File size: 8,035 Bytes
d82ae7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import open3d as o3d
import numpy as np
import os
def align_scene_to_z_up(pcd, save_pcd_path=None, save_transform_path=None, visualize=False, fit_ground=True):
"""
将点云扫描转换为Z轴向上对齐,并尝试将墙壁对齐到X-Y平面
参数:
points (np.ndarray): (N, 3) 点云数据
visualize (bool): 是否可视化结果
返回:
aligned_points (np.ndarray): 对齐后的点云
transform_matrix (np.ndarray): 应用的4x4变换矩阵
"""
points = np.asarray(pcd.points)
centroid = np.mean(points, axis=0)
distance_threshold = 0.02 # 动态距离阈值
R_ground = np.eye(3) # Initialize ground rotation matrix
if fit_ground:
plane_model, ground_inliers = pcd.segment_plane(
distance_threshold=distance_threshold,
ransac_n=3,
num_iterations=1000
)
[a, b, c, d] = plane_model
ground_normal = np.array([a, b, c])
# print('ground_normal:', ground_normal)
# 可视化地面点云
ground_cloud = pcd.select_by_index(ground_inliers)
ground_cloud.paint_uniform_color([1, 0, 0]) # 红色表示地面
if visualize:
o3d.visualization.draw_geometries([ground_cloud])
# 3. 计算旋转矩阵使地面法向量对齐到Z轴
z_axis = np.array([0, 0, 1])
ground_normal = ground_normal / np.linalg.norm(ground_normal)
# 计算旋转轴和角度
rotation_axis = np.cross(ground_normal, z_axis)
if np.linalg.norm(rotation_axis) < 1e-6:
rotation_axis = np.array([0, 1, 0]) # 避免零向量
else:
rotation_axis = rotation_axis / np.linalg.norm(rotation_axis)
cos_theta = np.dot(ground_normal, z_axis)
angle = np.arccos(np.clip(cos_theta, -1.0, 1.0))
# 使用罗德里格斯公式计算旋转矩阵
K = np.array([
[0, -rotation_axis[2], rotation_axis[1]],
[rotation_axis[2], 0, -rotation_axis[0]],
[-rotation_axis[1], rotation_axis[0], 0]
])
R_ground = np.eye(3) + np.sin(angle) * K + (1 - np.cos(angle)) * (K @ K)
# [Alternate] concise method
# from scipy.spatial.transform import Rotation as R
# R_ground = R.from_rotvec(rotation_axis * angle).as_matrix()
# 4. 应用地面旋转
centered_points = points - centroid
ground_rotated = (R_ground @ centered_points.T).T
# 5. 检测墙壁平面(垂直平面)
all_indices = np.arange(len(points))
non_ground_indices = np.setdiff1d(all_indices, ground_inliers)
non_ground_points = ground_rotated[non_ground_indices]
# 创建临时点云用于墙壁检测
temp_pcd = o3d.geometry.PointCloud()
temp_pcd.points = o3d.utility.Vector3dVector(non_ground_points)
remaining_pcd = temp_pcd
else:
# already z up
remaining_pcd = pcd
wall_planes = []
wall_directions = []
max_points = 0
best_direction = None
R_walls = np.eye(3)
# 检测多个墙壁平面
for _ in range(6):
if len(remaining_pcd.points) < 100:
break
plane_model, inliers = remaining_pcd.segment_plane(
distance_threshold=distance_threshold,
ransac_n=3,
num_iterations=1000
)
wall_cloud = remaining_pcd.select_by_index(inliers)
wall_cloud.paint_uniform_color([1, 0, 0]) # 红色表示地面
if visualize:
o3d.visualization.draw_geometries([wall_cloud])
[a, b, c, d] = plane_model
normal = np.array([a, b, c])
# 检查是否为垂直平面(法向量的Z分量接近0)
if abs(normal[2]) < 0.1 and np.linalg.norm(normal[:2]) > 0.5:
# 提取水平方向
horizontal_dir = normal[:2] / np.linalg.norm(normal[:2])
wall_directions = horizontal_dir
# print('wall direction',normal)
if max_points < len(inliers):
