|
import os |
|
import json |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """\ |
|
@dataset{gotthatdata_stargate_2024, |
|
title = {STARGATE: CIA Remote Viewing Archive}, |
|
author = {GotThatData}, |
|
year = {2024}, |
|
url = {https://huggingface.co/datasets/GotThatData/STARGATE} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
STARGATE is a dataset of 12,000+ declassified CIA PDFs related to remote viewing (RV), extrasensory perception (ESP), and anomalous cognition. |
|
This loader includes structured metadata and binary access to the original scanned PDFs. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/GotThatData/STARGATE" |
|
|
|
_LICENSE = "CC-BY-4.0" |
|
|
|
class StargatePDFConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(StargatePDFConfig, self).__init__(**kwargs) |
|
|
|
class StargatePDFDataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
BUILDER_CONFIGS = [ |
|
StargatePDFConfig(name="default", version=VERSION, description="STARGATE raw PDFs with metadata") |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
"filename": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"page_count": datasets.Value("int32"), |
|
"image_count": datasets.Value("int32"), |
|
"processed_at": datasets.Value("string"), |
|
"ocr_status": datasets.Value("string"), |
|
"text_extracted": datasets.Value("bool"), |
|
"source": datasets.Value("string"), |
|
"tags": datasets.Sequence(datasets.Value("string")), |
|
"pdf": datasets.Value("binary"), |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
archive_path = dl_manager.download_and_extract("./") |
|
metadata_path = os.path.join(archive_path, "metadata.json") |
|
data_dir = os.path.join(archive_path, "data") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"metadata_path": metadata_path, "data_dir": data_dir} |
|
) |
|
] |
|
|
|
def _generate_examples(self, metadata_path, data_dir): |
|
logger.info(f"⏳ Loading metadata from {metadata_path}") |
|
with open(metadata_path, "r", encoding="utf-8") as f: |
|
records = json.load(f) |
|
|
|
for idx, record in enumerate(records): |
|
pdf_path = os.path.join(data_dir, record["filename"]) |
|
if not os.path.isfile(pdf_path): |
|
logger.warning(f"🚫 Missing PDF: {pdf_path}") |
|
continue |
|
|
|
with open(pdf_path, "rb") as pdf_file: |
|
yield idx, { |
|
"filename": record.get("filename"), |
|
"document_id": record.get("document_id", record["filename"].replace(".pdf", "")), |
|
"page_count": record.get("page_count", 0), |
|
"image_count": record.get("image_count", 0), |
|
"processed_at": record.get("processed_at", ""), |
|
"ocr_status": record.get("ocr_status", "pending"), |
|
"text_extracted": record.get("text_extracted", False), |
|
"source": record.get("source", "CIA Stargate Archive"), |
|
"tags": record.get("tags", []), |
|
"pdf": pdf_file.read(), |
|
} |
|
|