
Examples::
>>> attention = MultiHeadAttention(in_features, n_head=4, dim=128)
>>> output = attention(query, key)
"""
def __init__(self, in_features, n_head=4, dim=128):
super(MultiHeadAttentionNew, self).__init__()
self.in_features = in_features
self.linear_q = nn.Linear(in_features, dim * n_head)
self.linear_k = nn.Linear(in_features, dim * n_head)
self.n_head = n_head
self.dim = dim
self.out = nn.Linear(in_features << 1, in_features)
def forward(self, input_0, input_1):
primals_3 = self.linear_q.weight
primals_4 = self.linear_q.bias
primals_5 = self.linear_k.weight
primals_6 = self.linear_k.bias
primals_7 = self.out.weight
primals_8 = self.out.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
ngbsLab/Korean-Speech-Recognition
|
MultiHeadAttention
| false | 7,344 |
[
"Apache-2.0"
] | 1 |
3867bf7d23222da6812c9b98a93d3c6f7b3c80fc
|
https://github.com/ngbsLab/Korean-Speech-Recognition/tree/3867bf7d23222da6812c9b98a93d3c6f7b3c80fc
|
FocalLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py
# Topologically Sorted Source Nodes: [logp], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# logp => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/jw/cjwpmepxdrhjkf3qqr4e6qwmehd4cbfk26molvzkvgaoyj3su3bt.py
# Topologically Sorted Source Nodes: [logp, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.exp, aten.rsub, aten.pow, aten.mean]
# Source node to ATen node mapping:
# logp => div, exp, log, mul, neg, sub_1, sum_1, sum_2
# loss => mul_1
# mean => mean
# neg => neg_1
# p => exp_1
# pow_1 => pow_1
# sub => sub_2
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Scalar](args = (%neg, 64), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %div), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {})
triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1 = async_compile.triton('triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = (rindex // 64)
tmp0 = tl.load(in_ptr0 + (r3), None)
tmp1 = tl.load(in_ptr0 + (r0 + (64*r2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + (64*r2)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr1 + (r3), None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = -tmp18
tmp20 = 0.015625
tmp21 = tmp19 * tmp20
tmp22 = -tmp21
tmp23 = tl_math.exp(tmp22)
tmp24 = 1.0
tmp25 = tmp24 - tmp23
tmp26 = tmp24 * tmp21
tmp27 = tmp26 / tmp24
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp27, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logp], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [logp, neg, p, sub, pow_1, loss, mean], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.div, aten.exp, aten.rsub, aten.pow, aten.mean]
triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1.run(buf2, buf0, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del buf0
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.optim
import torch.utils.data
import torch.autograd
class FocalLoss(nn.Module):
def __init__(self, gamma=0, eps=1e-07):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.eps = eps
self.ce = torch.nn.CrossEntropyLoss()
def forward(self, input, target):
logp = self.ce(input, target)
p = torch.exp(-logp)
loss = (1 - p) ** self.gamma * logp
return loss.mean()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.optim
import torch.utils.data
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r3 = rindex
r0 = rindex % 16
r2 = rindex // 64
tmp0 = tl.load(in_ptr0 + r3, None)
tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr1 + r3, None)
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = -tmp18
tmp20 = 0.015625
tmp21 = tmp19 * tmp20
tmp22 = -tmp21
tmp23 = tl_math.exp(tmp22)
tmp24 = 1.0
tmp24 - tmp23
tmp26 = tmp24 * tmp21
tmp27 = tmp26 / tmp24
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp27, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf1
del buf1
triton_per_fused__log_softmax_div_exp_mean_mul_neg_pow_rsub_sum_1[grid
(1)](buf2, buf0, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del buf0
return buf2,
class FocalLossNew(nn.Module):
def __init__(self, gamma=0, eps=1e-07):
super(FocalLossNew, self).__init__()
self.gamma = gamma
self.eps = eps
self.ce = torch.nn.CrossEntropyLoss()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
nikitajz/google-landmarks
|
FocalLoss
| false | 7,345 |
[
"MIT"
] | 1 |
2051462be4450c193c98b237fc7ebdae783e2b28
|
https://github.com/nikitajz/google-landmarks/tree/2051462be4450c193c98b237fc7ebdae783e2b28
|
ClassWisePool
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/wj/cwj6mseepwwsl64zrhfvnzd4gkux6dcys7drtkhi2dsgv2axk6do.py
# Topologically Sorted Source Nodes: [output, truediv], Original ATen: [aten.sum, aten.div]
# Source node to ATen node mapping:
# output => sum_1
# truediv => div
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view, [2]), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 4), kwargs = {})
triton_poi_fused_div_sum_0 = async_compile.triton('triton_poi_fused_div_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output, truediv], Original ATen: [aten.sum, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_sum_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import sys
from torch.autograd import Function
import torch
from torch import nn
class ClassWisePoolFunction(Function):
@staticmethod
def forward(ctx, input, args):
ctx.num_maps = args
batch_size, num_channels, h, w = input.size()
if num_channels % ctx.num_maps != 0:
None
sys.exit(-1)
num_outputs = int(num_channels / ctx.num_maps)
x = input.view(batch_size, num_outputs, ctx.num_maps, h, w)
output = torch.sum(x, 2)
ctx.save_for_backward(input)
return output.view(batch_size, num_outputs, h, w) / ctx.num_maps
@staticmethod
def backward(ctx, grad_output):
input, = ctx.saved_tensors
batch_size, num_channels, h, w = input.size()
num_outputs = grad_output.size(1)
grad_output = grad_output.view(batch_size, num_outputs, 1, h, w)
grad_input = grad_output.expand(batch_size, num_outputs, ctx.
num_maps, h, w).contiguous()
return grad_input.view(batch_size, num_channels, h, w), None
class ClassWisePool(nn.Module):
def __init__(self, num_maps):
super(ClassWisePool, self).__init__()
self.num_maps = num_maps
def forward(self, input):
return ClassWisePoolFunction.apply(input, self.num_maps)
def __repr__(self):
return self.__class__.__name__ + ' (num_maps={num_maps})'.format(
num_maps=self.num_maps)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_maps': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import sys
from torch.autograd import Function
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_sum_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class ClassWisePoolFunction(Function):
@staticmethod
def forward(ctx, input, args):
ctx.num_maps = args
batch_size, num_channels, h, w = input.size()
if num_channels % ctx.num_maps != 0:
None
sys.exit(-1)
num_outputs = int(num_channels / ctx.num_maps)
x = input.view(batch_size, num_outputs, ctx.num_maps, h, w)
output = torch.sum(x, 2)
ctx.save_for_backward(input)
return output.view(batch_size, num_outputs, h, w) / ctx.num_maps
@staticmethod
def backward(ctx, grad_output):
input, = ctx.saved_tensors
batch_size, num_channels, h, w = input.size()
num_outputs = grad_output.size(1)
grad_output = grad_output.view(batch_size, num_outputs, 1, h, w)
grad_input = grad_output.expand(batch_size, num_outputs, ctx.
num_maps, h, w).contiguous()
return grad_input.view(batch_size, num_channels, h, w), None
class ClassWisePoolNew(nn.Module):
def __init__(self, num_maps):
super(ClassWisePoolNew, self).__init__()
self.num_maps = num_maps
def __repr__(self):
return self.__class__.__name__ + ' (num_maps={num_maps})'.format(
num_maps=self.num_maps)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
nishanthta/wsl
|
ClassWisePool
| false | 7,346 |
[
"MIT"
] | 1 |
5fda3b909a314b7f88ffa9ab27a6a142de6b0159
|
https://github.com/nishanthta/wsl/tree/5fda3b909a314b7f88ffa9ab27a6a142de6b0159
|
WassersteinLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ug/cugldwv35g53yxideoh7o6qqdvauiciej3welxrwa4qfta7lmlax.py
# Topologically Sorted Source Nodes: [sum_1, add, tensor_a, cdf_tensor_a], Original ATen: [aten.sum, aten.add, aten.div, aten.cumsum]
# Source node to ATen node mapping:
# add => add
# cdf_tensor_a => cumsum
# sum_1 => sum_1
# tensor_a => div
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [-1], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-14), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %add), kwargs = {})
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%div, -1), kwargs = {})
triton_per_fused_add_cumsum_div_sum_0 = async_compile.triton('triton_per_fused_add_cumsum_div_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[64, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_cumsum_div_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_cumsum_div_sum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 64
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 1e-14
tmp9 = tmp7 + tmp8
tmp10 = tmp0 / tmp9
tmp11 = tmp10.to(tl.float32)
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp13, = tl.associative_scan((tmp12,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + (4*x0)), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/o7/co7to4ycybqjfm36u63qemdpnbojs735ow643af46n6zxahrimbt.py
# Topologically Sorted Source Nodes: [sub, abs_1, cdf_distance, cdf_loss], Original ATen: [aten.sub, aten.abs, aten.sum, aten.mean]
# Source node to ATen node mapping:
# abs_1 => abs_1
# cdf_distance => sum_3
# cdf_loss => mean
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%cumsum, %cumsum_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%abs_1, [-1]), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_3,), kwargs = {})
triton_per_fused_abs_mean_sub_sum_1 = async_compile.triton('triton_per_fused_abs_mean_sub_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mean_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp6 = tmp4 - tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tl_math.abs(tmp16)
tmp18 = tmp13 + tmp17
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = tl.sum(tmp19, 1)[:, None]
tmp22 = 64.0
tmp23 = tmp21 / tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp23, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sum_1, add, tensor_a, cdf_tensor_a], Original ATen: [aten.sum, aten.add, aten.div, aten.cumsum]
stream0 = get_raw_stream(0)
triton_per_fused_add_cumsum_div_sum_0.run(arg0_1, buf0, 64, 4, grid=grid(64), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sum_2, add_1, tensor_b, cdf_tensor_b], Original ATen: [aten.sum, aten.add, aten.div, aten.cumsum]
triton_per_fused_add_cumsum_div_sum_0.run(arg1_1, buf1, 64, 4, grid=grid(64), stream=stream0)
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [sub, abs_1, cdf_distance, cdf_loss], Original ATen: [aten.sub, aten.abs, aten.sum, aten.mean]
triton_per_fused_abs_mean_sub_sum_1.run(buf3, buf0, buf1, 1, 64, grid=grid(1), stream=stream0)
del buf0
del buf1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
def torch_cdf_loss(tensor_a, tensor_b, p=1):
tensor_a = tensor_a / (torch.sum(tensor_a, dim=-1, keepdim=True) + 1e-14)
tensor_b = tensor_b / (torch.sum(tensor_b, dim=-1, keepdim=True) + 1e-14)
cdf_tensor_a = torch.cumsum(tensor_a, dim=-1)
cdf_tensor_b = torch.cumsum(tensor_b, dim=-1)
if p == 1:
cdf_distance = torch.sum(torch.abs(cdf_tensor_a - cdf_tensor_b), dim=-1
)
elif p == 2:
cdf_distance = torch.sqrt(torch.sum(torch.pow(cdf_tensor_a -
cdf_tensor_b, 2), dim=-1))
else:
cdf_distance = torch.pow(torch.sum(torch.pow(torch.abs(cdf_tensor_a -
cdf_tensor_b), p), dim=-1), 1 / p)
cdf_loss = cdf_distance.mean()
return cdf_loss
def torch_wasserstein_loss(tensor_a, tensor_b):
return torch_cdf_loss(tensor_a, tensor_b, p=1)
class WassersteinLoss(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, tensor_a, tensor_b):
return torch_wasserstein_loss(tensor_a, tensor_b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused_add_cumsum_div_sum_0(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 1e-14
tmp9 = tmp7 + tmp8
tmp10 = tmp0 / tmp9
tmp11 = tmp10.to(tl.float32)
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK])
tmp13, = tl.associative_scan((tmp12,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + 4 * x0), tmp13, xmask)
@triton.jit
def triton_per_fused_abs_mean_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp6 = tmp4 - tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tl_math.abs(tmp11)
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tl_math.abs(tmp16)
tmp18 = tmp13 + tmp17
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = tl.sum(tmp19, 1)[:, None]
tmp22 = 64.0
tmp23 = tmp21 / tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp23, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_add_cumsum_div_sum_0[grid(64)](arg0_1, buf0, 64, 4,
XBLOCK=8, num_warps=2, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused_add_cumsum_div_sum_0[grid(64)](arg1_1, buf1, 64, 4,
XBLOCK=8, num_warps=2, num_stages=1)
del arg1_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused_abs_mean_sub_sum_1[grid(1)](buf3, buf0, buf1, 1,
64, XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
return buf3,
def torch_cdf_loss(tensor_a, tensor_b, p=1):
tensor_a = tensor_a / (torch.sum(tensor_a, dim=-1, keepdim=True) + 1e-14)
tensor_b = tensor_b / (torch.sum(tensor_b, dim=-1, keepdim=True) + 1e-14)
cdf_tensor_a = torch.cumsum(tensor_a, dim=-1)
cdf_tensor_b = torch.cumsum(tensor_b, dim=-1)
if p == 1:
cdf_distance = torch.sum(torch.abs(cdf_tensor_a - cdf_tensor_b), dim=-1
)
elif p == 2:
cdf_distance = torch.sqrt(torch.sum(torch.pow(cdf_tensor_a -
cdf_tensor_b, 2), dim=-1))
else:
cdf_distance = torch.pow(torch.sum(torch.pow(torch.abs(cdf_tensor_a -
cdf_tensor_b), p), dim=-1), 1 / p)
cdf_loss = cdf_distance.mean()
return cdf_loss
def torch_wasserstein_loss(tensor_a, tensor_b):
return torch_cdf_loss(tensor_a, tensor_b, p=1)
class WassersteinLossNew(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
nikitadhawan/SimCLR
|
WassersteinLoss
| false | 7,347 |
[
"MIT"
] | 1 |
7d87b384b1edb68e7ba86601b26f76e6da214718
|
https://github.com/nikitadhawan/SimCLR/tree/7d87b384b1edb68e7ba86601b26f76e6da214718
|
CoxPHLossSorted
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/5s/c5shsgehfk5krlitzfx6dsoni2ot3vtyhzwhw5d6md32oxwp3feg.py
# Topologically Sorted Source Nodes: [gamma, sub, exp, cumsum, add, log, log_cumsum_h, sub_1, mul, sum_1, sum_2, div, neg], Original ATen: [aten.max, aten.sub, aten.exp, aten.cumsum, aten.add, aten.log, aten.mul, aten.sum, aten.div, aten.neg]
# Source node to ATen node mapping:
# add => add
# cumsum => cumsum
# div => div
# exp => exp
# gamma => max_1
# log => log
# log_cumsum_h => add_1
# mul => mul
# neg => neg
# sub => sub
# sub_1 => sub_1
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %max_1 : [num_users=2] = call_function[target=torch.ops.aten.max.default](args = (%view_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %max_1), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%exp, 0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%cumsum, 1e-07), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%log, %max_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %add_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %view), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%div,), kwargs = {})
triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0 = async_compile.triton('triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp14 = tl.load(in_ptr1 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp1, 0))
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp5.to(tl.float32)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp8, = tl.associative_scan((tmp7,), 0, _triton_helper_fn_add0)
tmp9 = 1e-07
tmp10 = tmp8 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp11 + tmp3
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = tl.broadcast_to(tmp14, [RBLOCK])
tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0))
tmp22 = tmp18 / tmp21
tmp23 = -tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf4 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [gamma, sub, exp, cumsum, add, log, log_cumsum_h, sub_1, mul, sum_1, sum_2, div, neg], Original ATen: [aten.max, aten.sub, aten.exp, aten.cumsum, aten.add, aten.log, aten.mul, aten.sum, aten.div, aten.neg]
stream0 = get_raw_stream(0)
triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0.run(buf4, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
def cox_ph_loss_sorted(log_h, event, eps=1e-07):
"""Requires the input to be sorted by descending duration time.
See DatasetDurationSorted.
We calculate the negative log of $(rac{h_i}{\\sum_{j \\in R_i} h_j})^d$,
where h = exp(log_h) are the hazards and R is the risk set, and d is event.
We just compute a cumulative sum, and not the true Risk sets. This is a
limitation, but simple and fast.
"""
event = event.view(-1)
log_h = log_h.view(-1)
gamma = log_h.max()
log_cumsum_h = log_h.sub(gamma).exp().cumsum(0).add(eps).log().add(gamma)
return -log_h.sub(log_cumsum_h).mul(event).sum().div(event.sum())
class CoxPHLossSorted(torch.nn.Module):
"""Loss for CoxPH.
Requires the input to be sorted by descending duration time.
See DatasetDurationSorted.
We calculate the negative log of $(rac{h_i}{\\sum_{j \\in R_i} h_j})^d$,
where h = exp(log_h) are the hazards and R is the risk set, and d is event.
We just compute a cumulative sum, and not the true Risk sets. This is a
limitation, but simple and fast.
"""
def __init__(self):
super().__init__()
def forward(self, log_h, events):
return cox_ph_loss_sorted(log_h, events)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp14 = tl.load(in_ptr1 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp1, 0))
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp5.to(tl.float32)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp8, = tl.associative_scan((tmp7,), 0, _triton_helper_fn_add0)
tmp9 = 1e-07
tmp10 = tmp8 + tmp9
tmp11 = tl_math.log(tmp10)
tmp12 = tmp11 + tmp3
tmp13 = tmp0 - tmp12
tmp15 = tmp13 * tmp14
tmp16 = tl.broadcast_to(tmp15, [RBLOCK])
tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0))
tmp19 = tl.broadcast_to(tmp14, [RBLOCK])
tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0))
tmp22 = tmp18 / tmp21
tmp23 = -tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
buf4 = buf2
del buf2
get_raw_stream(0)
triton_per_fused_add_cumsum_div_exp_log_max_mul_neg_sub_sum_0[grid(1)](
buf4, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf4,
def cox_ph_loss_sorted(log_h, event, eps=1e-07):
"""Requires the input to be sorted by descending duration time.
See DatasetDurationSorted.
We calculate the negative log of $(rac{h_i}{\\sum_{j \\in R_i} h_j})^d$,
where h = exp(log_h) are the hazards and R is the risk set, and d is event.
We just compute a cumulative sum, and not the true Risk sets. This is a
limitation, but simple and fast.
"""
event = event.view(-1)
log_h = log_h.view(-1)
gamma = log_h.max()
log_cumsum_h = log_h.sub(gamma).exp().cumsum(0).add(eps).log().add(gamma)
return -log_h.sub(log_cumsum_h).mul(event).sum().div(event.sum())
class CoxPHLossSortedNew(torch.nn.Module):
"""Loss for CoxPH.
Requires the input to be sorted by descending duration time.
See DatasetDurationSorted.
We calculate the negative log of $(rac{h_i}{\\sum_{j \\in R_i} h_j})^d$,
where h = exp(log_h) are the hazards and R is the risk set, and d is event.
We just compute a cumulative sum, and not the true Risk sets. This is a
limitation, but simple and fast.
"""
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
nikolase90/pycox
|
CoxPHLossSorted
| false | 7,348 |
[
"BSD-2-Clause"
] | 1 |
1c780253da7bab7eba0dc02e1436a68a9b812a66
|
https://github.com/nikolase90/pycox/tree/1c780253da7bab7eba0dc02e1436a68a9b812a66
|
leaky_hardtanh
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/oi/coiikexixk72fojnq6ypmcez3cii47yphqpwammllvhkrpkcygzp.py
# Topologically Sorted Source Nodes: [lt, mul, add, x, gt, mul_1, add_1, x_1], Original ATen: [aten.lt, aten.mul, aten.add, aten.where, aten.gt]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# gt => gt
# lt => lt
# mul => mul
# mul_1 => mul_1
# x => where
# x_1 => where_1
# Graph fragment:
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%arg0_1, -1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.01), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, -1), kwargs = {})
# %where : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%lt, %add, %arg0_1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where, 1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 0.01), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_1, %where), kwargs = {})
triton_poi_fused_add_gt_lt_mul_where_0 = async_compile.triton('triton_poi_fused_add_gt_lt_mul_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_gt_lt_mul_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_gt_lt_mul_where_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = -1.0
tmp2 = tmp0 < tmp1
tmp3 = 0.01
tmp4 = tmp0 * tmp3
tmp5 = tmp4 + tmp1
tmp6 = tl.where(tmp2, tmp5, tmp0)
tmp7 = 1.0
tmp8 = tmp6 > tmp7
tmp9 = tmp6 * tmp3
tmp10 = tmp9 + tmp7
tmp11 = tl.where(tmp8, tmp10, tmp6)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [lt, mul, add, x, gt, mul_1, add_1, x_1], Original ATen: [aten.lt, aten.mul, aten.add, aten.where, aten.gt]
stream0 = get_raw_stream(0)
triton_poi_fused_add_gt_lt_mul_where_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class leaky_hardtanh(nn.Module):
def __init__(self, min=-1, max=1, slope=0.01):
super(leaky_hardtanh, self).__init__()
self.min = min
self.max = max
self.slope = slope
def forward(self, x):
x = torch.where(x < self.min, self.min + x * self.slope, x)
x = torch.where(x > self.max, self.max + x * self.slope, x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_gt_lt_mul_where_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = -1.0
tmp2 = tmp0 < tmp1
tmp3 = 0.01
tmp4 = tmp0 * tmp3
tmp5 = tmp4 + tmp1
tmp6 = tl.where(tmp2, tmp5, tmp0)
tmp7 = 1.0
tmp8 = tmp6 > tmp7
tmp9 = tmp6 * tmp3
tmp10 = tmp9 + tmp7
tmp11 = tl.where(tmp8, tmp10, tmp6)
tl.store(out_ptr0 + x0, tmp11, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_gt_lt_mul_where_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class leaky_hardtanhNew(nn.Module):
def __init__(self, min=-1, max=1, slope=0.01):
super(leaky_hardtanhNew, self).__init__()
self.min = min
self.max = max
self.slope = slope
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
nikolasmorshuis/gadolinium_prediction
|
leaky_hardtanh
| false | 7,349 |
[
"Apache-2.0"
] | 1 |
7d6640df5b62ce578a947d3a9b9c701c3d1ccd79
|
https://github.com/nikolasmorshuis/gadolinium_prediction/tree/7d6640df5b62ce578a947d3a9b9c701c3d1ccd79
|
GlobalAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%squeeze, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%squeeze, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wk/cwk2wao7opapqbjj7klnqrd6tgist3ts3nc5veryzhzstwpx7d4l.py
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attn_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/zd/czdeq2ohbgubcyeps2ukquvfhigxtyega57i24ketclusfgmyedi.py
# Topologically Sorted Source Nodes: [weightedContext_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# weightedContext_1 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%squeeze_1, %primals_2], 1), kwargs = {})
triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/nd/cndmyjzjevhkuc7c6qt54venjnegfpn7mgzqrw5yus7yt5u3qqaj.py
# Topologically Sorted Source Nodes: [weightedContext_3], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# weightedContext_3 => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mm_1,), kwargs = {})
triton_poi_fused_tanh_3 = async_compile.triton('triton_poi_fused_tanh_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_3(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 8), (8, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(primals_2, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm]
extern_kernels.bmm(primals_1, reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0), out=buf1)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf1, buf2, 16, grid=grid(16), stream=stream0)
buf3 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [attn_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0)
buf4 = reinterpret_tensor(buf2, (4, 1, 4), (4, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0), primals_1, out=buf4)
buf5 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
# Topologically Sorted Source Nodes: [weightedContext_1], Original ATen: [aten.cat]
triton_poi_fused_cat_2.run(buf4, primals_2, buf5, 32, grid=grid(32), stream=stream0)
buf6 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [weightedContext_2], Original ATen: [aten.mm]
extern_kernels.mm(buf5, reinterpret_tensor(primals_4, (8, 4), (1, 8), 0), out=buf6)
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [weightedContext_3], Original ATen: [aten.tanh]
triton_poi_fused_tanh_3.run(buf7, 16, grid=grid(16), stream=stream0)
return (buf7, buf3, primals_2, buf3, buf5, buf7, primals_4, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.cuda
def aeq(*args):
base = args[0]
for a in args[1:]:
assert a == base, str(args)
class Bottle(nn.Module):
def forward(self, input):
if len(input.size()) <= 2:
return super(Bottle, self).forward(input)
size = input.size()[:2]
out = super(Bottle, self).forward(input.view(size[0] * size[1], -1))
return out.contiguous().view(size[0], size[1], -1)
class BottleLinear(Bottle, nn.Linear):
pass
class GlobalAttention(nn.Module):
"""
Luong Attention.
Global attention takes a matrix and a query vector. It
then computes a parameterized convex combination of the matrix
based on the input query.
H_1 H_2 H_3 ... H_n
q q q q
| | | |
\\ | | /
.....
\\ | /
a
Constructs a unit mapping.
$$(H_1 + H_n, q) => (a)$$
Where H is of `batch x n x dim` and q is of `batch x dim`.
Loung Attention (dotprod):
$$ anh(W_2 [(softmax((W_1 q + b_1) H) H), q] + b_2)$$.:
Bahdanau Attention (mlp):
$$c = \\sum_{j=1}^{SeqLength}_jh_j$$.
The Alignment-function $$a$$ computes an alignment as:
$$a_j = softmax(v_a^T anh(W_a q + U_a h_j) )$$.
"""
def __init__(self, dim, coverage=False, attn_type='dotprod'):
super(GlobalAttention, self).__init__()
self.dim = dim
self.attn_type = attn_type
assert self.attn_type in ['dotprod', 'mlp'
], 'Please select a valid attention type.'
if self.attn_type == 'dotprod':
self.linear_in = nn.Linear(dim, dim, bias=False)
self.linear_out = nn.Linear(dim * 2, dim, bias=False)
elif self.attn_type == 'mlp':
self.linear_context = BottleLinear(dim, dim, bias=False)
self.linear_query = nn.Linear(dim, dim, bias=False)
self.v = BottleLinear(dim, 1, bias=False)
self.sm = nn.Softmax()
self.tanh = nn.Tanh()
self.mask = None
if coverage:
self.linear_cover = nn.Linear(1, dim, bias=False)
def applyMask(self, mask):
self.mask = mask
def forward(self, input, context, coverage=None):
"""
input (FloatTensor): batch x dim
context (FloatTensor): batch x sourceL x dim
coverage (FloatTensor): batch x sourceL
"""
batch, sourceL, dim = context.size()
batch_, dim_ = input.size()
aeq(batch, batch_)
aeq(dim, dim_)
aeq(self.dim, dim)
if coverage is not None:
batch_, sourceL_ = coverage.size()
aeq(batch, batch_)
aeq(sourceL, sourceL_)
if self.mask is not None:
beam_, batch_, sourceL_ = self.mask.size()
aeq(batch, batch_ * beam_)
aeq(sourceL, sourceL_)
if coverage:
context += self.linear_cover(coverage.view(-1).unsqueeze(1)
).view_as(context)
context = self.tanh(context)
if self.attn_type == 'dotprod':
targetT = self.linear_in(input).unsqueeze(2)
attn = torch.bmm(context, targetT).squeeze(2)
elif self.attn_type == 'mlp':
wq = self.linear_query(input).unsqueeze(1)
uh = self.linear_context(context.contiguous())
wquh = uh + wq.expand_as(uh)
wquh = self.tanh(wquh)
attn = self.v(wquh.contiguous()).squeeze()
if self.mask is not None:
attn.data.masked_fill_(self.mask, -float('inf'))
attn = self.sm(attn)
attn3 = attn.view(attn.size(0), 1, attn.size(1))
weightedContext = torch.bmm(attn3, context).squeeze(1)
if self.attn_type == 'dotprod':
weightedContext = torch.cat((weightedContext, input), 1)
weightedContext = self.linear_out(weightedContext)
weightedContext = self.tanh(weightedContext)
batch_, sourceL_ = attn.size()
aeq(batch, batch_)
aeq(sourceL, sourceL_)
batch_, dim_ = weightedContext.size()
aeq(batch, batch_)
aeq(dim, dim_)
return weightedContext, attn
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.cuda
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_tanh_3(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 8), (8, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_2, reinterpret_tensor(primals_3, (4, 4),
(1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(primals_1, reinterpret_tensor(buf0, (4, 4, 1), (
4, 1, 1), 0), out=buf1)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](buf1, buf2, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0)
del buf1
triton_poi_fused__softmax_1[grid(16)](buf2, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf4 = reinterpret_tensor(buf2, (4, 1, 4), (4, 4, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0
), primals_1, out=buf4)
buf5 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
triton_poi_fused_cat_2[grid(32)](buf4, primals_2, buf5, 32, XBLOCK=
32, num_warps=1, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0)
del buf4
extern_kernels.mm(buf5, reinterpret_tensor(primals_4, (8, 4), (1, 8
), 0), out=buf6)
buf7 = buf6
del buf6
triton_poi_fused_tanh_3[grid(16)](buf7, 16, XBLOCK=16, num_warps=1,
num_stages=1)
return (buf7, buf3, primals_2, buf3, buf5, buf7, primals_4,
reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0))
def aeq(*args):
base = args[0]
for a in args[1:]:
assert a == base, str(args)
class Bottle(nn.Module):
def forward(self, input):
if len(input.size()) <= 2:
return super(Bottle, self).forward(input)
size = input.size()[:2]
out = super(Bottle, self).forward(input.view(size[0] * size[1], -1))
return out.contiguous().view(size[0], size[1], -1)
class BottleLinear(Bottle, nn.Linear):
pass
class GlobalAttentionNew(nn.Module):
"""
Luong Attention.
Global attention takes a matrix and a query vector. It
then computes a parameterized convex combination of the matrix
based on the input query.
H_1 H_2 H_3 ... H_n
q q q q
| | | |
\\ | | /
.....
\\ | /
a
Constructs a unit mapping.
$$(H_1 + H_n, q) => (a)$$
Where H is of `batch x n x dim` and q is of `batch x dim`.
Loung Attention (dotprod):
$$ anh(W_2 [(softmax((W_1 q + b_1) H) H), q] + b_2)$$.:
Bahdanau Attention (mlp):
$$c = \\sum_{j=1}^{SeqLength}_jh_j$$.
The Alignment-function $$a$$ computes an alignment as:
$$a_j = softmax(v_a^T anh(W_a q + U_a h_j) )$$.
"""
def __init__(self, dim, coverage=False, attn_type='dotprod'):
super(GlobalAttentionNew, self).__init__()
self.dim = dim
self.attn_type = attn_type
assert self.attn_type in ['dotprod', 'mlp'
], 'Please select a valid attention type.'
if self.attn_type == 'dotprod':
self.linear_in = nn.Linear(dim, dim, bias=False)
self.linear_out = nn.Linear(dim * 2, dim, bias=False)
elif self.attn_type == 'mlp':
self.linear_context = BottleLinear(dim, dim, bias=False)
self.linear_query = nn.Linear(dim, dim, bias=False)
self.v = BottleLinear(dim, 1, bias=False)
self.sm = nn.Softmax()
self.tanh = nn.Tanh()
self.mask = None
if coverage:
self.linear_cover = nn.Linear(1, dim, bias=False)
def applyMask(self, mask):
self.mask = mask
def forward(self, input_0, input_1):
primals_2 = self.linear_in.weight
primals_4 = self.linear_out.weight
primals_3 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0], output[1]
|
nikhilweee/syntactic-seq2seq
|
GlobalAttention
| false | 7,350 |
[
"MIT"
] | 1 |
807e524167b064fc85c91e5e2fa994de6b739455
|
https://github.com/nikhilweee/syntactic-seq2seq/tree/807e524167b064fc85c91e5e2fa994de6b739455
|
NetVLAD
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/tb/ctbeeotfqzbneeewwh2aiay5657nsb5gfe5znphkkjrpdvh7ojsn.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.linalg_vector_norm]
# Source node to ATen node mapping:
# x => pow_1, sum_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
triton_red_fused_linalg_vector_norm_0 = async_compile.triton('triton_red_fused_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[16384, 128],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 16384
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 4096
x1 = (xindex // 4096)
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + (4096*r2) + (524288*x1)), rmask, eviction_policy='evict_last', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ef/cefdzljppvz2lfunb6uf63d2oi3ptkpnhsxqbeffjopee5fas75z.py
# Topologically Sorted Source Nodes: [x, residual_2, residual_4, residual_6, residual_8, residual_10, residual_12, residual_14, residual_16, residual_18, residual_20, residual_22, residual_24, residual_26, residual_28, residual_30, residual_32, residual_34, residual_36, residual_38, residual_40, residual_42, residual_44, residual_46, residual_48, residual_50, residual_52, residual_54, residual_56, residual_58, residual_60, residual_62, residual_64, residual_66, residual_68, residual_70, residual_72, residual_74, residual_76, residual_78, residual_80, residual_82, residual_84, residual_86, residual_88, residual_90, residual_92, residual_94, residual_96, residual_98, residual_100, residual_102, residual_104, residual_106, residual_108, residual_110, residual_112, residual_114, residual_116, residual_118, residual_120, residual_122, residual_124, residual_126], Original ATen: [aten.div, aten.sub]
# Source node to ATen node mapping:
# residual_10 => sub_6
# residual_100 => sub_51
# residual_102 => sub_52
# residual_104 => sub_53
# residual_106 => sub_54
# residual_108 => sub_55
# residual_110 => sub_56
# residual_112 => sub_57
# residual_114 => sub_58
# residual_116 => sub_59
# residual_118 => sub_60
# residual_12 => sub_7
# residual_120 => sub_61
# residual_122 => sub_62
# residual_124 => sub_63
# residual_126 => sub_64
# residual_14 => sub_8
# residual_16 => sub_9
# residual_18 => sub_10
# residual_2 => sub_2
# residual_20 => sub_11
# residual_22 => sub_12
# residual_24 => sub_13
# residual_26 => sub_14
# residual_28 => sub_15
# residual_30 => sub_16
# residual_32 => sub_17
# residual_34 => sub_18
# residual_36 => sub_19
# residual_38 => sub_20
# residual_4 => sub_3
# residual_40 => sub_21
# residual_42 => sub_22
# residual_44 => sub_23
# residual_46 => sub_24
# residual_48 => sub_25
# residual_50 => sub_26
# residual_52 => sub_27
# residual_54 => sub_28
# residual_56 => sub_29
# residual_58 => sub_30
# residual_6 => sub_4
# residual_60 => sub_31
# residual_62 => sub_32
# residual_64 => sub_33
# residual_66 => sub_34
# residual_68 => sub_35
# residual_70 => sub_36
# residual_72 => sub_37
# residual_74 => sub_38
# residual_76 => sub_39
# residual_78 => sub_40
# residual_8 => sub_5
# residual_80 => sub_41
# residual_82 => sub_42
# residual_84 => sub_43
# residual_86 => sub_44
# residual_88 => sub_45
# residual_90 => sub_46
# residual_92 => sub_47
# residual_94 => sub_48
# residual_96 => sub_49
# residual_98 => sub_50
# x => div
# Graph fragment:
# %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
# %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_4), kwargs = {})
# %sub_3 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_7), kwargs = {})
# %sub_4 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_10), kwargs = {})
# %sub_5 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_13), kwargs = {})
# %sub_6 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_16), kwargs = {})
# %sub_7 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_19), kwargs = {})
# %sub_8 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_22), kwargs = {})
# %sub_9 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_25), kwargs = {})
# %sub_10 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_28), kwargs = {})
# %sub_11 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_31), kwargs = {})
# %sub_12 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_34), kwargs = {})
# %sub_13 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_37), kwargs = {})
# %sub_14 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_40), kwargs = {})
# %sub_15 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_43), kwargs = {})
# %sub_16 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_46), kwargs = {})
# %sub_17 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_49), kwargs = {})
# %sub_18 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_52), kwargs = {})
# %sub_19 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_55), kwargs = {})
# %sub_20 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_58), kwargs = {})
# %sub_21 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_61), kwargs = {})
# %sub_22 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_64), kwargs = {})
# %sub_23 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_67), kwargs = {})
# %sub_24 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_70), kwargs = {})
# %sub_25 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_73), kwargs = {})
# %sub_26 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_76), kwargs = {})
# %sub_27 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_79), kwargs = {})
# %sub_28 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_82), kwargs = {})
# %sub_29 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_85), kwargs = {})
# %sub_30 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_88), kwargs = {})
# %sub_31 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_91), kwargs = {})
# %sub_32 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_94), kwargs = {})
# %sub_33 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_97), kwargs = {})
# %sub_34 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_100), kwargs = {})
# %sub_35 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_103), kwargs = {})
# %sub_36 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_106), kwargs = {})
# %sub_37 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_109), kwargs = {})
# %sub_38 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_112), kwargs = {})
# %sub_39 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_115), kwargs = {})
# %sub_40 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_118), kwargs = {})
# %sub_41 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_121), kwargs = {})
# %sub_42 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_124), kwargs = {})
# %sub_43 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_127), kwargs = {})
# %sub_44 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_130), kwargs = {})
# %sub_45 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_133), kwargs = {})
# %sub_46 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_136), kwargs = {})
# %sub_47 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_139), kwargs = {})
# %sub_48 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_142), kwargs = {})
# %sub_49 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_145), kwargs = {})
# %sub_50 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_148), kwargs = {})
# %sub_51 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_151), kwargs = {})
# %sub_52 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_154), kwargs = {})
# %sub_53 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_157), kwargs = {})
# %sub_54 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_160), kwargs = {})
# %sub_55 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_163), kwargs = {})
# %sub_56 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_166), kwargs = {})
# %sub_57 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_169), kwargs = {})
# %sub_58 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_172), kwargs = {})
# %sub_59 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_175), kwargs = {})
# %sub_60 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_178), kwargs = {})
# %sub_61 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_181), kwargs = {})
# %sub_62 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_184), kwargs = {})
# %sub_63 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_187), kwargs = {})
# %sub_64 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_190), kwargs = {})
triton_poi_fused_div_sub_1 = async_compile.triton('triton_poi_fused_div_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: '*fp32', 63: '*fp32', 64: '*fp32', 65: '*fp32', 66: '*fp32', 67: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 65, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, out_ptr29, out_ptr30, out_ptr31, out_ptr32, out_ptr33, out_ptr34, out_ptr35, out_ptr36, out_ptr37, out_ptr38, out_ptr39, out_ptr40, out_ptr41, out_ptr42, out_ptr43, out_ptr44, out_ptr45, out_ptr46, out_ptr47, out_ptr48, out_ptr49, out_ptr50, out_ptr51, out_ptr52, out_ptr53, out_ptr54, out_ptr55, out_ptr56, out_ptr57, out_ptr58, out_ptr59, out_ptr60, out_ptr61, out_ptr62, out_ptr63, xnumel, XBLOCK : tl.constexpr):
xnumel = 2097152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = (xindex // 524288)
x1 = (xindex // 4096) % 128
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x0 + (4096*x2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (128 + x1), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (256 + x1), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (384 + x1), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr2 + (512 + x1), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (640 + x1), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (768 + x1), None, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr2 + (896 + x1), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (1024 + x1), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr2 + (1152 + x1), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (1280 + x1), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (1408 + x1), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (1536 + x1), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (1664 + x1), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr2 + (1792 + x1), None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr2 + (1920 + x1), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr2 + (2048 + x1), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr2 + (2176 + x1), None, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr2 + (2304 + x1), None, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr2 + (2432 + x1), None, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr2 + (2560 + x1), None, eviction_policy='evict_last')
tmp46 = tl.load(in_ptr2 + (2688 + x1), None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr2 + (2816 + x1), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (2944 + x1), None, eviction_policy='evict_last')
tmp52 = tl.load(in_ptr2 + (3072 + x1), None, eviction_policy='evict_last')
tmp54 = tl.load(in_ptr2 + (3200 + x1), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr2 + (3328 + x1), None, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr2 + (3456 + x1), None, eviction_policy='evict_last')
tmp60 = tl.load(in_ptr2 + (3584 + x1), None, eviction_policy='evict_last')
tmp62 = tl.load(in_ptr2 + (3712 + x1), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr2 + (3840 + x1), None, eviction_policy='evict_last')
tmp66 = tl.load(in_ptr2 + (3968 + x1), None, eviction_policy='evict_last')
tmp68 = tl.load(in_ptr2 + (4096 + x1), None, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr2 + (4224 + x1), None, eviction_policy='evict_last')
tmp72 = tl.load(in_ptr2 + (4352 + x1), None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr2 + (4480 + x1), None, eviction_policy='evict_last')
tmp76 = tl.load(in_ptr2 + (4608 + x1), None, eviction_policy='evict_last')
tmp78 = tl.load(in_ptr2 + (4736 + x1), None, eviction_policy='evict_last')
tmp80 = tl.load(in_ptr2 + (4864 + x1), None, eviction_policy='evict_last')
tmp82 = tl.load(in_ptr2 + (4992 + x1), None, eviction_policy='evict_last')
tmp84 = tl.load(in_ptr2 + (5120 + x1), None, eviction_policy='evict_last')
tmp86 = tl.load(in_ptr2 + (5248 + x1), None, eviction_policy='evict_last')
tmp88 = tl.load(in_ptr2 + (5376 + x1), None, eviction_policy='evict_last')
tmp90 = tl.load(in_ptr2 + (5504 + x1), None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr2 + (5632 + x1), None, eviction_policy='evict_last')
tmp94 = tl.load(in_ptr2 + (5760 + x1), None, eviction_policy='evict_last')
tmp96 = tl.load(in_ptr2 + (5888 + x1), None, eviction_policy='evict_last')
tmp98 = tl.load(in_ptr2 + (6016 + x1), None, eviction_policy='evict_last')
tmp100 = tl.load(in_ptr2 + (6144 + x1), None, eviction_policy='evict_last')
tmp102 = tl.load(in_ptr2 + (6272 + x1), None, eviction_policy='evict_last')
tmp104 = tl.load(in_ptr2 + (6400 + x1), None, eviction_policy='evict_last')
tmp106 = tl.load(in_ptr2 + (6528 + x1), None, eviction_policy='evict_last')
tmp108 = tl.load(in_ptr2 + (6656 + x1), None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr2 + (6784 + x1), None, eviction_policy='evict_last')
tmp112 = tl.load(in_ptr2 + (6912 + x1), None, eviction_policy='evict_last')
tmp114 = tl.load(in_ptr2 + (7040 + x1), None, eviction_policy='evict_last')
tmp116 = tl.load(in_ptr2 + (7168 + x1), None, eviction_policy='evict_last')
tmp118 = tl.load(in_ptr2 + (7296 + x1), None, eviction_policy='evict_last')
tmp120 = tl.load(in_ptr2 + (7424 + x1), None, eviction_policy='evict_last')
tmp122 = tl.load(in_ptr2 + (7552 + x1), None, eviction_policy='evict_last')
tmp124 = tl.load(in_ptr2 + (7680 + x1), None, eviction_policy='evict_last')
tmp126 = tl.load(in_ptr2 + (7808 + x1), None, eviction_policy='evict_last')
tmp128 = tl.load(in_ptr2 + (7936 + x1), None, eviction_policy='evict_last')
tmp130 = tl.load(in_ptr2 + (8064 + x1), None, eviction_policy='evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = 1e-12
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 / tmp4
tmp7 = tmp5 - tmp6
tmp9 = tmp5 - tmp8
tmp11 = tmp5 - tmp10
tmp13 = tmp5 - tmp12
tmp15 = tmp5 - tmp14
tmp17 = tmp5 - tmp16
tmp19 = tmp5 - tmp18
tmp21 = tmp5 - tmp20
tmp23 = tmp5 - tmp22
tmp25 = tmp5 - tmp24
tmp27 = tmp5 - tmp26
tmp29 = tmp5 - tmp28
tmp31 = tmp5 - tmp30
tmp33 = tmp5 - tmp32
tmp35 = tmp5 - tmp34
tmp37 = tmp5 - tmp36
tmp39 = tmp5 - tmp38
tmp41 = tmp5 - tmp40
tmp43 = tmp5 - tmp42
tmp45 = tmp5 - tmp44
tmp47 = tmp5 - tmp46
tmp49 = tmp5 - tmp48
tmp51 = tmp5 - tmp50
tmp53 = tmp5 - tmp52
tmp55 = tmp5 - tmp54
tmp57 = tmp5 - tmp56
tmp59 = tmp5 - tmp58
tmp61 = tmp5 - tmp60
tmp63 = tmp5 - tmp62
tmp65 = tmp5 - tmp64
tmp67 = tmp5 - tmp66
tmp69 = tmp5 - tmp68
tmp71 = tmp5 - tmp70
tmp73 = tmp5 - tmp72
tmp75 = tmp5 - tmp74
tmp77 = tmp5 - tmp76
tmp79 = tmp5 - tmp78
tmp81 = tmp5 - tmp80
tmp83 = tmp5 - tmp82
tmp85 = tmp5 - tmp84
tmp87 = tmp5 - tmp86
tmp89 = tmp5 - tmp88
tmp91 = tmp5 - tmp90
tmp93 = tmp5 - tmp92
tmp95 = tmp5 - tmp94
tmp97 = tmp5 - tmp96
tmp99 = tmp5 - tmp98
tmp101 = tmp5 - tmp100
tmp103 = tmp5 - tmp102
tmp105 = tmp5 - tmp104
tmp107 = tmp5 - tmp106
tmp109 = tmp5 - tmp108
tmp111 = tmp5 - tmp110
tmp113 = tmp5 - tmp112
tmp115 = tmp5 - tmp114
tmp117 = tmp5 - tmp116
tmp119 = tmp5 - tmp118
tmp121 = tmp5 - tmp120
tmp123 = tmp5 - tmp122
tmp125 = tmp5 - tmp124
tmp127 = tmp5 - tmp126
tmp129 = tmp5 - tmp128
tmp131 = tmp5 - tmp130
tl.store(out_ptr0 + (x3), tmp5, None)
tl.store(out_ptr1 + (x3), tmp7, None)
tl.store(out_ptr2 + (x3), tmp9, None)
tl.store(out_ptr3 + (x3), tmp11, None)
tl.store(out_ptr4 + (x3), tmp13, None)
tl.store(out_ptr5 + (x3), tmp15, None)
tl.store(out_ptr6 + (x3), tmp17, None)
tl.store(out_ptr7 + (x3), tmp19, None)
tl.store(out_ptr8 + (x3), tmp21, None)
tl.store(out_ptr9 + (x3), tmp23, None)
tl.store(out_ptr10 + (x3), tmp25, None)
tl.store(out_ptr11 + (x3), tmp27, None)
tl.store(out_ptr12 + (x3), tmp29, None)
tl.store(out_ptr13 + (x3), tmp31, None)
tl.store(out_ptr14 + (x3), tmp33, None)
tl.store(out_ptr15 + (x3), tmp35, None)
tl.store(out_ptr16 + (x3), tmp37, None)
tl.store(out_ptr17 + (x3), tmp39, None)
tl.store(out_ptr18 + (x3), tmp41, None)
tl.store(out_ptr19 + (x3), tmp43, None)
tl.store(out_ptr20 + (x3), tmp45, None)
tl.store(out_ptr21 + (x3), tmp47, None)
tl.store(out_ptr22 + (x3), tmp49, None)
tl.store(out_ptr23 + (x3), tmp51, None)
tl.store(out_ptr24 + (x3), tmp53, None)
tl.store(out_ptr25 + (x3), tmp55, None)
tl.store(out_ptr26 + (x3), tmp57, None)
tl.store(out_ptr27 + (x3), tmp59, None)
tl.store(out_ptr28 + (x3), tmp61, None)
tl.store(out_ptr29 + (x3), tmp63, None)
tl.store(out_ptr30 + (x3), tmp65, None)
tl.store(out_ptr31 + (x3), tmp67, None)
tl.store(out_ptr32 + (x3), tmp69, None)
tl.store(out_ptr33 + (x3), tmp71, None)
tl.store(out_ptr34 + (x3), tmp73, None)
tl.store(out_ptr35 + (x3), tmp75, None)
tl.store(out_ptr36 + (x3), tmp77, None)
tl.store(out_ptr37 + (x3), tmp79, None)
tl.store(out_ptr38 + (x3), tmp81, None)
tl.store(out_ptr39 + (x3), tmp83, None)
tl.store(out_ptr40 + (x3), tmp85, None)
tl.store(out_ptr41 + (x3), tmp87, None)
tl.store(out_ptr42 + (x3), tmp89, None)
tl.store(out_ptr43 + (x3), tmp91, None)
tl.store(out_ptr44 + (x3), tmp93, None)
tl.store(out_ptr45 + (x3), tmp95, None)
tl.store(out_ptr46 + (x3), tmp97, None)
tl.store(out_ptr47 + (x3), tmp99, None)
tl.store(out_ptr48 + (x3), tmp101, None)
tl.store(out_ptr49 + (x3), tmp103, None)
tl.store(out_ptr50 + (x3), tmp105, None)
tl.store(out_ptr51 + (x3), tmp107, None)
tl.store(out_ptr52 + (x3), tmp109, None)
tl.store(out_ptr53 + (x3), tmp111, None)
tl.store(out_ptr54 + (x3), tmp113, None)
tl.store(out_ptr55 + (x3), tmp115, None)
tl.store(out_ptr56 + (x3), tmp117, None)
tl.store(out_ptr57 + (x3), tmp119, None)
tl.store(out_ptr58 + (x3), tmp121, None)
tl.store(out_ptr59 + (x3), tmp123, None)
tl.store(out_ptr60 + (x3), tmp125, None)
tl.store(out_ptr61 + (x3), tmp127, None)
tl.store(out_ptr62 + (x3), tmp129, None)
tl.store(out_ptr63 + (x3), tmp131, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/u6/cu6dgbkwo4zyodk2zqiay4hwrwemkqpxzmixog3qipqaqcevgo7u.py
# Topologically Sorted Source Nodes: [soft_assign_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# soft_assign_1 => amax, exp, sub, sum_2
# Graph fragment:
# %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%view, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
triton_per_fused__softmax_2 = async_compile.triton('triton_per_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16384, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16384
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 4096
x1 = (xindex // 4096)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4096*r2) + (262144*x1)), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp3, None)
tl.store(out_ptr1 + (x3), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/46/c465fdmmhrzvuvb7xjrad46zallycaofrdeajo4ox533uv52dzji.py
# Topologically Sorted Source Nodes: [residual, residual_1, sum_1, residual_3, sum_2, residual_5, sum_3, residual_7, sum_4, residual_9, sum_5, residual_11, sum_6, residual_13, sum_7, residual_15, sum_8, residual_17, sum_9, residual_19, sum_10, residual_21, sum_11, residual_23, sum_12, residual_25, sum_13, residual_27, sum_14, residual_29, sum_15, residual_31, sum_16, residual_33, sum_17, residual_35, sum_18, residual_37, sum_19, residual_39, sum_20, residual_41, sum_21, residual_43, sum_22, residual_45, sum_23, residual_47, sum_24, residual_49, sum_25, residual_51, sum_26, residual_53, sum_27, residual_55, sum_28, residual_57, sum_29], Original ATen: [aten.sub, aten.mul, aten.sum]
# Source node to ATen node mapping:
# residual => sub_1
# residual_1 => mul
# residual_11 => mul_5
# residual_13 => mul_6
# residual_15 => mul_7
# residual_17 => mul_8
# residual_19 => mul_9
# residual_21 => mul_10
# residual_23 => mul_11
# residual_25 => mul_12
# residual_27 => mul_13
# residual_29 => mul_14
# residual_3 => mul_1
# residual_31 => mul_15
# residual_33 => mul_16
# residual_35 => mul_17
# residual_37 => mul_18
# residual_39 => mul_19
# residual_41 => mul_20
# residual_43 => mul_21
# residual_45 => mul_22
# residual_47 => mul_23
# residual_49 => mul_24
# residual_5 => mul_2
# residual_51 => mul_25
# residual_53 => mul_26
# residual_55 => mul_27
# residual_57 => mul_28
# residual_7 => mul_3
# residual_9 => mul_4
# sum_1 => sum_3
# sum_10 => sum_12
# sum_11 => sum_13
# sum_12 => sum_14
# sum_13 => sum_15
# sum_14 => sum_16
# sum_15 => sum_17
# sum_16 => sum_18
# sum_17 => sum_19
# sum_18 => sum_20
# sum_19 => sum_21
# sum_2 => sum_4
# sum_20 => sum_22
# sum_21 => sum_23
# sum_22 => sum_24
# sum_23 => sum_25
# sum_24 => sum_26
# sum_25 => sum_27
# sum_26 => sum_28
# sum_27 => sum_29
# sum_28 => sum_30
# sum_29 => sum_31
# sum_3 => sum_5
# sum_4 => sum_6
# sum_5 => sum_7
# sum_6 => sum_8
# sum_7 => sum_9
# sum_8 => sum_10
# sum_9 => sum_11
# Graph fragment:
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%permute, %unsqueeze_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %unsqueeze_2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %unsqueeze_5), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [-1]), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %unsqueeze_8), kwargs = {})
# %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [-1]), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %unsqueeze_11), kwargs = {})
# %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [-1]), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_5, %unsqueeze_14), kwargs = {})
# %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [-1]), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %unsqueeze_17), kwargs = {})
# %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [-1]), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %unsqueeze_20), kwargs = {})
# %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_6, [-1]), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_8, %unsqueeze_23), kwargs = {})
# %sum_10 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_7, [-1]), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %unsqueeze_26), kwargs = {})
# %sum_11 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_8, [-1]), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %unsqueeze_29), kwargs = {})
# %sum_12 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_9, [-1]), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %unsqueeze_32), kwargs = {})
# %sum_13 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_10, [-1]), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %unsqueeze_35), kwargs = {})
# %sum_14 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_11, [-1]), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %unsqueeze_38), kwargs = {})
# %sum_15 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_12, [-1]), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %unsqueeze_41), kwargs = {})
# %sum_16 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_13, [-1]), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_15, %unsqueeze_44), kwargs = {})
# %sum_17 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_14, [-1]), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %unsqueeze_47), kwargs = {})
# %sum_18 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_15, [-1]), kwargs = {})
# %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %unsqueeze_50), kwargs = {})
# %sum_19 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_16, [-1]), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_18, %unsqueeze_53), kwargs = {})
# %sum_20 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_17, [-1]), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_19, %unsqueeze_56), kwargs = {})
# %sum_21 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_18, [-1]), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_20, %unsqueeze_59), kwargs = {})
# %sum_22 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_19, [-1]), kwargs = {})
# %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_21, %unsqueeze_62), kwargs = {})
# %sum_23 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_20, [-1]), kwargs = {})
# %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_22, %unsqueeze_65), kwargs = {})
# %sum_24 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_21, [-1]), kwargs = {})
# %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_23, %unsqueeze_68), kwargs = {})
# %sum_25 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_22, [-1]), kwargs = {})
# %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_24, %unsqueeze_71), kwargs = {})
# %sum_26 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_23, [-1]), kwargs = {})
# %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_25, %unsqueeze_74), kwargs = {})
# %sum_27 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_24, [-1]), kwargs = {})
# %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_26, %unsqueeze_77), kwargs = {})
# %sum_28 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_25, [-1]), kwargs = {})
# %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_27, %unsqueeze_80), kwargs = {})
# %sum_29 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_26, [-1]), kwargs = {})
# %mul_27 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_28, %unsqueeze_83), kwargs = {})
# %sum_30 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_27, [-1]), kwargs = {})
# %mul_28 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_29, %unsqueeze_86), kwargs = {})
# %sum_31 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_28, [-1]), kwargs = {})
triton_red_fused_mul_sub_sum_3 = async_compile.triton('triton_red_fused_mul_sub_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[512, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: 'i32', 63: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sub_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 61, 'num_reduction': 29, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, out_ptr28, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x0 = xindex % 128
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
x1 = (xindex // 128)
_tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp29 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp38 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp47 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp56 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp65 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp74 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp83 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp92 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp101 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp110 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp119 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp128 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp137 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp146 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp155 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp164 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp173 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp182 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp191 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp200 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp209 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp218 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp227 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp236 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp245 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp254 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp263 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp3 = tl.load(in_ptr2 + (r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr3 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr4 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr5 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp14 = tl.load(in_ptr2 + (4096 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp22 = tl.load(in_ptr6 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp23 = tl.load(in_ptr2 + (8192 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp31 = tl.load(in_ptr7 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp32 = tl.load(in_ptr2 + (12288 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp40 = tl.load(in_ptr8 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp41 = tl.load(in_ptr2 + (16384 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp49 = tl.load(in_ptr9 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp50 = tl.load(in_ptr2 + (20480 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp58 = tl.load(in_ptr10 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp59 = tl.load(in_ptr2 + (24576 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp67 = tl.load(in_ptr11 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp68 = tl.load(in_ptr2 + (28672 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp76 = tl.load(in_ptr12 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp77 = tl.load(in_ptr2 + (32768 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp85 = tl.load(in_ptr13 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp86 = tl.load(in_ptr2 + (36864 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp94 = tl.load(in_ptr14 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp95 = tl.load(in_ptr2 + (40960 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp103 = tl.load(in_ptr15 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp104 = tl.load(in_ptr2 + (45056 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp112 = tl.load(in_ptr16 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp113 = tl.load(in_ptr2 + (49152 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp121 = tl.load(in_ptr17 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp122 = tl.load(in_ptr2 + (53248 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp130 = tl.load(in_ptr18 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp131 = tl.load(in_ptr2 + (57344 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp139 = tl.load(in_ptr19 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp140 = tl.load(in_ptr2 + (61440 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp148 = tl.load(in_ptr20 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp149 = tl.load(in_ptr2 + (65536 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp157 = tl.load(in_ptr21 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp158 = tl.load(in_ptr2 + (69632 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp166 = tl.load(in_ptr22 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp167 = tl.load(in_ptr2 + (73728 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp175 = tl.load(in_ptr23 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp176 = tl.load(in_ptr2 + (77824 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp184 = tl.load(in_ptr24 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp185 = tl.load(in_ptr2 + (81920 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp193 = tl.load(in_ptr25 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp194 = tl.load(in_ptr2 + (86016 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp202 = tl.load(in_ptr26 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp203 = tl.load(in_ptr2 + (90112 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp211 = tl.load(in_ptr27 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp212 = tl.load(in_ptr2 + (94208 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp220 = tl.load(in_ptr28 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp221 = tl.load(in_ptr2 + (98304 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp229 = tl.load(in_ptr29 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp230 = tl.load(in_ptr2 + (102400 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp238 = tl.load(in_ptr30 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp239 = tl.load(in_ptr2 + (106496 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp247 = tl.load(in_ptr31 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp248 = tl.load(in_ptr2 + (110592 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp256 = tl.load(in_ptr32 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp257 = tl.load(in_ptr2 + (114688 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = tmp2 * tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = _tmp11 + tmp10
_tmp11 = tl.where(rmask & xmask, tmp12, _tmp11)
tmp15 = tmp14 - tmp4
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp16 / tmp7
tmp18 = tmp13 * tmp17
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = _tmp20 + tmp19
_tmp20 = tl.where(rmask & xmask, tmp21, _tmp20)
tmp24 = tmp23 - tmp4
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp25 / tmp7
tmp27 = tmp22 * tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = _tmp29 + tmp28
_tmp29 = tl.where(rmask & xmask, tmp30, _tmp29)
tmp33 = tmp32 - tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp34 / tmp7
tmp36 = tmp31 * tmp35
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = _tmp38 + tmp37
_tmp38 = tl.where(rmask & xmask, tmp39, _tmp38)
tmp42 = tmp41 - tmp4
tmp43 = tl_math.exp(tmp42)
tmp44 = tmp43 / tmp7
tmp45 = tmp40 * tmp44
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK])
tmp48 = _tmp47 + tmp46
_tmp47 = tl.where(rmask & xmask, tmp48, _tmp47)
tmp51 = tmp50 - tmp4
tmp52 = tl_math.exp(tmp51)
tmp53 = tmp52 / tmp7
tmp54 = tmp49 * tmp53
tmp55 = tl.broadcast_to(tmp54, [XBLOCK, RBLOCK])
tmp57 = _tmp56 + tmp55
_tmp56 = tl.where(rmask & xmask, tmp57, _tmp56)
tmp60 = tmp59 - tmp4
tmp61 = tl_math.exp(tmp60)
tmp62 = tmp61 / tmp7
tmp63 = tmp58 * tmp62
tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK])
tmp66 = _tmp65 + tmp64
_tmp65 = tl.where(rmask & xmask, tmp66, _tmp65)
tmp69 = tmp68 - tmp4
tmp70 = tl_math.exp(tmp69)
tmp71 = tmp70 / tmp7
tmp72 = tmp67 * tmp71
tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK])
tmp75 = _tmp74 + tmp73
_tmp74 = tl.where(rmask & xmask, tmp75, _tmp74)
tmp78 = tmp77 - tmp4
tmp79 = tl_math.exp(tmp78)
tmp80 = tmp79 / tmp7
tmp81 = tmp76 * tmp80
tmp82 = tl.broadcast_to(tmp81, [XBLOCK, RBLOCK])
tmp84 = _tmp83 + tmp82
_tmp83 = tl.where(rmask & xmask, tmp84, _tmp83)
tmp87 = tmp86 - tmp4
tmp88 = tl_math.exp(tmp87)
tmp89 = tmp88 / tmp7
tmp90 = tmp85 * tmp89
tmp91 = tl.broadcast_to(tmp90, [XBLOCK, RBLOCK])
tmp93 = _tmp92 + tmp91
_tmp92 = tl.where(rmask & xmask, tmp93, _tmp92)
tmp96 = tmp95 - tmp4
tmp97 = tl_math.exp(tmp96)
tmp98 = tmp97 / tmp7
tmp99 = tmp94 * tmp98
tmp100 = tl.broadcast_to(tmp99, [XBLOCK, RBLOCK])
tmp102 = _tmp101 + tmp100
_tmp101 = tl.where(rmask & xmask, tmp102, _tmp101)
tmp105 = tmp104 - tmp4
tmp106 = tl_math.exp(tmp105)
tmp107 = tmp106 / tmp7
tmp108 = tmp103 * tmp107
tmp109 = tl.broadcast_to(tmp108, [XBLOCK, RBLOCK])
tmp111 = _tmp110 + tmp109
_tmp110 = tl.where(rmask & xmask, tmp111, _tmp110)
tmp114 = tmp113 - tmp4
tmp115 = tl_math.exp(tmp114)
tmp116 = tmp115 / tmp7
tmp117 = tmp112 * tmp116
tmp118 = tl.broadcast_to(tmp117, [XBLOCK, RBLOCK])
tmp120 = _tmp119 + tmp118
_tmp119 = tl.where(rmask & xmask, tmp120, _tmp119)
tmp123 = tmp122 - tmp4
tmp124 = tl_math.exp(tmp123)
tmp125 = tmp124 / tmp7
tmp126 = tmp121 * tmp125
tmp127 = tl.broadcast_to(tmp126, [XBLOCK, RBLOCK])
tmp129 = _tmp128 + tmp127
_tmp128 = tl.where(rmask & xmask, tmp129, _tmp128)
tmp132 = tmp131 - tmp4
tmp133 = tl_math.exp(tmp132)
tmp134 = tmp133 / tmp7
tmp135 = tmp130 * tmp134
tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK])
tmp138 = _tmp137 + tmp136
_tmp137 = tl.where(rmask & xmask, tmp138, _tmp137)
tmp141 = tmp140 - tmp4
tmp142 = tl_math.exp(tmp141)
tmp143 = tmp142 / tmp7
tmp144 = tmp139 * tmp143
tmp145 = tl.broadcast_to(tmp144, [XBLOCK, RBLOCK])
tmp147 = _tmp146 + tmp145
_tmp146 = tl.where(rmask & xmask, tmp147, _tmp146)
tmp150 = tmp149 - tmp4
tmp151 = tl_math.exp(tmp150)
tmp152 = tmp151 / tmp7
tmp153 = tmp148 * tmp152
tmp154 = tl.broadcast_to(tmp153, [XBLOCK, RBLOCK])
tmp156 = _tmp155 + tmp154
_tmp155 = tl.where(rmask & xmask, tmp156, _tmp155)
tmp159 = tmp158 - tmp4
tmp160 = tl_math.exp(tmp159)
tmp161 = tmp160 / tmp7
tmp162 = tmp157 * tmp161
tmp163 = tl.broadcast_to(tmp162, [XBLOCK, RBLOCK])
tmp165 = _tmp164 + tmp163
_tmp164 = tl.where(rmask & xmask, tmp165, _tmp164)
tmp168 = tmp167 - tmp4
tmp169 = tl_math.exp(tmp168)
tmp170 = tmp169 / tmp7
tmp171 = tmp166 * tmp170
tmp172 = tl.broadcast_to(tmp171, [XBLOCK, RBLOCK])
tmp174 = _tmp173 + tmp172
_tmp173 = tl.where(rmask & xmask, tmp174, _tmp173)
tmp177 = tmp176 - tmp4
tmp178 = tl_math.exp(tmp177)
tmp179 = tmp178 / tmp7
tmp180 = tmp175 * tmp179
tmp181 = tl.broadcast_to(tmp180, [XBLOCK, RBLOCK])
tmp183 = _tmp182 + tmp181
_tmp182 = tl.where(rmask & xmask, tmp183, _tmp182)
tmp186 = tmp185 - tmp4
tmp187 = tl_math.exp(tmp186)
tmp188 = tmp187 / tmp7
tmp189 = tmp184 * tmp188
tmp190 = tl.broadcast_to(tmp189, [XBLOCK, RBLOCK])
tmp192 = _tmp191 + tmp190
_tmp191 = tl.where(rmask & xmask, tmp192, _tmp191)
tmp195 = tmp194 - tmp4
tmp196 = tl_math.exp(tmp195)
tmp197 = tmp196 / tmp7
tmp198 = tmp193 * tmp197
tmp199 = tl.broadcast_to(tmp198, [XBLOCK, RBLOCK])
tmp201 = _tmp200 + tmp199
_tmp200 = tl.where(rmask & xmask, tmp201, _tmp200)
tmp204 = tmp203 - tmp4
tmp205 = tl_math.exp(tmp204)
tmp206 = tmp205 / tmp7
tmp207 = tmp202 * tmp206
tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK])
tmp210 = _tmp209 + tmp208
_tmp209 = tl.where(rmask & xmask, tmp210, _tmp209)
tmp213 = tmp212 - tmp4
tmp214 = tl_math.exp(tmp213)
tmp215 = tmp214 / tmp7
tmp216 = tmp211 * tmp215
tmp217 = tl.broadcast_to(tmp216, [XBLOCK, RBLOCK])
tmp219 = _tmp218 + tmp217
_tmp218 = tl.where(rmask & xmask, tmp219, _tmp218)
tmp222 = tmp221 - tmp4
tmp223 = tl_math.exp(tmp222)
tmp224 = tmp223 / tmp7
tmp225 = tmp220 * tmp224
tmp226 = tl.broadcast_to(tmp225, [XBLOCK, RBLOCK])
tmp228 = _tmp227 + tmp226
_tmp227 = tl.where(rmask & xmask, tmp228, _tmp227)
tmp231 = tmp230 - tmp4
tmp232 = tl_math.exp(tmp231)
tmp233 = tmp232 / tmp7
tmp234 = tmp229 * tmp233
tmp235 = tl.broadcast_to(tmp234, [XBLOCK, RBLOCK])
tmp237 = _tmp236 + tmp235
_tmp236 = tl.where(rmask & xmask, tmp237, _tmp236)
tmp240 = tmp239 - tmp4
tmp241 = tl_math.exp(tmp240)
tmp242 = tmp241 / tmp7
tmp243 = tmp238 * tmp242
tmp244 = tl.broadcast_to(tmp243, [XBLOCK, RBLOCK])
tmp246 = _tmp245 + tmp244
_tmp245 = tl.where(rmask & xmask, tmp246, _tmp245)
tmp249 = tmp248 - tmp4
tmp250 = tl_math.exp(tmp249)
tmp251 = tmp250 / tmp7
tmp252 = tmp247 * tmp251
tmp253 = tl.broadcast_to(tmp252, [XBLOCK, RBLOCK])
tmp255 = _tmp254 + tmp253
_tmp254 = tl.where(rmask & xmask, tmp255, _tmp254)
tmp258 = tmp257 - tmp4
tmp259 = tl_math.exp(tmp258)
tmp260 = tmp259 / tmp7
tmp261 = tmp256 * tmp260
tmp262 = tl.broadcast_to(tmp261, [XBLOCK, RBLOCK])
tmp264 = _tmp263 + tmp262
_tmp263 = tl.where(rmask & xmask, tmp264, _tmp263)
tmp11 = tl.sum(_tmp11, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp11, xmask)
tmp20 = tl.sum(_tmp20, 1)[:, None]
tl.store(out_ptr1 + (x3), tmp20, xmask)
tmp29 = tl.sum(_tmp29, 1)[:, None]
tl.store(out_ptr2 + (x3), tmp29, xmask)
tmp38 = tl.sum(_tmp38, 1)[:, None]
tl.store(out_ptr3 + (x3), tmp38, xmask)
tmp47 = tl.sum(_tmp47, 1)[:, None]
tl.store(out_ptr4 + (x3), tmp47, xmask)
tmp56 = tl.sum(_tmp56, 1)[:, None]
tl.store(out_ptr5 + (x3), tmp56, xmask)
tmp65 = tl.sum(_tmp65, 1)[:, None]
tl.store(out_ptr6 + (x3), tmp65, xmask)
tmp74 = tl.sum(_tmp74, 1)[:, None]
tl.store(out_ptr7 + (x3), tmp74, xmask)
tmp83 = tl.sum(_tmp83, 1)[:, None]
tl.store(out_ptr8 + (x3), tmp83, xmask)
tmp92 = tl.sum(_tmp92, 1)[:, None]
tl.store(out_ptr9 + (x3), tmp92, xmask)
tmp101 = tl.sum(_tmp101, 1)[:, None]
tl.store(out_ptr10 + (x3), tmp101, xmask)
tmp110 = tl.sum(_tmp110, 1)[:, None]
tl.store(out_ptr11 + (x3), tmp110, xmask)
tmp119 = tl.sum(_tmp119, 1)[:, None]
tl.store(out_ptr12 + (x3), tmp119, xmask)
tmp128 = tl.sum(_tmp128, 1)[:, None]
tl.store(out_ptr13 + (x3), tmp128, xmask)
tmp137 = tl.sum(_tmp137, 1)[:, None]
tl.store(out_ptr14 + (x3), tmp137, xmask)
tmp146 = tl.sum(_tmp146, 1)[:, None]
tl.store(out_ptr15 + (x3), tmp146, xmask)
tmp155 = tl.sum(_tmp155, 1)[:, None]
tl.store(out_ptr16 + (x3), tmp155, xmask)
tmp164 = tl.sum(_tmp164, 1)[:, None]
tl.store(out_ptr17 + (x3), tmp164, xmask)
tmp173 = tl.sum(_tmp173, 1)[:, None]
tl.store(out_ptr18 + (x3), tmp173, xmask)
tmp182 = tl.sum(_tmp182, 1)[:, None]
tl.store(out_ptr19 + (x3), tmp182, xmask)
tmp191 = tl.sum(_tmp191, 1)[:, None]
tl.store(out_ptr20 + (x3), tmp191, xmask)
tmp200 = tl.sum(_tmp200, 1)[:, None]
tl.store(out_ptr21 + (x3), tmp200, xmask)
tmp209 = tl.sum(_tmp209, 1)[:, None]
tl.store(out_ptr22 + (x3), tmp209, xmask)
tmp218 = tl.sum(_tmp218, 1)[:, None]
tl.store(out_ptr23 + (x3), tmp218, xmask)
tmp227 = tl.sum(_tmp227, 1)[:, None]
tl.store(out_ptr24 + (x3), tmp227, xmask)
tmp236 = tl.sum(_tmp236, 1)[:, None]
tl.store(out_ptr25 + (x3), tmp236, xmask)
tmp245 = tl.sum(_tmp245, 1)[:, None]
tl.store(out_ptr26 + (x3), tmp245, xmask)
tmp254 = tl.sum(_tmp254, 1)[:, None]
tl.store(out_ptr27 + (x3), tmp254, xmask)
tmp263 = tl.sum(_tmp263, 1)[:, None]
tl.store(out_ptr28 + (x3), tmp263, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7g/c7gpcb637ns46u6bq6sgchjaxn4thmkzjpeoxhjhn2ws6dc2fyq4.py
# Topologically Sorted Source Nodes: [residual_59, sum_30, residual_61, sum_31, residual_63, sum_32, residual_65, sum_33, residual_67, sum_34, residual_69, sum_35, residual_71, sum_36, residual_73, sum_37, residual_75, sum_38, residual_77, sum_39, residual_79, sum_40, residual_81, sum_41, residual_83, sum_42, residual_85, sum_43, residual_87, sum_44, residual_89, sum_45, residual_91, sum_46, residual_93, sum_47, residual_95, sum_48, residual_97, sum_49, residual_99, sum_50, residual_101, sum_51, residual_103, sum_52, residual_105, sum_53, residual_107, sum_54, residual_109, sum_55, residual_111, sum_56, residual_113, sum_57], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# residual_101 => mul_50
# residual_103 => mul_51
# residual_105 => mul_52
# residual_107 => mul_53
# residual_109 => mul_54
# residual_111 => mul_55
# residual_113 => mul_56
# residual_59 => mul_29
# residual_61 => mul_30
# residual_63 => mul_31
# residual_65 => mul_32
# residual_67 => mul_33
# residual_69 => mul_34
# residual_71 => mul_35
# residual_73 => mul_36
# residual_75 => mul_37
# residual_77 => mul_38
# residual_79 => mul_39
# residual_81 => mul_40
# residual_83 => mul_41
# residual_85 => mul_42
# residual_87 => mul_43
# residual_89 => mul_44
# residual_91 => mul_45
# residual_93 => mul_46
# residual_95 => mul_47
# residual_97 => mul_48
# residual_99 => mul_49
# sum_30 => sum_32
# sum_31 => sum_33
# sum_32 => sum_34
# sum_33 => sum_35
# sum_34 => sum_36
# sum_35 => sum_37
# sum_36 => sum_38
# sum_37 => sum_39
# sum_38 => sum_40
# sum_39 => sum_41
# sum_40 => sum_42
# sum_41 => sum_43
# sum_42 => sum_44
# sum_43 => sum_45
# sum_44 => sum_46
# sum_45 => sum_47
# sum_46 => sum_48
# sum_47 => sum_49
# sum_48 => sum_50
# sum_49 => sum_51
# sum_50 => sum_52
# sum_51 => sum_53
# sum_52 => sum_54
# sum_53 => sum_55
# sum_54 => sum_56
# sum_55 => sum_57
# sum_56 => sum_58
# sum_57 => sum_59
# Graph fragment:
# %mul_29 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_30, %unsqueeze_89), kwargs = {})
# %sum_32 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_29, [-1]), kwargs = {})
# %mul_30 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_31, %unsqueeze_92), kwargs = {})
# %sum_33 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_30, [-1]), kwargs = {})
# %mul_31 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_32, %unsqueeze_95), kwargs = {})
# %sum_34 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_31, [-1]), kwargs = {})
# %mul_32 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_33, %unsqueeze_98), kwargs = {})
# %sum_35 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_32, [-1]), kwargs = {})
# %mul_33 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_34, %unsqueeze_101), kwargs = {})
# %sum_36 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_33, [-1]), kwargs = {})
# %mul_34 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_35, %unsqueeze_104), kwargs = {})
# %sum_37 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_34, [-1]), kwargs = {})
# %mul_35 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_36, %unsqueeze_107), kwargs = {})
# %sum_38 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_35, [-1]), kwargs = {})
# %mul_36 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_37, %unsqueeze_110), kwargs = {})
# %sum_39 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_36, [-1]), kwargs = {})
# %mul_37 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_38, %unsqueeze_113), kwargs = {})
# %sum_40 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_37, [-1]), kwargs = {})
# %mul_38 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_39, %unsqueeze_116), kwargs = {})
# %sum_41 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_38, [-1]), kwargs = {})
# %mul_39 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_40, %unsqueeze_119), kwargs = {})
# %sum_42 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_39, [-1]), kwargs = {})
# %mul_40 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_41, %unsqueeze_122), kwargs = {})
# %sum_43 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_40, [-1]), kwargs = {})
# %mul_41 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_42, %unsqueeze_125), kwargs = {})
# %sum_44 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_41, [-1]), kwargs = {})
# %mul_42 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_43, %unsqueeze_128), kwargs = {})
# %sum_45 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_42, [-1]), kwargs = {})
# %mul_43 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_44, %unsqueeze_131), kwargs = {})
# %sum_46 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_43, [-1]), kwargs = {})
# %mul_44 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_45, %unsqueeze_134), kwargs = {})
# %sum_47 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_44, [-1]), kwargs = {})
# %mul_45 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_46, %unsqueeze_137), kwargs = {})
# %sum_48 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_45, [-1]), kwargs = {})
# %mul_46 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_47, %unsqueeze_140), kwargs = {})
# %sum_49 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_46, [-1]), kwargs = {})
# %mul_47 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_48, %unsqueeze_143), kwargs = {})
# %sum_50 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_47, [-1]), kwargs = {})
# %mul_48 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_49, %unsqueeze_146), kwargs = {})
# %sum_51 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_48, [-1]), kwargs = {})
# %mul_49 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_50, %unsqueeze_149), kwargs = {})
# %sum_52 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_49, [-1]), kwargs = {})
# %mul_50 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_51, %unsqueeze_152), kwargs = {})
# %sum_53 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_50, [-1]), kwargs = {})
# %mul_51 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_52, %unsqueeze_155), kwargs = {})
# %sum_54 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_51, [-1]), kwargs = {})
# %mul_52 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_53, %unsqueeze_158), kwargs = {})
# %sum_55 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_52, [-1]), kwargs = {})
# %mul_53 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_54, %unsqueeze_161), kwargs = {})
# %sum_56 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_53, [-1]), kwargs = {})
# %mul_54 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_55, %unsqueeze_164), kwargs = {})
# %sum_57 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_54, [-1]), kwargs = {})
# %mul_55 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_56, %unsqueeze_167), kwargs = {})
# %sum_58 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_55, [-1]), kwargs = {})
# %mul_56 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_57, %unsqueeze_170), kwargs = {})
# %sum_59 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_56, [-1]), kwargs = {})
triton_red_fused_mul_sum_4 = async_compile.triton('triton_red_fused_mul_sum_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[512, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: 'i32', 60: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 58, 'num_reduction': 28, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_mul_sum_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26, out_ptr27, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x1 = (xindex // 128)
_tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp72 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp81 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp90 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp99 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp108 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp117 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp126 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp135 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp144 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp153 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp162 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp171 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp180 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp189 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp198 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp207 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp216 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp225 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp234 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp243 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp252 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (118784 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr3 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr4 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp12 = tl.load(in_ptr1 + (122880 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr5 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp21 = tl.load(in_ptr1 + (126976 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr6 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr1 + (131072 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp39 = tl.load(in_ptr1 + (135168 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tl.load(in_ptr8 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp48 = tl.load(in_ptr1 + (139264 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp56 = tl.load(in_ptr9 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp57 = tl.load(in_ptr1 + (143360 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp65 = tl.load(in_ptr10 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp66 = tl.load(in_ptr1 + (147456 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp74 = tl.load(in_ptr11 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp75 = tl.load(in_ptr1 + (151552 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp83 = tl.load(in_ptr12 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp84 = tl.load(in_ptr1 + (155648 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp92 = tl.load(in_ptr13 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp93 = tl.load(in_ptr1 + (159744 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp101 = tl.load(in_ptr14 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp102 = tl.load(in_ptr1 + (163840 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp110 = tl.load(in_ptr15 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp111 = tl.load(in_ptr1 + (167936 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp119 = tl.load(in_ptr16 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp120 = tl.load(in_ptr1 + (172032 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp128 = tl.load(in_ptr17 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp129 = tl.load(in_ptr1 + (176128 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp137 = tl.load(in_ptr18 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp138 = tl.load(in_ptr1 + (180224 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp146 = tl.load(in_ptr19 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp147 = tl.load(in_ptr1 + (184320 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp155 = tl.load(in_ptr20 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp156 = tl.load(in_ptr1 + (188416 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp164 = tl.load(in_ptr21 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp165 = tl.load(in_ptr1 + (192512 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp173 = tl.load(in_ptr22 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp174 = tl.load(in_ptr1 + (196608 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp182 = tl.load(in_ptr23 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp183 = tl.load(in_ptr1 + (200704 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp191 = tl.load(in_ptr24 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp192 = tl.load(in_ptr1 + (204800 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp200 = tl.load(in_ptr25 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp201 = tl.load(in_ptr1 + (208896 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp209 = tl.load(in_ptr26 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp210 = tl.load(in_ptr1 + (212992 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp218 = tl.load(in_ptr27 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp219 = tl.load(in_ptr1 + (217088 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp227 = tl.load(in_ptr28 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp228 = tl.load(in_ptr1 + (221184 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp236 = tl.load(in_ptr29 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp237 = tl.load(in_ptr1 + (225280 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp245 = tl.load(in_ptr30 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp246 = tl.load(in_ptr1 + (229376 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = _tmp9 + tmp8
_tmp9 = tl.where(rmask & xmask, tmp10, _tmp9)
tmp13 = tmp12 - tmp2
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp14 / tmp5
tmp16 = tmp11 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = _tmp18 + tmp17
_tmp18 = tl.where(rmask & xmask, tmp19, _tmp18)
tmp22 = tmp21 - tmp2
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp23 / tmp5
tmp25 = tmp20 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = _tmp27 + tmp26
_tmp27 = tl.where(rmask & xmask, tmp28, _tmp27)
tmp31 = tmp30 - tmp2
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp32 / tmp5
tmp34 = tmp29 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = _tmp36 + tmp35
_tmp36 = tl.where(rmask & xmask, tmp37, _tmp36)
tmp40 = tmp39 - tmp2
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp5
tmp43 = tmp38 * tmp42
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp46 = _tmp45 + tmp44
_tmp45 = tl.where(rmask & xmask, tmp46, _tmp45)
tmp49 = tmp48 - tmp2
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp50 / tmp5
tmp52 = tmp47 * tmp51
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = _tmp54 + tmp53
_tmp54 = tl.where(rmask & xmask, tmp55, _tmp54)
tmp58 = tmp57 - tmp2
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp59 / tmp5
tmp61 = tmp56 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = _tmp63 + tmp62
_tmp63 = tl.where(rmask & xmask, tmp64, _tmp63)
tmp67 = tmp66 - tmp2
tmp68 = tl_math.exp(tmp67)
tmp69 = tmp68 / tmp5
tmp70 = tmp65 * tmp69
tmp71 = tl.broadcast_to(tmp70, [XBLOCK, RBLOCK])
tmp73 = _tmp72 + tmp71
_tmp72 = tl.where(rmask & xmask, tmp73, _tmp72)
tmp76 = tmp75 - tmp2
tmp77 = tl_math.exp(tmp76)
tmp78 = tmp77 / tmp5
tmp79 = tmp74 * tmp78
tmp80 = tl.broadcast_to(tmp79, [XBLOCK, RBLOCK])
tmp82 = _tmp81 + tmp80
_tmp81 = tl.where(rmask & xmask, tmp82, _tmp81)
tmp85 = tmp84 - tmp2
tmp86 = tl_math.exp(tmp85)
tmp87 = tmp86 / tmp5
tmp88 = tmp83 * tmp87
tmp89 = tl.broadcast_to(tmp88, [XBLOCK, RBLOCK])
tmp91 = _tmp90 + tmp89
_tmp90 = tl.where(rmask & xmask, tmp91, _tmp90)
tmp94 = tmp93 - tmp2
tmp95 = tl_math.exp(tmp94)
tmp96 = tmp95 / tmp5
tmp97 = tmp92 * tmp96
tmp98 = tl.broadcast_to(tmp97, [XBLOCK, RBLOCK])
tmp100 = _tmp99 + tmp98
_tmp99 = tl.where(rmask & xmask, tmp100, _tmp99)
tmp103 = tmp102 - tmp2
tmp104 = tl_math.exp(tmp103)
tmp105 = tmp104 / tmp5
tmp106 = tmp101 * tmp105
tmp107 = tl.broadcast_to(tmp106, [XBLOCK, RBLOCK])
tmp109 = _tmp108 + tmp107
_tmp108 = tl.where(rmask & xmask, tmp109, _tmp108)
tmp112 = tmp111 - tmp2
tmp113 = tl_math.exp(tmp112)
tmp114 = tmp113 / tmp5
tmp115 = tmp110 * tmp114
tmp116 = tl.broadcast_to(tmp115, [XBLOCK, RBLOCK])
tmp118 = _tmp117 + tmp116
_tmp117 = tl.where(rmask & xmask, tmp118, _tmp117)
tmp121 = tmp120 - tmp2
tmp122 = tl_math.exp(tmp121)
tmp123 = tmp122 / tmp5
tmp124 = tmp119 * tmp123
tmp125 = tl.broadcast_to(tmp124, [XBLOCK, RBLOCK])
tmp127 = _tmp126 + tmp125
_tmp126 = tl.where(rmask & xmask, tmp127, _tmp126)
tmp130 = tmp129 - tmp2
tmp131 = tl_math.exp(tmp130)
tmp132 = tmp131 / tmp5
tmp133 = tmp128 * tmp132
tmp134 = tl.broadcast_to(tmp133, [XBLOCK, RBLOCK])
tmp136 = _tmp135 + tmp134
_tmp135 = tl.where(rmask & xmask, tmp136, _tmp135)
tmp139 = tmp138 - tmp2
tmp140 = tl_math.exp(tmp139)
tmp141 = tmp140 / tmp5
tmp142 = tmp137 * tmp141
tmp143 = tl.broadcast_to(tmp142, [XBLOCK, RBLOCK])
tmp145 = _tmp144 + tmp143
_tmp144 = tl.where(rmask & xmask, tmp145, _tmp144)
tmp148 = tmp147 - tmp2
tmp149 = tl_math.exp(tmp148)
tmp150 = tmp149 / tmp5
tmp151 = tmp146 * tmp150
tmp152 = tl.broadcast_to(tmp151, [XBLOCK, RBLOCK])
tmp154 = _tmp153 + tmp152
_tmp153 = tl.where(rmask & xmask, tmp154, _tmp153)
tmp157 = tmp156 - tmp2
tmp158 = tl_math.exp(tmp157)
tmp159 = tmp158 / tmp5
tmp160 = tmp155 * tmp159
tmp161 = tl.broadcast_to(tmp160, [XBLOCK, RBLOCK])
tmp163 = _tmp162 + tmp161
_tmp162 = tl.where(rmask & xmask, tmp163, _tmp162)
tmp166 = tmp165 - tmp2
tmp167 = tl_math.exp(tmp166)
tmp168 = tmp167 / tmp5
tmp169 = tmp164 * tmp168
tmp170 = tl.broadcast_to(tmp169, [XBLOCK, RBLOCK])
tmp172 = _tmp171 + tmp170
_tmp171 = tl.where(rmask & xmask, tmp172, _tmp171)
tmp175 = tmp174 - tmp2
tmp176 = tl_math.exp(tmp175)
tmp177 = tmp176 / tmp5
tmp178 = tmp173 * tmp177
tmp179 = tl.broadcast_to(tmp178, [XBLOCK, RBLOCK])
tmp181 = _tmp180 + tmp179
_tmp180 = tl.where(rmask & xmask, tmp181, _tmp180)
tmp184 = tmp183 - tmp2
tmp185 = tl_math.exp(tmp184)
tmp186 = tmp185 / tmp5
tmp187 = tmp182 * tmp186
tmp188 = tl.broadcast_to(tmp187, [XBLOCK, RBLOCK])
tmp190 = _tmp189 + tmp188
_tmp189 = tl.where(rmask & xmask, tmp190, _tmp189)
tmp193 = tmp192 - tmp2
tmp194 = tl_math.exp(tmp193)
tmp195 = tmp194 / tmp5
tmp196 = tmp191 * tmp195
tmp197 = tl.broadcast_to(tmp196, [XBLOCK, RBLOCK])
tmp199 = _tmp198 + tmp197
_tmp198 = tl.where(rmask & xmask, tmp199, _tmp198)
tmp202 = tmp201 - tmp2
tmp203 = tl_math.exp(tmp202)
tmp204 = tmp203 / tmp5
tmp205 = tmp200 * tmp204
tmp206 = tl.broadcast_to(tmp205, [XBLOCK, RBLOCK])
tmp208 = _tmp207 + tmp206
_tmp207 = tl.where(rmask & xmask, tmp208, _tmp207)
tmp211 = tmp210 - tmp2
tmp212 = tl_math.exp(tmp211)
tmp213 = tmp212 / tmp5
tmp214 = tmp209 * tmp213
tmp215 = tl.broadcast_to(tmp214, [XBLOCK, RBLOCK])
tmp217 = _tmp216 + tmp215
_tmp216 = tl.where(rmask & xmask, tmp217, _tmp216)
tmp220 = tmp219 - tmp2
tmp221 = tl_math.exp(tmp220)
tmp222 = tmp221 / tmp5
tmp223 = tmp218 * tmp222
tmp224 = tl.broadcast_to(tmp223, [XBLOCK, RBLOCK])
tmp226 = _tmp225 + tmp224
_tmp225 = tl.where(rmask & xmask, tmp226, _tmp225)
tmp229 = tmp228 - tmp2
tmp230 = tl_math.exp(tmp229)
tmp231 = tmp230 / tmp5
tmp232 = tmp227 * tmp231
tmp233 = tl.broadcast_to(tmp232, [XBLOCK, RBLOCK])
tmp235 = _tmp234 + tmp233
_tmp234 = tl.where(rmask & xmask, tmp235, _tmp234)
tmp238 = tmp237 - tmp2
tmp239 = tl_math.exp(tmp238)
tmp240 = tmp239 / tmp5
tmp241 = tmp236 * tmp240
tmp242 = tl.broadcast_to(tmp241, [XBLOCK, RBLOCK])
tmp244 = _tmp243 + tmp242
_tmp243 = tl.where(rmask & xmask, tmp244, _tmp243)
tmp247 = tmp246 - tmp2
tmp248 = tl_math.exp(tmp247)
tmp249 = tmp248 / tmp5
tmp250 = tmp245 * tmp249
tmp251 = tl.broadcast_to(tmp250, [XBLOCK, RBLOCK])
tmp253 = _tmp252 + tmp251
_tmp252 = tl.where(rmask & xmask, tmp253, _tmp252)
tmp9 = tl.sum(_tmp9, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp9, xmask)
tmp18 = tl.sum(_tmp18, 1)[:, None]
tl.store(out_ptr1 + (x3), tmp18, xmask)
tmp27 = tl.sum(_tmp27, 1)[:, None]
tl.store(out_ptr2 + (x3), tmp27, xmask)
tmp36 = tl.sum(_tmp36, 1)[:, None]
tl.store(out_ptr3 + (x3), tmp36, xmask)
tmp45 = tl.sum(_tmp45, 1)[:, None]
tl.store(out_ptr4 + (x3), tmp45, xmask)
tmp54 = tl.sum(_tmp54, 1)[:, None]
tl.store(out_ptr5 + (x3), tmp54, xmask)
tmp63 = tl.sum(_tmp63, 1)[:, None]
tl.store(out_ptr6 + (x3), tmp63, xmask)
tmp72 = tl.sum(_tmp72, 1)[:, None]
tl.store(out_ptr7 + (x3), tmp72, xmask)
tmp81 = tl.sum(_tmp81, 1)[:, None]
tl.store(out_ptr8 + (x3), tmp81, xmask)
tmp90 = tl.sum(_tmp90, 1)[:, None]
tl.store(out_ptr9 + (x3), tmp90, xmask)
tmp99 = tl.sum(_tmp99, 1)[:, None]
tl.store(out_ptr10 + (x3), tmp99, xmask)
tmp108 = tl.sum(_tmp108, 1)[:, None]
tl.store(out_ptr11 + (x3), tmp108, xmask)
tmp117 = tl.sum(_tmp117, 1)[:, None]
tl.store(out_ptr12 + (x3), tmp117, xmask)
tmp126 = tl.sum(_tmp126, 1)[:, None]
tl.store(out_ptr13 + (x3), tmp126, xmask)
tmp135 = tl.sum(_tmp135, 1)[:, None]
tl.store(out_ptr14 + (x3), tmp135, xmask)
tmp144 = tl.sum(_tmp144, 1)[:, None]
tl.store(out_ptr15 + (x3), tmp144, xmask)
tmp153 = tl.sum(_tmp153, 1)[:, None]
tl.store(out_ptr16 + (x3), tmp153, xmask)
tmp162 = tl.sum(_tmp162, 1)[:, None]
tl.store(out_ptr17 + (x3), tmp162, xmask)
tmp171 = tl.sum(_tmp171, 1)[:, None]
tl.store(out_ptr18 + (x3), tmp171, xmask)
tmp180 = tl.sum(_tmp180, 1)[:, None]
tl.store(out_ptr19 + (x3), tmp180, xmask)
tmp189 = tl.sum(_tmp189, 1)[:, None]
tl.store(out_ptr20 + (x3), tmp189, xmask)
tmp198 = tl.sum(_tmp198, 1)[:, None]
tl.store(out_ptr21 + (x3), tmp198, xmask)
tmp207 = tl.sum(_tmp207, 1)[:, None]
tl.store(out_ptr22 + (x3), tmp207, xmask)
tmp216 = tl.sum(_tmp216, 1)[:, None]
tl.store(out_ptr23 + (x3), tmp216, xmask)
tmp225 = tl.sum(_tmp225, 1)[:, None]
tl.store(out_ptr24 + (x3), tmp225, xmask)
tmp234 = tl.sum(_tmp234, 1)[:, None]
tl.store(out_ptr25 + (x3), tmp234, xmask)
tmp243 = tl.sum(_tmp243, 1)[:, None]
tl.store(out_ptr26 + (x3), tmp243, xmask)
tmp252 = tl.sum(_tmp252, 1)[:, None]
tl.store(out_ptr27 + (x3), tmp252, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/m5/cm5hatbwewijgqsezz7mpghb6gtaqevomtlc673msign42fqnq42.py
# Topologically Sorted Source Nodes: [residual_115, sum_58, residual_117, sum_59, residual_119, sum_60, residual_121, sum_61, residual_123, sum_62, residual_125, sum_63, residual_127, sum_64], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# residual_115 => mul_57
# residual_117 => mul_58
# residual_119 => mul_59
# residual_121 => mul_60
# residual_123 => mul_61
# residual_125 => mul_62
# residual_127 => mul_63
# sum_58 => sum_60
# sum_59 => sum_61
# sum_60 => sum_62
# sum_61 => sum_63
# sum_62 => sum_64
# sum_63 => sum_65
# sum_64 => sum_66
# Graph fragment:
# %mul_57 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_58, %unsqueeze_173), kwargs = {})
# %sum_60 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_57, [-1]), kwargs = {})
# %mul_58 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_59, %unsqueeze_176), kwargs = {})
# %sum_61 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_58, [-1]), kwargs = {})
# %mul_59 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_60, %unsqueeze_179), kwargs = {})
# %sum_62 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_59, [-1]), kwargs = {})
# %mul_60 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_61, %unsqueeze_182), kwargs = {})
# %sum_63 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_60, [-1]), kwargs = {})
# %mul_61 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_62, %unsqueeze_185), kwargs = {})
# %sum_64 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_61, [-1]), kwargs = {})
# %mul_62 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_63, %unsqueeze_188), kwargs = {})
# %sum_65 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_62, [-1]), kwargs = {})
# %mul_63 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_64, %unsqueeze_191), kwargs = {})
# %sum_66 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_63, [-1]), kwargs = {})
triton_red_fused_mul_sum_5 = async_compile.triton('triton_red_fused_mul_sum_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[512, 4096],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: 'i32', 18: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_mul_sum_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 7, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_mul_sum_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x1 = (xindex // 128)
_tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (233472 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr3 + (r2 + (4096*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr4 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp12 = tl.load(in_ptr1 + (237568 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr5 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp21 = tl.load(in_ptr1 + (241664 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr6 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr1 + (245760 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp39 = tl.load(in_ptr1 + (249856 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tl.load(in_ptr8 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp48 = tl.load(in_ptr1 + (253952 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp56 = tl.load(in_ptr9 + (r2 + (4096*x3)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp57 = tl.load(in_ptr1 + (258048 + r2 + (262144*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = _tmp9 + tmp8
_tmp9 = tl.where(rmask & xmask, tmp10, _tmp9)
tmp13 = tmp12 - tmp2
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp14 / tmp5
tmp16 = tmp11 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = _tmp18 + tmp17
_tmp18 = tl.where(rmask & xmask, tmp19, _tmp18)
tmp22 = tmp21 - tmp2
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp23 / tmp5
tmp25 = tmp20 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = _tmp27 + tmp26
_tmp27 = tl.where(rmask & xmask, tmp28, _tmp27)
tmp31 = tmp30 - tmp2
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp32 / tmp5
tmp34 = tmp29 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = _tmp36 + tmp35
_tmp36 = tl.where(rmask & xmask, tmp37, _tmp36)
tmp40 = tmp39 - tmp2
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp5
tmp43 = tmp38 * tmp42
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp46 = _tmp45 + tmp44
_tmp45 = tl.where(rmask & xmask, tmp46, _tmp45)
tmp49 = tmp48 - tmp2
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp50 / tmp5
tmp52 = tmp47 * tmp51
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = _tmp54 + tmp53
_tmp54 = tl.where(rmask & xmask, tmp55, _tmp54)
tmp58 = tmp57 - tmp2
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp59 / tmp5
tmp61 = tmp56 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = _tmp63 + tmp62
_tmp63 = tl.where(rmask & xmask, tmp64, _tmp63)
tmp9 = tl.sum(_tmp9, 1)[:, None]
tl.store(out_ptr0 + (x3), tmp9, xmask)
tmp18 = tl.sum(_tmp18, 1)[:, None]
tl.store(out_ptr1 + (x3), tmp18, xmask)
tmp27 = tl.sum(_tmp27, 1)[:, None]
tl.store(out_ptr2 + (x3), tmp27, xmask)
tmp36 = tl.sum(_tmp36, 1)[:, None]
tl.store(out_ptr3 + (x3), tmp36, xmask)
tmp45 = tl.sum(_tmp45, 1)[:, None]
tl.store(out_ptr4 + (x3), tmp45, xmask)
tmp54 = tl.sum(_tmp54, 1)[:, None]
tl.store(out_ptr5 + (x3), tmp54, xmask)
tmp63 = tl.sum(_tmp63, 1)[:, None]
tl.store(out_ptr6 + (x3), tmp63, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ew/cewrqjskzvue6r2kcna4men3gingd3ajhrksiyyptwu2fliqalf7.py
# Topologically Sorted Source Nodes: [vlad, setitem, setitem_1, setitem_2, setitem_3, setitem_4, setitem_5, setitem_6, setitem_7, setitem_8, setitem_9, setitem_10, setitem_11, setitem_12, setitem_13, setitem_14, setitem_15, setitem_16, setitem_17, setitem_18, setitem_19, setitem_20, setitem_21, setitem_22, setitem_23, setitem_24, setitem_25, setitem_26, setitem_27, setitem_28, setitem_29, setitem_30, setitem_31, setitem_32, setitem_33, setitem_34, setitem_35, setitem_36, setitem_37, setitem_38, setitem_39, setitem_40, setitem_41, setitem_42, setitem_43, setitem_44, setitem_45, setitem_46, setitem_47, setitem_48, setitem_49, setitem_50, setitem_51, setitem_52, setitem_53, setitem_54, setitem_55, setitem_56, setitem_57, setitem_58, setitem_59, setitem_60, setitem_61, setitem_62, setitem_63, vlad_1], Original ATen: [aten.zeros, aten.copy, aten.linalg_vector_norm]
# Source node to ATen node mapping:
# setitem => copy
# setitem_1 => copy_1
# setitem_10 => copy_10
# setitem_11 => copy_11
# setitem_12 => copy_12
# setitem_13 => copy_13
# setitem_14 => copy_14
# setitem_15 => copy_15
# setitem_16 => copy_16
# setitem_17 => copy_17
# setitem_18 => copy_18
# setitem_19 => copy_19
# setitem_2 => copy_2
# setitem_20 => copy_20
# setitem_21 => copy_21
# setitem_22 => copy_22
# setitem_23 => copy_23
# setitem_24 => copy_24
# setitem_25 => copy_25
# setitem_26 => copy_26
# setitem_27 => copy_27
# setitem_28 => copy_28
# setitem_29 => copy_29
# setitem_3 => copy_3
# setitem_30 => copy_30
# setitem_31 => copy_31
# setitem_32 => copy_32
# setitem_33 => copy_33
# setitem_34 => copy_34
# setitem_35 => copy_35
# setitem_36 => copy_36
# setitem_37 => copy_37
# setitem_38 => copy_38
# setitem_39 => copy_39
# setitem_4 => copy_4
# setitem_40 => copy_40
# setitem_41 => copy_41
# setitem_42 => copy_42
# setitem_43 => copy_43
# setitem_44 => copy_44
# setitem_45 => copy_45
# setitem_46 => copy_46
# setitem_47 => copy_47
# setitem_48 => copy_48
# setitem_49 => copy_49
# setitem_5 => copy_5
# setitem_50 => copy_50
# setitem_51 => copy_51
# setitem_52 => copy_52
# setitem_53 => copy_53
# setitem_54 => copy_54
# setitem_55 => copy_55
# setitem_56 => copy_56
# setitem_57 => copy_57
# setitem_58 => copy_58
# setitem_59 => copy_59
# setitem_6 => copy_6
# setitem_60 => copy_60
# setitem_61 => copy_61
# setitem_62 => copy_62
# setitem_63 => copy_63
# setitem_7 => copy_7
# setitem_8 => copy_8
# setitem_9 => copy_9
# vlad => full
# vlad_1 => pow_3, pow_4, sum_67
# Graph fragment:
# %full : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 64, 128], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_7, %sum_3), kwargs = {})
# %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%full, %copy, 1, 0, 1), kwargs = {})
# %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_26, %sum_4), kwargs = {})
# %slice_scatter_default_1 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %copy_1, 1, 1, 2), kwargs = {})
# %copy_2 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_45, %sum_5), kwargs = {})
# %slice_scatter_default_2 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_1, %copy_2, 1, 2, 3), kwargs = {})
# %copy_3 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_64, %sum_6), kwargs = {})
# %slice_scatter_default_3 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_2, %copy_3, 1, 3, 4), kwargs = {})
# %copy_4 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_83, %sum_7), kwargs = {})
# %slice_scatter_default_4 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_3, %copy_4, 1, 4, 5), kwargs = {})
# %copy_5 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_102, %sum_8), kwargs = {})
# %slice_scatter_default_5 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_4, %copy_5, 1, 5, 6), kwargs = {})
# %copy_6 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_121, %sum_9), kwargs = {})
# %slice_scatter_default_6 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_5, %copy_6, 1, 6, 7), kwargs = {})
# %copy_7 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_140, %sum_10), kwargs = {})
# %slice_scatter_default_7 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_6, %copy_7, 1, 7, 8), kwargs = {})
# %copy_8 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_159, %sum_11), kwargs = {})
# %slice_scatter_default_8 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_7, %copy_8, 1, 8, 9), kwargs = {})
# %copy_9 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_178, %sum_12), kwargs = {})
# %slice_scatter_default_9 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_8, %copy_9, 1, 9, 10), kwargs = {})
# %copy_10 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_197, %sum_13), kwargs = {})
# %slice_scatter_default_10 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_9, %copy_10, 1, 10, 11), kwargs = {})
# %copy_11 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_216, %sum_14), kwargs = {})
# %slice_scatter_default_11 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_10, %copy_11, 1, 11, 12), kwargs = {})
# %copy_12 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_235, %sum_15), kwargs = {})
# %slice_scatter_default_12 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_11, %copy_12, 1, 12, 13), kwargs = {})
# %copy_13 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_254, %sum_16), kwargs = {})
# %slice_scatter_default_13 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_12, %copy_13, 1, 13, 14), kwargs = {})
# %copy_14 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_273, %sum_17), kwargs = {})
# %slice_scatter_default_14 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_13, %copy_14, 1, 14, 15), kwargs = {})
# %copy_15 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_292, %sum_18), kwargs = {})
# %slice_scatter_default_15 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_14, %copy_15, 1, 15, 16), kwargs = {})
# %copy_16 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_311, %sum_19), kwargs = {})
# %slice_scatter_default_16 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_15, %copy_16, 1, 16, 17), kwargs = {})
# %copy_17 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_330, %sum_20), kwargs = {})
# %slice_scatter_default_17 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_16, %copy_17, 1, 17, 18), kwargs = {})
# %copy_18 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_349, %sum_21), kwargs = {})
# %slice_scatter_default_18 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_17, %copy_18, 1, 18, 19), kwargs = {})
# %copy_19 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_368, %sum_22), kwargs = {})
# %slice_scatter_default_19 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_18, %copy_19, 1, 19, 20), kwargs = {})
# %copy_20 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_387, %sum_23), kwargs = {})
# %slice_scatter_default_20 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_19, %copy_20, 1, 20, 21), kwargs = {})
# %copy_21 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_406, %sum_24), kwargs = {})
# %slice_scatter_default_21 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_20, %copy_21, 1, 21, 22), kwargs = {})
# %copy_22 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_425, %sum_25), kwargs = {})
# %slice_scatter_default_22 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_21, %copy_22, 1, 22, 23), kwargs = {})
# %copy_23 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_444, %sum_26), kwargs = {})
# %slice_scatter_default_23 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_22, %copy_23, 1, 23, 24), kwargs = {})
# %copy_24 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_463, %sum_27), kwargs = {})
# %slice_scatter_default_24 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_23, %copy_24, 1, 24, 25), kwargs = {})
# %copy_25 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_482, %sum_28), kwargs = {})
# %slice_scatter_default_25 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_24, %copy_25, 1, 25, 26), kwargs = {})
# %copy_26 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_501, %sum_29), kwargs = {})
# %slice_scatter_default_26 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_25, %copy_26, 1, 26, 27), kwargs = {})
# %copy_27 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_520, %sum_30), kwargs = {})
# %slice_scatter_default_27 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_26, %copy_27, 1, 27, 28), kwargs = {})
# %copy_28 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_539, %sum_31), kwargs = {})
# %slice_scatter_default_28 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_27, %copy_28, 1, 28, 29), kwargs = {})
# %copy_29 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_558, %sum_32), kwargs = {})
# %slice_scatter_default_29 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_28, %copy_29, 1, 29, 30), kwargs = {})
# %copy_30 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_577, %sum_33), kwargs = {})
# %slice_scatter_default_30 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_29, %copy_30, 1, 30, 31), kwargs = {})
# %copy_31 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_596, %sum_34), kwargs = {})
# %slice_scatter_default_31 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_30, %copy_31, 1, 31, 32), kwargs = {})
# %copy_32 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_615, %sum_35), kwargs = {})
# %slice_scatter_default_32 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_31, %copy_32, 1, 32, 33), kwargs = {})
# %copy_33 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_634, %sum_36), kwargs = {})
# %slice_scatter_default_33 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_32, %copy_33, 1, 33, 34), kwargs = {})
# %copy_34 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_653, %sum_37), kwargs = {})
# %slice_scatter_default_34 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_33, %copy_34, 1, 34, 35), kwargs = {})
# %copy_35 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_672, %sum_38), kwargs = {})
# %slice_scatter_default_35 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_34, %copy_35, 1, 35, 36), kwargs = {})
# %copy_36 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_691, %sum_39), kwargs = {})
# %slice_scatter_default_36 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_35, %copy_36, 1, 36, 37), kwargs = {})
# %copy_37 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_710, %sum_40), kwargs = {})
# %slice_scatter_default_37 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_36, %copy_37, 1, 37, 38), kwargs = {})
# %copy_38 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_729, %sum_41), kwargs = {})
# %slice_scatter_default_38 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_37, %copy_38, 1, 38, 39), kwargs = {})
# %copy_39 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_748, %sum_42), kwargs = {})
# %slice_scatter_default_39 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_38, %copy_39, 1, 39, 40), kwargs = {})
# %copy_40 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_767, %sum_43), kwargs = {})
# %slice_scatter_default_40 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_39, %copy_40, 1, 40, 41), kwargs = {})
# %copy_41 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_786, %sum_44), kwargs = {})
# %slice_scatter_default_41 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_40, %copy_41, 1, 41, 42), kwargs = {})
# %copy_42 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_805, %sum_45), kwargs = {})
# %slice_scatter_default_42 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_41, %copy_42, 1, 42, 43), kwargs = {})
# %copy_43 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_824, %sum_46), kwargs = {})
# %slice_scatter_default_43 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_42, %copy_43, 1, 43, 44), kwargs = {})
# %copy_44 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_843, %sum_47), kwargs = {})
# %slice_scatter_default_44 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_43, %copy_44, 1, 44, 45), kwargs = {})
# %copy_45 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_862, %sum_48), kwargs = {})
# %slice_scatter_default_45 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_44, %copy_45, 1, 45, 46), kwargs = {})
# %copy_46 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_881, %sum_49), kwargs = {})
# %slice_scatter_default_46 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_45, %copy_46, 1, 46, 47), kwargs = {})
# %copy_47 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_900, %sum_50), kwargs = {})
# %slice_scatter_default_47 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_46, %copy_47, 1, 47, 48), kwargs = {})
# %copy_48 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_919, %sum_51), kwargs = {})
# %slice_scatter_default_48 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_47, %copy_48, 1, 48, 49), kwargs = {})
# %copy_49 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_938, %sum_52), kwargs = {})
# %slice_scatter_default_49 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_48, %copy_49, 1, 49, 50), kwargs = {})
# %copy_50 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_957, %sum_53), kwargs = {})
# %slice_scatter_default_50 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_49, %copy_50, 1, 50, 51), kwargs = {})
# %copy_51 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_976, %sum_54), kwargs = {})
# %slice_scatter_default_51 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_50, %copy_51, 1, 51, 52), kwargs = {})
# %copy_52 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_995, %sum_55), kwargs = {})
# %slice_scatter_default_52 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_51, %copy_52, 1, 52, 53), kwargs = {})
# %copy_53 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1014, %sum_56), kwargs = {})
# %slice_scatter_default_53 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_52, %copy_53, 1, 53, 54), kwargs = {})
# %copy_54 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1033, %sum_57), kwargs = {})
# %slice_scatter_default_54 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_53, %copy_54, 1, 54, 55), kwargs = {})
# %copy_55 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1052, %sum_58), kwargs = {})
# %slice_scatter_default_55 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_54, %copy_55, 1, 55, 56), kwargs = {})
# %copy_56 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1071, %sum_59), kwargs = {})
# %slice_scatter_default_56 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_55, %copy_56, 1, 56, 57), kwargs = {})
# %copy_57 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1090, %sum_60), kwargs = {})
# %slice_scatter_default_57 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_56, %copy_57, 1, 57, 58), kwargs = {})
# %copy_58 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1109, %sum_61), kwargs = {})
# %slice_scatter_default_58 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_57, %copy_58, 1, 58, 59), kwargs = {})
# %copy_59 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1128, %sum_62), kwargs = {})
# %slice_scatter_default_59 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_58, %copy_59, 1, 59, 60), kwargs = {})
# %copy_60 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1147, %sum_63), kwargs = {})
# %slice_scatter_default_60 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_59, %copy_60, 1, 60, 61), kwargs = {})
# %copy_61 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1166, %sum_64), kwargs = {})
# %slice_scatter_default_61 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_60, %copy_61, 1, 61, 62), kwargs = {})
# %copy_62 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1185, %sum_65), kwargs = {})
# %slice_scatter_default_62 : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_61, %copy_62, 1, 62, 63), kwargs = {})
# %copy_63 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_1204, %sum_66), kwargs = {})
# %slice_scatter_default_63 : [num_users=3] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default_62, %copy_63, 1, 63, 64), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%slice_scatter_default_63, 2), kwargs = {})
# %sum_67 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [2], True), kwargs = {})
# %pow_4 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_67, 0.5), kwargs = {})
triton_per_fused_copy_linalg_vector_norm_zeros_6 = async_compile.triton('triton_per_fused_copy_linalg_vector_norm_zeros_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[256, 128],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: '*fp32', 18: '*fp32', 19: '*fp32', 20: '*fp32', 21: '*fp32', 22: '*fp32', 23: '*fp32', 24: '*fp32', 25: '*fp32', 26: '*fp32', 27: '*fp32', 28: '*fp32', 29: '*fp32', 30: '*fp32', 31: '*fp32', 32: '*fp32', 33: '*fp32', 34: '*fp32', 35: '*fp32', 36: '*fp32', 37: '*fp32', 38: '*fp32', 39: '*fp32', 40: '*fp32', 41: '*fp32', 42: '*fp32', 43: '*fp32', 44: '*fp32', 45: '*fp32', 46: '*fp32', 47: '*fp32', 48: '*fp32', 49: '*fp32', 50: '*fp32', 51: '*fp32', 52: '*fp32', 53: '*fp32', 54: '*fp32', 55: '*fp32', 56: '*fp32', 57: '*fp32', 58: '*fp32', 59: '*fp32', 60: '*fp32', 61: '*fp32', 62: '*fp32', 63: '*fp32', 64: '*fp32', 65: '*fp32', 66: 'i32', 67: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_copy_linalg_vector_norm_zeros_6', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 64, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_copy_linalg_vector_norm_zeros_6(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54, in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61, in_ptr62, in_ptr63, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 128
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex % 64
r2 = rindex
x1 = (xindex // 64)
x3 = xindex
tmp0 = x0
tmp1 = tl.full([1, 1], 4, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (r2 + (128*x1)), tmp5 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tl.full([1, 1], 3, tl.int64)
tmp8 = tmp0 >= tmp7
tmp9 = tmp0 < tmp1
tmp10 = tmp8 & tmp9
tmp11 = tl.load(in_ptr1 + (r2 + (128*x1)), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tl.full([1, 1], 2, tl.int64)
tmp13 = tmp0 >= tmp12
tmp14 = tmp0 < tmp7
tmp15 = tmp13 & tmp14
tmp16 = tl.load(in_ptr2 + (r2 + (128*x1)), tmp15 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tl.full([1, 1], 1, tl.int64)
tmp18 = tmp0 >= tmp17
tmp19 = tmp0 < tmp12
tmp20 = tmp18 & tmp19
tmp21 = tl.load(in_ptr3 + (r2 + (128*x1)), tmp20 & xmask, eviction_policy='evict_last', other=0.0)
tmp22 = tmp0 < tmp17
tmp23 = tl.load(in_ptr4 + (r2 + (128*x1)), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = 0.0
tmp25 = tl.where(tmp22, tmp23, tmp24)
tmp26 = tl.where(tmp20, tmp21, tmp25)
tmp27 = tl.where(tmp15, tmp16, tmp26)
tmp28 = tl.where(tmp10, tmp11, tmp27)
tmp29 = tl.where(tmp5, tmp6, tmp28)
tmp30 = tl.full([1, 1], 8, tl.int64)
