Datasets:
Modalities:
Text
Formats:
csv
Size:
1K - 10K
Tags:
casimedicos
explainability
medical exams
medical question answering
multilinguality
argument mining
License:
File size: 4,160 Bytes
bd1907f d0fbe28 bd1907f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
license: cc-by-4.0
language:
- en
- es
- fr
- it
tags:
- casimedicos
- explainability
- medical exams
- medical question answering
- multilinguality
- LLMs
- LLM
pretty_name: MedExpQA
configs:
- config_name: en
data_files:
- split: train
path:
- en/train_en_ordered.jsonl
- split: validation
path:
- en/validation_en_ordered.jsonl
- split: test
path:
- en/test_en_ordered.jsonl
- config_name: es
data_files:
- split: train
path:
- es/train_es_ordered.jsonl
- split: validation
path:
- es/validation_es_ordered.jsonl
- split: test
path:
- es/test_es_ordered.jsonl
- config_name: fr
data_files:
- split: train
path:
- fr/train_fr_ordered.jsonl
- split: validation
path:
- fr/validation_fr_ordered.jsonl
- split: test
path:
- fr/test_fr_ordered.jsonl
- config_name: it
data_files:
- split: train
path:
- it/train_it_ordered.jsonl
- split: validation
path:
- it/validation_it_ordered.jsonl
- split: test
path:
- it/test_it_ordered.jsonl
task_categories:
- text-generation
- question-answering
size_categories:
- 1K<n<10K
---
<p align="center">
<br>
<img src="http://www.ixa.eus/sites/default/files/anitdote.png" style="height: 200px;">
<br>
# CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures
[CasiMedicos-Arg](https://huggingface.co/datasets/HiTZ/casimedicos-arg) is, to the best of our knowledge, the first
multilingual dataset for Medical Question Answering where correct and incorrect diagnoses for a clinical case are
enriched with a natural language explanation written by doctors.
The [casimedicos-exp](https://huggingface.co/datasets/HiTZ/casimedicos-exp) have been manually annotated with
argument components (i.e., premise, claim) and argument relations (i.e., attack, support).
Thus, Multilingual CasiMedicos-arg dataset consists of 558 clinical cases (English, Spanish, French, Italian) with explanations,
where we annotated 5021 claims, 2313 premises, 2431 support relations, and 1106 attack relations.
<table style="width:33%">
<tr>
<th>Antidote CasiMedicos-Arg splits</th>
<tr>
<td>train</td>
<td>434</td>
</tr>
<tr>
<td>validation</td>
<td>63</td>
</tr>
<tr>
<td>test</td>
<td>125</td>
</tr>
</table>
- 📖 Paper:[CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures](https://aclanthology.org/2024.emnlp-main.1026/)
- 💻 Github Repo (Data and Code): [https://github.com/ixa-ehu/antidote-casimedicos](https://github.com/ixa-ehu/antidote-casimedicos)
- 🌐 Project Website: [https://univ-cotedazur.eu/antidote](https://univ-cotedazur.eu/antidote)
- Funding: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
## Example of Document in Antidote CasiMedicos Dataset
<p align="center">
<img src="https://github.com/ixa-ehu/antidote-casimedicos/blob/main/casimedicos-exp.png?raw=true" style="height: 600px;">
</p>
## Results of Argument Component Detection using LLMs
<p align="left">
<img src="https://github.com/ixa-ehu/antidote-casimedicos/blob/main/multingual-data-transfer.png?raw=true" style="height: 300px;">
</p>
## Citation
If you use CasiMedicos-Arg then please **cite the following paper**:
```bibtex
@inproceedings{sviridova-etal-2024-casimedicos,
title = {{CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures}},
author = "Sviridova, Ekaterina and
Yeginbergen, Anar and
Estarrona, Ainara and
Cabrio, Elena and
Villata, Serena and
Agerri, Rodrigo",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
year = "2024",
url = "https://aclanthology.org/2024.emnlp-main.1026",
pages = "18463--18475"
}
```
**Contact**: [Rodrigo Agerri](https://ragerri.github.io/)
HiTZ Center - Ixa, University of the Basque Country UPV/EHU |