id
int64 225
5.32k
| context
stringlengths 2.88k
70.8k
| question
stringlengths 11
194
| answers
dict | is_impossible
bool 1
class |
---|---|---|---|---|
4,394 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is the number of confirmed cases reached on 8 February 2020? | {
"answer_start": [
531
],
"text": [
"34,598"
]
} | false |
4,395 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is presented in this study? | {
"answer_start": [
593
],
"text": [
"new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China"
]
} | false |
4,396 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is the proposed model? | {
"answer_start": [
788
],
"text": [
"an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA)"
]
} | false |
4,397 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | When is SSA generally employed? | {
"answer_start": [
968
],
"text": [
"to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima)"
]
} | false |
4,398 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is the main idea behind the proposed model? | {
"answer_start": [
1112
],
"text": [
"to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA."
]
} | false |
4,399 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is the proposed model called? | {
"answer_start": [
1094
],
"text": [
" FPASSA-ANFIS"
]
} | false |
4,400 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | How is FPASSA-ANFIS model evaluated? | {
"answer_start": [
1237
],
"text": [
"using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days."
]
} | false |
4,401 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What did the comparison of the FPASSA-ANFIS model with several existing models, show? | {
"answer_start": [
1459
],
"text": [
"it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. "
]
} | false |
4,402 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | How was the proposed model tested? | {
"answer_start": [
1722
],
"text": [
" using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China"
]
} | false |
4,403 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What were the outcomes of the test? | {
"answer_start": [
1850
],
"text": [
"showed good performances"
]
} | false |
4,404 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What are the large family of viruses, called coronaviruses? | {
"answer_start": [
1942
],
"text": [
" pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases."
]
} | false |
4,405 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | Among whom are the coronaviruses distributed? | {
"answer_start": [
2069
],
"text": [
" among humans, birds, livestock, mice, bats, and other wild animals "
]
} | false |
4,406 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | In what the Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied? | {
"answer_start": [
3197
],
"text": [
" in time series prediction and forecasting problems"
]
} | false |
4,407 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What does ANFIS offer? | {
"answer_start": [
3322
],
"text": [
"flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems."
]
} | false |
4,408 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | In which applications has it been applied? | {
"answer_start": [
3509
],
"text": [
"in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition"
]
} | false |
4,421 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is SI? | {
"answer_start": [
4452
],
"text": [
"swarm intelligence"
]
} | false |
4,422 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is PSO? | {
"answer_start": [
4668
],
"text": [
"particle swarm optimization"
]
} | false |
4,423 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is SCA? | {
"answer_start": [
4747
],
"text": [
"sine-cosine algorithm"
]
} | false |
4,424 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is MVO? | {
"answer_start": [
4786
],
"text": [
"multi-verse optimizer"
]
} | false |
4,425 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | For what SCA algorithm was applied to improve the ANFIS model ? | {
"answer_start": [
4895
],
"text": [
"to forecast oil consumption in three countries, namely, Canada, Germany, and Japan."
]
} | false |
4,426 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What may be a problem with individual SI algorithm? | {
"answer_start": [
5219
],
"text": [
"may stock at local optima"
]
} | false |
4,427 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is OWA? | {
"answer_start": [
3754
],
"text": [
" ordered weighted averaging"
]
} | false |
4,428 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is proposed in the current study? | {
"answer_start": [
6145
],
"text": [
"an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA)."
]
} | false |
4,429 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is the FPA optimization algorithm inspired by? | {
"answer_start": [
6333
],
"text": [
"inspired by the flow pollination process of the flowering plants."
]
} | false |
4,430 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is the SSA optimization algorithm inspired by? | {
"answer_start": [
6716
],
"text": [
"inspired by the behavior of salp chains"
]
} | false |
4,431 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What is the proposed FPASSA method? | {
"answer_start": [
6983
],
"text": [
" is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA"
]
} | false |
4,432 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | How does the proposed FPASSA start? | {
"answer_start": [
7100
],
"text": [
" by receiving the historical COVID-19 dataset."
]
} | false |
4,433 | Optimization Method for Forecasting Confirmed Cases of COVID-19 in China
https://doi.org/10.3390/jcm9030674
SHA: 1d7f8850c5244fdc9b387038e7eeae9bcbbde6d2
Authors: Al-Qaness, Mohammed A. A.; Ewees, Ahmed A.; Fan, Hong; Abd El Aziz, Mohamed
Date: 2020
DOI: 10.3390/jcm9030674
License: cc-by
Abstract: In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.
Text: A large family of viruses, called coronaviruses, are severe pathogens for human beings, which infect respiratory, hepatic, gastrointestinal, and neurologic diseases. They are distributed among humans, birds, livestock, mice, bats, and other wild animals [1] [2] [3] . The outbreaks of two previous coronaviruses, SARS-CoV and MERS-CoV in 2003 and 2012, respectively, have approved the transmission from animal to animal, and human to human [4] . In December 2019, the World Health Organization (WHO) received notifications from China for many cases of respiratory illness that were linked to some people who had visited a seafood market in Wuhan [5] . Currently, Wuhan city suffers from the spreading of a novel coronavirus, called COVID-19 (previously, it was called 2019-nCoV). In [6] , the authors concluded that COVID-19 likely originated in bats, because it is more similar to two bat-derived coronavirus strains. However, the source of the COVID-19 is not confirmed yet, and it communities, Hong Kong and Toronto, were 1.2 and 1.32, respectively. Ong et al. [20] proposed a monitoring and forecasting model for influenza A (H1N1-2009). Furthermore, Nah et al. [21] proposed a probability-based model to predict the spread of the MERS.
The Adaptive Neuro-Fuzzy Inference System (ANFIS) [22] is widely applied in time series prediction and forecasting problems, and it showed good performance in many existing applications. It offers flexibility in determining nonlinearity in the time series data, as well as combining the properties of both artificial neural networks (ANN) and fuzzy logic systems. It has been applied in various forecasting applications, for example, in [23] , a stock price forecasting model was proposed using ANFIS and empirical mode decomposition. Chen et al. [24] proposed a TAIEX time series forecasting model based on a hybrid of ANFIS and ordered weighted averaging (OWA). In [25] , another time series forecasting method was presented for electricity prices based on ANFIS. Svalina et al. [26] proposed an ANFIS based forecasting model for close price indices for a stock market for five days. Ekici and Aksoy [27] presented an ANFIS based building energy consumption forecasting model. More so, ANFIS is also applied to forecast electricity loads [28] . Kumar et al. [29] proposed an ANFIS based model to forecast return products. Ho and Tsai [30] applied ANFIS to forecast product development performance. However, estimating ANFIS parameters is a challenge that needs to be improved. Therefore, in previous studies, some individual swarm intelligence (SI) methods have been applied to the ANFIS parameters to enhance time series forecasting because these parameters have a significant effect on the performance of ANFIS. The SI methods include the particle swarm optimization (PSO) [31, 32] , social-spider optimization [33] , sine-cosine algorithm (SCA) [34] , and multi-verse optimizer (MVO) [35] . For example, in [34] SCA algorithm was applied to improve the ANFIS model to forecast oil consumption in three countries, namely, Canada, Germany, and Japan. In the same context, in [35] , The MVO algorithm was used to enhance the ANFIS model to forecast oil consumption in two countries. In addition, in [36] the PSO was used with ANFIS to predict biochar yield. However, individual SI algorithms may stock at local optima. Therefore, one solution is to apply hybrid SI algorithms to avoid this problem. In [37] , a hybrid of two SI algorithms, namely GA and SSA, was presented to improve the ANFIS model. The proposed new model called GA-SSA-ANFIS was applied to forecast crude oil prices for long-term time series data. However, the previously mentioned methods suffer from some limitations that can affect the performance of the forecasting output such as slow convergence and the ability to balance between exploration and exploitation phases can influence the quality of the final output. This motivated us to propose an alternative forecasting method dependent on the hybridization concept. This concept avoids the limitations of traditional SI techniques by combining the strengths of different techniques, and this produces new SI techniques that are better than traditional ones.
In the current study, we propose an improved ANFIS model based on a modified flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). The FPA is an optimization algorithm proposed by Yang [38] , which was inspired by the flow pollination process of the flowering plants. The FPA was employed in various optimization applications, for example to estimate solar PV parameter [39, 40] , solving sudoku puzzles [41] , feature selection [42] , antenna design [43] , and other applications [44] [45] [46] [47] . Moreover, SSA is also an optimization algorithm proposed by Mirjalili et al. [48] inspired by the behavior of salp chains. In recent years, the SSA was utilized to solve different optimization problems, such as feature selection [49, 50] , data classification [51] , image segmentation [52] , and others [53, 54] .
The proposed method called FPASSA is a hybrid of FPA and SSA, in which the SSA is applied as a local search method for FPA. The proposed FPASSA starts by receiving the historical COVID-19 dataset. Then a set of solutions is generated where each of them represents the value for the parameters of the ANFIS model. Then the quality of each solution is calculated using the fitness value, and the solution that has the best fitness value is chosen to represent the best solution. Then the probability of each solution is computed. Then the current solution will be updated, either using global or local strategy in FPA. However, in the case of local strategy, the operators of SSA or FPA will be used according to the probability of the fitness value for each solution. The process of updating the solutions is repeated until reaching the stop condition, and the best parameter configurations are used to forecast the number of confirmed cases of COVID-19.
The main contribution points of the current study are as follows:
1.
We propose an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases.
An improved ANFIS model is proposed using a modified FPA algorithm, using SSA.
We compare the proposed model with the original ANFIS and existing modified ANFIS models, such as PSO, GA, ABC, and FPA.
The rest of this study is organized as follows. The preliminaries of ANFIS, FPA, and SSA are described in Section 2. Section 3 presents the proposed FPASSA, and Section 4 presents the experimental setup and results. We conclude this study in Section 5.
The principles of the ANFIS are given in this section. The ANFIS model links the fuzzy logic and neural networks [22] . It generates a mapping between the input and output by applying IF-THEN rules (it is also called Takagi-Sugeno inference model). Figure 1 illustrates the ANFIS model where, y and x define the inputs to Layer 1 whereas, O 1i is its output of node i that is computed as follows:
where µ denotes the generalized Gaussian membership functions. A i and B i define the membership values of µ. α i and ρ i denote the premise parameters set. The output of Layer 2 (it is also known as the firing strength of a rule) is calculated as follows:
Meanwhile, the output of Layer 3 (it is also known as the normalized firing strength) is calculated as follows:
The output of Layer 4 (it is also known as an adaptive node) is calculated as follows:
where r i , q i , and p i define the consequent parameters of the node i. Layer 5 contains only one node; its output is computed as:
Flower Pollination Algorithm is an optimization method proposed by Yang [38] . It simulates the transfer of flowers' pollen by pollinators in nature. This algorithm utilizes the two types of pollination (i.e., self-pollination and cross-pollination). In self-pollination, the pollination occurs with no pollinators, whereas, in cross-pollination, the pollens are moved between different plants. In more detail, the self-pollination can be represented as a local pollination while the cross-pollination can be called global pollination.
The global pollination or cross-pollination can be mathematically formed as follows:
where x t i defines the pollen i at iteration t. L denotes the pollination's strength or the step size. F * is the target position or best solution. In some cases, insects can fly with different distance steps for a long space; therefore, Levy fly distribution is applied to simulate this movement.
where λ = 1.5. Γ(λ) denotes the gamma function. This distribution is available for large steps s > 0. The self-pollination or local pollination can be mathematically formed as follows:
where x t i and x k i represent pollens from different flower in the same plant. in the range [0,1] The process of pollination can be done using cross-pollination or self-pollination. Therefore, the random variable p, in the range [0, 1], is used to determine this process.
SSA is an optimization technique introduced by [48] . It simulates the Salps' behavior in nature. This behavior is called salp chain. The mathematical model of SSA begins by splinting its population into a leader group and followers group. The leader is the front salp, whereas, the followers are the other salps. The search space is determined in n-dimensions with n variables. Equation (10) works to update the salps' positions.
where x 1 j denotes the leader's position in j-th dimension. F j is the target position. ub j and lb j represent the max and min bounds, respectively. c 2 and c 3 denote random numbers in [0, 1]. c 1 is an important parameter; it balances between the exploration and exploitation phases. It is computed as follows:
where the current loop number is t and the max loop' number is t max . Then, the followers' position is updated as follows:
where x i j defines the i-th position of the follower in j-th dimension. i > 1.
This section explains the proposed FPASSA-ANFIS method. It is a time series method for forecasting the confirmed cases of the COVID-19, as given in Figure 2 . The FPASSA-ANFIS utilizes the improved FPA to train the ANFIS model by optimizing its parameters. The FPASSA-ANFIS contains five layers as the classic ANFIS model. Layer 1 contains the input variables (the historical COVID-19 confirmed cases). Whereas Layer 5 produces the forecasted values. In the learning phase, the FPASSA is used to select the best weights between Layer 4 and Layer 5.
The FPASSA-ANFIS starts by formatting the input data in a time series form. In our case, the autocorrelation function (ACF) was considered. ACF is one of the methods applied to find patterns in the data; it presents information about the correlation between points separated by various time lags. Therefore, in this paper, the variables with ACF greater than 0.2 are considered i.e., 5-lags.
Besides, the training data contains 75% of the dataset, whereas the testing data contains 25% of them. The number of clusters is defined by the fuzzy c-mean (FCM) method to construct the ANFIS model.
The parameters of the ANFIS model are prepared by the FPASSA algorithm. In the training phase, the calculation error (as in Equation (13)) between the real data and the predicted data is used to evaluate the parameters' quality.
where T is the real data, and P is the predicted data. N s is the sample length. The smaller values of the objective function indicate good ANFIS's parameter.
On the other hand, the updating phase of the followers' positions in the SSA algorithm is applied to improve the global pollination phase in the FPA algorithm. In this improvement, there is a random variable (r) used to switch between both phases. If r > 0.5, then the operators of the SSA is used; otherwise, the operators of the FPA are used. In general, The FPASSA starts by constructing the population (X); afterward, the objective function is calculated for each solution. The solution with the lowest error value is saved to the next iteration. This sequence is repeated until meeting the stop condition, which in this paper, is the maximum number of iterations. Then the best solution is passed to train the parameters of the ANFIS model.
After finishing the training phase, the testing phase is started with the best solution to compute the final output. The performance of the proposed method is evaluated by comparing the real data with the predicted data using the performance measures. Finally, the FPASSA produces a foretasted value for confirmed cases of COVID-19 in China in the next day. The steps of the proposed FPASSA are presented in Algorithm 1.
Input: Historical COVID-19 dataset, size of population N, total number of iterations t max .
Divide the data into training and testing sets.
Using Fuzzy c-mean method to determine the number of membership functions.
Constructing the ANFIS network.
Set the initial value for N solutions (X). Return the best solution that represents the best configuration for ANFIS.
Apply the testing set to the best ANFIS model.
Forecasting the COVID-19 for the next ten days.
This section presents the description of the used dataset, the performance measures, the parameter setting for all methods, the experiment results, and discussions.
The main dataset of this study is COVID-19 dataset. It was collected from the WHO website (https: //www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). It contains the daily confirmed cases in China from 21 January 2020 to 18 February 2020, as shown in Table 1 . We used 75% from the dataset to train the model while the rest is used to test it.
Moreover, we evaluated the performance of the proposed method using two datasets of weekly influenza confirmed cases. The first one is called DS1; it was collected from the Centers for Disease Control and Prevention (CDC) (https://www.cdc.gov/flu/weekly/). It starts from week number 40 in 2015 and continues until week number 6 in 2020. Whereas, the second one is called DS2. It was collected from the WHO website (https://www.who.int/influenza). It contains the data of weekly influenza confirmed cases in China from week number 1 in 2016 to week number 8 in 2020.
The quality of the proposed method is evaluated using a set of performance metrics as follows:
• Root Mean Square Error (RMSE):
where Yp and Y are the predicted and original values, respectively. • Mean Absolute Error (MAE):
• Mean Absolute Percentage Error (MAPE):
• Root Mean Squared Relative Error (RMSRE):
N s represents the sample size of the data. • Coefficient of Determination (R 2 ):
where Y represents the average of Y.
The lowest value of RMSE, MAE, MAPE, and RMSRE refers to the best method. The higher value of R 2 indicates better correlation for the method.
This paper aims to assess the ability of the FPASSA to forecast the COVID-19 by comparing its performance with other methods, namely the ANFIS and the trained ANFIS models using PSO, GA, ABC, FPA, and FPASSA. The parameters' setting for these models is listed in Table 2 .
The common parameters, such as population size, are set to 25 and 100 iterations are applied. Besides, each algorithm is performed for 30 independent runs to fair comparisons. The selected parameters are chosen because they produced good behavior in previous experiments, such as [34, 35, 55, 56] . Table 2 . Parameters' setting.
Parameters Setting
Max. epochs = 100, Error goal = 0, Initial step = 0.01, Decrease rate = 0.9, Increase rate = 1.
In this section, the performance of the proposed FPASSA to predict the DS1 and DS2 is discussed. It can be concluded from Table 3 that the performance of FPASSA outperformed the compared methods in all measures, whereas the FPA is ranked second. The results of DS2 indicate that the FPASSA is ranked first in terms of RMSE, MAPE, R 2 , and the CPU time. Whereas, the PSO is ranked second, followed by the FPA, GA, then ABC. These results denote that the proposed method can optimize the parameters of the ANFIS model effectively and produce good results in terms of the performance measures. Comparison results between the proposed FPASSA and other models to forecast COVID-19 are given in Table 4 . It can be concluded that the FPASSA outperforms other models. For example, by analyzing the results of RMSE, MAE, MAPE, RMSRE, and CPU time(s) it can be observed that the FPASSA achieves the smallest value among the comparison algorithms, and this indicates the high quality of the FPASSA. Meanwhile, the FPA allocates the second rank, which provides better results than the rest of the methods.
Moreover, the value of R 2 refers to the high correlation between the prediction obtained by the proposed FPASSA method and the original COVID-19, which has nearly 0.97. This can also be noticed from Figure 3 , which depicts the training of the algorithms using the historical data of the COVID-19 as well as their forecasting values for ten days. Table 5 depicts the forecasting value for the confirmed cases of the COVID-19 in China from 19/2/2020 to 28/2/2020. From these results, it can be noticed that the outbreak will reach its highest level on the day 28/2/2020. The average percentage of the increase over the forecasted period is 10%, the highest percentage is 12% on 28/2/2020, and the lowest percentage is 8.7% on 19/2/2020. From the previous results, it can be concluded that the proposed FPASSA-ANFIS has a high ability to forecast the COVID-19 dataset. These results avoid the limitations of traditional ANFIS because of the combination with the modified FPA method. Moreover, the operators of SSA are combined with the local strategy of FPA to enhance their exploitation ability. However, the time computational of the proposed FPASSA method still requires more improvements.
This paper proposed a modified version for the flower pollination algorithm (FPA) using the salp swarm algorithm (SSA). This modified version, called FPASSA, is applied to improve the performance of the ANFIS through determining the optimal value for its parameters. The developed FPASSA-ANFIS model is applied as a forecasting technique for a novel coronavirus, called COVID-19, that was discovered in Wuhan, China at the end of last year and January of the current year. The proposed FPASSA-ANFIS model has a high ability to predict the number of confirmed cases within ten days. Besides, FPASSA-ANFIS outperforms other forecasting models in terms of RMSE, MAE, MAPE, RMSRE, and R 2 . Furthermore, two datasets of weekly influenza confirmed cases in the USA and China were used to evaluate the proposed method, and the evaluation outcomes showed its good performance. According to the promising results obtained by the proposed FPASSA-ANFIS, it can be applied in different forecasting applications. | What do the authors propose? | {
"answer_start": [
7987
],
"text": [
"an efficient forecasting model to forecast the confirmed cases of the COVID-19 in China for the upcoming ten days based on previously confirmed cases."
]
} | false |
5,301 | The vacuolar-type ATPase inhibitor archazolid increases tumor cell adhesion to endothelial cells by accumulating extracellular collagen
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133348/
SHA: f1b81916fac1ca3d50dde774df2e1bb26bf0fb39
Authors: Luong, Betty; Schwenk, Rebecca; Bräutigam, Jacqueline; Müller, Rolf; Menche, Dirk; Bischoff, Iris; Fürst, Robert
Date: 2018-09-11
DOI: 10.1371/journal.pone.0203053
License: cc-by
Abstract: The vacuolar-type H(+)-ATPase (v-ATPase) is the major proton pump that acidifies intracellular compartments of eukaryotic cells. Since the inhibition of v-ATPase resulted in anti-tumor and anti-metastatic effects in different tumor models, this enzyme has emerged as promising strategy against cancer. Here, we used the well-established v-ATPase inhibitor archazolid, a natural product first isolated from the myxobacterium Archangium gephyra, to study the consequences of v-ATPase inhibition in endothelial cells (ECs), in particular on the interaction between ECs and cancer cells, which has been neglected so far. Human endothelial cells treated with archazolid showed an increased adhesion of tumor cells, whereas the transendothelial migration of tumor cells was reduced. The adhesion process was independent from the EC adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin. Instead, the adhesion was mediated by β1-integrins expressed on tumor cells, as blocking of the integrin β1 subunit reversed this process. Tumor cells preferentially adhered to the β1-integrin ligand collagen and archazolid led to an increase in the amount of collagen on the surface of ECs. The accumulation of collagen was accompanied by a strong decrease of the expression and activity of the protease cathepsin B. Overexpression of cathepsin B in ECs prevented the capability of archazolid to increase the adhesion of tumor cells onto ECs. Our study demonstrates that the inhibition of v-ATPase by archazolid induces a pro-adhesive phenotype in endothelial cells that promotes their interaction with cancer cells, whereas the transmigration of tumor cells was reduced. These findings further support archazolid as a promising anti-metastatic compound.
Text: The vacuolar-type H + -ATPase (v-ATPase) is the major proton pump responsible for acidification of intracellular compartments in eukaryotic cells [1] . The enzyme consists of two multi-subunit complexes, the soluble V 1 transmembrane V o subcomplex required for the proton transport across membranes [1, 2] . In most cell types v-ATPases are only expressed in the endomembrane system to regulate and maintain the acidic pH of intracellular compartments such as lysosomes, endosomes, the Golgi apparatus, secretory granules and coated vesicles [3] . The function of v-ATPases is essential for cellular processes such as vesicular trafficking, receptor-mediated endocytosis and protein degradation and processing. In specialized cell types including osteoclasts and renal epithelial cells, v-ATPases can also be expressed on the plasma membrane, where they pump protons into the extracellular space [2] [3] [4] . In cancer cells v-ATPases are expressed on the plasma membrane in order to eliminate toxic cytosolic H + . Most importantly, v-ATPases contribute to the acidic tumor microenvironment, which leads to the activation of proteases, thus facilitating tumor cell migration, invasion and angiogenesis [5] [6] [7] . Since the inhibition of v-ATPase was shown to reduce the invasiveness of cancer cells and metastasis formation [8, 9] , this enzyme has emerged as a promising drug target in the recent years. Archazolid A and B are highly potent and specific inhibitors of v-ATPases [10] . They were first isolated from the myxobacterium Archangium gephyra [11] . These compounds inhibit v-ATPase at low nanomolar concentrations [10, 12] by binding to the subunit c of the V o complex. As their biological activity is comparable to the v-ATPase inhibitors bafilomycin and concanamycin [10, 11] , archazolids are natural compounds of high interest that can be used both as a tool to study the consequences of v-ATPase inhibition and as a lead for drug development. Archazolids can be either produced by fermentation [11] or by total synthesis [13, 14] .
In the field of cancer research several studies reported on interesting pharmacological effects of archazolid: It reduced the migration of different invasive tumor cells in vitro and cancer cell metastasis in vivo in a breast tumor mouse model [15] . Furthermore, archazolid activated pathways of cellular stress response and apoptosis in highly invasive tumor cells [16] . In classically activated macrophages, archazolid selectively induced the generation of tumor necrosis factor α (TNFα), which may indirectly promote tumor suppression [17] .
Up to now, the role of v-ATPases in endothelial cells has only rarely been investigated. The endothelium plays a crucial role in the pathogenesis and progression of cancer: The metastatic cascade includes local angiogenesis at the site of the primary tumor and adhesion of tumor cells at the site of metastasis [18] . Angiogenesis, the development of new blood vessels out of existing ones, depends on the proliferation, migration and differentiation of endothelial cells [19] . This process ensures the nutrient supply of the tumor and its growth [20] . Circulating cancer cells can adhere to the endothelium at distant sites. This adhesive interaction is mediated by receptors and corresponding ligands expressed on tumor and endothelial cells [18, 21] . V-ATPases have been reported to regulate intracellular pH and cell migration in microvascular endothelial cells [22, 23] . A recent study showed that the inhibition of v-ATPase by concanamycin prevented proliferation, reduced migration and impaired angiogenesis-related signaling in endothelial cells [24] . So far, there are no investigations on the role of endothelial v-ATPases for the process of tumor cell adhesion onto the endothelium. Thus, we were interested in the consequences of the inhibition of endothelial v-ATPase by archazolid on the interaction between endothelial and cancer cells. Various cell adhesion molecules on the endothelium, such as intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein (VCAM-1), E-selectin or N-cadherin [21] as well as integrins expressed on cancer cells have been reported to mediate cell adhesion of cancer cells onto endothelial cells [25] [26] [27] . Accordingly, we focused on these cell adhesion molecules and integrins. For the first time, our study revealed a link between the function of v-ATPases and the adhesion and transmigration properties of endothelial cells.
CellTiter-Blue Cell Viability Assay (Promega, Mannheim, Germany) was performed according to the manufacturer's protocol for determining the cell viability of cells after treatment with archazolid. This assay is based on the ability of metabolically active cells to reduce resazurin which results in fluorescent resorufin. The CellTiter-Blue Reagent was added to the cells 4 h before the endpoint of treatment. Fluorescence was measured with an Infinite F200 pro microplate reader (Tecan, Männedorf, Switzerland) at 560 nm (excitation) and 590 nm (emission).
CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega) was performed according to the manufacturer's instructions for determining the lactate dehydrogenase (LDH) release after treatment with archazolid. Lysis buffer was added to untreated cells 45 min before the end of treatment to induce the release of this enzyme. LDH is a cytosolic enzyme that is released by leaky cells. Released LDH catalyzes the enzymatic conversion of lactate to pyruvate which provides NADH for the conversion of iodonitrotetrazolium violet into a red formazan product in the presence of diaphorase. The absorbance was measured with a Varioskan Flash microplate reader (Thermo Fisher Scientific) at 490 nm.
LysoTracker Red DND-99 (Life Technologies, Thermo Fisher Scientific) is a dye to measure pH values in viable cells. HUVECs were cultured to confluence on collagen G-coated μ-slides (80826, ibidi, Martinsried, Germany) before they were treated with archazolid for 24 h. 1 μg/ ml Hoechst 33342 (Sigma-Aldrich, Munich, Germany) was used to visualize the nuclei and 50 nM LysoTracker Red DND-99 was used to visualize the acidic compartments which correspond to the lysosomes. Both dyes were incubated for 10 min at 37˚C before acquisition of single images by a Leica DMI6000 B fluorescence microscope (Leica Microsystems, Wetzlar, Germany).
HUVECs were seeded in collagen G-coated 24-well plates and grown to confluence for two days before treatment. The cells were incubated with indicated concentrations of archazolid for 24 h. Untreated MDA-MB-231 or PC-3 cells were labeled with CellTracker Green CMFDA Dye (5 μM in serum-free DMEM, 37˚C) for 30 min before 100,000 cells per well were added to HUVECs and were allowed to adhere for various time points at 37˚C. Non-adherent tumor cells were washed off three times with PBS containing Ca 2+ and Mg 2+ . Tumor cell adhesion was determined by fluorescence measurements with an Infinite F200 pro microplate reader (Tecan) at 485 nm (excitation) and 535 nm (emission).
For blocking the integrin β1 subunit on MDA-MB-231 or PC-3 cells, CellTracker Greenlabeled MDA-MB-231 or PC-3 cells were incubated with an anti-integrin β1 antibody (P5D2, ab24693, Abcam, Cambridge, United Kingdom) at a concentration of 1 μg antibody per one million cells in 1 ml DMEM. Before adding to archazolid-treated HUVECs, MDA-MB-231 or PC-3 cells were washed once with DMEM. For blocking the integrin β1 subunit on HUVECs, the cells were incubated with the anti-integrin β1 antibody (0.1 μg/well in ECGM). HUVECs were washed once with ECGM before untreated MDA-MB-231 or PC-3 cells were added to HUVECs.
For the adhesion of MDA-MB-231 or PC-3 cells onto extracellular matrix (ECM) components 24-well plates were coated with collagen G (10 μg/ml in PBS), human plasma fibronectin (10 μg/ml PBS) or laminin-411 (10 μg/ml in Dulbecco's PBS [DPBS] containing Ca 2+ and Mg 2+ ) at 4˚C overnight. The adhesion of MDA-MB-231 and PC-3 cells onto these three most prominent ECM components was carried out as described above (10 min adhesion at 37˚C).
HUVECs were grown on a porous filter membrane (Transwell insert, polycarbonate membrane, 8 μm pores; Corning, New York, USA) for 48 h and were treated as indicated. Untreated MDA-MB-231 cells were labeled with CellTracker Green CMFDA Dye (as described in the section cell adhesion assay) and resuspended in medium 199 (PAN-Biotech) containing 0.1% BSA. HUVECs were washed twice with medium 199 containing 0.1% BSA before MDA-MB-231 cells were allowed to transmigrate through the endothelial monolayer for 24 h. Medium 199 containing 0.1% BSA was used as negative control and medium 199 containing 20% FCS was used as chemoattractant for transmigration in the lower compartment. Non-migrated cells remaining in the upper compartment were carefully removed using a cotton swab. Transmigrated cells were lysed in radioimmunoprecipitation assay (RIPA) buffer and transmigration was quantified by measuring the fluorescence signal at 485 nm (excitation) and 535 nm (emission).
HUVECs were grown to confluence on 6-well plates before they were treated with archazolid for 12 h. The cells were induced to upregulate the gene expression of cell adhesion molecules by TNFα. RNA was isolated using the RNeasy Mini Kit from Qiagen (Hilden, Germany) according to the manufacturer's protocol. On-column DNase digestion was performed to remove genomic DNA. RNA was transcribed into cDNA by Superscript II (Life Technologies, Thermo Fisher Scientific). qPCR experiments were performed using a StepOnePlus System (Applied Biosystems, Thermo Fisher Scientific) and data was analyzed by the StepOne and Ste-pOnePlus Software v2.3. Power SYBR Green PCR Master Mix (Life Technologies) and the comparative C T quantitation method (2 -ΔΔCT ) were used.
HUVECs were grown to confluence on 12-well plates before they were treated with archazolid for 24 h. Cells were treated with TNFα for 24 h to induce the expression of cell adhesion molecules. Subsequently, the cells were detached with HyClone HyQTase (GE Healthcare, Freiburg, Germany). In the case of ICAM-1 the detached cells were fixed with 4% formaldehyde (Polysciences, Hirschberg an der Bergstraße, Germany) in PBS for 10 min and washed once with PBS before incubating with the fluorescein isothiocyanate (FITC)-labeled anti-human CD54 (mouse, ICAM-1) antibody (MCA1615F, Biozol, Eching, Germany) at room temperature for 45 min. For all other proteins, the cells were not fixed and washed once with PBS before incubating with the antibodies phycoerythrin (PE)-labeled anti-human CD106 (mouse, VCAM-1), PE-labeled anti-human CD62E (mouse, E-selectin) and PE-labeled anti-human CD325 (mouse, N-cadherin) from Becton Dickinson on ice for 45 min. These antibodies were diluted in PBS containing 0.2% BSA. The surface expression of cell adhesion molecules was measured by flow cytometry (FACSVerse, Becton Dickinson, Heidelberg, Germany).
To stain the surface collagen on HUVECs, cells were incubated with an anti-human collagen antibody (rabbit, 1:40, ab36064, Abcam) on ice for 30 min. The staining procedure was performed on ice to ensure that surface proteins or antibodies are not endocytosed. The cells were washed once with PBS containing Ca 2+ and Mg 2+ before they were fixed with Roti-Histofix (Carl Roth). Alexa Fluor 488-conjugated anti-rabbit antibody (goat, 1:400, A11008, Life Technologies) was used as secondary antibody and Hoechst 33342 (1 μg/ml, Sigma-Aldrich) was used to visualize nuclei.
Confluent HUVECs in 6-well plates were treated as indicated. Cells were washed with ice-cold PBS and lysed with RIPA buffer supplemented with protease inhibitors (Complete Mini EDTA-free; Roche, Mannheim, Germany), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride, β-glycerophosphate, sodium pyrophosphate and H 2 O 2 . Protein determination was performed using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Equal amounts of proteins (10-20 μg) were separated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE; Bio-Rad Laboratories, Munich, Germany). Separated proteins were transferred onto polyvinylidene difluoride membranes by tank blotting (Bio-Rad Laboratories) for immunodetection. Membranes were blocked with 5% boltinggrade milk powder (Carl Roth) in TBS containing 0.1% Tween 20 (Sigma-Aldrich). The following antibodies were used: mouse anti-human cathepsin B antibody (IM27L, Merck) (1:500), mouse anti-β-actin-peroxidase antibody (A3854, Sigma-Aldrich) (1:100,000) and antimouse IgG horse radish peroxidase (HRP)-linked antibody (7076, Cell Signaling, Frankfurt, Germany) (1:5,000). ImageJ version 1.49m was used for densitometric analysis.
Cathepsin B activity assay was performed as described in the publication by Kubisch et al. [28] . Confluent HUVECs or HMEC-1 seeded in 6-well plates were treated as indicated. Cells were washed with PBS and lysed with the non-denaturating M-PER mammalian protein extraction reagent (78501, Thermo Fisher Scientific) supplemented with protease inhibitors (Complete Mini EDTA-free, Roche), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride. The fluorogenic cathepsin B substrate Z-Arg-Arg-7-amido-4-methylcoumarin hydrochloride (C5429, Sigma-Aldrich) was added to 30 μg of the cell lysate diluted in assay buffer supplemented with 2 mM L-cysteine (C7880, Sigma-Aldrich) and incubated for 30 min at 40˚C. Fluorescence was measured at 348 nm (excitation) and 440 nm (emission) with a microplate reader (Varioskan Flash, Thermo Fisher Scientific). The intensity of the fluorescence signal corresponded to the cathepsin B enzyme activity. For background subtraction the cathepsin B inhibitor CA-074Me (Enzo Life Sciences, Lörrach, Germany) was added to an additional reaction.
The HUVEC Nucleofector Kit (Lonza, Cologne, Germany) was used to transfect HUVECs. The transfection was performed according to the manufacturer's protocol using 2.5 μg plasmid DNA for 500,000 cells (Nucleofector 2b Device, Lonza). 48 h after transfection the cells were treated for further experiments. The addgene plasmid #11249 hCathepsin B was kindly provided by Hyeryun Choe [29] . hCathepsin B was digested with PmeI and XbaI and the linear DNA fragment not corresponding to the human CTSB gene was religated to generate the empty pcDNA3.1 (-) delta MCS plasmid that was used for control transfections. The original backbone of hCathepsin B is the pcDNA3.1 (-) from Thermo Fisher Scientific. The control vector pcDNA3.1 (-) delta MCS used for our transfections was cloned on the basis of hCathepsin B and is therefore lacking almost the whole part of the multiple cloning site of the pcDNA3.1 (-).
Statistical analyses were performed using GraphPad Prism 5.0 (San Diego, USA). One-way ANOVA followed by Tukey's post-hoc test or unpaired t-test was used for the evaluation of a minimum of three independent experiments. The numbers of independently performed experiments (n) are stated in the corresponding figure legends. p 0.05 was considered as statistically significant. Data are expressed as mean ± standard error of the mean (SEM).
Since the v-ATPase inhibitor archazolid has never been used for studies in endothelial cells, we first performed cytotoxicity assays. We treated confluent HUVECs with up to 1 nM archazolid for 24 and 48 h and observed that this treatment has neither an influence on the metabolic activity nor on the release of LDH after 24 h (Fig 1A and 1B, left panels) . The metabolic activity and the release of LDH were only slightly affected by the highest concentration of archazolid after 48 h (Fig 1A and 1B, right panels) . Consequently, the following experiments were all carried out after 24 h (or less) of archazolid treatment in order to exclude any cytotoxic effects of archazolid within our experimental settings.
Microscopic analysis revealed that also the integrity of the endothelial monolayer was not affected by archazolid, but the cells showed a slightly different morphology (Fig 2A) : Archazolid-treated cells were swollen compared to control cells, which was not unexpected, as vacuolation of the endoplasmic reticulum (ER) has been described for other cell types and is typical for v-ATPase inhibitors [11, 16, 24, 30] . This effect was obvious both in subconfluent and in confluent cells (Fig 2A) . Inhibition of v-ATPase prevents the acidification of lysosomes [1, 31] . Using the cell-permeable dye LysoTracker Red DND-99, it is possible to label the acidic lysosomes in living cells. Thus, this dye can serve as an indicator of v-ATPase inhibition. To proof that archazolid is also functionally active as a v-ATPase inhibitor in HUVECs, cells were treated with 1 nM archazolid before they were incubated with LysoTracker Red DND-99 and Hoechst 33342. As shown in Fig 2B, the red vesicular staining corresponding to acidified lysosomes in control cells disappeared completely after treatment with archazolid. In summary, archazolid treatment for 24 h was not cytotoxic to quiescent HUVECs, but inhibited the functionality of the v-ATPase.
We analyzed the adhesion of MDA-MB-231 cells onto HUVECs. Confluent HUVECs were treated with up to 1 nM archazolid for 24 h. Untreated MDA-MB-231 cells were labeled with Cell-Tracker Green CMFDA Dye. Interestingly, v-ATPase inhibition strongly increased the attachment of the metastatic breast carcinoma cell line MDA-MB-231 onto HUVECs after 10 and 120 min of adhesion (Fig 3A and 3B) . We also investigated the influence of archazolid on the transendothelial migration of MDA-MB-231 cells. HUVECs seeded in a Boyden chamber were treated with 1 nM archazolid for 24 h. CellTracker Green-labeled MDA-MB-231 cells (not treated with archazolid) were allowed to transmigrate through the endothelial monolayer for 24 h. As shown in Fig 3C, archazolid significantly decreased the transendothelial migration of MDA-MB-231 cells.
The influence of archazolid on tumor cell adhesion was not only studied in HUVECs, which represent macrovascular endothelial cells, but also in microvascular HMEC-1 cells. Moreover, besides the breast cancer cell line MDA-MB-231, also PC-3 prostate cancer cells were used as a second metastatic cancer cell line. Archazolid treatment of endothelial cells increased the attachment of MDA-MB-231 cells onto the HMEC-1 monolayer after 120 min of adhesion ( Fig 4A) and increased the attachment of PC-3 cells onto the HUVEC monolayer after 30 and 60 min of adhesion (Fig 4B) . Of note, the adhesion of non-metastatic Jurkat cells, an acute T cell leukemia cell line, remained unaffected after treatment of HUVECs with archazolid (S1A Fig). Taken together, archazolid treatment augmented the adhesive properties of both micro-and macrovascular endothelial cells for metastatic tumor cells, but not for non-metastatic ones. Of note, cancer cell adhesion onto archazolid-activated endothelial cells increased with the time of adhesion.
The adhesion of tumor cells onto the endothelium is in principle similar to that of leukocytes, but slightly differs in the molecules that mediate the adhesion process. Ligands for the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin were found to be expressed on tumor cells and to mediate tumor-endothelial cell interaction [21] . Inhibition of the v-ATPase might affect the expression of endothelial cell adhesion molecules on mRNA or protein levels. To determine the mRNA expression of ICAM-1, VCAM-1, E-selectin and Ncadherin, HUVECs were treated with archazolid for 12 h. TNFα is known to upregulate the expression of ICAM-1, VCAM-1 and E-selectin [32] and, thus, served as positive control. Quantitative real-time PCR showed that v-ATPase inhibition in HUVECs did not alter the mRNA levels of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5A) . The protein expression of these adhesion molecules on the surface of endothelial cells was analyzed by flow cytometry. Archazolid (1 nM, 24 h) did not affect the cell surface expression of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5B) .
Besides ICAM-1, VCAM-1, E-selectin and N-cadherin, also integrins are able to mediate the process of cell adhesion [33] [34] [35] . Since none of the cell adhesion molecules expressed on HUVECs were regulated upon archazolid treatment, we considered integrins as potential interaction partners. Within this protein family β1-integrins have been reported to mediate tumor cell adhesion onto quiescent endothelial cells [25] . In order to elucidate the role of β1-integrins for the archazolid-induced tumor cell adhesion, the integrin β1-subunit was blocked either on MDA-MB-231 cells, PC-3 cells or on HUVECs. (Of note, as in all experiments throughout this study, only endothelial cells were treated with archazolid.) After blocking β1-integrins on MDA-MB-231 or PC-3 cells, the archazolid-induced tumor cell adhesion was reduced almost to control level (Fig 6A and 6B , left panels), whereas blocking of β1-integrins on HUVECs had no significant effect on the increase of tumor cell adhesion by v-ATPase inhibition (Fig 6A and 6B , right panels).
Depending on their α subunit, β1-integrins have a variety of ligands including extracellular matrix (ECM) components such as collagen, fibronectin and laminin [35] . Therefore, we hypothesized that archazolid treatment of endothelial cells might lead to an upregulation of these components. MDA-MB-231 and PC-3 cells were allowed to adhere onto plastic that was coated with these ECM components. This cell adhesion assay revealed that MDA-MB-231 as well as PC-3 cells favor the interaction with the ECM component collagen, as the adhesion onto collagen is much higher than onto the uncoated plastic control (Fig 7A) . MDA-MB-231 and PC-3 cells also adhered to fibronectin-coated plastic, but to a much lesser extent compared to the collagen coating. Therefore, we focused on the interaction between these two tumor cell lines and collagen. Blocking of the integrin β1 subunit on MDA-MB-231 and PC-3 cells clearly abolished the interaction with collagen (Fig 7B) , indicating that the attachment of these tumor cells to collagen is mediated by β1-integrins.
Since collagen is the major ECM component MDA-MB-231 and PC-3 cells interact with, the next step was to prove whether v-ATPase inhibition influences the amount of collagen expressed by HUVECs as extracellular matrix. To detect collagen on the endothelial surface, archazolid-treated HUVECs were labeled with an antibody against collagen type I-IV on ice to prevent endocytosis and to ensure that the antibody does not bind to intracellular collagen. Interestingly, archazolid increased the amount of surface collagen on HUVECs by about 50% (Fig 7C) . Control stainings were performed using an antibody against the cytosolic p65 subunit of the transcription factor nuclear factor κB (NFκB) to show that intracellular proteins were not detected by this staining method (S2 Fig) .
It was reported that v-ATPase inhibition by archazolid impairs the activity of cathepsin B [28, 36] , a lysosomal enzyme that degrades extracellular matrix components including collagen [37] [38] [39] [40] [41] . As collagen is degraded by cathepsin B and the activation of cathepsin B depends on v-ATPase activity [28, [36] [37] [38] 42] , we suggested that an accumulation of collagen on the surface of endothelial cells might be a consequence of an impaired functionality of cathepsin B. Therefore, an enzyme activity assay based on the proteolysis of a fluorogenic cathepsin B substrate was performed. In archazolid-treated HUVECs and HMEC-1 the activity of cathepsin B was induce both the mRNA (1 ng/ml TNF) and the cell surface expression (10 ng/ml TNF) of ICAM-1, VCAM-1, E-selectin and Ncadherin.
https://doi.org/10.1371/journal.pone.0203053.g005 Inhibition of endothelial vATPase increases tumor cell adhesion to endothelial cells strongly decreased by approximately 50% compared to control cells at an archazolid concentration of 1 nM (Fig 8A) . In line with this result, western blot analysis showed that archazolid (1 nM) reduces the protein expression of the mature, active form of cathepsin B to less than 40% of the control in HUVECs (Fig 8B) . To proof whether the archazolid-induced tumor cell adhesion is a consequence of the decreased amount of cathepsin B, HUVECs were transfected with a plasmid coding for human cathepsin B or with the empty vector as control. After 48 h, the transfected cells were treated with 1 nM archazolid. The level of cathepsin B after transfection and treatment was assessed by western blot analysis (Fig 9A) . Overexpression of cathepsin B strongly diminished both the basal and the archazolid-induced adhesion of MDA-MB-231 cells (Fig 9B) .