tmp31 = tmp0 >= tmp30
tmp32 = tl.full([1, 1], 9, tl.int64)
tmp33 = tmp0 < tmp32
tmp34 = tmp31 & tmp33
tmp35 = tl.load(in_ptr5 + (r2 + (128*x1)), tmp34 & xmask, eviction_policy='evict_last', other=0.0)
tmp36 = tl.full([1, 1], 7, tl.int64)
tmp37 = tmp0 >= tmp36
tmp38 = tmp0 < tmp30
tmp39 = tmp37 & tmp38
tmp40 = tl.load(in_ptr6 + (r2 + (128*x1)), tmp39 & xmask, eviction_policy='evict_last', other=0.0)
tmp41 = tl.full([1, 1], 6, tl.int64)
tmp42 = tmp0 >= tmp41
tmp43 = tmp0 < tmp36
tmp44 = tmp42 & tmp43
tmp45 = tl.load(in_ptr7 + (r2 + (128*x1)), tmp44 & xmask, eviction_policy='evict_last', other=0.0)
tmp46 = tmp0 >= tmp3
tmp47 = tmp0 < tmp41
tmp48 = tmp46 & tmp47
tmp49 = tl.load(in_ptr8 + (r2 + (128*x1)), tmp48 & xmask, eviction_policy='evict_last', other=0.0)
tmp50 = tl.where(tmp48, tmp49, tmp29)
tmp51 = tl.where(tmp44, tmp45, tmp50)
tmp52 = tl.where(tmp39, tmp40, tmp51)
tmp53 = tl.where(tmp34, tmp35, tmp52)
tmp54 = tl.full([1, 1], 12, tl.int64)
tmp55 = tmp0 >= tmp54
tmp56 = tl.full([1, 1], 13, tl.int64)
tmp57 = tmp0 < tmp56
tmp58 = tmp55 & tmp57
tmp59 = tl.load(in_ptr9 + (r2 + (128*x1)), tmp58 & xmask, eviction_policy='evict_last', other=0.0)
tmp60 = tl.full([1, 1], 11, tl.int64)
tmp61 = tmp0 >= tmp60
tmp62 = tmp0 < tmp54
tmp63 = tmp61 & tmp62
tmp64 = tl.load(in_ptr10 + (r2 + (128*x1)), tmp63 & xmask, eviction_policy='evict_last', other=0.0)
tmp65 = tl.full([1, 1], 10, tl.int64)
tmp66 = tmp0 >= tmp65
tmp67 = tmp0 < tmp60
tmp68 = tmp66 & tmp67
tmp69 = tl.load(in_ptr11 + (r2 + (128*x1)), tmp68 & xmask, eviction_policy='evict_last', other=0.0)
tmp70 = tmp0 >= tmp32
tmp71 = tmp0 < tmp65
tmp72 = tmp70 & tmp71
tmp73 = tl.load(in_ptr12 + (r2 + (128*x1)), tmp72 & xmask, eviction_policy='evict_last', other=0.0)
tmp74 = tl.where(tmp72, tmp73, tmp53)
tmp75 = tl.where(tmp68, tmp69, tmp74)
tmp76 = tl.where(tmp63, tmp64, tmp75)
tmp77 = tl.where(tmp58, tmp59, tmp76)
tmp78 = tl.full([1, 1], 16, tl.int64)
tmp79 = tmp0 >= tmp78
tmp80 = tl.full([1, 1], 17, tl.int64)
tmp81 = tmp0 < tmp80
tmp82 = tmp79 & tmp81
tmp83 = tl.load(in_ptr13 + (r2 + (128*x1)), tmp82 & xmask, eviction_policy='evict_last', other=0.0)
tmp84 = tl.full([1, 1], 15, tl.int64)
tmp85 = tmp0 >= tmp84
tmp86 = tmp0 < tmp78
tmp87 = tmp85 & tmp86
tmp88 = tl.load(in_ptr14 + (r2 + (128*x1)), tmp87 & xmask, eviction_policy='evict_last', other=0.0)
tmp89 = tl.full([1, 1], 14, tl.int64)
tmp90 = tmp0 >= tmp89
tmp91 = tmp0 < tmp84
tmp92 = tmp90 & tmp91
tmp93 = tl.load(in_ptr15 + (r2 + (128*x1)), tmp92 & xmask, eviction_policy='evict_last', other=0.0)
tmp94 = tmp0 >= tmp56
tmp95 = tmp0 < tmp89
tmp96 = tmp94 & tmp95
tmp97 = tl.load(in_ptr16 + (r2 + (128*x1)), tmp96 & xmask, eviction_policy='evict_last', other=0.0)
tmp98 = tl.where(tmp96, tmp97, tmp77)
tmp99 = tl.where(tmp92, tmp93, tmp98)
tmp100 = tl.where(tmp87, tmp88, tmp99)
tmp101 = tl.where(tmp82, tmp83, tmp100)
tmp102 = tl.full([1, 1], 20, tl.int64)
tmp103 = tmp0 >= tmp102
tmp104 = tl.full([1, 1], 21, tl.int64)
tmp105 = tmp0 < tmp104
tmp106 = tmp103 & tmp105
tmp107 = tl.load(in_ptr17 + (r2 + (128*x1)), tmp106 & xmask, eviction_policy='evict_last', other=0.0)
tmp108 = tl.full([1, 1], 19, tl.int64)
tmp109 = tmp0 >= tmp108
tmp110 = tmp0 < tmp102
tmp111 = tmp109 & tmp110
tmp112 = tl.load(in_ptr18 + (r2 + (128*x1)), tmp111 & xmask, eviction_policy='evict_last', other=0.0)
tmp113 = tl.full([1, 1], 18, tl.int64)
tmp114 = tmp0 >= tmp113
tmp115 = tmp0 < tmp108
tmp116 = tmp114 & tmp115
tmp117 = tl.load(in_ptr19 + (r2 + (128*x1)), tmp116 & xmask, eviction_policy='evict_last', other=0.0)
tmp118 = tmp0 >= tmp80
tmp119 = tmp0 < tmp113
tmp120 = tmp118 & tmp119
tmp121 = tl.load(in_ptr20 + (r2 + (128*x1)), tmp120 & xmask, eviction_policy='evict_last', other=0.0)
tmp122 = tl.where(tmp120, tmp121, tmp101)
tmp123 = tl.where(tmp116, tmp117, tmp122)
tmp124 = tl.where(tmp111, tmp112, tmp123)
tmp125 = tl.where(tmp106, tmp107, tmp124)
tmp126 = tl.full([1, 1], 24, tl.int64)
tmp127 = tmp0 >= tmp126
tmp128 = tl.full([1, 1], 25, tl.int64)
tmp129 = tmp0 < tmp128
tmp130 = tmp127 & tmp129
tmp131 = tl.load(in_ptr21 + (r2 + (128*x1)), tmp130 & xmask, eviction_policy='evict_last', other=0.0)
tmp132 = tl.full([1, 1], 23, tl.int64)
tmp133 = tmp0 >= tmp132
tmp134 = tmp0 < tmp126
tmp135 = tmp133 & tmp134
tmp136 = tl.load(in_ptr22 + (r2 + (128*x1)), tmp135 & xmask, eviction_policy='evict_last', other=0.0)
tmp137 = tl.full([1, 1], 22, tl.int64)
tmp138 = tmp0 >= tmp137
tmp139 = tmp0 < tmp132
tmp140 = tmp138 & tmp139
tmp141 = tl.load(in_ptr23 + (r2 + (128*x1)), tmp140 & xmask, eviction_policy='evict_last', other=0.0)
tmp142 = tmp0 >= tmp104
tmp143 = tmp0 < tmp137
tmp144 = tmp142 & tmp143
tmp145 = tl.load(in_ptr24 + (r2 + (128*x1)), tmp144 & xmask, eviction_policy='evict_last', other=0.0)
tmp146 = tl.where(tmp144, tmp145, tmp125)
tmp147 = tl.where(tmp140, tmp141, tmp146)
tmp148 = tl.where(tmp135, tmp136, tmp147)
tmp149 = tl.where(tmp130, tmp131, tmp148)
tmp150 = tl.full([1, 1], 28, tl.int64)
tmp151 = tmp0 >= tmp150
tmp152 = tl.full([1, 1], 29, tl.int64)
tmp153 = tmp0 < tmp152
tmp154 = tmp151 & tmp153
tmp155 = tl.load(in_ptr25 + (r2 + (128*x1)), tmp154 & xmask, eviction_policy='evict_last', other=0.0)
tmp156 = tl.full([1, 1], 27, tl.int64)
tmp157 = tmp0 >= tmp156
tmp158 = tmp0 < tmp150
tmp159 = tmp157 & tmp158
tmp160 = tl.load(in_ptr26 + (r2 + (128*x1)), tmp159 & xmask, eviction_policy='evict_last', other=0.0)
tmp161 = tl.full([1, 1], 26, tl.int64)
tmp162 = tmp0 >= tmp161
tmp163 = tmp0 < tmp156
tmp164 = tmp162 & tmp163
tmp165 = tl.load(in_ptr27 + (r2 + (128*x1)), tmp164 & xmask, eviction_policy='evict_last', other=0.0)
tmp166 = tmp0 >= tmp128
tmp167 = tmp0 < tmp161
tmp168 = tmp166 & tmp167
tmp169 = tl.load(in_ptr28 + (r2 + (128*x1)), tmp168 & xmask, eviction_policy='evict_last', other=0.0)
tmp170 = tl.where(tmp168, tmp169, tmp149)
tmp171 = tl.where(tmp164, tmp165, tmp170)
tmp172 = tl.where(tmp159, tmp160, tmp171)
tmp173 = tl.where(tmp154, tmp155, tmp172)
tmp174 = tl.full([1, 1], 32, tl.int64)
tmp175 = tmp0 >= tmp174
tmp176 = tl.full([1, 1], 33, tl.int64)
tmp177 = tmp0 < tmp176
tmp178 = tmp175 & tmp177
tmp179 = tl.load(in_ptr29 + (r2 + (128*x1)), tmp178 & xmask, eviction_policy='evict_last', other=0.0)
tmp180 = tl.full([1, 1], 31, tl.int64)
tmp181 = tmp0 >= tmp180
tmp182 = tmp0 < tmp174
tmp183 = tmp181 & tmp182
tmp184 = tl.load(in_ptr30 + (r2 + (128*x1)), tmp183 & xmask, eviction_policy='evict_last', other=0.0)
tmp185 = tl.full([1, 1], 30, tl.int64)
tmp186 = tmp0 >= tmp185
tmp187 = tmp0 < tmp180
tmp188 = tmp186 & tmp187
tmp189 = tl.load(in_ptr31 + (r2 + (128*x1)), tmp188 & xmask, eviction_policy='evict_last', other=0.0)
tmp190 = tmp0 >= tmp152
tmp191 = tmp0 < tmp185
tmp192 = tmp190 & tmp191
tmp193 = tl.load(in_ptr32 + (r2 + (128*x1)), tmp192 & xmask, eviction_policy='evict_last', other=0.0)
tmp194 = tl.where(tmp192, tmp193, tmp173)
tmp195 = tl.where(tmp188, tmp189, tmp194)
tmp196 = tl.where(tmp183, tmp184, tmp195)
tmp197 = tl.where(tmp178, tmp179, tmp196)
tmp198 = tl.full([1, 1], 36, tl.int64)
tmp199 = tmp0 >= tmp198
tmp200 = tl.full([1, 1], 37, tl.int64)
tmp201 = tmp0 < tmp200
tmp202 = tmp199 & tmp201
tmp203 = tl.load(in_ptr33 + (r2 + (128*x1)), tmp202 & xmask, eviction_policy='evict_last', other=0.0)
tmp204 = tl.full([1, 1], 35, tl.int64)
tmp205 = tmp0 >= tmp204
tmp206 = tmp0 < tmp198
tmp207 = tmp205 & tmp206
tmp208 = tl.load(in_ptr34 + (r2 + (128*x1)), tmp207 & xmask, eviction_policy='evict_last', other=0.0)
tmp209 = tl.full([1, 1], 34, tl.int64)
tmp210 = tmp0 >= tmp209
tmp211 = tmp0 < tmp204
tmp212 = tmp210 & tmp211
tmp213 = tl.load(in_ptr35 + (r2 + (128*x1)), tmp212 & xmask, eviction_policy='evict_last', other=0.0)
tmp214 = tmp0 >= tmp176
tmp215 = tmp0 < tmp209
tmp216 = tmp214 & tmp215
tmp217 = tl.load(in_ptr36 + (r2 + (128*x1)), tmp216 & xmask, eviction_policy='evict_last', other=0.0)
tmp218 = tl.where(tmp216, tmp217, tmp197)
tmp219 = tl.where(tmp212, tmp213, tmp218)
tmp220 = tl.where(tmp207, tmp208, tmp219)
tmp221 = tl.where(tmp202, tmp203, tmp220)
tmp222 = tl.full([1, 1], 40, tl.int64)
tmp223 = tmp0 >= tmp222
tmp224 = tl.full([1, 1], 41, tl.int64)
tmp225 = tmp0 < tmp224
tmp226 = tmp223 & tmp225
tmp227 = tl.load(in_ptr37 + (r2 + (128*x1)), tmp226 & xmask, eviction_policy='evict_last', other=0.0)
tmp228 = tl.full([1, 1], 39, tl.int64)
tmp229 = tmp0 >= tmp228
tmp230 = tmp0 < tmp222
tmp231 = tmp229 & tmp230
tmp232 = tl.load(in_ptr38 + (r2 + (128*x1)), tmp231 & xmask, eviction_policy='evict_last', other=0.0)
tmp233 = tl.full([1, 1], 38, tl.int64)
tmp234 = tmp0 >= tmp233
tmp235 = tmp0 < tmp228
tmp236 = tmp234 & tmp235
tmp237 = tl.load(in_ptr39 + (r2 + (128*x1)), tmp236 & xmask, eviction_policy='evict_last', other=0.0)
tmp238 = tmp0 >= tmp200
tmp239 = tmp0 < tmp233
tmp240 = tmp238 & tmp239
tmp241 = tl.load(in_ptr40 + (r2 + (128*x1)), tmp240 & xmask, eviction_policy='evict_last', other=0.0)
tmp242 = tl.where(tmp240, tmp241, tmp221)
tmp243 = tl.where(tmp236, tmp237, tmp242)
tmp244 = tl.where(tmp231, tmp232, tmp243)
tmp245 = tl.where(tmp226, tmp227, tmp244)
tmp246 = tl.full([1, 1], 44, tl.int64)
tmp247 = tmp0 >= tmp246
tmp248 = tl.full([1, 1], 45, tl.int64)
tmp249 = tmp0 < tmp248
tmp250 = tmp247 & tmp249
tmp251 = tl.load(in_ptr41 + (r2 + (128*x1)), tmp250 & xmask, eviction_policy='evict_last', other=0.0)
tmp252 = tl.full([1, 1], 43, tl.int64)
tmp253 = tmp0 >= tmp252
tmp254 = tmp0 < tmp246
tmp255 = tmp253 & tmp254
tmp256 = tl.load(in_ptr42 + (r2 + (128*x1)), tmp255 & xmask, eviction_policy='evict_last', other=0.0)
tmp257 = tl.full([1, 1], 42, tl.int64)
tmp258 = tmp0 >= tmp257
tmp259 = tmp0 < tmp252
tmp260 = tmp258 & tmp259
tmp261 = tl.load(in_ptr43 + (r2 + (128*x1)), tmp260 & xmask, eviction_policy='evict_last', other=0.0)
tmp262 = tmp0 >= tmp224
tmp263 = tmp0 < tmp257
tmp264 = tmp262 & tmp263
tmp265 = tl.load(in_ptr44 + (r2 + (128*x1)), tmp264 & xmask, eviction_policy='evict_last', other=0.0)
tmp266 = tl.where(tmp264, tmp265, tmp245)
tmp267 = tl.where(tmp260, tmp261, tmp266)
tmp268 = tl.where(tmp255, tmp256, tmp267)
tmp269 = tl.where(tmp250, tmp251, tmp268)
tmp270 = tl.full([1, 1], 48, tl.int64)
tmp271 = tmp0 >= tmp270
tmp272 = tl.full([1, 1], 49, tl.int64)
tmp273 = tmp0 < tmp272
tmp274 = tmp271 & tmp273
tmp275 = tl.load(in_ptr45 + (r2 + (128*x1)), tmp274 & xmask, eviction_policy='evict_last', other=0.0)
tmp276 = tl.full([1, 1], 47, tl.int64)
tmp277 = tmp0 >= tmp276
tmp278 = tmp0 < tmp270
tmp279 = tmp277 & tmp278
tmp280 = tl.load(in_ptr46 + (r2 + (128*x1)), tmp279 & xmask, eviction_policy='evict_last', other=0.0)
tmp281 = tl.full([1, 1], 46, tl.int64)
tmp282 = tmp0 >= tmp281
tmp283 = tmp0 < tmp276
tmp284 = tmp282 & tmp283
tmp285 = tl.load(in_ptr47 + (r2 + (128*x1)), tmp284 & xmask, eviction_policy='evict_last', other=0.0)
tmp286 = tmp0 >= tmp248
tmp287 = tmp0 < tmp281
tmp288 = tmp286 & tmp287
tmp289 = tl.load(in_ptr48 + (r2 + (128*x1)), tmp288 & xmask, eviction_policy='evict_last', other=0.0)
tmp290 = tl.where(tmp288, tmp289, tmp269)
tmp291 = tl.where(tmp284, tmp285, tmp290)
tmp292 = tl.where(tmp279, tmp280, tmp291)
tmp293 = tl.where(tmp274, tmp275, tmp292)
tmp294 = tl.full([1, 1], 52, tl.int64)
tmp295 = tmp0 >= tmp294
tmp296 = tl.full([1, 1], 53, tl.int64)
tmp297 = tmp0 < tmp296
tmp298 = tmp295 & tmp297
tmp299 = tl.load(in_ptr49 + (r2 + (128*x1)), tmp298 & xmask, eviction_policy='evict_last', other=0.0)
tmp300 = tl.full([1, 1], 51, tl.int64)
tmp301 = tmp0 >= tmp300
tmp302 = tmp0 < tmp294
tmp303 = tmp301 & tmp302
tmp304 = tl.load(in_ptr50 + (r2 + (128*x1)), tmp303 & xmask, eviction_policy='evict_last', other=0.0)
tmp305 = tl.full([1, 1], 50, tl.int64)
tmp306 = tmp0 >= tmp305
tmp307 = tmp0 < tmp300
tmp308 = tmp306 & tmp307
tmp309 = tl.load(in_ptr51 + (r2 + (128*x1)), tmp308 & xmask, eviction_policy='evict_last', other=0.0)
tmp310 = tmp0 >= tmp272
tmp311 = tmp0 < tmp305
tmp312 = tmp310 & tmp311
tmp313 = tl.load(in_ptr52 + (r2 + (128*x1)), tmp312 & xmask, eviction_policy='evict_last', other=0.0)
tmp314 = tl.where(tmp312, tmp313, tmp293)
tmp315 = tl.where(tmp308, tmp309, tmp314)
tmp316 = tl.where(tmp303, tmp304, tmp315)
tmp317 = tl.where(tmp298, tmp299, tmp316)
tmp318 = tl.full([1, 1], 56, tl.int64)
tmp319 = tmp0 >= tmp318
tmp320 = tl.full([1, 1], 57, tl.int64)
tmp321 = tmp0 < tmp320
tmp322 = tmp319 & tmp321
tmp323 = tl.load(in_ptr53 + (r2 + (128*x1)), tmp322 & xmask, eviction_policy='evict_last', other=0.0)
tmp324 = tl.full([1, 1], 55, tl.int64)
tmp325 = tmp0 >= tmp324
tmp326 = tmp0 < tmp318
tmp327 = tmp325 & tmp326
tmp328 = tl.load(in_ptr54 + (r2 + (128*x1)), tmp327 & xmask, eviction_policy='evict_last', other=0.0)
tmp329 = tl.full([1, 1], 54, tl.int64)
tmp330 = tmp0 >= tmp329
tmp331 = tmp0 < tmp324
tmp332 = tmp330 & tmp331
tmp333 = tl.load(in_ptr55 + (r2 + (128*x1)), tmp332 & xmask, eviction_policy='evict_last', other=0.0)
tmp334 = tmp0 >= tmp296
tmp335 = tmp0 < tmp329
tmp336 = tmp334 & tmp335
tmp337 = tl.load(in_ptr56 + (r2 + (128*x1)), tmp336 & xmask, eviction_policy='evict_last', other=0.0)
tmp338 = tl.where(tmp336, tmp337, tmp317)
tmp339 = tl.where(tmp332, tmp333, tmp338)
tmp340 = tl.where(tmp327, tmp328, tmp339)
tmp341 = tl.where(tmp322, tmp323, tmp340)
tmp342 = tl.full([1, 1], 60, tl.int64)
tmp343 = tmp0 >= tmp342
tmp344 = tl.full([1, 1], 61, tl.int64)
tmp345 = tmp0 < tmp344
tmp346 = tmp343 & tmp345
tmp347 = tl.load(in_ptr57 + (r2 + (128*x1)), tmp346 & xmask, eviction_policy='evict_last', other=0.0)
tmp348 = tl.full([1, 1], 59, tl.int64)
tmp349 = tmp0 >= tmp348
tmp350 = tmp0 < tmp342
tmp351 = tmp349 & tmp350
tmp352 = tl.load(in_ptr58 + (r2 + (128*x1)), tmp351 & xmask, eviction_policy='evict_last', other=0.0)
tmp353 = tl.full([1, 1], 58, tl.int64)
tmp354 = tmp0 >= tmp353
tmp355 = tmp0 < tmp348
tmp356 = tmp354 & tmp355
tmp357 = tl.load(in_ptr59 + (r2 + (128*x1)), tmp356 & xmask, eviction_policy='evict_last', other=0.0)
tmp358 = tmp0 >= tmp320
tmp359 = tmp0 < tmp353
tmp360 = tmp358 & tmp359
tmp361 = tl.load(in_ptr60 + (r2 + (128*x1)), tmp360 & xmask, eviction_policy='evict_last', other=0.0)
tmp362 = tl.where(tmp360, tmp361, tmp341)
tmp363 = tl.where(tmp356, tmp357, tmp362)
tmp364 = tl.where(tmp351, tmp352, tmp363)
tmp365 = tl.where(tmp346, tmp347, tmp364)
tmp366 = tl.full([1, 1], 63, tl.int64)
tmp367 = tmp0 >= tmp366
tmp368 = tl.load(in_ptr61 + (r2 + (128*x1)), tmp367 & xmask, eviction_policy='evict_last', other=0.0)
tmp369 = tl.full([1, 1], 62, tl.int64)
tmp370 = tmp0 >= tmp369
tmp371 = tmp0 < tmp366
tmp372 = tmp370 & tmp371
tmp373 = tl.load(in_ptr62 + (r2 + (128*x1)), tmp372 & xmask, eviction_policy='evict_last', other=0.0)
tmp374 = tmp0 >= tmp344
tmp375 = tmp0 < tmp369
tmp376 = tmp374 & tmp375
tmp377 = tl.load(in_ptr63 + (r2 + (128*x1)), tmp376 & xmask, eviction_policy='evict_last', other=0.0)
tmp378 = tl.where(tmp376, tmp377, tmp365)
tmp379 = tl.where(tmp372, tmp373, tmp378)
tmp380 = tl.where(tmp367, tmp368, tmp379)
tmp381 = tmp380 * tmp380
tmp382 = tl.broadcast_to(tmp381, [XBLOCK, RBLOCK])
tmp384 = tl.where(xmask, tmp382, 0)
tmp385 = tl.sum(tmp384, 1)[:, None]
tmp386 = libdevice.sqrt(tmp385)
tl.store(in_out_ptr0 + (r2 + (128*x3)), tmp380, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + (x3), tmp386, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/t2/ct2f2hshheqz3ic3c445uhobgzuy7jfkonekptjcv4yqglojftmh.py
# Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.linalg_vector_norm, aten.div]
# Source node to ATen node mapping:
# vlad_3 => div_3, pow_5, pow_6, sum_68
# Graph fragment:
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_2, 2), kwargs = {})
# %sum_68 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_5, [1], True), kwargs = {})
# %pow_6 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_68, 0.5), kwargs = {})
# %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_2, %expand_66), kwargs = {})
triton_red_fused_div_linalg_vector_norm_7 = async_compile.triton('triton_red_fused_div_linalg_vector_norm_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.reduction(
size_hints=[4, 8192],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_div_linalg_vector_norm_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_red_fused_div_linalg_vector_norm_7(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr):
xnumel = 4
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp7 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + (8192*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + ((64*x0) + (r1 // 128)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp2 = 1e-12
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 / tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = _tmp7 + tmp6
_tmp7 = tl.where(rmask & xmask, tmp8, _tmp7)
tmp7 = tl.sum(_tmp7, 1)[:, None]
tmp9 = libdevice.sqrt(tmp7)
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + (8192*x0)), rmask & xmask, eviction_policy='evict_first', other=0.0)
tmp11 = tl.load(in_ptr1 + ((64*x0) + (r1 // 128)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = 1e-12
tmp13 = triton_helpers.maximum(tmp11, tmp12)
tmp14 = tmp10 / tmp13
tmp15 = triton_helpers.maximum(tmp9, tmp12)
tmp16 = tmp14 / tmp15
tl.store(out_ptr0 + (r1 + (8192*x0)), tmp16, rmask & xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 128, 64, 64), (524288, 4096, 64, 1))
assert_size_stride(primals_2, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_3, (64, 128), (128, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.linalg_vector_norm]
stream0 = get_raw_stream(0)
triton_red_fused_linalg_vector_norm_0.run(primals_1, buf0, 16384, 128, grid=grid(16384), stream=stream0)
buf1 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32)
buf6 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf8 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf10 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf12 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf15 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf17 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf19 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf21 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf24 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf26 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf28 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf30 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf33 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf35 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf37 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf39 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf42 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf44 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf46 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf48 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf51 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf53 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf55 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf57 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf60 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf62 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf64 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf66 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf69 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf71 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf73 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf75 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf78 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf80 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf82 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf84 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf87 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf89 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf91 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf93 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf96 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf98 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf100 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf102 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf105 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf107 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf109 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf111 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf114 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf116 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf118 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf120 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf123 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf125 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf127 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf129 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf132 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf134 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf136 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf138 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf141 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf143 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
buf145 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, residual_2, residual_4, residual_6, residual_8, residual_10, residual_12, residual_14, residual_16, residual_18, residual_20, residual_22, residual_24, residual_26, residual_28, residual_30, residual_32, residual_34, residual_36, residual_38, residual_40, residual_42, residual_44, residual_46, residual_48, residual_50, residual_52, residual_54, residual_56, residual_58, residual_60, residual_62, residual_64, residual_66, residual_68, residual_70, residual_72, residual_74, residual_76, residual_78, residual_80, residual_82, residual_84, residual_86, residual_88, residual_90, residual_92, residual_94, residual_96, residual_98, residual_100, residual_102, residual_104, residual_106, residual_108, residual_110, residual_112, residual_114, residual_116, residual_118, residual_120, residual_122, residual_124, residual_126], Original ATen: [aten.div, aten.sub]
triton_poi_fused_div_sub_1.run(primals_1, buf0, primals_3, buf1, buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136, buf138, buf141, buf143, buf145, 2097152, grid=grid(2097152), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf3 = reinterpret_tensor(buf0, (4, 1, 4096), (4096, 4096, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 1, 4096), (4096, 4096, 1), torch.float32)
# Topologically Sorted Source Nodes: [soft_assign_1], Original ATen: [aten._softmax]
triton_per_fused__softmax_2.run(buf2, buf3, buf4, 16384, 64, grid=grid(16384), stream=stream0)
buf5 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf7 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf9 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf11 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf13 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf16 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf18 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf20 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf22 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf25 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf27 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf29 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf31 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf34 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf36 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf38 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf40 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf43 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf45 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf47 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf49 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf52 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf54 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf56 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf58 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf61 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf63 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf65 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf67 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [residual, residual_1, sum_1, residual_3, sum_2, residual_5, sum_3, residual_7, sum_4, residual_9, sum_5, residual_11, sum_6, residual_13, sum_7, residual_15, sum_8, residual_17, sum_9, residual_19, sum_10, residual_21, sum_11, residual_23, sum_12, residual_25, sum_13, residual_27, sum_14, residual_29, sum_15, residual_31, sum_16, residual_33, sum_17, residual_35, sum_18, residual_37, sum_19, residual_39, sum_20, residual_41, sum_21, residual_43, sum_22, residual_45, sum_23, residual_47, sum_24, residual_49, sum_25, residual_51, sum_26, residual_53, sum_27, residual_55, sum_28, residual_57, sum_29], Original ATen: [aten.sub, aten.mul, aten.sum]
triton_red_fused_mul_sub_sum_3.run(buf1, primals_3, buf2, buf3, buf4, buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf5, buf7, buf9, buf11, buf13, buf16, buf18, buf20, buf22, buf25, buf27, buf29, buf31, buf34, buf36, buf38, buf40, buf43, buf45, buf47, buf49, buf52, buf54, buf56, buf58, buf61, buf63, buf65, buf67, 512, 4096, grid=grid(512), stream=stream0)
buf70 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf72 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf74 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf76 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf79 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf81 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf83 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf85 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf88 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf90 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf92 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf94 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf97 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf99 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf101 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf103 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf106 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf108 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf110 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf112 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf115 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf117 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf119 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf121 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf124 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf126 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf128 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf130 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [residual_59, sum_30, residual_61, sum_31, residual_63, sum_32, residual_65, sum_33, residual_67, sum_34, residual_69, sum_35, residual_71, sum_36, residual_73, sum_37, residual_75, sum_38, residual_77, sum_39, residual_79, sum_40, residual_81, sum_41, residual_83, sum_42, residual_85, sum_43, residual_87, sum_44, residual_89, sum_45, residual_91, sum_46, residual_93, sum_47, residual_95, sum_48, residual_97, sum_49, residual_99, sum_50, residual_101, sum_51, residual_103, sum_52, residual_105, sum_53, residual_107, sum_54, residual_109, sum_55, residual_111, sum_56, residual_113, sum_57], Original ATen: [aten.mul, aten.sum]
triton_red_fused_mul_sum_4.run(buf69, buf2, buf3, buf4, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf70, buf72, buf74, buf76, buf79, buf81, buf83, buf85, buf88, buf90, buf92, buf94, buf97, buf99, buf101, buf103, buf106, buf108, buf110, buf112, buf115, buf117, buf119, buf121, buf124, buf126, buf128, buf130, 512, 4096, grid=grid(512), stream=stream0)
buf133 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf135 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf137 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf139 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf142 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf144 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf146 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
# Topologically Sorted Source Nodes: [residual_115, sum_58, residual_117, sum_59, residual_119, sum_60, residual_121, sum_61, residual_123, sum_62, residual_125, sum_63, residual_127, sum_64], Original ATen: [aten.mul, aten.sum]
triton_red_fused_mul_sum_5.run(buf132, buf2, buf3, buf4, buf134, buf136, buf138, buf141, buf143, buf145, buf133, buf135, buf137, buf139, buf142, buf144, buf146, 512, 4096, grid=grid(512), stream=stream0)
buf14 = empty_strided_cuda((4, 64, 128), (8192, 128, 1), torch.float32)
buf23 = buf14; del buf14 # reuse
buf32 = buf23; del buf23 # reuse
buf41 = buf32; del buf32 # reuse
buf50 = buf41; del buf41 # reuse
buf59 = buf50; del buf50 # reuse
buf68 = buf59; del buf59 # reuse
buf77 = buf68; del buf68 # reuse
buf86 = buf77; del buf77 # reuse
buf95 = buf86; del buf86 # reuse
buf104 = buf95; del buf95 # reuse
buf113 = buf104; del buf104 # reuse
buf122 = buf113; del buf113 # reuse
buf131 = buf122; del buf122 # reuse
buf140 = buf131; del buf131 # reuse
buf147 = buf140; del buf140 # reuse
buf148 = empty_strided_cuda((4, 64, 1), (64, 1, 256), torch.float32)
buf149 = reinterpret_tensor(buf148, (4, 64, 1), (64, 1, 1), 0); del buf148 # reuse
# Topologically Sorted Source Nodes: [vlad, setitem, setitem_1, setitem_2, setitem_3, setitem_4, setitem_5, setitem_6, setitem_7, setitem_8, setitem_9, setitem_10, setitem_11, setitem_12, setitem_13, setitem_14, setitem_15, setitem_16, setitem_17, setitem_18, setitem_19, setitem_20, setitem_21, setitem_22, setitem_23, setitem_24, setitem_25, setitem_26, setitem_27, setitem_28, setitem_29, setitem_30, setitem_31, setitem_32, setitem_33, setitem_34, setitem_35, setitem_36, setitem_37, setitem_38, setitem_39, setitem_40, setitem_41, setitem_42, setitem_43, setitem_44, setitem_45, setitem_46, setitem_47, setitem_48, setitem_49, setitem_50, setitem_51, setitem_52, setitem_53, setitem_54, setitem_55, setitem_56, setitem_57, setitem_58, setitem_59, setitem_60, setitem_61, setitem_62, setitem_63, vlad_1], Original ATen: [aten.zeros, aten.copy, aten.linalg_vector_norm]
triton_per_fused_copy_linalg_vector_norm_zeros_6.run(buf147, buf149, buf13, buf11, buf9, buf7, buf5, buf22, buf20, buf18, buf16, buf31, buf29, buf27, buf25, buf40, buf38, buf36, buf34, buf49, buf47, buf45, buf43, buf58, buf56, buf54, buf52, buf67, buf65, buf63, buf61, buf76, buf74, buf72, buf70, buf85, buf83, buf81, buf79, buf94, buf92, buf90, buf88, buf103, buf101, buf99, buf97, buf112, buf110, buf108, buf106, buf121, buf119, buf117, buf115, buf130, buf128, buf126, buf124, buf139, buf137, buf135, buf133, buf146, buf144, buf142, 256, 128, grid=grid(256), stream=stream0)
del buf101
del buf103
del buf106
del buf108
del buf11
del buf110
del buf112
del buf115
del buf117
del buf119
del buf121
del buf124
del buf126
del buf128
del buf13
del buf130
del buf133
del buf135
del buf137
del buf139
del buf142
del buf144
del buf146
del buf16
del buf18
del buf20
del buf22
del buf25
del buf27
del buf29
del buf31
del buf34
del buf36
del buf38
del buf40
del buf43
del buf45
del buf47
del buf49
del buf5
del buf52
del buf54
del buf56
del buf58
del buf61
del buf63
del buf65
del buf67
del buf7
del buf70
del buf72
del buf74
del buf76
del buf79
del buf81
del buf83
del buf85
del buf88
del buf9
del buf90
del buf92
del buf94
del buf97
del buf99
buf150 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf151 = reinterpret_tensor(buf150, (4, 1), (1, 1), 0); del buf150 # reuse
buf152 = empty_strided_cuda((4, 8192), (8192, 1), torch.float32)
# Topologically Sorted Source Nodes: [vlad_3], Original ATen: [aten.linalg_vector_norm, aten.div]
triton_red_fused_div_linalg_vector_norm_7.run(buf151, buf147, buf149, buf152, 4, 8192, grid=grid(4), stream=stream0)
return (buf152, primals_2, buf1, buf2, buf3, buf4, reinterpret_tensor(primals_3, (1, 128), (128, 1), 0), buf6, buf8, buf10, buf12, buf15, buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136, buf138, buf141, buf143, buf145, buf147, buf149, buf151, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 128, 64, 64), (524288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from sklearn.neighbors import NearestNeighbors
class NetVLAD(nn.Module):
"""NetVLAD layer implementation"""
def __init__(self, num_clusters=64, dim=128, normalize_input=True,
vladv2=False, use_faiss=True):
"""
Args:
num_clusters : int
The number of clusters
dim : int
Dimension of descriptors
normalize_input : bool
If true, descriptor-wise L2 normalization is applied to input.
vladv2 : bool
If true, use vladv2 otherwise use vladv1
"""
super().__init__()
self.num_clusters = num_clusters
self.dim = dim
self.alpha = 0
self.vladv2 = vladv2
self.normalize_input = normalize_input
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=
vladv2)
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
self.use_faiss = use_faiss
def init_params(self, clsts, traindescs):
if not self.vladv2:
clstsAssign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True)
dots = np.dot(clstsAssign, traindescs.T)
dots.sort(0)
dots = dots[::-1, :]
self.alpha = (-np.log(0.01) / np.mean(dots[0, :] - dots[1, :])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
self.conv.weight = nn.Parameter(torch.from_numpy(self.alpha *
clstsAssign).unsqueeze(2).unsqueeze(3))
self.conv.bias = None
else:
if not self.use_faiss:
knn = NearestNeighbors(n_jobs=-1)
knn.fit(traindescs)
del traindescs
ds_sq = np.square(knn.kneighbors(clsts, 2)[1])
del knn
else:
index = faiss.IndexFlatL2(traindescs.shape[1])
index.add(traindescs)
del traindescs
ds_sq = np.square(index.search(clsts, 2)[1])
del index
self.alpha = (-np.log(0.01) / np.mean(ds_sq[:, 1] - ds_sq[:, 0])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
del clsts, ds_sq
self.conv.weight = nn.Parameter((2.0 * self.alpha * self.
centroids).unsqueeze(-1).unsqueeze(-1))
self.conv.bias = nn.Parameter(-self.alpha * self.centroids.norm
(dim=1))
def forward(self, x):
N, C = x.shape[:2]
if self.normalize_input:
x = F.normalize(x, p=2, dim=1)
soft_assign = self.conv(x).view(N, self.num_clusters, -1)
soft_assign = F.softmax(soft_assign, dim=1)
x_flatten = x.view(N, C, -1)
vlad = torch.zeros([N, self.num_clusters, C], dtype=x.dtype, layout
=x.layout, device=x.device)
for C in range(self.num_clusters):
residual = x_flatten.unsqueeze(0).permute(1, 0, 2, 3
) - self.centroids[C:C + 1, :].expand(x_flatten.size(-1), -
1, -1).permute(1, 2, 0).unsqueeze(0)
residual *= soft_assign[:, C:C + 1, :].unsqueeze(2)
vlad[:, C:C + 1, :] = residual.sum(dim=-1)
vlad = F.normalize(vlad, p=2, dim=2)
vlad = vlad.view(x.size(0), -1)
vlad = F.normalize(vlad, p=2, dim=1)
return vlad
def get_inputs():
return [torch.rand([4, 128, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import numpy as np
import torch.nn as nn
from sklearn.neighbors import NearestNeighbors
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_red_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
rnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex % 4096
x1 = xindex // 4096
_tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
x3 = xindex
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 524288 * x1), rmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = _tmp3 + tmp2
_tmp3 = tl.where(rmask, tmp4, _tmp3)
tmp3 = tl.sum(_tmp3, 1)[:, None]
tl.store(out_ptr0 + x3, tmp3, None)
@triton.jit
def triton_poi_fused_div_sub_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7,
out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13,
out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19,
out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25,
out_ptr26, out_ptr27, out_ptr28, out_ptr29, out_ptr30, out_ptr31,
out_ptr32, out_ptr33, out_ptr34, out_ptr35, out_ptr36, out_ptr37,
out_ptr38, out_ptr39, out_ptr40, out_ptr41, out_ptr42, out_ptr43,
out_ptr44, out_ptr45, out_ptr46, out_ptr47, out_ptr48, out_ptr49,
out_ptr50, out_ptr51, out_ptr52, out_ptr53, out_ptr54, out_ptr55,
out_ptr56, out_ptr57, out_ptr58, out_ptr59, out_ptr60, out_ptr61,
out_ptr62, out_ptr63, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x0 = xindex % 4096
x2 = xindex // 524288
x1 = xindex // 4096 % 128
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr2 + (128 + x1), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (256 + x1), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (384 + x1), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr2 + (512 + x1), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr2 + (640 + x1), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (768 + x1), None, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr2 + (896 + x1), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr2 + (1024 + x1), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr2 + (1152 + x1), None, eviction_policy='evict_last')
tmp24 = tl.load(in_ptr2 + (1280 + x1), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (1408 + x1), None, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr2 + (1536 + x1), None, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (1664 + x1), None, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr2 + (1792 + x1), None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr2 + (1920 + x1), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr2 + (2048 + x1), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr2 + (2176 + x1), None, eviction_policy='evict_last')
tmp40 = tl.load(in_ptr2 + (2304 + x1), None, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr2 + (2432 + x1), None, eviction_policy='evict_last')
tmp44 = tl.load(in_ptr2 + (2560 + x1), None, eviction_policy='evict_last')
tmp46 = tl.load(in_ptr2 + (2688 + x1), None, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr2 + (2816 + x1), None, eviction_policy='evict_last')
tmp50 = tl.load(in_ptr2 + (2944 + x1), None, eviction_policy='evict_last')
tmp52 = tl.load(in_ptr2 + (3072 + x1), None, eviction_policy='evict_last')
tmp54 = tl.load(in_ptr2 + (3200 + x1), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr2 + (3328 + x1), None, eviction_policy='evict_last')
tmp58 = tl.load(in_ptr2 + (3456 + x1), None, eviction_policy='evict_last')
tmp60 = tl.load(in_ptr2 + (3584 + x1), None, eviction_policy='evict_last')
tmp62 = tl.load(in_ptr2 + (3712 + x1), None, eviction_policy='evict_last')
tmp64 = tl.load(in_ptr2 + (3840 + x1), None, eviction_policy='evict_last')
tmp66 = tl.load(in_ptr2 + (3968 + x1), None, eviction_policy='evict_last')
tmp68 = tl.load(in_ptr2 + (4096 + x1), None, eviction_policy='evict_last')
tmp70 = tl.load(in_ptr2 + (4224 + x1), None, eviction_policy='evict_last')
tmp72 = tl.load(in_ptr2 + (4352 + x1), None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr2 + (4480 + x1), None, eviction_policy='evict_last')
tmp76 = tl.load(in_ptr2 + (4608 + x1), None, eviction_policy='evict_last')
tmp78 = tl.load(in_ptr2 + (4736 + x1), None, eviction_policy='evict_last')
tmp80 = tl.load(in_ptr2 + (4864 + x1), None, eviction_policy='evict_last')
tmp82 = tl.load(in_ptr2 + (4992 + x1), None, eviction_policy='evict_last')
tmp84 = tl.load(in_ptr2 + (5120 + x1), None, eviction_policy='evict_last')
tmp86 = tl.load(in_ptr2 + (5248 + x1), None, eviction_policy='evict_last')
tmp88 = tl.load(in_ptr2 + (5376 + x1), None, eviction_policy='evict_last')
tmp90 = tl.load(in_ptr2 + (5504 + x1), None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr2 + (5632 + x1), None, eviction_policy='evict_last')
tmp94 = tl.load(in_ptr2 + (5760 + x1), None, eviction_policy='evict_last')
tmp96 = tl.load(in_ptr2 + (5888 + x1), None, eviction_policy='evict_last')
tmp98 = tl.load(in_ptr2 + (6016 + x1), None, eviction_policy='evict_last')
tmp100 = tl.load(in_ptr2 + (6144 + x1), None, eviction_policy='evict_last')
tmp102 = tl.load(in_ptr2 + (6272 + x1), None, eviction_policy='evict_last')
tmp104 = tl.load(in_ptr2 + (6400 + x1), None, eviction_policy='evict_last')
tmp106 = tl.load(in_ptr2 + (6528 + x1), None, eviction_policy='evict_last')
tmp108 = tl.load(in_ptr2 + (6656 + x1), None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr2 + (6784 + x1), None, eviction_policy='evict_last')
tmp112 = tl.load(in_ptr2 + (6912 + x1), None, eviction_policy='evict_last')
tmp114 = tl.load(in_ptr2 + (7040 + x1), None, eviction_policy='evict_last')
tmp116 = tl.load(in_ptr2 + (7168 + x1), None, eviction_policy='evict_last')
tmp118 = tl.load(in_ptr2 + (7296 + x1), None, eviction_policy='evict_last')
tmp120 = tl.load(in_ptr2 + (7424 + x1), None, eviction_policy='evict_last')
tmp122 = tl.load(in_ptr2 + (7552 + x1), None, eviction_policy='evict_last')
tmp124 = tl.load(in_ptr2 + (7680 + x1), None, eviction_policy='evict_last')
tmp126 = tl.load(in_ptr2 + (7808 + x1), None, eviction_policy='evict_last')
tmp128 = tl.load(in_ptr2 + (7936 + x1), None, eviction_policy='evict_last')
tmp130 = tl.load(in_ptr2 + (8064 + x1), None, eviction_policy='evict_last')
tmp2 = libdevice.sqrt(tmp1)
tmp3 = 1e-12
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tmp0 / tmp4
tmp7 = tmp5 - tmp6
tmp9 = tmp5 - tmp8
tmp11 = tmp5 - tmp10
tmp13 = tmp5 - tmp12
tmp15 = tmp5 - tmp14
tmp17 = tmp5 - tmp16
tmp19 = tmp5 - tmp18
tmp21 = tmp5 - tmp20
tmp23 = tmp5 - tmp22
tmp25 = tmp5 - tmp24
tmp27 = tmp5 - tmp26
tmp29 = tmp5 - tmp28
tmp31 = tmp5 - tmp30
tmp33 = tmp5 - tmp32
tmp35 = tmp5 - tmp34
tmp37 = tmp5 - tmp36
tmp39 = tmp5 - tmp38
tmp41 = tmp5 - tmp40
tmp43 = tmp5 - tmp42
tmp45 = tmp5 - tmp44
tmp47 = tmp5 - tmp46
tmp49 = tmp5 - tmp48
tmp51 = tmp5 - tmp50
tmp53 = tmp5 - tmp52
tmp55 = tmp5 - tmp54
tmp57 = tmp5 - tmp56
tmp59 = tmp5 - tmp58
tmp61 = tmp5 - tmp60
tmp63 = tmp5 - tmp62
tmp65 = tmp5 - tmp64
tmp67 = tmp5 - tmp66
tmp69 = tmp5 - tmp68
tmp71 = tmp5 - tmp70
tmp73 = tmp5 - tmp72
tmp75 = tmp5 - tmp74
tmp77 = tmp5 - tmp76
tmp79 = tmp5 - tmp78
tmp81 = tmp5 - tmp80
tmp83 = tmp5 - tmp82
tmp85 = tmp5 - tmp84
tmp87 = tmp5 - tmp86
tmp89 = tmp5 - tmp88
tmp91 = tmp5 - tmp90
tmp93 = tmp5 - tmp92
tmp95 = tmp5 - tmp94
tmp97 = tmp5 - tmp96
tmp99 = tmp5 - tmp98
tmp101 = tmp5 - tmp100
tmp103 = tmp5 - tmp102
tmp105 = tmp5 - tmp104
tmp107 = tmp5 - tmp106
tmp109 = tmp5 - tmp108
tmp111 = tmp5 - tmp110
tmp113 = tmp5 - tmp112
tmp115 = tmp5 - tmp114
tmp117 = tmp5 - tmp116
tmp119 = tmp5 - tmp118
tmp121 = tmp5 - tmp120
tmp123 = tmp5 - tmp122
tmp125 = tmp5 - tmp124
tmp127 = tmp5 - tmp126
tmp129 = tmp5 - tmp128
tmp131 = tmp5 - tmp130
tl.store(out_ptr0 + x3, tmp5, None)
tl.store(out_ptr1 + x3, tmp7, None)
tl.store(out_ptr2 + x3, tmp9, None)
tl.store(out_ptr3 + x3, tmp11, None)
tl.store(out_ptr4 + x3, tmp13, None)
tl.store(out_ptr5 + x3, tmp15, None)
tl.store(out_ptr6 + x3, tmp17, None)
tl.store(out_ptr7 + x3, tmp19, None)
tl.store(out_ptr8 + x3, tmp21, None)
tl.store(out_ptr9 + x3, tmp23, None)
tl.store(out_ptr10 + x3, tmp25, None)
tl.store(out_ptr11 + x3, tmp27, None)
tl.store(out_ptr12 + x3, tmp29, None)
tl.store(out_ptr13 + x3, tmp31, None)
tl.store(out_ptr14 + x3, tmp33, None)
tl.store(out_ptr15 + x3, tmp35, None)
tl.store(out_ptr16 + x3, tmp37, None)
tl.store(out_ptr17 + x3, tmp39, None)
tl.store(out_ptr18 + x3, tmp41, None)
tl.store(out_ptr19 + x3, tmp43, None)
tl.store(out_ptr20 + x3, tmp45, None)
tl.store(out_ptr21 + x3, tmp47, None)
tl.store(out_ptr22 + x3, tmp49, None)
tl.store(out_ptr23 + x3, tmp51, None)
tl.store(out_ptr24 + x3, tmp53, None)
tl.store(out_ptr25 + x3, tmp55, None)
tl.store(out_ptr26 + x3, tmp57, None)
tl.store(out_ptr27 + x3, tmp59, None)
tl.store(out_ptr28 + x3, tmp61, None)
tl.store(out_ptr29 + x3, tmp63, None)
tl.store(out_ptr30 + x3, tmp65, None)
tl.store(out_ptr31 + x3, tmp67, None)
tl.store(out_ptr32 + x3, tmp69, None)
tl.store(out_ptr33 + x3, tmp71, None)
tl.store(out_ptr34 + x3, tmp73, None)
tl.store(out_ptr35 + x3, tmp75, None)
tl.store(out_ptr36 + x3, tmp77, None)
tl.store(out_ptr37 + x3, tmp79, None)
tl.store(out_ptr38 + x3, tmp81, None)
tl.store(out_ptr39 + x3, tmp83, None)
tl.store(out_ptr40 + x3, tmp85, None)
tl.store(out_ptr41 + x3, tmp87, None)
tl.store(out_ptr42 + x3, tmp89, None)
tl.store(out_ptr43 + x3, tmp91, None)
tl.store(out_ptr44 + x3, tmp93, None)
tl.store(out_ptr45 + x3, tmp95, None)
tl.store(out_ptr46 + x3, tmp97, None)
tl.store(out_ptr47 + x3, tmp99, None)
tl.store(out_ptr48 + x3, tmp101, None)
tl.store(out_ptr49 + x3, tmp103, None)
tl.store(out_ptr50 + x3, tmp105, None)
tl.store(out_ptr51 + x3, tmp107, None)
tl.store(out_ptr52 + x3, tmp109, None)
tl.store(out_ptr53 + x3, tmp111, None)
tl.store(out_ptr54 + x3, tmp113, None)
tl.store(out_ptr55 + x3, tmp115, None)
tl.store(out_ptr56 + x3, tmp117, None)
tl.store(out_ptr57 + x3, tmp119, None)
tl.store(out_ptr58 + x3, tmp121, None)
tl.store(out_ptr59 + x3, tmp123, None)
tl.store(out_ptr60 + x3, tmp125, None)
tl.store(out_ptr61 + x3, tmp127, None)
tl.store(out_ptr62 + x3, tmp129, None)
tl.store(out_ptr63 + x3, tmp131, None)
@triton.jit
def triton_per_fused__softmax_2(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x0 = xindex % 4096
x1 = xindex // 4096
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 262144 * x1), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tl.store(out_ptr0 + x3, tmp3, None)
tl.store(out_ptr1 + x3, tmp8, None)
@triton.jit
def triton_red_fused_mul_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10,
in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17,
in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24,
in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31,
in_ptr32, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5,
out_ptr6, out_ptr7, out_ptr8, out_ptr9, out_ptr10, out_ptr11, out_ptr12,
out_ptr13, out_ptr14, out_ptr15, out_ptr16, out_ptr17, out_ptr18,
out_ptr19, out_ptr20, out_ptr21, out_ptr22, out_ptr23, out_ptr24,
out_ptr25, out_ptr26, out_ptr27, out_ptr28, xnumel, rnumel, XBLOCK: tl.
constexpr, RBLOCK: tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x0 = xindex % 128
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
x1 = xindex // 128
_tmp11 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp20 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp29 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp38 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp47 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp56 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp65 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp74 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp83 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp92 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp101 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp110 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp119 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp128 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp137 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp146 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp155 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp164 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp173 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp182 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp191 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp200 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp209 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp218 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp227 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp236 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp245 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp254 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp263 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp3 = tl.load(in_ptr2 + (r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp4 = tl.load(in_ptr3 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr4 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp13 = tl.load(in_ptr5 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp14 = tl.load(in_ptr2 + (4096 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp22 = tl.load(in_ptr6 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp23 = tl.load(in_ptr2 + (8192 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp31 = tl.load(in_ptr7 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp32 = tl.load(in_ptr2 + (12288 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp40 = tl.load(in_ptr8 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp41 = tl.load(in_ptr2 + (16384 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp49 = tl.load(in_ptr9 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp50 = tl.load(in_ptr2 + (20480 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp58 = tl.load(in_ptr10 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp59 = tl.load(in_ptr2 + (24576 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp67 = tl.load(in_ptr11 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp68 = tl.load(in_ptr2 + (28672 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp76 = tl.load(in_ptr12 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp77 = tl.load(in_ptr2 + (32768 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp85 = tl.load(in_ptr13 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp86 = tl.load(in_ptr2 + (36864 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp94 = tl.load(in_ptr14 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp95 = tl.load(in_ptr2 + (40960 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp103 = tl.load(in_ptr15 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp104 = tl.load(in_ptr2 + (45056 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp112 = tl.load(in_ptr16 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp113 = tl.load(in_ptr2 + (49152 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp121 = tl.load(in_ptr17 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp122 = tl.load(in_ptr2 + (53248 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp130 = tl.load(in_ptr18 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp131 = tl.load(in_ptr2 + (57344 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp139 = tl.load(in_ptr19 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp140 = tl.load(in_ptr2 + (61440 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp148 = tl.load(in_ptr20 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp149 = tl.load(in_ptr2 + (65536 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp157 = tl.load(in_ptr21 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp158 = tl.load(in_ptr2 + (69632 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp166 = tl.load(in_ptr22 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp167 = tl.load(in_ptr2 + (73728 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp175 = tl.load(in_ptr23 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp176 = tl.load(in_ptr2 + (77824 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp184 = tl.load(in_ptr24 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp185 = tl.load(in_ptr2 + (81920 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp193 = tl.load(in_ptr25 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp194 = tl.load(in_ptr2 + (86016 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp202 = tl.load(in_ptr26 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp203 = tl.load(in_ptr2 + (90112 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp211 = tl.load(in_ptr27 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp212 = tl.load(in_ptr2 + (94208 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp220 = tl.load(in_ptr28 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp221 = tl.load(in_ptr2 + (98304 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp229 = tl.load(in_ptr29 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp230 = tl.load(in_ptr2 + (102400 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp238 = tl.load(in_ptr30 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp239 = tl.load(in_ptr2 + (106496 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp247 = tl.load(in_ptr31 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp248 = tl.load(in_ptr2 + (110592 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp256 = tl.load(in_ptr32 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp257 = tl.load(in_ptr2 + (114688 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp2 = tmp0 - tmp1
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = tmp2 * tmp8
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = _tmp11 + tmp10
_tmp11 = tl.where(rmask & xmask, tmp12, _tmp11)
tmp15 = tmp14 - tmp4
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp16 / tmp7
tmp18 = tmp13 * tmp17
tmp19 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp21 = _tmp20 + tmp19
_tmp20 = tl.where(rmask & xmask, tmp21, _tmp20)
tmp24 = tmp23 - tmp4
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp25 / tmp7
tmp27 = tmp22 * tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = _tmp29 + tmp28
_tmp29 = tl.where(rmask & xmask, tmp30, _tmp29)
tmp33 = tmp32 - tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp34 / tmp7
tmp36 = tmp31 * tmp35
tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK])
tmp39 = _tmp38 + tmp37
_tmp38 = tl.where(rmask & xmask, tmp39, _tmp38)
tmp42 = tmp41 - tmp4
tmp43 = tl_math.exp(tmp42)
tmp44 = tmp43 / tmp7
tmp45 = tmp40 * tmp44
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK])
tmp48 = _tmp47 + tmp46
_tmp47 = tl.where(rmask & xmask, tmp48, _tmp47)
tmp51 = tmp50 - tmp4
tmp52 = tl_math.exp(tmp51)
tmp53 = tmp52 / tmp7
tmp54 = tmp49 * tmp53
tmp55 = tl.broadcast_to(tmp54, [XBLOCK, RBLOCK])
tmp57 = _tmp56 + tmp55
_tmp56 = tl.where(rmask & xmask, tmp57, _tmp56)
tmp60 = tmp59 - tmp4
tmp61 = tl_math.exp(tmp60)
tmp62 = tmp61 / tmp7
tmp63 = tmp58 * tmp62
tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK])
tmp66 = _tmp65 + tmp64
_tmp65 = tl.where(rmask & xmask, tmp66, _tmp65)
tmp69 = tmp68 - tmp4
tmp70 = tl_math.exp(tmp69)
tmp71 = tmp70 / tmp7
tmp72 = tmp67 * tmp71
tmp73 = tl.broadcast_to(tmp72, [XBLOCK, RBLOCK])
tmp75 = _tmp74 + tmp73
_tmp74 = tl.where(rmask & xmask, tmp75, _tmp74)
tmp78 = tmp77 - tmp4
tmp79 = tl_math.exp(tmp78)
tmp80 = tmp79 / tmp7
tmp81 = tmp76 * tmp80
tmp82 = tl.broadcast_to(tmp81, [XBLOCK, RBLOCK])
tmp84 = _tmp83 + tmp82
_tmp83 = tl.where(rmask & xmask, tmp84, _tmp83)
tmp87 = tmp86 - tmp4
tmp88 = tl_math.exp(tmp87)
tmp89 = tmp88 / tmp7
tmp90 = tmp85 * tmp89
tmp91 = tl.broadcast_to(tmp90, [XBLOCK, RBLOCK])
tmp93 = _tmp92 + tmp91
_tmp92 = tl.where(rmask & xmask, tmp93, _tmp92)
tmp96 = tmp95 - tmp4
tmp97 = tl_math.exp(tmp96)
tmp98 = tmp97 / tmp7
tmp99 = tmp94 * tmp98
tmp100 = tl.broadcast_to(tmp99, [XBLOCK, RBLOCK])
tmp102 = _tmp101 + tmp100
_tmp101 = tl.where(rmask & xmask, tmp102, _tmp101)
tmp105 = tmp104 - tmp4
tmp106 = tl_math.exp(tmp105)
tmp107 = tmp106 / tmp7
tmp108 = tmp103 * tmp107
tmp109 = tl.broadcast_to(tmp108, [XBLOCK, RBLOCK])
tmp111 = _tmp110 + tmp109
_tmp110 = tl.where(rmask & xmask, tmp111, _tmp110)
tmp114 = tmp113 - tmp4
tmp115 = tl_math.exp(tmp114)
tmp116 = tmp115 / tmp7
tmp117 = tmp112 * tmp116
tmp118 = tl.broadcast_to(tmp117, [XBLOCK, RBLOCK])
tmp120 = _tmp119 + tmp118
_tmp119 = tl.where(rmask & xmask, tmp120, _tmp119)
tmp123 = tmp122 - tmp4
tmp124 = tl_math.exp(tmp123)
tmp125 = tmp124 / tmp7
tmp126 = tmp121 * tmp125
tmp127 = tl.broadcast_to(tmp126, [XBLOCK, RBLOCK])
tmp129 = _tmp128 + tmp127
_tmp128 = tl.where(rmask & xmask, tmp129, _tmp128)
tmp132 = tmp131 - tmp4
tmp133 = tl_math.exp(tmp132)
tmp134 = tmp133 / tmp7
tmp135 = tmp130 * tmp134
tmp136 = tl.broadcast_to(tmp135, [XBLOCK, RBLOCK])
tmp138 = _tmp137 + tmp136
_tmp137 = tl.where(rmask & xmask, tmp138, _tmp137)
tmp141 = tmp140 - tmp4
tmp142 = tl_math.exp(tmp141)
tmp143 = tmp142 / tmp7
tmp144 = tmp139 * tmp143
tmp145 = tl.broadcast_to(tmp144, [XBLOCK, RBLOCK])
tmp147 = _tmp146 + tmp145
_tmp146 = tl.where(rmask & xmask, tmp147, _tmp146)
tmp150 = tmp149 - tmp4
tmp151 = tl_math.exp(tmp150)
tmp152 = tmp151 / tmp7
tmp153 = tmp148 * tmp152
tmp154 = tl.broadcast_to(tmp153, [XBLOCK, RBLOCK])
tmp156 = _tmp155 + tmp154
_tmp155 = tl.where(rmask & xmask, tmp156, _tmp155)
tmp159 = tmp158 - tmp4
tmp160 = tl_math.exp(tmp159)
tmp161 = tmp160 / tmp7
tmp162 = tmp157 * tmp161
tmp163 = tl.broadcast_to(tmp162, [XBLOCK, RBLOCK])
tmp165 = _tmp164 + tmp163
_tmp164 = tl.where(rmask & xmask, tmp165, _tmp164)
tmp168 = tmp167 - tmp4
tmp169 = tl_math.exp(tmp168)
tmp170 = tmp169 / tmp7
tmp171 = tmp166 * tmp170
tmp172 = tl.broadcast_to(tmp171, [XBLOCK, RBLOCK])
tmp174 = _tmp173 + tmp172
_tmp173 = tl.where(rmask & xmask, tmp174, _tmp173)
tmp177 = tmp176 - tmp4
tmp178 = tl_math.exp(tmp177)
tmp179 = tmp178 / tmp7
tmp180 = tmp175 * tmp179
tmp181 = tl.broadcast_to(tmp180, [XBLOCK, RBLOCK])
tmp183 = _tmp182 + tmp181
_tmp182 = tl.where(rmask & xmask, tmp183, _tmp182)
tmp186 = tmp185 - tmp4
tmp187 = tl_math.exp(tmp186)
tmp188 = tmp187 / tmp7
tmp189 = tmp184 * tmp188
tmp190 = tl.broadcast_to(tmp189, [XBLOCK, RBLOCK])
tmp192 = _tmp191 + tmp190
_tmp191 = tl.where(rmask & xmask, tmp192, _tmp191)
tmp195 = tmp194 - tmp4
tmp196 = tl_math.exp(tmp195)
tmp197 = tmp196 / tmp7
tmp198 = tmp193 * tmp197
tmp199 = tl.broadcast_to(tmp198, [XBLOCK, RBLOCK])
tmp201 = _tmp200 + tmp199
_tmp200 = tl.where(rmask & xmask, tmp201, _tmp200)
tmp204 = tmp203 - tmp4
tmp205 = tl_math.exp(tmp204)
tmp206 = tmp205 / tmp7
tmp207 = tmp202 * tmp206
tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK])
tmp210 = _tmp209 + tmp208
_tmp209 = tl.where(rmask & xmask, tmp210, _tmp209)
tmp213 = tmp212 - tmp4
tmp214 = tl_math.exp(tmp213)
tmp215 = tmp214 / tmp7
tmp216 = tmp211 * tmp215
tmp217 = tl.broadcast_to(tmp216, [XBLOCK, RBLOCK])
tmp219 = _tmp218 + tmp217
_tmp218 = tl.where(rmask & xmask, tmp219, _tmp218)
tmp222 = tmp221 - tmp4
tmp223 = tl_math.exp(tmp222)
tmp224 = tmp223 / tmp7
tmp225 = tmp220 * tmp224
tmp226 = tl.broadcast_to(tmp225, [XBLOCK, RBLOCK])
tmp228 = _tmp227 + tmp226
_tmp227 = tl.where(rmask & xmask, tmp228, _tmp227)
tmp231 = tmp230 - tmp4
tmp232 = tl_math.exp(tmp231)
tmp233 = tmp232 / tmp7
tmp234 = tmp229 * tmp233
tmp235 = tl.broadcast_to(tmp234, [XBLOCK, RBLOCK])
tmp237 = _tmp236 + tmp235
_tmp236 = tl.where(rmask & xmask, tmp237, _tmp236)
tmp240 = tmp239 - tmp4
tmp241 = tl_math.exp(tmp240)
tmp242 = tmp241 / tmp7
tmp243 = tmp238 * tmp242
tmp244 = tl.broadcast_to(tmp243, [XBLOCK, RBLOCK])
tmp246 = _tmp245 + tmp244
_tmp245 = tl.where(rmask & xmask, tmp246, _tmp245)
tmp249 = tmp248 - tmp4
tmp250 = tl_math.exp(tmp249)
tmp251 = tmp250 / tmp7
tmp252 = tmp247 * tmp251
tmp253 = tl.broadcast_to(tmp252, [XBLOCK, RBLOCK])
tmp255 = _tmp254 + tmp253
_tmp254 = tl.where(rmask & xmask, tmp255, _tmp254)
tmp258 = tmp257 - tmp4
tmp259 = tl_math.exp(tmp258)
tmp260 = tmp259 / tmp7
tmp261 = tmp256 * tmp260
tmp262 = tl.broadcast_to(tmp261, [XBLOCK, RBLOCK])
tmp264 = _tmp263 + tmp262
_tmp263 = tl.where(rmask & xmask, tmp264, _tmp263)
tmp11 = tl.sum(_tmp11, 1)[:, None]
tl.store(out_ptr0 + x3, tmp11, xmask)
tmp20 = tl.sum(_tmp20, 1)[:, None]
tl.store(out_ptr1 + x3, tmp20, xmask)
tmp29 = tl.sum(_tmp29, 1)[:, None]
tl.store(out_ptr2 + x3, tmp29, xmask)
tmp38 = tl.sum(_tmp38, 1)[:, None]
tl.store(out_ptr3 + x3, tmp38, xmask)
tmp47 = tl.sum(_tmp47, 1)[:, None]
tl.store(out_ptr4 + x3, tmp47, xmask)
tmp56 = tl.sum(_tmp56, 1)[:, None]
tl.store(out_ptr5 + x3, tmp56, xmask)
tmp65 = tl.sum(_tmp65, 1)[:, None]
tl.store(out_ptr6 + x3, tmp65, xmask)
tmp74 = tl.sum(_tmp74, 1)[:, None]
tl.store(out_ptr7 + x3, tmp74, xmask)
