Datasets:
license: cc-by-4.0
language:
- en
- es
- fr
- it
tags:
- casimedicos
- explainability
- medical exams
- medical question answering
- multilinguality
- argument mining
- argument generation
- LLMs
- LLM
pretty_name: CasiMedicos-Arg
configs:
- config_name: en
data_files:
- split: train
path:
- en/train_en_ordered.csv
- split: validation
path:
- en/validation_en_ordered.csv
- split: test
path:
- en/test_en_ordered.csv
task_categories:
- text-generation
- question-answering
- token-classification
size_categories:
- 1K<n<10K
CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures
CasiMedicos-Arg is, to the best of our knowledge, the first multilingual dataset for Medical Question Answering where correct and incorrect diagnoses for a clinical case are enriched with a natural language explanation written by doctors. The casimedicos-exp have been manually annotated with argument components (i.e., premise, claim) and argument relations (i.e., attack, support). Thus, Multilingual CasiMedicos-arg dataset consists of 558 clinical cases (English, Spanish, French, Italian) with explanations, where we annotated 5021 claims, 2313 premises, 2431 support relations, and 1106 attack relations.
Antidote CasiMedicos-Arg splits | |
---|---|
train | 434 |
validation | 63 |
test | 125 |
- 📖 Paper:CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures
- 💻 Github Repo (Data and Code): https://github.com/ixa-ehu/antidote-casimedicos
- 🌐 Project Website: https://univ-cotedazur.eu/antidote
- Funding: CHIST-ERA XAI 2019 call. Antidote (PCI2020-120717-2) funded by MCIN/AEI /10.13039/501100011033 and by European Union NextGenerationEU/PRTR
Example of Document in Antidote CasiMedicos Dataset
Results of Argument Component Detection using LLMs
Citation
If you use CasiMedicos-Arg then please cite the following paper:
@inproceedings{sviridova-etal-2024-casimedicos,
title = {{CasiMedicos-Arg: A Medical Question Answering Dataset Annotated with Explanatory Argumentative Structures}},
author = "Sviridova, Ekaterina and
Yeginbergen, Anar and
Estarrona, Ainara and
Cabrio, Elena and
Villata, Serena and
Agerri, Rodrigo",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
year = "2024",
url = "https://aclanthology.org/2024.emnlp-main.1026",
pages = "18463--18475"
}
Contact: Rodrigo Agerri HiTZ Center - Ixa, University of the Basque Country UPV/EHU