Targeting the proton pump v-ATPase for cancer therapy has gained great interest since its inhibition was reported to reduce the invasiveness of cancer cells and, most importantly, also metastasis [8, 9] . Thus, intensive research related to v-ATPases was done in cancer cells, whereas there are only few studies investigating v-ATPases in endothelial cells indicating a role in migration, proliferation and possibly angiogenesis [22] [23] [24] . In the present study we used the myxobacterial natural product archazolid to investigate the consequences of v-ATPase inhibition in the endothelium on tumor-endothelial cell interactions.
For the first time, we were able to show a link between v-ATPase and the adhesion and transmigration properties of the endothelium. Inhibition of the v-ATPase in endothelial cells by archazolid significantly increased the adhesion of metastatic cancer cells and decreased the transendothelial migration of cancer cells which was attributed to augmented collagen levels on the surface on archazolid-treated endothelial cells. Of note, adhesion of the non-metastatic Jurkat cell line onto archazolid-treated endothelial cells remained unaffected. The archazolidinduced adhesion of tumor cells was independent from the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin, as their expression was not regulated by the compound. However, we found that the archazolid-induced tumor cell adhesion was mediated by β1-integrins expressed on MDA-MB-231 breast cancer and PC-3 prostate cancer cells as blocking of the integrin β1 subunit on these tumor cells reversed the pro-adhesive effect of archazolid. In adhesion experiments on plastic coated with extracellular matrix components, we could show that MDA-MB-231 and PC-3 cells clearly favored the interaction with collagen, whereas the adhesion of non-metastatic Jurkat cells was largely independent from extracellular matrix proteins (S1B Fig). The different adhesion properties of metastatic cancer cells and Jurkat cells might be a result of the distinct integrin expression pattern of each cell line. MDA-MB-231 and PC-3 cells express α2β1-and α3β1-integrins, which represent collagen receptors [43, 44] , while Jurkat cells express α4β1-integrins but lack α2β1-, α3β1-integrins [44] . α4β1integrins are receptors for VCAM-1 and fibronectin [35] and it has been shown that Jurkat cells interact with human endothelial cells that express VCAM-1 after cytokine treatment or cells transfected with VCAM-1 [45] . Our results are in line with previous studies showing that α2β1-and α3β1-integrin expressing MDA-MB-231 and PC-3 cells were able to rapidly attach to collagen in the cortical bone matrix. In contrast, Jurkat cells were not able to adhere [44] and might preferentially interact with cell adhesion molecules rather than with ECM proteins. α2β1-and α3β1-integrins can additionally act as laminin receptors [46] and at least α3β1integrins recognize fibronectin [46, 47] . Though expressing receptors for fibronectin and laminin, MDA-MB-231 and PC-3 cells adhered to fibronectin to a much lesser extent and did not adhere to laminin, probably due to lower affinities to these extracellular matrix components.
Importantly, v-ATPase inhibition by archazolid increased the surface levels of the extracellular matrix component collagen, which might explain that the increase of MDA-MB-231 and PC-3 cells onto archazolid-treated HUVECs is independent of endothelial cell adhesion molecules. By performing a live cell proteolysis assay, Cavallo-Medved et al. demonstrated ECM degradation, in particular of gelatin and collagen IV, in association with active cathepsin B in caveolae of endothelial cells during tube formation [40] . In addition, recent studies reported that v-ATPase inhibition impairs the activity of cathepsin B in cancer cells [28, 36] . Therefore, we suggested that the accumulation of collagen on the endothelial surface might be a consequence of impaired cathepsin B activity or expression in endothelial cells. In fact, we confirmed the impairment of cathepsin B activity by archazolid as the expression levels of the mature active form of this enzyme was strongly reduced. Cathepsin B is synthesized as preprocathepsin B on membrane-bound ribosomes. Following transport to the Golgi apparatus, the preprocathepsin B is glycosylated with mannose-containing oligosaccharides. The targeting of procathepsin B to lysosomes is mannose-6-phosphate receptor-dependent and its dissociation from the receptor as well as its proteolytic processing into mature cathepsin B requires acidification of the compartment [48] . In cancer cells v-ATPase inhibition by archazolid impaired the mannose-6-phosphate receptor-mediated trafficking from the trans-Golgi network to prelysosomal compartments resulting in a decrease of active lysosomal proteases like cathepsin B [28] . We assumed that the archazolid-induced decrease in cathepsin B activity and expression was based on the same mechanism. Interestingly, overexpression of cathepsin B attenuated the archazolid-induced adhesion of breast cancer cells onto endothelial cells, indicating that the adhesion negatively correlates with the expression of cathepsin B.
As cathepsin B can also degrade other extracellular matrix components such as fibronectin and laminin [38, 49] , v-ATPase inhibition could lead to an accumulation of these proteins and an increased adhesion of cells expressing fibronectin or laminin receptors. However, we did not focus on these ECM components since they were not relevant for the adhesion of MDA-MB-231 and PC-3 cells. These cells predominantly adhered to collagen, while the adhesion of Jurkat cells is mostly independent from the ECM proteins collagen, fibronectin or laminin (S1B Fig). Interestingly [50] . In hepatic cancer cells, archazolid reduces Ras/Raf/MEK/ERK signaling by altering the membrane composition and fluidity [51] . We assume that archazolid affects endothelial cells in a similar way leading to inhibition of Ras signaling and, therefore, reduced transendothelial migration of MDA-MB-231 cells.
Taken together, our study shows that archazolid reduces the activity and expression of cathepsin B in endothelial cells. As a result, the amount of collagen on the surface of endothelial cells was significantly upregulated, which finally resulted in an increased adhesion of the β1-integrin-expressing metastatic cancer cell lines MDA-MB-231 and PC-3 onto archazolidtreated endothelial cells, whereas the adhesion of non-metastatic Jurkat cells was unaffected. This study shows that the v-ATPase plays an important role in regulating the adhesion of cells expressing receptors for extracellular matrix components. Archazolid represents a promising tool to elucidate the role of v-ATPase in endothelial cells. Moreover, we for the first time linked the function of v-ATPase to the adhesion and transmigration of tumor cells onto endothelial cells as well as to the remodeling of the extracellular matrix on the surface of endothelial cells. The fact that the adhesion of metastatic tumor cells onto endothelial cells is increased while their transendothelial migration is reduced upon inhibition of endothelial v-ATPase by archazolid further supports the view of archazolid as a potential anti-metastatic compound. | What is vacuolar-type H(+)-ATPase (v-ATPase)? | {
"answer_start": [
482
],
"text": [
"the major proton pump that acidifies intracellular compartments of eukaryotic cells"
]
} | false |
5,302 | The vacuolar-type ATPase inhibitor archazolid increases tumor cell adhesion to endothelial cells by accumulating extracellular collagen
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133348/
SHA: f1b81916fac1ca3d50dde774df2e1bb26bf0fb39
Authors: Luong, Betty; Schwenk, Rebecca; Bräutigam, Jacqueline; Müller, Rolf; Menche, Dirk; Bischoff, Iris; Fürst, Robert
Date: 2018-09-11
DOI: 10.1371/journal.pone.0203053
License: cc-by
Abstract: The vacuolar-type H(+)-ATPase (v-ATPase) is the major proton pump that acidifies intracellular compartments of eukaryotic cells. Since the inhibition of v-ATPase resulted in anti-tumor and anti-metastatic effects in different tumor models, this enzyme has emerged as promising strategy against cancer. Here, we used the well-established v-ATPase inhibitor archazolid, a natural product first isolated from the myxobacterium Archangium gephyra, to study the consequences of v-ATPase inhibition in endothelial cells (ECs), in particular on the interaction between ECs and cancer cells, which has been neglected so far. Human endothelial cells treated with archazolid showed an increased adhesion of tumor cells, whereas the transendothelial migration of tumor cells was reduced. The adhesion process was independent from the EC adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin. Instead, the adhesion was mediated by β1-integrins expressed on tumor cells, as blocking of the integrin β1 subunit reversed this process. Tumor cells preferentially adhered to the β1-integrin ligand collagen and archazolid led to an increase in the amount of collagen on the surface of ECs. The accumulation of collagen was accompanied by a strong decrease of the expression and activity of the protease cathepsin B. Overexpression of cathepsin B in ECs prevented the capability of archazolid to increase the adhesion of tumor cells onto ECs. Our study demonstrates that the inhibition of v-ATPase by archazolid induces a pro-adhesive phenotype in endothelial cells that promotes their interaction with cancer cells, whereas the transmigration of tumor cells was reduced. These findings further support archazolid as a promising anti-metastatic compound.
Text: The vacuolar-type H + -ATPase (v-ATPase) is the major proton pump responsible for acidification of intracellular compartments in eukaryotic cells [1] . The enzyme consists of two multi-subunit complexes, the soluble V 1 transmembrane V o subcomplex required for the proton transport across membranes [1, 2] . In most cell types v-ATPases are only expressed in the endomembrane system to regulate and maintain the acidic pH of intracellular compartments such as lysosomes, endosomes, the Golgi apparatus, secretory granules and coated vesicles [3] . The function of v-ATPases is essential for cellular processes such as vesicular trafficking, receptor-mediated endocytosis and protein degradation and processing. In specialized cell types including osteoclasts and renal epithelial cells, v-ATPases can also be expressed on the plasma membrane, where they pump protons into the extracellular space [2] [3] [4] . In cancer cells v-ATPases are expressed on the plasma membrane in order to eliminate toxic cytosolic H + . Most importantly, v-ATPases contribute to the acidic tumor microenvironment, which leads to the activation of proteases, thus facilitating tumor cell migration, invasion and angiogenesis [5] [6] [7] . Since the inhibition of v-ATPase was shown to reduce the invasiveness of cancer cells and metastasis formation [8, 9] , this enzyme has emerged as a promising drug target in the recent years. Archazolid A and B are highly potent and specific inhibitors of v-ATPases [10] . They were first isolated from the myxobacterium Archangium gephyra [11] . These compounds inhibit v-ATPase at low nanomolar concentrations [10, 12] by binding to the subunit c of the V o complex. As their biological activity is comparable to the v-ATPase inhibitors bafilomycin and concanamycin [10, 11] , archazolids are natural compounds of high interest that can be used both as a tool to study the consequences of v-ATPase inhibition and as a lead for drug development. Archazolids can be either produced by fermentation [11] or by total synthesis [13, 14] .
In the field of cancer research several studies reported on interesting pharmacological effects of archazolid: It reduced the migration of different invasive tumor cells in vitro and cancer cell metastasis in vivo in a breast tumor mouse model [15] . Furthermore, archazolid activated pathways of cellular stress response and apoptosis in highly invasive tumor cells [16] . In classically activated macrophages, archazolid selectively induced the generation of tumor necrosis factor α (TNFα), which may indirectly promote tumor suppression [17] .
Up to now, the role of v-ATPases in endothelial cells has only rarely been investigated. The endothelium plays a crucial role in the pathogenesis and progression of cancer: The metastatic cascade includes local angiogenesis at the site of the primary tumor and adhesion of tumor cells at the site of metastasis [18] . Angiogenesis, the development of new blood vessels out of existing ones, depends on the proliferation, migration and differentiation of endothelial cells [19] . This process ensures the nutrient supply of the tumor and its growth [20] . Circulating cancer cells can adhere to the endothelium at distant sites. This adhesive interaction is mediated by receptors and corresponding ligands expressed on tumor and endothelial cells [18, 21] . V-ATPases have been reported to regulate intracellular pH and cell migration in microvascular endothelial cells [22, 23] . A recent study showed that the inhibition of v-ATPase by concanamycin prevented proliferation, reduced migration and impaired angiogenesis-related signaling in endothelial cells [24] . So far, there are no investigations on the role of endothelial v-ATPases for the process of tumor cell adhesion onto the endothelium. Thus, we were interested in the consequences of the inhibition of endothelial v-ATPase by archazolid on the interaction between endothelial and cancer cells. Various cell adhesion molecules on the endothelium, such as intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein (VCAM-1), E-selectin or N-cadherin [21] as well as integrins expressed on cancer cells have been reported to mediate cell adhesion of cancer cells onto endothelial cells [25] [26] [27] . Accordingly, we focused on these cell adhesion molecules and integrins. For the first time, our study revealed a link between the function of v-ATPases and the adhesion and transmigration properties of endothelial cells.
CellTiter-Blue Cell Viability Assay (Promega, Mannheim, Germany) was performed according to the manufacturer's protocol for determining the cell viability of cells after treatment with archazolid. This assay is based on the ability of metabolically active cells to reduce resazurin which results in fluorescent resorufin. The CellTiter-Blue Reagent was added to the cells 4 h before the endpoint of treatment. Fluorescence was measured with an Infinite F200 pro microplate reader (Tecan, Männedorf, Switzerland) at 560 nm (excitation) and 590 nm (emission).
CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega) was performed according to the manufacturer's instructions for determining the lactate dehydrogenase (LDH) release after treatment with archazolid. Lysis buffer was added to untreated cells 45 min before the end of treatment to induce the release of this enzyme. LDH is a cytosolic enzyme that is released by leaky cells. Released LDH catalyzes the enzymatic conversion of lactate to pyruvate which provides NADH for the conversion of iodonitrotetrazolium violet into a red formazan product in the presence of diaphorase. The absorbance was measured with a Varioskan Flash microplate reader (Thermo Fisher Scientific) at 490 nm.
LysoTracker Red DND-99 (Life Technologies, Thermo Fisher Scientific) is a dye to measure pH values in viable cells. HUVECs were cultured to confluence on collagen G-coated μ-slides (80826, ibidi, Martinsried, Germany) before they were treated with archazolid for 24 h. 1 μg/ ml Hoechst 33342 (Sigma-Aldrich, Munich, Germany) was used to visualize the nuclei and 50 nM LysoTracker Red DND-99 was used to visualize the acidic compartments which correspond to the lysosomes. Both dyes were incubated for 10 min at 37˚C before acquisition of single images by a Leica DMI6000 B fluorescence microscope (Leica Microsystems, Wetzlar, Germany).
HUVECs were seeded in collagen G-coated 24-well plates and grown to confluence for two days before treatment. The cells were incubated with indicated concentrations of archazolid for 24 h. Untreated MDA-MB-231 or PC-3 cells were labeled with CellTracker Green CMFDA Dye (5 μM in serum-free DMEM, 37˚C) for 30 min before 100,000 cells per well were added to HUVECs and were allowed to adhere for various time points at 37˚C. Non-adherent tumor cells were washed off three times with PBS containing Ca 2+ and Mg 2+ . Tumor cell adhesion was determined by fluorescence measurements with an Infinite F200 pro microplate reader (Tecan) at 485 nm (excitation) and 535 nm (emission).
For blocking the integrin β1 subunit on MDA-MB-231 or PC-3 cells, CellTracker Greenlabeled MDA-MB-231 or PC-3 cells were incubated with an anti-integrin β1 antibody (P5D2, ab24693, Abcam, Cambridge, United Kingdom) at a concentration of 1 μg antibody per one million cells in 1 ml DMEM. Before adding to archazolid-treated HUVECs, MDA-MB-231 or PC-3 cells were washed once with DMEM. For blocking the integrin β1 subunit on HUVECs, the cells were incubated with the anti-integrin β1 antibody (0.1 μg/well in ECGM). HUVECs were washed once with ECGM before untreated MDA-MB-231 or PC-3 cells were added to HUVECs.
For the adhesion of MDA-MB-231 or PC-3 cells onto extracellular matrix (ECM) components 24-well plates were coated with collagen G (10 μg/ml in PBS), human plasma fibronectin (10 μg/ml PBS) or laminin-411 (10 μg/ml in Dulbecco's PBS [DPBS] containing Ca 2+ and Mg 2+ ) at 4˚C overnight. The adhesion of MDA-MB-231 and PC-3 cells onto these three most prominent ECM components was carried out as described above (10 min adhesion at 37˚C).
HUVECs were grown on a porous filter membrane (Transwell insert, polycarbonate membrane, 8 μm pores; Corning, New York, USA) for 48 h and were treated as indicated. Untreated MDA-MB-231 cells were labeled with CellTracker Green CMFDA Dye (as described in the section cell adhesion assay) and resuspended in medium 199 (PAN-Biotech) containing 0.1% BSA. HUVECs were washed twice with medium 199 containing 0.1% BSA before MDA-MB-231 cells were allowed to transmigrate through the endothelial monolayer for 24 h. Medium 199 containing 0.1% BSA was used as negative control and medium 199 containing 20% FCS was used as chemoattractant for transmigration in the lower compartment. Non-migrated cells remaining in the upper compartment were carefully removed using a cotton swab. Transmigrated cells were lysed in radioimmunoprecipitation assay (RIPA) buffer and transmigration was quantified by measuring the fluorescence signal at 485 nm (excitation) and 535 nm (emission).
HUVECs were grown to confluence on 6-well plates before they were treated with archazolid for 12 h. The cells were induced to upregulate the gene expression of cell adhesion molecules by TNFα. RNA was isolated using the RNeasy Mini Kit from Qiagen (Hilden, Germany) according to the manufacturer's protocol. On-column DNase digestion was performed to remove genomic DNA. RNA was transcribed into cDNA by Superscript II (Life Technologies, Thermo Fisher Scientific). qPCR experiments were performed using a StepOnePlus System (Applied Biosystems, Thermo Fisher Scientific) and data was analyzed by the StepOne and Ste-pOnePlus Software v2.3. Power SYBR Green PCR Master Mix (Life Technologies) and the comparative C T quantitation method (2 -ΔΔCT ) were used.
HUVECs were grown to confluence on 12-well plates before they were treated with archazolid for 24 h. Cells were treated with TNFα for 24 h to induce the expression of cell adhesion molecules. Subsequently, the cells were detached with HyClone HyQTase (GE Healthcare, Freiburg, Germany). In the case of ICAM-1 the detached cells were fixed with 4% formaldehyde (Polysciences, Hirschberg an der Bergstraße, Germany) in PBS for 10 min and washed once with PBS before incubating with the fluorescein isothiocyanate (FITC)-labeled anti-human CD54 (mouse, ICAM-1) antibody (MCA1615F, Biozol, Eching, Germany) at room temperature for 45 min. For all other proteins, the cells were not fixed and washed once with PBS before incubating with the antibodies phycoerythrin (PE)-labeled anti-human CD106 (mouse, VCAM-1), PE-labeled anti-human CD62E (mouse, E-selectin) and PE-labeled anti-human CD325 (mouse, N-cadherin) from Becton Dickinson on ice for 45 min. These antibodies were diluted in PBS containing 0.2% BSA. The surface expression of cell adhesion molecules was measured by flow cytometry (FACSVerse, Becton Dickinson, Heidelberg, Germany).
To stain the surface collagen on HUVECs, cells were incubated with an anti-human collagen antibody (rabbit, 1:40, ab36064, Abcam) on ice for 30 min. The staining procedure was performed on ice to ensure that surface proteins or antibodies are not endocytosed. The cells were washed once with PBS containing Ca 2+ and Mg 2+ before they were fixed with Roti-Histofix (Carl Roth). Alexa Fluor 488-conjugated anti-rabbit antibody (goat, 1:400, A11008, Life Technologies) was used as secondary antibody and Hoechst 33342 (1 μg/ml, Sigma-Aldrich) was used to visualize nuclei.
Confluent HUVECs in 6-well plates were treated as indicated. Cells were washed with ice-cold PBS and lysed with RIPA buffer supplemented with protease inhibitors (Complete Mini EDTA-free; Roche, Mannheim, Germany), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride, β-glycerophosphate, sodium pyrophosphate and H 2 O 2 . Protein determination was performed using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Equal amounts of proteins (10-20 μg) were separated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE; Bio-Rad Laboratories, Munich, Germany). Separated proteins were transferred onto polyvinylidene difluoride membranes by tank blotting (Bio-Rad Laboratories) for immunodetection. Membranes were blocked with 5% boltinggrade milk powder (Carl Roth) in TBS containing 0.1% Tween 20 (Sigma-Aldrich). The following antibodies were used: mouse anti-human cathepsin B antibody (IM27L, Merck) (1:500), mouse anti-β-actin-peroxidase antibody (A3854, Sigma-Aldrich) (1:100,000) and antimouse IgG horse radish peroxidase (HRP)-linked antibody (7076, Cell Signaling, Frankfurt, Germany) (1:5,000). ImageJ version 1.49m was used for densitometric analysis.
Cathepsin B activity assay was performed as described in the publication by Kubisch et al. [28] . Confluent HUVECs or HMEC-1 seeded in 6-well plates were treated as indicated. Cells were washed with PBS and lysed with the non-denaturating M-PER mammalian protein extraction reagent (78501, Thermo Fisher Scientific) supplemented with protease inhibitors (Complete Mini EDTA-free, Roche), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride. The fluorogenic cathepsin B substrate Z-Arg-Arg-7-amido-4-methylcoumarin hydrochloride (C5429, Sigma-Aldrich) was added to 30 μg of the cell lysate diluted in assay buffer supplemented with 2 mM L-cysteine (C7880, Sigma-Aldrich) and incubated for 30 min at 40˚C. Fluorescence was measured at 348 nm (excitation) and 440 nm (emission) with a microplate reader (Varioskan Flash, Thermo Fisher Scientific). The intensity of the fluorescence signal corresponded to the cathepsin B enzyme activity. For background subtraction the cathepsin B inhibitor CA-074Me (Enzo Life Sciences, Lörrach, Germany) was added to an additional reaction.
The HUVEC Nucleofector Kit (Lonza, Cologne, Germany) was used to transfect HUVECs. The transfection was performed according to the manufacturer's protocol using 2.5 μg plasmid DNA for 500,000 cells (Nucleofector 2b Device, Lonza). 48 h after transfection the cells were treated for further experiments. The addgene plasmid #11249 hCathepsin B was kindly provided by Hyeryun Choe [29] . hCathepsin B was digested with PmeI and XbaI and the linear DNA fragment not corresponding to the human CTSB gene was religated to generate the empty pcDNA3.1 (-) delta MCS plasmid that was used for control transfections. The original backbone of hCathepsin B is the pcDNA3.1 (-) from Thermo Fisher Scientific. The control vector pcDNA3.1 (-) delta MCS used for our transfections was cloned on the basis of hCathepsin B and is therefore lacking almost the whole part of the multiple cloning site of the pcDNA3.1 (-).
Statistical analyses were performed using GraphPad Prism 5.0 (San Diego, USA). One-way ANOVA followed by Tukey's post-hoc test or unpaired t-test was used for the evaluation of a minimum of three independent experiments. The numbers of independently performed experiments (n) are stated in the corresponding figure legends. p 0.05 was considered as statistically significant. Data are expressed as mean ± standard error of the mean (SEM).
Since the v-ATPase inhibitor archazolid has never been used for studies in endothelial cells, we first performed cytotoxicity assays. We treated confluent HUVECs with up to 1 nM archazolid for 24 and 48 h and observed that this treatment has neither an influence on the metabolic activity nor on the release of LDH after 24 h (Fig 1A and 1B, left panels) . The metabolic activity and the release of LDH were only slightly affected by the highest concentration of archazolid after 48 h (Fig 1A and 1B, right panels) . Consequently, the following experiments were all carried out after 24 h (or less) of archazolid treatment in order to exclude any cytotoxic effects of archazolid within our experimental settings.
Microscopic analysis revealed that also the integrity of the endothelial monolayer was not affected by archazolid, but the cells showed a slightly different morphology (Fig 2A) : Archazolid-treated cells were swollen compared to control cells, which was not unexpected, as vacuolation of the endoplasmic reticulum (ER) has been described for other cell types and is typical for v-ATPase inhibitors [11, 16, 24, 30] . This effect was obvious both in subconfluent and in confluent cells (Fig 2A) . Inhibition of v-ATPase prevents the acidification of lysosomes [1, 31] . Using the cell-permeable dye LysoTracker Red DND-99, it is possible to label the acidic lysosomes in living cells. Thus, this dye can serve as an indicator of v-ATPase inhibition. To proof that archazolid is also functionally active as a v-ATPase inhibitor in HUVECs, cells were treated with 1 nM archazolid before they were incubated with LysoTracker Red DND-99 and Hoechst 33342. As shown in Fig 2B, the red vesicular staining corresponding to acidified lysosomes in control cells disappeared completely after treatment with archazolid. In summary, archazolid treatment for 24 h was not cytotoxic to quiescent HUVECs, but inhibited the functionality of the v-ATPase.
We analyzed the adhesion of MDA-MB-231 cells onto HUVECs. Confluent HUVECs were treated with up to 1 nM archazolid for 24 h. Untreated MDA-MB-231 cells were labeled with Cell-Tracker Green CMFDA Dye. Interestingly, v-ATPase inhibition strongly increased the attachment of the metastatic breast carcinoma cell line MDA-MB-231 onto HUVECs after 10 and 120 min of adhesion (Fig 3A and 3B) . We also investigated the influence of archazolid on the transendothelial migration of MDA-MB-231 cells. HUVECs seeded in a Boyden chamber were treated with 1 nM archazolid for 24 h. CellTracker Green-labeled MDA-MB-231 cells (not treated with archazolid) were allowed to transmigrate through the endothelial monolayer for 24 h. As shown in Fig 3C, archazolid significantly decreased the transendothelial migration of MDA-MB-231 cells.
The influence of archazolid on tumor cell adhesion was not only studied in HUVECs, which represent macrovascular endothelial cells, but also in microvascular HMEC-1 cells. Moreover, besides the breast cancer cell line MDA-MB-231, also PC-3 prostate cancer cells were used as a second metastatic cancer cell line. Archazolid treatment of endothelial cells increased the attachment of MDA-MB-231 cells onto the HMEC-1 monolayer after 120 min of adhesion ( Fig 4A) and increased the attachment of PC-3 cells onto the HUVEC monolayer after 30 and 60 min of adhesion (Fig 4B) . Of note, the adhesion of non-metastatic Jurkat cells, an acute T cell leukemia cell line, remained unaffected after treatment of HUVECs with archazolid (S1A Fig). Taken together, archazolid treatment augmented the adhesive properties of both micro-and macrovascular endothelial cells for metastatic tumor cells, but not for non-metastatic ones. Of note, cancer cell adhesion onto archazolid-activated endothelial cells increased with the time of adhesion.
The adhesion of tumor cells onto the endothelium is in principle similar to that of leukocytes, but slightly differs in the molecules that mediate the adhesion process. Ligands for the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin were found to be expressed on tumor cells and to mediate tumor-endothelial cell interaction [21] . Inhibition of the v-ATPase might affect the expression of endothelial cell adhesion molecules on mRNA or protein levels. To determine the mRNA expression of ICAM-1, VCAM-1, E-selectin and Ncadherin, HUVECs were treated with archazolid for 12 h. TNFα is known to upregulate the expression of ICAM-1, VCAM-1 and E-selectin [32] and, thus, served as positive control. Quantitative real-time PCR showed that v-ATPase inhibition in HUVECs did not alter the mRNA levels of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5A) . The protein expression of these adhesion molecules on the surface of endothelial cells was analyzed by flow cytometry. Archazolid (1 nM, 24 h) did not affect the cell surface expression of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5B) .
Besides ICAM-1, VCAM-1, E-selectin and N-cadherin, also integrins are able to mediate the process of cell adhesion [33] [34] [35] . Since none of the cell adhesion molecules expressed on HUVECs were regulated upon archazolid treatment, we considered integrins as potential interaction partners. Within this protein family β1-integrins have been reported to mediate tumor cell adhesion onto quiescent endothelial cells [25] . In order to elucidate the role of β1-integrins for the archazolid-induced tumor cell adhesion, the integrin β1-subunit was blocked either on MDA-MB-231 cells, PC-3 cells or on HUVECs. (Of note, as in all experiments throughout this study, only endothelial cells were treated with archazolid.) After blocking β1-integrins on MDA-MB-231 or PC-3 cells, the archazolid-induced tumor cell adhesion was reduced almost to control level (Fig 6A and 6B , left panels), whereas blocking of β1-integrins on HUVECs had no significant effect on the increase of tumor cell adhesion by v-ATPase inhibition (Fig 6A and 6B , right panels).
Depending on their α subunit, β1-integrins have a variety of ligands including extracellular matrix (ECM) components such as collagen, fibronectin and laminin [35] . Therefore, we hypothesized that archazolid treatment of endothelial cells might lead to an upregulation of these components. MDA-MB-231 and PC-3 cells were allowed to adhere onto plastic that was coated with these ECM components. This cell adhesion assay revealed that MDA-MB-231 as well as PC-3 cells favor the interaction with the ECM component collagen, as the adhesion onto collagen is much higher than onto the uncoated plastic control (Fig 7A) . MDA-MB-231 and PC-3 cells also adhered to fibronectin-coated plastic, but to a much lesser extent compared to the collagen coating. Therefore, we focused on the interaction between these two tumor cell lines and collagen. Blocking of the integrin β1 subunit on MDA-MB-231 and PC-3 cells clearly abolished the interaction with collagen (Fig 7B) , indicating that the attachment of these tumor cells to collagen is mediated by β1-integrins.
Since collagen is the major ECM component MDA-MB-231 and PC-3 cells interact with, the next step was to prove whether v-ATPase inhibition influences the amount of collagen expressed by HUVECs as extracellular matrix. To detect collagen on the endothelial surface, archazolid-treated HUVECs were labeled with an antibody against collagen type I-IV on ice to prevent endocytosis and to ensure that the antibody does not bind to intracellular collagen. Interestingly, archazolid increased the amount of surface collagen on HUVECs by about 50% (Fig 7C) . Control stainings were performed using an antibody against the cytosolic p65 subunit of the transcription factor nuclear factor κB (NFκB) to show that intracellular proteins were not detected by this staining method (S2 Fig) .
It was reported that v-ATPase inhibition by archazolid impairs the activity of cathepsin B [28, 36] , a lysosomal enzyme that degrades extracellular matrix components including collagen [37] [38] [39] [40] [41] . As collagen is degraded by cathepsin B and the activation of cathepsin B depends on v-ATPase activity [28, [36] [37] [38] 42] , we suggested that an accumulation of collagen on the surface of endothelial cells might be a consequence of an impaired functionality of cathepsin B. Therefore, an enzyme activity assay based on the proteolysis of a fluorogenic cathepsin B substrate was performed. In archazolid-treated HUVECs and HMEC-1 the activity of cathepsin B was induce both the mRNA (1 ng/ml TNF) and the cell surface expression (10 ng/ml TNF) of ICAM-1, VCAM-1, E-selectin and Ncadherin.
https://doi.org/10.1371/journal.pone.0203053.g005 Inhibition of endothelial vATPase increases tumor cell adhesion to endothelial cells strongly decreased by approximately 50% compared to control cells at an archazolid concentration of 1 nM (Fig 8A) . In line with this result, western blot analysis showed that archazolid (1 nM) reduces the protein expression of the mature, active form of cathepsin B to less than 40% of the control in HUVECs (Fig 8B) . To proof whether the archazolid-induced tumor cell adhesion is a consequence of the decreased amount of cathepsin B, HUVECs were transfected with a plasmid coding for human cathepsin B or with the empty vector as control. After 48 h, the transfected cells were treated with 1 nM archazolid. The level of cathepsin B after transfection and treatment was assessed by western blot analysis (Fig 9A) . Overexpression of cathepsin B strongly diminished both the basal and the archazolid-induced adhesion of MDA-MB-231 cells (Fig 9B) .
Targeting the proton pump v-ATPase for cancer therapy has gained great interest since its inhibition was reported to reduce the invasiveness of cancer cells and, most importantly, also metastasis [8, 9] . Thus, intensive research related to v-ATPases was done in cancer cells, whereas there are only few studies investigating v-ATPases in endothelial cells indicating a role in migration, proliferation and possibly angiogenesis [22] [23] [24] . In the present study we used the myxobacterial natural product archazolid to investigate the consequences of v-ATPase inhibition in the endothelium on tumor-endothelial cell interactions.
For the first time, we were able to show a link between v-ATPase and the adhesion and transmigration properties of the endothelium. Inhibition of the v-ATPase in endothelial cells by archazolid significantly increased the adhesion of metastatic cancer cells and decreased the transendothelial migration of cancer cells which was attributed to augmented collagen levels on the surface on archazolid-treated endothelial cells. Of note, adhesion of the non-metastatic Jurkat cell line onto archazolid-treated endothelial cells remained unaffected. The archazolidinduced adhesion of tumor cells was independent from the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin, as their expression was not regulated by the compound. However, we found that the archazolid-induced tumor cell adhesion was mediated by β1-integrins expressed on MDA-MB-231 breast cancer and PC-3 prostate cancer cells as blocking of the integrin β1 subunit on these tumor cells reversed the pro-adhesive effect of archazolid. In adhesion experiments on plastic coated with extracellular matrix components, we could show that MDA-MB-231 and PC-3 cells clearly favored the interaction with collagen, whereas the adhesion of non-metastatic Jurkat cells was largely independent from extracellular matrix proteins (S1B Fig). The different adhesion properties of metastatic cancer cells and Jurkat cells might be a result of the distinct integrin expression pattern of each cell line. MDA-MB-231 and PC-3 cells express α2β1-and α3β1-integrins, which represent collagen receptors [43, 44] , while Jurkat cells express α4β1-integrins but lack α2β1-, α3β1-integrins [44] . α4β1integrins are receptors for VCAM-1 and fibronectin [35] and it has been shown that Jurkat cells interact with human endothelial cells that express VCAM-1 after cytokine treatment or cells transfected with VCAM-1 [45] . Our results are in line with previous studies showing that α2β1-and α3β1-integrin expressing MDA-MB-231 and PC-3 cells were able to rapidly attach to collagen in the cortical bone matrix. In contrast, Jurkat cells were not able to adhere [44] and might preferentially interact with cell adhesion molecules rather than with ECM proteins. α2β1-and α3β1-integrins can additionally act as laminin receptors [46] and at least α3β1integrins recognize fibronectin [46, 47] . Though expressing receptors for fibronectin and laminin, MDA-MB-231 and PC-3 cells adhered to fibronectin to a much lesser extent and did not adhere to laminin, probably due to lower affinities to these extracellular matrix components.
Importantly, v-ATPase inhibition by archazolid increased the surface levels of the extracellular matrix component collagen, which might explain that the increase of MDA-MB-231 and PC-3 cells onto archazolid-treated HUVECs is independent of endothelial cell adhesion molecules. By performing a live cell proteolysis assay, Cavallo-Medved et al. demonstrated ECM degradation, in particular of gelatin and collagen IV, in association with active cathepsin B in caveolae of endothelial cells during tube formation [40] . In addition, recent studies reported that v-ATPase inhibition impairs the activity of cathepsin B in cancer cells [28, 36] . Therefore, we suggested that the accumulation of collagen on the endothelial surface might be a consequence of impaired cathepsin B activity or expression in endothelial cells. In fact, we confirmed the impairment of cathepsin B activity by archazolid as the expression levels of the mature active form of this enzyme was strongly reduced. Cathepsin B is synthesized as preprocathepsin B on membrane-bound ribosomes. Following transport to the Golgi apparatus, the preprocathepsin B is glycosylated with mannose-containing oligosaccharides. The targeting of procathepsin B to lysosomes is mannose-6-phosphate receptor-dependent and its dissociation from the receptor as well as its proteolytic processing into mature cathepsin B requires acidification of the compartment [48] . In cancer cells v-ATPase inhibition by archazolid impaired the mannose-6-phosphate receptor-mediated trafficking from the trans-Golgi network to prelysosomal compartments resulting in a decrease of active lysosomal proteases like cathepsin B [28] . We assumed that the archazolid-induced decrease in cathepsin B activity and expression was based on the same mechanism. Interestingly, overexpression of cathepsin B attenuated the archazolid-induced adhesion of breast cancer cells onto endothelial cells, indicating that the adhesion negatively correlates with the expression of cathepsin B.
As cathepsin B can also degrade other extracellular matrix components such as fibronectin and laminin [38, 49] , v-ATPase inhibition could lead to an accumulation of these proteins and an increased adhesion of cells expressing fibronectin or laminin receptors. However, we did not focus on these ECM components since they were not relevant for the adhesion of MDA-MB-231 and PC-3 cells. These cells predominantly adhered to collagen, while the adhesion of Jurkat cells is mostly independent from the ECM proteins collagen, fibronectin or laminin (S1B Fig). Interestingly [50] . In hepatic cancer cells, archazolid reduces Ras/Raf/MEK/ERK signaling by altering the membrane composition and fluidity [51] . We assume that archazolid affects endothelial cells in a similar way leading to inhibition of Ras signaling and, therefore, reduced transendothelial migration of MDA-MB-231 cells.
Taken together, our study shows that archazolid reduces the activity and expression of cathepsin B in endothelial cells. As a result, the amount of collagen on the surface of endothelial cells was significantly upregulated, which finally resulted in an increased adhesion of the β1-integrin-expressing metastatic cancer cell lines MDA-MB-231 and PC-3 onto archazolidtreated endothelial cells, whereas the adhesion of non-metastatic Jurkat cells was unaffected. This study shows that the v-ATPase plays an important role in regulating the adhesion of cells expressing receptors for extracellular matrix components. Archazolid represents a promising tool to elucidate the role of v-ATPase in endothelial cells. Moreover, we for the first time linked the function of v-ATPase to the adhesion and transmigration of tumor cells onto endothelial cells as well as to the remodeling of the extracellular matrix on the surface of endothelial cells. The fact that the adhesion of metastatic tumor cells onto endothelial cells is increased while their transendothelial migration is reduced upon inhibition of endothelial v-ATPase by archazolid further supports the view of archazolid as a potential anti-metastatic compound. | What is archazolid? | {
"answer_start": [
775
],
"text": [
"v-ATPase inhibitor"
]
} | false |
5,303 | The vacuolar-type ATPase inhibitor archazolid increases tumor cell adhesion to endothelial cells by accumulating extracellular collagen
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133348/
SHA: f1b81916fac1ca3d50dde774df2e1bb26bf0fb39
Authors: Luong, Betty; Schwenk, Rebecca; Bräutigam, Jacqueline; Müller, Rolf; Menche, Dirk; Bischoff, Iris; Fürst, Robert
Date: 2018-09-11
DOI: 10.1371/journal.pone.0203053
License: cc-by
Abstract: The vacuolar-type H(+)-ATPase (v-ATPase) is the major proton pump that acidifies intracellular compartments of eukaryotic cells. Since the inhibition of v-ATPase resulted in anti-tumor and anti-metastatic effects in different tumor models, this enzyme has emerged as promising strategy against cancer. Here, we used the well-established v-ATPase inhibitor archazolid, a natural product first isolated from the myxobacterium Archangium gephyra, to study the consequences of v-ATPase inhibition in endothelial cells (ECs), in particular on the interaction between ECs and cancer cells, which has been neglected so far. Human endothelial cells treated with archazolid showed an increased adhesion of tumor cells, whereas the transendothelial migration of tumor cells was reduced. The adhesion process was independent from the EC adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin. Instead, the adhesion was mediated by β1-integrins expressed on tumor cells, as blocking of the integrin β1 subunit reversed this process. Tumor cells preferentially adhered to the β1-integrin ligand collagen and archazolid led to an increase in the amount of collagen on the surface of ECs. The accumulation of collagen was accompanied by a strong decrease of the expression and activity of the protease cathepsin B. Overexpression of cathepsin B in ECs prevented the capability of archazolid to increase the adhesion of tumor cells onto ECs. Our study demonstrates that the inhibition of v-ATPase by archazolid induces a pro-adhesive phenotype in endothelial cells that promotes their interaction with cancer cells, whereas the transmigration of tumor cells was reduced. These findings further support archazolid as a promising anti-metastatic compound.
Text: The vacuolar-type H + -ATPase (v-ATPase) is the major proton pump responsible for acidification of intracellular compartments in eukaryotic cells [1] . The enzyme consists of two multi-subunit complexes, the soluble V 1 transmembrane V o subcomplex required for the proton transport across membranes [1, 2] . In most cell types v-ATPases are only expressed in the endomembrane system to regulate and maintain the acidic pH of intracellular compartments such as lysosomes, endosomes, the Golgi apparatus, secretory granules and coated vesicles [3] . The function of v-ATPases is essential for cellular processes such as vesicular trafficking, receptor-mediated endocytosis and protein degradation and processing. In specialized cell types including osteoclasts and renal epithelial cells, v-ATPases can also be expressed on the plasma membrane, where they pump protons into the extracellular space [2] [3] [4] . In cancer cells v-ATPases are expressed on the plasma membrane in order to eliminate toxic cytosolic H + . Most importantly, v-ATPases contribute to the acidic tumor microenvironment, which leads to the activation of proteases, thus facilitating tumor cell migration, invasion and angiogenesis [5] [6] [7] . Since the inhibition of v-ATPase was shown to reduce the invasiveness of cancer cells and metastasis formation [8, 9] , this enzyme has emerged as a promising drug target in the recent years. Archazolid A and B are highly potent and specific inhibitors of v-ATPases [10] . They were first isolated from the myxobacterium Archangium gephyra [11] . These compounds inhibit v-ATPase at low nanomolar concentrations [10, 12] by binding to the subunit c of the V o complex. As their biological activity is comparable to the v-ATPase inhibitors bafilomycin and concanamycin [10, 11] , archazolids are natural compounds of high interest that can be used both as a tool to study the consequences of v-ATPase inhibition and as a lead for drug development. Archazolids can be either produced by fermentation [11] or by total synthesis [13, 14] .
In the field of cancer research several studies reported on interesting pharmacological effects of archazolid: It reduced the migration of different invasive tumor cells in vitro and cancer cell metastasis in vivo in a breast tumor mouse model [15] . Furthermore, archazolid activated pathways of cellular stress response and apoptosis in highly invasive tumor cells [16] . In classically activated macrophages, archazolid selectively induced the generation of tumor necrosis factor α (TNFα), which may indirectly promote tumor suppression [17] .
Up to now, the role of v-ATPases in endothelial cells has only rarely been investigated. The endothelium plays a crucial role in the pathogenesis and progression of cancer: The metastatic cascade includes local angiogenesis at the site of the primary tumor and adhesion of tumor cells at the site of metastasis [18] . Angiogenesis, the development of new blood vessels out of existing ones, depends on the proliferation, migration and differentiation of endothelial cells [19] . This process ensures the nutrient supply of the tumor and its growth [20] . Circulating cancer cells can adhere to the endothelium at distant sites. This adhesive interaction is mediated by receptors and corresponding ligands expressed on tumor and endothelial cells [18, 21] . V-ATPases have been reported to regulate intracellular pH and cell migration in microvascular endothelial cells [22, 23] . A recent study showed that the inhibition of v-ATPase by concanamycin prevented proliferation, reduced migration and impaired angiogenesis-related signaling in endothelial cells [24] . So far, there are no investigations on the role of endothelial v-ATPases for the process of tumor cell adhesion onto the endothelium. Thus, we were interested in the consequences of the inhibition of endothelial v-ATPase by archazolid on the interaction between endothelial and cancer cells. Various cell adhesion molecules on the endothelium, such as intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein (VCAM-1), E-selectin or N-cadherin [21] as well as integrins expressed on cancer cells have been reported to mediate cell adhesion of cancer cells onto endothelial cells [25] [26] [27] . Accordingly, we focused on these cell adhesion molecules and integrins. For the first time, our study revealed a link between the function of v-ATPases and the adhesion and transmigration properties of endothelial cells.
CellTiter-Blue Cell Viability Assay (Promega, Mannheim, Germany) was performed according to the manufacturer's protocol for determining the cell viability of cells after treatment with archazolid. This assay is based on the ability of metabolically active cells to reduce resazurin which results in fluorescent resorufin. The CellTiter-Blue Reagent was added to the cells 4 h before the endpoint of treatment. Fluorescence was measured with an Infinite F200 pro microplate reader (Tecan, Männedorf, Switzerland) at 560 nm (excitation) and 590 nm (emission).
CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega) was performed according to the manufacturer's instructions for determining the lactate dehydrogenase (LDH) release after treatment with archazolid. Lysis buffer was added to untreated cells 45 min before the end of treatment to induce the release of this enzyme. LDH is a cytosolic enzyme that is released by leaky cells. Released LDH catalyzes the enzymatic conversion of lactate to pyruvate which provides NADH for the conversion of iodonitrotetrazolium violet into a red formazan product in the presence of diaphorase. The absorbance was measured with a Varioskan Flash microplate reader (Thermo Fisher Scientific) at 490 nm.