tmp83 = tl.sum(_tmp83, 1)[:, None]
tl.store(out_ptr8 + x3, tmp83, xmask)
tmp92 = tl.sum(_tmp92, 1)[:, None]
tl.store(out_ptr9 + x3, tmp92, xmask)
tmp101 = tl.sum(_tmp101, 1)[:, None]
tl.store(out_ptr10 + x3, tmp101, xmask)
tmp110 = tl.sum(_tmp110, 1)[:, None]
tl.store(out_ptr11 + x3, tmp110, xmask)
tmp119 = tl.sum(_tmp119, 1)[:, None]
tl.store(out_ptr12 + x3, tmp119, xmask)
tmp128 = tl.sum(_tmp128, 1)[:, None]
tl.store(out_ptr13 + x3, tmp128, xmask)
tmp137 = tl.sum(_tmp137, 1)[:, None]
tl.store(out_ptr14 + x3, tmp137, xmask)
tmp146 = tl.sum(_tmp146, 1)[:, None]
tl.store(out_ptr15 + x3, tmp146, xmask)
tmp155 = tl.sum(_tmp155, 1)[:, None]
tl.store(out_ptr16 + x3, tmp155, xmask)
tmp164 = tl.sum(_tmp164, 1)[:, None]
tl.store(out_ptr17 + x3, tmp164, xmask)
tmp173 = tl.sum(_tmp173, 1)[:, None]
tl.store(out_ptr18 + x3, tmp173, xmask)
tmp182 = tl.sum(_tmp182, 1)[:, None]
tl.store(out_ptr19 + x3, tmp182, xmask)
tmp191 = tl.sum(_tmp191, 1)[:, None]
tl.store(out_ptr20 + x3, tmp191, xmask)
tmp200 = tl.sum(_tmp200, 1)[:, None]
tl.store(out_ptr21 + x3, tmp200, xmask)
tmp209 = tl.sum(_tmp209, 1)[:, None]
tl.store(out_ptr22 + x3, tmp209, xmask)
tmp218 = tl.sum(_tmp218, 1)[:, None]
tl.store(out_ptr23 + x3, tmp218, xmask)
tmp227 = tl.sum(_tmp227, 1)[:, None]
tl.store(out_ptr24 + x3, tmp227, xmask)
tmp236 = tl.sum(_tmp236, 1)[:, None]
tl.store(out_ptr25 + x3, tmp236, xmask)
tmp245 = tl.sum(_tmp245, 1)[:, None]
tl.store(out_ptr26 + x3, tmp245, xmask)
tmp254 = tl.sum(_tmp254, 1)[:, None]
tl.store(out_ptr27 + x3, tmp254, xmask)
tmp263 = tl.sum(_tmp263, 1)[:, None]
tl.store(out_ptr28 + x3, tmp263, xmask)
@triton.jit
def triton_red_fused_mul_sum_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11,
in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18,
in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25,
in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, out_ptr0, out_ptr1,
out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, out_ptr8,
out_ptr9, out_ptr10, out_ptr11, out_ptr12, out_ptr13, out_ptr14,
out_ptr15, out_ptr16, out_ptr17, out_ptr18, out_ptr19, out_ptr20,
out_ptr21, out_ptr22, out_ptr23, out_ptr24, out_ptr25, out_ptr26,
out_ptr27, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x1 = xindex // 128
_tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp72 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp81 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp90 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp99 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp108 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp117 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp126 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp135 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp144 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp153 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp162 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp171 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp180 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp189 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp198 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp207 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp216 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp225 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp234 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp243 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp252 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (118784 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr3 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr4 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp12 = tl.load(in_ptr1 + (122880 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr5 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp21 = tl.load(in_ptr1 + (126976 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr6 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr1 + (131072 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp39 = tl.load(in_ptr1 + (135168 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tl.load(in_ptr8 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp48 = tl.load(in_ptr1 + (139264 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp56 = tl.load(in_ptr9 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp57 = tl.load(in_ptr1 + (143360 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp65 = tl.load(in_ptr10 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp66 = tl.load(in_ptr1 + (147456 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp74 = tl.load(in_ptr11 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp75 = tl.load(in_ptr1 + (151552 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp83 = tl.load(in_ptr12 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp84 = tl.load(in_ptr1 + (155648 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp92 = tl.load(in_ptr13 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp93 = tl.load(in_ptr1 + (159744 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp101 = tl.load(in_ptr14 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp102 = tl.load(in_ptr1 + (163840 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp110 = tl.load(in_ptr15 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp111 = tl.load(in_ptr1 + (167936 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp119 = tl.load(in_ptr16 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp120 = tl.load(in_ptr1 + (172032 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp128 = tl.load(in_ptr17 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp129 = tl.load(in_ptr1 + (176128 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp137 = tl.load(in_ptr18 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp138 = tl.load(in_ptr1 + (180224 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp146 = tl.load(in_ptr19 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp147 = tl.load(in_ptr1 + (184320 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp155 = tl.load(in_ptr20 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp156 = tl.load(in_ptr1 + (188416 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp164 = tl.load(in_ptr21 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp165 = tl.load(in_ptr1 + (192512 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp173 = tl.load(in_ptr22 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp174 = tl.load(in_ptr1 + (196608 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp182 = tl.load(in_ptr23 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp183 = tl.load(in_ptr1 + (200704 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp191 = tl.load(in_ptr24 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp192 = tl.load(in_ptr1 + (204800 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp200 = tl.load(in_ptr25 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp201 = tl.load(in_ptr1 + (208896 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp209 = tl.load(in_ptr26 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp210 = tl.load(in_ptr1 + (212992 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp218 = tl.load(in_ptr27 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp219 = tl.load(in_ptr1 + (217088 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp227 = tl.load(in_ptr28 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp228 = tl.load(in_ptr1 + (221184 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp236 = tl.load(in_ptr29 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp237 = tl.load(in_ptr1 + (225280 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp245 = tl.load(in_ptr30 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp246 = tl.load(in_ptr1 + (229376 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = _tmp9 + tmp8
_tmp9 = tl.where(rmask & xmask, tmp10, _tmp9)
tmp13 = tmp12 - tmp2
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp14 / tmp5
tmp16 = tmp11 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = _tmp18 + tmp17
_tmp18 = tl.where(rmask & xmask, tmp19, _tmp18)
tmp22 = tmp21 - tmp2
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp23 / tmp5
tmp25 = tmp20 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = _tmp27 + tmp26
_tmp27 = tl.where(rmask & xmask, tmp28, _tmp27)
tmp31 = tmp30 - tmp2
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp32 / tmp5
tmp34 = tmp29 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = _tmp36 + tmp35
_tmp36 = tl.where(rmask & xmask, tmp37, _tmp36)
tmp40 = tmp39 - tmp2
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp5
tmp43 = tmp38 * tmp42
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp46 = _tmp45 + tmp44
_tmp45 = tl.where(rmask & xmask, tmp46, _tmp45)
tmp49 = tmp48 - tmp2
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp50 / tmp5
tmp52 = tmp47 * tmp51
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = _tmp54 + tmp53
_tmp54 = tl.where(rmask & xmask, tmp55, _tmp54)
tmp58 = tmp57 - tmp2
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp59 / tmp5
tmp61 = tmp56 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = _tmp63 + tmp62
_tmp63 = tl.where(rmask & xmask, tmp64, _tmp63)
tmp67 = tmp66 - tmp2
tmp68 = tl_math.exp(tmp67)
tmp69 = tmp68 / tmp5
tmp70 = tmp65 * tmp69
tmp71 = tl.broadcast_to(tmp70, [XBLOCK, RBLOCK])
tmp73 = _tmp72 + tmp71
_tmp72 = tl.where(rmask & xmask, tmp73, _tmp72)
tmp76 = tmp75 - tmp2
tmp77 = tl_math.exp(tmp76)
tmp78 = tmp77 / tmp5
tmp79 = tmp74 * tmp78
tmp80 = tl.broadcast_to(tmp79, [XBLOCK, RBLOCK])
tmp82 = _tmp81 + tmp80
_tmp81 = tl.where(rmask & xmask, tmp82, _tmp81)
tmp85 = tmp84 - tmp2
tmp86 = tl_math.exp(tmp85)
tmp87 = tmp86 / tmp5
tmp88 = tmp83 * tmp87
tmp89 = tl.broadcast_to(tmp88, [XBLOCK, RBLOCK])
tmp91 = _tmp90 + tmp89
_tmp90 = tl.where(rmask & xmask, tmp91, _tmp90)
tmp94 = tmp93 - tmp2
tmp95 = tl_math.exp(tmp94)
tmp96 = tmp95 / tmp5
tmp97 = tmp92 * tmp96
tmp98 = tl.broadcast_to(tmp97, [XBLOCK, RBLOCK])
tmp100 = _tmp99 + tmp98
_tmp99 = tl.where(rmask & xmask, tmp100, _tmp99)
tmp103 = tmp102 - tmp2
tmp104 = tl_math.exp(tmp103)
tmp105 = tmp104 / tmp5
tmp106 = tmp101 * tmp105
tmp107 = tl.broadcast_to(tmp106, [XBLOCK, RBLOCK])
tmp109 = _tmp108 + tmp107
_tmp108 = tl.where(rmask & xmask, tmp109, _tmp108)
tmp112 = tmp111 - tmp2
tmp113 = tl_math.exp(tmp112)
tmp114 = tmp113 / tmp5
tmp115 = tmp110 * tmp114
tmp116 = tl.broadcast_to(tmp115, [XBLOCK, RBLOCK])
tmp118 = _tmp117 + tmp116
_tmp117 = tl.where(rmask & xmask, tmp118, _tmp117)
tmp121 = tmp120 - tmp2
tmp122 = tl_math.exp(tmp121)
tmp123 = tmp122 / tmp5
tmp124 = tmp119 * tmp123
tmp125 = tl.broadcast_to(tmp124, [XBLOCK, RBLOCK])
tmp127 = _tmp126 + tmp125
_tmp126 = tl.where(rmask & xmask, tmp127, _tmp126)
tmp130 = tmp129 - tmp2
tmp131 = tl_math.exp(tmp130)
tmp132 = tmp131 / tmp5
tmp133 = tmp128 * tmp132
tmp134 = tl.broadcast_to(tmp133, [XBLOCK, RBLOCK])
tmp136 = _tmp135 + tmp134
_tmp135 = tl.where(rmask & xmask, tmp136, _tmp135)
tmp139 = tmp138 - tmp2
tmp140 = tl_math.exp(tmp139)
tmp141 = tmp140 / tmp5
tmp142 = tmp137 * tmp141
tmp143 = tl.broadcast_to(tmp142, [XBLOCK, RBLOCK])
tmp145 = _tmp144 + tmp143
_tmp144 = tl.where(rmask & xmask, tmp145, _tmp144)
tmp148 = tmp147 - tmp2
tmp149 = tl_math.exp(tmp148)
tmp150 = tmp149 / tmp5
tmp151 = tmp146 * tmp150
tmp152 = tl.broadcast_to(tmp151, [XBLOCK, RBLOCK])
tmp154 = _tmp153 + tmp152
_tmp153 = tl.where(rmask & xmask, tmp154, _tmp153)
tmp157 = tmp156 - tmp2
tmp158 = tl_math.exp(tmp157)
tmp159 = tmp158 / tmp5
tmp160 = tmp155 * tmp159
tmp161 = tl.broadcast_to(tmp160, [XBLOCK, RBLOCK])
tmp163 = _tmp162 + tmp161
_tmp162 = tl.where(rmask & xmask, tmp163, _tmp162)
tmp166 = tmp165 - tmp2
tmp167 = tl_math.exp(tmp166)
tmp168 = tmp167 / tmp5
tmp169 = tmp164 * tmp168
tmp170 = tl.broadcast_to(tmp169, [XBLOCK, RBLOCK])
tmp172 = _tmp171 + tmp170
_tmp171 = tl.where(rmask & xmask, tmp172, _tmp171)
tmp175 = tmp174 - tmp2
tmp176 = tl_math.exp(tmp175)
tmp177 = tmp176 / tmp5
tmp178 = tmp173 * tmp177
tmp179 = tl.broadcast_to(tmp178, [XBLOCK, RBLOCK])
tmp181 = _tmp180 + tmp179
_tmp180 = tl.where(rmask & xmask, tmp181, _tmp180)
tmp184 = tmp183 - tmp2
tmp185 = tl_math.exp(tmp184)
tmp186 = tmp185 / tmp5
tmp187 = tmp182 * tmp186
tmp188 = tl.broadcast_to(tmp187, [XBLOCK, RBLOCK])
tmp190 = _tmp189 + tmp188
_tmp189 = tl.where(rmask & xmask, tmp190, _tmp189)
tmp193 = tmp192 - tmp2
tmp194 = tl_math.exp(tmp193)
tmp195 = tmp194 / tmp5
tmp196 = tmp191 * tmp195
tmp197 = tl.broadcast_to(tmp196, [XBLOCK, RBLOCK])
tmp199 = _tmp198 + tmp197
_tmp198 = tl.where(rmask & xmask, tmp199, _tmp198)
tmp202 = tmp201 - tmp2
tmp203 = tl_math.exp(tmp202)
tmp204 = tmp203 / tmp5
tmp205 = tmp200 * tmp204
tmp206 = tl.broadcast_to(tmp205, [XBLOCK, RBLOCK])
tmp208 = _tmp207 + tmp206
_tmp207 = tl.where(rmask & xmask, tmp208, _tmp207)
tmp211 = tmp210 - tmp2
tmp212 = tl_math.exp(tmp211)
tmp213 = tmp212 / tmp5
tmp214 = tmp209 * tmp213
tmp215 = tl.broadcast_to(tmp214, [XBLOCK, RBLOCK])
tmp217 = _tmp216 + tmp215
_tmp216 = tl.where(rmask & xmask, tmp217, _tmp216)
tmp220 = tmp219 - tmp2
tmp221 = tl_math.exp(tmp220)
tmp222 = tmp221 / tmp5
tmp223 = tmp218 * tmp222
tmp224 = tl.broadcast_to(tmp223, [XBLOCK, RBLOCK])
tmp226 = _tmp225 + tmp224
_tmp225 = tl.where(rmask & xmask, tmp226, _tmp225)
tmp229 = tmp228 - tmp2
tmp230 = tl_math.exp(tmp229)
tmp231 = tmp230 / tmp5
tmp232 = tmp227 * tmp231
tmp233 = tl.broadcast_to(tmp232, [XBLOCK, RBLOCK])
tmp235 = _tmp234 + tmp233
_tmp234 = tl.where(rmask & xmask, tmp235, _tmp234)
tmp238 = tmp237 - tmp2
tmp239 = tl_math.exp(tmp238)
tmp240 = tmp239 / tmp5
tmp241 = tmp236 * tmp240
tmp242 = tl.broadcast_to(tmp241, [XBLOCK, RBLOCK])
tmp244 = _tmp243 + tmp242
_tmp243 = tl.where(rmask & xmask, tmp244, _tmp243)
tmp247 = tmp246 - tmp2
tmp248 = tl_math.exp(tmp247)
tmp249 = tmp248 / tmp5
tmp250 = tmp245 * tmp249
tmp251 = tl.broadcast_to(tmp250, [XBLOCK, RBLOCK])
tmp253 = _tmp252 + tmp251
_tmp252 = tl.where(rmask & xmask, tmp253, _tmp252)
tmp9 = tl.sum(_tmp9, 1)[:, None]
tl.store(out_ptr0 + x3, tmp9, xmask)
tmp18 = tl.sum(_tmp18, 1)[:, None]
tl.store(out_ptr1 + x3, tmp18, xmask)
tmp27 = tl.sum(_tmp27, 1)[:, None]
tl.store(out_ptr2 + x3, tmp27, xmask)
tmp36 = tl.sum(_tmp36, 1)[:, None]
tl.store(out_ptr3 + x3, tmp36, xmask)
tmp45 = tl.sum(_tmp45, 1)[:, None]
tl.store(out_ptr4 + x3, tmp45, xmask)
tmp54 = tl.sum(_tmp54, 1)[:, None]
tl.store(out_ptr5 + x3, tmp54, xmask)
tmp63 = tl.sum(_tmp63, 1)[:, None]
tl.store(out_ptr6 + x3, tmp63, xmask)
tmp72 = tl.sum(_tmp72, 1)[:, None]
tl.store(out_ptr7 + x3, tmp72, xmask)
tmp81 = tl.sum(_tmp81, 1)[:, None]
tl.store(out_ptr8 + x3, tmp81, xmask)
tmp90 = tl.sum(_tmp90, 1)[:, None]
tl.store(out_ptr9 + x3, tmp90, xmask)
tmp99 = tl.sum(_tmp99, 1)[:, None]
tl.store(out_ptr10 + x3, tmp99, xmask)
tmp108 = tl.sum(_tmp108, 1)[:, None]
tl.store(out_ptr11 + x3, tmp108, xmask)
tmp117 = tl.sum(_tmp117, 1)[:, None]
tl.store(out_ptr12 + x3, tmp117, xmask)
tmp126 = tl.sum(_tmp126, 1)[:, None]
tl.store(out_ptr13 + x3, tmp126, xmask)
tmp135 = tl.sum(_tmp135, 1)[:, None]
tl.store(out_ptr14 + x3, tmp135, xmask)
tmp144 = tl.sum(_tmp144, 1)[:, None]
tl.store(out_ptr15 + x3, tmp144, xmask)
tmp153 = tl.sum(_tmp153, 1)[:, None]
tl.store(out_ptr16 + x3, tmp153, xmask)
tmp162 = tl.sum(_tmp162, 1)[:, None]
tl.store(out_ptr17 + x3, tmp162, xmask)
tmp171 = tl.sum(_tmp171, 1)[:, None]
tl.store(out_ptr18 + x3, tmp171, xmask)
tmp180 = tl.sum(_tmp180, 1)[:, None]
tl.store(out_ptr19 + x3, tmp180, xmask)
tmp189 = tl.sum(_tmp189, 1)[:, None]
tl.store(out_ptr20 + x3, tmp189, xmask)
tmp198 = tl.sum(_tmp198, 1)[:, None]
tl.store(out_ptr21 + x3, tmp198, xmask)
tmp207 = tl.sum(_tmp207, 1)[:, None]
tl.store(out_ptr22 + x3, tmp207, xmask)
tmp216 = tl.sum(_tmp216, 1)[:, None]
tl.store(out_ptr23 + x3, tmp216, xmask)
tmp225 = tl.sum(_tmp225, 1)[:, None]
tl.store(out_ptr24 + x3, tmp225, xmask)
tmp234 = tl.sum(_tmp234, 1)[:, None]
tl.store(out_ptr25 + x3, tmp234, xmask)
tmp243 = tl.sum(_tmp243, 1)[:, None]
tl.store(out_ptr26 + x3, tmp243, xmask)
tmp252 = tl.sum(_tmp252, 1)[:, None]
tl.store(out_ptr27 + x3, tmp252, xmask)
@triton.jit
def triton_red_fused_mul_sum_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, out_ptr1,
out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, xnumel, rnumel,
XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 512
rnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x3 = xindex
x1 = xindex // 128
_tmp9 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp18 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp27 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp36 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp45 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp54 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
_tmp63 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp1 = tl.load(in_ptr1 + (233472 + r2 + 262144 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = tl.load(in_ptr2 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp5 = tl.load(in_ptr3 + (r2 + 4096 * x1), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tl.load(in_ptr4 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp12 = tl.load(in_ptr1 + (237568 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.load(in_ptr5 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp21 = tl.load(in_ptr1 + (241664 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp29 = tl.load(in_ptr6 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp30 = tl.load(in_ptr1 + (245760 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp38 = tl.load(in_ptr7 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp39 = tl.load(in_ptr1 + (249856 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp47 = tl.load(in_ptr8 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp48 = tl.load(in_ptr1 + (253952 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp56 = tl.load(in_ptr9 + (r2 + 4096 * x3), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp57 = tl.load(in_ptr1 + (258048 + r2 + 262144 * x1), rmask &
xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tmp1 - tmp2
tmp4 = tl_math.exp(tmp3)
tmp6 = tmp4 / tmp5
tmp7 = tmp0 * tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = _tmp9 + tmp8
_tmp9 = tl.where(rmask & xmask, tmp10, _tmp9)
tmp13 = tmp12 - tmp2
tmp14 = tl_math.exp(tmp13)
tmp15 = tmp14 / tmp5
tmp16 = tmp11 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = _tmp18 + tmp17
_tmp18 = tl.where(rmask & xmask, tmp19, _tmp18)
tmp22 = tmp21 - tmp2
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp23 / tmp5
tmp25 = tmp20 * tmp24
tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK])
tmp28 = _tmp27 + tmp26
_tmp27 = tl.where(rmask & xmask, tmp28, _tmp27)
tmp31 = tmp30 - tmp2
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp32 / tmp5
tmp34 = tmp29 * tmp33
tmp35 = tl.broadcast_to(tmp34, [XBLOCK, RBLOCK])
tmp37 = _tmp36 + tmp35
_tmp36 = tl.where(rmask & xmask, tmp37, _tmp36)
tmp40 = tmp39 - tmp2
tmp41 = tl_math.exp(tmp40)
tmp42 = tmp41 / tmp5
tmp43 = tmp38 * tmp42
tmp44 = tl.broadcast_to(tmp43, [XBLOCK, RBLOCK])
tmp46 = _tmp45 + tmp44
_tmp45 = tl.where(rmask & xmask, tmp46, _tmp45)
tmp49 = tmp48 - tmp2
tmp50 = tl_math.exp(tmp49)
tmp51 = tmp50 / tmp5
tmp52 = tmp47 * tmp51
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = _tmp54 + tmp53
_tmp54 = tl.where(rmask & xmask, tmp55, _tmp54)
tmp58 = tmp57 - tmp2
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp59 / tmp5
tmp61 = tmp56 * tmp60
tmp62 = tl.broadcast_to(tmp61, [XBLOCK, RBLOCK])
tmp64 = _tmp63 + tmp62
_tmp63 = tl.where(rmask & xmask, tmp64, _tmp63)
tmp9 = tl.sum(_tmp9, 1)[:, None]
tl.store(out_ptr0 + x3, tmp9, xmask)
tmp18 = tl.sum(_tmp18, 1)[:, None]
tl.store(out_ptr1 + x3, tmp18, xmask)
tmp27 = tl.sum(_tmp27, 1)[:, None]
tl.store(out_ptr2 + x3, tmp27, xmask)
tmp36 = tl.sum(_tmp36, 1)[:, None]
tl.store(out_ptr3 + x3, tmp36, xmask)
tmp45 = tl.sum(_tmp45, 1)[:, None]
tl.store(out_ptr4 + x3, tmp45, xmask)
tmp54 = tl.sum(_tmp54, 1)[:, None]
tl.store(out_ptr5 + x3, tmp54, xmask)
tmp63 = tl.sum(_tmp63, 1)[:, None]
tl.store(out_ptr6 + x3, tmp63, xmask)
@triton.jit
def triton_per_fused_copy_linalg_vector_norm_zeros_6(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5,
in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12,
in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19,
in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26,
in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33,
in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40,
in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47,
in_ptr48, in_ptr49, in_ptr50, in_ptr51, in_ptr52, in_ptr53, in_ptr54,
in_ptr55, in_ptr56, in_ptr57, in_ptr58, in_ptr59, in_ptr60, in_ptr61,
in_ptr62, in_ptr63, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex % 64
r2 = rindex
x1 = xindex // 64
x3 = xindex
tmp0 = x0
tmp1 = tl.full([1, 1], 4, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (r2 + 128 * x1), tmp5 & xmask, eviction_policy
='evict_last', other=0.0)
tmp7 = tl.full([1, 1], 3, tl.int64)
tmp8 = tmp0 >= tmp7
tmp9 = tmp0 < tmp1
tmp10 = tmp8 & tmp9
tmp11 = tl.load(in_ptr1 + (r2 + 128 * x1), tmp10 & xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = tl.full([1, 1], 2, tl.int64)
tmp13 = tmp0 >= tmp12
tmp14 = tmp0 < tmp7
tmp15 = tmp13 & tmp14
tmp16 = tl.load(in_ptr2 + (r2 + 128 * x1), tmp15 & xmask,
eviction_policy='evict_last', other=0.0)
tmp17 = tl.full([1, 1], 1, tl.int64)
tmp18 = tmp0 >= tmp17
tmp19 = tmp0 < tmp12
tmp20 = tmp18 & tmp19
tmp21 = tl.load(in_ptr3 + (r2 + 128 * x1), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp22 = tmp0 < tmp17
tmp23 = tl.load(in_ptr4 + (r2 + 128 * x1), tmp22 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = 0.0
tmp25 = tl.where(tmp22, tmp23, tmp24)
tmp26 = tl.where(tmp20, tmp21, tmp25)
tmp27 = tl.where(tmp15, tmp16, tmp26)
tmp28 = tl.where(tmp10, tmp11, tmp27)
tmp29 = tl.where(tmp5, tmp6, tmp28)
tmp30 = tl.full([1, 1], 8, tl.int64)
tmp31 = tmp0 >= tmp30
tmp32 = tl.full([1, 1], 9, tl.int64)
tmp33 = tmp0 < tmp32
tmp34 = tmp31 & tmp33
tmp35 = tl.load(in_ptr5 + (r2 + 128 * x1), tmp34 & xmask,
eviction_policy='evict_last', other=0.0)
tmp36 = tl.full([1, 1], 7, tl.int64)
tmp37 = tmp0 >= tmp36
tmp38 = tmp0 < tmp30
tmp39 = tmp37 & tmp38
tmp40 = tl.load(in_ptr6 + (r2 + 128 * x1), tmp39 & xmask,
eviction_policy='evict_last', other=0.0)
tmp41 = tl.full([1, 1], 6, tl.int64)
tmp42 = tmp0 >= tmp41
tmp43 = tmp0 < tmp36
tmp44 = tmp42 & tmp43
tmp45 = tl.load(in_ptr7 + (r2 + 128 * x1), tmp44 & xmask,
eviction_policy='evict_last', other=0.0)
tmp46 = tmp0 >= tmp3
tmp47 = tmp0 < tmp41
tmp48 = tmp46 & tmp47
tmp49 = tl.load(in_ptr8 + (r2 + 128 * x1), tmp48 & xmask,
eviction_policy='evict_last', other=0.0)
tmp50 = tl.where(tmp48, tmp49, tmp29)
tmp51 = tl.where(tmp44, tmp45, tmp50)
tmp52 = tl.where(tmp39, tmp40, tmp51)
tmp53 = tl.where(tmp34, tmp35, tmp52)
tmp54 = tl.full([1, 1], 12, tl.int64)
tmp55 = tmp0 >= tmp54
tmp56 = tl.full([1, 1], 13, tl.int64)
tmp57 = tmp0 < tmp56
tmp58 = tmp55 & tmp57
tmp59 = tl.load(in_ptr9 + (r2 + 128 * x1), tmp58 & xmask,
eviction_policy='evict_last', other=0.0)
tmp60 = tl.full([1, 1], 11, tl.int64)
tmp61 = tmp0 >= tmp60
tmp62 = tmp0 < tmp54
tmp63 = tmp61 & tmp62
tmp64 = tl.load(in_ptr10 + (r2 + 128 * x1), tmp63 & xmask,
eviction_policy='evict_last', other=0.0)
tmp65 = tl.full([1, 1], 10, tl.int64)
tmp66 = tmp0 >= tmp65
tmp67 = tmp0 < tmp60
tmp68 = tmp66 & tmp67
tmp69 = tl.load(in_ptr11 + (r2 + 128 * x1), tmp68 & xmask,
eviction_policy='evict_last', other=0.0)
tmp70 = tmp0 >= tmp32
tmp71 = tmp0 < tmp65
tmp72 = tmp70 & tmp71
tmp73 = tl.load(in_ptr12 + (r2 + 128 * x1), tmp72 & xmask,
eviction_policy='evict_last', other=0.0)
tmp74 = tl.where(tmp72, tmp73, tmp53)
tmp75 = tl.where(tmp68, tmp69, tmp74)
tmp76 = tl.where(tmp63, tmp64, tmp75)
tmp77 = tl.where(tmp58, tmp59, tmp76)
tmp78 = tl.full([1, 1], 16, tl.int64)
tmp79 = tmp0 >= tmp78
tmp80 = tl.full([1, 1], 17, tl.int64)
tmp81 = tmp0 < tmp80
tmp82 = tmp79 & tmp81
tmp83 = tl.load(in_ptr13 + (r2 + 128 * x1), tmp82 & xmask,
eviction_policy='evict_last', other=0.0)
tmp84 = tl.full([1, 1], 15, tl.int64)
tmp85 = tmp0 >= tmp84
tmp86 = tmp0 < tmp78
tmp87 = tmp85 & tmp86
tmp88 = tl.load(in_ptr14 + (r2 + 128 * x1), tmp87 & xmask,
eviction_policy='evict_last', other=0.0)
tmp89 = tl.full([1, 1], 14, tl.int64)
tmp90 = tmp0 >= tmp89
tmp91 = tmp0 < tmp84
tmp92 = tmp90 & tmp91
tmp93 = tl.load(in_ptr15 + (r2 + 128 * x1), tmp92 & xmask,
eviction_policy='evict_last', other=0.0)
tmp94 = tmp0 >= tmp56
tmp95 = tmp0 < tmp89
tmp96 = tmp94 & tmp95
tmp97 = tl.load(in_ptr16 + (r2 + 128 * x1), tmp96 & xmask,
eviction_policy='evict_last', other=0.0)
tmp98 = tl.where(tmp96, tmp97, tmp77)
tmp99 = tl.where(tmp92, tmp93, tmp98)
tmp100 = tl.where(tmp87, tmp88, tmp99)
tmp101 = tl.where(tmp82, tmp83, tmp100)
tmp102 = tl.full([1, 1], 20, tl.int64)
tmp103 = tmp0 >= tmp102
tmp104 = tl.full([1, 1], 21, tl.int64)
tmp105 = tmp0 < tmp104
tmp106 = tmp103 & tmp105
tmp107 = tl.load(in_ptr17 + (r2 + 128 * x1), tmp106 & xmask,
eviction_policy='evict_last', other=0.0)
tmp108 = tl.full([1, 1], 19, tl.int64)
tmp109 = tmp0 >= tmp108
tmp110 = tmp0 < tmp102
tmp111 = tmp109 & tmp110
tmp112 = tl.load(in_ptr18 + (r2 + 128 * x1), tmp111 & xmask,
eviction_policy='evict_last', other=0.0)
tmp113 = tl.full([1, 1], 18, tl.int64)
tmp114 = tmp0 >= tmp113
tmp115 = tmp0 < tmp108
tmp116 = tmp114 & tmp115
tmp117 = tl.load(in_ptr19 + (r2 + 128 * x1), tmp116 & xmask,
eviction_policy='evict_last', other=0.0)
tmp118 = tmp0 >= tmp80
tmp119 = tmp0 < tmp113
tmp120 = tmp118 & tmp119
tmp121 = tl.load(in_ptr20 + (r2 + 128 * x1), tmp120 & xmask,
eviction_policy='evict_last', other=0.0)
tmp122 = tl.where(tmp120, tmp121, tmp101)
tmp123 = tl.where(tmp116, tmp117, tmp122)
tmp124 = tl.where(tmp111, tmp112, tmp123)
tmp125 = tl.where(tmp106, tmp107, tmp124)
tmp126 = tl.full([1, 1], 24, tl.int64)
tmp127 = tmp0 >= tmp126
tmp128 = tl.full([1, 1], 25, tl.int64)
tmp129 = tmp0 < tmp128
tmp130 = tmp127 & tmp129
tmp131 = tl.load(in_ptr21 + (r2 + 128 * x1), tmp130 & xmask,
eviction_policy='evict_last', other=0.0)
tmp132 = tl.full([1, 1], 23, tl.int64)
tmp133 = tmp0 >= tmp132
tmp134 = tmp0 < tmp126
tmp135 = tmp133 & tmp134
tmp136 = tl.load(in_ptr22 + (r2 + 128 * x1), tmp135 & xmask,
eviction_policy='evict_last', other=0.0)
tmp137 = tl.full([1, 1], 22, tl.int64)
tmp138 = tmp0 >= tmp137
tmp139 = tmp0 < tmp132
tmp140 = tmp138 & tmp139
tmp141 = tl.load(in_ptr23 + (r2 + 128 * x1), tmp140 & xmask,
eviction_policy='evict_last', other=0.0)
tmp142 = tmp0 >= tmp104
tmp143 = tmp0 < tmp137
tmp144 = tmp142 & tmp143
tmp145 = tl.load(in_ptr24 + (r2 + 128 * x1), tmp144 & xmask,
eviction_policy='evict_last', other=0.0)
tmp146 = tl.where(tmp144, tmp145, tmp125)
tmp147 = tl.where(tmp140, tmp141, tmp146)
tmp148 = tl.where(tmp135, tmp136, tmp147)
tmp149 = tl.where(tmp130, tmp131, tmp148)
tmp150 = tl.full([1, 1], 28, tl.int64)
tmp151 = tmp0 >= tmp150
tmp152 = tl.full([1, 1], 29, tl.int64)
tmp153 = tmp0 < tmp152
tmp154 = tmp151 & tmp153
tmp155 = tl.load(in_ptr25 + (r2 + 128 * x1), tmp154 & xmask,
eviction_policy='evict_last', other=0.0)
tmp156 = tl.full([1, 1], 27, tl.int64)
tmp157 = tmp0 >= tmp156
tmp158 = tmp0 < tmp150
tmp159 = tmp157 & tmp158
tmp160 = tl.load(in_ptr26 + (r2 + 128 * x1), tmp159 & xmask,
eviction_policy='evict_last', other=0.0)
tmp161 = tl.full([1, 1], 26, tl.int64)
tmp162 = tmp0 >= tmp161
tmp163 = tmp0 < tmp156
tmp164 = tmp162 & tmp163
tmp165 = tl.load(in_ptr27 + (r2 + 128 * x1), tmp164 & xmask,
eviction_policy='evict_last', other=0.0)
tmp166 = tmp0 >= tmp128
tmp167 = tmp0 < tmp161
tmp168 = tmp166 & tmp167
tmp169 = tl.load(in_ptr28 + (r2 + 128 * x1), tmp168 & xmask,
eviction_policy='evict_last', other=0.0)
tmp170 = tl.where(tmp168, tmp169, tmp149)
tmp171 = tl.where(tmp164, tmp165, tmp170)
tmp172 = tl.where(tmp159, tmp160, tmp171)
tmp173 = tl.where(tmp154, tmp155, tmp172)
tmp174 = tl.full([1, 1], 32, tl.int64)
tmp175 = tmp0 >= tmp174
tmp176 = tl.full([1, 1], 33, tl.int64)
tmp177 = tmp0 < tmp176
tmp178 = tmp175 & tmp177
tmp179 = tl.load(in_ptr29 + (r2 + 128 * x1), tmp178 & xmask,
eviction_policy='evict_last', other=0.0)
tmp180 = tl.full([1, 1], 31, tl.int64)
tmp181 = tmp0 >= tmp180
tmp182 = tmp0 < tmp174
tmp183 = tmp181 & tmp182
tmp184 = tl.load(in_ptr30 + (r2 + 128 * x1), tmp183 & xmask,
eviction_policy='evict_last', other=0.0)
tmp185 = tl.full([1, 1], 30, tl.int64)
tmp186 = tmp0 >= tmp185
tmp187 = tmp0 < tmp180
tmp188 = tmp186 & tmp187
tmp189 = tl.load(in_ptr31 + (r2 + 128 * x1), tmp188 & xmask,
eviction_policy='evict_last', other=0.0)
tmp190 = tmp0 >= tmp152
tmp191 = tmp0 < tmp185
tmp192 = tmp190 & tmp191
tmp193 = tl.load(in_ptr32 + (r2 + 128 * x1), tmp192 & xmask,
eviction_policy='evict_last', other=0.0)
tmp194 = tl.where(tmp192, tmp193, tmp173)
tmp195 = tl.where(tmp188, tmp189, tmp194)
tmp196 = tl.where(tmp183, tmp184, tmp195)
tmp197 = tl.where(tmp178, tmp179, tmp196)
tmp198 = tl.full([1, 1], 36, tl.int64)
tmp199 = tmp0 >= tmp198
tmp200 = tl.full([1, 1], 37, tl.int64)
tmp201 = tmp0 < tmp200
tmp202 = tmp199 & tmp201
tmp203 = tl.load(in_ptr33 + (r2 + 128 * x1), tmp202 & xmask,
eviction_policy='evict_last', other=0.0)
tmp204 = tl.full([1, 1], 35, tl.int64)
tmp205 = tmp0 >= tmp204
tmp206 = tmp0 < tmp198
tmp207 = tmp205 & tmp206
tmp208 = tl.load(in_ptr34 + (r2 + 128 * x1), tmp207 & xmask,
eviction_policy='evict_last', other=0.0)
tmp209 = tl.full([1, 1], 34, tl.int64)
tmp210 = tmp0 >= tmp209
tmp211 = tmp0 < tmp204
tmp212 = tmp210 & tmp211
tmp213 = tl.load(in_ptr35 + (r2 + 128 * x1), tmp212 & xmask,
eviction_policy='evict_last', other=0.0)
tmp214 = tmp0 >= tmp176
tmp215 = tmp0 < tmp209
tmp216 = tmp214 & tmp215
tmp217 = tl.load(in_ptr36 + (r2 + 128 * x1), tmp216 & xmask,
eviction_policy='evict_last', other=0.0)
tmp218 = tl.where(tmp216, tmp217, tmp197)
tmp219 = tl.where(tmp212, tmp213, tmp218)
tmp220 = tl.where(tmp207, tmp208, tmp219)
tmp221 = tl.where(tmp202, tmp203, tmp220)
tmp222 = tl.full([1, 1], 40, tl.int64)
tmp223 = tmp0 >= tmp222
tmp224 = tl.full([1, 1], 41, tl.int64)
tmp225 = tmp0 < tmp224
tmp226 = tmp223 & tmp225
tmp227 = tl.load(in_ptr37 + (r2 + 128 * x1), tmp226 & xmask,
eviction_policy='evict_last', other=0.0)
tmp228 = tl.full([1, 1], 39, tl.int64)
tmp229 = tmp0 >= tmp228
tmp230 = tmp0 < tmp222
tmp231 = tmp229 & tmp230
tmp232 = tl.load(in_ptr38 + (r2 + 128 * x1), tmp231 & xmask,
eviction_policy='evict_last', other=0.0)
tmp233 = tl.full([1, 1], 38, tl.int64)
tmp234 = tmp0 >= tmp233
tmp235 = tmp0 < tmp228
tmp236 = tmp234 & tmp235
tmp237 = tl.load(in_ptr39 + (r2 + 128 * x1), tmp236 & xmask,
eviction_policy='evict_last', other=0.0)
tmp238 = tmp0 >= tmp200
tmp239 = tmp0 < tmp233
tmp240 = tmp238 & tmp239
tmp241 = tl.load(in_ptr40 + (r2 + 128 * x1), tmp240 & xmask,
eviction_policy='evict_last', other=0.0)
tmp242 = tl.where(tmp240, tmp241, tmp221)
tmp243 = tl.where(tmp236, tmp237, tmp242)
tmp244 = tl.where(tmp231, tmp232, tmp243)
tmp245 = tl.where(tmp226, tmp227, tmp244)
tmp246 = tl.full([1, 1], 44, tl.int64)
tmp247 = tmp0 >= tmp246
tmp248 = tl.full([1, 1], 45, tl.int64)
tmp249 = tmp0 < tmp248
tmp250 = tmp247 & tmp249
tmp251 = tl.load(in_ptr41 + (r2 + 128 * x1), tmp250 & xmask,
eviction_policy='evict_last', other=0.0)
tmp252 = tl.full([1, 1], 43, tl.int64)
tmp253 = tmp0 >= tmp252
tmp254 = tmp0 < tmp246
tmp255 = tmp253 & tmp254
tmp256 = tl.load(in_ptr42 + (r2 + 128 * x1), tmp255 & xmask,
eviction_policy='evict_last', other=0.0)
tmp257 = tl.full([1, 1], 42, tl.int64)
tmp258 = tmp0 >= tmp257
tmp259 = tmp0 < tmp252
tmp260 = tmp258 & tmp259
tmp261 = tl.load(in_ptr43 + (r2 + 128 * x1), tmp260 & xmask,
eviction_policy='evict_last', other=0.0)
tmp262 = tmp0 >= tmp224
tmp263 = tmp0 < tmp257
tmp264 = tmp262 & tmp263
tmp265 = tl.load(in_ptr44 + (r2 + 128 * x1), tmp264 & xmask,
eviction_policy='evict_last', other=0.0)
tmp266 = tl.where(tmp264, tmp265, tmp245)
tmp267 = tl.where(tmp260, tmp261, tmp266)
tmp268 = tl.where(tmp255, tmp256, tmp267)
tmp269 = tl.where(tmp250, tmp251, tmp268)
tmp270 = tl.full([1, 1], 48, tl.int64)
tmp271 = tmp0 >= tmp270
tmp272 = tl.full([1, 1], 49, tl.int64)
tmp273 = tmp0 < tmp272
tmp274 = tmp271 & tmp273
tmp275 = tl.load(in_ptr45 + (r2 + 128 * x1), tmp274 & xmask,
eviction_policy='evict_last', other=0.0)
tmp276 = tl.full([1, 1], 47, tl.int64)
tmp277 = tmp0 >= tmp276
tmp278 = tmp0 < tmp270
tmp279 = tmp277 & tmp278
tmp280 = tl.load(in_ptr46 + (r2 + 128 * x1), tmp279 & xmask,
eviction_policy='evict_last', other=0.0)
tmp281 = tl.full([1, 1], 46, tl.int64)
tmp282 = tmp0 >= tmp281
tmp283 = tmp0 < tmp276
tmp284 = tmp282 & tmp283
tmp285 = tl.load(in_ptr47 + (r2 + 128 * x1), tmp284 & xmask,
eviction_policy='evict_last', other=0.0)
tmp286 = tmp0 >= tmp248
tmp287 = tmp0 < tmp281
tmp288 = tmp286 & tmp287
tmp289 = tl.load(in_ptr48 + (r2 + 128 * x1), tmp288 & xmask,
eviction_policy='evict_last', other=0.0)
tmp290 = tl.where(tmp288, tmp289, tmp269)
tmp291 = tl.where(tmp284, tmp285, tmp290)
tmp292 = tl.where(tmp279, tmp280, tmp291)
tmp293 = tl.where(tmp274, tmp275, tmp292)
tmp294 = tl.full([1, 1], 52, tl.int64)
tmp295 = tmp0 >= tmp294
tmp296 = tl.full([1, 1], 53, tl.int64)
tmp297 = tmp0 < tmp296
tmp298 = tmp295 & tmp297
tmp299 = tl.load(in_ptr49 + (r2 + 128 * x1), tmp298 & xmask,
eviction_policy='evict_last', other=0.0)
tmp300 = tl.full([1, 1], 51, tl.int64)
tmp301 = tmp0 >= tmp300
tmp302 = tmp0 < tmp294
tmp303 = tmp301 & tmp302
tmp304 = tl.load(in_ptr50 + (r2 + 128 * x1), tmp303 & xmask,
eviction_policy='evict_last', other=0.0)
tmp305 = tl.full([1, 1], 50, tl.int64)
tmp306 = tmp0 >= tmp305
tmp307 = tmp0 < tmp300
tmp308 = tmp306 & tmp307
tmp309 = tl.load(in_ptr51 + (r2 + 128 * x1), tmp308 & xmask,
eviction_policy='evict_last', other=0.0)
tmp310 = tmp0 >= tmp272
tmp311 = tmp0 < tmp305
tmp312 = tmp310 & tmp311
tmp313 = tl.load(in_ptr52 + (r2 + 128 * x1), tmp312 & xmask,
eviction_policy='evict_last', other=0.0)
tmp314 = tl.where(tmp312, tmp313, tmp293)
tmp315 = tl.where(tmp308, tmp309, tmp314)
tmp316 = tl.where(tmp303, tmp304, tmp315)
tmp317 = tl.where(tmp298, tmp299, tmp316)
tmp318 = tl.full([1, 1], 56, tl.int64)
tmp319 = tmp0 >= tmp318
tmp320 = tl.full([1, 1], 57, tl.int64)
tmp321 = tmp0 < tmp320
tmp322 = tmp319 & tmp321
tmp323 = tl.load(in_ptr53 + (r2 + 128 * x1), tmp322 & xmask,
eviction_policy='evict_last', other=0.0)
tmp324 = tl.full([1, 1], 55, tl.int64)
tmp325 = tmp0 >= tmp324
tmp326 = tmp0 < tmp318
tmp327 = tmp325 & tmp326
tmp328 = tl.load(in_ptr54 + (r2 + 128 * x1), tmp327 & xmask,
eviction_policy='evict_last', other=0.0)
tmp329 = tl.full([1, 1], 54, tl.int64)
tmp330 = tmp0 >= tmp329
tmp331 = tmp0 < tmp324
tmp332 = tmp330 & tmp331
tmp333 = tl.load(in_ptr55 + (r2 + 128 * x1), tmp332 & xmask,
eviction_policy='evict_last', other=0.0)
tmp334 = tmp0 >= tmp296
tmp335 = tmp0 < tmp329
tmp336 = tmp334 & tmp335
tmp337 = tl.load(in_ptr56 + (r2 + 128 * x1), tmp336 & xmask,
eviction_policy='evict_last', other=0.0)
tmp338 = tl.where(tmp336, tmp337, tmp317)
tmp339 = tl.where(tmp332, tmp333, tmp338)
tmp340 = tl.where(tmp327, tmp328, tmp339)
tmp341 = tl.where(tmp322, tmp323, tmp340)
tmp342 = tl.full([1, 1], 60, tl.int64)
tmp343 = tmp0 >= tmp342
tmp344 = tl.full([1, 1], 61, tl.int64)
tmp345 = tmp0 < tmp344
tmp346 = tmp343 & tmp345
tmp347 = tl.load(in_ptr57 + (r2 + 128 * x1), tmp346 & xmask,
eviction_policy='evict_last', other=0.0)
tmp348 = tl.full([1, 1], 59, tl.int64)
tmp349 = tmp0 >= tmp348
tmp350 = tmp0 < tmp342
tmp351 = tmp349 & tmp350
tmp352 = tl.load(in_ptr58 + (r2 + 128 * x1), tmp351 & xmask,
eviction_policy='evict_last', other=0.0)
tmp353 = tl.full([1, 1], 58, tl.int64)
tmp354 = tmp0 >= tmp353
tmp355 = tmp0 < tmp348
tmp356 = tmp354 & tmp355
tmp357 = tl.load(in_ptr59 + (r2 + 128 * x1), tmp356 & xmask,
eviction_policy='evict_last', other=0.0)
tmp358 = tmp0 >= tmp320
tmp359 = tmp0 < tmp353
tmp360 = tmp358 & tmp359
tmp361 = tl.load(in_ptr60 + (r2 + 128 * x1), tmp360 & xmask,
eviction_policy='evict_last', other=0.0)
tmp362 = tl.where(tmp360, tmp361, tmp341)
tmp363 = tl.where(tmp356, tmp357, tmp362)
tmp364 = tl.where(tmp351, tmp352, tmp363)
tmp365 = tl.where(tmp346, tmp347, tmp364)
tmp366 = tl.full([1, 1], 63, tl.int64)
tmp367 = tmp0 >= tmp366
tmp368 = tl.load(in_ptr61 + (r2 + 128 * x1), tmp367 & xmask,
eviction_policy='evict_last', other=0.0)
tmp369 = tl.full([1, 1], 62, tl.int64)
tmp370 = tmp0 >= tmp369
tmp371 = tmp0 < tmp366
tmp372 = tmp370 & tmp371
tmp373 = tl.load(in_ptr62 + (r2 + 128 * x1), tmp372 & xmask,
eviction_policy='evict_last', other=0.0)
tmp374 = tmp0 >= tmp344
tmp375 = tmp0 < tmp369
tmp376 = tmp374 & tmp375
tmp377 = tl.load(in_ptr63 + (r2 + 128 * x1), tmp376 & xmask,
eviction_policy='evict_last', other=0.0)
tmp378 = tl.where(tmp376, tmp377, tmp365)
tmp379 = tl.where(tmp372, tmp373, tmp378)
tmp380 = tl.where(tmp367, tmp368, tmp379)
tmp381 = tmp380 * tmp380
tmp382 = tl.broadcast_to(tmp381, [XBLOCK, RBLOCK])
tmp384 = tl.where(xmask, tmp382, 0)
tmp385 = tl.sum(tmp384, 1)[:, None]
tmp386 = libdevice.sqrt(tmp385)
tl.store(in_out_ptr0 + (r2 + 128 * x3), tmp380, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x3, tmp386, xmask)
@triton.jit
def triton_red_fused_div_linalg_vector_norm_7(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr):
xnumel = 4
rnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rbase = tl.arange(0, RBLOCK)[None, :]
x0 = xindex
_tmp7 = tl.full([XBLOCK, RBLOCK], 0, tl.float32)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp0 = tl.load(in_ptr0 + (r1 + 8192 * x0), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp1 = tl.load(in_ptr1 + (64 * x0 + r1 // 128), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp2 = 1e-12
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 / tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = _tmp7 + tmp6
_tmp7 = tl.where(rmask & xmask, tmp8, _tmp7)
tmp7 = tl.sum(_tmp7, 1)[:, None]
tmp9 = libdevice.sqrt(tmp7)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp9, xmask)
for roffset in range(0, rnumel, RBLOCK):
rindex = roffset + rbase
rmask = rindex < rnumel
r1 = rindex
tmp10 = tl.load(in_ptr0 + (r1 + 8192 * x0), rmask & xmask,
eviction_policy='evict_first', other=0.0)
tmp11 = tl.load(in_ptr1 + (64 * x0 + r1 // 128), rmask & xmask,
eviction_policy='evict_last', other=0.0)
tmp12 = 1e-12
tmp13 = triton_helpers.maximum(tmp11, tmp12)
tmp14 = tmp10 / tmp13
tmp15 = triton_helpers.maximum(tmp9, tmp12)
tmp16 = tmp14 / tmp15
tl.store(out_ptr0 + (r1 + 8192 * x0), tmp16, rmask & xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 128, 64, 64), (524288, 4096, 64, 1))
assert_size_stride(primals_2, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_3, (64, 128), (128, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
get_raw_stream(0)
triton_red_fused_linalg_vector_norm_0[grid(16384)](primals_1, buf0,
16384, 128, XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1),
torch.float32)
buf6 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096,
1), torch.float32)
buf8 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152, 4096,
1), torch.float32)
buf10 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf12 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf15 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf17 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf19 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf21 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf24 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf26 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf28 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf30 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf33 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf35 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf37 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf39 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf42 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf44 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf46 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf48 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf51 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf53 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf55 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf57 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf60 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf62 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf64 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf66 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf69 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf71 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf73 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf75 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf78 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf80 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf82 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf84 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf87 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf89 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf91 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf93 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf96 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf98 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf100 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf102 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf105 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf107 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf109 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf111 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf114 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf116 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf118 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf120 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf123 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf125 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf127 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf129 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf132 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf134 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf136 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf138 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf141 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf143 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
buf145 = empty_strided_cuda((4, 1, 128, 4096), (524288, 2097152,
4096, 1), torch.float32)
triton_poi_fused_div_sub_1[grid(2097152)](primals_1, buf0,
primals_3, buf1, buf6, buf8, buf10, buf12, buf15, buf17, buf19,
buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39,
buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60,
buf62, buf64, buf66, buf69, buf71, buf73, buf75, buf78, buf80,
buf82, buf84, buf87, buf89, buf91, buf93, buf96, buf98, buf100,
buf102, buf105, buf107, buf109, buf111, buf114, buf116, buf118,
buf120, buf123, buf125, buf127, buf129, buf132, buf134, buf136,
buf138, buf141, buf143, buf145, 2097152, XBLOCK=512, num_warps=
8, num_stages=1)
del primals_1
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf3 = reinterpret_tensor(buf0, (4, 1, 4096), (4096, 4096, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 1, 4096), (4096, 4096, 1), torch.float32)
triton_per_fused__softmax_2[grid(16384)](buf2, buf3, buf4, 16384,
64, XBLOCK=8, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf7 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf9 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf11 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf13 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf16 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf18 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf20 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf22 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf25 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf27 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf29 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf31 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf34 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf36 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf38 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf40 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf43 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf45 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf47 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf49 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf52 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf54 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf56 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf58 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf61 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf63 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf65 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf67 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
triton_red_fused_mul_sub_sum_3[grid(512)](buf1, primals_3, buf2,
buf3, buf4, buf6, buf8, buf10, buf12, buf15, buf17, buf19,
buf21, buf24, buf26, buf28, buf30, buf33, buf35, buf37, buf39,
buf42, buf44, buf46, buf48, buf51, buf53, buf55, buf57, buf60,
buf62, buf64, buf66, buf5, buf7, buf9, buf11, buf13, buf16,
buf18, buf20, buf22, buf25, buf27, buf29, buf31, buf34, buf36,
buf38, buf40, buf43, buf45, buf47, buf49, buf52, buf54, buf56,
buf58, buf61, buf63, buf65, buf67, 512, 4096, XBLOCK=1, RBLOCK=
1024, num_warps=16, num_stages=1)
buf70 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf72 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf74 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf76 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf79 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf81 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf83 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf85 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf88 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf90 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf92 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf94 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf97 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf99 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf101 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf103 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf106 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf108 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf110 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf112 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf115 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf117 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf119 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf121 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf124 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf126 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf128 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf130 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
triton_red_fused_mul_sum_4[grid(512)](buf69, buf2, buf3, buf4,
buf71, buf73, buf75, buf78, buf80, buf82, buf84, buf87, buf89,
buf91, buf93, buf96, buf98, buf100, buf102, buf105, buf107,
buf109, buf111, buf114, buf116, buf118, buf120, buf123, buf125,
buf127, buf129, buf70, buf72, buf74, buf76, buf79, buf81, buf83,
buf85, buf88, buf90, buf92, buf94, buf97, buf99, buf101, buf103,
buf106, buf108, buf110, buf112, buf115, buf117, buf119, buf121,
buf124, buf126, buf128, buf130, 512, 4096, XBLOCK=1, RBLOCK=
1024, num_warps=16, num_stages=1)
buf133 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf135 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf137 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf139 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf142 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf144 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
buf146 = empty_strided_cuda((4, 1, 128), (128, 512, 1), torch.float32)
triton_red_fused_mul_sum_5[grid(512)](buf132, buf2, buf3, buf4,
buf134, buf136, buf138, buf141, buf143, buf145, buf133, buf135,
buf137, buf139, buf142, buf144, buf146, 512, 4096, XBLOCK=1,
RBLOCK=1024, num_warps=16, num_stages=1)
buf14 = empty_strided_cuda((4, 64, 128), (8192, 128, 1), torch.float32)
buf23 = buf14
del buf14
buf32 = buf23
del buf23
buf41 = buf32
del buf32
buf50 = buf41
del buf41
buf59 = buf50
del buf50
buf68 = buf59
del buf59
buf77 = buf68
del buf68
buf86 = buf77
del buf77
buf95 = buf86
del buf86
buf104 = buf95
del buf95
buf113 = buf104
del buf104
buf122 = buf113
del buf113
buf131 = buf122
del buf122
buf140 = buf131
del buf131
buf147 = buf140
del buf140
buf148 = empty_strided_cuda((4, 64, 1), (64, 1, 256), torch.float32)
buf149 = reinterpret_tensor(buf148, (4, 64, 1), (64, 1, 1), 0)
del buf148
triton_per_fused_copy_linalg_vector_norm_zeros_6[grid(256)](buf147,
buf149, buf13, buf11, buf9, buf7, buf5, buf22, buf20, buf18,
buf16, buf31, buf29, buf27, buf25, buf40, buf38, buf36, buf34,
buf49, buf47, buf45, buf43, buf58, buf56, buf54, buf52, buf67,
buf65, buf63, buf61, buf76, buf74, buf72, buf70, buf85, buf83,
buf81, buf79, buf94, buf92, buf90, buf88, buf103, buf101, buf99,
buf97, buf112, buf110, buf108, buf106, buf121, buf119, buf117,
buf115, buf130, buf128, buf126, buf124, buf139, buf137, buf135,
buf133, buf146, buf144, buf142, 256, 128, XBLOCK=1, num_warps=2,
num_stages=1)
del buf101
del buf103
del buf106
del buf108
del buf11
del buf110
del buf112
del buf115
del buf117
del buf119
del buf121
del buf124
del buf126
del buf128
del buf13
del buf130
del buf133
del buf135
del buf137
del buf139
del buf142
del buf144
del buf146
del buf16
del buf18
del buf20
del buf22
del buf25
del buf27
del buf29
del buf31
del buf34
del buf36
del buf38
del buf40
del buf43
del buf45
del buf47
del buf49
del buf5
del buf52
del buf54
del buf56
del buf58
del buf61
del buf63
del buf65
del buf67
del buf7
del buf70
del buf72
del buf74
del buf76
del buf79
del buf81
del buf83
del buf85
del buf88
del buf9
del buf90
del buf92
del buf94
del buf97
del buf99
buf150 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf151 = reinterpret_tensor(buf150, (4, 1), (1, 1), 0)
del buf150
buf152 = empty_strided_cuda((4, 8192), (8192, 1), torch.float32)
triton_red_fused_div_linalg_vector_norm_7[grid(4)](buf151, buf147,
buf149, buf152, 4, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16,
num_stages=1)
return (buf152, primals_2, buf1, buf2, buf3, buf4, reinterpret_tensor(
primals_3, (1, 128), (128, 1), 0), buf6, buf8, buf10, buf12, buf15,
buf17, buf19, buf21, buf24, buf26, buf28, buf30, buf33, buf35,
buf37, buf39, buf42, buf44, buf46, buf48, buf51, buf53, buf55,
buf57, buf60, buf62, buf64, buf66, buf69, buf71, buf73, buf75,
buf78, buf80, buf82, buf84, buf87, buf89, buf91, buf93, buf96,
buf98, buf100, buf102, buf105, buf107, buf109, buf111, buf114,
buf116, buf118, buf120, buf123, buf125, buf127, buf129, buf132,
buf134, buf136, buf138, buf141, buf143, buf145, buf147, buf149, buf151)
class NetVLADNew(nn.Module):
"""NetVLAD layer implementation"""
def __init__(self, num_clusters=64, dim=128, normalize_input=True,
vladv2=False, use_faiss=True):
"""
Args:
num_clusters : int
The number of clusters
dim : int
Dimension of descriptors
normalize_input : bool
If true, descriptor-wise L2 normalization is applied to input.
vladv2 : bool
If true, use vladv2 otherwise use vladv1
"""
super().__init__()
self.num_clusters = num_clusters
self.dim = dim
self.alpha = 0
self.vladv2 = vladv2
self.normalize_input = normalize_input
self.conv = nn.Conv2d(dim, num_clusters, kernel_size=(1, 1), bias=
vladv2)
self.centroids = nn.Parameter(torch.rand(num_clusters, dim))
self.use_faiss = use_faiss
def init_params(self, clsts, traindescs):
if not self.vladv2:
clstsAssign = clsts / np.linalg.norm(clsts, axis=1, keepdims=True)
dots = np.dot(clstsAssign, traindescs.T)
dots.sort(0)
dots = dots[::-1, :]
self.alpha = (-np.log(0.01) / np.mean(dots[0, :] - dots[1, :])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
self.conv.weight = nn.Parameter(torch.from_numpy(self.alpha *
clstsAssign).unsqueeze(2).unsqueeze(3))
self.conv.bias = None
else:
if not self.use_faiss:
knn = NearestNeighbors(n_jobs=-1)
knn.fit(traindescs)
del traindescs
ds_sq = np.square(knn.kneighbors(clsts, 2)[1])
del knn
else:
index = faiss.IndexFlatL2(traindescs.shape[1])
index.add(traindescs)
del traindescs
ds_sq = np.square(index.search(clsts, 2)[1])
del index
self.alpha = (-np.log(0.01) / np.mean(ds_sq[:, 1] - ds_sq[:, 0])
).item()
self.centroids = nn.Parameter(torch.from_numpy(clsts))
del clsts, ds_sq
self.conv.weight = nn.Parameter((2.0 * self.alpha * self.
centroids).unsqueeze(-1).unsqueeze(-1))
self.conv.bias = nn.Parameter(-self.alpha * self.centroids.norm
(dim=1))
def forward(self, input_0):
primals_3 = self.centroids
primals_2 = self.conv.weight
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
leochien1110/Patch-NetVLAD
|
NetVLAD
| false | 7,351 |
[
"MIT"
] | 1 |
9282217dd2c9bcf0446a05400fd277e651cecf4e
|
https://github.com/leochien1110/Patch-NetVLAD/tree/9282217dd2c9bcf0446a05400fd277e651cecf4e
|
Net
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/cs/ccsxpe36istx6656so5auwsbxqfwu2rgcc33zs6h4cp3jau7o7bt.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7680
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2s/c2s2pec3vduo4xn2kfu53hypzbhir2ql56lmvazfmymhwv2ehhv5.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (120, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 120), (120, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 120), (120, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 120), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 120), (1920, 480, 120, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 120), (1920, 480, 120, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, buf4, 7680, grid=grid(7680), stream=stream0)
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf1, (64, 120), (120, 1), 0), reinterpret_tensor(primals_3, (120, 1), (1, 120), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf3, 64, grid=grid(64), stream=stream0)
return (buf3, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 120), (120, 1), 0), buf3, primals_3, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((120, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 120), (120, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
from torch import nn
import torch.utils.data
class Net(nn.Module):
def __init__(self, in_dim):
super().__init__()
self.fc1 = nn.Linear(in_dim, 120, bias=False)
nn.init.normal_(self.fc1.weight, mean=0, std=1)
self.fc2 = nn.Linear(120, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return self.sigmoid(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 7680
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (120, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 120), (120, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 120), (120, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 120), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 120), (1920, 480, 120, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 4, 4, 120), (1920, 480, 120, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(7680)](buf1, buf4,
7680, XBLOCK=256, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 120), (120, 1), 0),
reinterpret_tensor(primals_3, (120, 1), (1, 120), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf2
triton_poi_fused_sigmoid_1[grid(64)](buf3, 64, XBLOCK=64, num_warps
=1, num_stages=1)
return buf3, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 120), (120, 1), 0
), buf3, primals_3, buf4
class NetNew(nn.Module):
def __init__(self, in_dim):
super().__init__()
self.fc1 = nn.Linear(in_dim, 120, bias=False)
nn.init.normal_(self.fc1.weight, mean=0, std=1)
self.fc2 = nn.Linear(120, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_3 = self.fc2.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
nmichlo/msc-research
|
Net
| false | 7,352 |
[
"MIT"
] | 1 |
625e57eca77bbfbc4728ccebdb0733e1613bd258
|
https://github.com/nmichlo/msc-research/tree/625e57eca77bbfbc4728ccebdb0733e1613bd258
|
StdConv3d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/vh/cvhrhefawu2fnqeyntrkw3rabqvznfyfimavjdorrjgo6emmscqt.py
# Topologically Sorted Source Nodes: [var_mean, sub, add, sqrt, w], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add => add
# sqrt => sqrt
# sub => sub
# var_mean => var_mean
# w => div
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1, 2, 3, 4]), kwargs = {correction: 0, keepdim: True})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {})
triton_per_fused_add_div_sqrt_sub_var_mean_0 = async_compile.triton('triton_per_fused_add_div_sqrt_sub_var_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_sqrt_sub_var_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_0(in_out_ptr0, in_ptr0, out_ptr1, xnumel, rnumel):
xnumel = 4
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (256*x0)), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 256, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp18, None)
tl.store(out_ptr1 + (r1 + (256*x0)), tmp20, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/sr/csrhsrdic5iyy4yxrz5ceuduwhllrnbrs3ear4tfocob4nmhl4ke.py
# Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv3d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %div, %primals_2, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 1, 1, 1, 1), (1, 4, 4, 4, 4), torch.float32)
buf3 = reinterpret_tensor(buf1, (4, 1, 1, 1, 1), (1, 1, 1, 1, 1), 0); del buf1 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [var_mean, sub, add, sqrt, w], Original ATen: [aten.var_mean, aten.sub, aten.add, aten.sqrt, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_sqrt_sub_var_mean_0.run(buf3, primals_1, buf4, 4, 256, grid=grid(4), stream=stream0)
# Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), buf4, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf5, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1))
buf6 = reinterpret_tensor(buf5, (1, 4, 1, 1, 1), (4, 1, 4, 4, 4), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [conv3d], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf6, primals_2, 4, grid=grid(4), stream=stream0)
del primals_2
return (reinterpret_tensor(buf6, (4, 1, 1, 1), (1, 1, 1, 1), 0), primals_1, buf3, buf4, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.jit
import torch.nn.functional as F
import torch.nn.functional
class StdConv3d(nn.Conv3d):
def forward(self, x):
w = self.weight
v, m = torch.var_mean(w, dim=[1, 2, 3, 4], keepdim=True, unbiased=False
)
w = (w - m) / torch.sqrt(v + 1e-05)
return F.conv3d(x, w, self.bias, self.stride, self.padding, self.
dilation, self.groups)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
import torch.jit
import torch.nn.functional
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_div_sqrt_sub_var_mean_0(in_out_ptr0, in_ptr0,
out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 256 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 256, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = 256.0
tmp15 = tmp13 / tmp14
tmp16 = 1e-05
tmp17 = tmp15 + tmp16
tmp18 = libdevice.sqrt(tmp17)
tmp19 = tmp0 - tmp8
tmp20 = tmp19 / tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp18, None)
tl.store(out_ptr1 + (r1 + 256 * x0), tmp20, None)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 1, 1, 1, 1), (1, 4, 4, 4, 4), torch.