max_points = len(inliers)
# print(max_points)
best_direction = wall_directions
# 计算最佳方向的旋转角度
angle = np.arctan2(best_direction[1], best_direction[0])
# 创建最终的旋转矩阵
R_walls = np.array([
[np.cos(-angle), -np.sin(-angle), 0],
[np.sin(-angle), np.cos(-angle), 0],
[0, 0, 1]
])
remaining_pcd = remaining_pcd.select_by_index(inliers, invert=True)
# 8. 创建变换矩阵(旋转 + 平移)
if fit_ground:
# Compose the transformations: first ground rotation, then wall rotation
combined_rotation = R_walls @ R_ground
transform_matrix = np.eye(4)
transform_matrix[:3, :3] = combined_rotation
transform_matrix[:3, 3] = -combined_rotation @ centroid
else:
# Only wall rotation
transform_matrix = np.eye(4)
transform_matrix[:3, :3] = R_walls
transform_matrix[:3, 3] = -R_walls @ centroid # 平移使中心到原点
# 9. 应用变换
aligned_points = (transform_matrix[:3, :3] @ points.T + transform_matrix[:3, 3:4]).T
# 10. 创建对齐后的点云
aligned_pcd = o3d.geometry.PointCloud()
aligned_pcd.points = o3d.utility.Vector3dVector(aligned_points)
if pcd.colors:
aligned_pcd.colors = pcd.colors
# 11. 保存结果
if save_pcd_path:
o3d.io.write_point_cloud(save_pcd_path, aligned_pcd)
if save_transform_path:
np.savetxt(save_transform_path, transform_matrix, fmt='%.8f')
return aligned_pcd, transform_matrix
"""创建4x4变换矩阵"""
transform = np.eye(4)
transform[:3, :3] = rotation_matrix
return transform
def visualize_alignment(pcd_orig, pcd_aligned):
"""可视化原始点云和对齐后的点云"""
pcd_orig.paint_uniform_color([1, 0, 0]) # 红色为原始点云
pcd_aligned.paint_uniform_color([0, 1, 0]) # 绿色为对齐后点云
# 创建坐标系
coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=1.0)
o3d.visualization.draw_geometries([pcd_orig, pcd_aligned, coord_frame])
npy_dir = '/media/vivo/vivo/Datasets/ScanNetpp/ScanNetpp_preprocessed/train/'
scene_names = os.listdir(npy_dir)
for scene_name in scene_names:
if scene_name.endswith('.zip'):
continue
print(scene_name)
scene_dir = os.path.join(npy_dir, scene_name)
npy_path = os.path.join(scene_dir, 'coord.npy')
points = np.load(npy_path) # (N, 3) 或 (N, 6)
# 创建点云对象
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points[:, :3])
if points.shape[1] == 6:
pcd.colors = o3d.utility.Vector3dVector(points[:, 3:6]) # 如果包含 RGB
# 执行对齐
transformed_pcd, transform = align_scene_to_z_up(
pcd,
# save_transform_path=os.path.join(scene_dir, "transform.txt"),
visualize=False,
fit_ground=False
)
aligned_points = np.asarray(transformed_pcd.points)
# scale point cloud
# min_z = np.min(aligned_points[:, 2])
# max_z = np.max(aligned_points[:, 2])
# height = max_z - min_z
# print(f"Original height: {height}")
# estimated_height = 2.5
# scale = estimated_height / height
# print(f"Scale factor: {scale}")
# aligned_points_scaled = aligned_points * scale
transformed_pcd.points = o3d.utility.Vector3dVector(aligned_points)
# 保存为对齐后的 PLY 文件
# aligned_ply_path = os.path.join(scene_dir, scene_name + ".ply")
# o3d.io.write_point_cloud(aligned_ply_path, transformed_pcd)
# 也可以保存为对齐后的 npy
np.save(os.path.join(scene_dir, "coord_align.npy"), aligned_points)
|