LysoTracker Red DND-99 (Life Technologies, Thermo Fisher Scientific) is a dye to measure pH values in viable cells. HUVECs were cultured to confluence on collagen G-coated μ-slides (80826, ibidi, Martinsried, Germany) before they were treated with archazolid for 24 h. 1 μg/ ml Hoechst 33342 (Sigma-Aldrich, Munich, Germany) was used to visualize the nuclei and 50 nM LysoTracker Red DND-99 was used to visualize the acidic compartments which correspond to the lysosomes. Both dyes were incubated for 10 min at 37˚C before acquisition of single images by a Leica DMI6000 B fluorescence microscope (Leica Microsystems, Wetzlar, Germany).
HUVECs were seeded in collagen G-coated 24-well plates and grown to confluence for two days before treatment. The cells were incubated with indicated concentrations of archazolid for 24 h. Untreated MDA-MB-231 or PC-3 cells were labeled with CellTracker Green CMFDA Dye (5 μM in serum-free DMEM, 37˚C) for 30 min before 100,000 cells per well were added to HUVECs and were allowed to adhere for various time points at 37˚C. Non-adherent tumor cells were washed off three times with PBS containing Ca 2+ and Mg 2+ . Tumor cell adhesion was determined by fluorescence measurements with an Infinite F200 pro microplate reader (Tecan) at 485 nm (excitation) and 535 nm (emission).
For blocking the integrin β1 subunit on MDA-MB-231 or PC-3 cells, CellTracker Greenlabeled MDA-MB-231 or PC-3 cells were incubated with an anti-integrin β1 antibody (P5D2, ab24693, Abcam, Cambridge, United Kingdom) at a concentration of 1 μg antibody per one million cells in 1 ml DMEM. Before adding to archazolid-treated HUVECs, MDA-MB-231 or PC-3 cells were washed once with DMEM. For blocking the integrin β1 subunit on HUVECs, the cells were incubated with the anti-integrin β1 antibody (0.1 μg/well in ECGM). HUVECs were washed once with ECGM before untreated MDA-MB-231 or PC-3 cells were added to HUVECs.
For the adhesion of MDA-MB-231 or PC-3 cells onto extracellular matrix (ECM) components 24-well plates were coated with collagen G (10 μg/ml in PBS), human plasma fibronectin (10 μg/ml PBS) or laminin-411 (10 μg/ml in Dulbecco's PBS [DPBS] containing Ca 2+ and Mg 2+ ) at 4˚C overnight. The adhesion of MDA-MB-231 and PC-3 cells onto these three most prominent ECM components was carried out as described above (10 min adhesion at 37˚C).
HUVECs were grown on a porous filter membrane (Transwell insert, polycarbonate membrane, 8 μm pores; Corning, New York, USA) for 48 h and were treated as indicated. Untreated MDA-MB-231 cells were labeled with CellTracker Green CMFDA Dye (as described in the section cell adhesion assay) and resuspended in medium 199 (PAN-Biotech) containing 0.1% BSA. HUVECs were washed twice with medium 199 containing 0.1% BSA before MDA-MB-231 cells were allowed to transmigrate through the endothelial monolayer for 24 h. Medium 199 containing 0.1% BSA was used as negative control and medium 199 containing 20% FCS was used as chemoattractant for transmigration in the lower compartment. Non-migrated cells remaining in the upper compartment were carefully removed using a cotton swab. Transmigrated cells were lysed in radioimmunoprecipitation assay (RIPA) buffer and transmigration was quantified by measuring the fluorescence signal at 485 nm (excitation) and 535 nm (emission).
HUVECs were grown to confluence on 6-well plates before they were treated with archazolid for 12 h. The cells were induced to upregulate the gene expression of cell adhesion molecules by TNFα. RNA was isolated using the RNeasy Mini Kit from Qiagen (Hilden, Germany) according to the manufacturer's protocol. On-column DNase digestion was performed to remove genomic DNA. RNA was transcribed into cDNA by Superscript II (Life Technologies, Thermo Fisher Scientific). qPCR experiments were performed using a StepOnePlus System (Applied Biosystems, Thermo Fisher Scientific) and data was analyzed by the StepOne and Ste-pOnePlus Software v2.3. Power SYBR Green PCR Master Mix (Life Technologies) and the comparative C T quantitation method (2 -ΔΔCT ) were used.
HUVECs were grown to confluence on 12-well plates before they were treated with archazolid for 24 h. Cells were treated with TNFα for 24 h to induce the expression of cell adhesion molecules. Subsequently, the cells were detached with HyClone HyQTase (GE Healthcare, Freiburg, Germany). In the case of ICAM-1 the detached cells were fixed with 4% formaldehyde (Polysciences, Hirschberg an der Bergstraße, Germany) in PBS for 10 min and washed once with PBS before incubating with the fluorescein isothiocyanate (FITC)-labeled anti-human CD54 (mouse, ICAM-1) antibody (MCA1615F, Biozol, Eching, Germany) at room temperature for 45 min. For all other proteins, the cells were not fixed and washed once with PBS before incubating with the antibodies phycoerythrin (PE)-labeled anti-human CD106 (mouse, VCAM-1), PE-labeled anti-human CD62E (mouse, E-selectin) and PE-labeled anti-human CD325 (mouse, N-cadherin) from Becton Dickinson on ice for 45 min. These antibodies were diluted in PBS containing 0.2% BSA. The surface expression of cell adhesion molecules was measured by flow cytometry (FACSVerse, Becton Dickinson, Heidelberg, Germany).
To stain the surface collagen on HUVECs, cells were incubated with an anti-human collagen antibody (rabbit, 1:40, ab36064, Abcam) on ice for 30 min. The staining procedure was performed on ice to ensure that surface proteins or antibodies are not endocytosed. The cells were washed once with PBS containing Ca 2+ and Mg 2+ before they were fixed with Roti-Histofix (Carl Roth). Alexa Fluor 488-conjugated anti-rabbit antibody (goat, 1:400, A11008, Life Technologies) was used as secondary antibody and Hoechst 33342 (1 μg/ml, Sigma-Aldrich) was used to visualize nuclei.
Confluent HUVECs in 6-well plates were treated as indicated. Cells were washed with ice-cold PBS and lysed with RIPA buffer supplemented with protease inhibitors (Complete Mini EDTA-free; Roche, Mannheim, Germany), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride, β-glycerophosphate, sodium pyrophosphate and H 2 O 2 . Protein determination was performed using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Equal amounts of proteins (10-20 μg) were separated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE; Bio-Rad Laboratories, Munich, Germany). Separated proteins were transferred onto polyvinylidene difluoride membranes by tank blotting (Bio-Rad Laboratories) for immunodetection. Membranes were blocked with 5% boltinggrade milk powder (Carl Roth) in TBS containing 0.1% Tween 20 (Sigma-Aldrich). The following antibodies were used: mouse anti-human cathepsin B antibody (IM27L, Merck) (1:500), mouse anti-β-actin-peroxidase antibody (A3854, Sigma-Aldrich) (1:100,000) and antimouse IgG horse radish peroxidase (HRP)-linked antibody (7076, Cell Signaling, Frankfurt, Germany) (1:5,000). ImageJ version 1.49m was used for densitometric analysis.
Cathepsin B activity assay was performed as described in the publication by Kubisch et al. [28] . Confluent HUVECs or HMEC-1 seeded in 6-well plates were treated as indicated. Cells were washed with PBS and lysed with the non-denaturating M-PER mammalian protein extraction reagent (78501, Thermo Fisher Scientific) supplemented with protease inhibitors (Complete Mini EDTA-free, Roche), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride. The fluorogenic cathepsin B substrate Z-Arg-Arg-7-amido-4-methylcoumarin hydrochloride (C5429, Sigma-Aldrich) was added to 30 μg of the cell lysate diluted in assay buffer supplemented with 2 mM L-cysteine (C7880, Sigma-Aldrich) and incubated for 30 min at 40˚C. Fluorescence was measured at 348 nm (excitation) and 440 nm (emission) with a microplate reader (Varioskan Flash, Thermo Fisher Scientific). The intensity of the fluorescence signal corresponded to the cathepsin B enzyme activity. For background subtraction the cathepsin B inhibitor CA-074Me (Enzo Life Sciences, Lörrach, Germany) was added to an additional reaction.
The HUVEC Nucleofector Kit (Lonza, Cologne, Germany) was used to transfect HUVECs. The transfection was performed according to the manufacturer's protocol using 2.5 μg plasmid DNA for 500,000 cells (Nucleofector 2b Device, Lonza). 48 h after transfection the cells were treated for further experiments. The addgene plasmid #11249 hCathepsin B was kindly provided by Hyeryun Choe [29] . hCathepsin B was digested with PmeI and XbaI and the linear DNA fragment not corresponding to the human CTSB gene was religated to generate the empty pcDNA3.1 (-) delta MCS plasmid that was used for control transfections. The original backbone of hCathepsin B is the pcDNA3.1 (-) from Thermo Fisher Scientific. The control vector pcDNA3.1 (-) delta MCS used for our transfections was cloned on the basis of hCathepsin B and is therefore lacking almost the whole part of the multiple cloning site of the pcDNA3.1 (-).
Statistical analyses were performed using GraphPad Prism 5.0 (San Diego, USA). One-way ANOVA followed by Tukey's post-hoc test or unpaired t-test was used for the evaluation of a minimum of three independent experiments. The numbers of independently performed experiments (n) are stated in the corresponding figure legends. p 0.05 was considered as statistically significant. Data are expressed as mean ± standard error of the mean (SEM).
Since the v-ATPase inhibitor archazolid has never been used for studies in endothelial cells, we first performed cytotoxicity assays. We treated confluent HUVECs with up to 1 nM archazolid for 24 and 48 h and observed that this treatment has neither an influence on the metabolic activity nor on the release of LDH after 24 h (Fig 1A and 1B, left panels) . The metabolic activity and the release of LDH were only slightly affected by the highest concentration of archazolid after 48 h (Fig 1A and 1B, right panels) . Consequently, the following experiments were all carried out after 24 h (or less) of archazolid treatment in order to exclude any cytotoxic effects of archazolid within our experimental settings.
Microscopic analysis revealed that also the integrity of the endothelial monolayer was not affected by archazolid, but the cells showed a slightly different morphology (Fig 2A) : Archazolid-treated cells were swollen compared to control cells, which was not unexpected, as vacuolation of the endoplasmic reticulum (ER) has been described for other cell types and is typical for v-ATPase inhibitors [11, 16, 24, 30] . This effect was obvious both in subconfluent and in confluent cells (Fig 2A) . Inhibition of v-ATPase prevents the acidification of lysosomes [1, 31] . Using the cell-permeable dye LysoTracker Red DND-99, it is possible to label the acidic lysosomes in living cells. Thus, this dye can serve as an indicator of v-ATPase inhibition. To proof that archazolid is also functionally active as a v-ATPase inhibitor in HUVECs, cells were treated with 1 nM archazolid before they were incubated with LysoTracker Red DND-99 and Hoechst 33342. As shown in Fig 2B, the red vesicular staining corresponding to acidified lysosomes in control cells disappeared completely after treatment with archazolid. In summary, archazolid treatment for 24 h was not cytotoxic to quiescent HUVECs, but inhibited the functionality of the v-ATPase.
We analyzed the adhesion of MDA-MB-231 cells onto HUVECs. Confluent HUVECs were treated with up to 1 nM archazolid for 24 h. Untreated MDA-MB-231 cells were labeled with Cell-Tracker Green CMFDA Dye. Interestingly, v-ATPase inhibition strongly increased the attachment of the metastatic breast carcinoma cell line MDA-MB-231 onto HUVECs after 10 and 120 min of adhesion (Fig 3A and 3B) . We also investigated the influence of archazolid on the transendothelial migration of MDA-MB-231 cells. HUVECs seeded in a Boyden chamber were treated with 1 nM archazolid for 24 h. CellTracker Green-labeled MDA-MB-231 cells (not treated with archazolid) were allowed to transmigrate through the endothelial monolayer for 24 h. As shown in Fig 3C, archazolid significantly decreased the transendothelial migration of MDA-MB-231 cells.
The influence of archazolid on tumor cell adhesion was not only studied in HUVECs, which represent macrovascular endothelial cells, but also in microvascular HMEC-1 cells. Moreover, besides the breast cancer cell line MDA-MB-231, also PC-3 prostate cancer cells were used as a second metastatic cancer cell line. Archazolid treatment of endothelial cells increased the attachment of MDA-MB-231 cells onto the HMEC-1 monolayer after 120 min of adhesion ( Fig 4A) and increased the attachment of PC-3 cells onto the HUVEC monolayer after 30 and 60 min of adhesion (Fig 4B) . Of note, the adhesion of non-metastatic Jurkat cells, an acute T cell leukemia cell line, remained unaffected after treatment of HUVECs with archazolid (S1A Fig). Taken together, archazolid treatment augmented the adhesive properties of both micro-and macrovascular endothelial cells for metastatic tumor cells, but not for non-metastatic ones. Of note, cancer cell adhesion onto archazolid-activated endothelial cells increased with the time of adhesion.
The adhesion of tumor cells onto the endothelium is in principle similar to that of leukocytes, but slightly differs in the molecules that mediate the adhesion process. Ligands for the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin were found to be expressed on tumor cells and to mediate tumor-endothelial cell interaction [21] . Inhibition of the v-ATPase might affect the expression of endothelial cell adhesion molecules on mRNA or protein levels. To determine the mRNA expression of ICAM-1, VCAM-1, E-selectin and Ncadherin, HUVECs were treated with archazolid for 12 h. TNFα is known to upregulate the expression of ICAM-1, VCAM-1 and E-selectin [32] and, thus, served as positive control. Quantitative real-time PCR showed that v-ATPase inhibition in HUVECs did not alter the mRNA levels of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5A) . The protein expression of these adhesion molecules on the surface of endothelial cells was analyzed by flow cytometry. Archazolid (1 nM, 24 h) did not affect the cell surface expression of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5B) .
Besides ICAM-1, VCAM-1, E-selectin and N-cadherin, also integrins are able to mediate the process of cell adhesion [33] [34] [35] . Since none of the cell adhesion molecules expressed on HUVECs were regulated upon archazolid treatment, we considered integrins as potential interaction partners. Within this protein family β1-integrins have been reported to mediate tumor cell adhesion onto quiescent endothelial cells [25] . In order to elucidate the role of β1-integrins for the archazolid-induced tumor cell adhesion, the integrin β1-subunit was blocked either on MDA-MB-231 cells, PC-3 cells or on HUVECs. (Of note, as in all experiments throughout this study, only endothelial cells were treated with archazolid.) After blocking β1-integrins on MDA-MB-231 or PC-3 cells, the archazolid-induced tumor cell adhesion was reduced almost to control level (Fig 6A and 6B , left panels), whereas blocking of β1-integrins on HUVECs had no significant effect on the increase of tumor cell adhesion by v-ATPase inhibition (Fig 6A and 6B , right panels).
Depending on their α subunit, β1-integrins have a variety of ligands including extracellular matrix (ECM) components such as collagen, fibronectin and laminin [35] . Therefore, we hypothesized that archazolid treatment of endothelial cells might lead to an upregulation of these components. MDA-MB-231 and PC-3 cells were allowed to adhere onto plastic that was coated with these ECM components. This cell adhesion assay revealed that MDA-MB-231 as well as PC-3 cells favor the interaction with the ECM component collagen, as the adhesion onto collagen is much higher than onto the uncoated plastic control (Fig 7A) . MDA-MB-231 and PC-3 cells also adhered to fibronectin-coated plastic, but to a much lesser extent compared to the collagen coating. Therefore, we focused on the interaction between these two tumor cell lines and collagen. Blocking of the integrin β1 subunit on MDA-MB-231 and PC-3 cells clearly abolished the interaction with collagen (Fig 7B) , indicating that the attachment of these tumor cells to collagen is mediated by β1-integrins.
Since collagen is the major ECM component MDA-MB-231 and PC-3 cells interact with, the next step was to prove whether v-ATPase inhibition influences the amount of collagen expressed by HUVECs as extracellular matrix. To detect collagen on the endothelial surface, archazolid-treated HUVECs were labeled with an antibody against collagen type I-IV on ice to prevent endocytosis and to ensure that the antibody does not bind to intracellular collagen. Interestingly, archazolid increased the amount of surface collagen on HUVECs by about 50% (Fig 7C) . Control stainings were performed using an antibody against the cytosolic p65 subunit of the transcription factor nuclear factor κB (NFκB) to show that intracellular proteins were not detected by this staining method (S2 Fig) .
It was reported that v-ATPase inhibition by archazolid impairs the activity of cathepsin B [28, 36] , a lysosomal enzyme that degrades extracellular matrix components including collagen [37] [38] [39] [40] [41] . As collagen is degraded by cathepsin B and the activation of cathepsin B depends on v-ATPase activity [28, [36] [37] [38] 42] , we suggested that an accumulation of collagen on the surface of endothelial cells might be a consequence of an impaired functionality of cathepsin B. Therefore, an enzyme activity assay based on the proteolysis of a fluorogenic cathepsin B substrate was performed. In archazolid-treated HUVECs and HMEC-1 the activity of cathepsin B was induce both the mRNA (1 ng/ml TNF) and the cell surface expression (10 ng/ml TNF) of ICAM-1, VCAM-1, E-selectin and Ncadherin.
https://doi.org/10.1371/journal.pone.0203053.g005 Inhibition of endothelial vATPase increases tumor cell adhesion to endothelial cells strongly decreased by approximately 50% compared to control cells at an archazolid concentration of 1 nM (Fig 8A) . In line with this result, western blot analysis showed that archazolid (1 nM) reduces the protein expression of the mature, active form of cathepsin B to less than 40% of the control in HUVECs (Fig 8B) . To proof whether the archazolid-induced tumor cell adhesion is a consequence of the decreased amount of cathepsin B, HUVECs were transfected with a plasmid coding for human cathepsin B or with the empty vector as control. After 48 h, the transfected cells were treated with 1 nM archazolid. The level of cathepsin B after transfection and treatment was assessed by western blot analysis (Fig 9A) . Overexpression of cathepsin B strongly diminished both the basal and the archazolid-induced adhesion of MDA-MB-231 cells (Fig 9B) .
Targeting the proton pump v-ATPase for cancer therapy has gained great interest since its inhibition was reported to reduce the invasiveness of cancer cells and, most importantly, also metastasis [8, 9] . Thus, intensive research related to v-ATPases was done in cancer cells, whereas there are only few studies investigating v-ATPases in endothelial cells indicating a role in migration, proliferation and possibly angiogenesis [22] [23] [24] . In the present study we used the myxobacterial natural product archazolid to investigate the consequences of v-ATPase inhibition in the endothelium on tumor-endothelial cell interactions.
For the first time, we were able to show a link between v-ATPase and the adhesion and transmigration properties of the endothelium. Inhibition of the v-ATPase in endothelial cells by archazolid significantly increased the adhesion of metastatic cancer cells and decreased the transendothelial migration of cancer cells which was attributed to augmented collagen levels on the surface on archazolid-treated endothelial cells. Of note, adhesion of the non-metastatic Jurkat cell line onto archazolid-treated endothelial cells remained unaffected. The archazolidinduced adhesion of tumor cells was independent from the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin, as their expression was not regulated by the compound. However, we found that the archazolid-induced tumor cell adhesion was mediated by β1-integrins expressed on MDA-MB-231 breast cancer and PC-3 prostate cancer cells as blocking of the integrin β1 subunit on these tumor cells reversed the pro-adhesive effect of archazolid. In adhesion experiments on plastic coated with extracellular matrix components, we could show that MDA-MB-231 and PC-3 cells clearly favored the interaction with collagen, whereas the adhesion of non-metastatic Jurkat cells was largely independent from extracellular matrix proteins (S1B Fig). The different adhesion properties of metastatic cancer cells and Jurkat cells might be a result of the distinct integrin expression pattern of each cell line. MDA-MB-231 and PC-3 cells express α2β1-and α3β1-integrins, which represent collagen receptors [43, 44] , while Jurkat cells express α4β1-integrins but lack α2β1-, α3β1-integrins [44] . α4β1integrins are receptors for VCAM-1 and fibronectin [35] and it has been shown that Jurkat cells interact with human endothelial cells that express VCAM-1 after cytokine treatment or cells transfected with VCAM-1 [45] . Our results are in line with previous studies showing that α2β1-and α3β1-integrin expressing MDA-MB-231 and PC-3 cells were able to rapidly attach to collagen in the cortical bone matrix. In contrast, Jurkat cells were not able to adhere [44] and might preferentially interact with cell adhesion molecules rather than with ECM proteins. α2β1-and α3β1-integrins can additionally act as laminin receptors [46] and at least α3β1integrins recognize fibronectin [46, 47] . Though expressing receptors for fibronectin and laminin, MDA-MB-231 and PC-3 cells adhered to fibronectin to a much lesser extent and did not adhere to laminin, probably due to lower affinities to these extracellular matrix components.
Importantly, v-ATPase inhibition by archazolid increased the surface levels of the extracellular matrix component collagen, which might explain that the increase of MDA-MB-231 and PC-3 cells onto archazolid-treated HUVECs is independent of endothelial cell adhesion molecules. By performing a live cell proteolysis assay, Cavallo-Medved et al. demonstrated ECM degradation, in particular of gelatin and collagen IV, in association with active cathepsin B in caveolae of endothelial cells during tube formation [40] . In addition, recent studies reported that v-ATPase inhibition impairs the activity of cathepsin B in cancer cells [28, 36] . Therefore, we suggested that the accumulation of collagen on the endothelial surface might be a consequence of impaired cathepsin B activity or expression in endothelial cells. In fact, we confirmed the impairment of cathepsin B activity by archazolid as the expression levels of the mature active form of this enzyme was strongly reduced. Cathepsin B is synthesized as preprocathepsin B on membrane-bound ribosomes. Following transport to the Golgi apparatus, the preprocathepsin B is glycosylated with mannose-containing oligosaccharides. The targeting of procathepsin B to lysosomes is mannose-6-phosphate receptor-dependent and its dissociation from the receptor as well as its proteolytic processing into mature cathepsin B requires acidification of the compartment [48] . In cancer cells v-ATPase inhibition by archazolid impaired the mannose-6-phosphate receptor-mediated trafficking from the trans-Golgi network to prelysosomal compartments resulting in a decrease of active lysosomal proteases like cathepsin B [28] . We assumed that the archazolid-induced decrease in cathepsin B activity and expression was based on the same mechanism. Interestingly, overexpression of cathepsin B attenuated the archazolid-induced adhesion of breast cancer cells onto endothelial cells, indicating that the adhesion negatively correlates with the expression of cathepsin B.
As cathepsin B can also degrade other extracellular matrix components such as fibronectin and laminin [38, 49] , v-ATPase inhibition could lead to an accumulation of these proteins and an increased adhesion of cells expressing fibronectin or laminin receptors. However, we did not focus on these ECM components since they were not relevant for the adhesion of MDA-MB-231 and PC-3 cells. These cells predominantly adhered to collagen, while the adhesion of Jurkat cells is mostly independent from the ECM proteins collagen, fibronectin or laminin (S1B Fig). Interestingly [50] . In hepatic cancer cells, archazolid reduces Ras/Raf/MEK/ERK signaling by altering the membrane composition and fluidity [51] . We assume that archazolid affects endothelial cells in a similar way leading to inhibition of Ras signaling and, therefore, reduced transendothelial migration of MDA-MB-231 cells.
Taken together, our study shows that archazolid reduces the activity and expression of cathepsin B in endothelial cells. As a result, the amount of collagen on the surface of endothelial cells was significantly upregulated, which finally resulted in an increased adhesion of the β1-integrin-expressing metastatic cancer cell lines MDA-MB-231 and PC-3 onto archazolidtreated endothelial cells, whereas the adhesion of non-metastatic Jurkat cells was unaffected. This study shows that the v-ATPase plays an important role in regulating the adhesion of cells expressing receptors for extracellular matrix components. Archazolid represents a promising tool to elucidate the role of v-ATPase in endothelial cells. Moreover, we for the first time linked the function of v-ATPase to the adhesion and transmigration of tumor cells onto endothelial cells as well as to the remodeling of the extracellular matrix on the surface of endothelial cells. The fact that the adhesion of metastatic tumor cells onto endothelial cells is increased while their transendothelial migration is reduced upon inhibition of endothelial v-ATPase by archazolid further supports the view of archazolid as a potential anti-metastatic compound. | How many complexes are within v-ATPase? | {
"answer_start": [
2364
],
"text": [
"two"
]
} | false |
5,304 | The vacuolar-type ATPase inhibitor archazolid increases tumor cell adhesion to endothelial cells by accumulating extracellular collagen
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133348/
SHA: f1b81916fac1ca3d50dde774df2e1bb26bf0fb39
Authors: Luong, Betty; Schwenk, Rebecca; Bräutigam, Jacqueline; Müller, Rolf; Menche, Dirk; Bischoff, Iris; Fürst, Robert
Date: 2018-09-11
DOI: 10.1371/journal.pone.0203053
License: cc-by
Abstract: The vacuolar-type H(+)-ATPase (v-ATPase) is the major proton pump that acidifies intracellular compartments of eukaryotic cells. Since the inhibition of v-ATPase resulted in anti-tumor and anti-metastatic effects in different tumor models, this enzyme has emerged as promising strategy against cancer. Here, we used the well-established v-ATPase inhibitor archazolid, a natural product first isolated from the myxobacterium Archangium gephyra, to study the consequences of v-ATPase inhibition in endothelial cells (ECs), in particular on the interaction between ECs and cancer cells, which has been neglected so far. Human endothelial cells treated with archazolid showed an increased adhesion of tumor cells, whereas the transendothelial migration of tumor cells was reduced. The adhesion process was independent from the EC adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin. Instead, the adhesion was mediated by β1-integrins expressed on tumor cells, as blocking of the integrin β1 subunit reversed this process. Tumor cells preferentially adhered to the β1-integrin ligand collagen and archazolid led to an increase in the amount of collagen on the surface of ECs. The accumulation of collagen was accompanied by a strong decrease of the expression and activity of the protease cathepsin B. Overexpression of cathepsin B in ECs prevented the capability of archazolid to increase the adhesion of tumor cells onto ECs. Our study demonstrates that the inhibition of v-ATPase by archazolid induces a pro-adhesive phenotype in endothelial cells that promotes their interaction with cancer cells, whereas the transmigration of tumor cells was reduced. These findings further support archazolid as a promising anti-metastatic compound.
Text: The vacuolar-type H + -ATPase (v-ATPase) is the major proton pump responsible for acidification of intracellular compartments in eukaryotic cells [1] . The enzyme consists of two multi-subunit complexes, the soluble V 1 transmembrane V o subcomplex required for the proton transport across membranes [1, 2] . In most cell types v-ATPases are only expressed in the endomembrane system to regulate and maintain the acidic pH of intracellular compartments such as lysosomes, endosomes, the Golgi apparatus, secretory granules and coated vesicles [3] . The function of v-ATPases is essential for cellular processes such as vesicular trafficking, receptor-mediated endocytosis and protein degradation and processing. In specialized cell types including osteoclasts and renal epithelial cells, v-ATPases can also be expressed on the plasma membrane, where they pump protons into the extracellular space [2] [3] [4] . In cancer cells v-ATPases are expressed on the plasma membrane in order to eliminate toxic cytosolic H + . Most importantly, v-ATPases contribute to the acidic tumor microenvironment, which leads to the activation of proteases, thus facilitating tumor cell migration, invasion and angiogenesis [5] [6] [7] . Since the inhibition of v-ATPase was shown to reduce the invasiveness of cancer cells and metastasis formation [8, 9] , this enzyme has emerged as a promising drug target in the recent years. Archazolid A and B are highly potent and specific inhibitors of v-ATPases [10] . They were first isolated from the myxobacterium Archangium gephyra [11] . These compounds inhibit v-ATPase at low nanomolar concentrations [10, 12] by binding to the subunit c of the V o complex. As their biological activity is comparable to the v-ATPase inhibitors bafilomycin and concanamycin [10, 11] , archazolids are natural compounds of high interest that can be used both as a tool to study the consequences of v-ATPase inhibition and as a lead for drug development. Archazolids can be either produced by fermentation [11] or by total synthesis [13, 14] .
In the field of cancer research several studies reported on interesting pharmacological effects of archazolid: It reduced the migration of different invasive tumor cells in vitro and cancer cell metastasis in vivo in a breast tumor mouse model [15] . Furthermore, archazolid activated pathways of cellular stress response and apoptosis in highly invasive tumor cells [16] . In classically activated macrophages, archazolid selectively induced the generation of tumor necrosis factor α (TNFα), which may indirectly promote tumor suppression [17] .
Up to now, the role of v-ATPases in endothelial cells has only rarely been investigated. The endothelium plays a crucial role in the pathogenesis and progression of cancer: The metastatic cascade includes local angiogenesis at the site of the primary tumor and adhesion of tumor cells at the site of metastasis [18] . Angiogenesis, the development of new blood vessels out of existing ones, depends on the proliferation, migration and differentiation of endothelial cells [19] . This process ensures the nutrient supply of the tumor and its growth [20] . Circulating cancer cells can adhere to the endothelium at distant sites. This adhesive interaction is mediated by receptors and corresponding ligands expressed on tumor and endothelial cells [18, 21] . V-ATPases have been reported to regulate intracellular pH and cell migration in microvascular endothelial cells [22, 23] . A recent study showed that the inhibition of v-ATPase by concanamycin prevented proliferation, reduced migration and impaired angiogenesis-related signaling in endothelial cells [24] . So far, there are no investigations on the role of endothelial v-ATPases for the process of tumor cell adhesion onto the endothelium. Thus, we were interested in the consequences of the inhibition of endothelial v-ATPase by archazolid on the interaction between endothelial and cancer cells. Various cell adhesion molecules on the endothelium, such as intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein (VCAM-1), E-selectin or N-cadherin [21] as well as integrins expressed on cancer cells have been reported to mediate cell adhesion of cancer cells onto endothelial cells [25] [26] [27] . Accordingly, we focused on these cell adhesion molecules and integrins. For the first time, our study revealed a link between the function of v-ATPases and the adhesion and transmigration properties of endothelial cells.
CellTiter-Blue Cell Viability Assay (Promega, Mannheim, Germany) was performed according to the manufacturer's protocol for determining the cell viability of cells after treatment with archazolid. This assay is based on the ability of metabolically active cells to reduce resazurin which results in fluorescent resorufin. The CellTiter-Blue Reagent was added to the cells 4 h before the endpoint of treatment. Fluorescence was measured with an Infinite F200 pro microplate reader (Tecan, Männedorf, Switzerland) at 560 nm (excitation) and 590 nm (emission).
CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega) was performed according to the manufacturer's instructions for determining the lactate dehydrogenase (LDH) release after treatment with archazolid. Lysis buffer was added to untreated cells 45 min before the end of treatment to induce the release of this enzyme. LDH is a cytosolic enzyme that is released by leaky cells. Released LDH catalyzes the enzymatic conversion of lactate to pyruvate which provides NADH for the conversion of iodonitrotetrazolium violet into a red formazan product in the presence of diaphorase. The absorbance was measured with a Varioskan Flash microplate reader (Thermo Fisher Scientific) at 490 nm.
LysoTracker Red DND-99 (Life Technologies, Thermo Fisher Scientific) is a dye to measure pH values in viable cells. HUVECs were cultured to confluence on collagen G-coated μ-slides (80826, ibidi, Martinsried, Germany) before they were treated with archazolid for 24 h. 1 μg/ ml Hoechst 33342 (Sigma-Aldrich, Munich, Germany) was used to visualize the nuclei and 50 nM LysoTracker Red DND-99 was used to visualize the acidic compartments which correspond to the lysosomes. Both dyes were incubated for 10 min at 37˚C before acquisition of single images by a Leica DMI6000 B fluorescence microscope (Leica Microsystems, Wetzlar, Germany).
HUVECs were seeded in collagen G-coated 24-well plates and grown to confluence for two days before treatment. The cells were incubated with indicated concentrations of archazolid for 24 h. Untreated MDA-MB-231 or PC-3 cells were labeled with CellTracker Green CMFDA Dye (5 μM in serum-free DMEM, 37˚C) for 30 min before 100,000 cells per well were added to HUVECs and were allowed to adhere for various time points at 37˚C. Non-adherent tumor cells were washed off three times with PBS containing Ca 2+ and Mg 2+ . Tumor cell adhesion was determined by fluorescence measurements with an Infinite F200 pro microplate reader (Tecan) at 485 nm (excitation) and 535 nm (emission).
For blocking the integrin β1 subunit on MDA-MB-231 or PC-3 cells, CellTracker Greenlabeled MDA-MB-231 or PC-3 cells were incubated with an anti-integrin β1 antibody (P5D2, ab24693, Abcam, Cambridge, United Kingdom) at a concentration of 1 μg antibody per one million cells in 1 ml DMEM. Before adding to archazolid-treated HUVECs, MDA-MB-231 or PC-3 cells were washed once with DMEM. For blocking the integrin β1 subunit on HUVECs, the cells were incubated with the anti-integrin β1 antibody (0.1 μg/well in ECGM). HUVECs were washed once with ECGM before untreated MDA-MB-231 or PC-3 cells were added to HUVECs.
For the adhesion of MDA-MB-231 or PC-3 cells onto extracellular matrix (ECM) components 24-well plates were coated with collagen G (10 μg/ml in PBS), human plasma fibronectin (10 μg/ml PBS) or laminin-411 (10 μg/ml in Dulbecco's PBS [DPBS] containing Ca 2+ and Mg 2+ ) at 4˚C overnight. The adhesion of MDA-MB-231 and PC-3 cells onto these three most prominent ECM components was carried out as described above (10 min adhesion at 37˚C).
HUVECs were grown on a porous filter membrane (Transwell insert, polycarbonate membrane, 8 μm pores; Corning, New York, USA) for 48 h and were treated as indicated. Untreated MDA-MB-231 cells were labeled with CellTracker Green CMFDA Dye (as described in the section cell adhesion assay) and resuspended in medium 199 (PAN-Biotech) containing 0.1% BSA. HUVECs were washed twice with medium 199 containing 0.1% BSA before MDA-MB-231 cells were allowed to transmigrate through the endothelial monolayer for 24 h. Medium 199 containing 0.1% BSA was used as negative control and medium 199 containing 20% FCS was used as chemoattractant for transmigration in the lower compartment. Non-migrated cells remaining in the upper compartment were carefully removed using a cotton swab. Transmigrated cells were lysed in radioimmunoprecipitation assay (RIPA) buffer and transmigration was quantified by measuring the fluorescence signal at 485 nm (excitation) and 535 nm (emission).
HUVECs were grown to confluence on 6-well plates before they were treated with archazolid for 12 h. The cells were induced to upregulate the gene expression of cell adhesion molecules by TNFα. RNA was isolated using the RNeasy Mini Kit from Qiagen (Hilden, Germany) according to the manufacturer's protocol. On-column DNase digestion was performed to remove genomic DNA. RNA was transcribed into cDNA by Superscript II (Life Technologies, Thermo Fisher Scientific). qPCR experiments were performed using a StepOnePlus System (Applied Biosystems, Thermo Fisher Scientific) and data was analyzed by the StepOne and Ste-pOnePlus Software v2.3. Power SYBR Green PCR Master Mix (Life Technologies) and the comparative C T quantitation method (2 -ΔΔCT ) were used.
HUVECs were grown to confluence on 12-well plates before they were treated with archazolid for 24 h. Cells were treated with TNFα for 24 h to induce the expression of cell adhesion molecules. Subsequently, the cells were detached with HyClone HyQTase (GE Healthcare, Freiburg, Germany). In the case of ICAM-1 the detached cells were fixed with 4% formaldehyde (Polysciences, Hirschberg an der Bergstraße, Germany) in PBS for 10 min and washed once with PBS before incubating with the fluorescein isothiocyanate (FITC)-labeled anti-human CD54 (mouse, ICAM-1) antibody (MCA1615F, Biozol, Eching, Germany) at room temperature for 45 min. For all other proteins, the cells were not fixed and washed once with PBS before incubating with the antibodies phycoerythrin (PE)-labeled anti-human CD106 (mouse, VCAM-1), PE-labeled anti-human CD62E (mouse, E-selectin) and PE-labeled anti-human CD325 (mouse, N-cadherin) from Becton Dickinson on ice for 45 min. These antibodies were diluted in PBS containing 0.2% BSA. The surface expression of cell adhesion molecules was measured by flow cytometry (FACSVerse, Becton Dickinson, Heidelberg, Germany).
To stain the surface collagen on HUVECs, cells were incubated with an anti-human collagen antibody (rabbit, 1:40, ab36064, Abcam) on ice for 30 min. The staining procedure was performed on ice to ensure that surface proteins or antibodies are not endocytosed. The cells were washed once with PBS containing Ca 2+ and Mg 2+ before they were fixed with Roti-Histofix (Carl Roth). Alexa Fluor 488-conjugated anti-rabbit antibody (goat, 1:400, A11008, Life Technologies) was used as secondary antibody and Hoechst 33342 (1 μg/ml, Sigma-Aldrich) was used to visualize nuclei.
Confluent HUVECs in 6-well plates were treated as indicated. Cells were washed with ice-cold PBS and lysed with RIPA buffer supplemented with protease inhibitors (Complete Mini EDTA-free; Roche, Mannheim, Germany), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride, β-glycerophosphate, sodium pyrophosphate and H 2 O 2 . Protein determination was performed using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Equal amounts of proteins (10-20 μg) were separated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE; Bio-Rad Laboratories, Munich, Germany). Separated proteins were transferred onto polyvinylidene difluoride membranes by tank blotting (Bio-Rad Laboratories) for immunodetection. Membranes were blocked with 5% boltinggrade milk powder (Carl Roth) in TBS containing 0.1% Tween 20 (Sigma-Aldrich). The following antibodies were used: mouse anti-human cathepsin B antibody (IM27L, Merck) (1:500), mouse anti-β-actin-peroxidase antibody (A3854, Sigma-Aldrich) (1:100,000) and antimouse IgG horse radish peroxidase (HRP)-linked antibody (7076, Cell Signaling, Frankfurt, Germany) (1:5,000). ImageJ version 1.49m was used for densitometric analysis.
Cathepsin B activity assay was performed as described in the publication by Kubisch et al. [28] . Confluent HUVECs or HMEC-1 seeded in 6-well plates were treated as indicated. Cells were washed with PBS and lysed with the non-denaturating M-PER mammalian protein extraction reagent (78501, Thermo Fisher Scientific) supplemented with protease inhibitors (Complete Mini EDTA-free, Roche), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride. The fluorogenic cathepsin B substrate Z-Arg-Arg-7-amido-4-methylcoumarin hydrochloride (C5429, Sigma-Aldrich) was added to 30 μg of the cell lysate diluted in assay buffer supplemented with 2 mM L-cysteine (C7880, Sigma-Aldrich) and incubated for 30 min at 40˚C. Fluorescence was measured at 348 nm (excitation) and 440 nm (emission) with a microplate reader (Varioskan Flash, Thermo Fisher Scientific). The intensity of the fluorescence signal corresponded to the cathepsin B enzyme activity. For background subtraction the cathepsin B inhibitor CA-074Me (Enzo Life Sciences, Lörrach, Germany) was added to an additional reaction.
The HUVEC Nucleofector Kit (Lonza, Cologne, Germany) was used to transfect HUVECs. The transfection was performed according to the manufacturer's protocol using 2.5 μg plasmid DNA for 500,000 cells (Nucleofector 2b Device, Lonza). 48 h after transfection the cells were treated for further experiments. The addgene plasmid #11249 hCathepsin B was kindly provided by Hyeryun Choe [29] . hCathepsin B was digested with PmeI and XbaI and the linear DNA fragment not corresponding to the human CTSB gene was religated to generate the empty pcDNA3.1 (-) delta MCS plasmid that was used for control transfections. The original backbone of hCathepsin B is the pcDNA3.1 (-) from Thermo Fisher Scientific. The control vector pcDNA3.1 (-) delta MCS used for our transfections was cloned on the basis of hCathepsin B and is therefore lacking almost the whole part of the multiple cloning site of the pcDNA3.1 (-).
Statistical analyses were performed using GraphPad Prism 5.0 (San Diego, USA). One-way ANOVA followed by Tukey's post-hoc test or unpaired t-test was used for the evaluation of a minimum of three independent experiments. The numbers of independently performed experiments (n) are stated in the corresponding figure legends. p 0.05 was considered as statistically significant. Data are expressed as mean ± standard error of the mean (SEM).
Since the v-ATPase inhibitor archazolid has never been used for studies in endothelial cells, we first performed cytotoxicity assays. We treated confluent HUVECs with up to 1 nM archazolid for 24 and 48 h and observed that this treatment has neither an influence on the metabolic activity nor on the release of LDH after 24 h (Fig 1A and 1B, left panels) . The metabolic activity and the release of LDH were only slightly affected by the highest concentration of archazolid after 48 h (Fig 1A and 1B, right panels) . Consequently, the following experiments were all carried out after 24 h (or less) of archazolid treatment in order to exclude any cytotoxic effects of archazolid within our experimental settings.
Microscopic analysis revealed that also the integrity of the endothelial monolayer was not affected by archazolid, but the cells showed a slightly different morphology (Fig 2A) : Archazolid-treated cells were swollen compared to control cells, which was not unexpected, as vacuolation of the endoplasmic reticulum (ER) has been described for other cell types and is typical for v-ATPase inhibitors [11, 16, 24, 30] . This effect was obvious both in subconfluent and in confluent cells (Fig 2A) . Inhibition of v-ATPase prevents the acidification of lysosomes [1, 31] . Using the cell-permeable dye LysoTracker Red DND-99, it is possible to label the acidic lysosomes in living cells. Thus, this dye can serve as an indicator of v-ATPase inhibition. To proof that archazolid is also functionally active as a v-ATPase inhibitor in HUVECs, cells were treated with 1 nM archazolid before they were incubated with LysoTracker Red DND-99 and Hoechst 33342. As shown in Fig 2B, the red vesicular staining corresponding to acidified lysosomes in control cells disappeared completely after treatment with archazolid. In summary, archazolid treatment for 24 h was not cytotoxic to quiescent HUVECs, but inhibited the functionality of the v-ATPase.
We analyzed the adhesion of MDA-MB-231 cells onto HUVECs. Confluent HUVECs were treated with up to 1 nM archazolid for 24 h. Untreated MDA-MB-231 cells were labeled with Cell-Tracker Green CMFDA Dye. Interestingly, v-ATPase inhibition strongly increased the attachment of the metastatic breast carcinoma cell line MDA-MB-231 onto HUVECs after 10 and 120 min of adhesion (Fig 3A and 3B) . We also investigated the influence of archazolid on the transendothelial migration of MDA-MB-231 cells. HUVECs seeded in a Boyden chamber were treated with 1 nM archazolid for 24 h. CellTracker Green-labeled MDA-MB-231 cells (not treated with archazolid) were allowed to transmigrate through the endothelial monolayer for 24 h. As shown in Fig 3C, archazolid significantly decreased the transendothelial migration of MDA-MB-231 cells.
The influence of archazolid on tumor cell adhesion was not only studied in HUVECs, which represent macrovascular endothelial cells, but also in microvascular HMEC-1 cells. Moreover, besides the breast cancer cell line MDA-MB-231, also PC-3 prostate cancer cells were used as a second metastatic cancer cell line. Archazolid treatment of endothelial cells increased the attachment of MDA-MB-231 cells onto the HMEC-1 monolayer after 120 min of adhesion ( Fig 4A) and increased the attachment of PC-3 cells onto the HUVEC monolayer after 30 and 60 min of adhesion (Fig 4B) . Of note, the adhesion of non-metastatic Jurkat cells, an acute T cell leukemia cell line, remained unaffected after treatment of HUVECs with archazolid (S1A Fig). Taken together, archazolid treatment augmented the adhesive properties of both micro-and macrovascular endothelial cells for metastatic tumor cells, but not for non-metastatic ones. Of note, cancer cell adhesion onto archazolid-activated endothelial cells increased with the time of adhesion.