float32)
buf3 = reinterpret_tensor(buf1, (4, 1, 1, 1, 1), (1, 1, 1, 1, 1), 0)
del buf1
buf4 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_per_fused_add_div_sqrt_sub_var_mean_0[grid(4)](buf3,
primals_1, buf4, 4, 256, num_warps=2, num_stages=1)
buf5 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 4, 4, 4), (256, 64, 16, 4, 1), 0), buf4, stride=(1, 1, 1),
padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False,
output_padding=(0, 0, 0), groups=1, bias=None)
assert_size_stride(buf5, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1))
buf6 = reinterpret_tensor(buf5, (1, 4, 1, 1, 1), (4, 1, 4, 4, 4), 0)
del buf5
triton_poi_fused_convolution_1[grid(4)](buf6, primals_2, 4, XBLOCK=
4, num_warps=1, num_stages=1)
del primals_2
return reinterpret_tensor(buf6, (4, 1, 1, 1), (1, 1, 1, 1), 0
), primals_1, buf3, buf4, reinterpret_tensor(primals_3, (1, 4, 4, 4,
4), (256, 64, 16, 4, 1), 0)
class StdConv3dNew(nn.Conv3d):
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
nntrongnghia/TDSI21-Shoulder-Muscle-Segmentation
|
StdConv3d
| false | 7,353 |
[
"Apache-2.0"
] | 1 |
29f0f83d93e4fdd8127261283dcf9242d9914ba6
|
https://github.com/nntrongnghia/TDSI21-Shoulder-Muscle-Segmentation/tree/29f0f83d93e4fdd8127261283dcf9242d9914ba6
|
Net
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/xk/cxkj3do6aay5nizivli3fgy5pptooqabtyndstansxhjtou3jbmn.py
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# relu => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 254016
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 15876) % 4
x0 = xindex % 15876
x4 = (xindex // 15876)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + (15904*x4)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/du/cduge76mnjneamibk4jsi6ii4doxwgrwyfeq2fzytqfqf7a5zi5o.py
# Topologically Sorted Source Nodes: [X], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# X => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 63504
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 63
x1 = (xindex // 63) % 63
x2 = (xindex // 3969)
x3 = xindex % 3969
tmp0 = tl.load(in_ptr0 + ((2*x0) + (252*x1) + (15904*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (252*x1) + (15904*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (126 + (2*x0) + (252*x1) + (15904*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (127 + (2*x0) + (252*x1) + (15904*x2)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3 + (4000*x2)), tmp6, xmask)
tl.store(out_ptr1 + (x3 + (4096*x2)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/sa/csadke7kw6t6ekznz65r7azao7tz6nwhfwdnjwuka76t4arkrfpz.py
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# relu_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 476288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3721) % 32
x0 = xindex % 3721
x4 = (xindex // 3721)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + (3744*x4)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wq/cwq5fnnqdr3ppjkhho5ypi5zgiudfipuvctfbnkk2txoz4vdy7ju.py
# Topologically Sorted Source Nodes: [X_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# X_2 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 115200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 30
x1 = (xindex // 30) % 30
x2 = (xindex // 900)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (122*x1) + (3744*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (122*x1) + (3744*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (61 + (2*x0) + (122*x1) + (3744*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (62 + (2*x0) + (122*x1) + (3744*x2)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, xmask)
tl.store(out_ptr1 + (x3), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/yt/cyteh5nkeip2gobwmta4k2qqbxqzk333dqicv43jffxywz55c2po.py
# Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# relu_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 200704
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 784) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2v/c2vkrvdrexw5lsxbic3axyiyqiu4cht7j5djoa7nquwryylur75r.py
# Topologically Sorted Source Nodes: [X_4], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# X_4 => _low_memory_max_pool2d_with_offsets_2, getitem_5
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_2 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_2, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x1 = (xindex // 14)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x2), tmp15, xmask)
tl.store(out_ptr1 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/as/casttxcqvmcl7y2tuxsw6xlbvg3tcr5iy5zwkaobtv4t4vi4zaj4.py
# Topologically Sorted Source Nodes: [X_7], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# X_7 => relu_3
# Graph fragment:
# %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_9), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {})
triton_poi_fused_relu_6 = async_compile.triton('triton_poi_fused_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/nc/cncufi5fwljjqzodj5xs4ful6p33khupoyd6zror7uetj5egismy.py
# Topologically Sorted Source Nodes: [X_9], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# X_9 => relu_4
# Graph fragment:
# %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_11), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {})
triton_poi_fused_relu_7 = async_compile.triton('triton_poi_fused_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/x5/cx5pihzzf3a6eymyu3ib45lia74ugyzdsxkzmca3dxgwtf2oyqhq.py
# Topologically Sorted Source Nodes: [X_10], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# X_10 => relu_5
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_13), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_8 = async_compile.triton('triton_poi_fused_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ba/cba7kvoxo7qpbbk2gjpjeyvgmm7l4ziibhwvbsfg7bmcmxhpyppd.py
# Topologically Sorted Source Nodes: [X_11], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# X_11 => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_15), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_9 = async_compile.triton('triton_poi_fused_sigmoid_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 1, 128, 128), (16384, 16384, 128, 1))
assert_size_stride(primals_4, (32, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (64, 12544), (12544, 1))
assert_size_stride(primals_9, (64, ), (1, ))
assert_size_stride(primals_10, (32, 64), (64, 1))
assert_size_stride(primals_11, (32, ), (1, ))
assert_size_stride(primals_12, (16, 32), (32, 1))
assert_size_stride(primals_13, (16, ), (1, ))
assert_size_stride(primals_14, (2, 16), (16, 1))
assert_size_stride(primals_15, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 126, 126), (63504, 15876, 126, 1))
buf1 = empty_strided_cuda((4, 4, 126, 126), (63616, 15904, 126, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf0, primals_2, buf1, 254016, grid=grid(254016), stream=stream0)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 4, 63, 63), (16000, 4000, 63, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 63, 63), (16384, 4096, 63, 1), torch.int8)
# Topologically Sorted Source Nodes: [X], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 63504, grid=grid(63504), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 61, 61), (119072, 3721, 61, 1))
buf5 = empty_strided_cuda((4, 32, 61, 61), (119808, 3744, 61, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf4, primals_5, buf5, 476288, grid=grid(476288), stream=stream0)
del buf4
del primals_5
buf6 = empty_strided_cuda((4, 32, 30, 30), (28800, 900, 30, 1), torch.float32)
buf7 = empty_strided_cuda((4, 32, 30, 30), (28800, 900, 30, 1), torch.int8)
# Topologically Sorted Source Nodes: [X_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 115200, grid=grid(115200), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 28, 28), (50176, 784, 28, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf9, primals_7, 200704, grid=grid(200704), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.int8)
buf11 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.float32)
# Topologically Sorted Source Nodes: [X_4], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_5.run(buf9, buf10, buf11, 50176, grid=grid(50176), stream=stream0)
buf12 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf11, (4, 12544), (12544, 1), 0), reinterpret_tensor(primals_8, (12544, 64), (1, 12544), 0), out=buf12)
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [X_7], Original ATen: [aten.relu]
triton_poi_fused_relu_6.run(buf13, primals_9, 256, grid=grid(256), stream=stream0)
del primals_9
buf14 = empty_strided_cuda((4, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf13, reinterpret_tensor(primals_10, (64, 32), (1, 64), 0), out=buf14)
buf15 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [X_9], Original ATen: [aten.relu]
triton_poi_fused_relu_7.run(buf15, primals_11, 128, grid=grid(128), stream=stream0)
del primals_11
buf16 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf15, reinterpret_tensor(primals_12, (32, 16), (1, 32), 0), out=buf16)
buf17 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [X_10], Original ATen: [aten.relu]
triton_poi_fused_relu_8.run(buf17, primals_13, 64, grid=grid(64), stream=stream0)
del primals_13
buf18 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf17, reinterpret_tensor(primals_14, (16, 2), (1, 16), 0), out=buf18)
buf19 = buf18; del buf18 # reuse
# Topologically Sorted Source Nodes: [X_11], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_9.run(buf19, primals_15, 8, grid=grid(8), stream=stream0)
del primals_15
return (buf19, primals_1, primals_3, primals_4, primals_6, buf1, buf2, buf3, buf5, buf6, buf7, buf9, buf10, reinterpret_tensor(buf11, (4, 12544), (12544, 1), 0), buf13, buf15, buf17, buf19, primals_14, primals_12, primals_10, primals_8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 128, 128), (16384, 16384, 128, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((64, 12544), (12544, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((32, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((16, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((2, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 4, (3, 3), 1)
self.dropout2d_1 = nn.Dropout2d(p=0.5)
self.conv2 = nn.Conv2d(4, 32, (3, 3), 1)
self.dropout2d_2 = nn.Dropout2d(p=0.5)
self.conv3 = nn.Conv2d(32, 64, (3, 3), 1)
random_sample = torch.randn((1, 1, 128, 128))
self.flattened_number = self.get_flattened_number(random_sample)
self.dropout1 = nn.Dropout(p=0.5)
self.fc1 = nn.Linear(self.flattened_number, 64)
self.dropout2 = nn.Dropout(p=0.5)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 16)
self.fc4 = nn.Linear(16, 2)
def get_flattened_number(self, X):
X = F.max_pool2d(torch.relu(self.conv1(X)), (2, 2))
X = F.max_pool2d(torch.relu(self.conv2(X)), (2, 2))
X = F.max_pool2d(torch.relu(self.conv3(X)), (2, 2))
return X.shape[1] * X.shape[2] * X.shape[3]
def forward(self, X):
X = F.max_pool2d(torch.relu(self.conv1(X)), (2, 2))
X = self.dropout2d_1(X)
X = F.max_pool2d(torch.relu(self.conv2(X)), (2, 2))
X = self.dropout2d_1(X)
X = F.max_pool2d(torch.relu(self.conv3(X)), (2, 2))
X = X.view(-1, self.flattened_number)
X = self.dropout1(X)
X = torch.relu(self.fc1(X))
X = self.dropout2(X)
X = torch.relu(self.fc2(X))
X = torch.relu(self.fc3(X))
X = torch.sigmoid(self.fc4(X))
return X
def get_inputs():
return [torch.rand([4, 1, 128, 128])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 254016
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 15876 % 4
x0 = xindex % 15876
x4 = xindex // 15876
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 15904 * x4), tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 63504
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 63
x1 = xindex // 63 % 63
x2 = xindex // 3969
x3 = xindex % 3969
tmp0 = tl.load(in_ptr0 + (2 * x0 + 252 * x1 + 15904 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 252 * x1 + 15904 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (126 + 2 * x0 + 252 * x1 + 15904 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (127 + 2 * x0 + 252 * x1 + 15904 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3 + 4000 * x2), tmp6, xmask)
tl.store(out_ptr1 + (x3 + 4096 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 476288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3721 % 32
x0 = xindex % 3721
x4 = xindex // 3721
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x0 + 3744 * x4), tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 115200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 30
x1 = xindex // 30 % 30
x2 = xindex // 900
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 122 * x1 + 3744 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 122 * x1 + 3744 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (61 + 2 * x0 + 122 * x1 + 3744 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (62 + 2 * x0 + 122 * x1 + 3744 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, xmask)
tl.store(out_ptr1 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 784 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x1 = xindex // 14
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x1), xmask, eviction_policy
='evict_last')
tmp7 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x1), xmask,
eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x1), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x2, tmp15, xmask)
tl.store(out_ptr1 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_sigmoid_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 1, 128, 128), (16384, 16384, 128, 1))
assert_size_stride(primals_4, (32, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (64, 12544), (12544, 1))
assert_size_stride(primals_9, (64,), (1,))
assert_size_stride(primals_10, (32, 64), (64, 1))
assert_size_stride(primals_11, (32,), (1,))
assert_size_stride(primals_12, (16, 32), (32, 1))
assert_size_stride(primals_13, (16,), (1,))
assert_size_stride(primals_14, (2, 16), (16, 1))
assert_size_stride(primals_15, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 126, 126), (63504, 15876, 126, 1))
buf1 = empty_strided_cuda((4, 4, 126, 126), (63616, 15904, 126, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(254016)](buf0, primals_2,
buf1, 254016, XBLOCK=1024, num_warps=4, num_stages=1)
del buf0
del primals_2
buf2 = empty_strided_cuda((4, 4, 63, 63), (16000, 4000, 63, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 4, 63, 63), (16384, 4096, 63, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(63504)](buf1, buf2,
buf3, 63504, XBLOCK=256, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 61, 61), (119072, 3721, 61, 1))
buf5 = empty_strided_cuda((4, 32, 61, 61), (119808, 3744, 61, 1),
torch.float32)
triton_poi_fused_convolution_relu_2[grid(476288)](buf4, primals_5,
buf5, 476288, XBLOCK=1024, num_warps=4, num_stages=1)
del buf4
del primals_5
buf6 = empty_strided_cuda((4, 32, 30, 30), (28800, 900, 30, 1),
torch.float32)
buf7 = empty_strided_cuda((4, 32, 30, 30), (28800, 900, 30, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(115200)](buf5, buf6,
buf7, 115200, XBLOCK=512, num_warps=8, num_stages=1)
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 28, 28), (50176, 784, 28, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_4[grid(200704)](buf9, primals_7,
200704, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1),
torch.int8)
buf11 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_5[grid(50176)](buf9, buf10,
buf11, 50176, XBLOCK=256, num_warps=4, num_stages=1)
buf12 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf11, (4, 12544), (12544, 1),
0), reinterpret_tensor(primals_8, (12544, 64), (1, 12544), 0),
out=buf12)
buf13 = buf12
del buf12
triton_poi_fused_relu_6[grid(256)](buf13, primals_9, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_9
buf14 = empty_strided_cuda((4, 32), (32, 1), torch.float32)
extern_kernels.mm(buf13, reinterpret_tensor(primals_10, (64, 32), (
1, 64), 0), out=buf14)
buf15 = buf14
del buf14
triton_poi_fused_relu_7[grid(128)](buf15, primals_11, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_11
buf16 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
extern_kernels.mm(buf15, reinterpret_tensor(primals_12, (32, 16), (
1, 32), 0), out=buf16)
buf17 = buf16
del buf16
triton_poi_fused_relu_8[grid(64)](buf17, primals_13, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_13
buf18 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.mm(buf17, reinterpret_tensor(primals_14, (16, 2), (1,
16), 0), out=buf18)
buf19 = buf18
del buf18
triton_poi_fused_sigmoid_9[grid(8)](buf19, primals_15, 8, XBLOCK=8,
num_warps=1, num_stages=1)
del primals_15
return (buf19, primals_1, primals_3, primals_4, primals_6, buf1, buf2,
buf3, buf5, buf6, buf7, buf9, buf10, reinterpret_tensor(buf11, (4,
12544), (12544, 1), 0), buf13, buf15, buf17, buf19, primals_14,
primals_12, primals_10, primals_8)
class NetNew(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 4, (3, 3), 1)
self.dropout2d_1 = nn.Dropout2d(p=0.5)
self.conv2 = nn.Conv2d(4, 32, (3, 3), 1)
self.dropout2d_2 = nn.Dropout2d(p=0.5)
self.conv3 = nn.Conv2d(32, 64, (3, 3), 1)
random_sample = torch.randn((1, 1, 128, 128))
self.flattened_number = self.get_flattened_number(random_sample)
self.dropout1 = nn.Dropout(p=0.5)
self.fc1 = nn.Linear(self.flattened_number, 64)
self.dropout2 = nn.Dropout(p=0.5)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 16)
self.fc4 = nn.Linear(16, 2)
def get_flattened_number(self, X):
X = F.max_pool2d(torch.relu(self.conv1(X)), (2, 2))
X = F.max_pool2d(torch.relu(self.conv2(X)), (2, 2))
X = F.max_pool2d(torch.relu(self.conv3(X)), (2, 2))
return X.shape[1] * X.shape[2] * X.shape[3]
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.fc1.weight
primals_9 = self.fc1.bias
primals_10 = self.fc2.weight
primals_11 = self.fc2.bias
primals_12 = self.fc3.weight
primals_13 = self.fc3.bias
primals_14 = self.fc4.weight
primals_15 = self.fc4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0]
|
nathantau/BigBrain
|
Net
| false | 7,354 |
[
"MIT"
] | 1 |
b9e81ee3ca91fadeccd59043dcc0062af1e6d365
|
https://github.com/nathantau/BigBrain/tree/b9e81ee3ca91fadeccd59043dcc0062af1e6d365
|
FF
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/l6/cl6rx6mcsl2icpctgrn3wungskzdczgzxd3oqw5wii5i7b62bpi6.py
# Topologically Sorted Source Nodes: [conv2d_1, img], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# img => add
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %primals_6), kwargs = {})
triton_poi_fused_add_convolution_0 = async_compile.triton('triton_poi_fused_add_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr1 + (x0), None)
tmp3 = tmp0 + tmp2
tmp5 = tmp3 + tmp4
tl.store(in_out_ptr0 + (x0), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/pz/cpzsqynpi6opzpmdjpncx75oeqm32hxmus42g2fp5sdmoifg7ruz.py
# Topologically Sorted Source Nodes: [x1, conv2d_2, x2, x1_1, x1_2], Original ATen: [aten.convolution, aten.sigmoid, aten.mul, aten.add]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# x1 => convolution
# x1_1 => mul
# x1_2 => add_1
# x2 => sigmoid
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add, %primals_7, %primals_8, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_2,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %sigmoid), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
triton_poi_fused_add_convolution_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_add_convolution_mul_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_mul_sigmoid_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + (x3), None)
tmp4 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (x3), None)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tl.sigmoid(tmp5)
tmp7 = tmp2 * tmp6
tmp9 = tmp7 + tmp8
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(in_out_ptr1 + (x3), tmp5, None)
tl.store(out_ptr0 + (x3), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (1, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (1, ), (1, ))
assert_size_stride(primals_6, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_7, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_8, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x1], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 64, 64), (16384, 4096, 64, 1))
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, img], Original ATen: [aten.convolution, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_convolution_0.run(buf3, primals_5, primals_6, 16384, grid=grid(16384), stream=stream0)
del primals_5
del primals_6
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
buf5 = buf4; del buf4 # reuse
buf6 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [x1, conv2d_2, x2, x1_1, x1_2], Original ATen: [aten.convolution, aten.sigmoid, aten.mul, aten.add]
triton_poi_fused_add_convolution_mul_sigmoid_1.run(buf1, buf5, primals_2, primals_8, primals_3, buf6, 65536, grid=grid(65536), stream=stream0)
del primals_2
del primals_8
return (buf6, buf3, primals_1, primals_3, primals_4, primals_7, buf1, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
def conv(in_channels, out_channels, kernel_size, bias=False, stride=1):
return nn.Conv2d(in_channels, out_channels, kernel_size, padding=
kernel_size // 2, bias=bias, stride=stride)
class FF(nn.Module):
def __init__(self, n_feat, kernel_size=3, bias=True):
super(FF, self).__init__()
self.conv1 = conv(n_feat, n_feat, kernel_size, bias=bias)
self.conv2 = conv(n_feat, 1, kernel_size, bias=bias)
self.conv3 = conv(1, n_feat, kernel_size, bias=bias)
def forward(self, x, x_img):
x1 = self.conv1(x)
img = self.conv2(x) + x_img
x2 = torch.sigmoid(self.conv3(img))
x1 = x1 * x2
x1 = x1 + x
return x1, img
def get_inputs():
return [torch.rand([4, 4, 64, 64]), torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {'n_feat': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr1 + x0, None)
tmp3 = tmp0 + tmp2
tmp5 = tmp3 + tmp4
tl.store(in_out_ptr0 + x0, tmp5, None)
@triton.jit
def triton_poi_fused_add_convolution_mul_sigmoid_1(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + x3, None)
tmp4 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + x3, None)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tl.sigmoid(tmp5)
tmp7 = tmp2 * tmp6
tmp9 = tmp7 + tmp8
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(in_out_ptr1 + x3, tmp5, None)
tl.store(out_ptr0 + x3, tmp9, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (1, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (1,), (1,))
assert_size_stride(primals_6, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_7, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf3 = buf2
del buf2
get_raw_stream(0)
triton_poi_fused_add_convolution_0[grid(16384)](buf3, primals_5,
primals_6, 16384, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
del primals_6
buf4 = extern_kernels.convolution(buf3, primals_7, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf1 = buf0
del buf0
buf5 = buf4
del buf4
buf6 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.float32)
triton_poi_fused_add_convolution_mul_sigmoid_1[grid(65536)](buf1,
buf5, primals_2, primals_8, primals_3, buf6, 65536, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_2
del primals_8
return (buf6, buf3, primals_1, primals_3, primals_4, primals_7, buf1,
buf3, buf5)
def conv(in_channels, out_channels, kernel_size, bias=False, stride=1):
return nn.Conv2d(in_channels, out_channels, kernel_size, padding=
kernel_size // 2, bias=bias, stride=stride)
class FFNew(nn.Module):
def __init__(self, n_feat, kernel_size=3, bias=True):
super(FFNew, self).__init__()
self.conv1 = conv(n_feat, n_feat, kernel_size, bias=bias)
self.conv2 = conv(n_feat, 1, kernel_size, bias=bias)
self.conv3 = conv(1, n_feat, kernel_size, bias=bias)
def forward(self, input_0, input_1):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_7 = self.conv3.weight
primals_8 = self.conv3.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0], output[1]
|
noxsine/WTSDNet
|
FF
| false | 7,355 |
[
"MIT"
] | 1 |
7f25fb62c705c730c4d2fab6c86f9cf3535e6d80
|
https://github.com/noxsine/WTSDNet/tree/7f25fb62c705c730c4d2fab6c86f9cf3535e6d80
|
PSNRLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/du/cdukfjxbk3gltkdefnds44xxup7qgipj5mczmse5kerplojh4icj.py
# Topologically Sorted Source Nodes: [mse, truediv, log10, loss], Original ATen: [aten.mse_loss, aten.reciprocal, aten.mul, aten.log10]
# Source node to ATen node mapping:
# log10 => log10
# loss => mul_1
# mse => mean, pow_1, sub
# truediv => mul, reciprocal
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%mean,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {})
# %log10 : [num_users=1] = call_function[target=torch.ops.aten.log10.default](args = (%mul,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log10, 10), kwargs = {})
triton_per_fused_log10_mse_loss_mul_reciprocal_0 = async_compile.triton('triton_per_fused_log10_mse_loss_mul_reciprocal_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_log10_mse_loss_mul_reciprocal_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_log10_mse_loss_mul_reciprocal_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tmp9 = tl.full([1], 1, tl.int32)
tmp10 = tmp9 / tmp8
tmp11 = 1.0
tmp12 = tmp10 * tmp11
tmp13 = libdevice.log10(tmp12)
tmp14 = 10.0
tmp15 = tmp13 * tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp15, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [mse, truediv, log10, loss], Original ATen: [aten.mse_loss, aten.reciprocal, aten.mul, aten.log10]
stream0 = get_raw_stream(0)
triton_per_fused_log10_mse_loss_mul_reciprocal_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class PSNRLoss(nn.Module):
def __init__(self):
super(PSNRLoss, self).__init__()
self.criterion = nn.MSELoss(size_average=True)
def __repr__(self):
return 'PSNR'
def forward(self, output, target):
mse = self.criterion(output, target)
loss = 10 * torch.log10(1.0 / mse)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_log10_mse_loss_mul_reciprocal_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tmp9 = tl.full([1], 1, tl.int32)
tmp10 = tmp9 / tmp8
tmp11 = 1.0
tmp12 = tmp10 * tmp11
tmp13 = libdevice.log10(tmp12)
tmp14 = 10.0
tmp15 = tmp13 * tmp14
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_log10_mse_loss_mul_reciprocal_0[grid(1)](buf1,
arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class PSNRLossNew(nn.Module):
def __init__(self):
super(PSNRLossNew, self).__init__()
self.criterion = nn.MSELoss(size_average=True)
def __repr__(self):
return 'PSNR'
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
nthuy190991/geoseg
|
PSNRLoss
| false | 7,356 |
[
"MIT"
] | 1 |
b679af5dc558720df36dddc7abfd4e6ecb46d7de
|
https://github.com/nthuy190991/geoseg/tree/b679af5dc558720df36dddc7abfd4e6ecb46d7de
|
CELoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/op/cop5hw7u777k4ep7os4kfm3ccj43nso2j632rkw5mpipgje4gdqj.py
# Topologically Sorted Source Nodes: [argmax, loss], Original ATen: [aten.argmax, aten.nll_loss2d_forward]
# Source node to ATen node mapping:
# argmax => argmax
# loss => convert_element_type, div, full_default_1, ne_1, ne_2, neg, sum_1, sum_2, where_1
# Graph fragment:
# %argmax : [num_users=4] = call_function[target=torch.ops.aten.argmax.default](args = (%arg0_1, 1), kwargs = {})
# %ne_1 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%argmax, -100), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ne_1, %neg, %full_default_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%where_1,), kwargs = {})
# %ne_2 : [num_users=1] = call_function[target=torch.ops.aten.ne.Scalar](args = (%argmax, -100), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%ne_2,), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%sum_1, torch.float32), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, %convert_element_type), kwargs = {})
triton_per_fused_argmax_nll_loss2d_forward_0 = async_compile.triton('triton_per_fused_argmax_nll_loss2d_forward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_argmax_nll_loss2d_forward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_argmax_nll_loss2d_forward_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = (rindex // 16)
r2 = rindex
tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None)
tmp1 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None)
tmp17 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None)
tmp32 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1, 1], 0, tl.int64)
tmp11 = tl.full([1, 1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1, 1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1, 1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tl.full([1, 1], -100, tl.int64)
tmp48 = tmp46 != tmp47
tmp49 = tl.where(tmp48, tmp46, tmp10)
tmp50 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp51 = tmp49 + tmp50
tmp52 = tmp49 < 0
tmp53 = tl.where(tmp52, tmp51, tmp49)
tl.device_assert((0 <= tmp53) & (tmp53 < 4), "index out of bounds: 0 <= tmp53 < 4")
tmp55 = tl.load(in_ptr1 + (r0 + (16*tmp53) + (64*r1)), None)
tmp56 = tl_math.log(tmp55)
tmp57 = -tmp56
tmp58 = 0.0
tmp59 = tl.where(tmp48, tmp57, tmp58)
tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK])
tmp62 = tl.sum(tmp60, 1)[:, None]
tmp63 = tmp48.to(tl.int64)
tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK])
tmp66 = tl.sum(tmp64, 1)[:, None]
tmp67 = tmp66.to(tl.float32)
tmp68 = tmp62 / tmp67
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp68, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [argmax, loss], Original ATen: [aten.argmax, aten.nll_loss2d_forward]
stream0 = get_raw_stream(0)
triton_per_fused_argmax_nll_loss2d_forward_0.run(buf3, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class CELoss(nn.Module):
def __init__(self):
super(CELoss, self).__init__()
self.criterionBinary = nn.BCELoss(size_average=True)
self.criterionMulti = nn.NLLLoss(size_average=True)
def __repr__(self):
return 'CE'
def forward(self, output, target):
if target.shape[1] == 1:
loss = self.criterionBinary(output, target)
else:
target = torch.argmax(target, dim=1).long()
loss = self.criterionMulti(torch.log(output), target)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_argmax_nll_loss2d_forward_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex % 16
r1 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None)
tmp1 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None)
tmp17 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None)
tmp32 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1, 1], 0, tl.int64)
tmp11 = tl.full([1, 1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1, 1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1, 1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tmp47 = tl.full([1, 1], -100, tl.int64)
tmp48 = tmp46 != tmp47
tmp49 = tl.where(tmp48, tmp46, tmp10)
tmp50 = tl.full([XBLOCK, RBLOCK], 4, tl.int32)
tmp51 = tmp49 + tmp50
tmp52 = tmp49 < 0
tmp53 = tl.where(tmp52, tmp51, tmp49)
tl.device_assert((0 <= tmp53) & (tmp53 < 4),
'index out of bounds: 0 <= tmp53 < 4')
tmp55 = tl.load(in_ptr1 + (r0 + 16 * tmp53 + 64 * r1), None)
tmp56 = tl_math.log(tmp55)
tmp57 = -tmp56
tmp58 = 0.0
tmp59 = tl.where(tmp48, tmp57, tmp58)
tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK])
tmp62 = tl.sum(tmp60, 1)[:, None]
tmp63 = tmp48.to(tl.int64)
tmp64 = tl.broadcast_to(tmp63, [XBLOCK, RBLOCK])
tmp66 = tl.sum(tmp64, 1)[:, None]
tmp67 = tmp66.to(tl.float32)
tmp68 = tmp62 / tmp67
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp68, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((), (), torch.float32)
buf3 = buf1
del buf1
get_raw_stream(0)
triton_per_fused_argmax_nll_loss2d_forward_0[grid(1)](buf3, arg0_1,
arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf3,
class CELossNew(nn.Module):
def __init__(self):
super(CELossNew, self).__init__()
self.criterionBinary = nn.BCELoss(size_average=True)
self.criterionMulti = nn.NLLLoss(size_average=True)
def __repr__(self):
return 'CE'
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
nthuy190991/geoseg
|
CELoss
| false | 7,357 |
[
"MIT"
] | 1 |
b679af5dc558720df36dddc7abfd4e6ecb46d7de
|
https://github.com/nthuy190991/geoseg/tree/b679af5dc558720df36dddc7abfd4e6ecb46d7de
|
RatioModel
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/7w/c7wxxkjeaevhuqpxtdaextqbr36zngmh2fhonoz4o3ulbg7gabtn.py
# Topologically Sorted Source Nodes: [softplus], Original ATen: [aten.softplus]
# Source node to ATen node mapping:
# softplus => exp, gt, log1p, where
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%view_5,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_5, 20), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_5, %log1p), kwargs = {})
triton_poi_fused_softplus_1 = async_compile.triton('triton_poi_fused_softplus_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_softplus_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [tanh_1], Original ATen: [aten.tanh]
triton_poi_fused_tanh_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf5)
del primals_7
buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [softplus], Original ATen: [aten.softplus]
triton_poi_fused_softplus_1.run(buf5, buf6, 64, grid=grid(64), stream=stream0)
return (buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
class RatioModel(torch.nn.Module):
def __init__(self, D_in, hidden_unit_num):
super().__init__()
None
self.l1 = torch.nn.Linear(D_in, hidden_unit_num)
self.l2 = torch.nn.Linear(hidden_unit_num, hidden_unit_num)
self.l3 = torch.nn.Linear(hidden_unit_num, 1)
def forward(self, X):
return F.softplus(self.l3(torch.tanh(self.l2(torch.tanh(self.l1(X))))))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'D_in': 4, 'hidden_unit_num': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_softplus_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused_tanh_0[grid(256)](buf3, primals_5, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf5)
del primals_7
buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_softplus_1[grid(64)](buf5, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
return buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, buf3, buf5, primals_6, primals_4
class RatioModelNew(torch.nn.Module):
def __init__(self, D_in, hidden_unit_num):
super().__init__()
None
self.l1 = torch.nn.Linear(D_in, hidden_unit_num)
self.l2 = torch.nn.Linear(hidden_unit_num, hidden_unit_num)
self.l3 = torch.nn.Linear(hidden_unit_num, 1)
def forward(self, input_0):
primals_1 = self.l1.weight
primals_2 = self.l1.bias
primals_4 = self.l2.weight
primals_5 = self.l2.bias
primals_6 = self.l3.weight
primals_7 = self.l3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
numahha/wmopo
|
RatioModel
| false | 7,358 |
[
"MIT"
] | 1 |
1557dab2e8168c1f2e53ffbc435b4000680f1d28
|
https://github.com/numahha/wmopo/tree/1557dab2e8168c1f2e53ffbc435b4000680f1d28
|
SchedulerTestNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ej/cejq4hvgtngsrt5ywcfdheadnaab2ydhtz352v7vusjumjik42f2.py
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# relu => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + (x0), tmp5, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/4b/c4bm44vlkroihtm4ebt4iyykoeyhr2cwl6horqusip6sdixccmyf.py
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), None)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (1, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (1, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_5, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 16384, grid=grid(16384), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_5, 16384, grid=grid(16384), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn as nn
from torch.nn import functional as F
from torch import optim as optim
class SchedulerTestNet(torch.nn.Module):
"""
adapted from: https://github.com/pytorch/pytorch/blob/master/test/test_optim.py
"""
def __init__(self):
super(SchedulerTestNet, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 1, 1)
self.conv2 = torch.nn.Conv2d(1, 1, 1)
def forward(self, x):
return self.conv2(F.relu(self.conv1(x)))
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn as nn
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + x0, tmp5, None)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, None)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (1, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (1, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(16384)](buf1, primals_2,
16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 64, 64), (4096, 4096, 64, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(16384)](buf3, primals_5, 16384,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1
class SchedulerTestNetNew(torch.nn.Module):
"""
adapted from: https://github.com/pytorch/pytorch/blob/master/test/test_optim.py
"""
def __init__(self):
super(SchedulerTestNetNew, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 1, 1)
self.conv2 = torch.nn.Conv2d(1, 1, 1)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
oke-aditya/pytorch-lightning-bolts
|
SchedulerTestNet
| false | 7,359 |
[
"Apache-2.0"
] | 1 |
268df20bb442e7385b709b1488d37fd2767aba3c
|
https://github.com/oke-aditya/pytorch-lightning-bolts/tree/268df20bb442e7385b709b1488d37fd2767aba3c
|
DynamicsModel
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py
# Topologically Sorted Source Nodes: [tanh_1], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# tanh_1 => tanh_1
# Graph fragment:
# %tanh_1 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/4i/c4irhy2t2rm4y7rjyqs3r3qwhxdgoivutbkznqbsbks6epvksfql.py
# Topologically Sorted Source Nodes: [ones_like, mul], Original ATen: [aten.ones_like, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# ones_like => full_default
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_6, %full_default), kwargs = {})
triton_poi_fused_mul_ones_like_1 = async_compile.triton('triton_poi_fused_mul_ones_like_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_ones_like_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_ones_like_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [tanh_1], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [ones_like, mul], Original ATen: [aten.ones_like, aten.mul]
triton_poi_fused_mul_ones_like_1.run(primals_6, buf3, 256, grid=grid(256), stream=stream0)
del primals_6
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class DynamicsModel(torch.nn.Module):
def __init__(self, D_in, D_out, hidden_unit_num):
None
super(DynamicsModel, self).__init__()
self.l1 = torch.nn.Linear(D_in, hidden_unit_num)
self.l2 = torch.nn.Linear(hidden_unit_num, D_out)
self.logvar = torch.nn.Parameter(torch.zeros(D_out), requires_grad=True
)
def forward(self, X):
mu = self.l2(torch.tanh(self.l1(X)))
return self.l2(torch.tanh(self.l1(X))), self.logvar * torch.ones_like(
mu)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'D_in': 4, 'D_out': 4, 'hidden_unit_num': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_mul_ones_like_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_ones_like_1[grid(256)](primals_6, buf3, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_6
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, primals_4
class DynamicsModelNew(torch.nn.Module):
def __init__(self, D_in, D_out, hidden_unit_num):
None
super(DynamicsModelNew, self).__init__()
self.l1 = torch.nn.Linear(D_in, hidden_unit_num)
self.l2 = torch.nn.Linear(hidden_unit_num, D_out)
self.logvar = torch.nn.Parameter(torch.zeros(D_out), requires_grad=True
)
def forward(self, input_0):
primals_2 = self.logvar
primals_1 = self.l1.weight
primals_5 = self.l1.bias
primals_4 = self.l2.weight
primals_6 = self.l2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0], output[1]
|
numahha/wmopo
|
DynamicsModel
| false | 7,360 |
[
"MIT"
] | 1 |
1557dab2e8168c1f2e53ffbc435b4000680f1d28
|
https://github.com/numahha/wmopo/tree/1557dab2e8168c1f2e53ffbc435b4000680f1d28
|
MultipleInputModel
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/j5/cj57ctnl5nbogixdhvjwy5dw6jnyp7mihjsntksdftfpsaixd2ul.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out => add
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_3), kwargs = {})
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_tensor_1, %add_tensor), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 5
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp2 + tmp4
tl.store(in_out_ptr0 + (x2), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 10), (10, 1))
assert_size_stride(primals_2, (5, 10), (10, 1))
assert_size_stride(primals_3, (5, ), (1, ))
assert_size_stride(primals_4, (4, 10), (10, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (10, 5), (1, 10), 0), out=buf0)
buf1 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_4, reinterpret_tensor(primals_2, (10, 5), (1, 10), 0), out=buf1)
del primals_2
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(buf2, primals_3, buf1, 20, grid=grid(20), stream=stream0)
del buf1
del primals_3
return (buf2, primals_1, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 10), (10, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((5, 10), (10, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 10), (10, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn as nn
from torch import optim as optim
class TemplateModel(nn.Module):
def __init__(self, mix_data=False):
""" Base model for testing. The setting ``mix_data=True`` simulates a wrong implementation. """
super().__init__()
self.mix_data = mix_data
self.linear = nn.Linear(10, 5)
self.input_array = torch.rand(10, 5, 2)
def forward(self, *args, **kwargs):
return self.forward__standard(*args, **kwargs)
def forward__standard(self, x):
if self.mix_data:
x = x.view(10, -1).permute(1, 0).view(-1, 10)
else:
x = x.view(-1, 10)
return self.linear(x)
class MultipleInputModel(TemplateModel):
""" Base model for testing verification when forward accepts multiple arguments. """
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.input_array = torch.rand(10, 5, 2), torch.rand(10, 5, 2)
def forward(self, x, y, some_kwarg=True):
out = super().forward(x) + super().forward(y)
return out
def get_inputs():
return [torch.rand([4, 10]), torch.rand([4, 10])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn as nn
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 20
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 5
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp3 + tmp1
tmp5 = tmp2 + tmp4
tl.store(in_out_ptr0 + x2, tmp5, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 10), (10, 1))
assert_size_stride(primals_2, (5, 10), (10, 1))
assert_size_stride(primals_3, (5,), (1,))
assert_size_stride(primals_4, (4, 10), (10, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (10, 5),
(1, 10), 0), out=buf0)
buf1 = empty_strided_cuda((4, 5), (5, 1), torch.float32)
extern_kernels.mm(primals_4, reinterpret_tensor(primals_2, (10, 5),
(1, 10), 0), out=buf1)
del primals_2
buf2 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(20)](buf2, primals_3, buf1, 20, XBLOCK=
32, num_warps=1, num_stages=1)
del buf1
del primals_3
return buf2, primals_1, primals_4
class TemplateModel(nn.Module):
def __init__(self, mix_data=False):
""" Base model for testing. The setting ``mix_data=True`` simulates a wrong implementation. """
super().__init__()
self.mix_data = mix_data
self.linear = nn.Linear(10, 5)
self.input_array = torch.rand(10, 5, 2)
def forward(self, *args, **kwargs):
return self.forward__standard(*args, **kwargs)
def forward__standard(self, x):
if self.mix_data:
x = x.view(10, -1).permute(1, 0).view(-1, 10)
else:
x = x.view(-1, 10)
return self.linear(x)
class MultipleInputModelNew(TemplateModel):
""" Base model for testing verification when forward accepts multiple arguments. """
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.input_array = torch.rand(10, 5, 2), torch.rand(10, 5, 2)
def forward(self, input_0, input_1):
primals_2 = self.linear.weight
primals_3 = self.linear.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
oke-aditya/pytorch-lightning-bolts
|
MultipleInputModel
| false | 7,361 |
[
"Apache-2.0"
] | 1 |
268df20bb442e7385b709b1488d37fd2767aba3c
|
https://github.com/oke-aditya/pytorch-lightning-bolts/tree/268df20bb442e7385b709b1488d37fd2767aba3c
|
FakeRKHSConvNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/yw/cywcz4pxnzyvlsoydzxcj5pzlu3i5g7qgj7guhgyvlrzkngzehmv.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/sb/csbfa4itjbflkqsfneo2c6mi3vnrum7dc2e7l2pstoa2kdz6gtd3.py
# Topologically Sorted Source Nodes: [conv2d_2, add, x], Original ATen: [aten.convolution, aten.add, aten._native_batch_norm_legit_no_training, aten.native_batch_norm_backward]
# Source node to ATen node mapping:
# add => add
# conv2d_2 => convolution_2
# x => add_2, mul_1, mul_2, sub
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_2, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %convolution_2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %unsqueeze_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %unsqueeze_3), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %unsqueeze_5), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %unsqueeze_7), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %unsqueeze_10), kwargs = {})
triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1 = async_compile.triton('triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr6 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp6 = tmp4 - tmp5
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.sqrt(tmp9)
tmp11 = tl.full([1], 1, tl.int32)
tmp12 = tmp11 / tmp10
tmp13 = 1.0
tmp14 = tmp12 * tmp13
tmp15 = tmp6 * tmp14
tmp17 = tmp15 * tmp16
tmp19 = tmp17 + tmp18
tl.store(out_ptr0 + (x3), tmp19, xmask)
tl.store(out_ptr1 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, 256, grid=grid(256), stream=stream0)
# Topologically Sorted Source Nodes: [h_res], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(primals_2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_2, add, x], Original ATen: [aten.convolution, aten.add, aten._native_batch_norm_legit_no_training, aten.native_batch_norm_backward]
triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1.run(buf2, buf3, primals_5, primals_6, primals_7, primals_8, primals_9, buf4, buf5, 256, grid=grid(256), stream=stream0)
del buf2
del buf3
del primals_5
del primals_6
del primals_9
return (buf4, primals_1, primals_2, primals_3, primals_4, primals_7, primals_8, buf1, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import numpy as np
from torch import nn as nn
from torch import optim as optim
class MaybeBatchNorm2d(nn.Module):
def __init__(self, n_ftr, affine, use_bn):
super(MaybeBatchNorm2d, self).__init__()
self.bn = nn.BatchNorm2d(n_ftr, affine=affine)
self.use_bn = use_bn
def forward(self, x):
if self.use_bn:
x = self.bn(x)
return x
class FakeRKHSConvNet(nn.Module):
def __init__(self, n_input, n_output, use_bn=False):
super(FakeRKHSConvNet, self).__init__()
self.conv1 = nn.Conv2d(n_input, n_output, kernel_size=1, stride=1,
padding=0, bias=False)
self.bn1 = MaybeBatchNorm2d(n_output, True, use_bn)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(n_output, n_output, kernel_size=1, stride=1,
padding=0, bias=False)
self.bn_out = MaybeBatchNorm2d(n_output, True, True)
self.shortcut = nn.Conv2d(n_input, n_output, kernel_size=1, stride=
1, padding=0, bias=True)
if n_output >= n_input:
eye_mask = np.zeros((n_output, n_input, 1, 1), dtype=np.bool)
for i in range(n_input):
eye_mask[i, i, 0, 0] = 1
self.shortcut.weight.data.uniform_(-0.01, 0.01)
self.shortcut.weight.data.masked_fill_(torch.tensor(eye_mask), 1.0)
def init_weights(self, init_scale=1.0):
nn.init.kaiming_uniform_(self.conv1.weight, a=math.sqrt(5))
self.conv1.weight.data.mul_(init_scale)
nn.init.constant_(self.conv2.weight, 0.0)
def forward(self, x):
h_res = self.conv2(self.relu1(self.bn1(self.conv1(x))))
h = self.bn_out(h_res + self.shortcut(x))
return h
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_input': 4, 'n_output': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import math
import numpy as np
from torch import nn as nn
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1(
in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr6 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp6 = tmp4 - tmp5
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.sqrt(tmp9)
tmp11 = tl.full([1], 1, tl.int32)
tmp12 = tmp11 / tmp10
tmp13 = 1.0
tmp14 = tmp12 * tmp13
tmp15 = tmp6 * tmp14
tmp17 = tmp15 * tmp16
tmp19 = tmp17 + tmp18
tl.store(out_ptr0 + x3, tmp19, xmask)
tl.store(out_ptr1 + x3, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](buf1, 256, XBLOCK=256, num_warps
=4, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = extern_kernels.convolution(primals_2, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__native_batch_norm_legit_no_training_add_convolution_native_batch_norm_backward_1[
grid(256)](buf2, buf3, primals_5, primals_6, primals_7,
primals_8, primals_9, buf4, buf5, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del buf2
del buf3
del primals_5
del primals_6
del primals_9
return (buf4, primals_1, primals_2, primals_3, primals_4, primals_7,
primals_8, buf1, buf5)
class MaybeBatchNorm2d(nn.Module):
def __init__(self, n_ftr, affine, use_bn):
super(MaybeBatchNorm2d, self).__init__()
self.bn = nn.BatchNorm2d(n_ftr, affine=affine)
self.use_bn = use_bn
def forward(self, x):
if self.use_bn:
x = self.bn(x)
return x
class FakeRKHSConvNetNew(nn.Module):
def __init__(self, n_input, n_output, use_bn=False):
super(FakeRKHSConvNetNew, self).__init__()
self.conv1 = nn.Conv2d(n_input, n_output, kernel_size=1, stride=1,
padding=0, bias=False)
self.bn1 = MaybeBatchNorm2d(n_output, True, use_bn)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(n_output, n_output, kernel_size=1, stride=1,
padding=0, bias=False)
self.bn_out = MaybeBatchNorm2d(n_output, True, True)
self.shortcut = nn.Conv2d(n_input, n_output, kernel_size=1, stride=
1, padding=0, bias=True)
if n_output >= n_input:
eye_mask = np.zeros((n_output, n_input, 1, 1), dtype=np.bool)
for i in range(n_input):
eye_mask[i, i, 0, 0] = 1
self.shortcut.weight.data.uniform_(-0.01, 0.01)
self.shortcut.weight.data.masked_fill_(torch.tensor(eye_mask), 1.0)
def init_weights(self, init_scale=1.0):
nn.init.kaiming_uniform_(self.conv1.weight, a=math.sqrt(5))
self.conv1.weight.data.mul_(init_scale)
nn.init.constant_(self.conv2.weight, 0.0)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_5 = self.bn1.bn.weight
primals_6 = self.bn1.bn.bias
primals_3 = self.conv2.weight
primals_7 = self.bn_out.bn.weight
primals_8 = self.bn_out.bn.bias
primals_4 = self.shortcut.weight
primals_9 = self.shortcut.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
oke-aditya/pytorch-lightning-bolts
|
FakeRKHSConvNet
| false | 7,362 |
[
"Apache-2.0"
] | 1 |
268df20bb442e7385b709b1488d37fd2767aba3c
|
https://github.com/oke-aditya/pytorch-lightning-bolts/tree/268df20bb442e7385b709b1488d37fd2767aba3c
|
AgentA2C
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/5y/c5yq7wkgmmcygrawripwacy566sggsmh2mzk5izw35wk7ferohhu.py
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 100
x2 = xindex % 1600
x3 = (xindex // 1600)
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (100, 4), (4, 1))
assert_size_stride(primals_2, (100, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (100, 100), (100, 1))
assert_size_stride(primals_5, (100, ), (1, ))
assert_size_stride(primals_6, (4, 100), (100, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (1, 100), (100, 1))
assert_size_stride(primals_9, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 100), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf0 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool)
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf8, 6400, grid=grid(6400), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 100), (100, 1), 0), reinterpret_tensor(primals_4, (100, 100), (1, 100), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf2 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool)
# Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf7, 6400, grid=grid(6400), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 100), (100, 1), 0), reinterpret_tensor(primals_6, (100, 4), (1, 100), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [value], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, reinterpret_tensor(buf3, (64, 100), (100, 1), 0), reinterpret_tensor(primals_8, (100, 1), (1, 100), 0), alpha=1, beta=1, out=buf6)
del primals_9
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 100), (100, 1), 0), reinterpret_tensor(buf3, (64, 100), (100, 1), 0), primals_8, primals_6, buf7, primals_4, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((100, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class AgentA2C(nn.Module):
def __init__(self, state_shape, n_actions):
super().__init__()
self.name = 'a2c'
self.n_actions = n_actions
self.state_shape = state_shape
self.hidden1 = nn.Linear(self.state_shape, 100)
self.act1 = nn.ReLU()
self.hidden2 = nn.Linear(100, 100)
self.act2 = nn.ReLU()
self.out1 = nn.Linear(100, self.n_actions)
self.out2 = nn.Linear(100, 1)
def forward(self, state_t):
h = self.act1(self.hidden1(state_t))
h = self.act2(self.hidden2(h))
logits = self.out1(h)
value = self.out2(h)
return logits, value
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_shape': 4, 'n_actions': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 100
x2 = xindex % 1600
x3 = xindex // 1600
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (100, 4), (4, 1))
assert_size_stride(primals_2, (100,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (100, 100), (100, 1))
assert_size_stride(primals_5, (100,), (1,))
assert_size_stride(primals_6, (4, 100), (100, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (1, 100), (100, 1))
assert_size_stride(primals_9, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 100), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 100), (1600, 400, 100, 1), 0)
del buf0
buf8 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(6400)](buf1,
primals_2, buf8, 6400, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 100), (100, 1), 0),
reinterpret_tensor(primals_4, (100, 100), (1, 100), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 100), (1600, 400, 100, 1), 0)
del buf2
buf7 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(6400)](buf3,
primals_5, buf7, 6400, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 100),
(100, 1), 0), reinterpret_tensor(primals_6, (100, 4), (1, 100),
0), alpha=1, beta=1, out=buf4)
del primals_7
buf6 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf3, (64, 100),
(100, 1), 0), reinterpret_tensor(primals_8, (100, 1), (1, 100),
0), alpha=1, beta=1, out=buf6)
del primals_9
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 100), (100, 1), 0
), reinterpret_tensor(buf3, (64, 100), (100, 1), 0
), primals_8, primals_6, buf7, primals_4, buf8
class AgentA2CNew(nn.Module):
def __init__(self, state_shape, n_actions):
super().__init__()
self.name = 'a2c'
self.n_actions = n_actions
self.state_shape = state_shape
self.hidden1 = nn.Linear(self.state_shape, 100)
self.act1 = nn.ReLU()
self.hidden2 = nn.Linear(100, 100)
self.act2 = nn.ReLU()
self.out1 = nn.Linear(100, self.n_actions)
self.out2 = nn.Linear(100, 1)
def forward(self, input_0):
primals_1 = self.hidden1.weight
primals_2 = self.hidden1.bias
primals_4 = self.hidden2.weight
primals_5 = self.hidden2.bias
primals_6 = self.out1.weight
primals_7 = self.out1.bias
primals_8 = self.out2.weight
primals_9 = self.out2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1]
|
onimaru/Reinforcement_Learning
|
AgentA2C
| false | 7,363 |
[
"MIT"
] | 1 |
4c45b51a095cb0cb3c18f6a1542befdcab8a58a4
|
https://github.com/onimaru/Reinforcement_Learning/tree/4c45b51a095cb0cb3c18f6a1542befdcab8a58a4
|
VishalNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/xv/cxvkno5nugllag3heuqgb6cqyvtevlsbixrlypuea2jsl3cwc6oh.py
# Topologically Sorted Source Nodes: [conv1d, out1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv1d => convolution
# out1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1], [40], [1], False, [0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 15360
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64) % 60
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2l/c2lu4xsiikkvhigt7gu2gt5rl2ljj4ngousqsy2ox2lxlphzqyya.py
# Topologically Sorted Source Nodes: [out2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out2 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1], [150], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (60, 1, 81), (81, 81, 1))
assert_size_stride(primals_2, (60, ), (1, ))
assert_size_stride(primals_3, (4, 1, 64), (64, 64, 1))
assert_size_stride(primals_4, (1, 60, 301), (18060, 301, 1))
assert_size_stride(primals_5, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(40,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 60, 64), (3840, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv1d, out1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 15360, grid=grid(15360), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1,), padding=(150,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 64), (64, 64, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((60, 1, 81), (81, 81, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((60, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 64), (64, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, 60, 301), (18060, 301, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class VishalNet(nn.Module):
def __init__(self):
super(VishalNet, self).__init__()
self.cnn1 = nn.Conv1d(1, 60, 81, 1, 40)
self.cnn2 = nn.Conv1d(60, 1, 301, 1, 150)
def forward(self, input):
out1 = nn.functional.relu(self.cnn1(input))
out2 = self.cnn2(out1)
return out2
def get_inputs():
return [torch.rand([4, 1, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 15360
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 60
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tl.store(in_out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (60, 1, 81), (81, 81, 1))
assert_size_stride(primals_2, (60,), (1,))
assert_size_stride(primals_3, (4, 1, 64), (64, 64, 1))
assert_size_stride(primals_4, (1, 60, 301), (18060, 301, 1))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,),
padding=(40,), dilation=(1,), transposed=False, output_padding=
(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 60, 64), (3840, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(15360)](buf1, primals_2,
15360, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1,),
padding=(150,), dilation=(1,), transposed=False, output_padding
=(0,), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 64), (64, 64, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(256)](buf3, primals_5, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1
class VishalNetNew(nn.Module):
def __init__(self):
super(VishalNetNew, self).__init__()
self.cnn1 = nn.Conv1d(1, 60, 81, 1, 40)
self.cnn2 = nn.Conv1d(60, 1, 301, 1, 150)
def forward(self, input_0):
primals_1 = self.cnn1.weight
primals_2 = self.cnn1.bias
primals_4 = self.cnn2.weight
primals_5 = self.cnn2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
olivesgatech/Geophysics-2021-Joint-learning-for-spatial-context-based-inversion
|
VishalNet
| false | 7,364 |
[
"MIT"
] | 1 |
56f506dfe62ac3557febb4c8e3c62542b1624a1b
|
https://github.com/olivesgatech/Geophysics-2021-Joint-learning-for-spatial-context-based-inversion/tree/56f506dfe62ac3557febb4c8e3c62542b1624a1b
|
L2Norm
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/jl/cjlxnxxaiarviom2nt4mvz43fs6igit2tnfokz3h6ianosaulkoi.py
# Topologically Sorted Source Nodes: [norm, norm_1, truediv], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div]
# Source node to ATen node mapping:
# norm => pow_1, pow_2, sum_1
# norm_1 => clamp_min
# truediv => div
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %clamp_min), kwargs = {})
triton_poi_fused_clamp_div_linalg_vector_norm_0 = async_compile.triton('triton_poi_fused_clamp_div_linalg_vector_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_linalg_vector_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-06
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x3), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [norm, norm_1, truediv], Original ATen: [aten.linalg_vector_norm, aten.clamp, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class L2Norm(nn.Module):
def forward(self, x, eps=1e-06):
norm = x.norm(dim=1, keepdim=True).clamp(min=eps)
return x / norm
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-06
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x3, tmp15, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_0[grid(256)](arg0_1,
buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class L2NormNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
onlyrico/vit-pytorch
|
L2Norm
| false | 7,365 |
[
"MIT"
] | 1 |
e52ac4195550faa9c3372533d325bf649f7354ad
|
https://github.com/onlyrico/vit-pytorch/tree/e52ac4195550faa9c3372533d325bf649f7354ad
|
AgentReinforce
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/5y/c5yq7wkgmmcygrawripwacy566sggsmh2mzk5izw35wk7ferohhu.py
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 100
x2 = xindex % 1600
x3 = (xindex // 1600)
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (100, 4), (4, 1))
assert_size_stride(primals_2, (100, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (100, 100), (100, 1))
assert_size_stride(primals_5, (100, ), (1, ))
assert_size_stride(primals_6, (4, 100), (100, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 100), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool)
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 6400, grid=grid(6400), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 100), (100, 1), 0), reinterpret_tensor(primals_4, (100, 100), (1, 100), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1), torch.bool)
# Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 6400, grid=grid(6400), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 100), (100, 1), 0), reinterpret_tensor(primals_6, (100, 4), (1, 100), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 100), (100, 1), 0), reinterpret_tensor(buf3, (64, 100), (100, 1), 0), primals_6, buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((100, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((100, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 100), (100, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class AgentReinforce(nn.Module):
def __init__(self, state_shape, n_actions):
super().__init__()
self.name = 'reinforce'
self.n_actions = n_actions
self.state_shape = state_shape
self.hidden1 = nn.Linear(self.state_shape, 100)
self.act1 = nn.ReLU()
self.hidden2 = nn.Linear(100, 100)
self.act2 = nn.ReLU()
self.out1 = nn.Linear(100, self.n_actions)
def forward(self, state_t):
h = self.act1(self.hidden1(state_t))
h = self.act2(self.hidden2(h))
logits = self.out1(h)
return logits
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_shape': 4, 'n_actions': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 6400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 100
x2 = xindex % 1600
x3 = xindex // 1600
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (100, 4), (4, 1))
assert_size_stride(primals_2, (100,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (100, 100), (100, 1))
assert_size_stride(primals_5, (100,), (1,))
assert_size_stride(primals_6, (4, 100), (100, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 100), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 100), (1600, 400, 100, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(6400)](buf1,
primals_2, buf6, 6400, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 100), (100, 1), 0),
reinterpret_tensor(primals_4, (100, 100), (1, 100), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 100), (1600, 400, 100, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 100), (1664, 400, 100, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(6400)](buf3,
primals_5, buf5, 6400, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 100),
(100, 1), 0), reinterpret_tensor(primals_6, (100, 4), (1, 100),
0), alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 100), (100, 1), 0
), reinterpret_tensor(buf3, (64, 100), (100, 1), 0
), primals_6, buf5, primals_4, buf6
class AgentReinforceNew(nn.Module):
def __init__(self, state_shape, n_actions):
super().__init__()
self.name = 'reinforce'
self.n_actions = n_actions
self.state_shape = state_shape
self.hidden1 = nn.Linear(self.state_shape, 100)
self.act1 = nn.ReLU()
self.hidden2 = nn.Linear(100, 100)
self.act2 = nn.ReLU()
self.out1 = nn.Linear(100, self.n_actions)
def forward(self, input_0):
primals_1 = self.hidden1.weight
primals_2 = self.hidden1.bias
primals_4 = self.hidden2.weight
primals_5 = self.hidden2.bias
primals_6 = self.out1.weight
primals_7 = self.out1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
onimaru/Reinforcement_Learning
|
AgentReinforce
| false | 7,366 |
[
"MIT"
] | 1 |
4c45b51a095cb0cb3c18f6a1542befdcab8a58a4
|
https://github.com/onimaru/Reinforcement_Learning/tree/4c45b51a095cb0cb3c18f6a1542befdcab8a58a4
|
AmdimNCELoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/lo/clogbilbksb5pe5z7x7zzgxgebeyhflxrjymvbwjeoos6el7ofav.py
# Topologically Sorted Source Nodes: [raw_scores_2, mul_1, tanh, x_clip, max_1, mul_3, pos_scores, pos_shiftexp, sub_3, exp_1, sub_2, exp, mul_6, neg_sumexp, add, all_logsumexp, nce_scores, mean_1, nce_scores_1], Original ATen: [aten.div, aten.mul, aten.tanh, aten.max, aten.sum, aten.sub, aten.exp, aten.add, aten.log, aten.mean, aten.neg]
# Source node to ATen node mapping:
# add => add
# all_logsumexp => log
# exp => exp
# exp_1 => exp_1
# max_1 => max_1
# mean_1 => mean_1
# mul_1 => mul_1
# mul_3 => mul_3
# mul_6 => mul_6
# nce_scores => sub_5
# nce_scores_1 => neg
# neg_sumexp => sum_2
# pos_scores => sum_1
# pos_shiftexp => sub_4
# raw_scores_2 => div
# sub_2 => sub_2
# sub_3 => sub_3
# tanh => tanh
# x_clip => mul_2
# Graph fragment:
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, 2.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 0.25), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_1,), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, 4), kwargs = {})
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%view_1, 1, True), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %mul_2), kwargs = {})
# %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %getitem), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_1, %getitem), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %getitem), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %exp), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_6, [1], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp_1, %sum_2), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_4, %log), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_5,), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%mean_1,), kwargs = {})
triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0 = async_compile.triton('triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tmp6 = 0.25
tmp7 = tmp5 * tmp6
tmp8 = libdevice.tanh(tmp7)
tmp9 = 4.0
tmp10 = tmp8 * tmp9
tmp11 = tmp2 * tmp10
tmp12 = tmp0 * tmp9
tmp13 = tmp11 - tmp12
tmp15 = tmp1 - tmp14
tmp17 = tmp16 * tmp4
tmp18 = tmp17 * tmp6
tmp19 = libdevice.tanh(tmp18)
tmp20 = tmp19 * tmp9
tmp21 = tmp15 * tmp20
tmp22 = tmp14 * tmp9
tmp23 = tmp21 - tmp22
tmp24 = triton_helpers.maximum(tmp13, tmp23)
tmp26 = tmp1 - tmp25
tmp28 = tmp27 * tmp4
tmp29 = tmp28 * tmp6
tmp30 = libdevice.tanh(tmp29)
tmp31 = tmp30 * tmp9
tmp32 = tmp26 * tmp31
tmp33 = tmp25 * tmp9
tmp34 = tmp32 - tmp33
tmp35 = triton_helpers.maximum(tmp24, tmp34)
tmp37 = tmp1 - tmp36
tmp39 = tmp38 * tmp4
tmp40 = tmp39 * tmp6
tmp41 = libdevice.tanh(tmp40)
tmp42 = tmp41 * tmp9
tmp43 = tmp37 * tmp42
tmp44 = tmp36 * tmp9
tmp45 = tmp43 - tmp44
tmp46 = triton_helpers.maximum(tmp35, tmp45)
tmp47 = tmp13 - tmp46
tmp48 = tl_math.exp(tmp47)
tmp49 = tmp2 * tmp48
tmp50 = tmp23 - tmp46
tmp51 = tl_math.exp(tmp50)
tmp52 = tmp15 * tmp51
tmp53 = tmp49 + tmp52
tmp54 = tmp34 - tmp46
tmp55 = tl_math.exp(tmp54)
tmp56 = tmp26 * tmp55
tmp57 = tmp53 + tmp56
tmp58 = tmp45 - tmp46
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp37 * tmp59
tmp61 = tmp57 + tmp60
tmp62 = tmp0 * tmp10
tmp63 = tmp14 * tmp20
tmp64 = tmp62 + tmp63
tmp65 = tmp25 * tmp31
tmp66 = tmp64 + tmp65
tmp67 = tmp36 * tmp42
tmp68 = tmp66 + tmp67
tmp69 = tmp68 - tmp46
tmp70 = tl_math.exp(tmp69)
tmp71 = tmp70 + tmp61
tmp72 = tl_math.log(tmp71)
tmp73 = tmp69 - tmp72
tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK])
tmp76 = tl.sum(tmp74, 1)[:, None]
tmp77 = tmp76 / tmp9
tmp78 = -tmp77
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp78, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/i7/ci7wfxaextt4cz2wvuqp24v6te3ikcbwiocamjs25ysoohh6nywz.py
# Topologically Sorted Source Nodes: [raw_scores_2, pow_1, mean, lgt_reg], Original ATen: [aten.div, aten.pow, aten.mean, aten.mul]
# Source node to ATen node mapping:
# lgt_reg => mul
# mean => mean
# pow_1 => pow_1
# raw_scores_2 => div
# Graph fragment:
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, 2.0), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%div, 2.0), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.05), kwargs = {})
triton_per_fused_div_mean_mul_pow_1 = async_compile.triton('triton_per_fused_div_mean_mul_pow_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_mul_pow_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_div_mean_mul_pow_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.sum(tmp4, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tmp9 = 0.05
tmp10 = tmp8 * tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp10, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm]
extern_kernels.mm(arg0_1, arg1_1, out=buf0)
del arg0_1
del arg1_1
buf4 = empty_strided_cuda((), (), torch.float32)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [raw_scores_2, mul_1, tanh, x_clip, max_1, mul_3, pos_scores, pos_shiftexp, sub_3, exp_1, sub_2, exp, mul_6, neg_sumexp, add, all_logsumexp, nce_scores, mean_1, nce_scores_1], Original ATen: [aten.div, aten.mul, aten.tanh, aten.max, aten.sum, aten.sub, aten.exp, aten.add, aten.log, aten.mean, aten.neg]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0.run(buf6, arg2_1, buf0, 1, 4, grid=grid(1), stream=stream0)
del arg2_1
buf5 = empty_strided_cuda((), (), torch.float32)
buf7 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [raw_scores_2, pow_1, mean, lgt_reg], Original ATen: [aten.div, aten.pow, aten.mean, aten.mul]
triton_per_fused_div_mean_mul_pow_1.run(buf7, buf0, 1, 16, grid=grid(1), stream=stream0)
del buf0
return (buf6, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn as nn
from torch import optim as optim
def tanh_clip(x, clip_val=10.0):
"""
soft clip values to the range [-clip_val, +clip_val]
"""
if clip_val is not None:
x_clip = clip_val * torch.tanh(1.0 / clip_val * x)
else:
x_clip = x
return x_clip
class AmdimNCELoss(nn.Module):
"""
Compute the NCE scores for predicting r_src->r_trg.
"""
def __init__(self, tclip):
super().__init__()
self.tclip = tclip
def forward(self, anchor_representations, positive_representations,
mask_mat):
"""
Args:
anchor_representations: (batch_size, emb_dim)
positive_representations: (emb_dim, n_batch * w* h) (ie: nb_feat_vectors x embedding_dim)
mask_mat: (n_batch_gpu, n_batch)
Output:
raw_scores: (n_batch_gpu, n_locs)
nce_scores: (n_batch_gpu, n_locs)
lgt_reg : scalar
"""
r_src = anchor_representations
r_trg = positive_representations
batch_size, emb_dim = r_src.size()
nb_feat_vectors = r_trg.size(1) // batch_size
mask_pos = mask_mat.unsqueeze(dim=2).expand(-1, -1, nb_feat_vectors
).float()
mask_neg = 1.0 - mask_pos
raw_scores = torch.mm(r_src, r_trg).float()
raw_scores = raw_scores.reshape(batch_size, batch_size, nb_feat_vectors
)
raw_scores = raw_scores / emb_dim ** 0.5
lgt_reg = 0.05 * (raw_scores ** 2.0).mean()
raw_scores = tanh_clip(raw_scores, clip_val=self.tclip)
"""
pos_scores includes scores for all the positive samples
neg_scores includes scores for all the negative samples, with
scores for positive samples set to the min score (-self.tclip here)
"""
pos_scores = (mask_pos * raw_scores).sum(dim=1)
neg_scores = mask_neg * raw_scores - self.tclip * mask_pos
neg_scores = neg_scores.reshape(batch_size, -1)
mask_neg = mask_neg.reshape(batch_size, -1)
neg_maxes = torch.max(neg_scores, dim=1, keepdim=True)[0]
neg_sumexp = (mask_neg * torch.exp(neg_scores - neg_maxes)).sum(dim
=1, keepdim=True)
all_logsumexp = torch.log(torch.exp(pos_scores - neg_maxes) +
neg_sumexp)
pos_shiftexp = pos_scores - neg_maxes
nce_scores = pos_shiftexp - all_logsumexp
nce_scores = -nce_scores.mean()
return nce_scores, lgt_reg
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'tclip': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn as nn
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = 0.5
tmp5 = tmp3 * tmp4
tmp6 = 0.25
tmp7 = tmp5 * tmp6
tmp8 = libdevice.tanh(tmp7)
tmp9 = 4.0
tmp10 = tmp8 * tmp9
tmp11 = tmp2 * tmp10
tmp12 = tmp0 * tmp9
tmp13 = tmp11 - tmp12
tmp15 = tmp1 - tmp14
tmp17 = tmp16 * tmp4
tmp18 = tmp17 * tmp6
tmp19 = libdevice.tanh(tmp18)
tmp20 = tmp19 * tmp9
tmp21 = tmp15 * tmp20
tmp22 = tmp14 * tmp9
tmp23 = tmp21 - tmp22
tmp24 = triton_helpers.maximum(tmp13, tmp23)
tmp26 = tmp1 - tmp25
tmp28 = tmp27 * tmp4
tmp29 = tmp28 * tmp6
tmp30 = libdevice.tanh(tmp29)
tmp31 = tmp30 * tmp9
tmp32 = tmp26 * tmp31
tmp33 = tmp25 * tmp9
tmp34 = tmp32 - tmp33
tmp35 = triton_helpers.maximum(tmp24, tmp34)
tmp37 = tmp1 - tmp36
tmp39 = tmp38 * tmp4
tmp40 = tmp39 * tmp6
tmp41 = libdevice.tanh(tmp40)
tmp42 = tmp41 * tmp9
tmp43 = tmp37 * tmp42
tmp44 = tmp36 * tmp9
tmp45 = tmp43 - tmp44
tmp46 = triton_helpers.maximum(tmp35, tmp45)
tmp47 = tmp13 - tmp46
tmp48 = tl_math.exp(tmp47)
tmp49 = tmp2 * tmp48
tmp50 = tmp23 - tmp46
tmp51 = tl_math.exp(tmp50)
tmp52 = tmp15 * tmp51
tmp53 = tmp49 + tmp52
tmp54 = tmp34 - tmp46
tmp55 = tl_math.exp(tmp54)
tmp56 = tmp26 * tmp55
tmp57 = tmp53 + tmp56
tmp58 = tmp45 - tmp46
tmp59 = tl_math.exp(tmp58)
tmp60 = tmp37 * tmp59
tmp61 = tmp57 + tmp60
tmp62 = tmp0 * tmp10
tmp63 = tmp14 * tmp20
tmp64 = tmp62 + tmp63
tmp65 = tmp25 * tmp31
tmp66 = tmp64 + tmp65
tmp67 = tmp36 * tmp42
tmp68 = tmp66 + tmp67
tmp69 = tmp68 - tmp46
tmp70 = tl_math.exp(tmp69)
tmp71 = tmp70 + tmp61
tmp72 = tl_math.log(tmp71)
tmp73 = tmp69 - tmp72
tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK])
tmp76 = tl.sum(tmp74, 1)[:, None]
tmp77 = tmp76 / tmp9
tmp78 = -tmp77
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp78, None)
@triton.jit
def triton_per_fused_div_mean_mul_pow_1(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.sum(tmp4, 1)[:, None]
tmp7 = 16.0
tmp8 = tmp6 / tmp7
tmp9 = 0.05
tmp10 = tmp8 * tmp9
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp10, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(arg0_1, arg1_1, out=buf0)
del arg0_1
del arg1_1
buf4 = empty_strided_cuda((), (), torch.float32)
buf6 = buf4
del buf4
get_raw_stream(0)
triton_per_fused_add_div_exp_log_max_mean_mul_neg_sub_sum_tanh_0[grid
(1)](buf6, arg2_1, buf0, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del arg2_1
buf5 = empty_strided_cuda((), (), torch.float32)
buf7 = buf5
del buf5
triton_per_fused_div_mean_mul_pow_1[grid(1)](buf7, buf0, 1, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del buf0
return buf6, buf7
def tanh_clip(x, clip_val=10.0):
"""
soft clip values to the range [-clip_val, +clip_val]
"""
if clip_val is not None:
x_clip = clip_val * torch.tanh(1.0 / clip_val * x)
else:
x_clip = x
return x_clip
class AmdimNCELossNew(nn.Module):
"""
Compute the NCE scores for predicting r_src->r_trg.