The adhesion of tumor cells onto the endothelium is in principle similar to that of leukocytes, but slightly differs in the molecules that mediate the adhesion process. Ligands for the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin were found to be expressed on tumor cells and to mediate tumor-endothelial cell interaction [21] . Inhibition of the v-ATPase might affect the expression of endothelial cell adhesion molecules on mRNA or protein levels. To determine the mRNA expression of ICAM-1, VCAM-1, E-selectin and Ncadherin, HUVECs were treated with archazolid for 12 h. TNFα is known to upregulate the expression of ICAM-1, VCAM-1 and E-selectin [32] and, thus, served as positive control. Quantitative real-time PCR showed that v-ATPase inhibition in HUVECs did not alter the mRNA levels of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5A) . The protein expression of these adhesion molecules on the surface of endothelial cells was analyzed by flow cytometry. Archazolid (1 nM, 24 h) did not affect the cell surface expression of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5B) .
Besides ICAM-1, VCAM-1, E-selectin and N-cadherin, also integrins are able to mediate the process of cell adhesion [33] [34] [35] . Since none of the cell adhesion molecules expressed on HUVECs were regulated upon archazolid treatment, we considered integrins as potential interaction partners. Within this protein family β1-integrins have been reported to mediate tumor cell adhesion onto quiescent endothelial cells [25] . In order to elucidate the role of β1-integrins for the archazolid-induced tumor cell adhesion, the integrin β1-subunit was blocked either on MDA-MB-231 cells, PC-3 cells or on HUVECs. (Of note, as in all experiments throughout this study, only endothelial cells were treated with archazolid.) After blocking β1-integrins on MDA-MB-231 or PC-3 cells, the archazolid-induced tumor cell adhesion was reduced almost to control level (Fig 6A and 6B , left panels), whereas blocking of β1-integrins on HUVECs had no significant effect on the increase of tumor cell adhesion by v-ATPase inhibition (Fig 6A and 6B , right panels).
Depending on their α subunit, β1-integrins have a variety of ligands including extracellular matrix (ECM) components such as collagen, fibronectin and laminin [35] . Therefore, we hypothesized that archazolid treatment of endothelial cells might lead to an upregulation of these components. MDA-MB-231 and PC-3 cells were allowed to adhere onto plastic that was coated with these ECM components. This cell adhesion assay revealed that MDA-MB-231 as well as PC-3 cells favor the interaction with the ECM component collagen, as the adhesion onto collagen is much higher than onto the uncoated plastic control (Fig 7A) . MDA-MB-231 and PC-3 cells also adhered to fibronectin-coated plastic, but to a much lesser extent compared to the collagen coating. Therefore, we focused on the interaction between these two tumor cell lines and collagen. Blocking of the integrin β1 subunit on MDA-MB-231 and PC-3 cells clearly abolished the interaction with collagen (Fig 7B) , indicating that the attachment of these tumor cells to collagen is mediated by β1-integrins.
Since collagen is the major ECM component MDA-MB-231 and PC-3 cells interact with, the next step was to prove whether v-ATPase inhibition influences the amount of collagen expressed by HUVECs as extracellular matrix. To detect collagen on the endothelial surface, archazolid-treated HUVECs were labeled with an antibody against collagen type I-IV on ice to prevent endocytosis and to ensure that the antibody does not bind to intracellular collagen. Interestingly, archazolid increased the amount of surface collagen on HUVECs by about 50% (Fig 7C) . Control stainings were performed using an antibody against the cytosolic p65 subunit of the transcription factor nuclear factor κB (NFκB) to show that intracellular proteins were not detected by this staining method (S2 Fig) .
It was reported that v-ATPase inhibition by archazolid impairs the activity of cathepsin B [28, 36] , a lysosomal enzyme that degrades extracellular matrix components including collagen [37] [38] [39] [40] [41] . As collagen is degraded by cathepsin B and the activation of cathepsin B depends on v-ATPase activity [28, [36] [37] [38] 42] , we suggested that an accumulation of collagen on the surface of endothelial cells might be a consequence of an impaired functionality of cathepsin B. Therefore, an enzyme activity assay based on the proteolysis of a fluorogenic cathepsin B substrate was performed. In archazolid-treated HUVECs and HMEC-1 the activity of cathepsin B was induce both the mRNA (1 ng/ml TNF) and the cell surface expression (10 ng/ml TNF) of ICAM-1, VCAM-1, E-selectin and Ncadherin.
https://doi.org/10.1371/journal.pone.0203053.g005 Inhibition of endothelial vATPase increases tumor cell adhesion to endothelial cells strongly decreased by approximately 50% compared to control cells at an archazolid concentration of 1 nM (Fig 8A) . In line with this result, western blot analysis showed that archazolid (1 nM) reduces the protein expression of the mature, active form of cathepsin B to less than 40% of the control in HUVECs (Fig 8B) . To proof whether the archazolid-induced tumor cell adhesion is a consequence of the decreased amount of cathepsin B, HUVECs were transfected with a plasmid coding for human cathepsin B or with the empty vector as control. After 48 h, the transfected cells were treated with 1 nM archazolid. The level of cathepsin B after transfection and treatment was assessed by western blot analysis (Fig 9A) . Overexpression of cathepsin B strongly diminished both the basal and the archazolid-induced adhesion of MDA-MB-231 cells (Fig 9B) .
Targeting the proton pump v-ATPase for cancer therapy has gained great interest since its inhibition was reported to reduce the invasiveness of cancer cells and, most importantly, also metastasis [8, 9] . Thus, intensive research related to v-ATPases was done in cancer cells, whereas there are only few studies investigating v-ATPases in endothelial cells indicating a role in migration, proliferation and possibly angiogenesis [22] [23] [24] . In the present study we used the myxobacterial natural product archazolid to investigate the consequences of v-ATPase inhibition in the endothelium on tumor-endothelial cell interactions.
For the first time, we were able to show a link between v-ATPase and the adhesion and transmigration properties of the endothelium. Inhibition of the v-ATPase in endothelial cells by archazolid significantly increased the adhesion of metastatic cancer cells and decreased the transendothelial migration of cancer cells which was attributed to augmented collagen levels on the surface on archazolid-treated endothelial cells. Of note, adhesion of the non-metastatic Jurkat cell line onto archazolid-treated endothelial cells remained unaffected. The archazolidinduced adhesion of tumor cells was independent from the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin, as their expression was not regulated by the compound. However, we found that the archazolid-induced tumor cell adhesion was mediated by β1-integrins expressed on MDA-MB-231 breast cancer and PC-3 prostate cancer cells as blocking of the integrin β1 subunit on these tumor cells reversed the pro-adhesive effect of archazolid. In adhesion experiments on plastic coated with extracellular matrix components, we could show that MDA-MB-231 and PC-3 cells clearly favored the interaction with collagen, whereas the adhesion of non-metastatic Jurkat cells was largely independent from extracellular matrix proteins (S1B Fig). The different adhesion properties of metastatic cancer cells and Jurkat cells might be a result of the distinct integrin expression pattern of each cell line. MDA-MB-231 and PC-3 cells express α2β1-and α3β1-integrins, which represent collagen receptors [43, 44] , while Jurkat cells express α4β1-integrins but lack α2β1-, α3β1-integrins [44] . α4β1integrins are receptors for VCAM-1 and fibronectin [35] and it has been shown that Jurkat cells interact with human endothelial cells that express VCAM-1 after cytokine treatment or cells transfected with VCAM-1 [45] . Our results are in line with previous studies showing that α2β1-and α3β1-integrin expressing MDA-MB-231 and PC-3 cells were able to rapidly attach to collagen in the cortical bone matrix. In contrast, Jurkat cells were not able to adhere [44] and might preferentially interact with cell adhesion molecules rather than with ECM proteins. α2β1-and α3β1-integrins can additionally act as laminin receptors [46] and at least α3β1integrins recognize fibronectin [46, 47] . Though expressing receptors for fibronectin and laminin, MDA-MB-231 and PC-3 cells adhered to fibronectin to a much lesser extent and did not adhere to laminin, probably due to lower affinities to these extracellular matrix components.
Importantly, v-ATPase inhibition by archazolid increased the surface levels of the extracellular matrix component collagen, which might explain that the increase of MDA-MB-231 and PC-3 cells onto archazolid-treated HUVECs is independent of endothelial cell adhesion molecules. By performing a live cell proteolysis assay, Cavallo-Medved et al. demonstrated ECM degradation, in particular of gelatin and collagen IV, in association with active cathepsin B in caveolae of endothelial cells during tube formation [40] . In addition, recent studies reported that v-ATPase inhibition impairs the activity of cathepsin B in cancer cells [28, 36] . Therefore, we suggested that the accumulation of collagen on the endothelial surface might be a consequence of impaired cathepsin B activity or expression in endothelial cells. In fact, we confirmed the impairment of cathepsin B activity by archazolid as the expression levels of the mature active form of this enzyme was strongly reduced. Cathepsin B is synthesized as preprocathepsin B on membrane-bound ribosomes. Following transport to the Golgi apparatus, the preprocathepsin B is glycosylated with mannose-containing oligosaccharides. The targeting of procathepsin B to lysosomes is mannose-6-phosphate receptor-dependent and its dissociation from the receptor as well as its proteolytic processing into mature cathepsin B requires acidification of the compartment [48] . In cancer cells v-ATPase inhibition by archazolid impaired the mannose-6-phosphate receptor-mediated trafficking from the trans-Golgi network to prelysosomal compartments resulting in a decrease of active lysosomal proteases like cathepsin B [28] . We assumed that the archazolid-induced decrease in cathepsin B activity and expression was based on the same mechanism. Interestingly, overexpression of cathepsin B attenuated the archazolid-induced adhesion of breast cancer cells onto endothelial cells, indicating that the adhesion negatively correlates with the expression of cathepsin B.
As cathepsin B can also degrade other extracellular matrix components such as fibronectin and laminin [38, 49] , v-ATPase inhibition could lead to an accumulation of these proteins and an increased adhesion of cells expressing fibronectin or laminin receptors. However, we did not focus on these ECM components since they were not relevant for the adhesion of MDA-MB-231 and PC-3 cells. These cells predominantly adhered to collagen, while the adhesion of Jurkat cells is mostly independent from the ECM proteins collagen, fibronectin or laminin (S1B Fig). Interestingly [50] . In hepatic cancer cells, archazolid reduces Ras/Raf/MEK/ERK signaling by altering the membrane composition and fluidity [51] . We assume that archazolid affects endothelial cells in a similar way leading to inhibition of Ras signaling and, therefore, reduced transendothelial migration of MDA-MB-231 cells.
Taken together, our study shows that archazolid reduces the activity and expression of cathepsin B in endothelial cells. As a result, the amount of collagen on the surface of endothelial cells was significantly upregulated, which finally resulted in an increased adhesion of the β1-integrin-expressing metastatic cancer cell lines MDA-MB-231 and PC-3 onto archazolidtreated endothelial cells, whereas the adhesion of non-metastatic Jurkat cells was unaffected. This study shows that the v-ATPase plays an important role in regulating the adhesion of cells expressing receptors for extracellular matrix components. Archazolid represents a promising tool to elucidate the role of v-ATPase in endothelial cells. Moreover, we for the first time linked the function of v-ATPase to the adhesion and transmigration of tumor cells onto endothelial cells as well as to the remodeling of the extracellular matrix on the surface of endothelial cells. The fact that the adhesion of metastatic tumor cells onto endothelial cells is increased while their transendothelial migration is reduced upon inhibition of endothelial v-ATPase by archazolid further supports the view of archazolid as a potential anti-metastatic compound. | What is the role of v-ATPase in the plasma membrane of osteoclasts and renal epithelial cells? | {
"answer_start": [
3039
],
"text": [
"they pump protons into the extracellular space"
]
} | false |
5,305 | The vacuolar-type ATPase inhibitor archazolid increases tumor cell adhesion to endothelial cells by accumulating extracellular collagen
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133348/
SHA: f1b81916fac1ca3d50dde774df2e1bb26bf0fb39
Authors: Luong, Betty; Schwenk, Rebecca; Bräutigam, Jacqueline; Müller, Rolf; Menche, Dirk; Bischoff, Iris; Fürst, Robert
Date: 2018-09-11
DOI: 10.1371/journal.pone.0203053
License: cc-by
Abstract: The vacuolar-type H(+)-ATPase (v-ATPase) is the major proton pump that acidifies intracellular compartments of eukaryotic cells. Since the inhibition of v-ATPase resulted in anti-tumor and anti-metastatic effects in different tumor models, this enzyme has emerged as promising strategy against cancer. Here, we used the well-established v-ATPase inhibitor archazolid, a natural product first isolated from the myxobacterium Archangium gephyra, to study the consequences of v-ATPase inhibition in endothelial cells (ECs), in particular on the interaction between ECs and cancer cells, which has been neglected so far. Human endothelial cells treated with archazolid showed an increased adhesion of tumor cells, whereas the transendothelial migration of tumor cells was reduced. The adhesion process was independent from the EC adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin. Instead, the adhesion was mediated by β1-integrins expressed on tumor cells, as blocking of the integrin β1 subunit reversed this process. Tumor cells preferentially adhered to the β1-integrin ligand collagen and archazolid led to an increase in the amount of collagen on the surface of ECs. The accumulation of collagen was accompanied by a strong decrease of the expression and activity of the protease cathepsin B. Overexpression of cathepsin B in ECs prevented the capability of archazolid to increase the adhesion of tumor cells onto ECs. Our study demonstrates that the inhibition of v-ATPase by archazolid induces a pro-adhesive phenotype in endothelial cells that promotes their interaction with cancer cells, whereas the transmigration of tumor cells was reduced. These findings further support archazolid as a promising anti-metastatic compound.
Text: The vacuolar-type H + -ATPase (v-ATPase) is the major proton pump responsible for acidification of intracellular compartments in eukaryotic cells [1] . The enzyme consists of two multi-subunit complexes, the soluble V 1 transmembrane V o subcomplex required for the proton transport across membranes [1, 2] . In most cell types v-ATPases are only expressed in the endomembrane system to regulate and maintain the acidic pH of intracellular compartments such as lysosomes, endosomes, the Golgi apparatus, secretory granules and coated vesicles [3] . The function of v-ATPases is essential for cellular processes such as vesicular trafficking, receptor-mediated endocytosis and protein degradation and processing. In specialized cell types including osteoclasts and renal epithelial cells, v-ATPases can also be expressed on the plasma membrane, where they pump protons into the extracellular space [2] [3] [4] . In cancer cells v-ATPases are expressed on the plasma membrane in order to eliminate toxic cytosolic H + . Most importantly, v-ATPases contribute to the acidic tumor microenvironment, which leads to the activation of proteases, thus facilitating tumor cell migration, invasion and angiogenesis [5] [6] [7] . Since the inhibition of v-ATPase was shown to reduce the invasiveness of cancer cells and metastasis formation [8, 9] , this enzyme has emerged as a promising drug target in the recent years. Archazolid A and B are highly potent and specific inhibitors of v-ATPases [10] . They were first isolated from the myxobacterium Archangium gephyra [11] . These compounds inhibit v-ATPase at low nanomolar concentrations [10, 12] by binding to the subunit c of the V o complex. As their biological activity is comparable to the v-ATPase inhibitors bafilomycin and concanamycin [10, 11] , archazolids are natural compounds of high interest that can be used both as a tool to study the consequences of v-ATPase inhibition and as a lead for drug development. Archazolids can be either produced by fermentation [11] or by total synthesis [13, 14] .
In the field of cancer research several studies reported on interesting pharmacological effects of archazolid: It reduced the migration of different invasive tumor cells in vitro and cancer cell metastasis in vivo in a breast tumor mouse model [15] . Furthermore, archazolid activated pathways of cellular stress response and apoptosis in highly invasive tumor cells [16] . In classically activated macrophages, archazolid selectively induced the generation of tumor necrosis factor α (TNFα), which may indirectly promote tumor suppression [17] .
Up to now, the role of v-ATPases in endothelial cells has only rarely been investigated. The endothelium plays a crucial role in the pathogenesis and progression of cancer: The metastatic cascade includes local angiogenesis at the site of the primary tumor and adhesion of tumor cells at the site of metastasis [18] . Angiogenesis, the development of new blood vessels out of existing ones, depends on the proliferation, migration and differentiation of endothelial cells [19] . This process ensures the nutrient supply of the tumor and its growth [20] . Circulating cancer cells can adhere to the endothelium at distant sites. This adhesive interaction is mediated by receptors and corresponding ligands expressed on tumor and endothelial cells [18, 21] . V-ATPases have been reported to regulate intracellular pH and cell migration in microvascular endothelial cells [22, 23] . A recent study showed that the inhibition of v-ATPase by concanamycin prevented proliferation, reduced migration and impaired angiogenesis-related signaling in endothelial cells [24] . So far, there are no investigations on the role of endothelial v-ATPases for the process of tumor cell adhesion onto the endothelium. Thus, we were interested in the consequences of the inhibition of endothelial v-ATPase by archazolid on the interaction between endothelial and cancer cells. Various cell adhesion molecules on the endothelium, such as intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein (VCAM-1), E-selectin or N-cadherin [21] as well as integrins expressed on cancer cells have been reported to mediate cell adhesion of cancer cells onto endothelial cells [25] [26] [27] . Accordingly, we focused on these cell adhesion molecules and integrins. For the first time, our study revealed a link between the function of v-ATPases and the adhesion and transmigration properties of endothelial cells.
CellTiter-Blue Cell Viability Assay (Promega, Mannheim, Germany) was performed according to the manufacturer's protocol for determining the cell viability of cells after treatment with archazolid. This assay is based on the ability of metabolically active cells to reduce resazurin which results in fluorescent resorufin. The CellTiter-Blue Reagent was added to the cells 4 h before the endpoint of treatment. Fluorescence was measured with an Infinite F200 pro microplate reader (Tecan, Männedorf, Switzerland) at 560 nm (excitation) and 590 nm (emission).
CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega) was performed according to the manufacturer's instructions for determining the lactate dehydrogenase (LDH) release after treatment with archazolid. Lysis buffer was added to untreated cells 45 min before the end of treatment to induce the release of this enzyme. LDH is a cytosolic enzyme that is released by leaky cells. Released LDH catalyzes the enzymatic conversion of lactate to pyruvate which provides NADH for the conversion of iodonitrotetrazolium violet into a red formazan product in the presence of diaphorase. The absorbance was measured with a Varioskan Flash microplate reader (Thermo Fisher Scientific) at 490 nm.
LysoTracker Red DND-99 (Life Technologies, Thermo Fisher Scientific) is a dye to measure pH values in viable cells. HUVECs were cultured to confluence on collagen G-coated μ-slides (80826, ibidi, Martinsried, Germany) before they were treated with archazolid for 24 h. 1 μg/ ml Hoechst 33342 (Sigma-Aldrich, Munich, Germany) was used to visualize the nuclei and 50 nM LysoTracker Red DND-99 was used to visualize the acidic compartments which correspond to the lysosomes. Both dyes were incubated for 10 min at 37˚C before acquisition of single images by a Leica DMI6000 B fluorescence microscope (Leica Microsystems, Wetzlar, Germany).
HUVECs were seeded in collagen G-coated 24-well plates and grown to confluence for two days before treatment. The cells were incubated with indicated concentrations of archazolid for 24 h. Untreated MDA-MB-231 or PC-3 cells were labeled with CellTracker Green CMFDA Dye (5 μM in serum-free DMEM, 37˚C) for 30 min before 100,000 cells per well were added to HUVECs and were allowed to adhere for various time points at 37˚C. Non-adherent tumor cells were washed off three times with PBS containing Ca 2+ and Mg 2+ . Tumor cell adhesion was determined by fluorescence measurements with an Infinite F200 pro microplate reader (Tecan) at 485 nm (excitation) and 535 nm (emission).
For blocking the integrin β1 subunit on MDA-MB-231 or PC-3 cells, CellTracker Greenlabeled MDA-MB-231 or PC-3 cells were incubated with an anti-integrin β1 antibody (P5D2, ab24693, Abcam, Cambridge, United Kingdom) at a concentration of 1 μg antibody per one million cells in 1 ml DMEM. Before adding to archazolid-treated HUVECs, MDA-MB-231 or PC-3 cells were washed once with DMEM. For blocking the integrin β1 subunit on HUVECs, the cells were incubated with the anti-integrin β1 antibody (0.1 μg/well in ECGM). HUVECs were washed once with ECGM before untreated MDA-MB-231 or PC-3 cells were added to HUVECs.
For the adhesion of MDA-MB-231 or PC-3 cells onto extracellular matrix (ECM) components 24-well plates were coated with collagen G (10 μg/ml in PBS), human plasma fibronectin (10 μg/ml PBS) or laminin-411 (10 μg/ml in Dulbecco's PBS [DPBS] containing Ca 2+ and Mg 2+ ) at 4˚C overnight. The adhesion of MDA-MB-231 and PC-3 cells onto these three most prominent ECM components was carried out as described above (10 min adhesion at 37˚C).
HUVECs were grown on a porous filter membrane (Transwell insert, polycarbonate membrane, 8 μm pores; Corning, New York, USA) for 48 h and were treated as indicated. Untreated MDA-MB-231 cells were labeled with CellTracker Green CMFDA Dye (as described in the section cell adhesion assay) and resuspended in medium 199 (PAN-Biotech) containing 0.1% BSA. HUVECs were washed twice with medium 199 containing 0.1% BSA before MDA-MB-231 cells were allowed to transmigrate through the endothelial monolayer for 24 h. Medium 199 containing 0.1% BSA was used as negative control and medium 199 containing 20% FCS was used as chemoattractant for transmigration in the lower compartment. Non-migrated cells remaining in the upper compartment were carefully removed using a cotton swab. Transmigrated cells were lysed in radioimmunoprecipitation assay (RIPA) buffer and transmigration was quantified by measuring the fluorescence signal at 485 nm (excitation) and 535 nm (emission).
HUVECs were grown to confluence on 6-well plates before they were treated with archazolid for 12 h. The cells were induced to upregulate the gene expression of cell adhesion molecules by TNFα. RNA was isolated using the RNeasy Mini Kit from Qiagen (Hilden, Germany) according to the manufacturer's protocol. On-column DNase digestion was performed to remove genomic DNA. RNA was transcribed into cDNA by Superscript II (Life Technologies, Thermo Fisher Scientific). qPCR experiments were performed using a StepOnePlus System (Applied Biosystems, Thermo Fisher Scientific) and data was analyzed by the StepOne and Ste-pOnePlus Software v2.3. Power SYBR Green PCR Master Mix (Life Technologies) and the comparative C T quantitation method (2 -ΔΔCT ) were used.
HUVECs were grown to confluence on 12-well plates before they were treated with archazolid for 24 h. Cells were treated with TNFα for 24 h to induce the expression of cell adhesion molecules. Subsequently, the cells were detached with HyClone HyQTase (GE Healthcare, Freiburg, Germany). In the case of ICAM-1 the detached cells were fixed with 4% formaldehyde (Polysciences, Hirschberg an der Bergstraße, Germany) in PBS for 10 min and washed once with PBS before incubating with the fluorescein isothiocyanate (FITC)-labeled anti-human CD54 (mouse, ICAM-1) antibody (MCA1615F, Biozol, Eching, Germany) at room temperature for 45 min. For all other proteins, the cells were not fixed and washed once with PBS before incubating with the antibodies phycoerythrin (PE)-labeled anti-human CD106 (mouse, VCAM-1), PE-labeled anti-human CD62E (mouse, E-selectin) and PE-labeled anti-human CD325 (mouse, N-cadherin) from Becton Dickinson on ice for 45 min. These antibodies were diluted in PBS containing 0.2% BSA. The surface expression of cell adhesion molecules was measured by flow cytometry (FACSVerse, Becton Dickinson, Heidelberg, Germany).
To stain the surface collagen on HUVECs, cells were incubated with an anti-human collagen antibody (rabbit, 1:40, ab36064, Abcam) on ice for 30 min. The staining procedure was performed on ice to ensure that surface proteins or antibodies are not endocytosed. The cells were washed once with PBS containing Ca 2+ and Mg 2+ before they were fixed with Roti-Histofix (Carl Roth). Alexa Fluor 488-conjugated anti-rabbit antibody (goat, 1:400, A11008, Life Technologies) was used as secondary antibody and Hoechst 33342 (1 μg/ml, Sigma-Aldrich) was used to visualize nuclei.
Confluent HUVECs in 6-well plates were treated as indicated. Cells were washed with ice-cold PBS and lysed with RIPA buffer supplemented with protease inhibitors (Complete Mini EDTA-free; Roche, Mannheim, Germany), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride, β-glycerophosphate, sodium pyrophosphate and H 2 O 2 . Protein determination was performed using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Equal amounts of proteins (10-20 μg) were separated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE; Bio-Rad Laboratories, Munich, Germany). Separated proteins were transferred onto polyvinylidene difluoride membranes by tank blotting (Bio-Rad Laboratories) for immunodetection. Membranes were blocked with 5% boltinggrade milk powder (Carl Roth) in TBS containing 0.1% Tween 20 (Sigma-Aldrich). The following antibodies were used: mouse anti-human cathepsin B antibody (IM27L, Merck) (1:500), mouse anti-β-actin-peroxidase antibody (A3854, Sigma-Aldrich) (1:100,000) and antimouse IgG horse radish peroxidase (HRP)-linked antibody (7076, Cell Signaling, Frankfurt, Germany) (1:5,000). ImageJ version 1.49m was used for densitometric analysis.
Cathepsin B activity assay was performed as described in the publication by Kubisch et al. [28] . Confluent HUVECs or HMEC-1 seeded in 6-well plates were treated as indicated. Cells were washed with PBS and lysed with the non-denaturating M-PER mammalian protein extraction reagent (78501, Thermo Fisher Scientific) supplemented with protease inhibitors (Complete Mini EDTA-free, Roche), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride. The fluorogenic cathepsin B substrate Z-Arg-Arg-7-amido-4-methylcoumarin hydrochloride (C5429, Sigma-Aldrich) was added to 30 μg of the cell lysate diluted in assay buffer supplemented with 2 mM L-cysteine (C7880, Sigma-Aldrich) and incubated for 30 min at 40˚C. Fluorescence was measured at 348 nm (excitation) and 440 nm (emission) with a microplate reader (Varioskan Flash, Thermo Fisher Scientific). The intensity of the fluorescence signal corresponded to the cathepsin B enzyme activity. For background subtraction the cathepsin B inhibitor CA-074Me (Enzo Life Sciences, Lörrach, Germany) was added to an additional reaction.
The HUVEC Nucleofector Kit (Lonza, Cologne, Germany) was used to transfect HUVECs. The transfection was performed according to the manufacturer's protocol using 2.5 μg plasmid DNA for 500,000 cells (Nucleofector 2b Device, Lonza). 48 h after transfection the cells were treated for further experiments. The addgene plasmid #11249 hCathepsin B was kindly provided by Hyeryun Choe [29] . hCathepsin B was digested with PmeI and XbaI and the linear DNA fragment not corresponding to the human CTSB gene was religated to generate the empty pcDNA3.1 (-) delta MCS plasmid that was used for control transfections. The original backbone of hCathepsin B is the pcDNA3.1 (-) from Thermo Fisher Scientific. The control vector pcDNA3.1 (-) delta MCS used for our transfections was cloned on the basis of hCathepsin B and is therefore lacking almost the whole part of the multiple cloning site of the pcDNA3.1 (-).
Statistical analyses were performed using GraphPad Prism 5.0 (San Diego, USA). One-way ANOVA followed by Tukey's post-hoc test or unpaired t-test was used for the evaluation of a minimum of three independent experiments. The numbers of independently performed experiments (n) are stated in the corresponding figure legends. p 0.05 was considered as statistically significant. Data are expressed as mean ± standard error of the mean (SEM).
Since the v-ATPase inhibitor archazolid has never been used for studies in endothelial cells, we first performed cytotoxicity assays. We treated confluent HUVECs with up to 1 nM archazolid for 24 and 48 h and observed that this treatment has neither an influence on the metabolic activity nor on the release of LDH after 24 h (Fig 1A and 1B, left panels) . The metabolic activity and the release of LDH were only slightly affected by the highest concentration of archazolid after 48 h (Fig 1A and 1B, right panels) . Consequently, the following experiments were all carried out after 24 h (or less) of archazolid treatment in order to exclude any cytotoxic effects of archazolid within our experimental settings.
Microscopic analysis revealed that also the integrity of the endothelial monolayer was not affected by archazolid, but the cells showed a slightly different morphology (Fig 2A) : Archazolid-treated cells were swollen compared to control cells, which was not unexpected, as vacuolation of the endoplasmic reticulum (ER) has been described for other cell types and is typical for v-ATPase inhibitors [11, 16, 24, 30] . This effect was obvious both in subconfluent and in confluent cells (Fig 2A) . Inhibition of v-ATPase prevents the acidification of lysosomes [1, 31] . Using the cell-permeable dye LysoTracker Red DND-99, it is possible to label the acidic lysosomes in living cells. Thus, this dye can serve as an indicator of v-ATPase inhibition. To proof that archazolid is also functionally active as a v-ATPase inhibitor in HUVECs, cells were treated with 1 nM archazolid before they were incubated with LysoTracker Red DND-99 and Hoechst 33342. As shown in Fig 2B, the red vesicular staining corresponding to acidified lysosomes in control cells disappeared completely after treatment with archazolid. In summary, archazolid treatment for 24 h was not cytotoxic to quiescent HUVECs, but inhibited the functionality of the v-ATPase.
We analyzed the adhesion of MDA-MB-231 cells onto HUVECs. Confluent HUVECs were treated with up to 1 nM archazolid for 24 h. Untreated MDA-MB-231 cells were labeled with Cell-Tracker Green CMFDA Dye. Interestingly, v-ATPase inhibition strongly increased the attachment of the metastatic breast carcinoma cell line MDA-MB-231 onto HUVECs after 10 and 120 min of adhesion (Fig 3A and 3B) . We also investigated the influence of archazolid on the transendothelial migration of MDA-MB-231 cells. HUVECs seeded in a Boyden chamber were treated with 1 nM archazolid for 24 h. CellTracker Green-labeled MDA-MB-231 cells (not treated with archazolid) were allowed to transmigrate through the endothelial monolayer for 24 h. As shown in Fig 3C, archazolid significantly decreased the transendothelial migration of MDA-MB-231 cells.
The influence of archazolid on tumor cell adhesion was not only studied in HUVECs, which represent macrovascular endothelial cells, but also in microvascular HMEC-1 cells. Moreover, besides the breast cancer cell line MDA-MB-231, also PC-3 prostate cancer cells were used as a second metastatic cancer cell line. Archazolid treatment of endothelial cells increased the attachment of MDA-MB-231 cells onto the HMEC-1 monolayer after 120 min of adhesion ( Fig 4A) and increased the attachment of PC-3 cells onto the HUVEC monolayer after 30 and 60 min of adhesion (Fig 4B) . Of note, the adhesion of non-metastatic Jurkat cells, an acute T cell leukemia cell line, remained unaffected after treatment of HUVECs with archazolid (S1A Fig). Taken together, archazolid treatment augmented the adhesive properties of both micro-and macrovascular endothelial cells for metastatic tumor cells, but not for non-metastatic ones. Of note, cancer cell adhesion onto archazolid-activated endothelial cells increased with the time of adhesion.
The adhesion of tumor cells onto the endothelium is in principle similar to that of leukocytes, but slightly differs in the molecules that mediate the adhesion process. Ligands for the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin were found to be expressed on tumor cells and to mediate tumor-endothelial cell interaction [21] . Inhibition of the v-ATPase might affect the expression of endothelial cell adhesion molecules on mRNA or protein levels. To determine the mRNA expression of ICAM-1, VCAM-1, E-selectin and Ncadherin, HUVECs were treated with archazolid for 12 h. TNFα is known to upregulate the expression of ICAM-1, VCAM-1 and E-selectin [32] and, thus, served as positive control. Quantitative real-time PCR showed that v-ATPase inhibition in HUVECs did not alter the mRNA levels of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5A) . The protein expression of these adhesion molecules on the surface of endothelial cells was analyzed by flow cytometry. Archazolid (1 nM, 24 h) did not affect the cell surface expression of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5B) .
Besides ICAM-1, VCAM-1, E-selectin and N-cadherin, also integrins are able to mediate the process of cell adhesion [33] [34] [35] . Since none of the cell adhesion molecules expressed on HUVECs were regulated upon archazolid treatment, we considered integrins as potential interaction partners. Within this protein family β1-integrins have been reported to mediate tumor cell adhesion onto quiescent endothelial cells [25] . In order to elucidate the role of β1-integrins for the archazolid-induced tumor cell adhesion, the integrin β1-subunit was blocked either on MDA-MB-231 cells, PC-3 cells or on HUVECs. (Of note, as in all experiments throughout this study, only endothelial cells were treated with archazolid.) After blocking β1-integrins on MDA-MB-231 or PC-3 cells, the archazolid-induced tumor cell adhesion was reduced almost to control level (Fig 6A and 6B , left panels), whereas blocking of β1-integrins on HUVECs had no significant effect on the increase of tumor cell adhesion by v-ATPase inhibition (Fig 6A and 6B , right panels).
Depending on their α subunit, β1-integrins have a variety of ligands including extracellular matrix (ECM) components such as collagen, fibronectin and laminin [35] . Therefore, we hypothesized that archazolid treatment of endothelial cells might lead to an upregulation of these components. MDA-MB-231 and PC-3 cells were allowed to adhere onto plastic that was coated with these ECM components. This cell adhesion assay revealed that MDA-MB-231 as well as PC-3 cells favor the interaction with the ECM component collagen, as the adhesion onto collagen is much higher than onto the uncoated plastic control (Fig 7A) . MDA-MB-231 and PC-3 cells also adhered to fibronectin-coated plastic, but to a much lesser extent compared to the collagen coating. Therefore, we focused on the interaction between these two tumor cell lines and collagen. Blocking of the integrin β1 subunit on MDA-MB-231 and PC-3 cells clearly abolished the interaction with collagen (Fig 7B) , indicating that the attachment of these tumor cells to collagen is mediated by β1-integrins.
Since collagen is the major ECM component MDA-MB-231 and PC-3 cells interact with, the next step was to prove whether v-ATPase inhibition influences the amount of collagen expressed by HUVECs as extracellular matrix. To detect collagen on the endothelial surface, archazolid-treated HUVECs were labeled with an antibody against collagen type I-IV on ice to prevent endocytosis and to ensure that the antibody does not bind to intracellular collagen. Interestingly, archazolid increased the amount of surface collagen on HUVECs by about 50% (Fig 7C) . Control stainings were performed using an antibody against the cytosolic p65 subunit of the transcription factor nuclear factor κB (NFκB) to show that intracellular proteins were not detected by this staining method (S2 Fig) .
It was reported that v-ATPase inhibition by archazolid impairs the activity of cathepsin B [28, 36] , a lysosomal enzyme that degrades extracellular matrix components including collagen [37] [38] [39] [40] [41] . As collagen is degraded by cathepsin B and the activation of cathepsin B depends on v-ATPase activity [28, [36] [37] [38] 42] , we suggested that an accumulation of collagen on the surface of endothelial cells might be a consequence of an impaired functionality of cathepsin B. Therefore, an enzyme activity assay based on the proteolysis of a fluorogenic cathepsin B substrate was performed. In archazolid-treated HUVECs and HMEC-1 the activity of cathepsin B was induce both the mRNA (1 ng/ml TNF) and the cell surface expression (10 ng/ml TNF) of ICAM-1, VCAM-1, E-selectin and Ncadherin.
https://doi.org/10.1371/journal.pone.0203053.g005 Inhibition of endothelial vATPase increases tumor cell adhesion to endothelial cells strongly decreased by approximately 50% compared to control cells at an archazolid concentration of 1 nM (Fig 8A) . In line with this result, western blot analysis showed that archazolid (1 nM) reduces the protein expression of the mature, active form of cathepsin B to less than 40% of the control in HUVECs (Fig 8B) . To proof whether the archazolid-induced tumor cell adhesion is a consequence of the decreased amount of cathepsin B, HUVECs were transfected with a plasmid coding for human cathepsin B or with the empty vector as control. After 48 h, the transfected cells were treated with 1 nM archazolid. The level of cathepsin B after transfection and treatment was assessed by western blot analysis (Fig 9A) . Overexpression of cathepsin B strongly diminished both the basal and the archazolid-induced adhesion of MDA-MB-231 cells (Fig 9B) .
Targeting the proton pump v-ATPase for cancer therapy has gained great interest since its inhibition was reported to reduce the invasiveness of cancer cells and, most importantly, also metastasis [8, 9] . Thus, intensive research related to v-ATPases was done in cancer cells, whereas there are only few studies investigating v-ATPases in endothelial cells indicating a role in migration, proliferation and possibly angiogenesis [22] [23] [24] . In the present study we used the myxobacterial natural product archazolid to investigate the consequences of v-ATPase inhibition in the endothelium on tumor-endothelial cell interactions.
For the first time, we were able to show a link between v-ATPase and the adhesion and transmigration properties of the endothelium. Inhibition of the v-ATPase in endothelial cells by archazolid significantly increased the adhesion of metastatic cancer cells and decreased the transendothelial migration of cancer cells which was attributed to augmented collagen levels on the surface on archazolid-treated endothelial cells. Of note, adhesion of the non-metastatic Jurkat cell line onto archazolid-treated endothelial cells remained unaffected. The archazolidinduced adhesion of tumor cells was independent from the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin, as their expression was not regulated by the compound. However, we found that the archazolid-induced tumor cell adhesion was mediated by β1-integrins expressed on MDA-MB-231 breast cancer and PC-3 prostate cancer cells as blocking of the integrin β1 subunit on these tumor cells reversed the pro-adhesive effect of archazolid. In adhesion experiments on plastic coated with extracellular matrix components, we could show that MDA-MB-231 and PC-3 cells clearly favored the interaction with collagen, whereas the adhesion of non-metastatic Jurkat cells was largely independent from extracellular matrix proteins (S1B Fig). The different adhesion properties of metastatic cancer cells and Jurkat cells might be a result of the distinct integrin expression pattern of each cell line. MDA-MB-231 and PC-3 cells express α2β1-and α3β1-integrins, which represent collagen receptors [43, 44] , while Jurkat cells express α4β1-integrins but lack α2β1-, α3β1-integrins [44] . α4β1integrins are receptors for VCAM-1 and fibronectin [35] and it has been shown that Jurkat cells interact with human endothelial cells that express VCAM-1 after cytokine treatment or cells transfected with VCAM-1 [45] . Our results are in line with previous studies showing that α2β1-and α3β1-integrin expressing MDA-MB-231 and PC-3 cells were able to rapidly attach to collagen in the cortical bone matrix. In contrast, Jurkat cells were not able to adhere [44] and might preferentially interact with cell adhesion molecules rather than with ECM proteins. α2β1-and α3β1-integrins can additionally act as laminin receptors [46] and at least α3β1integrins recognize fibronectin [46, 47] . Though expressing receptors for fibronectin and laminin, MDA-MB-231 and PC-3 cells adhered to fibronectin to a much lesser extent and did not adhere to laminin, probably due to lower affinities to these extracellular matrix components.
Importantly, v-ATPase inhibition by archazolid increased the surface levels of the extracellular matrix component collagen, which might explain that the increase of MDA-MB-231 and PC-3 cells onto archazolid-treated HUVECs is independent of endothelial cell adhesion molecules. By performing a live cell proteolysis assay, Cavallo-Medved et al. demonstrated ECM degradation, in particular of gelatin and collagen IV, in association with active cathepsin B in caveolae of endothelial cells during tube formation [40] . In addition, recent studies reported that v-ATPase inhibition impairs the activity of cathepsin B in cancer cells [28, 36] . Therefore, we suggested that the accumulation of collagen on the endothelial surface might be a consequence of impaired cathepsin B activity or expression in endothelial cells. In fact, we confirmed the impairment of cathepsin B activity by archazolid as the expression levels of the mature active form of this enzyme was strongly reduced. Cathepsin B is synthesized as preprocathepsin B on membrane-bound ribosomes. Following transport to the Golgi apparatus, the preprocathepsin B is glycosylated with mannose-containing oligosaccharides. The targeting of procathepsin B to lysosomes is mannose-6-phosphate receptor-dependent and its dissociation from the receptor as well as its proteolytic processing into mature cathepsin B requires acidification of the compartment [48] . In cancer cells v-ATPase inhibition by archazolid impaired the mannose-6-phosphate receptor-mediated trafficking from the trans-Golgi network to prelysosomal compartments resulting in a decrease of active lysosomal proteases like cathepsin B [28] . We assumed that the archazolid-induced decrease in cathepsin B activity and expression was based on the same mechanism. Interestingly, overexpression of cathepsin B attenuated the archazolid-induced adhesion of breast cancer cells onto endothelial cells, indicating that the adhesion negatively correlates with the expression of cathepsin B.
As cathepsin B can also degrade other extracellular matrix components such as fibronectin and laminin [38, 49] , v-ATPase inhibition could lead to an accumulation of these proteins and an increased adhesion of cells expressing fibronectin or laminin receptors. However, we did not focus on these ECM components since they were not relevant for the adhesion of MDA-MB-231 and PC-3 cells. These cells predominantly adhered to collagen, while the adhesion of Jurkat cells is mostly independent from the ECM proteins collagen, fibronectin or laminin (S1B Fig). Interestingly [50] . In hepatic cancer cells, archazolid reduces Ras/Raf/MEK/ERK signaling by altering the membrane composition and fluidity [51] . We assume that archazolid affects endothelial cells in a similar way leading to inhibition of Ras signaling and, therefore, reduced transendothelial migration of MDA-MB-231 cells.
Taken together, our study shows that archazolid reduces the activity and expression of cathepsin B in endothelial cells. As a result, the amount of collagen on the surface of endothelial cells was significantly upregulated, which finally resulted in an increased adhesion of the β1-integrin-expressing metastatic cancer cell lines MDA-MB-231 and PC-3 onto archazolidtreated endothelial cells, whereas the adhesion of non-metastatic Jurkat cells was unaffected. This study shows that the v-ATPase plays an important role in regulating the adhesion of cells expressing receptors for extracellular matrix components. Archazolid represents a promising tool to elucidate the role of v-ATPase in endothelial cells. Moreover, we for the first time linked the function of v-ATPase to the adhesion and transmigration of tumor cells onto endothelial cells as well as to the remodeling of the extracellular matrix on the surface of endothelial cells. The fact that the adhesion of metastatic tumor cells onto endothelial cells is increased while their transendothelial migration is reduced upon inhibition of endothelial v-ATPase by archazolid further supports the view of archazolid as a potential anti-metastatic compound. | What does angiogenesis depend on? | {
"answer_start": [
5195
],
"text": [
"the proliferation, migration and differentiation of endothelial cells"
]
} | false |
5,306 | The vacuolar-type ATPase inhibitor archazolid increases tumor cell adhesion to endothelial cells by accumulating extracellular collagen
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133348/
SHA: f1b81916fac1ca3d50dde774df2e1bb26bf0fb39
Authors: Luong, Betty; Schwenk, Rebecca; Bräutigam, Jacqueline; Müller, Rolf; Menche, Dirk; Bischoff, Iris; Fürst, Robert
Date: 2018-09-11
DOI: 10.1371/journal.pone.0203053
License: cc-by
Abstract: The vacuolar-type H(+)-ATPase (v-ATPase) is the major proton pump that acidifies intracellular compartments of eukaryotic cells. Since the inhibition of v-ATPase resulted in anti-tumor and anti-metastatic effects in different tumor models, this enzyme has emerged as promising strategy against cancer. Here, we used the well-established v-ATPase inhibitor archazolid, a natural product first isolated from the myxobacterium Archangium gephyra, to study the consequences of v-ATPase inhibition in endothelial cells (ECs), in particular on the interaction between ECs and cancer cells, which has been neglected so far. Human endothelial cells treated with archazolid showed an increased adhesion of tumor cells, whereas the transendothelial migration of tumor cells was reduced. The adhesion process was independent from the EC adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin. Instead, the adhesion was mediated by β1-integrins expressed on tumor cells, as blocking of the integrin β1 subunit reversed this process. Tumor cells preferentially adhered to the β1-integrin ligand collagen and archazolid led to an increase in the amount of collagen on the surface of ECs. The accumulation of collagen was accompanied by a strong decrease of the expression and activity of the protease cathepsin B. Overexpression of cathepsin B in ECs prevented the capability of archazolid to increase the adhesion of tumor cells onto ECs. Our study demonstrates that the inhibition of v-ATPase by archazolid induces a pro-adhesive phenotype in endothelial cells that promotes their interaction with cancer cells, whereas the transmigration of tumor cells was reduced. These findings further support archazolid as a promising anti-metastatic compound.
Text: The vacuolar-type H + -ATPase (v-ATPase) is the major proton pump responsible for acidification of intracellular compartments in eukaryotic cells [1] . The enzyme consists of two multi-subunit complexes, the soluble V 1 transmembrane V o subcomplex required for the proton transport across membranes [1, 2] . In most cell types v-ATPases are only expressed in the endomembrane system to regulate and maintain the acidic pH of intracellular compartments such as lysosomes, endosomes, the Golgi apparatus, secretory granules and coated vesicles [3] . The function of v-ATPases is essential for cellular processes such as vesicular trafficking, receptor-mediated endocytosis and protein degradation and processing. In specialized cell types including osteoclasts and renal epithelial cells, v-ATPases can also be expressed on the plasma membrane, where they pump protons into the extracellular space [2] [3] [4] . In cancer cells v-ATPases are expressed on the plasma membrane in order to eliminate toxic cytosolic H + . Most importantly, v-ATPases contribute to the acidic tumor microenvironment, which leads to the activation of proteases, thus facilitating tumor cell migration, invasion and angiogenesis [5] [6] [7] . Since the inhibition of v-ATPase was shown to reduce the invasiveness of cancer cells and metastasis formation [8, 9] , this enzyme has emerged as a promising drug target in the recent years. Archazolid A and B are highly potent and specific inhibitors of v-ATPases [10] . They were first isolated from the myxobacterium Archangium gephyra [11] . These compounds inhibit v-ATPase at low nanomolar concentrations [10, 12] by binding to the subunit c of the V o complex. As their biological activity is comparable to the v-ATPase inhibitors bafilomycin and concanamycin [10, 11] , archazolids are natural compounds of high interest that can be used both as a tool to study the consequences of v-ATPase inhibition and as a lead for drug development. Archazolids can be either produced by fermentation [11] or by total synthesis [13, 14] .
In the field of cancer research several studies reported on interesting pharmacological effects of archazolid: It reduced the migration of different invasive tumor cells in vitro and cancer cell metastasis in vivo in a breast tumor mouse model [15] . Furthermore, archazolid activated pathways of cellular stress response and apoptosis in highly invasive tumor cells [16] . In classically activated macrophages, archazolid selectively induced the generation of tumor necrosis factor α (TNFα), which may indirectly promote tumor suppression [17] .
Up to now, the role of v-ATPases in endothelial cells has only rarely been investigated. The endothelium plays a crucial role in the pathogenesis and progression of cancer: The metastatic cascade includes local angiogenesis at the site of the primary tumor and adhesion of tumor cells at the site of metastasis [18] . Angiogenesis, the development of new blood vessels out of existing ones, depends on the proliferation, migration and differentiation of endothelial cells [19] . This process ensures the nutrient supply of the tumor and its growth [20] . Circulating cancer cells can adhere to the endothelium at distant sites. This adhesive interaction is mediated by receptors and corresponding ligands expressed on tumor and endothelial cells [18, 21] . V-ATPases have been reported to regulate intracellular pH and cell migration in microvascular endothelial cells [22, 23] . A recent study showed that the inhibition of v-ATPase by concanamycin prevented proliferation, reduced migration and impaired angiogenesis-related signaling in endothelial cells [24] . So far, there are no investigations on the role of endothelial v-ATPases for the process of tumor cell adhesion onto the endothelium. Thus, we were interested in the consequences of the inhibition of endothelial v-ATPase by archazolid on the interaction between endothelial and cancer cells. Various cell adhesion molecules on the endothelium, such as intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein (VCAM-1), E-selectin or N-cadherin [21] as well as integrins expressed on cancer cells have been reported to mediate cell adhesion of cancer cells onto endothelial cells [25] [26] [27] . Accordingly, we focused on these cell adhesion molecules and integrins. For the first time, our study revealed a link between the function of v-ATPases and the adhesion and transmigration properties of endothelial cells.
CellTiter-Blue Cell Viability Assay (Promega, Mannheim, Germany) was performed according to the manufacturer's protocol for determining the cell viability of cells after treatment with archazolid. This assay is based on the ability of metabolically active cells to reduce resazurin which results in fluorescent resorufin. The CellTiter-Blue Reagent was added to the cells 4 h before the endpoint of treatment. Fluorescence was measured with an Infinite F200 pro microplate reader (Tecan, Männedorf, Switzerland) at 560 nm (excitation) and 590 nm (emission).
CytoTox 96 Non-Radioactive Cytotoxicity Assay (Promega) was performed according to the manufacturer's instructions for determining the lactate dehydrogenase (LDH) release after treatment with archazolid. Lysis buffer was added to untreated cells 45 min before the end of treatment to induce the release of this enzyme. LDH is a cytosolic enzyme that is released by leaky cells. Released LDH catalyzes the enzymatic conversion of lactate to pyruvate which provides NADH for the conversion of iodonitrotetrazolium violet into a red formazan product in the presence of diaphorase. The absorbance was measured with a Varioskan Flash microplate reader (Thermo Fisher Scientific) at 490 nm.
LysoTracker Red DND-99 (Life Technologies, Thermo Fisher Scientific) is a dye to measure pH values in viable cells. HUVECs were cultured to confluence on collagen G-coated μ-slides (80826, ibidi, Martinsried, Germany) before they were treated with archazolid for 24 h. 1 μg/ ml Hoechst 33342 (Sigma-Aldrich, Munich, Germany) was used to visualize the nuclei and 50 nM LysoTracker Red DND-99 was used to visualize the acidic compartments which correspond to the lysosomes. Both dyes were incubated for 10 min at 37˚C before acquisition of single images by a Leica DMI6000 B fluorescence microscope (Leica Microsystems, Wetzlar, Germany).
HUVECs were seeded in collagen G-coated 24-well plates and grown to confluence for two days before treatment. The cells were incubated with indicated concentrations of archazolid for 24 h. Untreated MDA-MB-231 or PC-3 cells were labeled with CellTracker Green CMFDA Dye (5 μM in serum-free DMEM, 37˚C) for 30 min before 100,000 cells per well were added to HUVECs and were allowed to adhere for various time points at 37˚C. Non-adherent tumor cells were washed off three times with PBS containing Ca 2+ and Mg 2+ . Tumor cell adhesion was determined by fluorescence measurements with an Infinite F200 pro microplate reader (Tecan) at 485 nm (excitation) and 535 nm (emission).
For blocking the integrin β1 subunit on MDA-MB-231 or PC-3 cells, CellTracker Greenlabeled MDA-MB-231 or PC-3 cells were incubated with an anti-integrin β1 antibody (P5D2, ab24693, Abcam, Cambridge, United Kingdom) at a concentration of 1 μg antibody per one million cells in 1 ml DMEM. Before adding to archazolid-treated HUVECs, MDA-MB-231 or PC-3 cells were washed once with DMEM. For blocking the integrin β1 subunit on HUVECs, the cells were incubated with the anti-integrin β1 antibody (0.1 μg/well in ECGM). HUVECs were washed once with ECGM before untreated MDA-MB-231 or PC-3 cells were added to HUVECs.
For the adhesion of MDA-MB-231 or PC-3 cells onto extracellular matrix (ECM) components 24-well plates were coated with collagen G (10 μg/ml in PBS), human plasma fibronectin (10 μg/ml PBS) or laminin-411 (10 μg/ml in Dulbecco's PBS [DPBS] containing Ca 2+ and Mg 2+ ) at 4˚C overnight. The adhesion of MDA-MB-231 and PC-3 cells onto these three most prominent ECM components was carried out as described above (10 min adhesion at 37˚C).
HUVECs were grown on a porous filter membrane (Transwell insert, polycarbonate membrane, 8 μm pores; Corning, New York, USA) for 48 h and were treated as indicated. Untreated MDA-MB-231 cells were labeled with CellTracker Green CMFDA Dye (as described in the section cell adhesion assay) and resuspended in medium 199 (PAN-Biotech) containing 0.1% BSA. HUVECs were washed twice with medium 199 containing 0.1% BSA before MDA-MB-231 cells were allowed to transmigrate through the endothelial monolayer for 24 h. Medium 199 containing 0.1% BSA was used as negative control and medium 199 containing 20% FCS was used as chemoattractant for transmigration in the lower compartment. Non-migrated cells remaining in the upper compartment were carefully removed using a cotton swab. Transmigrated cells were lysed in radioimmunoprecipitation assay (RIPA) buffer and transmigration was quantified by measuring the fluorescence signal at 485 nm (excitation) and 535 nm (emission).
HUVECs were grown to confluence on 6-well plates before they were treated with archazolid for 12 h. The cells were induced to upregulate the gene expression of cell adhesion molecules by TNFα. RNA was isolated using the RNeasy Mini Kit from Qiagen (Hilden, Germany) according to the manufacturer's protocol. On-column DNase digestion was performed to remove genomic DNA. RNA was transcribed into cDNA by Superscript II (Life Technologies, Thermo Fisher Scientific). qPCR experiments were performed using a StepOnePlus System (Applied Biosystems, Thermo Fisher Scientific) and data was analyzed by the StepOne and Ste-pOnePlus Software v2.3. Power SYBR Green PCR Master Mix (Life Technologies) and the comparative C T quantitation method (2 -ΔΔCT ) were used.
HUVECs were grown to confluence on 12-well plates before they were treated with archazolid for 24 h. Cells were treated with TNFα for 24 h to induce the expression of cell adhesion molecules. Subsequently, the cells were detached with HyClone HyQTase (GE Healthcare, Freiburg, Germany). In the case of ICAM-1 the detached cells were fixed with 4% formaldehyde (Polysciences, Hirschberg an der Bergstraße, Germany) in PBS for 10 min and washed once with PBS before incubating with the fluorescein isothiocyanate (FITC)-labeled anti-human CD54 (mouse, ICAM-1) antibody (MCA1615F, Biozol, Eching, Germany) at room temperature for 45 min. For all other proteins, the cells were not fixed and washed once with PBS before incubating with the antibodies phycoerythrin (PE)-labeled anti-human CD106 (mouse, VCAM-1), PE-labeled anti-human CD62E (mouse, E-selectin) and PE-labeled anti-human CD325 (mouse, N-cadherin) from Becton Dickinson on ice for 45 min. These antibodies were diluted in PBS containing 0.2% BSA. The surface expression of cell adhesion molecules was measured by flow cytometry (FACSVerse, Becton Dickinson, Heidelberg, Germany).
To stain the surface collagen on HUVECs, cells were incubated with an anti-human collagen antibody (rabbit, 1:40, ab36064, Abcam) on ice for 30 min. The staining procedure was performed on ice to ensure that surface proteins or antibodies are not endocytosed. The cells were washed once with PBS containing Ca 2+ and Mg 2+ before they were fixed with Roti-Histofix (Carl Roth). Alexa Fluor 488-conjugated anti-rabbit antibody (goat, 1:400, A11008, Life Technologies) was used as secondary antibody and Hoechst 33342 (1 μg/ml, Sigma-Aldrich) was used to visualize nuclei.
Confluent HUVECs in 6-well plates were treated as indicated. Cells were washed with ice-cold PBS and lysed with RIPA buffer supplemented with protease inhibitors (Complete Mini EDTA-free; Roche, Mannheim, Germany), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride, β-glycerophosphate, sodium pyrophosphate and H 2 O 2 . Protein determination was performed using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). Equal amounts of proteins (10-20 μg) were separated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE; Bio-Rad Laboratories, Munich, Germany). Separated proteins were transferred onto polyvinylidene difluoride membranes by tank blotting (Bio-Rad Laboratories) for immunodetection. Membranes were blocked with 5% boltinggrade milk powder (Carl Roth) in TBS containing 0.1% Tween 20 (Sigma-Aldrich). The following antibodies were used: mouse anti-human cathepsin B antibody (IM27L, Merck) (1:500), mouse anti-β-actin-peroxidase antibody (A3854, Sigma-Aldrich) (1:100,000) and antimouse IgG horse radish peroxidase (HRP)-linked antibody (7076, Cell Signaling, Frankfurt, Germany) (1:5,000). ImageJ version 1.49m was used for densitometric analysis.
Cathepsin B activity assay was performed as described in the publication by Kubisch et al. [28] . Confluent HUVECs or HMEC-1 seeded in 6-well plates were treated as indicated. Cells were washed with PBS and lysed with the non-denaturating M-PER mammalian protein extraction reagent (78501, Thermo Fisher Scientific) supplemented with protease inhibitors (Complete Mini EDTA-free, Roche), sodium orthovanadate, sodium fluoride, phenylmethylsulphonyl fluoride. The fluorogenic cathepsin B substrate Z-Arg-Arg-7-amido-4-methylcoumarin hydrochloride (C5429, Sigma-Aldrich) was added to 30 μg of the cell lysate diluted in assay buffer supplemented with 2 mM L-cysteine (C7880, Sigma-Aldrich) and incubated for 30 min at 40˚C. Fluorescence was measured at 348 nm (excitation) and 440 nm (emission) with a microplate reader (Varioskan Flash, Thermo Fisher Scientific). The intensity of the fluorescence signal corresponded to the cathepsin B enzyme activity. For background subtraction the cathepsin B inhibitor CA-074Me (Enzo Life Sciences, Lörrach, Germany) was added to an additional reaction.
The HUVEC Nucleofector Kit (Lonza, Cologne, Germany) was used to transfect HUVECs. The transfection was performed according to the manufacturer's protocol using 2.5 μg plasmid DNA for 500,000 cells (Nucleofector 2b Device, Lonza). 48 h after transfection the cells were treated for further experiments. The addgene plasmid #11249 hCathepsin B was kindly provided by Hyeryun Choe [29] . hCathepsin B was digested with PmeI and XbaI and the linear DNA fragment not corresponding to the human CTSB gene was religated to generate the empty pcDNA3.1 (-) delta MCS plasmid that was used for control transfections. The original backbone of hCathepsin B is the pcDNA3.1 (-) from Thermo Fisher Scientific. The control vector pcDNA3.1 (-) delta MCS used for our transfections was cloned on the basis of hCathepsin B and is therefore lacking almost the whole part of the multiple cloning site of the pcDNA3.1 (-).
Statistical analyses were performed using GraphPad Prism 5.0 (San Diego, USA). One-way ANOVA followed by Tukey's post-hoc test or unpaired t-test was used for the evaluation of a minimum of three independent experiments. The numbers of independently performed experiments (n) are stated in the corresponding figure legends. p 0.05 was considered as statistically significant. Data are expressed as mean ± standard error of the mean (SEM).
Since the v-ATPase inhibitor archazolid has never been used for studies in endothelial cells, we first performed cytotoxicity assays. We treated confluent HUVECs with up to 1 nM archazolid for 24 and 48 h and observed that this treatment has neither an influence on the metabolic activity nor on the release of LDH after 24 h (Fig 1A and 1B, left panels) . The metabolic activity and the release of LDH were only slightly affected by the highest concentration of archazolid after 48 h (Fig 1A and 1B, right panels) . Consequently, the following experiments were all carried out after 24 h (or less) of archazolid treatment in order to exclude any cytotoxic effects of archazolid within our experimental settings.
Microscopic analysis revealed that also the integrity of the endothelial monolayer was not affected by archazolid, but the cells showed a slightly different morphology (Fig 2A) : Archazolid-treated cells were swollen compared to control cells, which was not unexpected, as vacuolation of the endoplasmic reticulum (ER) has been described for other cell types and is typical for v-ATPase inhibitors [11, 16, 24, 30] . This effect was obvious both in subconfluent and in confluent cells (Fig 2A) . Inhibition of v-ATPase prevents the acidification of lysosomes [1, 31] . Using the cell-permeable dye LysoTracker Red DND-99, it is possible to label the acidic lysosomes in living cells. Thus, this dye can serve as an indicator of v-ATPase inhibition. To proof that archazolid is also functionally active as a v-ATPase inhibitor in HUVECs, cells were treated with 1 nM archazolid before they were incubated with LysoTracker Red DND-99 and Hoechst 33342. As shown in Fig 2B, the red vesicular staining corresponding to acidified lysosomes in control cells disappeared completely after treatment with archazolid. In summary, archazolid treatment for 24 h was not cytotoxic to quiescent HUVECs, but inhibited the functionality of the v-ATPase.
We analyzed the adhesion of MDA-MB-231 cells onto HUVECs. Confluent HUVECs were treated with up to 1 nM archazolid for 24 h. Untreated MDA-MB-231 cells were labeled with Cell-Tracker Green CMFDA Dye. Interestingly, v-ATPase inhibition strongly increased the attachment of the metastatic breast carcinoma cell line MDA-MB-231 onto HUVECs after 10 and 120 min of adhesion (Fig 3A and 3B) . We also investigated the influence of archazolid on the transendothelial migration of MDA-MB-231 cells. HUVECs seeded in a Boyden chamber were treated with 1 nM archazolid for 24 h. CellTracker Green-labeled MDA-MB-231 cells (not treated with archazolid) were allowed to transmigrate through the endothelial monolayer for 24 h. As shown in Fig 3C, archazolid significantly decreased the transendothelial migration of MDA-MB-231 cells.
The influence of archazolid on tumor cell adhesion was not only studied in HUVECs, which represent macrovascular endothelial cells, but also in microvascular HMEC-1 cells. Moreover, besides the breast cancer cell line MDA-MB-231, also PC-3 prostate cancer cells were used as a second metastatic cancer cell line. Archazolid treatment of endothelial cells increased the attachment of MDA-MB-231 cells onto the HMEC-1 monolayer after 120 min of adhesion ( Fig 4A) and increased the attachment of PC-3 cells onto the HUVEC monolayer after 30 and 60 min of adhesion (Fig 4B) . Of note, the adhesion of non-metastatic Jurkat cells, an acute T cell leukemia cell line, remained unaffected after treatment of HUVECs with archazolid (S1A Fig). Taken together, archazolid treatment augmented the adhesive properties of both micro-and macrovascular endothelial cells for metastatic tumor cells, but not for non-metastatic ones. Of note, cancer cell adhesion onto archazolid-activated endothelial cells increased with the time of adhesion.
The adhesion of tumor cells onto the endothelium is in principle similar to that of leukocytes, but slightly differs in the molecules that mediate the adhesion process. Ligands for the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin were found to be expressed on tumor cells and to mediate tumor-endothelial cell interaction [21] . Inhibition of the v-ATPase might affect the expression of endothelial cell adhesion molecules on mRNA or protein levels. To determine the mRNA expression of ICAM-1, VCAM-1, E-selectin and Ncadherin, HUVECs were treated with archazolid for 12 h. TNFα is known to upregulate the expression of ICAM-1, VCAM-1 and E-selectin [32] and, thus, served as positive control. Quantitative real-time PCR showed that v-ATPase inhibition in HUVECs did not alter the mRNA levels of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5A) . The protein expression of these adhesion molecules on the surface of endothelial cells was analyzed by flow cytometry. Archazolid (1 nM, 24 h) did not affect the cell surface expression of ICAM-1, VCAM-1, E-selectin and N-cadherin (Fig 5B) .
Besides ICAM-1, VCAM-1, E-selectin and N-cadherin, also integrins are able to mediate the process of cell adhesion [33] [34] [35] . Since none of the cell adhesion molecules expressed on HUVECs were regulated upon archazolid treatment, we considered integrins as potential interaction partners. Within this protein family β1-integrins have been reported to mediate tumor cell adhesion onto quiescent endothelial cells [25] . In order to elucidate the role of β1-integrins for the archazolid-induced tumor cell adhesion, the integrin β1-subunit was blocked either on MDA-MB-231 cells, PC-3 cells or on HUVECs. (Of note, as in all experiments throughout this study, only endothelial cells were treated with archazolid.) After blocking β1-integrins on MDA-MB-231 or PC-3 cells, the archazolid-induced tumor cell adhesion was reduced almost to control level (Fig 6A and 6B , left panels), whereas blocking of β1-integrins on HUVECs had no significant effect on the increase of tumor cell adhesion by v-ATPase inhibition (Fig 6A and 6B , right panels).
Depending on their α subunit, β1-integrins have a variety of ligands including extracellular matrix (ECM) components such as collagen, fibronectin and laminin [35] . Therefore, we hypothesized that archazolid treatment of endothelial cells might lead to an upregulation of these components. MDA-MB-231 and PC-3 cells were allowed to adhere onto plastic that was coated with these ECM components. This cell adhesion assay revealed that MDA-MB-231 as well as PC-3 cells favor the interaction with the ECM component collagen, as the adhesion onto collagen is much higher than onto the uncoated plastic control (Fig 7A) . MDA-MB-231 and PC-3 cells also adhered to fibronectin-coated plastic, but to a much lesser extent compared to the collagen coating. Therefore, we focused on the interaction between these two tumor cell lines and collagen. Blocking of the integrin β1 subunit on MDA-MB-231 and PC-3 cells clearly abolished the interaction with collagen (Fig 7B) , indicating that the attachment of these tumor cells to collagen is mediated by β1-integrins.
Since collagen is the major ECM component MDA-MB-231 and PC-3 cells interact with, the next step was to prove whether v-ATPase inhibition influences the amount of collagen expressed by HUVECs as extracellular matrix. To detect collagen on the endothelial surface, archazolid-treated HUVECs were labeled with an antibody against collagen type I-IV on ice to prevent endocytosis and to ensure that the antibody does not bind to intracellular collagen. Interestingly, archazolid increased the amount of surface collagen on HUVECs by about 50% (Fig 7C) . Control stainings were performed using an antibody against the cytosolic p65 subunit of the transcription factor nuclear factor κB (NFκB) to show that intracellular proteins were not detected by this staining method (S2 Fig) .
It was reported that v-ATPase inhibition by archazolid impairs the activity of cathepsin B [28, 36] , a lysosomal enzyme that degrades extracellular matrix components including collagen [37] [38] [39] [40] [41] . As collagen is degraded by cathepsin B and the activation of cathepsin B depends on v-ATPase activity [28, [36] [37] [38] 42] , we suggested that an accumulation of collagen on the surface of endothelial cells might be a consequence of an impaired functionality of cathepsin B. Therefore, an enzyme activity assay based on the proteolysis of a fluorogenic cathepsin B substrate was performed. In archazolid-treated HUVECs and HMEC-1 the activity of cathepsin B was induce both the mRNA (1 ng/ml TNF) and the cell surface expression (10 ng/ml TNF) of ICAM-1, VCAM-1, E-selectin and Ncadherin.
https://doi.org/10.1371/journal.pone.0203053.g005 Inhibition of endothelial vATPase increases tumor cell adhesion to endothelial cells strongly decreased by approximately 50% compared to control cells at an archazolid concentration of 1 nM (Fig 8A) . In line with this result, western blot analysis showed that archazolid (1 nM) reduces the protein expression of the mature, active form of cathepsin B to less than 40% of the control in HUVECs (Fig 8B) . To proof whether the archazolid-induced tumor cell adhesion is a consequence of the decreased amount of cathepsin B, HUVECs were transfected with a plasmid coding for human cathepsin B or with the empty vector as control. After 48 h, the transfected cells were treated with 1 nM archazolid. The level of cathepsin B after transfection and treatment was assessed by western blot analysis (Fig 9A) . Overexpression of cathepsin B strongly diminished both the basal and the archazolid-induced adhesion of MDA-MB-231 cells (Fig 9B) .
Targeting the proton pump v-ATPase for cancer therapy has gained great interest since its inhibition was reported to reduce the invasiveness of cancer cells and, most importantly, also metastasis [8, 9] . Thus, intensive research related to v-ATPases was done in cancer cells, whereas there are only few studies investigating v-ATPases in endothelial cells indicating a role in migration, proliferation and possibly angiogenesis [22] [23] [24] . In the present study we used the myxobacterial natural product archazolid to investigate the consequences of v-ATPase inhibition in the endothelium on tumor-endothelial cell interactions.
For the first time, we were able to show a link between v-ATPase and the adhesion and transmigration properties of the endothelium. Inhibition of the v-ATPase in endothelial cells by archazolid significantly increased the adhesion of metastatic cancer cells and decreased the transendothelial migration of cancer cells which was attributed to augmented collagen levels on the surface on archazolid-treated endothelial cells. Of note, adhesion of the non-metastatic Jurkat cell line onto archazolid-treated endothelial cells remained unaffected. The archazolidinduced adhesion of tumor cells was independent from the endothelial cell adhesion molecules ICAM-1, VCAM-1, E-selectin and N-cadherin, as their expression was not regulated by the compound. However, we found that the archazolid-induced tumor cell adhesion was mediated by β1-integrins expressed on MDA-MB-231 breast cancer and PC-3 prostate cancer cells as blocking of the integrin β1 subunit on these tumor cells reversed the pro-adhesive effect of archazolid. In adhesion experiments on plastic coated with extracellular matrix components, we could show that MDA-MB-231 and PC-3 cells clearly favored the interaction with collagen, whereas the adhesion of non-metastatic Jurkat cells was largely independent from extracellular matrix proteins (S1B Fig). The different adhesion properties of metastatic cancer cells and Jurkat cells might be a result of the distinct integrin expression pattern of each cell line. MDA-MB-231 and PC-3 cells express α2β1-and α3β1-integrins, which represent collagen receptors [43, 44] , while Jurkat cells express α4β1-integrins but lack α2β1-, α3β1-integrins [44] . α4β1integrins are receptors for VCAM-1 and fibronectin [35] and it has been shown that Jurkat cells interact with human endothelial cells that express VCAM-1 after cytokine treatment or cells transfected with VCAM-1 [45] . Our results are in line with previous studies showing that α2β1-and α3β1-integrin expressing MDA-MB-231 and PC-3 cells were able to rapidly attach to collagen in the cortical bone matrix. In contrast, Jurkat cells were not able to adhere [44] and might preferentially interact with cell adhesion molecules rather than with ECM proteins. α2β1-and α3β1-integrins can additionally act as laminin receptors [46] and at least α3β1integrins recognize fibronectin [46, 47] . Though expressing receptors for fibronectin and laminin, MDA-MB-231 and PC-3 cells adhered to fibronectin to a much lesser extent and did not adhere to laminin, probably due to lower affinities to these extracellular matrix components.
Importantly, v-ATPase inhibition by archazolid increased the surface levels of the extracellular matrix component collagen, which might explain that the increase of MDA-MB-231 and PC-3 cells onto archazolid-treated HUVECs is independent of endothelial cell adhesion molecules. By performing a live cell proteolysis assay, Cavallo-Medved et al. demonstrated ECM degradation, in particular of gelatin and collagen IV, in association with active cathepsin B in caveolae of endothelial cells during tube formation [40] . In addition, recent studies reported that v-ATPase inhibition impairs the activity of cathepsin B in cancer cells [28, 36] . Therefore, we suggested that the accumulation of collagen on the endothelial surface might be a consequence of impaired cathepsin B activity or expression in endothelial cells. In fact, we confirmed the impairment of cathepsin B activity by archazolid as the expression levels of the mature active form of this enzyme was strongly reduced. Cathepsin B is synthesized as preprocathepsin B on membrane-bound ribosomes. Following transport to the Golgi apparatus, the preprocathepsin B is glycosylated with mannose-containing oligosaccharides. The targeting of procathepsin B to lysosomes is mannose-6-phosphate receptor-dependent and its dissociation from the receptor as well as its proteolytic processing into mature cathepsin B requires acidification of the compartment [48] . In cancer cells v-ATPase inhibition by archazolid impaired the mannose-6-phosphate receptor-mediated trafficking from the trans-Golgi network to prelysosomal compartments resulting in a decrease of active lysosomal proteases like cathepsin B [28] . We assumed that the archazolid-induced decrease in cathepsin B activity and expression was based on the same mechanism. Interestingly, overexpression of cathepsin B attenuated the archazolid-induced adhesion of breast cancer cells onto endothelial cells, indicating that the adhesion negatively correlates with the expression of cathepsin B.
As cathepsin B can also degrade other extracellular matrix components such as fibronectin and laminin [38, 49] , v-ATPase inhibition could lead to an accumulation of these proteins and an increased adhesion of cells expressing fibronectin or laminin receptors. However, we did not focus on these ECM components since they were not relevant for the adhesion of MDA-MB-231 and PC-3 cells. These cells predominantly adhered to collagen, while the adhesion of Jurkat cells is mostly independent from the ECM proteins collagen, fibronectin or laminin (S1B Fig). Interestingly [50] . In hepatic cancer cells, archazolid reduces Ras/Raf/MEK/ERK signaling by altering the membrane composition and fluidity [51] . We assume that archazolid affects endothelial cells in a similar way leading to inhibition of Ras signaling and, therefore, reduced transendothelial migration of MDA-MB-231 cells.
Taken together, our study shows that archazolid reduces the activity and expression of cathepsin B in endothelial cells. As a result, the amount of collagen on the surface of endothelial cells was significantly upregulated, which finally resulted in an increased adhesion of the β1-integrin-expressing metastatic cancer cell lines MDA-MB-231 and PC-3 onto archazolidtreated endothelial cells, whereas the adhesion of non-metastatic Jurkat cells was unaffected. This study shows that the v-ATPase plays an important role in regulating the adhesion of cells expressing receptors for extracellular matrix components. Archazolid represents a promising tool to elucidate the role of v-ATPase in endothelial cells. Moreover, we for the first time linked the function of v-ATPase to the adhesion and transmigration of tumor cells onto endothelial cells as well as to the remodeling of the extracellular matrix on the surface of endothelial cells. The fact that the adhesion of metastatic tumor cells onto endothelial cells is increased while their transendothelial migration is reduced upon inhibition of endothelial v-ATPase by archazolid further supports the view of archazolid as a potential anti-metastatic compound. | How were untreated MDA-MB-231 cells labeled? | {
"answer_start": [
10518
],
"text": [
"CellTracker Green CMFDA Dye"
]
} | false |
5,307 | Gastroenteritis and respiratory infection outbreaks in French nursing homes from 2007 to 2018: Morbidity and all-cause lethality according to the individual characteristics of residents
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759171/
SHA: f1d456ea268266ff3c21317c4190e4fcb49b5e4f
Authors: Gaspard, Philippe; Mosnier, Anne; Simon, Loic; Ali-Brandmeyer, Olivia; Rabaud, Christian; Larocca, Sabrina; Heck, Béatrice; Aho-Glélé, Serge; Pothier, Pierre; Ambert-Balay, Katia
Date: 2019-09-24
DOI: 10.1371/journal.pone.0222321
License: cc-by
Abstract: BACKGROUND: Gastroenteritis (GE) and respiratory tract infection (RTI) outbreaks are a significant issue in nursing homes. This study aimed to describe GE and RTI outbreaks with infection and all-cause lethality rates according to the individual characteristics of nursing home residents. METHODS: Clinical and virological surveillance were conducted (2007 to 2018). Virus stratifications for the analysis were: outbreaks with positive norovirus or influenza identifications (respectively NoV+ or Flu+), episodes with no NoV or influenza identification or testing (respectively NoV- or Flu-). Associations between individual variables (sex, age, length of stay (LOS), autonomy status) and infection and lethality rates were tested with univariate and Mantel-Haenszel (MH) methods. RESULTS: 61 GE outbreaks and 76 RTI oubreaks (total 137 outbreaks) were recorded involving respectively 4309 and 5862 residents. In univariate analysis, higher infection rates and age were associated in NoV+, NoV-, and Flu+ contexts, and lower infection rates were associated with longer stays (NoV+ and NoV-). In MH stratified analysis (virus, sex (female/male)) adjusted for LOS (<4 or ≥4 years), the odds of being infected remained significant among older residents (≥86 years): NoV+/male (Odds ratio (OR(MH)): 1.64, 95% confidence interval (CI): 1.16–2.30) and Flu+/female and male (respectively OR(MH): 1.50, CI: 1.27–1.79 and 1.73, CI: 1.28–2.33). In univariate analysis, lower autonomy status (NoV+, Flu+ and Flu-) and increased age (Flu+) were associated with higher lethality. In MH adjusted analysis, significant OR(age) adjusted for autonomy was: Flu+/ ≥86 years compared with <86 years, 1.97 (1.19–3.25) and OR(autonomy) adjusted for age for the more autonomous group (compared with the less autonomous group) was: Flu+, 0.41 (0.24–0.69); Flu-, 0.42 (0.20, 0.90). CONCLUSION: The residents of nursing homes are increasingly elderly and dependent. The specific infection and lethality risks according to these two factors indicate that surveillance and infection control measures are essential and of high priority.
Text: Introduction Gastroenteritis (GE) and respiratory tract infection (RTI) outbreaks represent a significant burden of illness in nursing homes. Viruses cause the majority of these outbreaks, and noroviruses and influenza viruses are the most common pathogens [1, 2] .
Previous studies have suggested that viral respiratory infections and norovirus outbreaks are a common cause of hospitalization or death, particularly among elderly individuals [3] [4] [5] .
The impact of outbreaks has been described in terms of both frequency and epidemiology, but little is known about infection rates and all-cause lethality in GE and RTI nursing home outbreaks in relation to the individual characteristics of the residents [6] . The residents of these institutions are increasingly elderly and dependent, and the impact of this trend on the seasonal outbreak burden requires in-depth investigation. The results of studies focused on this issue could yield valuable information for nursing homes, allowing them to adapt their infection control strategies, in particular for improved assessment of infection risk.
Our objective was to describe GE and RTI infection and all-cause lethality rates according to the individual characteristics of nursing home residents (sex, age, length of stay, autonomy status), and to identify specific susceptibility patterns related to these types of viral outbreaks in these facilities.
The present study explored outbreaks in 14 sites (28 units with geriatric nursing home activities for a total of 1121 beds) caring for dependent people in southern Alsace (an area in northeastern France). Data were collected between September 2007 and August 2018 [7, 8] .
Each site was geographically independent and autonomous for social and care management. Units were located within the larger sites and were defined as a place having a dedicated team at one location.
During outbreaks at one site, only the residents in the units with confirmed cases were included. Outbreak inclusion depended on institutional alert to the hygiene team. Surveillance was done in each unit independently, and the members of staff had to inform a physician or charge nurse when two or more potential related cases of pneumonia or GE were observed within four days and when three or more cases were observed for other RTI. Units also had to inform the hygiene team when these threshold values were exceeded. For influenza, the first suspected case led to a local alert and the hygiene team was contacted. A practitioner from the hygiene team collected the information and evaluated the clinical signs, the virology information and the epidemiological context with the physician in the affected unit. The detected cluster was only put under surveillance if the hygiene team considered that there was a potential outbreak phenomenon. The duration of 4 days was in relation with the national protocol with alert to the authorities when 5 cases occurred within 4 days [9, 10] . On a local level and in addition to the clusters reported to the authorities, clusters with at least 3 cases within a period of seven days in one unit could be recorded if they were reported to the hygiene team. Because several outbreaks could potentially occur in the same unit during the surveillance period, a resident could be included repeatedly in different clusters. As a result, the observed patterns reflected the characteristics of an institutional population with longitudinal and pluriannual exposures.
Personal information and clinical information was collected by a practitioner from the hygiene team directly from the residents' health care records. Personal information was collected for all those present the first day of the outbreak. The collected information included: month and year of birth, sex, date of arrival at the nursing home and autonomy status. The autonomy status of residents in French nursing homes is assessed using the AGGIR scale (Autonomy Gerontology Groups Iso-Resources), which is the legal instrument for evaluating dependency in the elderly and whose primary purpose is the allocation of means and resources [11] .
With the AGGIR scale, autonomy is classified into 6 Iso-Resource Groups (GIR): GIR 1 (bedridden or armchair-bound persons, mental functions seriously altered and requiring continuous presence), GIR 2 (bedridden or armchair-bound persons, mental functions not totally altered and requiring assistance in most activities of daily living, or mental functions altered with preserved ability to get around), GIR 3 (preserved mental autonomy with partially preserved motor autonomy and assistance several times a day for physical autonomy), GIR 4 (moves around the home and sometimes assistance for washing, dressing, physical activities or eating), GIR 5 (only occasional assistance for washing, meal preparation, and housework), GIR 6 (autonomy for essential tasks of daily living). In outbreaks where the influenza virus was identified, influenza vaccination status and oseltamivir prescriptions were recorded as well. A file is transmitted in the Supporting Information with all previous data (S1 Data).
GE was defined as the sudden onset of vomiting and/or diarrhea over a 24 h period: (i) diarrhea �3 episodes, (ii) and/or vomiting �3 episodes, (iii) or diarrhea or vomiting <3 episodes with two or more other symptoms (diarrhea, vomiting, stomach ache, abdominal cramps, nausea, fever, mucus in stools) [1] .
RTI presentation in older adults may be atypical, like for other acute illnesses in this age group [12] . We used the recommended definitions for RTI surveillance in geriatric units, divided in 3 subcategories: (i) common cold syndromes or pharyngitis (at least two of the following criteria: runny nose or sneezing, stuffy nose (i.e. congestion), sore throat or hoarseness or difficulty swallowing, dry cough, swollen or tender glands in the neck (cervical lymphadenopathy)), (ii) influenza-like illness (both the following criteria must be met: fever AND at least three other symptoms (chills, new headache or eye pain, myalgia or body aches, malaise or loss of appetite, sore throat, new or increased dry cough)) and (iii) lower respiratory tract infection (both of the following criteria must be met: at least two respiratory signs or symptoms (new or increased cough, new/increased sputum production, O 2 saturation <94% or reduced >3% from baseline, abnormal lung examination (new or changed), pleuritic chest pain, respiratory rate �25 breaths/min AND one or more constitutional signs/symptoms (fever, leukocytosis, confusion, acute functional decline)) [13] [14] [15] [16] . Infection corresponding to one of these three subcategories was included in this study and classified as RTI.
For both infection types, the practitioner from the hygiene team obtained clinical information from the patient's health care records, and members of the health care team were consulted if necessary to complete any missing information. At the end of the episode (within seven days after the last identified case), case inclusion as exposed and not infected (ENI) or exposed and infected (EI) was determined with a resident physician.
In order to study the lethality, the presence of each infected resident was evaluated once at least 56 days after the last case of each outbreak. Each resident was followed up retrospectively during eighth 7-day interval (I n, n = 1 to 8, total 56 days, between the date of onset of symptoms and the fifty-sixth day of the studied period) with three different possibilities: present (alive and officially residing in the institution), lost to follow-up (alive at the date of departure but no longer residing in the institution (return home, transfer to another institution)) or death (death recorded in the health care record). The dates of death and lost to follow-up were recorded.
Testing for the virus was not systematic and was decided by the physicians in each institution in the presence of clinical signs.
For GE, stool samples were sent to the National Reference Centre for Gastroenteritis Viruses in Dijon for laboratory testing, as previously described [8] . For RTI surveillance, rapid tests were used to identify the influenza virus. The rapid immunoassay diagnosis tests used for influenza detection were: Clearview1 Exact Influenza A and B (Inverness Medical, Cologne, Germany) from 2007 to 2014 and InfluenzaTop1 (Alldiag, Strasbourg, France) from 2014 to 2018. Given the low sensitivity of influenza rapid tests, they were no longer used once the control measures had been implemented and the influenza outbreak was under control. Samples were also occasionally sent to hospital laboratories or to the National Reference Centre for Influenza Viruses to detect viruses with real-time RT-PCR [17] . Most testing targeted the norovirus (NoV) and influenza virus, but other tests were occasionally performed by the National Reference Centre for Influenza Viruses (rhinovirus, respiratory syncytial virus, human metapneumovirus, parainfluenza 1, 2, 3 and 4, and coronavirus) and the National Reference Centre for Enteric Viruses (rotavirus, astrovirus, and adenovirus).
Because testing for the viruses was variable (from one institution/physician to another, not used in some outbreaks, types of virus sought) and considering the poor sensitivity of the rapid influenza tests, these two sources of data were used to define the epidemiological context of confirmed outbreaks. Consequently, individual cases were included consistently in all episodes according to clinical signs and medical evaluation. When virus testing was negative, the clinical signs were recorded and medical evaluation was used as previously to classify the included residents as infected or not infected.
The epidemiological context of each outbreak was defined according to whether the virus had been identified or not. One or more positive samples led to the qualification of a NoV (NoV+) or flu (Flu+) context. The other episodes were qualified as flu or NoV outbreaks with no specific identification or testing (NoV-and Flu-).
Flu and NoV contexts did not eliminate other potential enteric or respiratory pathogens.
Sex, age, length of stay (LOS, in years) and autonomy status were described for all exposed residents. Influenza vaccination and oseltamivir administration rates were calculated for confirmed influenza outbreaks. Dichotomous or categorical variables were expressed as percentages. In univariate analysis, the categories were specific in order to obtain a precise description of the age and LOS variables. Class intervals were 5 years for age and one year for LOS. The residents classified as GIR 4 to 6 (sometimes, occasional and no assistance) were grouped together because they were few.
For the multi-level analysis with 2x2 tables, a median value was used to define the two-level age categories. For LOS, assessing the longest stays was necessary to identify the effect of longer exposure in a nursing home. Consequently, a four-year cutoff was chosen to create the two categories. For autonomy, the two most dependent categories (GIR � 2) were grouped together and compared with the more autonomous categories (GIR � 3).
The outbreak epidemiological contexts were used with the four categories: NoV+, Flu+, NoV-and flu-. Other GE or RTI viruses were occasionally identified, but the number of results was too limited to develop separate analyses. However, all the results are available in the tables about the virus investigations along with NoV and influenza identifications.
For the different categories, infection rate (EI/Exposed Residents (ER), in percentage) was calculated according to sex, age group, LOS and autonomy status. To investigate all-cause lethality and define the appropriate period for the 56-day monitoring (D 1 to 56 ), the all-cause lethality rate per 7-day interval (LR n /I n, n = 1 to 8 ) was calculated: (number of deaths during interval I n /(EI alive the first day of n th studied interval minus lost to follow-up EI during the interval I n ) � 100).
Seeing as successive clusters could occur within the same site, potentially influencing allcause lethality, the serial interval in days (SI d ) was calculated. The SI d was the time period between the onset of symptoms of the last case in initial outbreak (N) and the onset of symptoms of the first case in the following outbreak (N+1). Investigations were performed when SI d was shorter or equal to the length of the previous D 1 to 56 and the following parameters were evaluated for these specific situations: number of episodes, residents infected in both outbreaks, and death among the identified individuals.
Finally, according to the death rate and the impact of successive outbreaks, the number of 7-day intervals (N.I n ) to take into account was defined, and the all-cause lethality rate was analyzed during these periods (I 1 to N th .I n or D 1 to 7 � N ).
All-cause lethality rates were calculated with the following formula: (number of deaths from D 1 to 7 � N /(EI number at D 1 minus lost to follow-up among EI during the period D 1 to 7 � N ) � 100). Estimation of the turnover rate per 7-day interval among the infected residents was calculated on the base of the LOS (median in years) with the following formula: (proportion of discharged residents: 50.0% in the case of the median)/[(median LOS � 365)/7)]. The average rate of residents discharged per 7-day period was calculated: [(number of lost to follow up during the period D 1 to 7 � N /number of exposed and infected residents at D 1 )/N 7-day interval] � 100.
As some residents were included in several outbreaks during the surveillance, the observations were not completely independent; non-parametric tests were used as a result. In univariate analysis, Chi-square or Fisher exact tests (expected number of frequencies fewer than 5) were used to compare infection and lethality rates according to the studied parameters and the odds ratio was calculated by median-unbiased estimation. The Kruskal-Wallis test was used to compare median values. Confidence intervals for medians were calculated with bootstrap methods.
Covariate adjusted analyses were performed with two tables (2x2). The respective impact of each individual factor was tested with Mantel-Haenszel chi-squared tests. The equality of the stratum odds ratios was tested with the Woolf test of homogeneity. Finally, for each virus context, multiple tables (2x2) were generated and tested with confounding variables, effect modifiers or covariables. Statistical analyses were done using R for Mas OS X version R 3.4.1 software with RStudio version 1.0.153. A file is transmitted in the Supporting Information with all R codes and the packages used (S1 R Codes). Differences were considered significant at p � 0.05.