"""
def __init__(self, tclip):
super().__init__()
self.tclip = tclip
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
|
oke-aditya/pytorch-lightning-bolts
|
AmdimNCELoss
| false | 7,367 |
[
"Apache-2.0"
] | 1 |
268df20bb442e7385b709b1488d37fd2767aba3c
|
https://github.com/oke-aditya/pytorch-lightning-bolts/tree/268df20bb442e7385b709b1488d37fd2767aba3c
|
ConditionTime
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/2p/c2petxwjleg3lstqj5dww33hsyirxtuvcvvszujuzdtq6anolgyi.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %repeat], 2), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = (-4) + x1
tmp10 = tmp1 == tmp9
tmp11 = 1.0
tmp12 = 0.0
tmp13 = tl.where(tmp10, tmp11, tmp12)
tmp14 = tmp13 * tmp11
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp6, tmp14, tmp15)
tmp17 = tl.where(tmp4, tmp5, tmp16)
tl.store(out_ptr0 + (x3), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 4, 4), (512, 128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 2048, grid=grid(2048), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn as nn
def condition_time(x, i=0, size=(12, 16), seq_len=15):
"""create one hot encoded time image-layers, i in [1, seq_len]"""
assert i < seq_len
times = torch.eye(seq_len, dtype=x.dtype, device=x.device)[i].unsqueeze(-1
).unsqueeze(-1)
ones = torch.ones(1, *size, dtype=x.dtype, device=x.device)
return times * ones
class ConditionTime(nn.Module):
"""Condition Time on a stack of images, adds `horizon` channels to image"""
def __init__(self, horizon, ch_dim=2, num_dims=5):
super().__init__()
self.horizon = horizon
self.ch_dim = ch_dim
self.num_dims = num_dims
def forward(self, x, fstep=0):
"""x stack of images, fsteps"""
if self.num_dims == 5:
bs, seq_len, ch, h, w = x.shape
ct = condition_time(x, fstep, (h, w), seq_len=self.horizon).repeat(
bs, seq_len, 1, 1, 1)
else:
bs, h, w, ch = x.shape
ct = condition_time(x, fstep, (h, w), seq_len=self.horizon).repeat(
bs, 1, 1, 1)
ct = ct.permute(0, 2, 3, 1)
x = torch.cat([x, ct], dim=self.ch_dim)
assert x.shape[self.ch_dim] == ch + self.horizon
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'horizon': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = -4 + x1
tmp10 = tmp1 == tmp9
tmp11 = 1.0
tmp12 = 0.0
tmp13 = tl.where(tmp10, tmp11, tmp12)
tmp14 = tmp13 * tmp11
tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype)
tmp16 = tl.where(tmp6, tmp14, tmp15)
tmp17 = tl.where(tmp4, tmp5, tmp16)
tl.store(out_ptr0 + x3, tmp17, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 4, 4), (512, 128, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(2048)](arg0_1, buf0, 2048, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
def condition_time(x, i=0, size=(12, 16), seq_len=15):
"""create one hot encoded time image-layers, i in [1, seq_len]"""
assert i < seq_len
times = torch.eye(seq_len, dtype=x.dtype, device=x.device)[i].unsqueeze(-1
).unsqueeze(-1)
ones = torch.ones(1, *size, dtype=x.dtype, device=x.device)
return times * ones
class ConditionTimeNew(nn.Module):
"""Condition Time on a stack of images, adds `horizon` channels to image"""
def __init__(self, horizon, ch_dim=2, num_dims=5):
super().__init__()
self.horizon = horizon
self.ch_dim = ch_dim
self.num_dims = num_dims
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
openclimatefix/MetNet
|
ConditionTime
| false | 7,368 |
[
"MIT"
] | 1 |
06eed550e93da6325641958b0d36c15adde1d928
|
https://github.com/openclimatefix/MetNet/tree/06eed550e93da6325641958b0d36c15adde1d928
|
_ImpalaBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/o7/co7yez5qzvz5ywybvk4vlzzmoafzrb3epifmaj33nsuv2yxwmypv.py
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
# Source node to ATen node mapping:
# x_1 => _low_memory_max_pool2d_with_offsets, getitem_1
# x_2 => relu
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_relu_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 2) % 2
x0 = xindex % 2
x4 = (xindex // 2)
x3 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x0)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x4)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp12 = 2*x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x4)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + (2*x0)
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x4)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2*x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x4)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + ((2*x0) + (8*x4)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x4)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + (2*x1)
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x4)), tmp43 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x4)), tmp46 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x4)), tmp49 & xmask, eviction_policy='evict_last', other=float("-inf"))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tl.full([1], 0, tl.int32)
tmp78 = triton_helpers.maximum(tmp77, tmp51)
tl.store(out_ptr0 + (x3), tmp51, xmask)
tl.store(out_ptr1 + (x3), tmp76, xmask)
tl.store(out_ptr2 + (x3), tmp78, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qv/cqvxbxuijiou474kzt3mgl6qbvm5mxnfuihqzhmr6kuqzjxfuhb4.py
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_3 => convolution_1
# x_4 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/bu/cbu6uxh3aqhltx43xtnaawqn5gfieybp3xlbr52mddgu2iyazdwt.py
# Topologically Sorted Source Nodes: [x_5, x_6, x_7], Original ATen: [aten.convolution, aten.add, aten.relu]
# Source node to ATen node mapping:
# x_5 => convolution_2
# x_6 => add
# x_7 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, %getitem), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
triton_poi_fused_add_convolution_relu_3 = async_compile.triton('triton_poi_fused_add_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_relu_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/xg/cxgrg2abpwtygxb5gswaupodpqah65wppykemsbre6vd3xobmjvc.py
# Topologically Sorted Source Nodes: [x_5, x_6, x_10, x_11], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# x_10 => convolution_4
# x_11 => add_1
# x_5 => convolution_2
# x_6 => add
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, %getitem), kwargs = {})
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_4, %add), kwargs = {})
triton_poi_fused_add_convolution_4 = async_compile.triton('triton_poi_fused_add_convolution_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp2 + tmp7
tl.store(in_out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.int8)
buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.max_pool2d_with_indices, aten.relu]
triton_poi_fused_max_pool2d_with_indices_relu_1.run(buf1, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 2, 2), (16, 4, 2, 1))
buf6 = buf5; del buf5 # reuse
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf6, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 2, 2), (16, 4, 2, 1))
buf8 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5, x_6, x_7], Original ATen: [aten.convolution, aten.add, aten.relu]
triton_poi_fused_add_convolution_relu_3.run(buf7, primals_7, buf2, buf8, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 2, 2), (16, 4, 2, 1))
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf10, primals_9, 64, grid=grid(64), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 2, 2), (16, 4, 2, 1))
buf12 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [x_5, x_6, x_10, x_11], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_4.run(buf12, primals_11, buf7, primals_7, buf2, 64, grid=grid(64), stream=stream0)
del buf2
del buf7
del primals_11
del primals_7
return (buf12, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf4, buf6, buf8, buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class _ImpalaResBlock(nn.Module):
def __init__(self, n_channels: 'int'):
super().__init__()
self.n_channels = n_channels
kernel_size = 3
padding = 1
self.relu = nn.ReLU()
self.relu_inplace = nn.ReLU()
self.conv1 = nn.Conv2d(n_channels, n_channels, kernel_size, padding
=padding)
self.conv2 = nn.Conv2d(n_channels, n_channels, kernel_size, padding
=padding)
def forward(self, inputs):
x = self.relu(inputs)
x = self.conv1(x)
x = self.relu_inplace(x)
x = self.conv2(x)
x += inputs
return x
class _ImpalaBlock(nn.Module):
def __init__(self, n_channels_in: 'int', n_channels_out: 'int'):
super().__init__()
self.n_channels_in = n_channels_in
self.n_channels_out = n_channels_out
kernel_size = 3
padding = 1
self.conv1 = nn.Conv2d(n_channels_in, n_channels_out, kernel_size,
padding=padding)
self.pool = nn.MaxPool2d(kernel_size, stride=2, padding=padding)
self.res1 = _ImpalaResBlock(n_channels_out)
self.res2 = _ImpalaResBlock(n_channels_out)
def forward(self, x):
x = self.conv1(x)
x = self.pool(x)
x = self.res1(x)
x = self.res2(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_channels_in': 4, 'n_channels_out': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0,
out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2 % 2
x0 = xindex % 2
x4 = xindex // 2
x3 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x4), tmp10 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp12 = 2 * x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x4), tmp16 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + 2 * x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x4), tmp23 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 * x1
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp29 & tmp9
tmp31 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x4), tmp30 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = tmp29 & tmp15
tmp34 = tl.load(in_ptr0 + (2 * x0 + 8 * x4), tmp33 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp35 = triton_helpers.maximum(tmp34, tmp32)
tmp36 = tmp29 & tmp22
tmp37 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x4), tmp36 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp38 = triton_helpers.maximum(tmp37, tmp35)
tmp39 = 1 + 2 * x1
tmp40 = tmp39 >= tmp1
tmp41 = tmp39 < tmp3
tmp42 = tmp40 & tmp41
tmp43 = tmp42 & tmp9
tmp44 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x4), tmp43 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp38)
tmp46 = tmp42 & tmp15
tmp47 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x4), tmp46 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = tmp42 & tmp22
tmp50 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x4), tmp49 & xmask,
eviction_policy='evict_last', other=float('-inf'))
tmp51 = triton_helpers.maximum(tmp50, tmp48)
tmp52 = tmp17 > tmp11
tmp53 = tl.full([1], 1, tl.int8)
tmp54 = tl.full([1], 0, tl.int8)
tmp55 = tl.where(tmp52, tmp53, tmp54)
tmp56 = tmp24 > tmp18
tmp57 = tl.full([1], 2, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp31 > tmp25
tmp60 = tl.full([1], 3, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp34 > tmp32
tmp63 = tl.full([1], 4, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp37 > tmp35
tmp66 = tl.full([1], 5, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp44 > tmp38
tmp69 = tl.full([1], 6, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp47 > tmp45
tmp72 = tl.full([1], 7, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp50 > tmp48
tmp75 = tl.full([1], 8, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tl.full([1], 0, tl.int32)
tmp78 = triton_helpers.maximum(tmp77, tmp51)
tl.store(out_ptr0 + x3, tmp51, xmask)
tl.store(out_ptr1 + x3, tmp76, xmask)
tl.store(out_ptr2 + x3, tmp78, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_convolution_relu_3(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_convolution_4(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp2 + tmp7
tl.store(in_out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.int8)
buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused_max_pool2d_with_indices_relu_1[grid(64)](buf1,
buf2, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf5 = extern_kernels.convolution(buf4, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 4, 2, 2), (16, 4, 2, 1))
buf6 = buf5
del buf5
triton_poi_fused_convolution_relu_2[grid(64)](buf6, primals_5, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 2, 2), (16, 4, 2, 1))
buf8 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
triton_poi_fused_add_convolution_relu_3[grid(64)](buf7, primals_7,
buf2, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 2, 2), (16, 4, 2, 1))
buf10 = buf9
del buf9
triton_poi_fused_convolution_relu_2[grid(64)](buf10, primals_9, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_9
buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 4, 2, 2), (16, 4, 2, 1))
buf12 = buf11
del buf11
triton_poi_fused_add_convolution_4[grid(64)](buf12, primals_11,
buf7, primals_7, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf2
del buf7
del primals_11
del primals_7
return (buf12, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, buf1, buf3, buf4, buf6, buf8, buf10)
class _ImpalaResBlock(nn.Module):
def __init__(self, n_channels: 'int'):
super().__init__()
self.n_channels = n_channels
kernel_size = 3
padding = 1
self.relu = nn.ReLU()
self.relu_inplace = nn.ReLU()
self.conv1 = nn.Conv2d(n_channels, n_channels, kernel_size, padding
=padding)
self.conv2 = nn.Conv2d(n_channels, n_channels, kernel_size, padding
=padding)
def forward(self, inputs):
x = self.relu(inputs)
x = self.conv1(x)
x = self.relu_inplace(x)
x = self.conv2(x)
x += inputs
return x
class _ImpalaBlockNew(nn.Module):
def __init__(self, n_channels_in: 'int', n_channels_out: 'int'):
super().__init__()
self.n_channels_in = n_channels_in
self.n_channels_out = n_channels_out
kernel_size = 3
padding = 1
self.conv1 = nn.Conv2d(n_channels_in, n_channels_out, kernel_size,
padding=padding)
self.pool = nn.MaxPool2d(kernel_size, stride=2, padding=padding)
self.res1 = _ImpalaResBlock(n_channels_out)
self.res2 = _ImpalaResBlock(n_channels_out)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.res1.conv1.weight
primals_5 = self.res1.conv1.bias
primals_6 = self.res1.conv2.weight
primals_7 = self.res1.conv2.bias
primals_8 = self.res2.conv1.weight
primals_9 = self.res2.conv1.bias
primals_10 = self.res2.conv2.weight
primals_11 = self.res2.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
nrfulton/vsrl-framework
|
_ImpalaBlock
| false | 7,369 |
[
"MIT"
] | 1 |
c778824b3285e3e994a4c5846c7b1c2ac03c669b
|
https://github.com/nrfulton/vsrl-framework/tree/c778824b3285e3e994a4c5846c7b1c2ac03c669b
|
MILLR
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/hj/chjyxthnzrs73ha46hvtenecvp5ah45h7qgnlfwqncgkfrqqsj65.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/gt/cgtftm3ylp7qfttvxomzpetwvamrrbiunk5krcwc6yk2fwawxwru.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
# Source node to ATen node mapping:
# max_1 => max_1
# Graph fragment:
# %max_1 : [num_users=1] = call_function[target=torch.ops.aten.max.dim](args = (%squeeze, -1), kwargs = {})
triton_poi_fused_max_1 = async_compile.triton('triton_poi_fused_max_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_sigmoid_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
triton_poi_fused_max_1.run(buf1, buf2, 4, grid=grid(4), stream=stream0)
return (reinterpret_tensor(buf2, (4, 1), (1, 1), 0), reinterpret_tensor(buf1, (4, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
from torch import nn
import torch as tc
from sklearn.metrics import *
from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
class myDataset(torch.utils.data.Dataset):
def __init__(self, x, y):
self.x = x
self.y = y
def __len__(self):
return len(self.y)
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
class MILLR(tc.nn.Module):
def __init__(self, input_dim, flight_length, device, aggregation=
'maxpool', output_resize=False):
super(MILLR, self).__init__()
self.fc = nn.Linear(input_dim, 1)
self.sigmoid = nn.Sigmoid()
self.flight_length = flight_length
self.D = input_dim
self.device = device
self.task = 'binary'
self.threshold = 0.5
self.agg = aggregation
self.output_resize = output_resize
def forward(self, x, train=True):
_N, _, _ = x.size()
self.pi = self.sigmoid(self.fc(x)).squeeze()
self.proba_time = self.pi
if self.agg == 'mean':
p = tc.mean(self.pi, axis=-1)
elif self.agg == 'maxpool':
p = tc.max(self.pi, dim=-1)[0]
p = p.view(-1, 1)
return p
def get_feature_importance(self, columns, n_top=5):
coeffs = self.fc.weight.flatten().detach().numpy()
sorted_feat_idx = np.argsort(coeffs)[::-1]
sorted_columns = columns[sorted_feat_idx[:n_top]]
top_values = coeffs[sorted_feat_idx[:n_top]]
return sorted_columns, top_values
def cross_time_steps_loss(self, Pi):
diff = (Pi[:, :-1] - Pi[:, 1:]) ** 2
return tc.mean(tc.mean(diff, axis=-1))
def train_LR(self, X_train, y_train, X_val, y_val, batch_size,
print_every_epochs=5, l2=0.001, learning_rate=0.001,
use_stratified_batch_size=True, verbose=1, num_epochs=100,
optimizer='adam', momentum=0.99):
self.train()
if 'cuda' in self.device:
self
else:
self.cpu()
self.batch_size = batch_size
criterion = nn.BCELoss()
if optimizer == 'adam':
optimizer = tc.optim.Adam(self.parameters(), lr=learning_rate,
weight_decay=l2)
else:
optimizer = tc.optim.SGD(self.parameters(), momentum=momentum,
lr=learning_rate, weight_decay=l2)
hist = np.zeros(num_epochs)
val_hist = np.zeros(num_epochs)
b_acc = np.zeros(num_epochs)
val_b_acc = np.zeros(num_epochs)
f1 = np.zeros(num_epochs)
val_f1 = np.zeros(num_epochs)
if not tc.is_tensor(X_train):
X_train = tc.Tensor(X_train)
if not tc.is_tensor(y_train):
y_train = tc.Tensor(y_train.flatten())
if X_val is not None:
if not tc.is_tensor(X_val):
X_val = tc.Tensor(X_val)
if not tc.is_tensor(y_val):
y_val = tc.Tensor(y_val)
data_val = myDataset(X_val, y_val)
data_train = myDataset(X_train, y_train)
if use_stratified_batch_size is False:
None
dataloader_train = DataLoader(data_train, batch_size=self.
batch_size, shuffle=True)
else:
None
weights = []
for label in tc.unique(y_train):
count = len(tc.where(y_train == label)[0])
weights.append(1 / count)
weights = tc.tensor(weights)
samples_weights = weights[y_train.type(tc.LongTensor)]
sampler = WeightedRandomSampler(samples_weights, len(
samples_weights), replacement=True)
dataloader_train = DataLoader(data_train, batch_size=self.
batch_size, sampler=sampler)
if X_val is not None:
dataloader_val = DataLoader(data_val, batch_size=self.
batch_size, shuffle=False)
try:
for epoch in tqdm(range(num_epochs)):
batch_acc = []
batch_val_acc = []
batch_f1 = []
batch_val_f1 = []
for iteration, (batch_x, batch_y) in enumerate(dataloader_train
):
batch_x, batch_y = batch_x, batch_y
if epoch == 0 and iteration == 0:
for c in tc.unique(y_train):
None
outputs = self.forward(batch_x)
g_loss = self.cross_time_steps_loss(self.pi)
loss = criterion(outputs.flatten(), batch_y.view(-1).
flatten()) + g_loss
hist[epoch] = loss.item()
if 'cuda' in self.device:
temp_outpouts = (outputs.cpu().detach().numpy() >
self.threshold).astype(int)
y_batch = batch_y.view(-1).cpu().detach().numpy()
b_acc[epoch] = balanced_accuracy_score(y_batch,
temp_outpouts)
else:
temp_outpouts = (outputs.detach().numpy() > self.
threshold).astype(int)
y_batch = batch_y.view(-1).detach().numpy()
b_acc[epoch] = balanced_accuracy_score(y_batch,
temp_outpouts)
batch_acc.append(b_acc[epoch])
batch_f1.append(f1_score(y_batch, temp_outpouts,
average='binary'))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if X_val is not None:
with tc.no_grad():
mini_loss = []
for batch_X_val, batch_y_val in dataloader_val:
batch_X_val, batch_y_val = (batch_X_val,
batch_y_val)
self.valYhat = self.forward(batch_X_val)
g_loss_val = self.cross_time_steps_loss(self.pi
)
val_loss = criterion(self.valYhat,
batch_y_val.flatten()) + g_loss_val
mini_loss.append(val_loss.item())
if self.task == 'binary':
if 'cuda' in self.device:
temp_out_y = (self.valYhat.cpu().detach
().numpy() > self.threshold).astype(int
)
y_val_batch = batch_y_val.view(-1).cpu(
).detach().numpy()
val_b_acc[epoch] = balanced_accuracy_score(
y_val_batch, temp_out_y)
else:
temp_out_y = (self.valYhat.detach().
numpy() > self.threshold).astype(int)
y_val_batch = batch_y_val.view(-1).detach(
).numpy()
val_b_acc[epoch] = balanced_accuracy_score(
y_val_batch, temp_out_y)
batch_val_acc.append(val_b_acc[epoch])
batch_val_f1.append(f1_score(
y_val_batch, temp_out_y, average=
'binary'))
val_hist[epoch] = np.mean(mini_loss)
if verbose == 1:
if self.task == 'binary':
if epoch % 10 == 0:
None
None
None
if X_val is not None:
None
None
None
elif epoch % print_every_epochs == 0:
None
if self.task == 'binary':
b_acc[epoch] = np.mean(batch_acc)
val_b_acc[epoch] = np.mean(batch_val_acc)
f1[epoch] = np.mean(batch_f1)
val_f1[epoch] = np.mean(batch_val_f1)
except KeyboardInterrupt:
self.cpu()
self.device = 'cpu'
self.eval()
self.x_train = X_train
self.x_test = X_val
self.hist = hist
self.val_hist = val_hist
except:
raise
self.cpu()
self.device = 'cpu'
self.eval()
self.x_train = X_train
self.x_test = X_val
self.hist = hist
self.val_hist = val_hist
def fit(self, **kw):
self.train_LR(**kw)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'flight_length': 4, 'device': 0}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
from torch import nn
import torch as tc
from sklearn.metrics import *
from torch.utils.data import DataLoader
from torch.utils.data import WeightedRandomSampler
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 1), (4, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_sigmoid_0[grid(16)](buf1, primals_3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_max_1[grid(4)](buf1, buf2, 4, XBLOCK=4, num_warps=
1, num_stages=1)
return reinterpret_tensor(buf2, (4, 1), (1, 1), 0), reinterpret_tensor(buf1
, (4, 4), (4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), buf1
class myDataset(torch.utils.data.Dataset):
def __init__(self, x, y):
self.x = x
self.y = y
def __len__(self):
return len(self.y)
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
class MILLRNew(tc.nn.Module):
def __init__(self, input_dim, flight_length, device, aggregation=
'maxpool', output_resize=False):
super(MILLRNew, self).__init__()
self.fc = nn.Linear(input_dim, 1)
self.sigmoid = nn.Sigmoid()
self.flight_length = flight_length
self.D = input_dim
self.device = device
self.task = 'binary'
self.threshold = 0.5
self.agg = aggregation
self.output_resize = output_resize
def get_feature_importance(self, columns, n_top=5):
coeffs = self.fc.weight.flatten().detach().numpy()
sorted_feat_idx = np.argsort(coeffs)[::-1]
sorted_columns = columns[sorted_feat_idx[:n_top]]
top_values = coeffs[sorted_feat_idx[:n_top]]
return sorted_columns, top_values
def cross_time_steps_loss(self, Pi):
diff = (Pi[:, :-1] - Pi[:, 1:]) ** 2
return tc.mean(tc.mean(diff, axis=-1))
def train_LR(self, X_train, y_train, X_val, y_val, batch_size,
print_every_epochs=5, l2=0.001, learning_rate=0.001,
use_stratified_batch_size=True, verbose=1, num_epochs=100,
optimizer='adam', momentum=0.99):
self.train()
if 'cuda' in self.device:
self
else:
self.cpu()
self.batch_size = batch_size
criterion = nn.BCELoss()
if optimizer == 'adam':
optimizer = tc.optim.Adam(self.parameters(), lr=learning_rate,
weight_decay=l2)
else:
optimizer = tc.optim.SGD(self.parameters(), momentum=momentum,
lr=learning_rate, weight_decay=l2)
hist = np.zeros(num_epochs)
val_hist = np.zeros(num_epochs)
b_acc = np.zeros(num_epochs)
val_b_acc = np.zeros(num_epochs)
f1 = np.zeros(num_epochs)
val_f1 = np.zeros(num_epochs)
if not tc.is_tensor(X_train):
X_train = tc.Tensor(X_train)
if not tc.is_tensor(y_train):
y_train = tc.Tensor(y_train.flatten())
if X_val is not None:
if not tc.is_tensor(X_val):
X_val = tc.Tensor(X_val)
if not tc.is_tensor(y_val):
y_val = tc.Tensor(y_val)
data_val = myDataset(X_val, y_val)
data_train = myDataset(X_train, y_train)
if use_stratified_batch_size is False:
None
dataloader_train = DataLoader(data_train, batch_size=self.
batch_size, shuffle=True)
else:
None
weights = []
for label in tc.unique(y_train):
count = len(tc.where(y_train == label)[0])
weights.append(1 / count)
weights = tc.tensor(weights)
samples_weights = weights[y_train.type(tc.LongTensor)]
sampler = WeightedRandomSampler(samples_weights, len(
samples_weights), replacement=True)
dataloader_train = DataLoader(data_train, batch_size=self.
batch_size, sampler=sampler)
if X_val is not None:
dataloader_val = DataLoader(data_val, batch_size=self.
batch_size, shuffle=False)
try:
for epoch in tqdm(range(num_epochs)):
batch_acc = []
batch_val_acc = []
batch_f1 = []
batch_val_f1 = []
for iteration, (batch_x, batch_y) in enumerate(dataloader_train
):
batch_x, batch_y = batch_x, batch_y
if epoch == 0 and iteration == 0:
for c in tc.unique(y_train):
None
outputs = self.forward(batch_x)
g_loss = self.cross_time_steps_loss(self.pi)
loss = criterion(outputs.flatten(), batch_y.view(-1).
flatten()) + g_loss
hist[epoch] = loss.item()
if 'cuda' in self.device:
temp_outpouts = (outputs.cpu().detach().numpy() >
self.threshold).astype(int)
y_batch = batch_y.view(-1).cpu().detach().numpy()
b_acc[epoch] = balanced_accuracy_score(y_batch,
temp_outpouts)
else:
temp_outpouts = (outputs.detach().numpy() > self.
threshold).astype(int)
y_batch = batch_y.view(-1).detach().numpy()
b_acc[epoch] = balanced_accuracy_score(y_batch,
temp_outpouts)
batch_acc.append(b_acc[epoch])
batch_f1.append(f1_score(y_batch, temp_outpouts,
average='binary'))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if X_val is not None:
with tc.no_grad():
mini_loss = []
for batch_X_val, batch_y_val in dataloader_val:
batch_X_val, batch_y_val = (batch_X_val,
batch_y_val)
self.valYhat = self.forward(batch_X_val)
g_loss_val = self.cross_time_steps_loss(self.pi
)
val_loss = criterion(self.valYhat,
batch_y_val.flatten()) + g_loss_val
mini_loss.append(val_loss.item())
if self.task == 'binary':
if 'cuda' in self.device:
temp_out_y = (self.valYhat.cpu().detach
().numpy() > self.threshold).astype(int
)
y_val_batch = batch_y_val.view(-1).cpu(
).detach().numpy()
val_b_acc[epoch] = balanced_accuracy_score(
y_val_batch, temp_out_y)
else:
temp_out_y = (self.valYhat.detach().
numpy() > self.threshold).astype(int)
y_val_batch = batch_y_val.view(-1).detach(
).numpy()
val_b_acc[epoch] = balanced_accuracy_score(
y_val_batch, temp_out_y)
batch_val_acc.append(val_b_acc[epoch])
batch_val_f1.append(f1_score(
y_val_batch, temp_out_y, average=
'binary'))
val_hist[epoch] = np.mean(mini_loss)
if verbose == 1:
if self.task == 'binary':
if epoch % 10 == 0:
None
None
None
if X_val is not None:
None
None
None
elif epoch % print_every_epochs == 0:
None
if self.task == 'binary':
b_acc[epoch] = np.mean(batch_acc)
val_b_acc[epoch] = np.mean(batch_val_acc)
f1[epoch] = np.mean(batch_f1)
val_f1[epoch] = np.mean(batch_val_f1)
except KeyboardInterrupt:
self.cpu()
self.device = 'cpu'
self.eval()
self.x_train = X_train
self.x_test = X_val
self.hist = hist
self.val_hist = val_hist
except:
raise
self.cpu()
self.device = 'cpu'
self.eval()
self.x_train = X_train
self.x_test = X_val
self.hist = hist
self.val_hist = val_hist
def fit(self, **kw):
self.train_LR(**kw)
def forward(self, input_0):
primals_2 = self.fc.weight
primals_3 = self.fc.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
mhbl3/PrecursorAnalysis
|
MILLR
| false | 7,370 |
[
"MIT"
] | 1 |
aaa2fe0219ad579b9126fef9cc8594a59ae66815
|
https://github.com/mhbl3/PrecursorAnalysis/tree/aaa2fe0219ad579b9126fef9cc8594a59ae66815
|
PEG
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/gu/cguvq7dzmhomcchbxvk4mcgrc7aszgsh5ytmkbdn727ju3aina23.py
# Topologically Sorted Source Nodes: [conv2d, add], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# add => add
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 4), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution, %primals_3), kwargs = {})
triton_poi_fused_add_convolution_0 = async_compile.triton('triton_poi_fused_add_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, add], Original ATen: [aten.convolution, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_convolution_0.run(buf1, primals_2, primals_3, 256, grid=grid(256), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
class PEG(nn.Module):
def __init__(self, dim, kernel_size=3):
super().__init__()
self.proj = Residual(nn.Conv2d(dim, dim, kernel_size=kernel_size,
padding=kernel_size // 2, groups=dim, stride=1))
def forward(self, x):
return self.proj(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 3, 3), (9, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_convolution_0[grid(256)](buf1, primals_2,
primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return buf1, primals_1, primals_3
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
class PEGNew(nn.Module):
def __init__(self, dim, kernel_size=3):
super().__init__()
self.proj = Residual(nn.Conv2d(dim, dim, kernel_size=kernel_size,
padding=kernel_size // 2, groups=dim, stride=1))
def forward(self, input_0):
primals_1 = self.proj.fn.weight
primals_2 = self.proj.fn.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
onlyrico/vit-pytorch
|
PEG
| false | 7,371 |
[
"MIT"
] | 1 |
e52ac4195550faa9c3372533d325bf649f7354ad
|
https://github.com/onlyrico/vit-pytorch/tree/e52ac4195550faa9c3372533d325bf649f7354ad
|
SpatialGather_Module
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/iv/civr7hz7pwb7nd5q352sqsjvxezkx6m6jnyztaygkt2ugewh5ejx.py
# Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# probs_1 => div, exp, sum_1
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, float("-inf"))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = tmp7 * tmp1
tmp9 = tl_math.exp(tmp8)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp14 = tmp9 / tmp13
tl.store(out_ptr2 + (r1 + (16*x0)), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_per_fused__softmax_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0)
del arg0_1
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [probs_1, matmul], Original ATen: [aten._softmax, aten.bmm]
extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf3)
del arg1_1
del buf2
return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 1, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torchvision.transforms import functional as F
import torch.nn as nn
import torch.nn.functional as F
class SpatialGather_Module(nn.Module):
"""
Aggregate the context features according to the initial predicted probability distribution.
Employ the soft-weighted method to aggregate the context.
"""
def __init__(self, cls_num=0, scale=1):
super(SpatialGather_Module, self).__init__()
self.cls_num = cls_num
self.scale = scale
def forward(self, feats, probs, gt_probs=None):
batch_size, c, _h, _w = probs.size(0), probs.size(1), probs.size(2
), probs.size(3)
probs = probs.view(batch_size, c, -1)
feats = feats.view(batch_size, feats.size(1), -1)
feats = feats.permute(0, 2, 1)
probs = F.softmax(self.scale * probs, dim=2)
ocr_context = torch.matmul(probs, feats).permute(0, 2, 1).unsqueeze(3)
return ocr_context
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, float('-inf'))
tmp6 = triton_helpers.max2(tmp5, 1)[:, None]
tmp7 = tmp2 - tmp6
tmp8 = tmp7 * tmp1
tmp9 = tl_math.exp(tmp8)
tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK])
tmp12 = tl.where(xmask, tmp10, 0)
tmp13 = tl.sum(tmp12, 1)[:, None]
tmp14 = tmp9 / tmp13
tl.store(out_ptr2 + (r1 + 16 * x0), tmp14, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__softmax_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK=
1, num_warps=2, num_stages=1)
del arg0_1
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64,
1, 16), 0), out=buf3)
del arg1_1
del buf2
return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 1, 4, 1), 0),
class SpatialGather_ModuleNew(nn.Module):
"""
Aggregate the context features according to the initial predicted probability distribution.
Employ the soft-weighted method to aggregate the context.
"""
def __init__(self, cls_num=0, scale=1):
super(SpatialGather_ModuleNew, self).__init__()
self.cls_num = cls_num
self.scale = scale
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
openseg-group/panoptic-deeplab
|
SpatialGather_Module
| false | 7,372 |
[
"Apache-2.0"
] | 1 |
818887597e75af77ba32185eb67d8aeac47b54fe
|
https://github.com/openseg-group/panoptic-deeplab/tree/818887597e75af77ba32185eb67d8aeac47b54fe
|
Qux
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/bj/cbjesanz52gunefusavp3qpbw4kokz2sx2jddma7ulw6vhss425c.py
# Topologically Sorted Source Nodes: [sub, sub_1], Original ATen: [aten.sub]
# Source node to ATen node mapping:
# sub => sub
# sub_1 => sub_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, 4), kwargs = {})
triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = 4.0
tmp4 = tmp2 - tmp3
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, sub_1], Original ATen: [aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class Qux(torch.nn.Module):
def __init__(self, x):
super(Qux, self).__init__()
self.x = x
def forward(self, a, b):
return a - b - self.x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'x': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 - tmp1
tmp3 = 4.0
tmp4 = tmp2 - tmp3
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sub_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK
=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class QuxNew(torch.nn.Module):
def __init__(self, x):
super(QuxNew, self).__init__()
self.x = x
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
Qux
| false | 7,373 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
Discriminator
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/oe/coeqskvavjig2xfptqbr47z2ukzhyagx4dxozc4kzjwb2ykujlu4.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x_1 => gt, mul, where
# Graph fragment:
# %add_tensor_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_3), kwargs = {})
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_3, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_3, 0.2), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_tensor_3, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr1 + (x2), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/uo/cuorclbf4h3pyyjppsftkziufkt34vxjph7yux3ly7ujjfqkt7ad.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x_3 => gt_1, mul_1, where_1
# Graph fragment:
# %add_tensor_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_5), kwargs = {})
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_2, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_2, 0.2), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_tensor_2, %mul_1), kwargs = {})
triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr1 + (x2), tmp7, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/mf/cmfwsgrlk36ejtu74rx7ipaja6rfirwmwjgqhdqter22spc6ajam.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x_5 => gt_2, mul_2, where_2
# Graph fragment:
# %add_tensor_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {})
# %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_1, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_1, 0.2), kwargs = {})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %add_tensor_1, %mul_2), kwargs = {})
triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp7, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/rh/crhvyy3w3uejbzndu7qftnyc25sndrfzlmb3i2bzpyadobz7z7bm.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (1024, 4), (4, 1))
assert_size_stride(primals_3, (1024, ), (1, ))
assert_size_stride(primals_4, (512, 1024), (1024, 1))
assert_size_stride(primals_5, (512, ), (1, ))
assert_size_stride(primals_6, (256, 512), (512, 1))
assert_size_stride(primals_7, (256, ), (1, ))
assert_size_stride(primals_8, (1, 256), (256, 1))
assert_size_stride(primals_9, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 1024), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 1024), (1024, 1), torch.bool)
buf2 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, primals_3, buf1, buf2, 4096, grid=grid(4096), stream=stream0)
del buf0
del primals_3
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.leaky_relu, aten.native_dropout]
buf3 = torch.ops.aten.native_dropout.default(buf2, 0.3, True)
del buf2
buf4 = buf3[0]
buf5 = buf3[1]
del buf3
buf6 = empty_strided_cuda((4, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf4, reinterpret_tensor(primals_4, (1024, 512), (1, 1024), 0), out=buf6)
buf7 = empty_strided_cuda((4, 512), (512, 1), torch.bool)
buf8 = empty_strided_cuda((4, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_1.run(buf6, primals_5, buf7, buf8, 2048, grid=grid(2048), stream=stream0)
del buf6
del primals_5
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.leaky_relu, aten.native_dropout]
buf9 = torch.ops.aten.native_dropout.default(buf8, 0.3, True)
del buf8
buf10 = buf9[0]
buf11 = buf9[1]
del buf9
buf12 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf10, reinterpret_tensor(primals_6, (512, 256), (1, 512), 0), out=buf12)
buf13 = empty_strided_cuda((4, 256), (256, 1), torch.bool)
buf14 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_2.run(buf12, primals_7, buf13, buf14, 1024, grid=grid(1024), stream=stream0)
del buf12
del primals_7
# Topologically Sorted Source Nodes: [x_5, x_6], Original ATen: [aten.leaky_relu, aten.native_dropout]
buf15 = torch.ops.aten.native_dropout.default(buf14, 0.3, True)
del buf14
buf16 = buf15[0]
buf17 = buf15[1]
del buf15
buf18 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf16, reinterpret_tensor(primals_8, (256, 1), (1, 256), 0), out=buf18)
buf19 = buf18; del buf18 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_3.run(buf19, primals_9, 4, grid=grid(4), stream=stream0)
del primals_9
return (buf19, primals_1, buf1, buf4, buf5, buf7, buf10, buf11, buf13, buf16, buf17, buf19, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1024, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((512, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((256, 512), (512, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
from torch import nn as nn
from torch.nn import functional as F
from torch import optim as optim
class Discriminator(nn.Module):
def __init__(self, img_shape, hidden_dim=1024):
super().__init__()
in_dim = int(np.prod(img_shape))
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.fc2 = nn.Linear(self.fc1.out_features, self.fc1.out_features // 2)
self.fc3 = nn.Linear(self.fc2.out_features, self.fc2.out_features // 2)
self.fc4 = nn.Linear(self.fc3.out_features, 1)
def forward(self, img):
x = img.view(img.size(0), -1)
x = F.leaky_relu(self.fc1(x), 0.2)
x = F.dropout(x, 0.3)
x = F.leaky_relu(self.fc2(x), 0.2)
x = F.dropout(x, 0.3)
x = F.leaky_relu(self.fc3(x), 0.2)
x = F.dropout(x, 0.3)
return torch.sigmoid(self.fc4(x))
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'img_shape': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
from torch import nn as nn
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_ptr0 + x2, None)
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, None)
tl.store(out_ptr1 + x2, tmp7, None)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_ptr0 + x2, None)
tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, None)
tl.store(out_ptr1 + x2, tmp7, None)
@triton.jit
def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp7, xmask)
@triton.jit
def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (1024, 4), (4, 1))
assert_size_stride(primals_3, (1024,), (1,))
assert_size_stride(primals_4, (512, 1024), (1024, 1))
assert_size_stride(primals_5, (512,), (1,))
assert_size_stride(primals_6, (256, 512), (512, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (1, 256), (256, 1))
assert_size_stride(primals_9, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 1024
), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 1024), (1024, 1), torch.bool)
buf2 = empty_strided_cuda((4, 1024), (1024, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(4096)](buf0, primals_3, buf1,
buf2, 4096, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_3
buf3 = torch.ops.aten.native_dropout.default(buf2, 0.3, True)
del buf2
buf4 = buf3[0]
buf5 = buf3[1]
del buf3
buf6 = empty_strided_cuda((4, 512), (512, 1), torch.float32)
extern_kernels.mm(buf4, reinterpret_tensor(primals_4, (1024, 512),
(1, 1024), 0), out=buf6)
buf7 = empty_strided_cuda((4, 512), (512, 1), torch.bool)
buf8 = empty_strided_cuda((4, 512), (512, 1), torch.float32)
triton_poi_fused_leaky_relu_1[grid(2048)](buf6, primals_5, buf7,
buf8, 2048, XBLOCK=256, num_warps=4, num_stages=1)
del buf6
del primals_5
buf9 = torch.ops.aten.native_dropout.default(buf8, 0.3, True)
del buf8
buf10 = buf9[0]
buf11 = buf9[1]
del buf9
buf12 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
extern_kernels.mm(buf10, reinterpret_tensor(primals_6, (512, 256),
(1, 512), 0), out=buf12)
buf13 = empty_strided_cuda((4, 256), (256, 1), torch.bool)
buf14 = empty_strided_cuda((4, 256), (256, 1), torch.float32)
triton_poi_fused_leaky_relu_2[grid(1024)](buf12, primals_7, buf13,
buf14, 1024, XBLOCK=256, num_warps=4, num_stages=1)
del buf12
del primals_7
buf15 = torch.ops.aten.native_dropout.default(buf14, 0.3, True)
del buf14
buf16 = buf15[0]
buf17 = buf15[1]
del buf15
buf18 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(buf16, reinterpret_tensor(primals_8, (256, 1), (1,
256), 0), out=buf18)
buf19 = buf18
del buf18
triton_poi_fused_sigmoid_3[grid(4)](buf19, primals_9, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_9
return (buf19, primals_1, buf1, buf4, buf5, buf7, buf10, buf11, buf13,
buf16, buf17, buf19, primals_8, primals_6, primals_4)
class DiscriminatorNew(nn.Module):
def __init__(self, img_shape, hidden_dim=1024):
super().__init__()
in_dim = int(np.prod(img_shape))
self.fc1 = nn.Linear(in_dim, hidden_dim)
self.fc2 = nn.Linear(self.fc1.out_features, self.fc1.out_features // 2)
self.fc3 = nn.Linear(self.fc2.out_features, self.fc2.out_features // 2)
self.fc4 = nn.Linear(self.fc3.out_features, 1)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
oke-aditya/pytorch-lightning-bolts
|
Discriminator
| false | 7,374 |
[
"Apache-2.0"
] | 1 |
268df20bb442e7385b709b1488d37fd2767aba3c
|
https://github.com/oke-aditya/pytorch-lightning-bolts/tree/268df20bb442e7385b709b1488d37fd2767aba3c
|
ResBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/qg/cqg3e6qbl457uja37r5t7mwrhshp5howpejrpt2vy5kg7sjg7kkn.py
# Topologically Sorted Source Nodes: [conv1d_1, add, out_tanh, conv1d_3, add_1, out_gate, mul], Original ATen: [aten.convolution, aten.add, aten.tanh, aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# conv1d_1 => convolution_1
# conv1d_3 => convolution_3
# mul => mul
# out_gate => sigmoid
# out_tanh => tanh
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_5, %primals_3, %primals_4, [1], [0], [1], False, [0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_3, %convolution_1), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_5, %primals_7, %primals_8, [1], [0], [1], False, [0], 1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_6, %convolution_3), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %sigmoid), kwargs = {})
triton_poi_fused_add_convolution_mul_sigmoid_tanh_0 = async_compile.triton('triton_poi_fused_add_convolution_mul_sigmoid_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_sigmoid_tanh_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_mul_sigmoid_tanh_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x4 = (xindex // 4)
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_ptr0 + (x0 + (7*x4)), xmask)
tmp1 = tl.load(in_out_ptr0 + (x3), xmask)
tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x0 + (7*x4)), xmask)
tmp7 = tl.load(in_out_ptr1 + (x3), xmask)
tmp8 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp5 = libdevice.tanh(tmp4)
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp11 = tl.sigmoid(tmp10)
tmp12 = tmp5 * tmp11
tl.store(in_out_ptr0 + (x3), tmp5, xmask)
tl.store(in_out_ptr1 + (x3), tmp11, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/us/custepuaxcgmeci6okpmedesxdvzu45qqfj6xlln2yvyowwq2gle.py
# Topologically Sorted Source Nodes: [conv1d_4, output], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# conv1d_4 => convolution_4
# output => add_2
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_9, %primals_10, [1], [0], [1], False, [0], 1), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_4, %primals_2), kwargs = {})
triton_poi_fused_add_convolution_1 = async_compile.triton('triton_poi_fused_add_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/lf/clf7hs52i4bd5d3e73uio27ntyjfqmszkbsw6dta3r6rzgeftva3.py
# Topologically Sorted Source Nodes: [skip], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# skip => convolution_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_2, %primals_11, %primals_12, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_12, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,), padding=(3,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 7), (28, 7, 1))
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_5, primals_3, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(primals_2, primals_6, stride=(1,), padding=(3,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 7), (28, 7, 1))
# Topologically Sorted Source Nodes: [conv1d_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(primals_5, primals_7, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4), (16, 4, 1))
buf2 = buf1; del buf1 # reuse
buf5 = buf4; del buf4 # reuse
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv1d_1, add, out_tanh, conv1d_3, add_1, out_gate, mul], Original ATen: [aten.convolution, aten.add, aten.tanh, aten.sigmoid, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_convolution_mul_sigmoid_tanh_0.run(buf2, buf5, buf0, primals_4, buf3, primals_8, buf6, 64, grid=grid(64), stream=stream0)
del buf0
del buf3
del primals_4
del primals_8
# Topologically Sorted Source Nodes: [conv1d_4], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_9, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4), (16, 4, 1))
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [conv1d_4, output], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_1.run(buf8, primals_10, primals_2, 64, grid=grid(64), stream=stream0)
del primals_10
# Topologically Sorted Source Nodes: [skip], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, primals_11, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 4), (16, 4, 1))
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [skip], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf10, primals_12, 64, grid=grid(64), stream=stream0)
del primals_12
return (buf8, buf10, primals_1, primals_2, primals_3, primals_5, primals_6, primals_7, primals_9, primals_11, buf2, buf5, buf6, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
class CausalConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation=1,
bias=False):
super(CausalConv1d, self).__init__()
self.padding = padding = (kernel_size - 1) * dilation
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
padding=padding, dilation=dilation, bias=bias)
def forward(self, x):
x = self.conv(x)
if self.padding != 0:
x = x[:, :, :-self.padding]
return x
class ResBlock(nn.Module):
def __init__(self, dilation, aux_channels, n_channels, skip_channels,
kernel_size, fast_inference=False):
super(ResBlock, self).__init__()
conv_dilation = 1 if fast_inference else dilation
self.filter = CausalConv1d(n_channels, n_channels, kernel_size=
kernel_size, dilation=conv_dilation)
self.gate = CausalConv1d(n_channels, n_channels, kernel_size=
kernel_size, dilation=conv_dilation)
self.aux_filter = nn.Conv1d(aux_channels, n_channels, kernel_size=1)
self.aux_gate = nn.Conv1d(aux_channels, n_channels, kernel_size=1)
if fast_inference:
self.queue = None
self.buffer_size = conv_dilation * 2 * (kernel_size - 1)
self.fast_inference = fast_inference
self.permute = nn.Conv1d(n_channels, n_channels, kernel_size=1)
self.skip = nn.Conv1d(n_channels, skip_channels, kernel_size=1)
def forward(self, x, h):
if self.fast_inference:
pass
else:
out_tanh = torch.tanh(self.filter(x) + self.aux_filter(h))
out_gate = torch.sigmoid(self.gate(x) + self.aux_gate(h))
output = self.permute(out_tanh * out_gate) + x
skip = self.skip(output)
return output, skip
def clear(self):
self.queue = None
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dilation': 1, 'aux_channels': 4, 'n_channels': 4,
'skip_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_convolution_mul_sigmoid_tanh_0(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x4 = xindex // 4
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_ptr0 + (x0 + 7 * x4), xmask)
tmp1 = tl.load(in_out_ptr0 + x3, xmask)
tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x0 + 7 * x4), xmask)
tmp7 = tl.load(in_out_ptr1 + x3, xmask)
tmp8 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tmp5 = libdevice.tanh(tmp4)
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp11 = tl.sigmoid(tmp10)
tmp12 = tmp5 * tmp11
tl.store(in_out_ptr0 + x3, tmp5, xmask)
tl.store(in_out_ptr1 + x3, tmp11, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_poi_fused_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,),
padding=(3,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 7), (28, 7, 1))
buf1 = extern_kernels.convolution(primals_5, primals_3, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
buf3 = extern_kernels.convolution(primals_2, primals_6, stride=(1,),
padding=(3,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 7), (28, 7, 1))
buf4 = extern_kernels.convolution(primals_5, primals_7, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4), (16, 4, 1))
buf2 = buf1
del buf1
buf5 = buf4
del buf4
buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_convolution_mul_sigmoid_tanh_0[grid(64)](buf2,
buf5, buf0, primals_4, buf3, primals_8, buf6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf0
del buf3
del primals_4
del primals_8
buf7 = extern_kernels.convolution(buf6, primals_9, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4), (16, 4, 1))
buf8 = buf7
del buf7
triton_poi_fused_add_convolution_1[grid(64)](buf8, primals_10,
primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_10
buf9 = extern_kernels.convolution(buf8, primals_11, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf9, (4, 4, 4), (16, 4, 1))
buf10 = buf9
del buf9
triton_poi_fused_convolution_2[grid(64)](buf10, primals_12, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_12
return (buf8, buf10, primals_1, primals_2, primals_3, primals_5,
primals_6, primals_7, primals_9, primals_11, buf2, buf5, buf6, buf8)
class CausalConv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation=1,
bias=False):
super(CausalConv1d, self).__init__()
self.padding = padding = (kernel_size - 1) * dilation
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
padding=padding, dilation=dilation, bias=bias)
def forward(self, x):
x = self.conv(x)
if self.padding != 0:
x = x[:, :, :-self.padding]
return x
class ResBlockNew(nn.Module):
def __init__(self, dilation, aux_channels, n_channels, skip_channels,
kernel_size, fast_inference=False):
super(ResBlockNew, self).__init__()
conv_dilation = 1 if fast_inference else dilation
self.filter = CausalConv1d(n_channels, n_channels, kernel_size=
kernel_size, dilation=conv_dilation)
self.gate = CausalConv1d(n_channels, n_channels, kernel_size=
kernel_size, dilation=conv_dilation)
self.aux_filter = nn.Conv1d(aux_channels, n_channels, kernel_size=1)
self.aux_gate = nn.Conv1d(aux_channels, n_channels, kernel_size=1)
if fast_inference:
self.queue = None
self.buffer_size = conv_dilation * 2 * (kernel_size - 1)
self.fast_inference = fast_inference
self.permute = nn.Conv1d(n_channels, n_channels, kernel_size=1)
self.skip = nn.Conv1d(n_channels, skip_channels, kernel_size=1)
def clear(self):
self.queue = None
def forward(self, input_0, input_1):
primals_1 = self.filter.conv.weight
primals_2 = self.gate.conv.weight
primals_3 = self.aux_filter.weight
primals_4 = self.aux_filter.bias
primals_7 = self.aux_gate.weight
primals_8 = self.aux_gate.bias
primals_9 = self.permute.weight
primals_10 = self.permute.bias
primals_11 = self.skip.weight
primals_12 = self.skip.bias
primals_5 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0], output[1]
|
oleges1/TTS
|
ResBlock
| false | 7,375 |
[
"MIT"
] | 1 |
19b389714078729fae29faf9c23112bdbe4c8dec
|
https://github.com/oleges1/TTS/tree/19b389714078729fae29faf9c23112bdbe4c8dec
|
RepeatModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/px/cpximxrunnn7xlivxg7ckdm4rpo2iaqrxs5ifae2ywvsmxn5yuti.py
# Topologically Sorted Source Nodes: [tensor, repeat], Original ATen: [aten.add, aten.repeat]
# Source node to ATen node mapping:
# repeat => repeat
# tensor => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%add, [4]), kwargs = {})
triton_poi_fused_add_repeat_0 = async_compile.triton('triton_poi_fused_add_repeat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0 % 4), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [tensor, repeat], Original ATen: [aten.add, aten.repeat]
stream0 = get_raw_stream(0)
triton_poi_fused_add_repeat_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class RepeatModule(torch.nn.Module):
def __init__(self, repeats):
super(RepeatModule, self).__init__()
self.repeats = repeats
def forward(self, tensor):
tensor = tensor + tensor
return tensor.repeat(self.repeats)
def get_inputs():
return [torch.rand([4])]
def get_init_inputs():
return [[], {'repeats': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0 % 4, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_repeat_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class RepeatModuleNew(torch.nn.Module):
def __init__(self, repeats):
super(RepeatModuleNew, self).__init__()
self.repeats = repeats
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
RepeatModule
| false | 7,376 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
Grounding
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/aw/cawte7o5l2qedgknpzshnd4zn5jxxhdbpkkqxowzkptjrvnqufl4.py
# Topologically Sorted Source Nodes: [logits_1, logits_2, squeeze], Original ATen: [aten.div, aten.add, aten.squeeze]
# Source node to ATen node mapping:
# logits_1 => div
# logits_2 => add
# squeeze => squeeze
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_8, 1.4142135623730951), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_7), kwargs = {})
# %squeeze : [num_users=1] = call_function[target=torch.ops.aten.squeeze.default](args = (%add,), kwargs = {})
triton_poi_fused_add_div_squeeze_0 = async_compile.triton('triton_poi_fused_add_div_squeeze_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_squeeze_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_squeeze_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = (xindex // 64)
x3 = xindex % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask, eviction_policy='evict_last')
tmp1 = 0.7071067811865475
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (2, 4), (4, 1))
assert_size_stride(primals_5, (2, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [Q], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [K], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logits], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 2), (8, 2, 1), 0), reinterpret_tensor(buf1, (4, 2, 4), (8, 1, 2), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logits_1, logits_2, squeeze], Original ATen: [aten.div, aten.add, aten.squeeze]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_squeeze_0.run(buf2, primals_7, buf3, 256, grid=grid(256), stream=stream0)
del buf2
del primals_7
return (buf3, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 2, 4), (8, 1, 2), 0), reinterpret_tensor(buf1, (4, 4, 2), (8, 2, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from _paritybench_helpers import _mock_config
import math
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torch as th
from torchvision.ops.boxes import *
from torchvision.transforms.functional import *
class Grounding(nn.Module):
def __init__(self, cfgT, cfgI, heads=1):
super(Grounding, self).__init__()
projection = cfgI.hidden_size // 2
self.num_attention_heads = heads
self.attention_head_size = int(projection // self.num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.Q = nn.Linear(cfgT.hidden_size, self.all_head_size)
self.K = nn.Linear(cfgI.hidden_size, self.all_head_size)
self.cfgT = cfgT
self.cfgI = cfgI
def transpose(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, encT, encI, mask):
Q = self.Q(encT)
K = self.K(encI)
Q = self.transpose(Q)
K = self.transpose(K)
logits = th.matmul(Q, K.transpose(-1, -2))
logits = logits / math.sqrt(self.attention_head_size)
logits = logits + mask
return logits.squeeze()
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'cfgT': _mock_config(hidden_size=4), 'cfgI': _mock_config(
hidden_size=4)}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from torchvision.ops.boxes import *
from torchvision.transforms.functional import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_div_squeeze_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x2 = xindex // 64
x3 = xindex % 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask, eviction_policy='evict_last')
tmp1 = 0.7071067811865475
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (2, 4), (4, 1))
assert_size_stride(primals_2, (2,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (2, 4), (4, 1))
assert_size_stride(primals_5, (2,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (16,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 2), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((16, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (16,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 2), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 2), (8, 2, 1), 0
), reinterpret_tensor(buf1, (4, 2, 4), (8, 1, 2), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_squeeze_0[grid(256)](buf2, primals_7, buf3,
256, XBLOCK=256, num_warps=4, num_stages=1)
del buf2
del primals_7
return buf3, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), reinterpret_tensor(buf0, (4, 2, 4), (8, 1, 2), 0
), reinterpret_tensor(buf1, (4, 4, 2), (8, 2, 1), 0)
class GroundingNew(nn.Module):
def __init__(self, cfgT, cfgI, heads=1):
super(GroundingNew, self).__init__()
projection = cfgI.hidden_size // 2
self.num_attention_heads = heads
self.attention_head_size = int(projection // self.num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.Q = nn.Linear(cfgT.hidden_size, self.all_head_size)
self.K = nn.Linear(cfgI.hidden_size, self.all_head_size)
self.cfgT = cfgT
self.cfgI = cfgI
def transpose(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_0, input_1, input_2):
primals_1 = self.Q.weight
primals_2 = self.Q.bias
primals_4 = self.K.weight
primals_5 = self.K.bias
primals_3 = input_0
primals_6 = input_1
primals_7 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
necla-ml/ML-Vision
|
Grounding
| false | 7,377 |
[
"BSD-3-Clause"
] | 1 |
66229b29fc0f67c75dbe6304cdb8c5e93fe0bacf
|
https://github.com/necla-ml/ML-Vision/tree/66229b29fc0f67c75dbe6304cdb8c5e93fe0bacf
|
SimpleASinModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/po/cpoegfcicyuorm7m4kiifuei33mjylvd7jlimgcjbcyazqqbkuwv.py
# Topologically Sorted Source Nodes: [add, asin], Original ATen: [aten.add, aten.asin]
# Source node to ATen node mapping:
# add => add
# asin => asin
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %asin : [num_users=1] = call_function[target=torch.ops.aten.asin.default](args = (%add,), kwargs = {})
triton_poi_fused_add_asin_0 = async_compile.triton('triton_poi_fused_add_asin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_asin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_asin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.asin(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, asin], Original ATen: [aten.add, aten.asin]
stream0 = get_raw_stream(0)
triton_poi_fused_add_asin_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleASinModule(torch.nn.Module):
def __init__(self):
super(SimpleASinModule, self).__init__()
def forward(self, a):
return torch.asin(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_asin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.asin(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_asin_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleASinModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleASinModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleASinModule
| false | 7,378 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleAvgPool1dModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/xk/cxkmworteiawp27uz6szuij56323prklcytmzy4oalfulieyhlxw.py
# Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d]
# Source node to ATen node mapping:
# avg_pool1d => avg_pool2d
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%unsqueeze, [1, 4], [1, 4]), kwargs = {})
triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [avg_pool1d], Original ATen: [aten.avg_pool2d]
stream0 = get_raw_stream(0)
triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 4, grid=grid(4), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 1), (1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleAvgPool1dModule(torch.nn.Module):
def __init__(self, kernel_size, stride=None, padding=0):
super(SimpleAvgPool1dModule, self).__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
def forward(self, inputs):
return F.avg_pool1d(inputs, self.kernel_size, padding=self.padding,
stride=self.stride)
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'kernel_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp7 = 0.25
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_0[grid(4)](arg0_1, buf0, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 1), (1, 1), 0),
class SimpleAvgPool1dModuleNew(torch.nn.Module):
def __init__(self, kernel_size, stride=None, padding=0):
super(SimpleAvgPool1dModuleNew, self).__init__()
self.kernel_size = kernel_size
self.padding = padding
self.stride = stride
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleAvgPool1dModule
| false | 7,379 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
MixtureDensityHead
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ag/cagauppfc5dyrage7yy5leg6gsn632zg5ott3n34jtilpqfqtgis.py
# Topologically Sorted Source Nodes: [elu, add, sigma_1], Original ATen: [aten.elu, aten.add]
# Source node to ATen node mapping:
# add => add
# elu => expm1, gt, mul, mul_2, where
# sigma_1 => add_1
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where, 1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 1e-15), kwargs = {})
triton_poi_fused_add_elu_0 = async_compile.triton('triton_poi_fused_add_elu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tmp8 = tmp7 + tmp3
tmp9 = 1e-15
tmp10 = tmp8 + tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pi], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigma], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [elu, add, sigma_1], Original ATen: [aten.elu, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_elu_0.run(buf1, buf2, 256, grid=grid(256), stream=stream0)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf3)
del primals_6
del primals_7
return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2, reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.distributions import Categorical
class MixtureDensityHead(nn.Module):
def __init__(self, config: 'DictConfig', **kwargs):
self.hparams = config
super().__init__()
self._build_network()
def _build_network(self):
self.pi = nn.Linear(self.hparams.input_dim, self.hparams.num_gaussian)
nn.init.normal_(self.pi.weight)
self.sigma = nn.Linear(self.hparams.input_dim, self.hparams.
num_gaussian, bias=self.hparams.sigma_bias_flag)
self.mu = nn.Linear(self.hparams.input_dim, self.hparams.num_gaussian)
nn.init.normal_(self.mu.weight)
if self.hparams.mu_bias_init is not None:
for i, bias in enumerate(self.hparams.mu_bias_init):
nn.init.constant_(self.mu.bias[i], bias)
def forward(self, x):
pi = self.pi(x)
sigma = self.sigma(x)
sigma = nn.ELU()(sigma) + 1 + 1e-15
mu = self.mu(x)
return pi, sigma, mu
def gaussian_probability(self, sigma, mu, target, log=False):
"""Returns the probability of `target` given MoG parameters `sigma` and `mu`.
Arguments:
sigma (BxGxO): The standard deviation of the Gaussians. B is the batch
size, G is the number of Gaussians, and O is the number of
dimensions per Gaussian.
mu (BxGxO): The means of the Gaussians. B is the batch size, G is the
number of Gaussians, and O is the number of dimensions per Gaussian.
target (BxI): A batch of target. B is the batch size and I is the number of
input dimensions.
Returns:
probabilities (BxG): The probability of each point in the probability
of the distribution in the corresponding sigma/mu index.
"""
target = target.expand_as(sigma)
if log:
ret = -torch.log(sigma) - 0.5 * LOG2PI - 0.5 * torch.pow((
target - mu) / sigma, 2)
else:
ret = ONEOVERSQRT2PI / sigma * torch.exp(-0.5 * ((target - mu) /
sigma) ** 2)
return ret
def log_prob(self, pi, sigma, mu, y):
log_component_prob = self.gaussian_probability(sigma, mu, y, log=True)
log_mix_prob = torch.log(nn.functional.gumbel_softmax(pi, tau=self.
hparams.softmax_temperature, dim=-1) + 1e-15)
return torch.logsumexp(log_component_prob + log_mix_prob, dim=-1)
def sample(self, pi, sigma, mu):
"""Draw samples from a MoG."""
categorical = Categorical(pi)
pis = categorical.sample().unsqueeze(1)
sample = Variable(sigma.data.new(sigma.size(0), 1).normal_())
sample = sample * sigma.gather(1, pis) + mu.gather(1, pis)
return sample
def generate_samples(self, pi, sigma, mu, n_samples=None):
if n_samples is None:
n_samples = self.hparams.n_samples
samples = []
softmax_pi = nn.functional.gumbel_softmax(pi, tau=self.hparams.
softmax_temperature, dim=-1)
assert (softmax_pi < 0).sum().item(
) == 0, 'pi parameter should not have negative'
for _ in range(n_samples):
samples.append(self.sample(softmax_pi, sigma, mu))
samples = torch.cat(samples, dim=1)
return samples
def generate_point_predictions(self, pi, sigma, mu, n_samples=None):
samples = self.generate_samples(pi, sigma, mu, n_samples)
if self.hparams.central_tendency == 'mean':
y_hat = torch.mean(samples, dim=-1)
elif self.hparams.central_tendency == 'median':
y_hat = torch.median(samples, dim=-1).values
return y_hat.unsqueeze(1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'config': _mock_config(input_dim=4, num_gaussian=4,
sigma_bias_flag=4, mu_bias_init=[4, 4])}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.autograd import Variable
from torch.distributions import Categorical
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 1.0
tmp4 = tmp0 * tmp3
tmp5 = libdevice.expm1(tmp4)
tmp6 = tmp5 * tmp3
tmp7 = tl.where(tmp2, tmp4, tmp6)
tmp8 = tmp7 + tmp3
tmp9 = 1e-15
tmp10 = tmp8 + tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_elu_0[grid(256)](buf1, buf2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf3)
del primals_6
del primals_7
return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0
), buf2, reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1
class MixtureDensityHeadNew(nn.Module):
def __init__(self, config: 'DictConfig', **kwargs):
self.hparams = config
super().__init__()
self._build_network()
def _build_network(self):
self.pi = nn.Linear(self.hparams.input_dim, self.hparams.num_gaussian)
nn.init.normal_(self.pi.weight)
self.sigma = nn.Linear(self.hparams.input_dim, self.hparams.
num_gaussian, bias=self.hparams.sigma_bias_flag)
self.mu = nn.Linear(self.hparams.input_dim, self.hparams.num_gaussian)
nn.init.normal_(self.mu.weight)
if self.hparams.mu_bias_init is not None:
for i, bias in enumerate(self.hparams.mu_bias_init):
nn.init.constant_(self.mu.bias[i], bias)
def gaussian_probability(self, sigma, mu, target, log=False):
"""Returns the probability of `target` given MoG parameters `sigma` and `mu`.
Arguments:
sigma (BxGxO): The standard deviation of the Gaussians. B is the batch
size, G is the number of Gaussians, and O is the number of
dimensions per Gaussian.
mu (BxGxO): The means of the Gaussians. B is the batch size, G is the
number of Gaussians, and O is the number of dimensions per Gaussian.
target (BxI): A batch of target. B is the batch size and I is the number of
input dimensions.
Returns:
probabilities (BxG): The probability of each point in the probability
of the distribution in the corresponding sigma/mu index.