The French Data Protection Authority approved data collection and analysis (DE-2013-074) and the local ethics committee (Espace Local de Réflexion Ethique, Centre Hospitalier de Rouffach) approved the study protocol (ERLE-32). According to the French law for biomedical research and human experimentation, individual written consent was not required from the patients or their relatives for data collection. Each year, the referring local practitioner of the study coordinated with the doctors working in the nursing home. At the beginning of the surveillance period, information regarding participation in the study was displayed in the family vising area, including a document about their right to access and rectify personal data. After collection, data were rendered anonymous. No specific authorization was needed to retrospectively analyze anonymous data collected during routine care in the context of routine surveillance.
A total of 137 outbreaks were recorded in the 14 sites. RTI outbreaks were more frequent than GE outbreaks (76 outbreaks and 5862 exposed residents vs. 61 outbreaks and 4309 exposed residents, respectively). Overall, 7643 of the exposed residents were women and 2528 were men. The median age was 86.7 years old (interquartile range: 81.1-91.0 years).
Virus investigations (respectively 389 samples for RTI and 143 for GE with all the detailed results in S1-S4 Tables) confirmed a considerable number of norovirus-related GE outbreaks (34/61) and influenza-related RTI outbreaks (46/76). For GE outbreaks, 2524 residents were in a NoV+ context versus 1785 in a NoV-context, and for RTI outbreaks, 3479 residents were in a Flu+ context versus 2383 in a Flu-context.
For GE surveillance in the NoV+ context, there were 1093 EI residents versus 1431 ENI residents, whereas in the NoV-context, there were 583 EI residents versus 1202 ENI residents. Therefore, the infection rate was higher in the NoV+ context (43.3%) than in the NoV-context (32.7%, (odds ratio (OR): 0.63, 95% confidence interval (CI): 0.56-0.72), p < 0.001).
For RTI surveillance, the rates of infection were similar with and without confirmed influenza: 31.5% (N = 1095 EI residents /3479 exposed residents) vs. 30.5% (N = 728 EI residents/ 2383 exposed residents, OR: 0.96, CI: 0.85-1.07, p = 0.47). Moreover, infection rate in the NoV + context was higher than the three other contexts: NoV-(OR: 0.63, CI: 0.56-0.72), Flu+ (OR: 0.60, CI:0.54-0.67) and Flu-(OR: 0.58, CI: 0.51-0.65).
In univariate analysis, certain individual characteristics were associated with significant variations in the infection rate (S5 Table) . The infection rate increased with age (except in the Flucontext) and, decreased with LOS during GE outbreaks. The covariate adjusted analysis revealed specific significant effect modification according to sex (NoV+) and LOS (NoV-) (S6 Table) . In analyses stratified according to virus and sex, age adjusted for LOS remained significant for Flu+ and NoV+ outbreaks (males). In NoV-context, the effect modification of LOS remained significant (Table 1) . Finally, when autonomy was included and adjusted for age (virus, sex, LOS stratification), the less autonomous residents (female/LOS<4 years/age<86/ GIR 1-2) were affected more severely by Flu+ outbreaks with specific effect modification according to age (S7 Table) . The study of lethality rates in infected residents over the 56 days after onset indicated that there were significant variations for RTI but no change for GE (Table 2 ). Significant differences appeared after 28 days in the context of Flu+ outbreaks and other RTI outbreaks.
The analysis of successive or simultaneous clusters in the same institutions was performed when the time period between the onset of symptoms of the last case in outbreak N and the onset of symptoms of the first case in outbreak N+1 was �56 days (S8 Table) . 44 of the 137 outbreaks (32.12%) were identified, and 194 of the 3499 exposed and infected residents contracted multiple infections. The percentage of exposed and infected residents implicated in more than one virus stratification was 11.09% ((194 � 2)/3499). Moreover, two deceased residents were included in the NoV-Na and Flu lethality analyses because death occurred within 56 days for both infections. The analysis of virus stratification of the 44 outbreaks showed the absence of successive clusters for the same category. The same analysis for the first four 7-day intervals (Days 1 to 28) showed the respective values: 26 outbreaks (18.98%), 117 residents ((6.69% ((117 � 2)/3499)), one dead resident.
Finally, according to the higher lethality impact during the first four 7-day intervals and to limit the impact of successive clusters in the same site, all cause lethality rates were studied according to individual parameters for the four 7 days intervals with the respective number of According to the surveillance type (GE or RTI), the lethality rates differed significantly: 1.6% versus 3.4% (respectively NoV+ and NoV-contexts, OR: 2.24, CI: 1.16-4.39, p = 0.02) and 8.3% versus 5.6% (respectively Flu+ and Flu-, OR: 0.67, CI: 0.45-0.97, p = 0.04).
In univariate analysis (S9 Table) , low autonomy status in the NoV+, Flu+ and Flu-contexts was most significantly associated with increased all-cause lethality, and age was associated with higher lethality in the Flu+ context. In the adjusted analysis, no significant statistical differences were identified in GE outbreaks. For RTI episodes, the adjusted analysis showed that autonomy had a significant impact when adjusted for sex, age or LOS (Flu+ and Flu-NA) and that age had a significant impact when adjusted for sex, autonomy or LOS (Flu+) (S10 Table) .
In Table 3 , the specific effects of age or autonomy were tested. Significant OR age adjusted for autonomy were: Flu+/age �86 years (compared with the <86 group), 1.97 (1.19-3.25). OR autonomy adjusted for age were for GIR 3-6 (compared with GIR 1-2): Flu+, 0.41 (0.24-0.69); Flu-, 0.42 (0.20, 0.90).
Finally, despite the low number of residents and deaths per category, and consequently the limited robustness of the results, autonomy adjusted for age with stratification according to virus, sex and LOS showed that the effects were higher among subgroups of less autonomous residents (female or male/LOS<4 years/GIR 1-2) in Flu+ outbreaks, and there was also higher mortality in the small subgroup of autonomous men with LOS � 4 years (higher mortality) (S11 Table) .
In the Flu+ context, data regarding vaccination status and oseltamivir prescriptions were available but not used in this study.
In the present study, surveillance data obtained during GE and RTI outbreaks in nursing homes were used to construct stratified analyses and to identify specific infection and all-cause lethality rates according to the residents' individual characteristics.
The infection rates observed here were similar to those found in previous studies of NoV and Influenza outbreaks (odds of being infected during a Flu+ outbreak were around 40% less than during a NoV+ outbreak). Reported infection rates were close to 30.0% in influenza outbreaks and 40.0% in NoV outbreaks [18] [19] [20] .
Older age appeared to increase the likelihood of GE and influenza infection, with increasing rates among older residents. Age is a well-known factor for influenza and norovirus severity in the elderly and in nursing homes [21, 22] . For NoV, the highest incidence estimates (5-year age strata) was found in the �85 year-category (approximately 800 men and for 1,400 women per 100,000 inhabitants). In our study, univariate analysis (NoV+) showed that the odds of being infected were 1.5 to 1.6 times higher if a resident was older than 85. Moreover, an adjusted analysis of GE outbreaks highlighted different effects among subgroups of residents according to sex and LOS. Indeed, multiple and/or repeated exposure to GE viruses while institutionalized may lead to susceptibility or possible increased immunity in some residents [23] . For the sex variable, two factors could explain the effect: a possible selection bias with men reporting mild infections less than women (particularly in the <86 years subgroup) or that male susceptibility was different (age, LOS, immunity,. . .). A German study from 2013 also reported a greater impact in women [21] . Moreover, when age analysis was stratified by sex and LOS, no Epidemic impacts in nursing homes significant impact was observed in women; the only significant differences were fewer infections in men in the <86-subgroup (except in the NoV-with LOS <4 years).
For the RTI outbreaks, sex and LOS variables did not have a significant effect. In residents older than 86, the odds of being infected in Flu+ context were 1.5 times higher for women and 1.7 for men. In univariate analysis, contrary to the other virus contexts where odds ratios were rarely above 2, residents over 95 years old had increased odds of infection of � 2.8 compared with the 70-year-old category, and for the 100 year-old group the odds were approximately 3.8. In the Flu+ context, autonomy adjusted for age (virus, sex and LOS stratification) revealed a possible increase in infection rates among less autonomous residents. A previous study found that when elderly residents were exposed to the A(H3N2) virus, there were higher rates of infection and reinfection, and more significant effects on the institution than with other influenza types/subtypes. In the community, the relative illness ratio (RIR) in the [22, 24] .
The incidence of influenza infection and the associated risks were well described by age group, but the specific impact according to age was not studied. The results of this work highlighted the specific age distribution of influenza illnesses among the nursing home residents and the more significant impact among the older residents. This specific susceptibility could be a critical factor in the institutional exposure and dissemination of influenza and could partly explain the high infection impact in the elderly institutional population.
In this work, autonomy status was not the main factor associated with infection (no significant impact in GE and in Flu-contexts). However, in Flu+ outbreaks, a high level of dependency was associated with a higher risk of falling ill. This observation implies that staff could play a role in the spread of infection (highly dependent and less mobile residents are less likely to contaminate themselves) or that the more active residents may be less fragile and/or have a greater involvement in the recommended infection control measures. Finally, improving compliance with personal hygiene measures both for nursing staff and residents might be expected to have a beneficial effect on infection rates. Previous studies identified higher NoV infection rates in highly dependent individuals, but the results were not adjusted for age and LOS to take into account the potential correlation with the autonomy status [20] .
Lethality is difficult to assess in nursing homes because death is frequent. Our GE and RTI episodes occurred during the winter seasons, and there are possible interactions between outbreaks and increased mortality at this time of the year [25] . The all-cause lethality rate of the infected residents in our study reflected global mortality including GE and RTI outbreaks and the global epidemiological context. Not surprisingly, a higher all-cause lethality rate was observed in the influenza contexts, as reported in previous studies [25] [26] [27] . Age and autonomy had similar effects in the different contexts, but in GE and to a lesser degree in Flu-outbreaks, the relatively small number of deaths could have limited the power of the statistical tests. In nursing homes, residents are generally discharged due to death. The number of residents lost to follow up was low (0.14% in the first 28 days), so the 7-day interval turnover rate calculated on the base of the median LOS provides a good indication of the average case fatality rate. The lethality rate for NoV+ outbreaks was similar to the estimated 7-day interval turnover rate (1.6%) indicating that this context had a limited impact on the death rate.
The all-cause lethality rate was most affected by age and autonomy. Both individual characteristics were significant in the Flu+ outbreaks, and autonomy adjusted for age was significant in the Flu-episodes. The influence of age on mortality in a context of influenza has already been described: a very high mortality rate (831/100,000 inhabitants) was reported in persons 90 years of age and older compared with those aged 65-69 years (23/100,000 inhabitants) [28] . In our univariate analysis, the higher risk was observed in the �90 group whose risk of death was at least 2.6 higher than the <70 group. When adjusted for autonomy, the impact of age was not significant in more autonomous residents in the Flu+ context and not at all in the Flucontext. The opposite analysis (autonomy adjusted for age) showed higher global impact in the less autonomous group (Flu-) or only in the �86 age group (Flu+). Age and autonomy are a reflection of resident's level of frailty. Clinical frailty scores were not used in this study, but in a previous study of patients with critical illness, they were associated with greater mortality, regardless of age [29] . This suggests that in addition to age, autonomy can be a valuable indicator for the assessment of outbreak impact in outbreak surveillance. Other studies have suggested that age and certain comorbidities are independent risk factors for the influenza mortality rate or that mortality increase according to the number of risk factors [28, 30] . Comorbidities and underlying diseases of various severities could reflect overall frailty and consequently the risk of death. In nursing homes, information about autonomy and age are easier to collect and interpret than data on comorbidities. These various approaches should be evaluated and compared in the goal of optimizing risk assessment among nursing home residents.
The present work has two main limitations. First, the virus information was incomplete (limited identification, mainly influenza rapid tests for the RTI). Consequently, some episodes in the levels with no available identification may also have been associated with influenza or norovirus, and multiple contaminations could have been underestimated or not taken into account. Moreover, vaccination and oseltamivir prescriptions were recorded but not included because the influenza genotype was not determined and identification was limited.
Secondly, the deaths of uninfected residents were not recorded in this protocol even though such data would have provided valuable information about the global epidemiological context.
In conclusion, specific susceptibility patterns were observed among exposed residents. In this cohort of nursing homes, infection rates varied according to virus, sex, length of stay and age, and there were major differences in lethality depending on virus, age and autonomy score. The collected data were easy to record and could be used to improve the characterization of seasonal outbreaks in nursing homes, whose residents are particularly vulnerable. Finally, as the average age and dependency level of residents continues to increase, subsequently increasing the risk of infection and death, health care staff will have to be increasingly vigilant during seasonal outbreaks and targeted interventions should be implemented.
Supporting information S1 Data. (CSV) S1 R Codes. (R) S1 Table. (XLSX) S10 Table. (XLSX) S11 Table. (XLSX) | What was the goal of the study? | {
"answer_start": [
697
],
"text": [
"describe GE and RTI outbreaks with infection and all-cause lethality rates according to the individual characteristics of nursing home residents"
]
} | false |
5,308 | Gastroenteritis and respiratory infection outbreaks in French nursing homes from 2007 to 2018: Morbidity and all-cause lethality according to the individual characteristics of residents
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759171/
SHA: f1d456ea268266ff3c21317c4190e4fcb49b5e4f
Authors: Gaspard, Philippe; Mosnier, Anne; Simon, Loic; Ali-Brandmeyer, Olivia; Rabaud, Christian; Larocca, Sabrina; Heck, Béatrice; Aho-Glélé, Serge; Pothier, Pierre; Ambert-Balay, Katia
Date: 2019-09-24
DOI: 10.1371/journal.pone.0222321
License: cc-by
Abstract: BACKGROUND: Gastroenteritis (GE) and respiratory tract infection (RTI) outbreaks are a significant issue in nursing homes. This study aimed to describe GE and RTI outbreaks with infection and all-cause lethality rates according to the individual characteristics of nursing home residents. METHODS: Clinical and virological surveillance were conducted (2007 to 2018). Virus stratifications for the analysis were: outbreaks with positive norovirus or influenza identifications (respectively NoV+ or Flu+), episodes with no NoV or influenza identification or testing (respectively NoV- or Flu-). Associations between individual variables (sex, age, length of stay (LOS), autonomy status) and infection and lethality rates were tested with univariate and Mantel-Haenszel (MH) methods. RESULTS: 61 GE outbreaks and 76 RTI oubreaks (total 137 outbreaks) were recorded involving respectively 4309 and 5862 residents. In univariate analysis, higher infection rates and age were associated in NoV+, NoV-, and Flu+ contexts, and lower infection rates were associated with longer stays (NoV+ and NoV-). In MH stratified analysis (virus, sex (female/male)) adjusted for LOS (<4 or ≥4 years), the odds of being infected remained significant among older residents (≥86 years): NoV+/male (Odds ratio (OR(MH)): 1.64, 95% confidence interval (CI): 1.16–2.30) and Flu+/female and male (respectively OR(MH): 1.50, CI: 1.27–1.79 and 1.73, CI: 1.28–2.33). In univariate analysis, lower autonomy status (NoV+, Flu+ and Flu-) and increased age (Flu+) were associated with higher lethality. In MH adjusted analysis, significant OR(age) adjusted for autonomy was: Flu+/ ≥86 years compared with <86 years, 1.97 (1.19–3.25) and OR(autonomy) adjusted for age for the more autonomous group (compared with the less autonomous group) was: Flu+, 0.41 (0.24–0.69); Flu-, 0.42 (0.20, 0.90). CONCLUSION: The residents of nursing homes are increasingly elderly and dependent. The specific infection and lethality risks according to these two factors indicate that surveillance and infection control measures are essential and of high priority.
Text: Introduction Gastroenteritis (GE) and respiratory tract infection (RTI) outbreaks represent a significant burden of illness in nursing homes. Viruses cause the majority of these outbreaks, and noroviruses and influenza viruses are the most common pathogens [1, 2] .
Previous studies have suggested that viral respiratory infections and norovirus outbreaks are a common cause of hospitalization or death, particularly among elderly individuals [3] [4] [5] .
The impact of outbreaks has been described in terms of both frequency and epidemiology, but little is known about infection rates and all-cause lethality in GE and RTI nursing home outbreaks in relation to the individual characteristics of the residents [6] . The residents of these institutions are increasingly elderly and dependent, and the impact of this trend on the seasonal outbreak burden requires in-depth investigation. The results of studies focused on this issue could yield valuable information for nursing homes, allowing them to adapt their infection control strategies, in particular for improved assessment of infection risk.
Our objective was to describe GE and RTI infection and all-cause lethality rates according to the individual characteristics of nursing home residents (sex, age, length of stay, autonomy status), and to identify specific susceptibility patterns related to these types of viral outbreaks in these facilities.
The present study explored outbreaks in 14 sites (28 units with geriatric nursing home activities for a total of 1121 beds) caring for dependent people in southern Alsace (an area in northeastern France). Data were collected between September 2007 and August 2018 [7, 8] .
Each site was geographically independent and autonomous for social and care management. Units were located within the larger sites and were defined as a place having a dedicated team at one location.
During outbreaks at one site, only the residents in the units with confirmed cases were included. Outbreak inclusion depended on institutional alert to the hygiene team. Surveillance was done in each unit independently, and the members of staff had to inform a physician or charge nurse when two or more potential related cases of pneumonia or GE were observed within four days and when three or more cases were observed for other RTI. Units also had to inform the hygiene team when these threshold values were exceeded. For influenza, the first suspected case led to a local alert and the hygiene team was contacted. A practitioner from the hygiene team collected the information and evaluated the clinical signs, the virology information and the epidemiological context with the physician in the affected unit. The detected cluster was only put under surveillance if the hygiene team considered that there was a potential outbreak phenomenon. The duration of 4 days was in relation with the national protocol with alert to the authorities when 5 cases occurred within 4 days [9, 10] . On a local level and in addition to the clusters reported to the authorities, clusters with at least 3 cases within a period of seven days in one unit could be recorded if they were reported to the hygiene team. Because several outbreaks could potentially occur in the same unit during the surveillance period, a resident could be included repeatedly in different clusters. As a result, the observed patterns reflected the characteristics of an institutional population with longitudinal and pluriannual exposures.
Personal information and clinical information was collected by a practitioner from the hygiene team directly from the residents' health care records. Personal information was collected for all those present the first day of the outbreak. The collected information included: month and year of birth, sex, date of arrival at the nursing home and autonomy status. The autonomy status of residents in French nursing homes is assessed using the AGGIR scale (Autonomy Gerontology Groups Iso-Resources), which is the legal instrument for evaluating dependency in the elderly and whose primary purpose is the allocation of means and resources [11] .
With the AGGIR scale, autonomy is classified into 6 Iso-Resource Groups (GIR): GIR 1 (bedridden or armchair-bound persons, mental functions seriously altered and requiring continuous presence), GIR 2 (bedridden or armchair-bound persons, mental functions not totally altered and requiring assistance in most activities of daily living, or mental functions altered with preserved ability to get around), GIR 3 (preserved mental autonomy with partially preserved motor autonomy and assistance several times a day for physical autonomy), GIR 4 (moves around the home and sometimes assistance for washing, dressing, physical activities or eating), GIR 5 (only occasional assistance for washing, meal preparation, and housework), GIR 6 (autonomy for essential tasks of daily living). In outbreaks where the influenza virus was identified, influenza vaccination status and oseltamivir prescriptions were recorded as well. A file is transmitted in the Supporting Information with all previous data (S1 Data).
GE was defined as the sudden onset of vomiting and/or diarrhea over a 24 h period: (i) diarrhea �3 episodes, (ii) and/or vomiting �3 episodes, (iii) or diarrhea or vomiting <3 episodes with two or more other symptoms (diarrhea, vomiting, stomach ache, abdominal cramps, nausea, fever, mucus in stools) [1] .
RTI presentation in older adults may be atypical, like for other acute illnesses in this age group [12] . We used the recommended definitions for RTI surveillance in geriatric units, divided in 3 subcategories: (i) common cold syndromes or pharyngitis (at least two of the following criteria: runny nose or sneezing, stuffy nose (i.e. congestion), sore throat or hoarseness or difficulty swallowing, dry cough, swollen or tender glands in the neck (cervical lymphadenopathy)), (ii) influenza-like illness (both the following criteria must be met: fever AND at least three other symptoms (chills, new headache or eye pain, myalgia or body aches, malaise or loss of appetite, sore throat, new or increased dry cough)) and (iii) lower respiratory tract infection (both of the following criteria must be met: at least two respiratory signs or symptoms (new or increased cough, new/increased sputum production, O 2 saturation <94% or reduced >3% from baseline, abnormal lung examination (new or changed), pleuritic chest pain, respiratory rate �25 breaths/min AND one or more constitutional signs/symptoms (fever, leukocytosis, confusion, acute functional decline)) [13] [14] [15] [16] . Infection corresponding to one of these three subcategories was included in this study and classified as RTI.
For both infection types, the practitioner from the hygiene team obtained clinical information from the patient's health care records, and members of the health care team were consulted if necessary to complete any missing information. At the end of the episode (within seven days after the last identified case), case inclusion as exposed and not infected (ENI) or exposed and infected (EI) was determined with a resident physician.
In order to study the lethality, the presence of each infected resident was evaluated once at least 56 days after the last case of each outbreak. Each resident was followed up retrospectively during eighth 7-day interval (I n, n = 1 to 8, total 56 days, between the date of onset of symptoms and the fifty-sixth day of the studied period) with three different possibilities: present (alive and officially residing in the institution), lost to follow-up (alive at the date of departure but no longer residing in the institution (return home, transfer to another institution)) or death (death recorded in the health care record). The dates of death and lost to follow-up were recorded.
Testing for the virus was not systematic and was decided by the physicians in each institution in the presence of clinical signs.
For GE, stool samples were sent to the National Reference Centre for Gastroenteritis Viruses in Dijon for laboratory testing, as previously described [8] . For RTI surveillance, rapid tests were used to identify the influenza virus. The rapid immunoassay diagnosis tests used for influenza detection were: Clearview1 Exact Influenza A and B (Inverness Medical, Cologne, Germany) from 2007 to 2014 and InfluenzaTop1 (Alldiag, Strasbourg, France) from 2014 to 2018. Given the low sensitivity of influenza rapid tests, they were no longer used once the control measures had been implemented and the influenza outbreak was under control. Samples were also occasionally sent to hospital laboratories or to the National Reference Centre for Influenza Viruses to detect viruses with real-time RT-PCR [17] . Most testing targeted the norovirus (NoV) and influenza virus, but other tests were occasionally performed by the National Reference Centre for Influenza Viruses (rhinovirus, respiratory syncytial virus, human metapneumovirus, parainfluenza 1, 2, 3 and 4, and coronavirus) and the National Reference Centre for Enteric Viruses (rotavirus, astrovirus, and adenovirus).
Because testing for the viruses was variable (from one institution/physician to another, not used in some outbreaks, types of virus sought) and considering the poor sensitivity of the rapid influenza tests, these two sources of data were used to define the epidemiological context of confirmed outbreaks. Consequently, individual cases were included consistently in all episodes according to clinical signs and medical evaluation. When virus testing was negative, the clinical signs were recorded and medical evaluation was used as previously to classify the included residents as infected or not infected.
The epidemiological context of each outbreak was defined according to whether the virus had been identified or not. One or more positive samples led to the qualification of a NoV (NoV+) or flu (Flu+) context. The other episodes were qualified as flu or NoV outbreaks with no specific identification or testing (NoV-and Flu-).
Flu and NoV contexts did not eliminate other potential enteric or respiratory pathogens.
Sex, age, length of stay (LOS, in years) and autonomy status were described for all exposed residents. Influenza vaccination and oseltamivir administration rates were calculated for confirmed influenza outbreaks. Dichotomous or categorical variables were expressed as percentages. In univariate analysis, the categories were specific in order to obtain a precise description of the age and LOS variables. Class intervals were 5 years for age and one year for LOS. The residents classified as GIR 4 to 6 (sometimes, occasional and no assistance) were grouped together because they were few.
For the multi-level analysis with 2x2 tables, a median value was used to define the two-level age categories. For LOS, assessing the longest stays was necessary to identify the effect of longer exposure in a nursing home. Consequently, a four-year cutoff was chosen to create the two categories. For autonomy, the two most dependent categories (GIR � 2) were grouped together and compared with the more autonomous categories (GIR � 3).
The outbreak epidemiological contexts were used with the four categories: NoV+, Flu+, NoV-and flu-. Other GE or RTI viruses were occasionally identified, but the number of results was too limited to develop separate analyses. However, all the results are available in the tables about the virus investigations along with NoV and influenza identifications.
For the different categories, infection rate (EI/Exposed Residents (ER), in percentage) was calculated according to sex, age group, LOS and autonomy status. To investigate all-cause lethality and define the appropriate period for the 56-day monitoring (D 1 to 56 ), the all-cause lethality rate per 7-day interval (LR n /I n, n = 1 to 8 ) was calculated: (number of deaths during interval I n /(EI alive the first day of n th studied interval minus lost to follow-up EI during the interval I n ) � 100).
Seeing as successive clusters could occur within the same site, potentially influencing allcause lethality, the serial interval in days (SI d ) was calculated. The SI d was the time period between the onset of symptoms of the last case in initial outbreak (N) and the onset of symptoms of the first case in the following outbreak (N+1). Investigations were performed when SI d was shorter or equal to the length of the previous D 1 to 56 and the following parameters were evaluated for these specific situations: number of episodes, residents infected in both outbreaks, and death among the identified individuals.
Finally, according to the death rate and the impact of successive outbreaks, the number of 7-day intervals (N.I n ) to take into account was defined, and the all-cause lethality rate was analyzed during these periods (I 1 to N th .I n or D 1 to 7 � N ).
All-cause lethality rates were calculated with the following formula: (number of deaths from D 1 to 7 � N /(EI number at D 1 minus lost to follow-up among EI during the period D 1 to 7 � N ) � 100). Estimation of the turnover rate per 7-day interval among the infected residents was calculated on the base of the LOS (median in years) with the following formula: (proportion of discharged residents: 50.0% in the case of the median)/[(median LOS � 365)/7)]. The average rate of residents discharged per 7-day period was calculated: [(number of lost to follow up during the period D 1 to 7 � N /number of exposed and infected residents at D 1 )/N 7-day interval] � 100.
As some residents were included in several outbreaks during the surveillance, the observations were not completely independent; non-parametric tests were used as a result. In univariate analysis, Chi-square or Fisher exact tests (expected number of frequencies fewer than 5) were used to compare infection and lethality rates according to the studied parameters and the odds ratio was calculated by median-unbiased estimation. The Kruskal-Wallis test was used to compare median values. Confidence intervals for medians were calculated with bootstrap methods.
Covariate adjusted analyses were performed with two tables (2x2). The respective impact of each individual factor was tested with Mantel-Haenszel chi-squared tests. The equality of the stratum odds ratios was tested with the Woolf test of homogeneity. Finally, for each virus context, multiple tables (2x2) were generated and tested with confounding variables, effect modifiers or covariables. Statistical analyses were done using R for Mas OS X version R 3.4.1 software with RStudio version 1.0.153. A file is transmitted in the Supporting Information with all R codes and the packages used (S1 R Codes). Differences were considered significant at p � 0.05.
The French Data Protection Authority approved data collection and analysis (DE-2013-074) and the local ethics committee (Espace Local de Réflexion Ethique, Centre Hospitalier de Rouffach) approved the study protocol (ERLE-32). According to the French law for biomedical research and human experimentation, individual written consent was not required from the patients or their relatives for data collection. Each year, the referring local practitioner of the study coordinated with the doctors working in the nursing home. At the beginning of the surveillance period, information regarding participation in the study was displayed in the family vising area, including a document about their right to access and rectify personal data. After collection, data were rendered anonymous. No specific authorization was needed to retrospectively analyze anonymous data collected during routine care in the context of routine surveillance.
A total of 137 outbreaks were recorded in the 14 sites. RTI outbreaks were more frequent than GE outbreaks (76 outbreaks and 5862 exposed residents vs. 61 outbreaks and 4309 exposed residents, respectively). Overall, 7643 of the exposed residents were women and 2528 were men. The median age was 86.7 years old (interquartile range: 81.1-91.0 years).
Virus investigations (respectively 389 samples for RTI and 143 for GE with all the detailed results in S1-S4 Tables) confirmed a considerable number of norovirus-related GE outbreaks (34/61) and influenza-related RTI outbreaks (46/76). For GE outbreaks, 2524 residents were in a NoV+ context versus 1785 in a NoV-context, and for RTI outbreaks, 3479 residents were in a Flu+ context versus 2383 in a Flu-context.
For GE surveillance in the NoV+ context, there were 1093 EI residents versus 1431 ENI residents, whereas in the NoV-context, there were 583 EI residents versus 1202 ENI residents. Therefore, the infection rate was higher in the NoV+ context (43.3%) than in the NoV-context (32.7%, (odds ratio (OR): 0.63, 95% confidence interval (CI): 0.56-0.72), p < 0.001).
For RTI surveillance, the rates of infection were similar with and without confirmed influenza: 31.5% (N = 1095 EI residents /3479 exposed residents) vs. 30.5% (N = 728 EI residents/ 2383 exposed residents, OR: 0.96, CI: 0.85-1.07, p = 0.47). Moreover, infection rate in the NoV + context was higher than the three other contexts: NoV-(OR: 0.63, CI: 0.56-0.72), Flu+ (OR: 0.60, CI:0.54-0.67) and Flu-(OR: 0.58, CI: 0.51-0.65).
In univariate analysis, certain individual characteristics were associated with significant variations in the infection rate (S5 Table) . The infection rate increased with age (except in the Flucontext) and, decreased with LOS during GE outbreaks. The covariate adjusted analysis revealed specific significant effect modification according to sex (NoV+) and LOS (NoV-) (S6 Table) . In analyses stratified according to virus and sex, age adjusted for LOS remained significant for Flu+ and NoV+ outbreaks (males). In NoV-context, the effect modification of LOS remained significant (Table 1) . Finally, when autonomy was included and adjusted for age (virus, sex, LOS stratification), the less autonomous residents (female/LOS<4 years/age<86/ GIR 1-2) were affected more severely by Flu+ outbreaks with specific effect modification according to age (S7 Table) . The study of lethality rates in infected residents over the 56 days after onset indicated that there were significant variations for RTI but no change for GE (Table 2 ). Significant differences appeared after 28 days in the context of Flu+ outbreaks and other RTI outbreaks.
The analysis of successive or simultaneous clusters in the same institutions was performed when the time period between the onset of symptoms of the last case in outbreak N and the onset of symptoms of the first case in outbreak N+1 was �56 days (S8 Table) . 44 of the 137 outbreaks (32.12%) were identified, and 194 of the 3499 exposed and infected residents contracted multiple infections. The percentage of exposed and infected residents implicated in more than one virus stratification was 11.09% ((194 � 2)/3499). Moreover, two deceased residents were included in the NoV-Na and Flu lethality analyses because death occurred within 56 days for both infections. The analysis of virus stratification of the 44 outbreaks showed the absence of successive clusters for the same category. The same analysis for the first four 7-day intervals (Days 1 to 28) showed the respective values: 26 outbreaks (18.98%), 117 residents ((6.69% ((117 � 2)/3499)), one dead resident.
Finally, according to the higher lethality impact during the first four 7-day intervals and to limit the impact of successive clusters in the same site, all cause lethality rates were studied according to individual parameters for the four 7 days intervals with the respective number of According to the surveillance type (GE or RTI), the lethality rates differed significantly: 1.6% versus 3.4% (respectively NoV+ and NoV-contexts, OR: 2.24, CI: 1.16-4.39, p = 0.02) and 8.3% versus 5.6% (respectively Flu+ and Flu-, OR: 0.67, CI: 0.45-0.97, p = 0.04).
In univariate analysis (S9 Table) , low autonomy status in the NoV+, Flu+ and Flu-contexts was most significantly associated with increased all-cause lethality, and age was associated with higher lethality in the Flu+ context. In the adjusted analysis, no significant statistical differences were identified in GE outbreaks. For RTI episodes, the adjusted analysis showed that autonomy had a significant impact when adjusted for sex, age or LOS (Flu+ and Flu-NA) and that age had a significant impact when adjusted for sex, autonomy or LOS (Flu+) (S10 Table) .
In Table 3 , the specific effects of age or autonomy were tested. Significant OR age adjusted for autonomy were: Flu+/age �86 years (compared with the <86 group), 1.97 (1.19-3.25). OR autonomy adjusted for age were for GIR 3-6 (compared with GIR 1-2): Flu+, 0.41 (0.24-0.69); Flu-, 0.42 (0.20, 0.90).
Finally, despite the low number of residents and deaths per category, and consequently the limited robustness of the results, autonomy adjusted for age with stratification according to virus, sex and LOS showed that the effects were higher among subgroups of less autonomous residents (female or male/LOS<4 years/GIR 1-2) in Flu+ outbreaks, and there was also higher mortality in the small subgroup of autonomous men with LOS � 4 years (higher mortality) (S11 Table) .
In the Flu+ context, data regarding vaccination status and oseltamivir prescriptions were available but not used in this study.
In the present study, surveillance data obtained during GE and RTI outbreaks in nursing homes were used to construct stratified analyses and to identify specific infection and all-cause lethality rates according to the residents' individual characteristics.
The infection rates observed here were similar to those found in previous studies of NoV and Influenza outbreaks (odds of being infected during a Flu+ outbreak were around 40% less than during a NoV+ outbreak). Reported infection rates were close to 30.0% in influenza outbreaks and 40.0% in NoV outbreaks [18] [19] [20] .
Older age appeared to increase the likelihood of GE and influenza infection, with increasing rates among older residents. Age is a well-known factor for influenza and norovirus severity in the elderly and in nursing homes [21, 22] . For NoV, the highest incidence estimates (5-year age strata) was found in the �85 year-category (approximately 800 men and for 1,400 women per 100,000 inhabitants). In our study, univariate analysis (NoV+) showed that the odds of being infected were 1.5 to 1.6 times higher if a resident was older than 85. Moreover, an adjusted analysis of GE outbreaks highlighted different effects among subgroups of residents according to sex and LOS. Indeed, multiple and/or repeated exposure to GE viruses while institutionalized may lead to susceptibility or possible increased immunity in some residents [23] . For the sex variable, two factors could explain the effect: a possible selection bias with men reporting mild infections less than women (particularly in the <86 years subgroup) or that male susceptibility was different (age, LOS, immunity,. . .). A German study from 2013 also reported a greater impact in women [21] . Moreover, when age analysis was stratified by sex and LOS, no Epidemic impacts in nursing homes significant impact was observed in women; the only significant differences were fewer infections in men in the <86-subgroup (except in the NoV-with LOS <4 years).
For the RTI outbreaks, sex and LOS variables did not have a significant effect. In residents older than 86, the odds of being infected in Flu+ context were 1.5 times higher for women and 1.7 for men. In univariate analysis, contrary to the other virus contexts where odds ratios were rarely above 2, residents over 95 years old had increased odds of infection of � 2.8 compared with the 70-year-old category, and for the 100 year-old group the odds were approximately 3.8. In the Flu+ context, autonomy adjusted for age (virus, sex and LOS stratification) revealed a possible increase in infection rates among less autonomous residents. A previous study found that when elderly residents were exposed to the A(H3N2) virus, there were higher rates of infection and reinfection, and more significant effects on the institution than with other influenza types/subtypes. In the community, the relative illness ratio (RIR) in the [22, 24] .
The incidence of influenza infection and the associated risks were well described by age group, but the specific impact according to age was not studied. The results of this work highlighted the specific age distribution of influenza illnesses among the nursing home residents and the more significant impact among the older residents. This specific susceptibility could be a critical factor in the institutional exposure and dissemination of influenza and could partly explain the high infection impact in the elderly institutional population.
In this work, autonomy status was not the main factor associated with infection (no significant impact in GE and in Flu-contexts). However, in Flu+ outbreaks, a high level of dependency was associated with a higher risk of falling ill. This observation implies that staff could play a role in the spread of infection (highly dependent and less mobile residents are less likely to contaminate themselves) or that the more active residents may be less fragile and/or have a greater involvement in the recommended infection control measures. Finally, improving compliance with personal hygiene measures both for nursing staff and residents might be expected to have a beneficial effect on infection rates. Previous studies identified higher NoV infection rates in highly dependent individuals, but the results were not adjusted for age and LOS to take into account the potential correlation with the autonomy status [20] .
Lethality is difficult to assess in nursing homes because death is frequent. Our GE and RTI episodes occurred during the winter seasons, and there are possible interactions between outbreaks and increased mortality at this time of the year [25] . The all-cause lethality rate of the infected residents in our study reflected global mortality including GE and RTI outbreaks and the global epidemiological context. Not surprisingly, a higher all-cause lethality rate was observed in the influenza contexts, as reported in previous studies [25] [26] [27] . Age and autonomy had similar effects in the different contexts, but in GE and to a lesser degree in Flu-outbreaks, the relatively small number of deaths could have limited the power of the statistical tests. In nursing homes, residents are generally discharged due to death. The number of residents lost to follow up was low (0.14% in the first 28 days), so the 7-day interval turnover rate calculated on the base of the median LOS provides a good indication of the average case fatality rate. The lethality rate for NoV+ outbreaks was similar to the estimated 7-day interval turnover rate (1.6%) indicating that this context had a limited impact on the death rate.
The all-cause lethality rate was most affected by age and autonomy. Both individual characteristics were significant in the Flu+ outbreaks, and autonomy adjusted for age was significant in the Flu-episodes. The influence of age on mortality in a context of influenza has already been described: a very high mortality rate (831/100,000 inhabitants) was reported in persons 90 years of age and older compared with those aged 65-69 years (23/100,000 inhabitants) [28] . In our univariate analysis, the higher risk was observed in the �90 group whose risk of death was at least 2.6 higher than the <70 group. When adjusted for autonomy, the impact of age was not significant in more autonomous residents in the Flu+ context and not at all in the Flucontext. The opposite analysis (autonomy adjusted for age) showed higher global impact in the less autonomous group (Flu-) or only in the �86 age group (Flu+). Age and autonomy are a reflection of resident's level of frailty. Clinical frailty scores were not used in this study, but in a previous study of patients with critical illness, they were associated with greater mortality, regardless of age [29] . This suggests that in addition to age, autonomy can be a valuable indicator for the assessment of outbreak impact in outbreak surveillance. Other studies have suggested that age and certain comorbidities are independent risk factors for the influenza mortality rate or that mortality increase according to the number of risk factors [28, 30] . Comorbidities and underlying diseases of various severities could reflect overall frailty and consequently the risk of death. In nursing homes, information about autonomy and age are easier to collect and interpret than data on comorbidities. These various approaches should be evaluated and compared in the goal of optimizing risk assessment among nursing home residents.
The present work has two main limitations. First, the virus information was incomplete (limited identification, mainly influenza rapid tests for the RTI). Consequently, some episodes in the levels with no available identification may also have been associated with influenza or norovirus, and multiple contaminations could have been underestimated or not taken into account. Moreover, vaccination and oseltamivir prescriptions were recorded but not included because the influenza genotype was not determined and identification was limited.
Secondly, the deaths of uninfected residents were not recorded in this protocol even though such data would have provided valuable information about the global epidemiological context.
In conclusion, specific susceptibility patterns were observed among exposed residents. In this cohort of nursing homes, infection rates varied according to virus, sex, length of stay and age, and there were major differences in lethality depending on virus, age and autonomy score. The collected data were easy to record and could be used to improve the characterization of seasonal outbreaks in nursing homes, whose residents are particularly vulnerable. Finally, as the average age and dependency level of residents continues to increase, subsequently increasing the risk of infection and death, health care staff will have to be increasingly vigilant during seasonal outbreaks and targeted interventions should be implemented.
Supporting information S1 Data. (CSV) S1 R Codes. (R) S1 Table. (XLSX) S10 Table. (XLSX) S11 Table. (XLSX) | What was the reported infection rate for influenza? | {
"answer_start": [
24623
],
"text": [
"30.0%"
]
} | false |
5,309 | Gastroenteritis and respiratory infection outbreaks in French nursing homes from 2007 to 2018: Morbidity and all-cause lethality according to the individual characteristics of residents
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6759171/
SHA: f1d456ea268266ff3c21317c4190e4fcb49b5e4f
Authors: Gaspard, Philippe; Mosnier, Anne; Simon, Loic; Ali-Brandmeyer, Olivia; Rabaud, Christian; Larocca, Sabrina; Heck, Béatrice; Aho-Glélé, Serge; Pothier, Pierre; Ambert-Balay, Katia
Date: 2019-09-24
DOI: 10.1371/journal.pone.0222321
License: cc-by
Abstract: BACKGROUND: Gastroenteritis (GE) and respiratory tract infection (RTI) outbreaks are a significant issue in nursing homes. This study aimed to describe GE and RTI outbreaks with infection and all-cause lethality rates according to the individual characteristics of nursing home residents. METHODS: Clinical and virological surveillance were conducted (2007 to 2018). Virus stratifications for the analysis were: outbreaks with positive norovirus or influenza identifications (respectively NoV+ or Flu+), episodes with no NoV or influenza identification or testing (respectively NoV- or Flu-). Associations between individual variables (sex, age, length of stay (LOS), autonomy status) and infection and lethality rates were tested with univariate and Mantel-Haenszel (MH) methods. RESULTS: 61 GE outbreaks and 76 RTI oubreaks (total 137 outbreaks) were recorded involving respectively 4309 and 5862 residents. In univariate analysis, higher infection rates and age were associated in NoV+, NoV-, and Flu+ contexts, and lower infection rates were associated with longer stays (NoV+ and NoV-). In MH stratified analysis (virus, sex (female/male)) adjusted for LOS (<4 or ≥4 years), the odds of being infected remained significant among older residents (≥86 years): NoV+/male (Odds ratio (OR(MH)): 1.64, 95% confidence interval (CI): 1.16–2.30) and Flu+/female and male (respectively OR(MH): 1.50, CI: 1.27–1.79 and 1.73, CI: 1.28–2.33). In univariate analysis, lower autonomy status (NoV+, Flu+ and Flu-) and increased age (Flu+) were associated with higher lethality. In MH adjusted analysis, significant OR(age) adjusted for autonomy was: Flu+/ ≥86 years compared with <86 years, 1.97 (1.19–3.25) and OR(autonomy) adjusted for age for the more autonomous group (compared with the less autonomous group) was: Flu+, 0.41 (0.24–0.69); Flu-, 0.42 (0.20, 0.90). CONCLUSION: The residents of nursing homes are increasingly elderly and dependent. The specific infection and lethality risks according to these two factors indicate that surveillance and infection control measures are essential and of high priority.
Text: Introduction Gastroenteritis (GE) and respiratory tract infection (RTI) outbreaks represent a significant burden of illness in nursing homes. Viruses cause the majority of these outbreaks, and noroviruses and influenza viruses are the most common pathogens [1, 2] .
Previous studies have suggested that viral respiratory infections and norovirus outbreaks are a common cause of hospitalization or death, particularly among elderly individuals [3] [4] [5] .
The impact of outbreaks has been described in terms of both frequency and epidemiology, but little is known about infection rates and all-cause lethality in GE and RTI nursing home outbreaks in relation to the individual characteristics of the residents [6] . The residents of these institutions are increasingly elderly and dependent, and the impact of this trend on the seasonal outbreak burden requires in-depth investigation. The results of studies focused on this issue could yield valuable information for nursing homes, allowing them to adapt their infection control strategies, in particular for improved assessment of infection risk.
Our objective was to describe GE and RTI infection and all-cause lethality rates according to the individual characteristics of nursing home residents (sex, age, length of stay, autonomy status), and to identify specific susceptibility patterns related to these types of viral outbreaks in these facilities.
The present study explored outbreaks in 14 sites (28 units with geriatric nursing home activities for a total of 1121 beds) caring for dependent people in southern Alsace (an area in northeastern France). Data were collected between September 2007 and August 2018 [7, 8] .
Each site was geographically independent and autonomous for social and care management. Units were located within the larger sites and were defined as a place having a dedicated team at one location.
During outbreaks at one site, only the residents in the units with confirmed cases were included. Outbreak inclusion depended on institutional alert to the hygiene team. Surveillance was done in each unit independently, and the members of staff had to inform a physician or charge nurse when two or more potential related cases of pneumonia or GE were observed within four days and when three or more cases were observed for other RTI. Units also had to inform the hygiene team when these threshold values were exceeded. For influenza, the first suspected case led to a local alert and the hygiene team was contacted. A practitioner from the hygiene team collected the information and evaluated the clinical signs, the virology information and the epidemiological context with the physician in the affected unit. The detected cluster was only put under surveillance if the hygiene team considered that there was a potential outbreak phenomenon. The duration of 4 days was in relation with the national protocol with alert to the authorities when 5 cases occurred within 4 days [9, 10] . On a local level and in addition to the clusters reported to the authorities, clusters with at least 3 cases within a period of seven days in one unit could be recorded if they were reported to the hygiene team. Because several outbreaks could potentially occur in the same unit during the surveillance period, a resident could be included repeatedly in different clusters. As a result, the observed patterns reflected the characteristics of an institutional population with longitudinal and pluriannual exposures.
Personal information and clinical information was collected by a practitioner from the hygiene team directly from the residents' health care records. Personal information was collected for all those present the first day of the outbreak. The collected information included: month and year of birth, sex, date of arrival at the nursing home and autonomy status. The autonomy status of residents in French nursing homes is assessed using the AGGIR scale (Autonomy Gerontology Groups Iso-Resources), which is the legal instrument for evaluating dependency in the elderly and whose primary purpose is the allocation of means and resources [11] .
With the AGGIR scale, autonomy is classified into 6 Iso-Resource Groups (GIR): GIR 1 (bedridden or armchair-bound persons, mental functions seriously altered and requiring continuous presence), GIR 2 (bedridden or armchair-bound persons, mental functions not totally altered and requiring assistance in most activities of daily living, or mental functions altered with preserved ability to get around), GIR 3 (preserved mental autonomy with partially preserved motor autonomy and assistance several times a day for physical autonomy), GIR 4 (moves around the home and sometimes assistance for washing, dressing, physical activities or eating), GIR 5 (only occasional assistance for washing, meal preparation, and housework), GIR 6 (autonomy for essential tasks of daily living). In outbreaks where the influenza virus was identified, influenza vaccination status and oseltamivir prescriptions were recorded as well. A file is transmitted in the Supporting Information with all previous data (S1 Data).
GE was defined as the sudden onset of vomiting and/or diarrhea over a 24 h period: (i) diarrhea �3 episodes, (ii) and/or vomiting �3 episodes, (iii) or diarrhea or vomiting <3 episodes with two or more other symptoms (diarrhea, vomiting, stomach ache, abdominal cramps, nausea, fever, mucus in stools) [1] .
RTI presentation in older adults may be atypical, like for other acute illnesses in this age group [12] . We used the recommended definitions for RTI surveillance in geriatric units, divided in 3 subcategories: (i) common cold syndromes or pharyngitis (at least two of the following criteria: runny nose or sneezing, stuffy nose (i.e. congestion), sore throat or hoarseness or difficulty swallowing, dry cough, swollen or tender glands in the neck (cervical lymphadenopathy)), (ii) influenza-like illness (both the following criteria must be met: fever AND at least three other symptoms (chills, new headache or eye pain, myalgia or body aches, malaise or loss of appetite, sore throat, new or increased dry cough)) and (iii) lower respiratory tract infection (both of the following criteria must be met: at least two respiratory signs or symptoms (new or increased cough, new/increased sputum production, O 2 saturation <94% or reduced >3% from baseline, abnormal lung examination (new or changed), pleuritic chest pain, respiratory rate �25 breaths/min AND one or more constitutional signs/symptoms (fever, leukocytosis, confusion, acute functional decline)) [13] [14] [15] [16] . Infection corresponding to one of these three subcategories was included in this study and classified as RTI.
For both infection types, the practitioner from the hygiene team obtained clinical information from the patient's health care records, and members of the health care team were consulted if necessary to complete any missing information. At the end of the episode (within seven days after the last identified case), case inclusion as exposed and not infected (ENI) or exposed and infected (EI) was determined with a resident physician.
In order to study the lethality, the presence of each infected resident was evaluated once at least 56 days after the last case of each outbreak. Each resident was followed up retrospectively during eighth 7-day interval (I n, n = 1 to 8, total 56 days, between the date of onset of symptoms and the fifty-sixth day of the studied period) with three different possibilities: present (alive and officially residing in the institution), lost to follow-up (alive at the date of departure but no longer residing in the institution (return home, transfer to another institution)) or death (death recorded in the health care record). The dates of death and lost to follow-up were recorded.
Testing for the virus was not systematic and was decided by the physicians in each institution in the presence of clinical signs.
For GE, stool samples were sent to the National Reference Centre for Gastroenteritis Viruses in Dijon for laboratory testing, as previously described [8] . For RTI surveillance, rapid tests were used to identify the influenza virus. The rapid immunoassay diagnosis tests used for influenza detection were: Clearview1 Exact Influenza A and B (Inverness Medical, Cologne, Germany) from 2007 to 2014 and InfluenzaTop1 (Alldiag, Strasbourg, France) from 2014 to 2018. Given the low sensitivity of influenza rapid tests, they were no longer used once the control measures had been implemented and the influenza outbreak was under control. Samples were also occasionally sent to hospital laboratories or to the National Reference Centre for Influenza Viruses to detect viruses with real-time RT-PCR [17] . Most testing targeted the norovirus (NoV) and influenza virus, but other tests were occasionally performed by the National Reference Centre for Influenza Viruses (rhinovirus, respiratory syncytial virus, human metapneumovirus, parainfluenza 1, 2, 3 and 4, and coronavirus) and the National Reference Centre for Enteric Viruses (rotavirus, astrovirus, and adenovirus).
Because testing for the viruses was variable (from one institution/physician to another, not used in some outbreaks, types of virus sought) and considering the poor sensitivity of the rapid influenza tests, these two sources of data were used to define the epidemiological context of confirmed outbreaks. Consequently, individual cases were included consistently in all episodes according to clinical signs and medical evaluation. When virus testing was negative, the clinical signs were recorded and medical evaluation was used as previously to classify the included residents as infected or not infected.
The epidemiological context of each outbreak was defined according to whether the virus had been identified or not. One or more positive samples led to the qualification of a NoV (NoV+) or flu (Flu+) context. The other episodes were qualified as flu or NoV outbreaks with no specific identification or testing (NoV-and Flu-).
Flu and NoV contexts did not eliminate other potential enteric or respiratory pathogens.
Sex, age, length of stay (LOS, in years) and autonomy status were described for all exposed residents. Influenza vaccination and oseltamivir administration rates were calculated for confirmed influenza outbreaks. Dichotomous or categorical variables were expressed as percentages. In univariate analysis, the categories were specific in order to obtain a precise description of the age and LOS variables. Class intervals were 5 years for age and one year for LOS. The residents classified as GIR 4 to 6 (sometimes, occasional and no assistance) were grouped together because they were few.
For the multi-level analysis with 2x2 tables, a median value was used to define the two-level age categories. For LOS, assessing the longest stays was necessary to identify the effect of longer exposure in a nursing home. Consequently, a four-year cutoff was chosen to create the two categories. For autonomy, the two most dependent categories (GIR � 2) were grouped together and compared with the more autonomous categories (GIR � 3).
The outbreak epidemiological contexts were used with the four categories: NoV+, Flu+, NoV-and flu-. Other GE or RTI viruses were occasionally identified, but the number of results was too limited to develop separate analyses. However, all the results are available in the tables about the virus investigations along with NoV and influenza identifications.
For the different categories, infection rate (EI/Exposed Residents (ER), in percentage) was calculated according to sex, age group, LOS and autonomy status. To investigate all-cause lethality and define the appropriate period for the 56-day monitoring (D 1 to 56 ), the all-cause lethality rate per 7-day interval (LR n /I n, n = 1 to 8 ) was calculated: (number of deaths during interval I n /(EI alive the first day of n th studied interval minus lost to follow-up EI during the interval I n ) � 100).
Seeing as successive clusters could occur within the same site, potentially influencing allcause lethality, the serial interval in days (SI d ) was calculated. The SI d was the time period between the onset of symptoms of the last case in initial outbreak (N) and the onset of symptoms of the first case in the following outbreak (N+1). Investigations were performed when SI d was shorter or equal to the length of the previous D 1 to 56 and the following parameters were evaluated for these specific situations: number of episodes, residents infected in both outbreaks, and death among the identified individuals.
Finally, according to the death rate and the impact of successive outbreaks, the number of 7-day intervals (N.I n ) to take into account was defined, and the all-cause lethality rate was analyzed during these periods (I 1 to N th .I n or D 1 to 7 � N ).
All-cause lethality rates were calculated with the following formula: (number of deaths from D 1 to 7 � N /(EI number at D 1 minus lost to follow-up among EI during the period D 1 to 7 � N ) � 100). Estimation of the turnover rate per 7-day interval among the infected residents was calculated on the base of the LOS (median in years) with the following formula: (proportion of discharged residents: 50.0% in the case of the median)/[(median LOS � 365)/7)]. The average rate of residents discharged per 7-day period was calculated: [(number of lost to follow up during the period D 1 to 7 � N /number of exposed and infected residents at D 1 )/N 7-day interval] � 100.
As some residents were included in several outbreaks during the surveillance, the observations were not completely independent; non-parametric tests were used as a result. In univariate analysis, Chi-square or Fisher exact tests (expected number of frequencies fewer than 5) were used to compare infection and lethality rates according to the studied parameters and the odds ratio was calculated by median-unbiased estimation. The Kruskal-Wallis test was used to compare median values. Confidence intervals for medians were calculated with bootstrap methods.
Covariate adjusted analyses were performed with two tables (2x2). The respective impact of each individual factor was tested with Mantel-Haenszel chi-squared tests. The equality of the stratum odds ratios was tested with the Woolf test of homogeneity. Finally, for each virus context, multiple tables (2x2) were generated and tested with confounding variables, effect modifiers or covariables. Statistical analyses were done using R for Mas OS X version R 3.4.1 software with RStudio version 1.0.153. A file is transmitted in the Supporting Information with all R codes and the packages used (S1 R Codes). Differences were considered significant at p � 0.05.
The French Data Protection Authority approved data collection and analysis (DE-2013-074) and the local ethics committee (Espace Local de Réflexion Ethique, Centre Hospitalier de Rouffach) approved the study protocol (ERLE-32). According to the French law for biomedical research and human experimentation, individual written consent was not required from the patients or their relatives for data collection. Each year, the referring local practitioner of the study coordinated with the doctors working in the nursing home. At the beginning of the surveillance period, information regarding participation in the study was displayed in the family vising area, including a document about their right to access and rectify personal data. After collection, data were rendered anonymous. No specific authorization was needed to retrospectively analyze anonymous data collected during routine care in the context of routine surveillance.
A total of 137 outbreaks were recorded in the 14 sites. RTI outbreaks were more frequent than GE outbreaks (76 outbreaks and 5862 exposed residents vs. 61 outbreaks and 4309 exposed residents, respectively). Overall, 7643 of the exposed residents were women and 2528 were men. The median age was 86.7 years old (interquartile range: 81.1-91.0 years).
Virus investigations (respectively 389 samples for RTI and 143 for GE with all the detailed results in S1-S4 Tables) confirmed a considerable number of norovirus-related GE outbreaks (34/61) and influenza-related RTI outbreaks (46/76). For GE outbreaks, 2524 residents were in a NoV+ context versus 1785 in a NoV-context, and for RTI outbreaks, 3479 residents were in a Flu+ context versus 2383 in a Flu-context.
For GE surveillance in the NoV+ context, there were 1093 EI residents versus 1431 ENI residents, whereas in the NoV-context, there were 583 EI residents versus 1202 ENI residents. Therefore, the infection rate was higher in the NoV+ context (43.3%) than in the NoV-context (32.7%, (odds ratio (OR): 0.63, 95% confidence interval (CI): 0.56-0.72), p < 0.001).
For RTI surveillance, the rates of infection were similar with and without confirmed influenza: 31.5% (N = 1095 EI residents /3479 exposed residents) vs. 30.5% (N = 728 EI residents/ 2383 exposed residents, OR: 0.96, CI: 0.85-1.07, p = 0.47). Moreover, infection rate in the NoV + context was higher than the three other contexts: NoV-(OR: 0.63, CI: 0.56-0.72), Flu+ (OR: 0.60, CI:0.54-0.67) and Flu-(OR: 0.58, CI: 0.51-0.65).
In univariate analysis, certain individual characteristics were associated with significant variations in the infection rate (S5 Table) . The infection rate increased with age (except in the Flucontext) and, decreased with LOS during GE outbreaks. The covariate adjusted analysis revealed specific significant effect modification according to sex (NoV+) and LOS (NoV-) (S6 Table) . In analyses stratified according to virus and sex, age adjusted for LOS remained significant for Flu+ and NoV+ outbreaks (males). In NoV-context, the effect modification of LOS remained significant (Table 1) . Finally, when autonomy was included and adjusted for age (virus, sex, LOS stratification), the less autonomous residents (female/LOS<4 years/age<86/ GIR 1-2) were affected more severely by Flu+ outbreaks with specific effect modification according to age (S7 Table) . The study of lethality rates in infected residents over the 56 days after onset indicated that there were significant variations for RTI but no change for GE (Table 2 ). Significant differences appeared after 28 days in the context of Flu+ outbreaks and other RTI outbreaks.
The analysis of successive or simultaneous clusters in the same institutions was performed when the time period between the onset of symptoms of the last case in outbreak N and the onset of symptoms of the first case in outbreak N+1 was �56 days (S8 Table) . 44 of the 137 outbreaks (32.12%) were identified, and 194 of the 3499 exposed and infected residents contracted multiple infections. The percentage of exposed and infected residents implicated in more than one virus stratification was 11.09% ((194 � 2)/3499). Moreover, two deceased residents were included in the NoV-Na and Flu lethality analyses because death occurred within 56 days for both infections. The analysis of virus stratification of the 44 outbreaks showed the absence of successive clusters for the same category. The same analysis for the first four 7-day intervals (Days 1 to 28) showed the respective values: 26 outbreaks (18.98%), 117 residents ((6.69% ((117 � 2)/3499)), one dead resident.
Finally, according to the higher lethality impact during the first four 7-day intervals and to limit the impact of successive clusters in the same site, all cause lethality rates were studied according to individual parameters for the four 7 days intervals with the respective number of According to the surveillance type (GE or RTI), the lethality rates differed significantly: 1.6% versus 3.4% (respectively NoV+ and NoV-contexts, OR: 2.24, CI: 1.16-4.39, p = 0.02) and 8.3% versus 5.6% (respectively Flu+ and Flu-, OR: 0.67, CI: 0.45-0.97, p = 0.04).
In univariate analysis (S9 Table) , low autonomy status in the NoV+, Flu+ and Flu-contexts was most significantly associated with increased all-cause lethality, and age was associated with higher lethality in the Flu+ context. In the adjusted analysis, no significant statistical differences were identified in GE outbreaks. For RTI episodes, the adjusted analysis showed that autonomy had a significant impact when adjusted for sex, age or LOS (Flu+ and Flu-NA) and that age had a significant impact when adjusted for sex, autonomy or LOS (Flu+) (S10 Table) .
In Table 3 , the specific effects of age or autonomy were tested. Significant OR age adjusted for autonomy were: Flu+/age �86 years (compared with the <86 group), 1.97 (1.19-3.25). OR autonomy adjusted for age were for GIR 3-6 (compared with GIR 1-2): Flu+, 0.41 (0.24-0.69); Flu-, 0.42 (0.20, 0.90).
Finally, despite the low number of residents and deaths per category, and consequently the limited robustness of the results, autonomy adjusted for age with stratification according to virus, sex and LOS showed that the effects were higher among subgroups of less autonomous residents (female or male/LOS<4 years/GIR 1-2) in Flu+ outbreaks, and there was also higher mortality in the small subgroup of autonomous men with LOS � 4 years (higher mortality) (S11 Table) .
In the Flu+ context, data regarding vaccination status and oseltamivir prescriptions were available but not used in this study.
In the present study, surveillance data obtained during GE and RTI outbreaks in nursing homes were used to construct stratified analyses and to identify specific infection and all-cause lethality rates according to the residents' individual characteristics.
The infection rates observed here were similar to those found in previous studies of NoV and Influenza outbreaks (odds of being infected during a Flu+ outbreak were around 40% less than during a NoV+ outbreak). Reported infection rates were close to 30.0% in influenza outbreaks and 40.0% in NoV outbreaks [18] [19] [20] .
Older age appeared to increase the likelihood of GE and influenza infection, with increasing rates among older residents. Age is a well-known factor for influenza and norovirus severity in the elderly and in nursing homes [21, 22] . For NoV, the highest incidence estimates (5-year age strata) was found in the �85 year-category (approximately 800 men and for 1,400 women per 100,000 inhabitants). In our study, univariate analysis (NoV+) showed that the odds of being infected were 1.5 to 1.6 times higher if a resident was older than 85. Moreover, an adjusted analysis of GE outbreaks highlighted different effects among subgroups of residents according to sex and LOS. Indeed, multiple and/or repeated exposure to GE viruses while institutionalized may lead to susceptibility or possible increased immunity in some residents [23] . For the sex variable, two factors could explain the effect: a possible selection bias with men reporting mild infections less than women (particularly in the <86 years subgroup) or that male susceptibility was different (age, LOS, immunity,. . .). A German study from 2013 also reported a greater impact in women [21] . Moreover, when age analysis was stratified by sex and LOS, no Epidemic impacts in nursing homes significant impact was observed in women; the only significant differences were fewer infections in men in the <86-subgroup (except in the NoV-with LOS <4 years).
For the RTI outbreaks, sex and LOS variables did not have a significant effect. In residents older than 86, the odds of being infected in Flu+ context were 1.5 times higher for women and 1.7 for men. In univariate analysis, contrary to the other virus contexts where odds ratios were rarely above 2, residents over 95 years old had increased odds of infection of � 2.8 compared with the 70-year-old category, and for the 100 year-old group the odds were approximately 3.8. In the Flu+ context, autonomy adjusted for age (virus, sex and LOS stratification) revealed a possible increase in infection rates among less autonomous residents. A previous study found that when elderly residents were exposed to the A(H3N2) virus, there were higher rates of infection and reinfection, and more significant effects on the institution than with other influenza types/subtypes. In the community, the relative illness ratio (RIR) in the [22, 24] .
The incidence of influenza infection and the associated risks were well described by age group, but the specific impact according to age was not studied. The results of this work highlighted the specific age distribution of influenza illnesses among the nursing home residents and the more significant impact among the older residents. This specific susceptibility could be a critical factor in the institutional exposure and dissemination of influenza and could partly explain the high infection impact in the elderly institutional population.
In this work, autonomy status was not the main factor associated with infection (no significant impact in GE and in Flu-contexts). However, in Flu+ outbreaks, a high level of dependency was associated with a higher risk of falling ill. This observation implies that staff could play a role in the spread of infection (highly dependent and less mobile residents are less likely to contaminate themselves) or that the more active residents may be less fragile and/or have a greater involvement in the recommended infection control measures. Finally, improving compliance with personal hygiene measures both for nursing staff and residents might be expected to have a beneficial effect on infection rates. Previous studies identified higher NoV infection rates in highly dependent individuals, but the results were not adjusted for age and LOS to take into account the potential correlation with the autonomy status [20] .
Lethality is difficult to assess in nursing homes because death is frequent. Our GE and RTI episodes occurred during the winter seasons, and there are possible interactions between outbreaks and increased mortality at this time of the year [25] . The all-cause lethality rate of the infected residents in our study reflected global mortality including GE and RTI outbreaks and the global epidemiological context. Not surprisingly, a higher all-cause lethality rate was observed in the influenza contexts, as reported in previous studies [25] [26] [27] . Age and autonomy had similar effects in the different contexts, but in GE and to a lesser degree in Flu-outbreaks, the relatively small number of deaths could have limited the power of the statistical tests. In nursing homes, residents are generally discharged due to death. The number of residents lost to follow up was low (0.14% in the first 28 days), so the 7-day interval turnover rate calculated on the base of the median LOS provides a good indication of the average case fatality rate. The lethality rate for NoV+ outbreaks was similar to the estimated 7-day interval turnover rate (1.6%) indicating that this context had a limited impact on the death rate.
The all-cause lethality rate was most affected by age and autonomy. Both individual characteristics were significant in the Flu+ outbreaks, and autonomy adjusted for age was significant in the Flu-episodes. The influence of age on mortality in a context of influenza has already been described: a very high mortality rate (831/100,000 inhabitants) was reported in persons 90 years of age and older compared with those aged 65-69 years (23/100,000 inhabitants) [28] . In our univariate analysis, the higher risk was observed in the �90 group whose risk of death was at least 2.6 higher than the <70 group. When adjusted for autonomy, the impact of age was not significant in more autonomous residents in the Flu+ context and not at all in the Flucontext. The opposite analysis (autonomy adjusted for age) showed higher global impact in the less autonomous group (Flu-) or only in the �86 age group (Flu+). Age and autonomy are a reflection of resident's level of frailty. Clinical frailty scores were not used in this study, but in a previous study of patients with critical illness, they were associated with greater mortality, regardless of age [29] . This suggests that in addition to age, autonomy can be a valuable indicator for the assessment of outbreak impact in outbreak surveillance. Other studies have suggested that age and certain comorbidities are independent risk factors for the influenza mortality rate or that mortality increase according to the number of risk factors [28, 30] . Comorbidities and underlying diseases of various severities could reflect overall frailty and consequently the risk of death. In nursing homes, information about autonomy and age are easier to collect and interpret than data on comorbidities. These various approaches should be evaluated and compared in the goal of optimizing risk assessment among nursing home residents.
The present work has two main limitations. First, the virus information was incomplete (limited identification, mainly influenza rapid tests for the RTI). Consequently, some episodes in the levels with no available identification may also have been associated with influenza or norovirus, and multiple contaminations could have been underestimated or not taken into account. Moreover, vaccination and oseltamivir prescriptions were recorded but not included because the influenza genotype was not determined and identification was limited.
Secondly, the deaths of uninfected residents were not recorded in this protocol even though such data would have provided valuable information about the global epidemiological context.
In conclusion, specific susceptibility patterns were observed among exposed residents. In this cohort of nursing homes, infection rates varied according to virus, sex, length of stay and age, and there were major differences in lethality depending on virus, age and autonomy score. The collected data were easy to record and could be used to improve the characterization of seasonal outbreaks in nursing homes, whose residents are particularly vulnerable. Finally, as the average age and dependency level of residents continues to increase, subsequently increasing the risk of infection and death, health care staff will have to be increasingly vigilant during seasonal outbreaks and targeted interventions should be implemented.
Supporting information S1 Data. (CSV) S1 R Codes. (R) S1 Table. (XLSX) S10 Table. (XLSX) S11 Table. (XLSX) | How many times more likely was an infection found in patients over 85 years old? | {
"answer_start": [
25180
],
"text": [
"1.5 to 1.6 times"
]
} | false |
634 | Critical care response to a hospital outbreak of the 2019-nCoV infection in Shenzhen, China
https://doi.org/10.1186/s13054-020-2786-x
SHA: 6a93283b499ae5bc6aaf29f14e701dc8f25138ea
Authors: Liu, Yong; Li, Jinxiu; Feng, Yongwen
Date: 2020
DOI: 10.1186/s13054-020-2786-x
License: cc-by
Abstract: nan
Text: The main challenge may include (1) early identification of outbreak, (2) rapid expansion of patients, (3) high risk of nosocomial transmission, (4) unpredictability of size impacted, and (5) lack of backup resource. These challenges have caused severe shortage of healthcare workers, medical materials, and beds with isolation. The Spring Festival holiday has greatly aggravated the shortage of human resources and heavy traffic flow due to the vacation of healthy workers and factory workers, which further magnified the risk of transmission. The key point is to discriminate the infectious disease outbreak from regular clustering cases of flu-like diseases at early stage. There is a trade-off between false alarm causing population panic and delayed identification leading to social crisis.
Early identification of 2019-nCoV infection presents a major challenge for the frontline clinicians. Its clinical symptoms largely overlap with those of common acute respiratory illnesses, including fever (98%), cough (76%), and diarrhea (3%), often more severe in older adults with pre-existing chronic comorbidities [1] . Usually, the laboratory abnormalities include lymphocytopenia and hypoxemia [1] . The initial chest radiographs may vary from minimal abnormality to bilateral ground-glass opacity or subsegmental areas of consolidation [1] . In addition, asymptomatic cases and lack of diagnosis kits result in delayed or even missed diagnosis inevitable and makes many other patients, visitors, and healthcare workers exposed to the 2019-nCoV infection.
Critical care response to the outbreak of coronavirus should happen not only at the level of hospital, but also at the level of the city which is dominated by the government. At the early stage, the size of the patients' population is not beyond the capability of local infectious diseases hospital (IDH). The general hospital is responsible for fever triage, identifying suspected cases, and transferring to the local IDH. Such a plan is mandatory for every hospital. Shenzhen city has established a preexisting Infectious Disease Epidemic Plan (IDEP), which has facilitated managing and containing local outbreak of the 2019-nCoV. In case the patient load exceeds the hospital capability of the IDH, new IDHs should be considered either by building a temporary new IDH or reconstructing an existing hospital. Wuhan, the epicenter of the outbreak, is racing against time to build two specialized hospitals for nCoV patients, namely Huoshenshan and Leishenshan hospital, whereas a different strategy has been undertaken in Shenzhen city by reconstructing an existing hospital to become an IDH with capability of 800 beds.
2019-nCoV patients should be admitted to singlebedded, negative pressure rooms in isolated units with intensive care and monitoring [2] . Clinical engineering should have plans to reconstruct standard rooms [2] . Retrofitting the rooms with externally exhausted HEPA filters may be an expedient solution. Also, the general hospital may consider procedures such as suspending elective surgeries, canceling ambulatory clinics and outpatient diagnostic procedures, transferring patients to other institutions, and restricting hospital visitors [2] . More importantly, because the hospitals' ability to respond to the outbreak largely depends on their available ICU beds, the plan to increase ICU bed capacity needs to be determined.
Caring for 2019-nCoV patients represents a substantial exposure risk for ICU staff because of the following reasons: highly contagious with multiple transmission route, high exposure dose, long daily contact hours, and ICU stay. The basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9) [3] , or as high as between 3.6 and 4.0 [4] . The 2019-nCoV is proved to be transmitted by respiratory droplets, contact, and fecal-oral, even transmission through the eye is possible [5, 6] . The higher viral load and aerosol-generating procedures, such as noninvasive ventilation, magnify the exposure and transmission risk [2, 7, 8] . Moreover, virus shedding can be prolonged and last for > 3 weeks according to some literature and our unpublished data [2] . Healthcare providers and those in contact with infected patients should utilize contact, droplet, and airborne precautions with N95 respirator. Strict infection prevention and control practices have been implemented and audited in our units following the infection prevention and control plan published by China's National Health Committee (CNHC). In addition, wellequipped fever clinic as triage station with trained staff knowing 2019-nCoV case definitions is established. For suspected 2019-nCoV infection, several key points are crucial procedures: recording a detailed history, standardizing pneumonia workup, obtaining lower respiratory tract specimens [2, 8] , and implementing droplet isolation to break the transmission chain in the healthcare setting [2] .
The risk of 2019-nCoV exposure may cause significant psychosocial stress on healthcare workers [2] . The death of a retired ENT physician from a 2019-nCoV infection has added to fears in January 2020. Psychotherapists have also been invited to join medical teams to evaluate and deal with potential stress and depression for the safety of the healthcare workers.
Critical management 2019-nCoV management was largely supportive, including intubation, early prone positioning, neuromuscular blockade, and extracorporeal membrane oxygenation (ECMO) according to the recommendations updated by CNHC. Low-dose systematic corticosteroids, lopinavir/ritonavir, and atomization inhalation of interferon were encouraged. These critical managements have worked well so far, as our 2019-nCoV patients had zero mortality. On the contrary, the previously reported mortality of 2019-nCoV patients in Wuhan ranged from 11 to 15% [1, 9] . | What can be the main challenges in managing a hospital outbreak of COVID-19? | {
"answer_start": [
338
],
"text": [
" (1) early identification of outbreak, (2) rapid expansion of patients, (3) high risk of nosocomial transmission, (4) unpredictability of size impacted, and (5) lack of backup resource."
]
} | false |
642 | Critical care response to a hospital outbreak of the 2019-nCoV infection in Shenzhen, China
https://doi.org/10.1186/s13054-020-2786-x
SHA: 6a93283b499ae5bc6aaf29f14e701dc8f25138ea
Authors: Liu, Yong; Li, Jinxiu; Feng, Yongwen
Date: 2020
DOI: 10.1186/s13054-020-2786-x
License: cc-by
Abstract: nan
Text: The main challenge may include (1) early identification of outbreak, (2) rapid expansion of patients, (3) high risk of nosocomial transmission, (4) unpredictability of size impacted, and (5) lack of backup resource. These challenges have caused severe shortage of healthcare workers, medical materials, and beds with isolation. The Spring Festival holiday has greatly aggravated the shortage of human resources and heavy traffic flow due to the vacation of healthy workers and factory workers, which further magnified the risk of transmission. The key point is to discriminate the infectious disease outbreak from regular clustering cases of flu-like diseases at early stage. There is a trade-off between false alarm causing population panic and delayed identification leading to social crisis.
Early identification of 2019-nCoV infection presents a major challenge for the frontline clinicians. Its clinical symptoms largely overlap with those of common acute respiratory illnesses, including fever (98%), cough (76%), and diarrhea (3%), often more severe in older adults with pre-existing chronic comorbidities [1] . Usually, the laboratory abnormalities include lymphocytopenia and hypoxemia [1] . The initial chest radiographs may vary from minimal abnormality to bilateral ground-glass opacity or subsegmental areas of consolidation [1] . In addition, asymptomatic cases and lack of diagnosis kits result in delayed or even missed diagnosis inevitable and makes many other patients, visitors, and healthcare workers exposed to the 2019-nCoV infection.
Critical care response to the outbreak of coronavirus should happen not only at the level of hospital, but also at the level of the city which is dominated by the government. At the early stage, the size of the patients' population is not beyond the capability of local infectious diseases hospital (IDH). The general hospital is responsible for fever triage, identifying suspected cases, and transferring to the local IDH. Such a plan is mandatory for every hospital. Shenzhen city has established a preexisting Infectious Disease Epidemic Plan (IDEP), which has facilitated managing and containing local outbreak of the 2019-nCoV. In case the patient load exceeds the hospital capability of the IDH, new IDHs should be considered either by building a temporary new IDH or reconstructing an existing hospital. Wuhan, the epicenter of the outbreak, is racing against time to build two specialized hospitals for nCoV patients, namely Huoshenshan and Leishenshan hospital, whereas a different strategy has been undertaken in Shenzhen city by reconstructing an existing hospital to become an IDH with capability of 800 beds.
2019-nCoV patients should be admitted to singlebedded, negative pressure rooms in isolated units with intensive care and monitoring [2] . Clinical engineering should have plans to reconstruct standard rooms [2] . Retrofitting the rooms with externally exhausted HEPA filters may be an expedient solution. Also, the general hospital may consider procedures such as suspending elective surgeries, canceling ambulatory clinics and outpatient diagnostic procedures, transferring patients to other institutions, and restricting hospital visitors [2] . More importantly, because the hospitals' ability to respond to the outbreak largely depends on their available ICU beds, the plan to increase ICU bed capacity needs to be determined.
Caring for 2019-nCoV patients represents a substantial exposure risk for ICU staff because of the following reasons: highly contagious with multiple transmission route, high exposure dose, long daily contact hours, and ICU stay. The basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9) [3] , or as high as between 3.6 and 4.0 [4] . The 2019-nCoV is proved to be transmitted by respiratory droplets, contact, and fecal-oral, even transmission through the eye is possible [5, 6] . The higher viral load and aerosol-generating procedures, such as noninvasive ventilation, magnify the exposure and transmission risk [2, 7, 8] . Moreover, virus shedding can be prolonged and last for > 3 weeks according to some literature and our unpublished data [2] . Healthcare providers and those in contact with infected patients should utilize contact, droplet, and airborne precautions with N95 respirator. Strict infection prevention and control practices have been implemented and audited in our units following the infection prevention and control plan published by China's National Health Committee (CNHC). In addition, wellequipped fever clinic as triage station with trained staff knowing 2019-nCoV case definitions is established. For suspected 2019-nCoV infection, several key points are crucial procedures: recording a detailed history, standardizing pneumonia workup, obtaining lower respiratory tract specimens [2, 8] , and implementing droplet isolation to break the transmission chain in the healthcare setting [2] .
The risk of 2019-nCoV exposure may cause significant psychosocial stress on healthcare workers [2] . The death of a retired ENT physician from a 2019-nCoV infection has added to fears in January 2020. Psychotherapists have also been invited to join medical teams to evaluate and deal with potential stress and depression for the safety of the healthcare workers.
Critical management 2019-nCoV management was largely supportive, including intubation, early prone positioning, neuromuscular blockade, and extracorporeal membrane oxygenation (ECMO) according to the recommendations updated by CNHC. Low-dose systematic corticosteroids, lopinavir/ritonavir, and atomization inhalation of interferon were encouraged. These critical managements have worked well so far, as our 2019-nCoV patients had zero mortality. On the contrary, the previously reported mortality of 2019-nCoV patients in Wuhan ranged from 11 to 15% [1, 9] . | Why early identification of COVID-19 patients can be difficult? | {
"answer_start": [
1104
],
"text": [
"Early identification of 2019-nCoV infection presents a major challenge"
]
} | false |
644 | Critical care response to a hospital outbreak of the 2019-nCoV infection in Shenzhen, China
https://doi.org/10.1186/s13054-020-2786-x
SHA: 6a93283b499ae5bc6aaf29f14e701dc8f25138ea
Authors: Liu, Yong; Li, Jinxiu; Feng, Yongwen
Date: 2020
DOI: 10.1186/s13054-020-2786-x
License: cc-by
Abstract: nan
Text: The main challenge may include (1) early identification of outbreak, (2) rapid expansion of patients, (3) high risk of nosocomial transmission, (4) unpredictability of size impacted, and (5) lack of backup resource. These challenges have caused severe shortage of healthcare workers, medical materials, and beds with isolation. The Spring Festival holiday has greatly aggravated the shortage of human resources and heavy traffic flow due to the vacation of healthy workers and factory workers, which further magnified the risk of transmission. The key point is to discriminate the infectious disease outbreak from regular clustering cases of flu-like diseases at early stage. There is a trade-off between false alarm causing population panic and delayed identification leading to social crisis.
Early identification of 2019-nCoV infection presents a major challenge for the frontline clinicians. Its clinical symptoms largely overlap with those of common acute respiratory illnesses, including fever (98%), cough (76%), and diarrhea (3%), often more severe in older adults with pre-existing chronic comorbidities [1] . Usually, the laboratory abnormalities include lymphocytopenia and hypoxemia [1] . The initial chest radiographs may vary from minimal abnormality to bilateral ground-glass opacity or subsegmental areas of consolidation [1] . In addition, asymptomatic cases and lack of diagnosis kits result in delayed or even missed diagnosis inevitable and makes many other patients, visitors, and healthcare workers exposed to the 2019-nCoV infection.
Critical care response to the outbreak of coronavirus should happen not only at the level of hospital, but also at the level of the city which is dominated by the government. At the early stage, the size of the patients' population is not beyond the capability of local infectious diseases hospital (IDH). The general hospital is responsible for fever triage, identifying suspected cases, and transferring to the local IDH. Such a plan is mandatory for every hospital. Shenzhen city has established a preexisting Infectious Disease Epidemic Plan (IDEP), which has facilitated managing and containing local outbreak of the 2019-nCoV. In case the patient load exceeds the hospital capability of the IDH, new IDHs should be considered either by building a temporary new IDH or reconstructing an existing hospital. Wuhan, the epicenter of the outbreak, is racing against time to build two specialized hospitals for nCoV patients, namely Huoshenshan and Leishenshan hospital, whereas a different strategy has been undertaken in Shenzhen city by reconstructing an existing hospital to become an IDH with capability of 800 beds.
2019-nCoV patients should be admitted to singlebedded, negative pressure rooms in isolated units with intensive care and monitoring [2] . Clinical engineering should have plans to reconstruct standard rooms [2] . Retrofitting the rooms with externally exhausted HEPA filters may be an expedient solution. Also, the general hospital may consider procedures such as suspending elective surgeries, canceling ambulatory clinics and outpatient diagnostic procedures, transferring patients to other institutions, and restricting hospital visitors [2] . More importantly, because the hospitals' ability to respond to the outbreak largely depends on their available ICU beds, the plan to increase ICU bed capacity needs to be determined.
Caring for 2019-nCoV patients represents a substantial exposure risk for ICU staff because of the following reasons: highly contagious with multiple transmission route, high exposure dose, long daily contact hours, and ICU stay. The basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9) [3] , or as high as between 3.6 and 4.0 [4] . The 2019-nCoV is proved to be transmitted by respiratory droplets, contact, and fecal-oral, even transmission through the eye is possible [5, 6] . The higher viral load and aerosol-generating procedures, such as noninvasive ventilation, magnify the exposure and transmission risk [2, 7, 8] . Moreover, virus shedding can be prolonged and last for > 3 weeks according to some literature and our unpublished data [2] . Healthcare providers and those in contact with infected patients should utilize contact, droplet, and airborne precautions with N95 respirator. Strict infection prevention and control practices have been implemented and audited in our units following the infection prevention and control plan published by China's National Health Committee (CNHC). In addition, wellequipped fever clinic as triage station with trained staff knowing 2019-nCoV case definitions is established. For suspected 2019-nCoV infection, several key points are crucial procedures: recording a detailed history, standardizing pneumonia workup, obtaining lower respiratory tract specimens [2, 8] , and implementing droplet isolation to break the transmission chain in the healthcare setting [2] .
The risk of 2019-nCoV exposure may cause significant psychosocial stress on healthcare workers [2] . The death of a retired ENT physician from a 2019-nCoV infection has added to fears in January 2020. Psychotherapists have also been invited to join medical teams to evaluate and deal with potential stress and depression for the safety of the healthcare workers.
Critical management 2019-nCoV management was largely supportive, including intubation, early prone positioning, neuromuscular blockade, and extracorporeal membrane oxygenation (ECMO) according to the recommendations updated by CNHC. Low-dose systematic corticosteroids, lopinavir/ritonavir, and atomization inhalation of interferon were encouraged. These critical managements have worked well so far, as our 2019-nCoV patients had zero mortality. On the contrary, the previously reported mortality of 2019-nCoV patients in Wuhan ranged from 11 to 15% [1, 9] . | What are the steps that a hospital should take after COVID-19 outbreak? | {
"answer_start": [
2990
],
"text": [
"2019-nCoV patients should be admitted"
]
} | false |
645 | Critical care response to a hospital outbreak of the 2019-nCoV infection in Shenzhen, China
https://doi.org/10.1186/s13054-020-2786-x
SHA: 6a93283b499ae5bc6aaf29f14e701dc8f25138ea
Authors: Liu, Yong; Li, Jinxiu; Feng, Yongwen
Date: 2020
DOI: 10.1186/s13054-020-2786-x
License: cc-by
Abstract: nan
Text: The main challenge may include (1) early identification of outbreak, (2) rapid expansion of patients, (3) high risk of nosocomial transmission, (4) unpredictability of size impacted, and (5) lack of backup resource. These challenges have caused severe shortage of healthcare workers, medical materials, and beds with isolation. The Spring Festival holiday has greatly aggravated the shortage of human resources and heavy traffic flow due to the vacation of healthy workers and factory workers, which further magnified the risk of transmission. The key point is to discriminate the infectious disease outbreak from regular clustering cases of flu-like diseases at early stage. There is a trade-off between false alarm causing population panic and delayed identification leading to social crisis.
Early identification of 2019-nCoV infection presents a major challenge for the frontline clinicians. Its clinical symptoms largely overlap with those of common acute respiratory illnesses, including fever (98%), cough (76%), and diarrhea (3%), often more severe in older adults with pre-existing chronic comorbidities [1] . Usually, the laboratory abnormalities include lymphocytopenia and hypoxemia [1] . The initial chest radiographs may vary from minimal abnormality to bilateral ground-glass opacity or subsegmental areas of consolidation [1] . In addition, asymptomatic cases and lack of diagnosis kits result in delayed or even missed diagnosis inevitable and makes many other patients, visitors, and healthcare workers exposed to the 2019-nCoV infection.
Critical care response to the outbreak of coronavirus should happen not only at the level of hospital, but also at the level of the city which is dominated by the government. At the early stage, the size of the patients' population is not beyond the capability of local infectious diseases hospital (IDH). The general hospital is responsible for fever triage, identifying suspected cases, and transferring to the local IDH. Such a plan is mandatory for every hospital. Shenzhen city has established a preexisting Infectious Disease Epidemic Plan (IDEP), which has facilitated managing and containing local outbreak of the 2019-nCoV. In case the patient load exceeds the hospital capability of the IDH, new IDHs should be considered either by building a temporary new IDH or reconstructing an existing hospital. Wuhan, the epicenter of the outbreak, is racing against time to build two specialized hospitals for nCoV patients, namely Huoshenshan and Leishenshan hospital, whereas a different strategy has been undertaken in Shenzhen city by reconstructing an existing hospital to become an IDH with capability of 800 beds.
2019-nCoV patients should be admitted to singlebedded, negative pressure rooms in isolated units with intensive care and monitoring [2] . Clinical engineering should have plans to reconstruct standard rooms [2] . Retrofitting the rooms with externally exhausted HEPA filters may be an expedient solution. Also, the general hospital may consider procedures such as suspending elective surgeries, canceling ambulatory clinics and outpatient diagnostic procedures, transferring patients to other institutions, and restricting hospital visitors [2] . More importantly, because the hospitals' ability to respond to the outbreak largely depends on their available ICU beds, the plan to increase ICU bed capacity needs to be determined.
Caring for 2019-nCoV patients represents a substantial exposure risk for ICU staff because of the following reasons: highly contagious with multiple transmission route, high exposure dose, long daily contact hours, and ICU stay. The basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9) [3] , or as high as between 3.6 and 4.0 [4] . The 2019-nCoV is proved to be transmitted by respiratory droplets, contact, and fecal-oral, even transmission through the eye is possible [5, 6] . The higher viral load and aerosol-generating procedures, such as noninvasive ventilation, magnify the exposure and transmission risk [2, 7, 8] . Moreover, virus shedding can be prolonged and last for > 3 weeks according to some literature and our unpublished data [2] . Healthcare providers and those in contact with infected patients should utilize contact, droplet, and airborne precautions with N95 respirator. Strict infection prevention and control practices have been implemented and audited in our units following the infection prevention and control plan published by China's National Health Committee (CNHC). In addition, wellequipped fever clinic as triage station with trained staff knowing 2019-nCoV case definitions is established. For suspected 2019-nCoV infection, several key points are crucial procedures: recording a detailed history, standardizing pneumonia workup, obtaining lower respiratory tract specimens [2, 8] , and implementing droplet isolation to break the transmission chain in the healthcare setting [2] .
The risk of 2019-nCoV exposure may cause significant psychosocial stress on healthcare workers [2] . The death of a retired ENT physician from a 2019-nCoV infection has added to fears in January 2020. Psychotherapists have also been invited to join medical teams to evaluate and deal with potential stress and depression for the safety of the healthcare workers.
Critical management 2019-nCoV management was largely supportive, including intubation, early prone positioning, neuromuscular blockade, and extracorporeal membrane oxygenation (ECMO) according to the recommendations updated by CNHC. Low-dose systematic corticosteroids, lopinavir/ritonavir, and atomization inhalation of interferon were encouraged. These critical managements have worked well so far, as our 2019-nCoV patients had zero mortality. On the contrary, the previously reported mortality of 2019-nCoV patients in Wuhan ranged from 11 to 15% [1, 9] . | Why exposure risk of COVID-19 is very high for ICU staff and what precautions should be taken? | {
"answer_start": [
3763
],
"text": [
" substantial exposure risk for ICU staff because of the following reasons"
]
} | false |
669 | Statistics-Based Predictions of Coronavirus Epidemic Spreading in Mainland China
https://doi.org/10.20535/ibb.2020.4.1.195074
SHA: 4ff89a71126d2932544a8337ba28787fde5f02a8
Authors: Nesteruk, Igor
Date: 2020
DOI: 10.20535/ibb.2020.4.1.195074
License: cc-by
Abstract: Information about the open-access article 'Statistics-Based Predictions of Coronavirus Epidemic Spreading in Mainland China' in DOAJ. DOAJ is an online directory that indexes and provides access to quality open access, peer-reviewed journals.