"""
target = target.expand_as(sigma)
if log:
ret = -torch.log(sigma) - 0.5 * LOG2PI - 0.5 * torch.pow((
target - mu) / sigma, 2)
else:
ret = ONEOVERSQRT2PI / sigma * torch.exp(-0.5 * ((target - mu) /
sigma) ** 2)
return ret
def log_prob(self, pi, sigma, mu, y):
log_component_prob = self.gaussian_probability(sigma, mu, y, log=True)
log_mix_prob = torch.log(nn.functional.gumbel_softmax(pi, tau=self.
hparams.softmax_temperature, dim=-1) + 1e-15)
return torch.logsumexp(log_component_prob + log_mix_prob, dim=-1)
def sample(self, pi, sigma, mu):
"""Draw samples from a MoG."""
categorical = Categorical(pi)
pis = categorical.sample().unsqueeze(1)
sample = Variable(sigma.data.new(sigma.size(0), 1).normal_())
sample = sample * sigma.gather(1, pis) + mu.gather(1, pis)
return sample
def generate_samples(self, pi, sigma, mu, n_samples=None):
if n_samples is None:
n_samples = self.hparams.n_samples
samples = []
softmax_pi = nn.functional.gumbel_softmax(pi, tau=self.hparams.
softmax_temperature, dim=-1)
assert (softmax_pi < 0).sum().item(
) == 0, 'pi parameter should not have negative'
for _ in range(n_samples):
samples.append(self.sample(softmax_pi, sigma, mu))
samples = torch.cat(samples, dim=1)
return samples
def generate_point_predictions(self, pi, sigma, mu, n_samples=None):
samples = self.generate_samples(pi, sigma, mu, n_samples)
if self.hparams.central_tendency == 'mean':
y_hat = torch.mean(samples, dim=-1)
elif self.hparams.central_tendency == 'median':
y_hat = torch.median(samples, dim=-1).values
return y_hat.unsqueeze(1)
def forward(self, input_0):
primals_1 = self.pi.weight
primals_2 = self.pi.bias
primals_4 = self.sigma.weight
primals_5 = self.sigma.bias
primals_6 = self.mu.weight
primals_7 = self.mu.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1], output[2]
|
Actis92/pytorch_tabular
|
MixtureDensityHead
| false | 7,380 |
[
"MIT"
] | 1 |
78dabf5e7b97d8ff24db4bc83d9d0a2273941bbe
|
https://github.com/Actis92/pytorch_tabular/tree/78dabf5e7b97d8ff24db4bc83d9d0a2273941bbe
|
SimpleACosModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ku/ckuxvoxhmi6ercpm3zqehlfc3vctrl7fwhgkl4t7idy4tmzkn672.py
# Topologically Sorted Source Nodes: [add, acos], Original ATen: [aten.add, aten.acos]
# Source node to ATen node mapping:
# acos => acos
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %acos : [num_users=1] = call_function[target=torch.ops.aten.acos.default](args = (%add,), kwargs = {})
triton_poi_fused_acos_add_0 = async_compile.triton('triton_poi_fused_acos_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_acos_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_acos_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.acos(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, acos], Original ATen: [aten.add, aten.acos]
stream0 = get_raw_stream(0)
triton_poi_fused_acos_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleACosModule(torch.nn.Module):
def __init__(self):
super(SimpleACosModule, self).__init__()
def forward(self, a):
return torch.acos(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_acos_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.acos(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_acos_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleACosModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleACosModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleACosModule
| false | 7,381 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleATanModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ne/cnela3lyozhtiqn5hqe56wagkn5vzngrj3onlkngmltrgqlvhlwc.py
# Topologically Sorted Source Nodes: [add, atan], Original ATen: [aten.add, aten.atan]
# Source node to ATen node mapping:
# add => add
# atan => atan
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %atan : [num_users=1] = call_function[target=torch.ops.aten.atan.default](args = (%add,), kwargs = {})
triton_poi_fused_add_atan_0 = async_compile.triton('triton_poi_fused_add_atan_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_atan_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_atan_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.atan(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, atan], Original ATen: [aten.add, aten.atan]
stream0 = get_raw_stream(0)
triton_poi_fused_add_atan_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleATanModule(torch.nn.Module):
def __init__(self):
super(SimpleATanModule, self).__init__()
def forward(self, a):
return torch.atan(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_atan_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.atan(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_atan_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleATanModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleATanModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleATanModule
| false | 7,382 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleAddMmModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ph/cphyvqksaznjc5f5gstivhj5vszkuncctuzvaegazln3taw555sz.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, addmm], Original ATen: [aten.add, aten.addmm]
extern_kernels.addmm(buf0, arg1_1, arg2_1, alpha=1, beta=1, out=buf1)
del arg1_1
del arg2_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleAddMmModule(torch.nn.Module):
def __init__(self, alpha=1, beta=1):
super(SimpleAddMmModule, self).__init__()
self.alpha = alpha
self.beta = beta
def forward(self, a, b, c):
return (a + a).addmm(b, c)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf0, arg1_1, arg2_1, alpha=1, beta=1, out=buf1)
del arg1_1
del arg2_1
del buf0
return buf1,
class SimpleAddMmModuleNew(torch.nn.Module):
def __init__(self, alpha=1, beta=1):
super(SimpleAddMmModuleNew, self).__init__()
self.alpha = alpha
self.beta = beta
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
opti-mix/glow
|
SimpleAddMmModule
| false | 7,383 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleAbsModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/f4/cf4pkmxbqyp3rqsgl3bdbzsxemrohluent2vyggztgix67lsa757.py
# Topologically Sorted Source Nodes: [add, abs_1], Original ATen: [aten.add, aten.abs]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%add,), kwargs = {})
triton_poi_fused_abs_add_0 = async_compile.triton('triton_poi_fused_abs_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.abs(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, abs_1], Original ATen: [aten.add, aten.abs]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleAbsModule(torch.nn.Module):
def __init__(self):
super(SimpleAbsModule, self).__init__()
def forward(self, a):
return torch.abs(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.abs(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleAbsModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleAbsModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleAbsModule
| false | 7,384 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleCeilModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ga/cgacbgfdnfffemaen3ot3b3225mehdgkmdv6g4yho2qdlicpwwlu.py
# Topologically Sorted Source Nodes: [c, ceil], Original ATen: [aten.add, aten.ceil]
# Source node to ATen node mapping:
# c => add
# ceil => ceil
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %ceil : [num_users=1] = call_function[target=torch.ops.aten.ceil.default](args = (%add,), kwargs = {})
triton_poi_fused_add_ceil_0 = async_compile.triton('triton_poi_fused_add_ceil_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_ceil_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_ceil_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 + tmp1
tmp3 = libdevice.ceil(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [c, ceil], Original ATen: [aten.add, aten.ceil]
stream0 = get_raw_stream(0)
triton_poi_fused_add_ceil_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleCeilModule(torch.nn.Module):
def forward(self, a, b):
c = a + b
return torch.ceil(c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_ceil_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = libdevice.ceil(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_ceil_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleCeilModuleNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleCeilModule
| false | 7,385 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
OneTupleModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/sd/csdfq3pwxme6skykh2xidrwr6t4ujkpebegmshqc4a6ptefksvl7.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# y => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 2), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class OneTupleModule(torch.nn.Module):
def __init__(self):
super(OneTupleModule, self).__init__()
def forward(self, x):
y = 2 * x
return y,
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class OneTupleModuleNew(torch.nn.Module):
def __init__(self):
super(OneTupleModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
OneTupleModule
| false | 7,386 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleBmmModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/h4/ch4e5ehu5tf4fxe3qcp5wtlsj4zjteppgjnu5d6xg564tkpvpxz6.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, bmm], Original ATen: [aten.add, aten.bmm]
extern_kernels.bmm(buf0, arg1_1, out=buf1)
del arg1_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleBmmModule(torch.nn.Module):
def forward(self, a, b):
return (a + a).bmm(b)
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf0, arg1_1, out=buf1)
del arg1_1
del buf0
return buf1,
class SimpleBmmModuleNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleBmmModule
| false | 7,387 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
ConvGRUCell
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/yr/cyrsfiqcqep5ianv6lfxy43inavacsrots2hnf6qyokhutlu5ocy.py
# Topologically Sorted Source Nodes: [h_prev], Original ATen: [aten.new_zeros]
# Source node to ATen node mapping:
# h_prev => full_default
# Graph fragment:
# %full_default : [num_users=4] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
triton_poi_fused_new_zeros_0 = async_compile.triton('triton_poi_fused_new_zeros_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_new_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/qv/cqvqoxzqwduraftvkpveor26twbksdy4eroiqe5gkhhcqhmp4fly.py
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# combined => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %full_default], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = 0.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp6, tmp9, tmp10)
tmp12 = tl.where(tmp4, tmp5, tmp11)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/cx/ccxv3djgp4azaupyxj6k27iatx6fdzs4dd65zqaoeei7no4esmab.py
# Topologically Sorted Source Nodes: [conv2d, combined_conv], Original ATen: [aten.convolution, aten.sigmoid]
# Source node to ATen node mapping:
# combined_conv => sigmoid
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_sigmoid_2 = async_compile.triton('triton_poi_fused_convolution_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 8
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x3), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/nn/cnn7cjpchplaegvrmuuug4x3kbotklqczshw3hbasnx2ijtf4yn3.py
# Topologically Sorted Source Nodes: [conv2d_1, conv2d_2, mul, add, h_, sub, mul_1, mul_2, h_cur], Original ATen: [aten.convolution, aten.mul, aten.add, aten.tanh, aten.rsub]
# Source node to ATen node mapping:
# add => add
# conv2d_1 => convolution_1
# conv2d_2 => convolution_2
# h_ => tanh
# h_cur => add_1
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# sub => sub
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%full_default, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, %convolution_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %mul), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %getitem), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %tanh), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %full_default), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {})
triton_poi_fused_add_convolution_mul_rsub_tanh_3 = async_compile.triton('triton_poi_fused_add_convolution_mul_rsub_tanh_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_rsub_tanh_3', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_mul_rsub_tanh_3(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = (xindex // 16) % 4
x2 = (xindex // 64)
x3 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + (x4), xmask)
tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x3 + (128*x2)), xmask)
tmp9 = tl.load(in_ptr2 + (64 + x3 + (128*x2)), xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp7 = 1.0
tmp8 = tmp7 - tmp6
tmp10 = tmp9 * tmp5
tmp11 = tmp2 + tmp10
tmp12 = libdevice.tanh(tmp11)
tmp13 = tmp8 * tmp12
tmp14 = 0.0
tmp15 = tmp6 * tmp14
tmp16 = tmp13 + tmp15
tl.store(in_out_ptr0 + (x4), tmp2, xmask)
tl.store(in_out_ptr1 + (x4), tmp5, xmask)
tl.store(out_ptr0 + (x4), tmp8, xmask)
tl.store(out_ptr1 + (x4), tmp16, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_prev], Original ATen: [aten.new_zeros]
stream0 = get_raw_stream(0)
triton_poi_fused_new_zeros_0.run(buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, buf1, 512, grid=grid(512), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 4, 4), (128, 16, 4, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d, combined_conv], Original ATen: [aten.convolution, aten.sigmoid]
triton_poi_fused_convolution_sigmoid_2.run(buf3, primals_3, 512, grid=grid(512), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf0, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf4; del buf4 # reuse
buf7 = buf6; del buf6 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, conv2d_2, mul, add, h_, sub, mul_1, mul_2, h_cur], Original ATen: [aten.convolution, aten.mul, aten.add, aten.tanh, aten.rsub]
triton_poi_fused_add_convolution_mul_rsub_tanh_3.run(buf5, buf7, primals_5, primals_7, buf3, buf8, buf9, 256, grid=grid(256), stream=stream0)
del primals_5
del primals_7
return (buf9, primals_1, primals_2, primals_4, primals_6, buf0, buf1, buf3, reinterpret_tensor(buf3, (4, 4, 4, 4), (128, 16, 4, 1), 64), buf5, buf7, buf8, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 8, 3, 3), (72, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn as nn
import torch.nn.functional as F
def one_param(m):
"""First parameter in `m`"""
return next(m.parameters())
class ConvGRUCell(nn.Module):
def __init__(self, input_dim, hidden_dim, kernel_size=(3, 3), bias=True,
activation=F.tanh, batchnorm=False):
"""
Initialize ConvGRU cell.
Parameters
----------
input_dim: int
Number of channels of input tensor.
hidden_dim: int
Number of channels of hidden state.
kernel_size: (int, int)
Size of the convolutional kernel.
bias: bool
Whether or not to add the bias.
"""
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.kernel_size = kernel_size if isinstance(kernel_size, (tuple, list)
) else [kernel_size] * 2
self.padding = self.kernel_size[0] // 2, self.kernel_size[1] // 2
self.bias = bias
self.activation = activation
self.batchnorm = batchnorm
self.conv_zr = nn.Conv2d(in_channels=self.input_dim + self.
hidden_dim, out_channels=2 * self.hidden_dim, kernel_size=self.
kernel_size, padding=self.padding, bias=self.bias)
self.conv_h1 = nn.Conv2d(in_channels=self.input_dim, out_channels=
self.hidden_dim, kernel_size=self.kernel_size, padding=self.
padding, bias=self.bias)
self.conv_h2 = nn.Conv2d(in_channels=self.hidden_dim, out_channels=
self.hidden_dim, kernel_size=self.kernel_size, padding=self.
padding, bias=self.bias)
self.reset_parameters()
def forward(self, input, h_prev=None):
if h_prev is None:
h_prev = self.init_hidden(input)
combined = torch.cat((input, h_prev), dim=1)
combined_conv = F.sigmoid(self.conv_zr(combined))
z, r = torch.split(combined_conv, self.hidden_dim, dim=1)
h_ = self.activation(self.conv_h1(input) + r * self.conv_h2(h_prev))
h_cur = (1 - z) * h_ + z * h_prev
return h_cur
def init_hidden(self, input):
bs, _ch, h, w = input.shape
return one_param(self).new_zeros(bs, self.hidden_dim, h, w)
def reset_parameters(self):
nn.init.xavier_uniform_(self.conv_zr.weight, gain=nn.init.
calculate_gain('tanh'))
self.conv_zr.bias.data.zero_()
nn.init.xavier_uniform_(self.conv_h1.weight, gain=nn.init.
calculate_gain('tanh'))
self.conv_h1.bias.data.zero_()
nn.init.xavier_uniform_(self.conv_h2.weight, gain=nn.init.
calculate_gain('tanh'))
self.conv_h2.bias.data.zero_()
if self.batchnorm:
self.bn1.reset_parameters()
self.bn2.reset_parameters()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'hidden_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_new_zeros_0(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = 0.0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = 0.0
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp6, tmp9, tmp10)
tmp12 = tl.where(tmp4, tmp5, tmp11)
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 8
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x3, tmp3, xmask)
@triton.jit
def triton_poi_fused_add_convolution_mul_rsub_tanh_3(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = xindex // 16 % 4
x2 = xindex // 64
x3 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + x4, xmask)
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x3 + 128 * x2), xmask)
tmp9 = tl.load(in_ptr2 + (64 + x3 + 128 * x2), xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp7 = 1.0
tmp8 = tmp7 - tmp6
tmp10 = tmp9 * tmp5
tmp11 = tmp2 + tmp10
tmp12 = libdevice.tanh(tmp11)
tmp13 = tmp8 * tmp12
tmp14 = 0.0
tmp15 = tmp6 * tmp14
tmp16 = tmp13 + tmp15
tl.store(in_out_ptr0 + x4, tmp2, xmask)
tl.store(in_out_ptr1 + x4, tmp5, xmask)
tl.store(out_ptr0 + x4, tmp8, xmask)
tl.store(out_ptr1 + x4, tmp16, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_new_zeros_0[grid(256)](buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
triton_poi_fused_cat_1[grid(512)](primals_1, buf1, 512, XBLOCK=256,
num_warps=4, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 4, 4), (128, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_sigmoid_2[grid(512)](buf3, primals_3,
512, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf4 = extern_kernels.convolution(primals_1, primals_4, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf6 = extern_kernels.convolution(buf0, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf4
del buf4
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_convolution_mul_rsub_tanh_3[grid(256)](buf5,
buf7, primals_5, primals_7, buf3, buf8, buf9, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_5
del primals_7
return (buf9, primals_1, primals_2, primals_4, primals_6, buf0, buf1,
buf3, reinterpret_tensor(buf3, (4, 4, 4, 4), (128, 16, 4, 1), 64),
buf5, buf7, buf8)
def one_param(m):
"""First parameter in `m`"""
return next(m.parameters())
class ConvGRUCellNew(nn.Module):
def __init__(self, input_dim, hidden_dim, kernel_size=(3, 3), bias=True,
activation=F.tanh, batchnorm=False):
"""
Initialize ConvGRU cell.
Parameters
----------
input_dim: int
Number of channels of input tensor.
hidden_dim: int
Number of channels of hidden state.
kernel_size: (int, int)
Size of the convolutional kernel.
bias: bool
Whether or not to add the bias.
"""
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.kernel_size = kernel_size if isinstance(kernel_size, (tuple, list)
) else [kernel_size] * 2
self.padding = self.kernel_size[0] // 2, self.kernel_size[1] // 2
self.bias = bias
self.activation = activation
self.batchnorm = batchnorm
self.conv_zr = nn.Conv2d(in_channels=self.input_dim + self.
hidden_dim, out_channels=2 * self.hidden_dim, kernel_size=self.
kernel_size, padding=self.padding, bias=self.bias)
self.conv_h1 = nn.Conv2d(in_channels=self.input_dim, out_channels=
self.hidden_dim, kernel_size=self.kernel_size, padding=self.
padding, bias=self.bias)
self.conv_h2 = nn.Conv2d(in_channels=self.hidden_dim, out_channels=
self.hidden_dim, kernel_size=self.kernel_size, padding=self.
padding, bias=self.bias)
self.reset_parameters()
def init_hidden(self, input):
bs, _ch, h, w = input.shape
return one_param(self).new_zeros(bs, self.hidden_dim, h, w)
def reset_parameters(self):
nn.init.xavier_uniform_(self.conv_zr.weight, gain=nn.init.
calculate_gain('tanh'))
self.conv_zr.bias.data.zero_()
nn.init.xavier_uniform_(self.conv_h1.weight, gain=nn.init.
calculate_gain('tanh'))
self.conv_h1.bias.data.zero_()
nn.init.xavier_uniform_(self.conv_h2.weight, gain=nn.init.
calculate_gain('tanh'))
self.conv_h2.bias.data.zero_()
if self.batchnorm:
self.bn1.reset_parameters()
self.bn2.reset_parameters()
def forward(self, input_0):
primals_2 = self.conv_zr.weight
primals_3 = self.conv_zr.bias
primals_4 = self.conv_h1.weight
primals_5 = self.conv_h1.bias
primals_6 = self.conv_h2.weight
primals_7 = self.conv_h2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
openclimatefix/MetNet
|
ConvGRUCell
| false | 7,388 |
[
"MIT"
] | 1 |
06eed550e93da6325641958b0d36c15adde1d928
|
https://github.com/openclimatefix/MetNet/tree/06eed550e93da6325641958b0d36c15adde1d928
|
SimpleAndModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/vq/cvqibjhky7ckcngwo5vx6iwslb3qukduvryszxa4md2bb7f76fpd.py
# Topologically Sorted Source Nodes: [c, logical_and_1], Original ATen: [aten.logical_and]
# Source node to ATen node mapping:
# c => logical_and
# logical_and_1 => logical_and_1
# Graph fragment:
# %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%arg1_1, %arg0_1), kwargs = {})
# %logical_and_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%logical_and, %logical_and), kwargs = {})
triton_poi_fused_logical_and_0 = async_compile.triton('triton_poi_fused_logical_and_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_and_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_logical_and_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp3 = (tmp2 != 0)
tmp4 = tmp1 & tmp3
tmp5 = tmp4 & tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [c, logical_and_1], Original ATen: [aten.logical_and]
stream0 = get_raw_stream(0)
triton_poi_fused_logical_and_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleAndModule(torch.nn.Module):
def __init__(self):
super(SimpleAndModule, self).__init__()
def forward(self, a, b):
c = torch.logical_and(a, b)
return torch.logical_and(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_and_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 != 0
tmp3 = tmp2 != 0
tmp4 = tmp1 & tmp3
tmp5 = tmp4 & tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_and_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleAndModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleAndModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleAndModule
| false | 7,389 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleClampMinModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/gx/cgxeuyalbe255nl7kl2wupslogkj7sqz4dk77bpxwhn37372vatf.py
# Topologically Sorted Source Nodes: [clamp_min], Original ATen: [aten.clamp_min]
# Source node to ATen node mapping:
# clamp_min => clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_clamp_min_0 = async_compile.triton('triton_poi_fused_clamp_min_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_min_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp_min], Original ATen: [aten.clamp_min]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_min_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleClampMinModel(torch.nn.Module):
def __init__(self, min):
super(SimpleClampMinModel, self).__init__()
self.min = min
def forward(self, input):
return torch.clamp_min(input, self.min)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'min': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_min_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_min_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleClampMinModelNew(torch.nn.Module):
def __init__(self, min):
super(SimpleClampMinModelNew, self).__init__()
self.min = min
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleClampMinModel
| false | 7,390 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
EnsembleModel
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/yl/cylmztthhqsuazxqdnn3s5mwrv4ht4vltlbbcl2pu45p6l64wrd3.py
# Topologically Sorted Source Nodes: [sub, inputs], Original ATen: [aten.sub, aten.div]
# Source node to ATen node mapping:
# inputs => div
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_2, %primals_1), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %primals_3), kwargs = {})
triton_poi_fused_div_sub_0 = async_compile.triton('triton_poi_fused_div_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/su/csuizz2ownuafectvusuawmeivm2ftgfnsijcxph6sw2bq3rztvj.py
# Topologically Sorted Source Nodes: [inputs_1, inputs_2], Original ATen: [aten.add, aten.silu]
# Source node to ATen node mapping:
# inputs_1 => add
# inputs_2 => mul, sigmoid
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%bmm, %primals_5), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %sigmoid), kwargs = {})
triton_poi_fused_add_silu_1 = async_compile.triton('triton_poi_fused_add_silu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_silu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_silu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 200
x2 = (xindex // 800)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x0 + (200*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/zb/czbdw5y33wdeoyorbmsurpyiyxyzndcnzhlq75se72y2xog2pq6h.py
# Topologically Sorted Source Nodes: [inputs_13], Original ATen: [aten.add]
# Source node to ATen node mapping:
# inputs_13 => add_6
# Graph fragment:
# %add_6 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%bmm_6, %primals_17), kwargs = {})
triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (8*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/gv/cgvoihs2me7l4uwmhcvmzqpxv3oby3zgl3mihluiy7ns4ykscrtg.py
# Topologically Sorted Source Nodes: [sub_1, softplus, logvar_1, sub_3, softplus_1, logvar_2], Original ATen: [aten.sub, aten.softplus, aten.add]
# Source node to ATen node mapping:
# logvar_1 => sub_2
# logvar_2 => add_7
# softplus => exp, gt, log1p, where
# softplus_1 => exp_1, gt_1, log1p_1, where_1
# sub_1 => sub_1
# sub_3 => sub_3
# Graph fragment:
# %sub_1 : [num_users=4] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_18, %slice_6), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%sub_1, 20), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %sub_1, %log1p), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_18, %where), kwargs = {})
# %sub_3 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_2, %primals_19), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {})
# %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_1,), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%sub_3, 20), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %sub_3, %log1p_1), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_19, %where_1), kwargs = {})
triton_poi_fused_add_softplus_sub_3 = async_compile.triton('triton_poi_fused_add_softplus_sub_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_softplus_sub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_softplus_sub_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4 + x0 + (8*x1)), xmask)
tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 20.0
tmp5 = tmp2 > tmp4
tmp6 = tl_math.exp(tmp2)
tmp7 = libdevice.log1p(tmp6)
tmp8 = tl.where(tmp5, tmp2, tmp7)
tmp9 = tmp0 - tmp8
tmp10 = tmp9 - tmp3
tmp11 = tmp10 > tmp4
tmp12 = tl_math.exp(tmp10)
tmp13 = libdevice.log1p(tmp12)
tmp14 = tl.where(tmp11, tmp10, tmp13)
tmp15 = tmp3 + tmp14
tl.store(out_ptr0 + (x2), tmp2, xmask)
tl.store(out_ptr1 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 200), (800, 200, 1))
assert_size_stride(primals_5, (4, 1, 200), (200, 200, 1))
assert_size_stride(primals_6, (4, 200, 200), (40000, 200, 1))
assert_size_stride(primals_7, (4, 1, 200), (200, 200, 1))
assert_size_stride(primals_8, (4, 200, 200), (40000, 200, 1))
assert_size_stride(primals_9, (4, 1, 200), (200, 200, 1))
assert_size_stride(primals_10, (4, 200, 200), (40000, 200, 1))
assert_size_stride(primals_11, (4, 1, 200), (200, 200, 1))
assert_size_stride(primals_12, (4, 200, 200), (40000, 200, 1))
assert_size_stride(primals_13, (4, 1, 200), (200, 200, 1))
assert_size_stride(primals_14, (4, 200, 200), (40000, 200, 1))
assert_size_stride(primals_15, (4, 1, 200), (200, 200, 1))
assert_size_stride(primals_16, (4, 200, 8), (1600, 8, 1))
assert_size_stride(primals_17, (4, 1, 8), (8, 8, 1))
assert_size_stride(primals_18, (1, 4), (4, 1))
assert_size_stride(primals_19, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, inputs], Original ATen: [aten.sub, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_sub_0.run(primals_2, primals_1, primals_3, buf0, 16, grid=grid(16), stream=stream0)
del primals_1
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (0, 4, 1), 0), primals_4, out=buf1)
del primals_4
buf2 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs_1, inputs_2], Original ATen: [aten.add, aten.silu]
triton_poi_fused_add_silu_1.run(buf1, primals_5, buf2, 3200, grid=grid(3200), stream=stream0)
buf3 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf2, primals_6, out=buf3)
buf4 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs_3, inputs_4], Original ATen: [aten.add, aten.silu]
triton_poi_fused_add_silu_1.run(buf3, primals_7, buf4, 3200, grid=grid(3200), stream=stream0)
buf5 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.bmm]
extern_kernels.bmm(buf4, primals_8, out=buf5)
buf6 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs_5, inputs_6], Original ATen: [aten.add, aten.silu]
triton_poi_fused_add_silu_1.run(buf5, primals_9, buf6, 3200, grid=grid(3200), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_3], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, primals_10, out=buf7)
buf8 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs_7, inputs_8], Original ATen: [aten.add, aten.silu]
triton_poi_fused_add_silu_1.run(buf7, primals_11, buf8, 3200, grid=grid(3200), stream=stream0)
buf9 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.bmm]
extern_kernels.bmm(buf8, primals_12, out=buf9)
buf10 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs_9, inputs_10], Original ATen: [aten.add, aten.silu]
triton_poi_fused_add_silu_1.run(buf9, primals_13, buf10, 3200, grid=grid(3200), stream=stream0)
buf11 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_5], Original ATen: [aten.bmm]
extern_kernels.bmm(buf10, primals_14, out=buf11)
buf12 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
# Topologically Sorted Source Nodes: [inputs_11, inputs_12], Original ATen: [aten.add, aten.silu]
triton_poi_fused_add_silu_1.run(buf11, primals_15, buf12, 3200, grid=grid(3200), stream=stream0)
buf13 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul_6], Original ATen: [aten.bmm]
extern_kernels.bmm(buf12, primals_16, out=buf13)
buf14 = buf13; del buf13 # reuse
# Topologically Sorted Source Nodes: [inputs_13], Original ATen: [aten.add]
triton_poi_fused_add_2.run(buf14, primals_17, 128, grid=grid(128), stream=stream0)
del primals_17
buf15 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub_1, softplus, logvar_1, sub_3, softplus_1, logvar_2], Original ATen: [aten.sub, aten.softplus, aten.add]
triton_poi_fused_add_softplus_sub_3.run(primals_18, buf14, primals_19, buf15, buf16, 64, grid=grid(64), stream=stream0)
return (reinterpret_tensor(buf14, (4, 4, 4), (32, 8, 1), 0), buf16, primals_5, primals_7, primals_9, primals_11, primals_13, primals_15, primals_18, primals_19, buf0, buf1, buf3, buf5, buf7, buf9, buf11, buf15, reinterpret_tensor(buf12, (4, 200, 4), (800, 1, 200), 0), reinterpret_tensor(primals_16, (4, 8, 200), (1600, 1, 8), 0), reinterpret_tensor(buf10, (4, 200, 4), (800, 1, 200), 0), reinterpret_tensor(primals_14, (4, 200, 200), (40000, 1, 200), 0), reinterpret_tensor(buf8, (4, 200, 4), (800, 1, 200), 0), reinterpret_tensor(primals_12, (4, 200, 200), (40000, 1, 200), 0), reinterpret_tensor(buf6, (4, 200, 4), (800, 1, 200), 0), reinterpret_tensor(primals_10, (4, 200, 200), (40000, 1, 200), 0), reinterpret_tensor(buf4, (4, 200, 4), (800, 1, 200), 0), reinterpret_tensor(primals_8, (4, 200, 200), (40000, 1, 200), 0), reinterpret_tensor(buf2, (4, 200, 4), (800, 1, 200), 0), reinterpret_tensor(primals_6, (4, 200, 200), (40000, 1, 200), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 200), (800, 200, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 1, 200), (200, 200, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 200, 200), (40000, 200, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 1, 200), (200, 200, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 200, 200), (40000, 200, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 1, 200), (200, 200, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 200, 200), (40000, 200, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 1, 200), (200, 200, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 200, 200), (40000, 200, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 1, 200), (200, 200, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 200, 200), (40000, 200, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 1, 200), (200, 200, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, 200, 8), (1600, 8, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 1, 8), (8, 8, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import numpy as np
import torch.nn.functional as F
def truncated_standardized_normal(shape, a=-2.0, b=2.0):
a = torch.Tensor([a])
b = torch.Tensor([b])
U = torch.distributions.uniform.Uniform(0, 1)
u = U.sample(shape)
Fa = 0.5 * (1 + torch.erf(a / math.sqrt(2)))
Fb = 0.5 * (1 + torch.erf(b / math.sqrt(2)))
return math.sqrt(2) * torch.erfinv(2 * ((Fb - Fa) * u + Fa) - 1)
def get_affine_params(ensemble_size, in_features, out_features):
w = truncated_standardized_normal(shape=(ensemble_size, in_features,
out_features)) / (2.0 * math.sqrt(in_features))
w = torch.nn.Parameter(w)
b = torch.nn.Parameter(torch.zeros(ensemble_size, 1, out_features,
dtype=torch.float32))
return w, b
class EnsembleModel(torch.nn.Module):
def __init__(self, ensemble_size, input_num, output_num, hidden_num=200):
super().__init__()
self.num_nets = ensemble_size
self.input_num = input_num
self.output_num = output_num
self.lin0_w, self.lin0_b = get_affine_params(ensemble_size,
input_num, hidden_num)
self.lin1_w, self.lin1_b = get_affine_params(ensemble_size,
hidden_num, hidden_num)
self.lin2_w, self.lin2_b = get_affine_params(ensemble_size,
hidden_num, hidden_num)
self.lin3_w, self.lin3_b = get_affine_params(ensemble_size,
hidden_num, hidden_num)
self.lin4_w, self.lin4_b = get_affine_params(ensemble_size,
hidden_num, hidden_num)
self.lin5_w, self.lin5_b = get_affine_params(ensemble_size,
hidden_num, hidden_num)
self.lin6_w, self.lin6_b = get_affine_params(ensemble_size,
hidden_num, 2 * output_num)
self.inputs_mu = torch.nn.Parameter(torch.zeros(input_num),
requires_grad=False)
self.inputs_sigma = torch.nn.Parameter(torch.zeros(input_num),
requires_grad=False)
self.max_logvar = torch.nn.Parameter(torch.ones(1, output_num,
dtype=torch.float32) / 2.0)
self.min_logvar = torch.nn.Parameter(-torch.ones(1, output_num,
dtype=torch.float32) * 10.0)
def compute_decays(self):
loss = 0.0
loss += 1.0 * (self.lin0_w ** 2).sum()
loss += 1.0 * (self.lin1_w ** 2).sum()
loss += 1.0 * (self.lin2_w ** 2).sum()
loss += 1.0 * (self.lin3_w ** 2).sum()
loss += 1.0 * (self.lin4_w ** 2).sum()
loss += 1.0 * (self.lin5_w ** 2).sum()
loss += 1.0 * (self.lin6_w ** 2).sum()
return 1e-05 * loss / 2.0
def fit_input_stats(self, data):
mu = np.mean(data, axis=0, keepdims=True)
sigma = np.std(data, axis=0, keepdims=True)
sigma[sigma < 1e-12] = 1.0
self.inputs_mu.data = torch.from_numpy(mu).float()
self.inputs_sigma.data = torch.from_numpy(sigma).float()
def forward(self, inputs):
inputs = (inputs - self.inputs_mu) / self.inputs_sigma
inputs = inputs.matmul(self.lin0_w) + self.lin0_b
inputs = F.silu(inputs)
inputs = inputs.matmul(self.lin1_w) + self.lin1_b
inputs = F.silu(inputs)
inputs = inputs.matmul(self.lin2_w) + self.lin2_b
inputs = F.silu(inputs)
inputs = inputs.matmul(self.lin3_w) + self.lin3_b
inputs = F.silu(inputs)
inputs = inputs.matmul(self.lin4_w) + self.lin4_b
inputs = F.silu(inputs)
inputs = inputs.matmul(self.lin5_w) + self.lin5_b
inputs = F.silu(inputs)
inputs = inputs.matmul(self.lin6_w) + self.lin6_b
mean = inputs[:, :, :self.output_num]
logvar = inputs[:, :, self.output_num:]
logvar = self.max_logvar - F.softplus(self.max_logvar - logvar)
logvar = self.min_logvar + F.softplus(logvar - self.min_logvar)
return mean, logvar
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'ensemble_size': 4, 'input_num': 4, 'output_num': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import numpy as np
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 / tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_silu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 3200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 200
x2 = xindex // 800
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 200 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 8 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_softplus_sub_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4 + x0 + 8 * x1), xmask)
tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = 20.0
tmp5 = tmp2 > tmp4
tmp6 = tl_math.exp(tmp2)
tmp7 = libdevice.log1p(tmp6)
tmp8 = tl.where(tmp5, tmp2, tmp7)
tmp9 = tmp0 - tmp8
tmp10 = tmp9 - tmp3
tmp11 = tmp10 > tmp4
tmp12 = tl_math.exp(tmp10)
tmp13 = libdevice.log1p(tmp12)
tmp14 = tl.where(tmp11, tmp10, tmp13)
tmp15 = tmp3 + tmp14
tl.store(out_ptr0 + x2, tmp2, xmask)
tl.store(out_ptr1 + x2, tmp15, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19) = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 200), (800, 200, 1))
assert_size_stride(primals_5, (4, 1, 200), (200, 200, 1))
assert_size_stride(primals_6, (4, 200, 200), (40000, 200, 1))
assert_size_stride(primals_7, (4, 1, 200), (200, 200, 1))
assert_size_stride(primals_8, (4, 200, 200), (40000, 200, 1))
assert_size_stride(primals_9, (4, 1, 200), (200, 200, 1))
assert_size_stride(primals_10, (4, 200, 200), (40000, 200, 1))
assert_size_stride(primals_11, (4, 1, 200), (200, 200, 1))
assert_size_stride(primals_12, (4, 200, 200), (40000, 200, 1))
assert_size_stride(primals_13, (4, 1, 200), (200, 200, 1))
assert_size_stride(primals_14, (4, 200, 200), (40000, 200, 1))
assert_size_stride(primals_15, (4, 1, 200), (200, 200, 1))
assert_size_stride(primals_16, (4, 200, 8), (1600, 8, 1))
assert_size_stride(primals_17, (4, 1, 8), (8, 8, 1))
assert_size_stride(primals_18, (1, 4), (4, 1))
assert_size_stride(primals_19, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_sub_0[grid(16)](primals_2, primals_1,
primals_3, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_1
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 4), (0, 4, 1), 0
), primals_4, out=buf1)
del primals_4
buf2 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
triton_poi_fused_add_silu_1[grid(3200)](buf1, primals_5, buf2, 3200,
XBLOCK=128, num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
extern_kernels.bmm(buf2, primals_6, out=buf3)
buf4 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
triton_poi_fused_add_silu_1[grid(3200)](buf3, primals_7, buf4, 3200,
XBLOCK=128, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
extern_kernels.bmm(buf4, primals_8, out=buf5)
buf6 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
triton_poi_fused_add_silu_1[grid(3200)](buf5, primals_9, buf6, 3200,
XBLOCK=128, num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
extern_kernels.bmm(buf6, primals_10, out=buf7)
buf8 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
triton_poi_fused_add_silu_1[grid(3200)](buf7, primals_11, buf8,
3200, XBLOCK=128, num_warps=4, num_stages=1)
buf9 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
extern_kernels.bmm(buf8, primals_12, out=buf9)
buf10 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
triton_poi_fused_add_silu_1[grid(3200)](buf9, primals_13, buf10,
3200, XBLOCK=128, num_warps=4, num_stages=1)
buf11 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
extern_kernels.bmm(buf10, primals_14, out=buf11)
buf12 = empty_strided_cuda((4, 4, 200), (800, 200, 1), torch.float32)
triton_poi_fused_add_silu_1[grid(3200)](buf11, primals_15, buf12,
3200, XBLOCK=128, num_warps=4, num_stages=1)
buf13 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
extern_kernels.bmm(buf12, primals_16, out=buf13)
buf14 = buf13
del buf13
triton_poi_fused_add_2[grid(128)](buf14, primals_17, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_17
buf15 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_softplus_sub_3[grid(64)](primals_18, buf14,
primals_19, buf15, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1)
return (reinterpret_tensor(buf14, (4, 4, 4), (32, 8, 1), 0), buf16,
primals_5, primals_7, primals_9, primals_11, primals_13, primals_15,
primals_18, primals_19, buf0, buf1, buf3, buf5, buf7, buf9, buf11,
buf15, reinterpret_tensor(buf12, (4, 200, 4), (800, 1, 200), 0),
reinterpret_tensor(primals_16, (4, 8, 200), (1600, 1, 8), 0),
reinterpret_tensor(buf10, (4, 200, 4), (800, 1, 200), 0),
reinterpret_tensor(primals_14, (4, 200, 200), (40000, 1, 200), 0),
reinterpret_tensor(buf8, (4, 200, 4), (800, 1, 200), 0),
reinterpret_tensor(primals_12, (4, 200, 200), (40000, 1, 200), 0),
reinterpret_tensor(buf6, (4, 200, 4), (800, 1, 200), 0),
reinterpret_tensor(primals_10, (4, 200, 200), (40000, 1, 200), 0),
reinterpret_tensor(buf4, (4, 200, 4), (800, 1, 200), 0),
reinterpret_tensor(primals_8, (4, 200, 200), (40000, 1, 200), 0),
reinterpret_tensor(buf2, (4, 200, 4), (800, 1, 200), 0),
reinterpret_tensor(primals_6, (4, 200, 200), (40000, 1, 200), 0))
def truncated_standardized_normal(shape, a=-2.0, b=2.0):
a = torch.Tensor([a])
b = torch.Tensor([b])
U = torch.distributions.uniform.Uniform(0, 1)
u = U.sample(shape)
Fa = 0.5 * (1 + torch.erf(a / math.sqrt(2)))
Fb = 0.5 * (1 + torch.erf(b / math.sqrt(2)))
return math.sqrt(2) * torch.erfinv(2 * ((Fb - Fa) * u + Fa) - 1)
def get_affine_params(ensemble_size, in_features, out_features):
w = truncated_standardized_normal(shape=(ensemble_size, in_features,
out_features)) / (2.0 * math.sqrt(in_features))
w = torch.nn.Parameter(w)
b = torch.nn.Parameter(torch.zeros(ensemble_size, 1, out_features,
dtype=torch.float32))
return w, b
class EnsembleModelNew(torch.nn.Module):
def __init__(self, ensemble_size, input_num, output_num, hidden_num=200):
super().__init__()
self.num_nets = ensemble_size
self.input_num = input_num
self.output_num = output_num
self.lin0_w, self.lin0_b = get_affine_params(ensemble_size,
input_num, hidden_num)
self.lin1_w, self.lin1_b = get_affine_params(ensemble_size,
hidden_num, hidden_num)
self.lin2_w, self.lin2_b = get_affine_params(ensemble_size,
hidden_num, hidden_num)
self.lin3_w, self.lin3_b = get_affine_params(ensemble_size,
hidden_num, hidden_num)
self.lin4_w, self.lin4_b = get_affine_params(ensemble_size,
hidden_num, hidden_num)
self.lin5_w, self.lin5_b = get_affine_params(ensemble_size,
hidden_num, hidden_num)
self.lin6_w, self.lin6_b = get_affine_params(ensemble_size,
hidden_num, 2 * output_num)
self.inputs_mu = torch.nn.Parameter(torch.zeros(input_num),
requires_grad=False)
self.inputs_sigma = torch.nn.Parameter(torch.zeros(input_num),
requires_grad=False)
self.max_logvar = torch.nn.Parameter(torch.ones(1, output_num,
dtype=torch.float32) / 2.0)
self.min_logvar = torch.nn.Parameter(-torch.ones(1, output_num,
dtype=torch.float32) * 10.0)
def compute_decays(self):
loss = 0.0
loss += 1.0 * (self.lin0_w ** 2).sum()
loss += 1.0 * (self.lin1_w ** 2).sum()
loss += 1.0 * (self.lin2_w ** 2).sum()
loss += 1.0 * (self.lin3_w ** 2).sum()
loss += 1.0 * (self.lin4_w ** 2).sum()
loss += 1.0 * (self.lin5_w ** 2).sum()
loss += 1.0 * (self.lin6_w ** 2).sum()
return 1e-05 * loss / 2.0
def fit_input_stats(self, data):
mu = np.mean(data, axis=0, keepdims=True)
sigma = np.std(data, axis=0, keepdims=True)
sigma[sigma < 1e-12] = 1.0
self.inputs_mu.data = torch.from_numpy(mu).float()
self.inputs_sigma.data = torch.from_numpy(sigma).float()
def forward(self, input_0):
primals_4 = self.lin0_w
primals_5 = self.lin0_b
primals_6 = self.lin1_w
primals_7 = self.lin1_b
primals_8 = self.lin2_w
primals_9 = self.lin2_b
primals_10 = self.lin3_w
primals_11 = self.lin3_b
primals_12 = self.lin4_w
primals_13 = self.lin4_b
primals_14 = self.lin5_w
primals_15 = self.lin5_b
primals_16 = self.lin6_w
primals_17 = self.lin6_b
primals_1 = self.inputs_mu
primals_3 = self.inputs_sigma
primals_18 = self.max_logvar
primals_19 = self.min_logvar
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19])
return output[0], output[1]
|
numahha/wmopo
|
EnsembleModel
| false | 7,391 |
[
"MIT"
] | 1 |
1557dab2e8168c1f2e53ffbc435b4000680f1d28
|
https://github.com/numahha/wmopo/tree/1557dab2e8168c1f2e53ffbc435b4000680f1d28
|
SimpleClampModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ym/cymkueyytwmyd6cqzabpgskqntypbctwgeke5274sffl2aogwlds.py
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clamp => clamp_max, clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 4), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 4), kwargs = {})
triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = triton_helpers.minimum(tmp2, tmp1)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleClampModel(torch.nn.Module):
def __init__(self, min, max):
super(SimpleClampModel, self).__init__()
self.min = min
self.max = max
def forward(self, input):
return torch.clamp(input, self.min, self.max)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'min': 4, 'max': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 4.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = triton_helpers.minimum(tmp2, tmp1)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleClampModelNew(torch.nn.Module):
def __init__(self, min, max):
super(SimpleClampModelNew, self).__init__()
self.min = min
self.max = max
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleClampModel
| false | 7,392 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleExpModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/7g/c7gyxvpvdujjipzswxbu5tactwghjfb7nrevdzajpm4fzclaifhf.py
# Topologically Sorted Source Nodes: [other, exp_1], Original ATen: [aten.exp]
# Source node to ATen node mapping:
# exp_1 => exp_1
# other => exp
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%exp,), kwargs = {})
triton_poi_fused_exp_0 = async_compile.triton('triton_poi_fused_exp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.exp(tmp0)
tmp2 = tl_math.exp(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [other, exp_1], Original ATen: [aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_exp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleExpModule(torch.nn.Module):
def forward(self, input):
other = torch.exp(input)
return torch.exp(other)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_exp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.exp(tmp0)
tmp2 = tl_math.exp(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_exp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleExpModuleNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleExpModule
| false | 7,393 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleGeluModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/cz/cczz2aaz3xffbl7w5gnijw32l5h4gkl36ofwyvf646samygcfe5i.py
# Topologically Sorted Source Nodes: [add, gelu], Original ATen: [aten.add, aten.gelu]
# Source node to ATen node mapping:
# add => add
# gelu => add_1, erf, mul, mul_1, mul_2
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.7071067811865476), kwargs = {})
# %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%mul_1,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {})
triton_poi_fused_add_gelu_0 = async_compile.triton('triton_poi_fused_add_gelu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_gelu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = 0.7071067811865476
tmp5 = tmp1 * tmp4
tmp6 = libdevice.erf(tmp5)
tmp7 = 1.0
tmp8 = tmp6 + tmp7
tmp9 = tmp3 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, gelu], Original ATen: [aten.add, aten.gelu]
stream0 = get_raw_stream(0)
triton_poi_fused_add_gelu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleGeluModule(torch.nn.Module):
def forward(self, tensor):
return F.gelu(tensor + tensor)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_gelu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = 0.7071067811865476
tmp5 = tmp1 * tmp4
tmp6 = libdevice.erf(tmp5)
tmp7 = 1.0
tmp8 = tmp6 + tmp7
tmp9 = tmp3 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_gelu_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleGeluModuleNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleGeluModule
| false | 7,394 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleCosModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/vy/cvykguexawt5en6rd6un27jr5ssgrr5nfe4fek2lsqgpfda2qjl2.py
# Topologically Sorted Source Nodes: [add, cos], Original ATen: [aten.add, aten.cos]
# Source node to ATen node mapping:
# add => add
# cos => cos
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %cos : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%add,), kwargs = {})
triton_poi_fused_add_cos_0 = async_compile.triton('triton_poi_fused_add_cos_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_cos_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_cos_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.cos(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, cos], Original ATen: [aten.add, aten.cos]
stream0 = get_raw_stream(0)
triton_poi_fused_add_cos_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleCosModule(torch.nn.Module):
def __init__(self):
super(SimpleCosModule, self).__init__()
def forward(self, a):
return torch.cos(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_cos_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.cos(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_cos_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleCosModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleCosModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleCosModule
| false | 7,395 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleMaxModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/6l/c6lid7didg6rn4ppoifz2te7odbgr6ljaae2lzzsff3c2lylgtyg.py
# Topologically Sorted Source Nodes: [add, add_1, max_1], Original ATen: [aten.add, aten.maximum]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# max_1 => maximum
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %arg1_1), kwargs = {})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%add, %add_1), kwargs = {})
triton_poi_fused_add_maximum_0 = async_compile.triton('triton_poi_fused_add_maximum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_maximum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_maximum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp3 = tmp2 + tmp2
tmp4 = triton_helpers.maximum(tmp1, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1, max_1], Original ATen: [aten.add, aten.maximum]
stream0 = get_raw_stream(0)
triton_poi_fused_add_maximum_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleMaxModule(torch.nn.Module):
def __init__(self):
super(SimpleMaxModule, self).__init__()
def forward(self, a, b):
return torch.max(a + a, b + b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_maximum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp3 = tmp2 + tmp2
tmp4 = triton_helpers.maximum(tmp1, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_maximum_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleMaxModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleMaxModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleMaxModule
| false | 7,396 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleFloorModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/j6/cj6yrxveidc7xf7aw2sd5chrhx3pw3r5egsdoorepnl2ey2ejho7.py
# Topologically Sorted Source Nodes: [c, floor], Original ATen: [aten.add, aten.floor]
# Source node to ATen node mapping:
# c => add
# floor => floor
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%add,), kwargs = {})
triton_poi_fused_add_floor_0 = async_compile.triton('triton_poi_fused_add_floor_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_floor_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_floor_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 + tmp1
tmp3 = libdevice.floor(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [c, floor], Original ATen: [aten.add, aten.floor]
stream0 = get_raw_stream(0)
triton_poi_fused_add_floor_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleFloorModule(torch.nn.Module):
def forward(self, a, b):
c = a + b
return torch.floor(c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_floor_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = libdevice.floor(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_floor_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleFloorModuleNew(torch.nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleFloorModule
| false | 7,397 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleConv2dModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ud/cudtupp4xbsxvl5czwt3p2pj3cknjnhtp6x45zymsucnyg3xzdnf.py
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/p7/cp7mgrng2aoot3kokspvn2sifs3rykgl5mktnpxnmb7yc57vcvab.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(arg1_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(arg0_1, buf1, 16, 16, grid=grid(16, 16), stream=stream0)
del arg0_1
# Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 4, 4))
del buf0
del buf1
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, 16, grid=grid(16), stream=stream0)
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleConv2dModule(torch.nn.Module):
def __init__(self, stride=1, padding=0, dilation=1, groups=1):
super(SimpleConv2dModule, self).__init__()
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
def forward(self, inputs, filters, bias=None):
conv = F.conv2d(inputs, filters, bias=bias, stride=self.stride,
padding=self.padding, dilation=self.dilation, groups=self.groups)
return F.relu(conv)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 16)](arg1_1, buf0, 16, 16,
XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_convolution_0[grid(16, 16)](arg0_1, buf1, 16, 16,
XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg0_1
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 4, 4))
del buf0
del buf1
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf2
triton_poi_fused_relu_1[grid(16)](buf3, 16, XBLOCK=16, num_warps=1,
num_stages=1)
return buf3,
class SimpleConv2dModuleNew(torch.nn.Module):
def __init__(self, stride=1, padding=0, dilation=1, groups=1):
super(SimpleConv2dModuleNew, self).__init__()
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleConv2dModule
| false | 7,398 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleConvTranspose2dModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ud/cudtupp4xbsxvl5czwt3p2pj3cknjnhtp6x45zymsucnyg3xzdnf.py
# Topologically Sorted Source Nodes: [convTranspose], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# convTranspose => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %arg0_1, None, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask)
tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/kt/ckt6gbx6lb7bibkgo7yxy7qvikxdttfdrwxhv4n3kzjb445guwpa.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 64], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (196*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.full([1, 1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x2 + (49*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [convTranspose], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(arg1_1, buf0, 16, 16, grid=grid(16, 16), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
# Topologically Sorted Source Nodes: [convTranspose], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(arg0_1, buf1, 16, 16, grid=grid(16, 16), stream=stream0)
del arg0_1
# Topologically Sorted Source Nodes: [convTranspose], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 7, 7), (196, 1, 28, 4))
del buf0
del buf1
buf3 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf2, buf3, 16, 49, grid=grid(16, 49), stream=stream0)
del buf2
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleConvTranspose2dModule(torch.nn.Module):
def __init__(self, stride=1, padding=0, output_padding=0, dilation=1,
groups=1):
super(SimpleConvTranspose2dModule, self).__init__()
self.stride = stride
self.padding = padding
self.output_padding = output_padding
self.groups = groups
self.dilation = dilation
def forward(self, inputs, filters, bias=None):
convTranspose = F.conv_transpose2d(inputs, filters, bias=bias,
stride=self.stride, padding=self.padding, output_padding=self.
output_padding, groups=self.groups, dilation=self.dilation)
return F.relu(convTranspose)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_relu_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 49
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 196 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.full([1, 1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x2 + 49 * y3), tmp2, xmask & ymask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 16)](arg1_1, buf0, 16, 16,
XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
triton_poi_fused_convolution_0[grid(16, 16)](arg0_1, buf1, 16, 16,
XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg0_1
buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 7, 7), (196, 1, 28, 4))
del buf0
del buf1
buf3 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
triton_poi_fused_relu_1[grid(16, 49)](buf2, buf3, 16, 49, XBLOCK=64,
YBLOCK=16, num_warps=4, num_stages=1)
del buf2
return buf3,
class SimpleConvTranspose2dModuleNew(torch.nn.Module):
def __init__(self, stride=1, padding=0, output_padding=0, dilation=1,
groups=1):
super(SimpleConvTranspose2dModuleNew, self).__init__()
self.stride = stride
self.padding = padding
self.output_padding = output_padding
self.groups = groups
self.dilation = dilation
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleConvTranspose2dModule
| false | 7,399 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleCumSumModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/3c/c3cpu3wz3bo3cso4qi4ii34iyrr3niuqsvkxdjr6hbwpvju6c4oe.py
# Topologically Sorted Source Nodes: [cumsum], Original ATen: [aten.cumsum]
# Source node to ATen node mapping:
# cumsum => cumsum
# Graph fragment:
# %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%arg0_1, 4), kwargs = {})
triton_per_fused_cumsum_0 = async_compile.triton('triton_per_fused_cumsum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton_heuristics.persistent_reduction(
size_hints=[256, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cumsum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_cumsum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 256
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0)
tmp1 = tmp0.to(tl.float32)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + (4*x0)), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cumsum], Original ATen: [aten.cumsum]
stream0 = get_raw_stream(0)
triton_per_fused_cumsum_0.run(arg0_1, buf0, 256, 4, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleCumSumModule(torch.nn.Module):
def __init__(self, dim):
super(SimpleCumSumModule, self).__init__()
self.dim = dim
def forward(self, tensor):
return torch.cumsum(tensor, self.dim)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def _triton_helper_fn_add0(arg0_0, arg1_0):
tmp0 = arg0_0 + arg1_0
return tmp0
@triton.jit
def triton_per_fused_cumsum_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl
.constexpr):
xnumel = 256
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0)
tmp1 = tmp0.to(tl.float32)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp3, = tl.associative_scan((tmp2,), 1, _triton_helper_fn_add0)
tl.store(out_ptr0 + (r1 + 4 * x0), tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_per_fused_cumsum_0[grid(256)](arg0_1, buf0, 256, 4, XBLOCK=
32, num_warps=2, num_stages=1)
del arg0_1
return buf0,
class SimpleCumSumModuleNew(torch.nn.Module):
def __init__(self, dim):
super(SimpleCumSumModuleNew, self).__init__()
self.dim = dim
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleCumSumModule
| false | 7,400 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleLogModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/xc/cxcdfiik5xgk7a7m5pmyyveyug5a3vuczvqoixbtd5nchlbaz5qr.py
# Topologically Sorted Source Nodes: [b, log_1], Original ATen: [aten.log]
# Source node to ATen node mapping:
# b => log
# log_1 => log_1
# Graph fragment:
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%arg0_1,), kwargs = {})
# %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%log,), kwargs = {})
triton_poi_fused_log_0 = async_compile.triton('triton_poi_fused_log_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_log_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_log_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl_math.log(tmp0)
tmp2 = tl_math.log(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [b, log_1], Original ATen: [aten.log]
stream0 = get_raw_stream(0)
triton_poi_fused_log_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleLogModule(torch.nn.Module):
def __init__(self, *dimensions):
super(SimpleLogModule, self).__init__()
def forward(self, a):
b = torch.log(a)
return torch.log(b)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_log_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl_math.log(tmp0)
tmp2 = tl_math.log(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_log_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleLogModuleNew(torch.nn.Module):
def __init__(self, *dimensions):
super(SimpleLogModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleLogModule
| false | 7,401 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleFmodModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/iu/ciuedv4oj5epb6bq36sca4tmg3x777o3yghi7exu4n6otp7lp34w.py
# Topologically Sorted Source Nodes: [c, fmod_1], Original ATen: [aten.fmod]
# Source node to ATen node mapping:
# c => fmod
# fmod_1 => fmod_1
# Graph fragment:
# %fmod : [num_users=1] = call_function[target=torch.ops.aten.fmod.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %fmod_1 : [num_users=1] = call_function[target=torch.ops.aten.fmod.Scalar](args = (%fmod, 1.0), kwargs = {})
triton_poi_fused_fmod_0 = async_compile.triton('triton_poi_fused_fmod_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_fmod_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_fmod_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = libdevice.fmod(tmp0, tmp1)
tmp3 = 1.0
tmp4 = libdevice.fmod(tmp2, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [c, fmod_1], Original ATen: [aten.fmod]
stream0 = get_raw_stream(0)
triton_poi_fused_fmod_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleFmodModule(torch.nn.Module):
def __init__(self):
super(SimpleFmodModule, self).__init__()
def forward(self, a, b):
if b.size() == torch.Size([]):
c = a.fmod(b.item())
else:
c = a.fmod(b)
return c.fmod(1.0)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_fmod_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = libdevice.fmod(tmp0, tmp1)
tmp3 = 1.0
tmp4 = libdevice.fmod(tmp2, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_fmod_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleFmodModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleFmodModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleFmodModule
| false | 7,402 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
Foo
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/qp/cqp7ueqlgbxahbgap5at7kbdkd7h2xxgbchrupcpkji4bdn4nejg.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 92256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3844) % 6
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/rv/crvxf6xnscpjmln6astlfsozus7rnqpbhexgiojxcqezrzslczlf.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# y => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3600) % 16
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (6, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (6, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (16, 6, 3, 3), (54, 9, 3, 1))
assert_size_stride(primals_5, (16, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 6, 62, 62), (23064, 3844, 62, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 92256, grid=grid(92256), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 60, 60), (57600, 3600, 60, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf3, primals_5, 230400, grid=grid(230400), stream=stream0)
del primals_5
return (buf3, primals_1, primals_3, primals_4, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((6, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 6, 3, 3), (54, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class Foo(torch.nn.Module):
def __init__(self):
super(Foo, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 6, 3)
self.relu = torch.nn.ReLU()
self.conv2 = torch.nn.Conv2d(6, 16, 3)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
y = self.conv2(x)
return y
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 92256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3844 % 6
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 230400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3600 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (6, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (6,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (16, 6, 3, 3), (54, 9, 3, 1))
assert_size_stride(primals_5, (16,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 6, 62, 62), (23064, 3844, 62, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(92256)](buf1, primals_2,
92256, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 16, 60, 60), (57600, 3600, 60, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(230400)](buf3, primals_5,
230400, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1
class FooNew(torch.nn.Module):
def __init__(self):
super(FooNew, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 6, 3)
self.relu = torch.nn.ReLU()
self.conv2 = torch.nn.Conv2d(6, 16, 3)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
opti-mix/glow
|
Foo
| false | 7,403 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleNotModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/cd/ccdsblr3257brbmhrvhdeqget7q2gbkwwz35ze4s55arhkureuea.py
# Topologically Sorted Source Nodes: [b, logical_not_1], Original ATen: [aten.logical_not]
# Source node to ATen node mapping:
# b => logical_not
# logical_not_1 => logical_not_1
# Graph fragment:
# %logical_not : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%arg0_1,), kwargs = {})
# %logical_not_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%logical_not,), kwargs = {})
triton_poi_fused_logical_not_0 = async_compile.triton('triton_poi_fused_logical_not_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_not_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_logical_not_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp2 = tmp1 == 0
tmp3 = tmp2 == 0
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [b, logical_not_1], Original ATen: [aten.logical_not]
stream0 = get_raw_stream(0)
triton_poi_fused_logical_not_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleNotModule(torch.nn.Module):
def __init__(self):
super(SimpleNotModule, self).__init__()
def forward(self, a):
b = torch.logical_not(a)
return torch.logical_not(b)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_not_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 != 0
tmp2 = tmp1 == 0
tmp3 = tmp2 == 0
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_not_0[grid(256)](arg0_1, buf0, 256, XBLOCK
=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleNotModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleNotModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleNotModule
| false | 7,404 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleMatmulModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ng/cnggtmai2hzxc7e5creviqseyyf7qiy5pfpdjlp2pomqsserjuzj.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %arg1_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg1_1
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out=buf1)
del arg0_1
del buf0
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleMatmulModule(torch.nn.Module):
def __init__(self):
super(SimpleMatmulModule, self).__init__()
def forward(self, a, b):
return a.matmul(b + b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](arg1_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg1_1
buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(arg0_1, (16, 4, 4), (16, 4, 1
), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out
=buf1)
del arg0_1
del buf0
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0),
class SimpleMatmulModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleMatmulModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleMatmulModule
| false | 7,405 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleLinearModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ph/cphyvqksaznjc5f5gstivhj5vszkuncctuzvaegazln3taw555sz.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, linear], Original ATen: [aten.add, aten.mm]
extern_kernels.mm(buf0, reinterpret_tensor(arg1_1, (4, 4), (1, 4), 0), out=buf1)
del arg1_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleLinearModule(torch.nn.Module):
def __init__(self):
super(SimpleLinearModule, self).__init__()
def forward(self, input, weight, bias=None):
return F.linear(input + input, weight, bias)
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(arg1_1, (4, 4), (1, 4),
0), out=buf1)
del arg1_1
del buf0
return buf1,
class SimpleLinearModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleLinearModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleLinearModule
| false | 7,406 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleOrModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/el/cel6bpplfk6uwqmcfj3bzthez5xrkrefn3chlle2rnmbe23xgscv.py
# Topologically Sorted Source Nodes: [c, logical_or_1], Original ATen: [aten.logical_or]
# Source node to ATen node mapping:
# c => logical_or
# logical_or_1 => logical_or_1
# Graph fragment:
# %logical_or : [num_users=1] = call_function[target=torch.ops.aten.logical_or.default](args = (%arg1_1, %arg0_1), kwargs = {})
# %logical_or_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_or.default](args = (%logical_or, %logical_or), kwargs = {})
triton_poi_fused_logical_or_0 = async_compile.triton('triton_poi_fused_logical_or_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_or_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_logical_or_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp3 = (tmp2 != 0)
tmp4 = tmp1 | tmp3
tmp5 = tmp4 | tmp4
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [c, logical_or_1], Original ATen: [aten.logical_or]
stream0 = get_raw_stream(0)
triton_poi_fused_logical_or_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleOrModule(torch.nn.Module):
def __init__(self):
super(SimpleOrModule, self).__init__()
def forward(self, a, b):
c = torch.logical_or(a, b)
return torch.logical_or(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_or_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 != 0
tmp3 = tmp2 != 0
tmp4 = tmp1 | tmp3
tmp5 = tmp4 | tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_or_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleOrModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleOrModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleOrModule
| false | 7,407 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleMulModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/us/cusp54q34go4owlw52vntqwnfud2kj3mzyijjppr27wa7benuz7r.py
# Topologically Sorted Source Nodes: [other, mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# other => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %mul), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [other, mul_1], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleMulModule(torch.nn.Module):
def __init__(self):
super(SimpleMulModule, self).__init__()
def forward(self, left, right):
other = left.mul(right.item() if right.size() == torch.Size([]) else
right)
return other.mul(other)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK
=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleMulModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleMulModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleMulModule
| false | 7,408 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleMinModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/is/cisvhtrbgx7geszywb4tws4xgixibtohmtf6243rcq7k7rvlgexs.py
# Topologically Sorted Source Nodes: [add, add_1, min_1], Original ATen: [aten.add, aten.minimum]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# min_1 => minimum
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg1_1, %arg1_1), kwargs = {})
# %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%add, %add_1), kwargs = {})
triton_poi_fused_add_minimum_0 = async_compile.triton('triton_poi_fused_add_minimum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_minimum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_minimum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp3 = tmp2 + tmp2
tmp4 = triton_helpers.minimum(tmp1, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, add_1, min_1], Original ATen: [aten.add, aten.minimum]
stream0 = get_raw_stream(0)
triton_poi_fused_add_minimum_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleMinModule(torch.nn.Module):
def __init__(self):
super(SimpleMinModule, self).__init__()
def forward(self, a, b):
return torch.min(a + a, b + b)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_minimum_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp3 = tmp2 + tmp2
tmp4 = triton_helpers.minimum(tmp1, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_minimum_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleMinModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleMinModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleMinModule
| false | 7,409 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleReciprocalModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/mb/cmb22rikzfzsbog4swdz4yuwqyxobyyc7jycz5a5bbxu4fvunisq.py
# Topologically Sorted Source Nodes: [other, reciprocal], Original ATen: [aten.add, aten.reciprocal]
# Source node to ATen node mapping:
# other => add
# reciprocal => reciprocal
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add,), kwargs = {})
triton_poi_fused_add_reciprocal_0 = async_compile.triton('triton_poi_fused_add_reciprocal_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_reciprocal_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl.full([1], 1, tl.int32)
tmp3 = tmp2 / tmp1
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [other, reciprocal], Original ATen: [aten.add, aten.reciprocal]
stream0 = get_raw_stream(0)
triton_poi_fused_add_reciprocal_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleReciprocalModel(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleReciprocalModel, self).__init__()
self.inplace = inplace
def forward(self, tensor):
other = tensor + tensor
return other.reciprocal_() if self.inplace else torch.reciprocal(other)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl.full([1], 1, tl.int32)
tmp3 = tmp2 / tmp1
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_reciprocal_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleReciprocalModelNew(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleReciprocalModelNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleReciprocalModel
| false | 7,410 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleReluModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ll/cll4cjpzu6vsmy2t6yfmvdki2efgptzlcycbgoibjk65mj7ireqn.py
# Topologically Sorted Source Nodes: [other, relu_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# other => relu
# relu_1 => relu_1
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%arg0_1,), kwargs = {})
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%relu,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [other, relu_1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleReluModel(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleReluModel, self).__init__()
self.inplace = inplace
def forward(self, tensor):
other = F.relu(tensor, inplace=self.inplace)
return F.relu(other, inplace=self.inplace)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleReluModelNew(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleReluModelNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleReluModel
| false | 7,411 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleTypeasModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/oo/coo6fior4gtmedodyysb4cm6xgshrmes4qlz3fctq5hnz2fimegz.py
# Topologically Sorted Source Nodes: [tensor, add_1], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add_1 => add_1
# tensor => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %add), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tmp1 + tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tensor, add_1], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleTypeasModel(torch.nn.Module):
def __init__(self):
super(SimpleTypeasModel, self).__init__()
def forward(self, tensor, other=None):
other = tensor if other is None else other
if tensor.dtype != torch.bool:
tensor = tensor + tensor
typed = tensor.type_as(other)
return typed + typed
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tmp1 + tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleTypeasModelNew(torch.nn.Module):
def __init__(self):
super(SimpleTypeasModelNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleTypeasModel
| false | 7,412 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleLogSoftmaxModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/xe/cxeq77gbpevhf6jov7fs3c25pvswzi43xn2bxfthg2nvsuurswra.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [4], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/nj/cnjj3kjcokm5rrbv6azeg2i2dkelsepqzurxngdhwjbc5vp6wfpj.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [4], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__log_softmax_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleLogSoftmaxModel(torch.nn.Module):
def __init__(self, dimension):
super(SimpleLogSoftmaxModel, self).__init__()
self.dimension = dimension
def forward(self, tensor):
return F.log_softmax(tensor, self.dimension)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dimension': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused__log_softmax_0[grid(1024)](arg0_1, buf0, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused__log_softmax_1[grid(1024)](buf0, buf1, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del buf0
return buf1,
class SimpleLogSoftmaxModelNew(torch.nn.Module):
def __init__(self, dimension):
super(SimpleLogSoftmaxModelNew, self).__init__()
self.dimension = dimension
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleLogSoftmaxModel
| false | 7,413 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleReshapeModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/2j/c2ju6nxawlrauguem6bximg5swv34phnnk2hdvtnx2xovvh5goee.py
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.add]
# Source node to ATen node mapping:
# combined => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [combined], Original ATen: [aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_0.run(arg0_1, buf0, 4, grid=grid(4), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleReshapeModel(torch.nn.Module):
def __init__(self, shape):
super(SimpleReshapeModel, self).__init__()
self.shape = shape
def forward(self, tensor):
combined = tensor + tensor
return combined.reshape(self.shape)
def get_inputs():
return [torch.rand([4])]
def get_init_inputs():
return [[], {'shape': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tl.store(out_ptr0 + x0, tmp1, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(4)](arg0_1, buf0, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class SimpleReshapeModelNew(torch.nn.Module):
def __init__(self, shape):
super(SimpleReshapeModelNew, self).__init__()
self.shape = shape
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleReshapeModel
| false | 7,414 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleSumModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/rt/crtaa7jk7byqntpikbqibiqclpj3ph3k3g4gm3y22pcpf5wsrsn3.py
# Topologically Sorted Source Nodes: [b, sum_1], Original ATen: [aten.add, aten.sum]
# Source node to ATen node mapping:
# b => add
# sum_1 => sum_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add,), kwargs = {})
triton_per_fused_add_sum_0 = async_compile.triton('triton_per_fused_add_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_sum_0(in_ptr0, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tmp0 + tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [b, sum_1], Original ATen: [aten.add, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_add_sum_0.run(arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleSumModule(torch.nn.Module):
def __init__(self, dtype=None):
super(SimpleSumModule, self).__init__()
self.dtype = dtype
def forward(self, a):
b = a + a
return torch.sum(b, dtype=self.dtype)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_sum_0(in_ptr0, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tmp0 + tmp0
tmp2 = tl.broadcast_to(tmp1, [RBLOCK])
tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp2, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp4, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_add_sum_0[grid(1)](arg0_1, buf0, 1, 256, num_warps
=2, num_stages=1)
del arg0_1
return buf0,
class SimpleSumModuleNew(torch.nn.Module):
def __init__(self, dtype=None):
super(SimpleSumModuleNew, self).__init__()
self.dtype = dtype
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleSumModule
| false | 7,415 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleXorModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/2t/c2t7awkb47lv4n57sfx4u7jomyzx3q7qvtzhxrgvtwk3vcwxkfhp.py
# Topologically Sorted Source Nodes: [c, logical_xor_1], Original ATen: [aten.logical_xor]
# Source node to ATen node mapping:
# c => logical_xor
# logical_xor_1 => logical_xor_1
# Graph fragment:
# %logical_xor : [num_users=1] = call_function[target=torch.ops.aten.logical_xor.default](args = (%arg1_1, %arg0_1), kwargs = {})
# %logical_xor_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_xor.default](args = (%logical_xor, %logical_xor), kwargs = {})
triton_poi_fused_logical_xor_0 = async_compile.triton('triton_poi_fused_logical_xor_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_logical_xor_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_logical_xor_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = (tmp0 != 0)
tmp3 = (tmp2 != 0)
tmp4 = (tmp1 ^ tmp3)
tmp5 = (tmp4 ^ tmp4)
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [c, logical_xor_1], Original ATen: [aten.logical_xor]
stream0 = get_raw_stream(0)
triton_poi_fused_logical_xor_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleXorModule(torch.nn.Module):
def __init__(self):
super(SimpleXorModule, self).__init__()
def forward(self, a, b):
c = torch.logical_xor(a, b)
return torch.logical_xor(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_xor_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 != 0
tmp3 = tmp2 != 0
tmp4 = tmp1 ^ tmp3
tmp5 = tmp4 ^ tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_xor_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleXorModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleXorModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleXorModule
| false | 7,416 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimplePowModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/th/cthfcnqcrhqllimklewhtwlw3kynsejtajhc7eunrob3gyhbmsze.py
# Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow]
# Source node to ATen node mapping:
# pow_1 => pow_1
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_pow_0 = async_compile.triton('triton_poi_fused_pow_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 * tmp0
tmp2 = tmp1 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow]
stream0 = get_raw_stream(0)
triton_poi_fused_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimplePowModule(torch.nn.Module):
def __init__(self, power):
super(SimplePowModule, self).__init__()
self.power = power
def forward(self, tensor):
return torch.pow(tensor, self.power)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'power': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 * tmp0
tmp2 = tmp1 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimplePowModuleNew(torch.nn.Module):
def __init__(self, power):
super(SimplePowModuleNew, self).__init__()
self.power = power
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimplePowModule
| false | 7,417 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleSinModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/um/cumfo6xlwcf7gajmq7aavjn4b3q6favglcetyv2n73qurfxutgrk.py
# Topologically Sorted Source Nodes: [add, sin], Original ATen: [aten.add, aten.sin]
# Source node to ATen node mapping:
# add => add
# sin => sin
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%add,), kwargs = {})
triton_poi_fused_add_sin_0 = async_compile.triton('triton_poi_fused_add_sin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.sin(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, sin], Original ATen: [aten.add, aten.sin]
stream0 = get_raw_stream(0)
triton_poi_fused_add_sin_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleSinModule(torch.nn.Module):
def __init__(self):
super(SimpleSinModule, self).__init__()
def forward(self, a):
return torch.sin(a + a)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = tl_math.sin(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_sin_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleSinModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleSinModuleNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleSinModule
| false | 7,418 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleStackModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/r2/cr2ft4qgpkoihvmquzfvb2qj2z7n5lsy5sfodvtjb5ijcg3hxzff.py
# Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack]
# Source node to ATen node mapping:
# stack => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1], 4), kwargs = {})
triton_poi_fused_stack_0 = async_compile.triton('triton_poi_fused_stack_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_stack_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = (xindex // 2)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x1), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tmp9 + tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp6, tmp10, tmp11)
tmp13 = tl.where(tmp4, tmp5, tmp12)
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [stack], Original ATen: [aten.stack]
stream0 = get_raw_stream(0)
triton_poi_fused_stack_0.run(arg1_1, arg0_1, buf0, 512, grid=grid(512), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleStackModel(torch.nn.Module):
def __init__(self, dim):
super(SimpleStackModel, self).__init__()
self.dim = dim
def forward(self, a, b):
c = b + b
return torch.stack((a, c), dim=self.dim)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_stack_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp9 = tl.load(in_ptr1 + x1, tmp6 & xmask, eviction_policy='evict_last',
other=0.0)
tmp10 = tmp9 + tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp6, tmp10, tmp11)
tmp13 = tl.where(tmp4, tmp5, tmp12)
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_stack_0[grid(512)](arg1_1, arg0_1, buf0, 512,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleStackModelNew(torch.nn.Module):
def __init__(self, dim):
super(SimpleStackModelNew, self).__init__()
self.dim = dim
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleStackModel
| false | 7,419 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleTanhModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/bv/cbvw7afmr2daqq3xv6rtsmbu5jcnt46e5lw3xedxgr4bybwozsyg.py
# Topologically Sorted Source Nodes: [tensor, tanh], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# tanh => tanh
# tensor => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_tanh_0 = async_compile.triton('triton_poi_fused_add_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.tanh(tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tensor, tanh], Original ATen: [aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleTanhModel(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleTanhModel, self).__init__()
self.inplace = inplace
def forward(self, tensor):
tensor = tensor + tensor
return tensor.tanh_() if self.inplace else tensor.tanh()
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 + tmp0
tmp2 = libdevice.tanh(tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_tanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleTanhModelNew(torch.nn.Module):
def __init__(self, inplace=False):
super(SimpleTanhModelNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleTanhModel
| false | 7,420 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SimpleSoftmaxModel
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/ef/cef5jl2dffibrzdgvry2syqh3nv4y45hqkgzbp7rs7to3eijjxsa.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg0_1, [4], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/wx/cwx2kruo4gzyioj66hb76yw4vgc4lxjk7wwvv5hwx3fp7vkj4o6n.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [4], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf0, buf1, 1024, grid=grid(1024), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn.functional as F
import torch.jit
import torch.onnx
import torch.nn
class SimpleSoftmaxModel(torch.nn.Module):
def __init__(self, dimension):
super(SimpleSoftmaxModel, self).__init__()
self.dimension = dimension
def forward(self, tensor):
return F.softmax(tensor, self.dimension)
def get_inputs():
return [torch.rand([4, 4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dimension': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused__softmax_1[grid(1024)](buf0, buf1, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del buf0
return buf1,
class SimpleSoftmaxModelNew(torch.nn.Module):
def __init__(self, dimension):
super(SimpleSoftmaxModelNew, self).__init__()
self.dimension = dimension
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
opti-mix/glow
|
SimpleSoftmaxModel
| false | 7,421 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
HardKumaBinarizer
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/rs/crsqcexxk6yerceqnf6qa4jqmipzzsvegtsy5g4honvx4bpify5w.py
# Topologically Sorted Source Nodes: [sub, exp_1, add, truediv, pow_1, sub_1, exp, add_1, truediv_1, k, mul, t, t_1], Original ATen: [aten.rsub, aten.exp, aten.add, aten.reciprocal, aten.mul, aten.pow, aten.hardtanh]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# exp => exp
# exp_1 => exp_1
# k => pow_2
# mul => mul_2
# pow_1 => pow_1
# sub => sub
# sub_1 => sub_1
# t => add_2
# t_1 => clamp_max, clamp_min
# truediv => mul, reciprocal
# truediv_1 => mul_1, reciprocal_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %rand), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg1_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp_1, 1e-08), kwargs = {})
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%sub, %mul), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %pow_1), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp, 1e-08), kwargs = {})
# %reciprocal_1 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%add_1,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_1, 1), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%sub_1, %mul_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_2, 1.2000000000000002), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, -0.1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_2, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {})
triton_poi_fused_add_exp_hardtanh_mul_pow_reciprocal_rsub_0 = async_compile.triton('triton_poi_fused_add_exp_hardtanh_mul_pow_reciprocal_rsub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_hardtanh_mul_pow_reciprocal_rsub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_exp_hardtanh_mul_pow_reciprocal_rsub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp3 = tl.load(in_ptr0 + (x0), xmask)
tmp12 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tl_math.exp(tmp3)
tmp5 = 1e-08
tmp6 = tmp4 + tmp5
tmp7 = tl.full([1], 1, tl.int32)
tmp8 = tmp7 / tmp6
tmp9 = tmp8 * tmp1
tmp10 = libdevice.pow(tmp2, tmp9)
tmp11 = tmp1 - tmp10
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp13 + tmp5
tmp15 = tmp7 / tmp14
tmp16 = tmp15 * tmp1
tmp17 = libdevice.pow(tmp11, tmp16)
tmp18 = 1.2000000000000002
tmp19 = tmp17 * tmp18
tmp20 = -0.1
tmp21 = tmp19 + tmp20
tmp22 = 0.0
tmp23 = triton_helpers.maximum(tmp21, tmp22)
tmp24 = triton_helpers.minimum(tmp23, tmp1)
tl.store(in_out_ptr0 + (x0), tmp24, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [u], Original ATen: [aten.rand_like]
buf0 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [sub, exp_1, add, truediv, pow_1, sub_1, exp, add_1, truediv_1, k, mul, t, t_1], Original ATen: [aten.rsub, aten.exp, aten.add, aten.reciprocal, aten.mul, aten.pow, aten.hardtanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_exp_hardtanh_mul_pow_reciprocal_rsub_0.run(buf2, arg1_1, arg0_1, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.optim
def kuma_reparametrization(a, b):
u = torch.rand_like(a)
k = (1 - (1 - u) ** (1 / (b + 1e-08))) ** (1 / (a + 1e-08))
return k
class Rectifier(nn.Module):
def __init__(self, l=-0.1, r=1.1):
super().__init__()
self.l = l
self.r = r
self.eps = 1e-07
def forward(self, x, l=None, r=None):
l = l if l is not None else self.l
r = r if r is not None else self.r
t = l + (r - l) * x
t = torch.nn.functional.hardtanh(t, 0, 1)
return t
class HardKumaBinarizer(nn.Module):
def __init__(self, l=-0.1, r=1.1):
super().__init__()
self.rectifier = Rectifier(l, r)
def forward(self, a, b, l=None, r=None):
k = kuma_reparametrization(torch.exp(a), torch.exp(b))
t = self.rectifier(k, l, r)
return t
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch import device
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_exp_hardtanh_mul_pow_reciprocal_rsub_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp3 = tl.load(in_ptr0 + x0, xmask)
tmp12 = tl.load(in_ptr1 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tl_math.exp(tmp3)
tmp5 = 1e-08
tmp6 = tmp4 + tmp5
tmp7 = tl.full([1], 1, tl.int32)
tmp8 = tmp7 / tmp6
tmp9 = tmp8 * tmp1
tmp10 = libdevice.pow(tmp2, tmp9)
tmp11 = tmp1 - tmp10
tmp13 = tl_math.exp(tmp12)
tmp14 = tmp13 + tmp5
tmp15 = tmp7 / tmp14
tmp16 = tmp15 * tmp1
tmp17 = libdevice.pow(tmp11, tmp16)
tmp18 = 1.2000000000000002
tmp19 = tmp17 * tmp18
tmp20 = -0.1
tmp21 = tmp19 + tmp20
tmp22 = 0.0
tmp23 = triton_helpers.maximum(tmp21, tmp22)
tmp24 = triton_helpers.minimum(tmp23, tmp1)
tl.store(in_out_ptr0 + x0, tmp24, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten.rand.default([4, 4, 4, 4], dtype=torch.
float32, device=device(type='cuda', index=0), pin_memory=False)
buf1 = buf0
del buf0
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_add_exp_hardtanh_mul_pow_reciprocal_rsub_0[grid(256)](
buf2, arg1_1, arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf2,
def kuma_reparametrization(a, b):
u = torch.rand_like(a)
k = (1 - (1 - u) ** (1 / (b + 1e-08))) ** (1 / (a + 1e-08))
return k
class Rectifier(nn.Module):
def __init__(self, l=-0.1, r=1.1):
super().__init__()
self.l = l
self.r = r
self.eps = 1e-07
def forward(self, x, l=None, r=None):
l = l if l is not None else self.l
r = r if r is not None else self.r
t = l + (r - l) * x
t = torch.nn.functional.hardtanh(t, 0, 1)
return t
class HardKumaBinarizerNew(nn.Module):
def __init__(self, l=-0.1, r=1.1):
super().__init__()
self.rectifier = Rectifier(l, r)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
ovechkinVT/SkipRNN
|
HardKumaBinarizer
| false | 7,422 |
[
"MIT"
] | 1 |
7c1f37349d464b1b6bf8835520abad22b199f1ad
|
https://github.com/ovechkinVT/SkipRNN/tree/7c1f37349d464b1b6bf8835520abad22b199f1ad
|
L1Loss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/5u/c5ugctirrdx7vwsb6vcdnsk3ju2zzivmjmo2w2s56lxqbfmgbhnh.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten.sub, aten.abs, aten.mean]
# Source node to ATen node mapping:
# loss => abs_1, mean, sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %view_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
triton_per_fused_abs_mean_sub_0 = async_compile.triton('triton_per_fused_abs_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten.sub, aten.abs, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_mean_sub_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch import torch
class L1Loss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, Yp, Yt):
num = Yt.size(0)
Yp = Yp.view(num, -1)
Yt = Yt.view(num, -1)
loss = nn.functional.l1_loss(Yp, Yt)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from torch import torch
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = 256.0
tmp8 = tmp6 / tmp7
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_mean_sub_0[grid(1)](buf1, arg1_1, arg0_1, 1,
256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class L1LossNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
oskarnatan/RGBDVS-fusion
|
L1Loss
| false | 7,423 |
[
"MIT"
] | 1 |
5e560f54442d387a86e3a469107cf65859693987
|
https://github.com/oskarnatan/RGBDVS-fusion/tree/5e560f54442d387a86e3a469107cf65859693987
|
HuberLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/sd/csdwhvb6tswj4q3idoyf4s3sk5tk27eharhfemurqkxurk5q4tra.py
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten.smooth_l1_loss]
# Source node to ATen node mapping:
# loss => abs_1, div, lt, mean, mul, pow_1, sub, sub_1, where
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %view_1), kwargs = {})
# %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 0.5), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 0.5), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.25), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {})
triton_per_fused_smooth_l1_loss_0 = async_compile.triton('triton_per_fused_smooth_l1_loss_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_smooth_l1_loss_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_smooth_l1_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.5
tmp5 = tmp3 < tmp4
tmp6 = tmp3 * tmp3
tmp7 = tmp6 * tmp4
tmp8 = 2.0
tmp9 = tmp7 * tmp8
tmp10 = 0.25
tmp11 = tmp3 - tmp10
tmp12 = tl.where(tmp5, tmp9, tmp11)
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 256.0
tmp17 = tmp15 / tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [loss], Original ATen: [aten.smooth_l1_loss]
stream0 = get_raw_stream(0)
triton_per_fused_smooth_l1_loss_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch import torch
class HuberLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, Yp, Yt):
num = Yt.size(0)
Yp = Yp.view(num, -1)
Yt = Yt.view(num, -1)
loss = nn.functional.smooth_l1_loss(Yp, Yt, beta=0.5)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
from torch import torch
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_smooth_l1_loss_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 0.5
tmp5 = tmp3 < tmp4
tmp6 = tmp3 * tmp3
tmp7 = tmp6 * tmp4
tmp8 = 2.0
tmp9 = tmp7 * tmp8
tmp10 = 0.25
tmp11 = tmp3 - tmp10
tmp12 = tl.where(tmp5, tmp9, tmp11)
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 256.0
tmp17 = tmp15 / tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_smooth_l1_loss_0[grid(1)](buf1, arg1_1, arg0_1, 1,
256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class HuberLossNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
oskarnatan/RGBDVS-fusion
|
HuberLoss
| false | 7,424 |
[
"MIT"
] | 1 |
5e560f54442d387a86e3a469107cf65859693987
|
https://github.com/oskarnatan/RGBDVS-fusion/tree/5e560f54442d387a86e3a469107cf65859693987
|
BCEDiceLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/rf/crfj2rfiuw6stksdk3ng3qvcetigsculcl6ryyksi47nlhtormfb.py
# Topologically Sorted Source Nodes: [bce, mul, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, truediv, dice_loss, bce_dice_loss], Original ATen: [aten.binary_cross_entropy, aten.mul, aten.sum, aten.add, aten.div, aten.rsub]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# add_2 => add_2
# bce => full_default, full_default_1, log, log1p, maximum, maximum_1, mean, mul, mul_1, neg, sub, sub_1
# bce_dice_loss => add_3
# dice_loss => sub_2
# intersection => sum_1
# mul => mul_2
# mul_1 => mul_3
# sum_2 => sum_2
# sum_3 => sum_3
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, 1), kwargs = {})
# %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%view,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%neg,), kwargs = {})
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log1p, %full_default), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %maximum), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%view,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -100), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %maximum_1 : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%log, %full_default_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %maximum_1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1e-07), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%view_1,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1e-07), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %sub_2), kwargs = {})
triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 1.0
tmp2 = tmp0 - tmp1
tmp4 = -tmp3
tmp5 = libdevice.log1p(tmp4)
tmp6 = -100.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp2 * tmp7
tmp9 = tl_math.log(tmp3)
tmp10 = triton_helpers.maximum(tmp9, tmp6)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = tmp3 * tmp0
tmp17 = tl.broadcast_to(tmp16, [RBLOCK])
tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0))
tmp20 = tl.broadcast_to(tmp3, [RBLOCK])
tmp22 = triton_helpers.promote_to_tensor(tl.sum(tmp20, 0))
tmp23 = tl.broadcast_to(tmp0, [RBLOCK])
tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0))
tmp26 = 256.0
tmp27 = tmp15 / tmp26
tmp28 = 2.0
tmp29 = tmp19 * tmp28
tmp30 = 1e-07
tmp31 = tmp29 + tmp30
tmp32 = tmp22 + tmp25
tmp33 = tmp32 + tmp30
tmp34 = tmp31 / tmp33
tmp35 = tmp1 - tmp34
tmp36 = tmp27 + tmp35
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp36, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [bce, mul, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, truediv, dice_loss, bce_dice_loss], Original ATen: [aten.binary_cross_entropy, aten.mul, aten.sum, aten.add, aten.div, aten.rsub]
stream0 = get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_0.run(buf4, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch import torch
class BCEDiceLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, Yp, Yt, smooth=1e-07):
num = Yt.size(0)
Yp = Yp.view(num, -1)
Yt = Yt.view(num, -1)
bce = nn.functional.binary_cross_entropy(Yp, Yt)
intersection = (Yp * Yt).sum()
dice_loss = 1 - (2.0 * intersection + smooth) / (Yp.sum() + Yt.sum(
) + smooth)
bce_dice_loss = bce + dice_loss
return bce_dice_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
from torch import torch
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp0 - tmp1
tmp4 = -tmp3
tmp5 = libdevice.log1p(tmp4)
tmp6 = -100.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp2 * tmp7
tmp9 = tl_math.log(tmp3)
tmp10 = triton_helpers.maximum(tmp9, tmp6)
tmp11 = tmp0 * tmp10
tmp12 = tmp8 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = tmp3 * tmp0
tmp17 = tl.broadcast_to(tmp16, [RBLOCK])
tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0))
tmp20 = tl.broadcast_to(tmp3, [RBLOCK])
tmp22 = triton_helpers.promote_to_tensor(tl.sum(tmp20, 0))
tmp23 = tl.broadcast_to(tmp0, [RBLOCK])
tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0))
tmp26 = 256.0
tmp27 = tmp15 / tmp26
tmp28 = 2.0
tmp29 = tmp19 * tmp28
tmp30 = 1e-07
tmp31 = tmp29 + tmp30
tmp32 = tmp22 + tmp25
tmp33 = tmp32 + tmp30
tmp34 = tmp31 / tmp33
tmp35 = tmp1 - tmp34
tmp36 = tmp27 + tmp35
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp36, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf4 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_binary_cross_entropy_div_mul_rsub_sum_0[grid(1)](
buf4, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf4,
class BCEDiceLossNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
oskarnatan/RGBDVS-fusion
|
BCEDiceLoss
| false | 7,425 |
[
"MIT"
] | 1 |
5e560f54442d387a86e3a469107cf65859693987
|
https://github.com/oskarnatan/RGBDVS-fusion/tree/5e560f54442d387a86e3a469107cf65859693987
|
UnpoolAvgEquiangular
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/iq/ciqv7bi5u5n5lklll775de7zs2dribgtfk5mjtugtmgprxav7lxa.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._unsafe_index, aten.clone]
# Source node to ATen node mapping:
# x_1 => _unsafe_index, clone
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%permute, [None, None, %unsqueeze, %convert_element_type_3]), kwargs = {})
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%_unsafe_index,), kwargs = {memory_format: torch.channels_last})
triton_poi_fused__unsafe_index_clone_0 = async_compile.triton('triton_poi_fused__unsafe_index_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 32) % 2
x1 = (xindex // 4) % 8
x0 = xindex % 4
x3 = (xindex // 64)
x5 = xindex
tmp0 = x2
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x1
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (x0 + (4*tmp8) + (16*x3)), xmask)
tl.store(out_ptr0 + (x5), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 8), (64, 1, 32, 4), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._unsafe_index, aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_clone_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch.nn import functional as F
def equiangular_dimension_unpack(nodes, ratio):
"""Calculate the two underlying dimensions
from the total number of nodes
Args:
nodes (int): combined dimensions
ratio (float): ratio between the two dimensions
Returns:
int, int: separated dimensions
"""
dim1 = int((nodes / ratio) ** 0.5)
dim2 = int((nodes * ratio) ** 0.5)
if dim1 * dim2 != nodes:
if nodes % dim1 == 0:
dim2 = nodes // dim1
if nodes % dim2 == 0:
dim1 = nodes // dim2
assert dim1 * dim2 == nodes, f'Unable to unpack nodes: {nodes}, ratio: {ratio}'
return dim1, dim2
def equiangular_calculator(tensor, ratio):
N, M, F = tensor.size()
dim1, dim2 = equiangular_dimension_unpack(M, ratio)
tensor = tensor.view(N, dim1, dim2, F)
return tensor
def reformat(x):
"""Reformat the input from a 4D tensor to a 3D tensor
Args:
x (:obj:`torch.tensor`): a 4D tensor
Returns:
:obj:`torch.tensor`: a 3D tensor
"""
x = x.permute(0, 2, 3, 1)
N, D1, D2, Feat = x.size()
x = x.view(N, D1 * D2, Feat)
return x
class UnpoolAvgEquiangular(torch.nn.Module):
"""EquiAngular average unpooling
Parameters
----------
ratio : float
Parameter for equiangular sampling -> width/height
"""
def __init__(self, ratio, kernel_size, *args, **kwargs):
self.ratio = ratio
self.kernel_size = int(kernel_size ** 0.5)
super().__init__()
def forward(self, inputs, *args):
"""calls pytorch's interpolate function to create the values while unpooling based on the nearby values
Parameters
----------
inputs : torch.tensor of shape batch x pixels x features
Input data
Returns
-------
x : torch.tensor of shape batch x unpooled pixels x features
Layer output
"""
x = equiangular_calculator(inputs, self.ratio)
x = x.permute(0, 3, 1, 2)
x = F.interpolate(x, scale_factor=(self.kernel_size, self.
kernel_size), mode='nearest')
x = reformat(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'ratio': 4, 'kernel_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__unsafe_index_clone_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 32 % 2
x1 = xindex // 4 % 8
x0 = xindex % 4
x3 = xindex // 64
x5 = xindex
tmp0 = x2
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp3.to(tl.int32)
tmp5 = x1
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (x0 + 4 * tmp8 + 16 * x3), xmask)
tl.store(out_ptr0 + x5, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 8), (64, 1, 32, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_clone_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1), 0),
def equiangular_dimension_unpack(nodes, ratio):
"""Calculate the two underlying dimensions
from the total number of nodes
Args:
nodes (int): combined dimensions
ratio (float): ratio between the two dimensions
Returns:
int, int: separated dimensions
"""
dim1 = int((nodes / ratio) ** 0.5)
dim2 = int((nodes * ratio) ** 0.5)
if dim1 * dim2 != nodes:
if nodes % dim1 == 0:
dim2 = nodes // dim1
if nodes % dim2 == 0:
dim1 = nodes // dim2
assert dim1 * dim2 == nodes, f'Unable to unpack nodes: {nodes}, ratio: {ratio}'
return dim1, dim2
def equiangular_calculator(tensor, ratio):
N, M, F = tensor.size()
dim1, dim2 = equiangular_dimension_unpack(M, ratio)
tensor = tensor.view(N, dim1, dim2, F)
return tensor
def reformat(x):
"""Reformat the input from a 4D tensor to a 3D tensor
Args:
x (:obj:`torch.tensor`): a 4D tensor
Returns:
:obj:`torch.tensor`: a 3D tensor
"""
x = x.permute(0, 2, 3, 1)
N, D1, D2, Feat = x.size()
x = x.view(N, D1 * D2, Feat)
return x
class UnpoolAvgEquiangularNew(torch.nn.Module):
"""EquiAngular average unpooling
Parameters
----------
ratio : float
Parameter for equiangular sampling -> width/height
"""
def __init__(self, ratio, kernel_size, *args, **kwargs):
self.ratio = ratio
self.kernel_size = int(kernel_size ** 0.5)
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ownzonefeng/weather_prediction
|
UnpoolAvgEquiangular
| false | 7,426 |
[
"MIT"
] | 1 |
723c02b6b3c0a40751d87572b66c7a4e040dec92
|
https://github.com/ownzonefeng/weather_prediction/tree/723c02b6b3c0a40751d87572b66c7a4e040dec92
|
UnpoolAvgHealpix
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/25/c25uvewxtb2cqewuyqopwqrakp2ojb5q4mux7wbn3ftnkz4vvhzr.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._unsafe_index]
# Source node to ATen node mapping:
# x_1 => _unsafe_index
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%permute, [None, None, %convert_element_type_1]), kwargs = {})
triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16) % 4
x2 = (xindex // 64)
x3 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.25
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = tl.load(in_ptr0 + (x1 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._unsafe_index]
stream0 = get_raw_stream(0)
triton_poi_fused__unsafe_index_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 16, 4), (64, 1, 16), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class UnpoolAvgHealpix(torch.nn.Module):
"""Healpix Average Unpooling module
Parameters
----------
kernel_size : int
Pooling kernel width
"""
def __init__(self, kernel_size, *args, **kwargs):
"""kernel_size should be 4, 16, 64, etc."""
super().__init__()
self.kernel_size = kernel_size
def extra_repr(self):
return 'kernel_size={kernel_size}'.format(**self.__dict__)
def forward(self, x, *args):
"""x has shape (batch, pixels, channels) and is in nested ordering"""
x = x.permute(0, 2, 1)
x = torch.nn.functional.interpolate(x, scale_factor=self.
kernel_size, mode='nearest')
return x.permute(0, 2, 1)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'kernel_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16 % 4
x2 = xindex // 64
x3 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.25
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = tl.load(in_ptr0 + (x1 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 16, 4), (64, 1, 16), 0),
class UnpoolAvgHealpixNew(torch.nn.Module):
"""Healpix Average Unpooling module
Parameters
----------
kernel_size : int
Pooling kernel width
"""
def __init__(self, kernel_size, *args, **kwargs):
"""kernel_size should be 4, 16, 64, etc."""
super().__init__()
self.kernel_size = kernel_size
def extra_repr(self):
return 'kernel_size={kernel_size}'.format(**self.__dict__)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ownzonefeng/weather_prediction
|
UnpoolAvgHealpix
| false | 7,427 |
[
"MIT"
] | 1 |
723c02b6b3c0a40751d87572b66c7a4e040dec92
|
https://github.com/ownzonefeng/weather_prediction/tree/723c02b6b3c0a40751d87572b66c7a4e040dec92
|
IOUScore
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/wa/cwazyy64v7y3sgk7yrmxl3a6dpgpv4z2nj2vj2pppkyrieeps7ac.py
# Topologically Sorted Source Nodes: [output_, target_, and_, intersection, or_, union, iou], Original ATen: [aten.gt, aten.bitwise_and, aten.sum, aten.bitwise_or, aten.div]
# Source node to ATen node mapping:
# and_ => bitwise_and
# intersection => sum_1
# iou => div
# or_ => bitwise_or
# output_ => gt
# target_ => gt_1
# union => sum_2
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 0.5), kwargs = {})
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg1_1, 0.5), kwargs = {})
# %bitwise_and : [num_users=1] = call_function[target=torch.ops.aten.bitwise_and.Tensor](args = (%gt, %gt_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%bitwise_and,), kwargs = {})
# %bitwise_or : [num_users=1] = call_function[target=torch.ops.aten.bitwise_or.Tensor](args = (%gt, %gt_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%bitwise_or,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {})
triton_per_fused_bitwise_and_bitwise_or_div_gt_sum_0 = async_compile.triton('triton_per_fused_bitwise_and_bitwise_or_div_gt_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_bitwise_and_bitwise_or_div_gt_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_bitwise_and_bitwise_or_div_gt_sum_0(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp3 = tl.load(in_ptr1 + (r0), None)
tmp1 = 0.5
tmp2 = tmp0 > tmp1
tmp4 = tmp3 > tmp1
tmp5 = tmp2 & tmp4
tmp6 = tmp5.to(tl.int64)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = tmp2 | tmp4
tmp11 = tmp10.to(tl.int64)
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tmp15 = tmp9.to(tl.float32)
tmp16 = tmp14.to(tl.float32)
tmp17 = tmp15 / tmp16
tl.store(out_ptr2 + (tl.full([1], 0, tl.int32)), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [output_, target_, and_, intersection, or_, union, iou], Original ATen: [aten.gt, aten.bitwise_and, aten.sum, aten.bitwise_or, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_bitwise_and_bitwise_or_div_gt_sum_0.run(arg0_1, arg1_1, buf2, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
from torch import torch
class IOUScore(nn.Module):
def __init__(self):
super().__init__()
def forward(self, Yp, Yt):
output_ = Yp > 0.5
target_ = Yt > 0.5
intersection = (output_ & target_).sum()
union = (output_ | target_).sum()
iou = intersection / union
return iou
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
from torch import torch
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_bitwise_and_bitwise_or_div_gt_sum_0(in_ptr0, in_ptr1,
out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 0.5
tmp2 = tmp0 > tmp1
tmp4 = tmp3 > tmp1
tmp5 = tmp2 & tmp4
tmp6 = tmp5.to(tl.int64)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = tmp2 | tmp4
tmp11 = tmp10.to(tl.int64)
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tmp15 = tmp9.to(tl.float32)
tmp16 = tmp14.to(tl.float32)
tmp17 = tmp15 / tmp16
tl.store(out_ptr2 + tl.full([1], 0, tl.int32), tmp17, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf2 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_bitwise_and_bitwise_or_div_gt_sum_0[grid(1)](arg0_1,
arg1_1, buf2, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2,
class IOUScoreNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
oskarnatan/RGBDVS-fusion
|
IOUScore
| false | 7,428 |
[
"MIT"
] | 1 |
5e560f54442d387a86e3a469107cf65859693987
|
https://github.com/oskarnatan/RGBDVS-fusion/tree/5e560f54442d387a86e3a469107cf65859693987
|
Critic
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/sm/csm4ofalq42npqq7fv6jo3il6ujywmjwqnazwa5z35h4asxel7vx.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 68
x1 = (xindex // 68)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((64*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tmp13 = tl.full([1], 68, tl.int64)
tmp14 = tmp0 < tmp13
tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-64) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/b7/cb7yiqdigd2vu5it7f2y6axob3bgvkx2ecs3nmymezsrlxsu2jhl.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_3 => relu_1
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_6), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/it/cit4qjb7wmwrbvv2rtchpn3duppvfiyliqnz2jz3tymwbqqane7m.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_2), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (32, 68), (68, 1))
assert_size_stride(primals_6, (32, ), (1, ))
assert_size_stride(primals_7, (1, 32), (32, 1))
assert_size_stride(primals_8, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 68), (68, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, primals_2, primals_4, buf1, 272, grid=grid(272), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((4, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (68, 32), (1, 68), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_6, 128, grid=grid(128), stream=stream0)
del primals_6
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7, (32, 1), (1, 32), 0), alpha=1, beta=1, out=buf5)
del primals_8
buf6 = empty_strided_cuda((4, 64), (64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf0, primals_2, buf6, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
return (buf5, primals_3, buf1, buf3, primals_7, primals_5, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, 68), (68, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
from torch import nn
import torch.autograd
def fanin_(size):
fan_in = size[0]
weight = 1.0 / np.sqrt(fan_in)
return torch.Tensor(size).uniform_(-weight, weight)
class Critic(nn.Module):
def __init__(self, state_dim, action_dim, h1=64, h2=32, init_w=0.003):
super(Critic, self).__init__()
self.linear1 = nn.Linear(state_dim, h1)
self.linear1.weight.data = fanin_(self.linear1.weight.data.size())
self.linear2 = nn.Linear(h1 + action_dim, h2)
self.linear2.weight.data = fanin_(self.linear2.weight.data.size())
self.linear3 = nn.Linear(h2, 1)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.relu = nn.ReLU()
def forward(self, state, action):
x = self.linear1(state)
x = self.relu(x)
x = self.linear2(torch.cat([x, action], 1))
x = self.relu(x)
x = self.linear3(x)
return x
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
from torch import nn
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 272
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 68
x1 = xindex // 68
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (64 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full([1], 0, tl.int32)
tmp9 = triton_helpers.maximum(tmp8, tmp7)
tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype)
tmp11 = tl.where(tmp4, tmp9, tmp10)
tmp12 = tmp0 >= tmp3
tl.full([1], 68, tl.int64)
tmp15 = tl.load(in_ptr2 + (4 * x1 + (-64 + x0)), tmp12 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.where(tmp4, tmp11, tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (32, 68), (68, 1))
assert_size_stride(primals_6, (32,), (1,))
assert_size_stride(primals_7, (1, 32), (32, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 64),
(1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 68), (68, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(272)](buf0, primals_2, primals_4, buf1,
272, XBLOCK=128, num_warps=4, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((4, 32), (32, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (68, 32), (1,
68), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(128)](buf3, primals_6, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_6
buf5 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, buf3, reinterpret_tensor(primals_7,
(32, 1), (1, 32), 0), alpha=1, beta=1, out=buf5)
del primals_8
buf6 = empty_strided_cuda((4, 64), (64, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_2[grid(256)](buf0,
primals_2, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_2
return buf5, primals_3, buf1, buf3, primals_7, primals_5, buf6
def fanin_(size):
fan_in = size[0]
weight = 1.0 / np.sqrt(fan_in)
return torch.Tensor(size).uniform_(-weight, weight)
class CriticNew(nn.Module):
def __init__(self, state_dim, action_dim, h1=64, h2=32, init_w=0.003):
super(CriticNew, self).__init__()
self.linear1 = nn.Linear(state_dim, h1)
self.linear1.weight.data = fanin_(self.linear1.weight.data.size())
self.linear2 = nn.Linear(h1 + action_dim, h2)
self.linear2.weight.data = fanin_(self.linear2.weight.data.size())
self.linear3 = nn.Linear(h2, 1)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.relu = nn.ReLU()
def forward(self, input_0, input_1):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_5 = self.linear2.weight
primals_6 = self.linear2.bias
primals_7 = self.linear3.weight
primals_8 = self.linear3.bias
primals_3 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
ori-goals/lfd-min-human-effort
|
Critic
| false | 7,429 |
[
"MIT"
] | 1 |
f9fd70cdeb661151e5f81ac538ceb865531146b9
|
https://github.com/ori-goals/lfd-min-human-effort/tree/f9fd70cdeb661151e5f81ac538ceb865531146b9
|
HintonBinarizer
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/sk/cskfzr7unt3o6lbqp52hiw4lbz3jnzq4jdg3fczqxgirkqifl766.py
# Topologically Sorted Source Nodes: [gt, float_1], Original ATen: [aten.gt, aten._to_copy]
# Source node to ATen node mapping:
# float_1 => convert_element_type
# gt => gt
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 0.5), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%gt, torch.float32), kwargs = {})
triton_poi_fused__to_copy_gt_0 = async_compile.triton('triton_poi_fused__to_copy_gt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_gt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_gt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [gt, float_1], Original ATen: [aten.gt, aten._to_copy]
stream0 = get_raw_stream(0)
triton_poi_fused__to_copy_gt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.optim
class hinton_binarize(torch.autograd.Function):
"""
Binarize function from the paper
'SKIP RNN: LEARNING TO SKIP STATE UPDATES IN RECURRENT NEURAL NETWORKS'
https://openreview.net/forum?id=HkwVAXyCW
Works as round function but has a unit gradient:
Binarize(x) := (x > 0.5).float()
d Binarize(x) / dx := 1
"""
@staticmethod
def forward(ctx, x, threshold=0.5):
return (x > threshold).float()
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
class HintonBinarizer(nn.Module):
"""
Binarize function from the paper
'SKIP RNN: LEARNING TO SKIP STATE UPDATES IN RECURRENT NEURAL NETWORKS'
https://openreview.net/forum?id=HkwVAXyCW
Works as round function but has a unit gradient:
Binarize(x) := (x > 0.5).float()
d Binarize(x) / dx := 1
"""
def __init__(self, threshold=0.5):
super().__init__()
self.threshold = threshold
def forward(self, x, threshold=None):
threshold = threshold if threshold is not None else self.threshold
return hinton_binarize.apply(x, threshold)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__to_copy_gt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__to_copy_gt_0[grid(256)](arg0_1, buf0, 256, XBLOCK
=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class hinton_binarize(torch.autograd.Function):
"""
Binarize function from the paper
'SKIP RNN: LEARNING TO SKIP STATE UPDATES IN RECURRENT NEURAL NETWORKS'
https://openreview.net/forum?id=HkwVAXyCW
Works as round function but has a unit gradient:
Binarize(x) := (x > 0.5).float()
d Binarize(x) / dx := 1
"""
@staticmethod
def forward(ctx, x, threshold=0.5):
return (x > threshold).float()
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
class HintonBinarizerNew(nn.Module):
"""
Binarize function from the paper
'SKIP RNN: LEARNING TO SKIP STATE UPDATES IN RECURRENT NEURAL NETWORKS'
https://openreview.net/forum?id=HkwVAXyCW
Works as round function but has a unit gradient:
Binarize(x) := (x > 0.5).float()
d Binarize(x) / dx := 1
"""
def __init__(self, threshold=0.5):
super().__init__()
self.threshold = threshold
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ovechkinVT/SkipRNN
|
HintonBinarizer
| false | 7,430 |
[
"MIT"
] | 1 |
7c1f37349d464b1b6bf8835520abad22b199f1ad
|
https://github.com/ovechkinVT/SkipRNN/tree/7c1f37349d464b1b6bf8835520abad22b199f1ad
|
torch_return_int8_argmax
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/n4/cn4szll4copwskp64zgti6qhmul4ybjdz6ghrbyoz573ejmmepyb.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
# Source node to ATen node mapping:
# max_1 => getitem_1
# Graph fragment:
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%max_1, 1), kwargs = {})
triton_poi_fused_max_0 = async_compile.triton('triton_poi_fused_max_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp17 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp32 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tmp45 = tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tl.store(out_ptr0 + (x0), tmp46, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
stream0 = get_raw_stream(0)
triton_poi_fused_max_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class torch_return_int8_argmax(torch.nn.Module):
def __init__(self):
super(torch_return_int8_argmax, self).__init__()
def forward(self, x):
x0 = x.squeeze(0)
_, x1 = torch.max(x0, 0)
return x1
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + (64 + x0), xmask)
tmp17 = tl.load(in_ptr0 + (128 + x0), xmask)
tmp32 = tl.load(in_ptr0 + (192 + x0), xmask)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tmp15 = tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp18 = tmp15 > tmp17
tmp19 = tmp15 == tmp17
tmp20 = tmp15 != tmp15
tmp21 = tmp17 != tmp17
tmp22 = tmp20 > tmp21
tmp23 = tmp18 | tmp22
tmp24 = tmp20 & tmp21
tmp25 = tmp19 | tmp24
tmp26 = tl.full([1], 2, tl.int64)
tmp27 = tmp16 < tmp26
tmp28 = tmp25 & tmp27
tmp29 = tmp23 | tmp28
tmp30 = tl.where(tmp29, tmp15, tmp17)
tmp31 = tl.where(tmp29, tmp16, tmp26)
tmp33 = tmp30 > tmp32
tmp34 = tmp30 == tmp32
tmp35 = tmp30 != tmp30
tmp36 = tmp32 != tmp32
tmp37 = tmp35 > tmp36
tmp38 = tmp33 | tmp37
tmp39 = tmp35 & tmp36
tmp40 = tmp34 | tmp39
tmp41 = tl.full([1], 3, tl.int64)
tmp42 = tmp31 < tmp41
tmp43 = tmp40 & tmp42
tmp44 = tmp38 | tmp43
tl.where(tmp44, tmp30, tmp32)
tmp46 = tl.where(tmp44, tmp31, tmp41)
tl.store(out_ptr0 + x0, tmp46, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.int64)
get_raw_stream(0)
triton_poi_fused_max_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class torch_return_int8_argmaxNew(torch.nn.Module):
def __init__(self):
super(torch_return_int8_argmaxNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ozendelait/pytorch-semseg
|
torch_return_int8_argmax
| false | 7,431 |
[
"MIT"
] | 1 |
200491febd653bd26befcd5b3d52c614aa832b7e
|
https://github.com/ozendelait/pytorch-semseg/tree/200491febd653bd26befcd5b3d52c614aa832b7e
|
Actor
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/nq/cnqjufcqn3ur3s7xvlb2i747nyf24md4zaiatlwgkasynplfjstu.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/54/c546inlectt6zvbpgn5qhxi6h2mqgwz227jurnrzfeistnsnjut6.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_3 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ns/cnszijuiz432ctw37rqktvk3syr2vugzeuatmva3neoizic6f3sq.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# x_5 => tanh
# Graph fragment:
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {})
triton_poi_fused_tanh_2 = async_compile.triton('triton_poi_fused_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, 64), (64, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (4, 32), (32, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 4096, grid=grid(4096), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 32), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf6, 2048, grid=grid(2048), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 32), (32, 1), 0), reinterpret_tensor(primals_6, (32, 4), (1, 32), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.tanh]
triton_poi_fused_tanh_2.run(buf5, primals_7, 256, grid=grid(256), stream=stream0)
del primals_7
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(buf3, (64, 32), (32, 1), 0), buf5, primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import numpy as np
from torch import nn
import torch.autograd
def fanin_(size):
fan_in = size[0]
weight = 1.0 / np.sqrt(fan_in)
return torch.Tensor(size).uniform_(-weight, weight)
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, h1=64, h2=32, init_w=0.003):
super(Actor, self).__init__()
self.linear1 = nn.Linear(state_dim, h1)
self.linear1.weight.data = fanin_(self.linear1.weight.data.size())
self.linear2 = nn.Linear(h1, h2)
self.linear2.weight.data = fanin_(self.linear2.weight.data.size())
self.linear3 = nn.Linear(h2, action_dim)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
cuda = torch.cuda.is_available()
self.device = torch.device('cuda' if cuda else 'cpu')
def forward(self, state):
x = self.linear1(state)
x = self.relu(x)
x = self.linear2(x)
x = self.relu(x)
x = self.linear3(x)
x = self.tanh(x)
return x
def get_action(self, state):
state = torch.FloatTensor(state).unsqueeze(0)
action = self.forward(state)
return action.detach().cpu().numpy()[0]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import numpy as np
from torch import nn
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (64, 4), (4, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (32, 64), (64, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (4, 32), (32, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool
)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf1,
primals_2, buf7, 4096, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_4, (64, 32), (1, 64), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 32), (512, 128, 32, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(2048)](buf3,
primals_5, buf6, 2048, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 32), (32, 1), 0),
reinterpret_tensor(primals_6, (32, 4), (1, 32), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf4
triton_poi_fused_tanh_2[grid(256)](buf5, primals_7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_7
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(
buf3, (64, 32), (32, 1), 0), buf5, primals_6, buf6, primals_4, buf7
def fanin_(size):
fan_in = size[0]
weight = 1.0 / np.sqrt(fan_in)
return torch.Tensor(size).uniform_(-weight, weight)
class ActorNew(nn.Module):
def __init__(self, state_dim, action_dim, h1=64, h2=32, init_w=0.003):
super(ActorNew, self).__init__()
self.linear1 = nn.Linear(state_dim, h1)
self.linear1.weight.data = fanin_(self.linear1.weight.data.size())
self.linear2 = nn.Linear(h1, h2)
self.linear2.weight.data = fanin_(self.linear2.weight.data.size())
self.linear3 = nn.Linear(h2, action_dim)
self.linear3.weight.data.uniform_(-init_w, init_w)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
cuda = torch.cuda.is_available()
self.device = torch.device('cuda' if cuda else 'cpu')
def get_action(self, state):
state = torch.FloatTensor(state).unsqueeze(0)
action = self.forward(state)
return action.detach().cpu().numpy()[0]
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_4 = self.linear2.weight
primals_5 = self.linear2.bias
primals_6 = self.linear3.weight
primals_7 = self.linear3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
ori-goals/lfd-min-human-effort
|
Actor
| false | 7,432 |
[
"MIT"
] | 1 |
f9fd70cdeb661151e5f81ac538ceb865531146b9
|
https://github.com/ori-goals/lfd-min-human-effort/tree/f9fd70cdeb661151e5f81ac538ceb865531146b9
|
Rectifier
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/jt/cjttk7o6na747j6wchwxpm7fvq5ogr7qe7htgmdltxiyrnbm4e33.py
# Topologically Sorted Source Nodes: [mul, t, t_1], Original ATen: [aten.mul, aten.add, aten.hardtanh]
# Source node to ATen node mapping:
# mul => mul
# t => add
# t_1 => clamp_max, clamp_min
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.2000000000000002), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, -0.1), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {})
triton_poi_fused_add_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_hardtanh_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.2000000000000002
tmp2 = tmp0 * tmp1
tmp3 = -0.1
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = 1.0
tmp8 = triton_helpers.minimum(tmp6, tmp7)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, t, t_1], Original ATen: [aten.mul, aten.add, aten.hardtanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.optim
class Rectifier(nn.Module):
def __init__(self, l=-0.1, r=1.1):
super().__init__()
self.l = l
self.r = r
self.eps = 1e-07
def forward(self, x, l=None, r=None):
l = l if l is not None else self.l
r = r if r is not None else self.r
t = l + (r - l) * x
t = torch.nn.functional.hardtanh(t, 0, 1)
return t
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.2000000000000002
tmp2 = tmp0 * tmp1
tmp3 = -0.1
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = 1.0
tmp8 = triton_helpers.minimum(tmp6, tmp7)
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class RectifierNew(nn.Module):
def __init__(self, l=-0.1, r=1.1):
super().__init__()
self.l = l
self.r = r
self.eps = 1e-07
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ovechkinVT/SkipRNN
|
Rectifier
| false | 7,433 |
[
"MIT"
] | 1 |
7c1f37349d464b1b6bf8835520abad22b199f1ad
|
https://github.com/ovechkinVT/SkipRNN/tree/7c1f37349d464b1b6bf8835520abad22b199f1ad
|
torch_fakeint8_to_float
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/wg/cwg2jpgvg7egh2kdtwwuk5fjapsjymwpr3d4jghgpngnns2hyz6g.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%unsqueeze_1,), kwargs = {memory_format: torch.contiguous_format})
# %copy_ : [num_users=0] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %permute_1), kwargs = {})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (x1 + (4*y0)), xmask & ymask, eviction_policy='evict_last')
tmp1 = -1.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 0.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tmp5 = -256.0
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tl.store(out_ptr0 + (y0 + (16*x1)), tmp7, xmask & ymask)
tl.store(out_ptr1 + (x1 + (4*y0)), tmp7, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(arg0_1, buf0, arg0_1, 16, 4, grid=grid(16, 4), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class torch_fakeint8_to_float(torch.nn.Module):
def __init__(self):
super(torch_fakeint8_to_float, self).__init__()
def forward(self, x):
x0 = x.permute(2, 0, 1)
x0 += torch.clamp(x0, -1, 0) * -256.0
return x0.unsqueeze(0).contiguous()
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (x1 + 4 * y0), xmask & ymask, eviction_policy=
'evict_last')
tmp1 = -1.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 0.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tmp5 = -256.0
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tl.store(out_ptr0 + (y0 + 16 * x1), tmp7, xmask & ymask)
tl.store(out_ptr1 + (x1 + 4 * y0), tmp7, xmask & ymask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](arg0_1, buf0, arg0_1, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del arg0_1
return buf0,
class torch_fakeint8_to_floatNew(torch.nn.Module):
def __init__(self):
super(torch_fakeint8_to_floatNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ozendelait/pytorch-semseg
|
torch_fakeint8_to_float
| false | 7,434 |
[
"MIT"
] | 1 |
200491febd653bd26befcd5b3d52c614aa832b7e
|
https://github.com/ozendelait/pytorch-semseg/tree/200491febd653bd26befcd5b3d52c614aa832b7e
|
torch_uint8_to_float_normed
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/2b/c2b2qscyt7jh2sc5mpwzpfixavplwowdf2s6xnclxvxr4cctz37r.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%unsqueeze,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = 0.00392156862745098
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x1 + (16*y0)), tmp2, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(arg0_1, buf0, 4, 16, grid=grid(4, 16), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
class torch_uint8_to_float_normed(torch.nn.Module):
def __init__(self):
super(torch_uint8_to_float_normed, self).__init__()
def forward(self, x):
return (x.permute(2, 0, 1) / 255.0).unsqueeze(0).contiguous()
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy=
'evict_last')
tmp1 = 0.00392156862745098
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x1 + 16 * y0), tmp2, xmask & ymask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(4, 16)](arg0_1, buf0, 4, 16, XBLOCK=
16, YBLOCK=4, num_warps=1, num_stages=1)
del arg0_1
return buf0,
class torch_uint8_to_float_normedNew(torch.nn.Module):
def __init__(self):
super(torch_uint8_to_float_normedNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ozendelait/pytorch-semseg
|
torch_uint8_to_float_normed
| false | 7,435 |
[
"MIT"
] | 1 |
200491febd653bd26befcd5b3d52c614aa832b7e
|
https://github.com/ozendelait/pytorch-semseg/tree/200491febd653bd26befcd5b3d52c614aa832b7e
|
Attention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/7e/c7eul75w5s2nxzr6mevxwrjuv2vslc5jmikyp4moxhc5kqk225qk.py
# Topologically Sorted Source Nodes: [wplus_2], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# wplus_2 => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ts/ctscnzvbagjv4t25zui245b3recij5udu7nvujnr5rixcyo7elc6.py
# Topologically Sorted Source Nodes: [att_w_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_w_2 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_4, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_4, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/k6/ck6fz3qsfeqgn5jtm4ugikmu7cwvvlq3jpttijbb5kdniicwtyz6.py
# Topologically Sorted Source Nodes: [att_w_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# att_w_2 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [wplus], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), primals_2, out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [wplus_2], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [att_w], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 1), (1, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [att_w_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0)
buf4 = reinterpret_tensor(buf2, (4, 4), (4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [att_w_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf3, buf4, 16, grid=grid(16), stream=stream0)
buf5 = reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [after_attention], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf4, (4, 1, 4), (4, 4, 1), 0), primals_1, out=buf5)
return (buf5, buf4, primals_1, buf1, buf4, reinterpret_tensor(primals_3, (1, 4), (1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import math
import torch
import torch.nn as nn
import torch.optim
import torch.nn.functional as F
class Attention(nn.Module):
"""Attention layer - Custom layer to perform weighted average over the second axis (axis=1)
Transforming a tensor of size [N, W, H] to [N, 1, H].
N: batch size
W: number of words, different sentence length will need to be padded to have the same size for each mini-batch
H: hidden state dimension or word embedding dimension
Args:
dim: The dimension of the word embedding
Attributes:
w: learnable weight matrix of size [dim, dim]
v: learnable weight vector of size [dim]
Examples::
>>> m = models_pytorch.Attention(300)
>>> input = Variable(torch.randn(4, 128, 300))
>>> output = m(input)
>>> print(output.size())
"""
def __init__(self, dim):
super(Attention, self).__init__()
self.dim = dim
self.att_weights = None
self.w = nn.Parameter(torch.Tensor(dim, dim))
self.v = nn.Parameter(torch.Tensor(dim))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.w.size(1))
self.w.data.uniform_(-stdv, stdv)
self.v.data.uniform_(-stdv, stdv)
def forward(self, input):
wplus = torch.mm(input.contiguous().view(-1, input.size()[2]), self.w)
wplus = wplus.contiguous().view(-1, input.size()[1], self.w.size()[1])
wplus = torch.tanh(wplus)
att_w = torch.mm(wplus.contiguous().view(-1, wplus.size()[2]), self
.v.contiguous().view(self.v.size()[0], 1))
att_w = att_w.contiguous().view(-1, wplus.size()[1])
att_w = F.softmax(att_w, dim=1)
self.att_weights = att_w
after_attention = torch.bmm(att_w.unsqueeze(1), input)
return after_attention
def __repr__(self):
return self.__class__.__name__ + ' (' + '1' + ', ' + str(self.dim
) + ')'
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.nn as nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
primals_2, out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(64)](buf1, 64, XBLOCK=64, num_warps=1,
num_stages=1)
buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 1), (1, 1), 0), out=buf2)
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf2, buf3, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf4 = reinterpret_tensor(buf2, (4, 4), (4, 1), 0)
del buf2
triton_poi_fused__softmax_2[grid(16)](buf3, buf4, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf5 = reinterpret_tensor(buf3, (4, 1, 4), (4, 4, 1), 0)
del buf3
extern_kernels.bmm(reinterpret_tensor(buf4, (4, 1, 4), (4, 4, 1), 0
), primals_1, out=buf5)
return buf5, buf4, primals_1, buf1, buf4, reinterpret_tensor(primals_3,
(1, 4), (1, 1), 0)
class AttentionNew(nn.Module):
"""Attention layer - Custom layer to perform weighted average over the second axis (axis=1)
Transforming a tensor of size [N, W, H] to [N, 1, H].
N: batch size
W: number of words, different sentence length will need to be padded to have the same size for each mini-batch
H: hidden state dimension or word embedding dimension
Args:
dim: The dimension of the word embedding
Attributes:
w: learnable weight matrix of size [dim, dim]
v: learnable weight vector of size [dim]
Examples::
>>> m = models_pytorch.Attention(300)
>>> input = Variable(torch.randn(4, 128, 300))
>>> output = m(input)
>>> print(output.size())
"""
def __init__(self, dim):
super(AttentionNew, self).__init__()
self.dim = dim
self.att_weights = None
self.w = nn.Parameter(torch.Tensor(dim, dim))
self.v = nn.Parameter(torch.Tensor(dim))
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.w.size(1))
self.w.data.uniform_(-stdv, stdv)
self.v.data.uniform_(-stdv, stdv)
def __repr__(self):
return self.__class__.__name__ + ' (' + '1' + ', ' + str(self.dim
) + ')'
def forward(self, input_0):
primals_2 = self.w
primals_3 = self.v
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
ovechkinVT/SkipRNN
|
Attention
| false | 7,436 |
[
"MIT"
] | 1 |
7c1f37349d464b1b6bf8835520abad22b199f1ad
|
https://github.com/ovechkinVT/SkipRNN/tree/7c1f37349d464b1b6bf8835520abad22b199f1ad
|
AvgLayer
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/3z/c3zp6tzyjvuxkyhpqg37skoz3sh23okiwohqkcwueawnz24zmgzs.py
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# mean => mean
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [3], True), kwargs = {})
triton_poi_fused_mean_0 = async_compile.triton('triton_poi_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_mean_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
import torch.utils.data
class AvgLayer(nn.Module):
def forward(self, input):
return input.mean(3, keepdim=True)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class AvgLayerNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
pYtoner/EasyOCR
|
AvgLayer
| false | 7,437 |
[
"Apache-2.0"
] | 1 |
cbb2df77ae789dd4c7807541e0357d9a698ba801
|
https://github.com/pYtoner/EasyOCR/tree/cbb2df77ae789dd4c7807541e0357d9a698ba801
|
LearnedUtility
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/yc/cycelhrr7d5b627wwjisqr4ziuy5dylqqlk7lgr32kypwamk5f6s.py
# Topologically Sorted Source Nodes: [multiply], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multiply => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (0))
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1, ), (1, ))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multiply], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
return (buf0, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import torch.nn as nn
class LearnedUtility(nn.Module):
def __init__(self, slope=0):
super().__init__()
self.theta_tt = torch.nn.Parameter(slope * torch.ones(1))
self.theta_tt.requiresGrad = True
def forward(self, x):
return torch.multiply(self.theta_tt, x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp3 = tmp1 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (1,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
return buf0, primals_2
class LearnedUtilityNew(nn.Module):
def __init__(self, slope=0):
super().__init__()
self.theta_tt = torch.nn.Parameter(slope * torch.ones(1))
self.theta_tt.requiresGrad = True
def forward(self, input_0):
primals_1 = self.theta_tt
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
pabloguarda/NeuralTransportationNetworks
|
LearnedUtility
| false | 7,438 |
[
"MIT"
] | 1 |
0461c26128b09488aff237b760068b43d131f8a9
|
https://github.com/pabloguarda/NeuralTransportationNetworks/tree/0461c26128b09488aff237b760068b43d131f8a9
|
PreNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/dh/cdhj4aozvvzkw7stzrqoauyoij3petwtvi4g4weydesiaurrughd.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_4 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse
buf11 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf11, 16384, grid=grid(16384), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.relu, aten.native_dropout]
buf2 = torch.ops.aten.native_dropout.default(buf1, 0.5, True)
del buf1
buf3 = buf2[0]
buf4 = buf2[1]
del buf2
buf5 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf5 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf6, primals_5, buf10, 8192, grid=grid(8192), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.relu, aten.native_dropout]
buf7 = torch.ops.aten.native_dropout.default(buf6, 0.5, True)
del buf6
buf8 = buf7[0]
buf9 = buf7[1]
del buf7
return (buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf4, reinterpret_tensor(buf3, (64, 256), (256, 1), 0), buf9, buf10, primals_4, buf11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch import nn
import torch.nn.functional as F
class PreNet(nn.Module):
def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
super().__init__()
self.fc1 = nn.Linear(in_dims, fc1_dims)
self.fc2 = nn.Linear(fc1_dims, fc2_dims)
self.p = dropout
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = F.dropout(x, self.p, training=True)
x = self.fc2(x)
x = F.relu(x)
x = F.dropout(x, self.p, training=True)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_dims': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf11 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf11, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = torch.ops.aten.native_dropout.default(buf1, 0.5, True)
del buf1
buf3 = buf2[0]
buf4 = buf2[1]
del buf2
buf5 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf5
buf10 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf6,
primals_5, buf10, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf7 = torch.ops.aten.native_dropout.default(buf6, 0.5, True)
del buf6
buf8 = buf7[0]
buf9 = buf7[1]
del buf7
return buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf4, reinterpret_tensor(buf3, (64, 256), (256, 1), 0
), buf9, buf10, primals_4, buf11
class PreNetNew(nn.Module):
def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5):
super().__init__()
self.fc1 = nn.Linear(in_dims, fc1_dims)
self.fc2 = nn.Linear(fc1_dims, fc2_dims)
self.p = dropout
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
padmalcom/AISpeechAssistant
|
PreNet
| false | 7,439 |
[
"Apache-2.0"
] | 1 |
b7501a23a8f513acb5043f3c7bb06df129bdc2cc
|
https://github.com/padmalcom/AISpeechAssistant/tree/b7501a23a8f513acb5043f3c7bb06df129bdc2cc
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.