Text: Here, we consider the development of an epidemic outbreak caused by coronavirus COVID-19 (the previous name was 2019-nCoV) (see e.g., [1] [2] [3] ). Since long-term data are available only for mainland China, we will try to predict the number of coronavirus victims V (number of persons who caught the infection and got sick) only in this area. The first estimations of V(t) exponential growth versus time t, typical for the initial stages of every epidemic (see e.g., [4] ) have been done in [3] . For long-time predictions, more complicated mathematical models are necessary. For example, a susceptible-exposed-infectious-recovered (SEIR) model was used in [2] . Nevertheless, complicated models need more effort for unknown parameters identification. This procedure may be especially difficult if reliable data are limited.
In this study, we use the known SIR model for the dynamics of an epidemic [4] [5] [6] [7] [8] . For the parameter identification, we will use the exact solution of the SIR set of linear equations and statistical approach developed in [4] (tested also in [9] ). These methods were applied for investigation of the children disease, which occurred in Chernivtsi (Ukraine) in 1988-1989. We will estimate some of the epidemic characteristics and present the dependencies for victim numbers, infected and removed persons versus time.
We shall analyze the daily data for the number of confirmed cases in mainland China, which origins from the National Health Commission of the People's Republic of China [1] . A part of the official diagram (its version, presented on February 15, 2020) is shown in Fig. 1 . For calculations, we have used the data for the period of time from January 16 to February 9, 2020. The numbers shown after February 9 were used for verification of predictions.
On February 12, 2020, the National Health Commission of the People's Republic of China has added 12289 new cases (not previously included in official counts) as "clinically diagnosed cases". The cases, reported by this official organization before, have the name of "tested confirmed cases" [1] . To avoid confusiong, we will denote "tested confirmed cases" as Wj; j corresponds to the different time moments tj (see the Table) . Let us denote the "clinically diagnosed cases" as Qj. The sum of Wj and Qj is shown in the last column in Fig. 1 and in the Table. The Table shows that the precise time of the epidemic beginning t0 is unknown. Therefore, the optimization procedures have to determine the optimal value of this parameter as well as for other parameters of SIR model. The sum of "tested confirmed cases" and "clinically diagnosed cases" Wj + Qj 16 0 45 1 16 14380 Unknown 17 1 62 2 17 17205 Unknown 18 2 121 3 18 20440 Unknown 19 3 198 4 19 24324 Unknown 20 4 291 5 20 28018 Unknown 21 5 440 6 21 31161 Unknown 22 6 571 7 22 34568 Unknown 23 7 830 8 23 37198 Unknown 24 8 1287 9 24 40171 Unknown 25 9 1975 10 25 42638 Unknown 26 10 2744 11 26 44653 Unknown 27 11 4515 12 27 46472 58761 28 12 5974 13 28 48467 63851 29 13 7711 14 29 49970 66492 30 14 9692 ----31 15 11791 ----
The SIR model for an infectious disease can be written as follows [6, 7] :
,
The number of susceptible persons is S, infected (persons who are sick and spread the infection) -I, removed (persons who do not spread the infection anymore, this number is the sum of isolated, recovered and dead people) -R; the infection and immunization rates are and respectively.
It follows from (1) and (2) that
Integration of (5) with the initial conditions (4) yields:
Function I has a maximum at S and tends to zero at infinity, see [6, 7] . In comparison, the number of susceptible persons at infinity 0, S and can be calculated with the use of (6) from a non-linear equation
yields:
Thus, for every set of parameters N, , , 0 t and a fixed value of V the integral (10) can be calculated and the corresponding moment of time can be determined from (9) . Then I can be calculated from (6) by putting S = N V and function R from
Statistical approach for parameter identification. Linear regression As in paper [4] , we shall use the fact that the random function 1 ( , , ) F V N has a linear distribution (see (9) ). Then we can apply the linear regression (see [10] ) for every pair of parameters N and and calculate the corresponding values of 0 t and . The optimal (the most reliable) values of N and correspond to the maximum value of the correlation coefficient r (see [4, 9] ).
Since we did not know and still don't know the values of Qj before February 12, 2020, we supposed that Vj = Wj and have done the calculations with the use of data for the time period from January 16 to February 9, 2020. The optimal values of the parameters are:
The corresponding correlation coefficient is very high r = 0.997966487046645. The solution of (7) yields the value 45579.
The corresponding number of infected I, susceptible S and removed R persons versus time (starting from January 16, 2020) were calculated and shown in Fig. 2 . The blue line represents the number of victims V = I + R and is in good agreement with "tested confirmed cases" Wj, reported by the National Health Commission of the People's Republic of China [1] (blue markers).
Unfortunately, many cases have not been included in the official counts and have appeared in the official Table from [1] only on February 12 as "clinically diagnosed cases" Qj (see Fig. 1 ). Since the National Health Commission of the the People's Republic of China has proposed two different ways of registration of the same disease [1] , Vj must be the sum of Wj and Qj , i.e. Vj = Wj + Qj (provided that no new methods of registering the same disease would appear). Values Wj after February 9 are shown in Fig. 3 by "stars". "Crosses" represent the sum Wj + Qj .
Since the optimal curve was obtained only with the use of Wj and the difference between Wj and Vj is very big (e.g., it was 12 289 persons on February 12, 2020), the predictions shown in Fig. 2 and reported in [11] are no longer relevant. To have better predictions, it is necessary to have exact Qjdata for the period before February 12. Blue markers show the "tested confirmed cases" W j , reported by the National Health Commission of the People's Republic of China [1] . The "circles" correspond to the points used for calculations (it was supposed that V j = W j ); "stars" -to the points used only for verification Circles" show the "tested confirmed cases" W j for the period from January 16 to February 9, 2020, [2] . These points were used to calculate the prediction curve. "Stars" correspond to the "tested confirmed cases" W j for the period from February 10 to February 14, 2020, [1] . "Crosses" represent the sum W j + Q j from [1]
The simple mathematical model was used to predict the characteristics of the epidemic caused by coronavirus in mainland China. The numbers of infected, susceptible, and removed persons versus time were predicted and compared with the new data obtained after February 10, 2020, when the calculations were completed. Unfortunately, many cases have not been included in the official counts and have appeared on February 12 only. It makes the predictions reported on February 10, 2020, no longer relevant. Further research should focus on updating the predictions with the use of corrected data and more complicated mathematical models. | Use of SIR/SEIR model in Statistics-Based Predictions of Coronavirus Epidemic Spreading? | {
"answer_start": [
3813
],
"text": [
"susceptible persons is S, infected (persons who are sick and spread the infection) -I, removed (persons who do not spread the infection anymore, this number is the sum of isolated, recovered and dead people) -R; the infection and immunization rates "
]
} | false |
1,935 | Vesicular stomatitis virus with the rabies virus glycoprotein directs retrograde transsynaptic transport among neurons in vivo
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566411/
SHA: ee48061797d29eeef5a9e606841bf8ab04b1d75b
Authors: Beier, Kevin T.; Saunders, Arpiar B.; Oldenburg, Ian A.; Sabatini, Bernardo L.; Cepko, Constance L.
Date: 2013-02-07
DOI: 10.3389/fncir.2013.00011
License: cc-by
Abstract: Defining the connections among neurons is critical to our understanding of the structure and function of the nervous system. Recombinant viruses engineered to transmit across synapses provide a powerful approach for the dissection of neuronal circuitry in vivo. We recently demonstrated that recombinant vesicular stomatitis virus (VSV) can be endowed with anterograde or retrograde transsynaptic tracing ability by providing the virus with different glycoproteins. Here we extend the characterization of the transmission and gene expression of recombinant VSV (rVSV) with the rabies virus glycoprotein (RABV-G), and provide examples of its activity relative to the anterograde transsynaptic tracer form of rVSV. rVSV with RABV-G was found to drive strong expression of transgenes and to spread rapidly from neuron to neuron in only a retrograde manner. Depending upon how the RABV-G was delivered, VSV served as a polysynaptic or monosynaptic tracer, or was able to define projections through axonal uptake and retrograde transport. In animals co-infected with rVSV in its anterograde form, rVSV with RABV-G could be used to begin to characterize the similarities and differences in connections to different areas. rVSV with RABV-G provides a flexible, rapid, and versatile tracing tool that complements the previously described VSV-based anterograde transsynaptic tracer.
Text: Mapping neuronal connectivity in the central nervous system (CNS) of even simple organisms is a difficult task. Recombinant viruses engineered to trace synaptic connections and express transgenes promise to enable higher-throughput mapping of connections among neurons than other methods, e.g., serial reconstruction from electron micrographs (Bock et al., 2011; Briggman et al., 2011) . The Pseudorabies (PRV) and Rabies viruses (RABV) have been the best characterized and most utilized circuit tracing viruses to date (Ugolini et al., 1989; Kelly and Strick, 2000) . RABV was recently modified by Wickersham and colleagues such that it can travel across only one synapse, allowing for a straightforward definition of monosynaptic connections (Wickersham et al., 2007b) . This strategy permitted the first unambiguous identification of retrogradely connected cells from an initially infected cell ("starter cell"), without the need for electrophysiology. Moreover, the starter cell could be defined through the expression of a specific viral receptor that limited the initial infection.
Recently, we created an anterograde monosynaptic virus that complements the previously available retrograde viral tracers (Beier et al., 2011) . Vesicular stomatitis virus (VSV), a virus related to RABV, with its own glycoprotein (G) gene (VSV-G), or with a G from the unrelated lymphocytic choriomeningitis virus (LCMV-G), spreads in the anterograde direction across synapses. VSV can be used as a polysynaptic tracer that spreads across many synapses, owing to the fact that the normal, replicationcompetent form of the virus does not cause serious diseases in humans (Brandly and Hanson, 1957; Johnson et al., 1966; Brody et al., 1967) . Whether the virus is a monosynaptic or polysynaptic tracer is determined by the method of delivery of the G gene ( Figure 1A) . Advantages of VSV are that it is well-characterized, is relatively simple in comparison to PRV, and it rapidly grows to high titer in tissue culture cells. It is also being developed as a vaccine vector, often using a G of another virus as the immunogen, as well as being developed as a cytocidal agent that will target tumor cells in humans (Balachandran and Barber, 2000; Stojdl et al., 2000 Stojdl et al., , 2003 .
Previous studies of the anatomical patterns of transmission, as well as physiological recordings, have shown that the transmission of VSV and RABV among neurons is via synapses (Kelly and Strick, 2000; Wickersham et al., 2007b; Beier et al., 2011) . In addition, it has been shown that RABV, as well as lentiviruses with RABV-G in their envelope, travel retrogradely from an injection site (Mazarakis et al., 2001; Wickersham et al., 2007a) . We hypothesized that providing a recombinant VSV (rVSV) with the RABV-G would create a retrograde polysynaptic transsynaptic tracer without the biosafety concerns inherent to RABV. Our initial characterization of rVSV with RABV-G showed that indeed FIGURE 1 | Synaptic tracing strategies using VSV. (A) Schematic illustrating the strategies for polysynaptic or monosynaptic retrograde or anterograde transsynaptic transmission of rVSV encoding GFP. The initially infected cell is indicated by an asterisk. VSV encoding a glycoprotein (G) within its genome can spread polysynaptically. The direction of the spread depends on the identity of the glycoprotein. Infected neurons are shown in green. In some cases, the initially infected starter cell can be defined by the expression of an avian receptor, TVA (tagged with a red fluorescent protein). The TVA-expressing neurons can then be specifically infected by rVSV G with the EnvA/RABV-G (A/RG) glycoprotein (Wickersham et al., 2007b) on the virion surface [rVSV G(A/RG)]. These starter cells are then yellow, due to viral GFP and mCherry from TVA-mCherry expression. For monosynaptic tracing, the G protein is expressed in trans in the TVA-expressing cell, and thus complements rVSV G to allow transmission in a specific direction. (B) Genomic diagrams of rVSV vectors. All VSVs contain four essential proteins: N, P, M, and L. Some viruses encode a G gene in their genome, which allows them to spread polysynaptically. rVSV vectors typically encode a transgene in the first position, while others carry an additional transgene in the G position. (C) Morphological characterization of rVSV-infected neurons in several locations within the mouse brain. (i,ii) Caudate-putamen (CP) neurons at 4 dpi from an injection of the CP with rVSV(VSV-G) viruses encoding (i) CFP or (ii) Korange. (iii) Labeled neurons of the CA1 region of the hippocampus are shown at 5 dpi following injection into the hippocampus of rVSV(VSV-G) encoding Venus. (iv,v) Cortical pyramidal neurons are shown following injection into the CP of rVSV(RABV-G) expressing (iv) GFP at 24 hpi, or (v) mCherry at 48 hpi. Inset in (iv) is a high magnification of the neuron in panel (iv), highlighting labeling of dendritic spines. (vi) Multiple viruses can be co-injected into the same animal. Here, individual rVSV G(VSV-G) viruses encoding CFP, GFP , Venus, Korange, and mCherry were used to infect the cortex. Scale bars = 50 µm.
www.frontiersin.org February 2013 | Volume 7 | Article 11 | 2 it could be taken up as a retrograde tracer (Beier et al., 2011) .
To determine if it could transmit among neurons following its replication in neurons, and to further analyze the transmission patterns of both the monosynaptic and polysynaptic forms of rVSV with RABV-G, we made injections into several CNS and peripheral locations. In addition, we performed co-infections of rVSV with RABV-G and the anterograde form of rVSV in order to exploit the differences in the directionality of transmission of these two viruses in mapping circuits.
Schematics of viruses created and used throughout this study are shown in Figure 1 . We created rVSV vector plasmids carrying different transgenes in either the first or fifth genomic positions ( Figure 1B) . After rescuing each virus, we tested the ability of each to express transgenes in different brain regions through intracranial injections ( Figure 1C ). All rVSV vectors drove robust fluorophore expression 1 or 2 days post-infection (hpi) ( Figure 1C ) (van den Pol et al., 2009) . In fact, by 12 hpi, labeling was sufficiently bright to image fine morphological details, such as dendritic spines ( Figure 1C ,iv).
To characterize the physiological properties of cells infected with rVSV, we tested a replication-competent rVSV encoding GFP, with RABV-G in the genome in place of VSV-G [hereafter designated rVSV(RABV-G)]. van den Pol et al. reported that hippocampal neurons infected with replication-incompetent (G-deleted or " G") rVSV were physiologically healthy at 12-14 hpi, but were less so by 1 day post-infection (dpi) (van den Pol et al., 2009) . Given the known toxicity of both VSV and RABV-G (Coulon et al., 1982) , we tested the physiology of cortical pyramidal neurons in the motor cortex (M1) infected with rVSV(RABV-G). Between 12 and 18 hpi, the membrane capacitance, input resistance, resting membrane potential, and current-to-action potential firing relationship were indistinguishable between infected and uninfected neurons (Figure 2) . However, by 2 dpi, electrophysiological properties were so abnormal in the infected cortical pyramidal cells that physiological measurements could not be made.
The speed and strength of the expression of transgenes encoded by VSV depends upon the gene's genomic position (van den Pol et al., 2009; Beier et al., 2011) . Genes in the first position are expressed the most highly, with a decrease in the level of expression in positions more 3 within the viral plus strand. When GFP was inserted into the first position of VSV, GFP fluorescence was first detectable at approximately 1 hpi in cultured cells (van den Pol et al., 2009) . In order to quantify the relative expression of a fluorescent protein in the first genomic position in neurons, rat hippocampal slices were infected with a replication-incompetent rVSV that expresses mCherry (rVSV G, Figures 1A,B) . This was a G virus which had the RABV-G supplied in trans during the preparation of the virus stock [referred to as rVSV G(RABV-G)].
Average fluorescence intensity of the infected cells was measured every hour over the course of 18 h. By 4 hpi at 37 • C, red fluorescence was clearly visible, and reached maximal levels by approximately 14 hpi (N = 3, Figure 3 ). Similar results were obtained with a virus encoding GFP in the first genomic position rather than mCherry (i.e., Figure 1B ) (N = 3).
We previously demonstrated that rVSV(RABV-G) could be taken up retrogradely by neurons (Beier et al., 2011) , but these experiments did not distinguish between direct axonal uptake of the initial inoculum vs. retrograde transsynaptic transmission following viral replication. To distinguish between these two mechanisms and to extend the previous analyses, we conducted further experiments in the mammalian visual system (Figures 4A-G) . As visual cortex area 1 (V1) does not receive direct projections from retinal ganglion cells (RGCs), but rather receives secondary input from RGCs via the lateral geniculate nucleus (LGN), infection of RGCs from injection of V1 would demonstrate retrograde transmission from cells which supported at least one round of viral replication. Following a V1 injection with rVSV(RABV-G), GFP-positive RGCs were observed in the retina by 3 dpi (N = 3; Figure 4G ). Importantly, viral labeling in the brain was restricted to primary and secondary projection areas, even at 7 dpi. These included the LGN ( Figure 4D ) and the hypothalamus (Figure 4E) , two areas known to project directly to V1 (Kandel, 2000) . Selective labeling was observed in other areas, such as cortical areas surrounding V1 (Figure 4C) , which project directly to V1, and also in the superior colliculus (SC) stratum griseum centrale, which projects to the LGN ( Figure 4F) . Labeling was also observed in the nucleus basalis, which projects to the cortex, as well as many components of the basal ganglia circuit, which provide input to the thalamus [such as the caudate-putamen (CP), globus pallidus (GP), and the subthalamic nucleus (STn)]. The amygdala, which projects to the hypothalamus, was also labeled. Consistent with a lack of widespread viral transmission, animals did not exhibit signs of disease at 7 dpi.
These data show that rVSV(RABV-G) can spread in a retrograde direction from the injection site, but do not address whether the virus can spread exclusively in the retrograde direction. Directional transsynaptic specificity can only be definitively addressed using a unidirectional circuit. We therefore turned to the primary motor cortex (M1) to CP connection, in which neurons project from the cortex to the CP, but not in the other direction ( Figure 4H ) (Beier et al., 2011) . Injections of rVSV(RABV-G) into M1 should not label neurons in the CP if the virus can only label cells across synapses in the retrograde direction. Indeed, at 2 dpi, areas directly projecting to the injection site, including the contralateral cortex, were labeled ( Figure 4I ). Only axons from cortical cells were observed in the CP, with no GFP-labeled cell bodies present in the CP (Figure 4J) , consistent with lack of anterograde transsynaptic spread. By 3 dpi, a small number of medium spiny neurons (MSNs) in the CP were observed, likely via secondary spread from initially infected thalamic or GP neurons (data not shown).
A particular advantage of retrograde viral tracers is the ability to label CNS neurons projecting to peripheral sites. This has been a powerful application of both RABV and PRV (Ugolini et al., 1989; Standish et al., 1994) . To test if rVSV(RABV-G) could also perform this function, we examined the innervation of the dura surface by neurons of the trigeminal ganglion, a neuronal circuit thought to be involved in migraine headaches (Penfield and McNaughton, 1940; Mayberg et al., 1984) . These neurons have axons, but not canonical dendrites, and send projections into the spinal cord and brainstem. Therefore, the only way trigeminal neurons could become labeled from viral application to the dura is through retrograde uptake of the virus. We applied rVSV(RABV-G) to the intact dura mater and analyzed the dura, trigeminal ganglion, and CNS for labeling ( Figure 4K ). At the earliest time point examined, 3 dpi, we observed axons traveling along the dura, but little other evidence of infection ( Figure 4L) . No labeled neuronal cell bodies on the dura were observed, consistent with the lack of neurons on this surface. In contrast, we did find labeled cell bodies in the trigeminal ganglion ( Figure 4M ). No infection was seen in the CNS, even at 4 dpi, consistent with the lack of inputs from the brain into the trigeminal ganglion (N = 4 animals).
To further characterize patterns and kinetics of viral transmission and directional specificity of transsynaptic spread, injections of rVSV(RABV-G) were made into the CP ( Figure 5A ). In order to determine which cells were labeled by direct uptake of virus in the inoculum, a separate set of animals were injected into the CP with the replication-incompetent rVSV G(RABV-G) (N = 3 animals, analyzed 3 dpi). Cells labeled by rVSV G(RABV-G) were observed in the CP, GP, substantia nigra (SN), thalamus, and layers 3 and 5 of the cortex, consistent with infection at the axon terminal and retrograde labeling of cell bodies of neurons known to project directly to the CP ( Figure 5C ) (Albin et al., 1995) . Areas labeled by CP injection are indicated in Figure 5B .
The patterns of spread for the replication-competent rVSV(RABV-G) were characterized over the course of 1-5 dpi ( Figures 5D-H) . During this interval, progressively more cells in infected regions were labeled by rVSV(RABV-G), including within the CP, nucleus basalis, cortex, and GP (listed in Figure 5B ). In addition, more cortical cells were labeled in clusters near cortical pyramidal neurons, both ipsilateral and contralateral to the injected side, including neurogliaform cells (data not shown). These data are in contrast to those observed following infection with an anterograde transsynaptic tracing virus, such as rVSV with its own G gene, rVSV(VSV-G) (Figure 5B) . At 3 dpi following rVSV(VSV-G) injection into the CP, the cerebral cortex was not labeled, but regions receiving projections from the CP, such as the STn, GP, and SN, were labeled (Beier et al., 2011) .
In order to investigate other areas for evidence of cell-to-cell retrograde transsynaptic spread, the nucleus basalis was examined following infection of the CP with replication-competent rVSV(RABV-G). The nucleus basalis was labeled by 2 dpi (Figures 5E-H) , consistent with at least a single transsynaptic jump, as this area does not directly project to the CP. The virus appeared to travel transsynaptically at the rate of roughly 1 synapse per day, as evidenced by the lack of labeled neurogliaform cells in the cortex, and lack of neurons in the nucleus basalis at 1 dpi, and label appearing in these cell types/areas at 2 dpi, as previously observed (Beier et al., 2011) . Labeling remained well-restricted to the expected corticostriatal circuits at 5 dpi, suggesting that viral spread becomes less efficient after crossing one or two connections, consistent with injections into V1 (Figure 4) . While glial cells can be infected and were observed near the injection site (van den Pol et al., 2002; Chauhan et al., 2010) , infected glial cells away from the injection site generally were not observed.
One advantage of having both anterograde and retrograde forms of the same virus is that they can be used in parallel, or in tandem, to trace circuitry to and from a single or multiple sites of injection, with each virus having similar kinetics of spread and gene expression. In fact, if different fluorophores are used in different viruses, e.g., rVSV(VSV-G) and rVSV(RABV-G), then the viruses can be co-injected into the same site and their transmission can be traced independently ( Figure 6A ). This is most straightforward if there are no cells at the injection site that are initially infected by both viruses. Co-infected cells can be easily detected, as they would express both fluorescent proteins shortly after injection.
In order to determine whether two viruses would allow simultaneous anterograde and retrograde transsynaptic tracing from a single injection site, a rVSV(VSV-G) expressing Venus and a rVSV(RABV-G) expressing mCherry were injected individually (Figures 6B-D) or co-injected (Figures 6E-G) into the motor cortex, and brains were examined 3 dpi. The pattern of labeling from the co-injected brains was equivalent to the patterns observed when each virus was injected individually: rVSV(VSV-G) was observed to infect neurons in the cortex, CP, and downstream nuclei, whereas the rVSV(RABV-G) was not observed to infect neurons in the CP, but rather in the thalamus and nucleus basalis (N = 4). The initial co-infection rate is dependent upon The presence or absence of labeling is indicated by (+) and (−), respectively. The extent of labeling is indicated by the number of (+). Some animals were infected with G viruses to determine which areas were labeled by direct uptake of the virions, rather than by replication and transmission. These were sacrificed at 3 dpi. (C) Parasaggital section of a brain infected with VSV[greek delta]G(RABV-G). The injection site is marked by a red arrow. Several areas that project directly to the CP were labeled due to direct uptake of the virions, including the cortex, thalamus, and GP (arrowheads), 3 dpi. the dose of the initial inocula. When injecting 3 × 10 3 focus forming units (ffu) rVSV(VSV-G) and 3 × 10 4 ffu rVSV(RABV-G), no co-infection was observed at the injection site. Thus, co-infection of the same brain region, without co-infection of the same cells,
does not alter the spreading behavior of either rVSV(VSV-G) or rVSV(RABV-G). One example of how this dual retrograde and anterograde transsynaptic tracing system can be used is to determine if three Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 8 distinct regions are connected and the directionality of any connections. For example, the anterograde transsynaptic virus can be injected into one region, the retrograde into another, and a third region can then be examined for evidence of labeling by either or both viruses (e.g., Figure 6H ). To test this possibility, rVSV(VSV-G) was injected into the motor cortex, rVSV(RABV-G) was injected into the substantia nigra pars reticulara (SNr), and animals were sacrificed at 3 dpi. We observed that cells were singly labeled, either with Venus [rVSV(VSV-G)] or with mCherry [rVSV(RABV-G)], and were located largely in different regions of the CP (Figures 6I,J) (N = 3) . These results suggest that the anterograde connections from the cells infected with rVSV(VSV-G) in the M1 were with CP MSNs that did not project to the region of the SNr injected with rVSV(RABV-G) (N = 3 animals).
In addition to polysynaptic tracing, VSV can be modified to trace circuits monosynaptically (Beier et al., 2011) . With RABV, this was achieved in vivo by first infecting with an adeno-associated virus (AAV) expressing TVA, a receptor for an avian retrovirus, and RABV-G (Wall et al., 2010) . This was followed 3 weeks later by infection with a G RABV with an EnvA/RABV-G chimeric glycoprotein on the virion surface (Wickersham et al., 2007b) , which allowed infection specifically of the cells expressing TVA. A similar strategy was used to test rVSV's ability to monosynaptically trace retrogradely connected neurons in vivo. Inputs to choline acetyltransferase (ChAT)-expressing neurons in the striatum were used for this test. These neurons primarily receive input from the cortex and the thalamus (Thomas et al., 2000; Bloomfield et al., 2007) (Figure 7A) . In order to mark this population, we crossed ChAT-Cre mice to Ai9 mice, which express tdTomato in cells with a Cre expression history (Madisen et al., 2010) . Six-week-old mice from this cross were injected in the CP with two AAV vectors: one expressing a Cre-conditional ("floxed") TVA-mCherry fusion protein, and another expressing a floxed RABV-G. Two weeks later, the mice were injected in the same coordinates with rVSV G with the EnvA/RABV-G chimeric glycoprotein on the virion surface [rVSV G(A/RG)] (Beier et al., 2011) . Cells successfully infected with these two AAV vectors could host infection by a rVSV and should be able to produce rVSV virions with RABV-G on the surface. Such starter cells should also express tdTomato and GFP. If rVSV were to be produced, and if it were to transmit across the synapse retrogradely, cortical and thalamic neurons should be labeled by GFP. Mice injected with these AAV and rVSV viruses were sacrificed 5 days after rVSV infection, and brains analyzed for fluorescence. As expected for starter cells, some neurons in the CP expressed both tdTomato and GFP (Figure 7B) . Outside of the CP, small numbers of GFP+ neurons that were not mCherry+ were observed in the cortex (Figures 7C,D) and thalamus (Figure 7E) , consistent with retrograde spread. Control animals not expressing Cre, or not injected with AAV encoding RABV-G, did not label cells in the cortex or thalamus (N = 3 for both controls and experimental condition).
Here, we report on the use of rVSV as a retrograde transsynaptic tracer for CNS circuitry. VSV can be modified to encode the RABV-G protein in the viral genome, allowing the virus to replicate and transmit across multiple synaptically connected cells, i.e., as a polysynaptic tracer. Alternatively, if the virus has the G gene deleted from its genome and RABV-G is provided in trans, it behaves as a monosynaptic tracer (Beier et al., 2011) . Although it has been known for many years that RABV travels retrogradely among neurons (Astic et al., 1993; Ugolini, 1995; Kelly and Strick, 2003) , and pseudotyping lentiviruses with RABV-G is sufficient for axonal transport (Mazarakis et al., 2001) , the retrograde transmission specificity among neurons had not been clearly shown to be a property of the G protein itself, as it might have been due to other viral proteins in addition to, or instead of, the viral G protein. Since native VSV does not have these retrograde transsynaptic properties (van den Pol et al., 2002; Beier et al., 2011) , and the only alteration to the VSV genome was the substitution of the VSV G gene with the G gene of RABV, it is clear that the RABV glycoprotein is responsible for retrograde direction of viral transmission across synapses, at least in the case of rVSV.
The early onset of gene expression from VSV relative to RABV (one hour vs. multiple hours) makes it beneficial in experimental paradigms in which the experiment needs to be done within a narrow window of time, such as tissue slices and explants. In addition, more than one transgene can be encoded in the viral genome without the need of a 2A or IRES element. The use of the first position of the genome enhances the expression level of the transgene inserted at that location, since VSV (and RABV) express genes in a transcriptional gradient; therefore, the first gene is the most highly transcribed (Knipe, 2007) . This leads to rational predictions of expression levels so that one can choose the position of insertion of a transgene, or transgenes, according to this gradient and the desired level of expression. The size of the viral capsid is apparently not rigid, allowing for the inclusion of genomes that are substantially larger than the native genome, unlike the rigid capacity for some other viral vectors, such as AAV Yan et al., 2000) .
The fact that VSV can be made to spread anterogradely (Beier et al., 2011) or retrogradely across synapses with the change of a single gene affords several advantages over viral tracers that heretofore have not shown such flexibility in the directionality of tracing. In addition to the obvious application of tracing anterograde connections, combinations can be made to exploit the different forms of the virus. One example that employs the simultaneous infection with an anterograde and retrograde form of VSV is demonstrated in Figure 6 . This experiment was designed to address whether the anterograde projections from the cortex to the CP would label the same brain regions as were labeled by a retrograde virus injected into the SN. Although a block of superinfection by the virus may preclude infection of the same cell with multiple rVSVs, adjacent cells could still become labeled by different viruses (Whitaker-Dowling et al., 1983) . The observed results could be due to a preferential labeling by the anterograde transsynaptic virus of indirect pathway MSNs in this experiment, which then synapse onto the GP, thereby reflecting a viral bias. Alternatively, it could indicate that the cortical neurons in the injected region largely do not label the MSNs that project to the area of the SN injected with the retrograde virus. One further possibility is that too little virus was used to observe co-labeling of a given region. However, given the density of infection (i.e., Figures 6I,J) , the latter possibility seems unlikely. Additionally, the spread of the polysynaptic rVSV(RABV-G) appears to attenuate with increasing numbers of synapses crossed, permitting an analysis of more restricted viral spread. This is quite fortuitous, as if spread were to continue, it would lead to widespread infection and lethality. In addition, reconstruction of connectivity would be more difficult. This reduced efficiency appears to also hold for the monosynaptic form of VSV complemented with RABV-G, as the efficiency of transmission appeared lower than the comparable experiment with RABV (Watabe-Uchida et al., 2012) . This is likely due to viral attenuation when VSV-G is replaced with RABV-G.
We were attracted to the use of VSV as a viral tracer due to its long track record as a safe, replication-competent laboratory agent. Laboratory workers using VSV have not contracted any diseases, and natural VSV infections among human populations in Central America and the southwestern United States (Rodríguez, 2002) occur without evident pathology (Johnson et al., 1966; Brody et al., 1967) . VSV was thus an attractive candidate for its use as a polysynaptic tracer for CNS studies, which requires an ability to replicate through multiple transmission cycles. Both replicationcompetent and incompetent forms of VSV are in use under Biosafety Level 2 containment. Replication-competent RABV is Biosafety Level 3, due to the fact that infection with replicationcompetent RABV is almost always fatal to humans and in mice when infected intracerebrally (Smith, 1981; Knipe, 2007) . Differences in pathogenicity between VSV and RABV are likely due to the ability of RABV to evade the innate immune system, particularly interferon (Hangartner et al., 2006; Junt et al., 2007; Lyles and Rupprecht, 2007; Rieder and Conzelmann, 2009; Iannacone et al., 2010) . VSV infection efficiently triggers an interferon response, and it has not evolved a method of escape from this response, unlike RABV (Brzózka et al., 2006) . In fact, VSV is being pursued as a vaccine for other viruses, including RABV (Lichty et al., 2004; Publicover et al., 2004; Kapadia et al., 2005; Schwartz et al., 2007; Iyer et al., 2009; Geisbert and Feldmann, 2011) . VSV does not typically spread beyond the initially infected site in the periphery (Kramer et al., 1983; Vogel and Fertsch, 1987) . This likely is the cause of the minor or absent symptoms in humans and animals infected in nature. Polysynaptic VSV vectors are thus predicted to be much safer than polysynaptic RABV vectors. We have tested this prediction by injecting a series of mice in the footpads and hind leg muscles with rVSV(RABV-G), with the result that no injected animals showed any evidence of morbidity or mortality (Beier, Goz et al., in preparation) .
While safer for laboratory workers than RABV, the main drawback to using VSV is its rapid cellular toxicity (van den Pol et al., 2009; Beier et al., 2011) . Toxicity is due to suppression of cellular transcription and a block in the export of cellular RNAs from the nucleus to the cytoplasm (Black and Lyles, 1992; Her et al., 1997; Ahmed and Lyles, 1998; Petersen et al., 2000; von Kobbe et al., 2000) , as well as inhibition of the translation of cellular mRNAs (Francoeur et al., 1987; Jayakar et al., 2000; Kopecky et al., Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 10 2001). VSV is much quicker to enact its gene expression program than is RABV, such that cells suffer the toxic effects more quickly than after RABV infection. One aspect of VSV that can be exploited in the future to ameliorate the speed of toxicity is the use of VSV mutants and variants. One such mutant is the M51R, which permitted us to conduct physiological analyses of pre-and post-synaptic cells (Beier et al., 2011) . We are in the process of examining the transmission properties of this mutant in vivo, as well as the effects of other mutations or viral variants on prolonging the health of neurons after infection.
rVSV vectors can be used to study the connectivity of neuronal circuitry. In addition to combinations of replication-competent forms of VSV, the replication-incompetent, monosynaptic forms of the virus can be easily combined, without the need to change viruses (Beier et al., 2011) . This allows a straightforward way to study both the projections into, and out from, a genetically defined cell population. This can be done with the same viral genome, with the only change needed being the glycoprotein, for the selection of the direction of transmission. This flexibility of VSV makes it a powerful, multi-application vector for studying connectivity in the CNS.
All rVSV clones were cloned from the rVSV G backbone (Chandran et al., 2005) . mCherry, Kusabira orange, Venus, and CFP were cloned into the first (GFP) position using XhoI and MscI sites, and VSV-G (a gift from Richard Mulligan, Harvard Medical School, Boston, MA) and RABV-G (a gift from Ed Callaway, Salk Institute, San Diego, CA) were cloned into the fifth (G) position using the MluI and NotI restriction sites. Genes for fluorescent proteins were obtained from Clontech. Viruses were rescued as previously described (Whelan et al., 1995) . At 95% confluency, eight 10 cm plates of BSR cells were infected at an MOI of 0.01. Viral supernatants were collected at 24-h time intervals and ultracentrifuged at 21,000 RPM using a SW28 rotor and resuspended in 0.2% of the original volume. For titering, concentrated viral stocks were applied in a dilution series to 100% confluent BSR cells and plates were examined at 12 hpi. Viral stocks were stored at −80 • C.
For G viruses, 293T cells were transfected with PEI (Ehrhardt et al., 2006) at 70% confluency on 10 cm dishes with 5 µg of pCAG-RABV-G. Twenty-four hours post-infection, the cells were infected at an MOI of 0.01 with rVSV G expressing either GFP or mCherry. Viral supernatants were collected for the subsequent 4 days at 24 h intervals.
Virus preparations are now available from the Salk GT3 viral core (http://vectorcore.salk.edu/). All plasmids are available from Addgene (http://www.addgene.org/).
AAV-FLEx-RABV-G and AAV-FLEx-TVA-mCherry plasmids originated from the Lab of Naoshige Uchida (Watabe-Uchida et al., 2012) , and virus stocks were generous gifts from Brad Lowell, Harvard Medical School.
ChAT-Cre (B6;129S6-Chat tm1(cre)Lowl /J) and Ai9 (B6.Cg-Gt(ROSA)26Sor<tm9(CAG-tdTomato)Hze>/J) mice were obtained from the Jackson Laboratory (Madisen et al., 2010) .
Eight-week-old CD-1 mice were injected using pulled capillary microdispensers (Drummond Scientific, Cat. No: 5-000-2005) , using coordinates from The Mouse Brain in Stereotaxic Coordinates (Franklin and Paxinos, 1997) . Injection coordinates (in mm) used were: For multi-color analysis (Figures 1C,D) , 3 × 10 9 ffu/mL rVSV was injected into various regions. For CP injections, 100 nL of rVSV(RABV-G) or rVSV(VSV-G) at 3 × 10 7 ffu/mL was injected at a rate of 100 nL/min. For the replication-incompetent viruses, 100 nL of 1 × 10 7 ffu/mL rVSV G(RABV-G) or rVSV G (VSV-G) was injected. In the motor cortex, 100 nL of 1 × 10 7 ffu/mL rVSV(RABV-G) was injected, and mice harvested 2 dpi. For V1 injections, 100 nL of 3 × 10 10 ffu/mL rVSV(RABV-G) was injected, and mice were examined 3 or 7 dpi.
For infections of the dura mater, 1 µL of 3 × 10 10 ffu/mL rVSV(RABV-G) was applied to the surface of the dura. The virus was allowed to absorb, and the surface was subsequently covered in bone wax, and the wound sutured.
For co-injections of virus into the same animal, 100 nL of a combination of 3 × 10 7 ffu/mL rVSV(VSV-G) and 3 × 10 8 ffu/mL rVSV(RABV-G) were co-injected into the motor cortex, and brains examined 3 dpi. For injections of the viruses into different regions, 100 nL of 3 × 10 7 ffu/mL rVSV(VSV-G) was injected into M1, and 100 nL of 3 × 10 8 ffu/mL rVSV(RABV-G) into the SNr, and brains examined 3 dpi. A lower titer of rVSV(VSV-G) was used, as rVSV(RABV-G) is attenuated.
All mouse work was conducted in biosafety containment level 2 conditions and was approved by the Longwood Medical Area Institutional Animal Care and Use Committee.
Recordings were made from cortical pyramidal neurons in slices taken from postnatal day 12-18 mice, inoculated in the CP 12-18 h prior with rVSV(RABV-G). Coronal slices (300 µm thick) were cut in ice-cold external solution containing (in mM): 110 choline, 25 NaHCO 3 , 1.25 NaH 2 PO 4 , 2.5 KCl, 7 MgCl 2 , 0.5 CaCl 2 , 25 glucose, 11.6 Na-ascorbate, and 3.1 Na-pyruvate, bubbled with 95% O 2 and 5% CO 2 . Slices were then transferred to artificial cerebrospinal fluid (ACSF) containing (in mM): 127 NaCl, 25 NaHCO 3 , 1.25 NaH 2 PO 4 , 2.5 KCl, 1 MgCl 2 , 2 CaCl 2 , and 25 glucose, bubbled with 95% O 2 and 5% CO 2 . After an incubation period Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 11 of 30-40 min at 34 • C, slices were stored at room temperature. All experiments were conducted at room temperature (25 • C). In all experiments, 50 µM picrotoxin, 10 µM 2,3-Dioxo-6-nitro-1, 2, 3, 4 -tetrahydrobenzo [f]quinoxaline -7-sulfonamide (NBQX), and 10 µM 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) were present in the ACSF to block GABAA/C, AMPA, and NMDA receptor-mediated transmission, respectively. All chemicals were from Sigma or Tocris.
Whole-cell recordings were obtained from infected and uninfected deep layer cortical pyramidal neurons identified with video-IR/DIC and GFP fluorescence was detected using epifluorescence illumination. With the deep layers of the cortex, 2-photon laser scanning microscopy (2PLSM) was used to confirm the cell types based on morphology. Deep layer pyramidal neurons had large cell bodies, classic pyramidal shape and dendritic spines. Glass electrodes (2-4 M ) were filled with internal solution containing (in mM): 135 KMeSO 4 , 5 KCl, 5 HEPES, 4 MgATP, 0.3 NaGTP, 10 Na 2 HPO 4 , 1 EGTA, and 0.01 Alexa Fluor-594 (to image neuronal morphology) adjusted to pH 7.4 with KOH. Current and voltage recordings were made at room temperature using a AxoPatch 200B or a Multiclamp 700B amplifier. Data was filtered at 5 kHz and digitized at 10 kHz.
Imaging and physiology data were acquired and analyzed as described previously (Carter and Sabatini, 2004) . Resting membrane potential was determined by the average of three 5-s sweeps with no injected current. Passive properties of the cell, membrane (Rm) and series resistance (Rs) and capacitance (Cm), were measured while clamping cells at −65 mV and applying voltage steps from −55 to −75 mV. The current-firing relationship was determined in current clamp with 1-s periods of injected current from 100 to 500 pA.
The time course of viral gene expression experiments were carried out in organotypic hippocampal slice cultures prepared from postnatal day 5-7 Sprague-Dawley rats as described previously (Stoppini et al., 1991) . Slices were infected after 7 days in vitro, and images were acquired on a two-photon microscope. | What virus are used by the most successful neuronal circuit tracing methods? | {
"answer_start": [
2185
],
"text": [
"Pseudorabies (PRV) and Rabies viruses (RABV)"
]
} | false |
1,936 | Vesicular stomatitis virus with the rabies virus glycoprotein directs retrograde transsynaptic transport among neurons in vivo
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566411/
SHA: ee48061797d29eeef5a9e606841bf8ab04b1d75b
Authors: Beier, Kevin T.; Saunders, Arpiar B.; Oldenburg, Ian A.; Sabatini, Bernardo L.; Cepko, Constance L.
Date: 2013-02-07
DOI: 10.3389/fncir.2013.00011
License: cc-by
Abstract: Defining the connections among neurons is critical to our understanding of the structure and function of the nervous system. Recombinant viruses engineered to transmit across synapses provide a powerful approach for the dissection of neuronal circuitry in vivo. We recently demonstrated that recombinant vesicular stomatitis virus (VSV) can be endowed with anterograde or retrograde transsynaptic tracing ability by providing the virus with different glycoproteins. Here we extend the characterization of the transmission and gene expression of recombinant VSV (rVSV) with the rabies virus glycoprotein (RABV-G), and provide examples of its activity relative to the anterograde transsynaptic tracer form of rVSV. rVSV with RABV-G was found to drive strong expression of transgenes and to spread rapidly from neuron to neuron in only a retrograde manner. Depending upon how the RABV-G was delivered, VSV served as a polysynaptic or monosynaptic tracer, or was able to define projections through axonal uptake and retrograde transport. In animals co-infected with rVSV in its anterograde form, rVSV with RABV-G could be used to begin to characterize the similarities and differences in connections to different areas. rVSV with RABV-G provides a flexible, rapid, and versatile tracing tool that complements the previously described VSV-based anterograde transsynaptic tracer.
Text: Mapping neuronal connectivity in the central nervous system (CNS) of even simple organisms is a difficult task. Recombinant viruses engineered to trace synaptic connections and express transgenes promise to enable higher-throughput mapping of connections among neurons than other methods, e.g., serial reconstruction from electron micrographs (Bock et al., 2011; Briggman et al., 2011) . The Pseudorabies (PRV) and Rabies viruses (RABV) have been the best characterized and most utilized circuit tracing viruses to date (Ugolini et al., 1989; Kelly and Strick, 2000) . RABV was recently modified by Wickersham and colleagues such that it can travel across only one synapse, allowing for a straightforward definition of monosynaptic connections (Wickersham et al., 2007b) . This strategy permitted the first unambiguous identification of retrogradely connected cells from an initially infected cell ("starter cell"), without the need for electrophysiology. Moreover, the starter cell could be defined through the expression of a specific viral receptor that limited the initial infection.
Recently, we created an anterograde monosynaptic virus that complements the previously available retrograde viral tracers (Beier et al., 2011) . Vesicular stomatitis virus (VSV), a virus related to RABV, with its own glycoprotein (G) gene (VSV-G), or with a G from the unrelated lymphocytic choriomeningitis virus (LCMV-G), spreads in the anterograde direction across synapses. VSV can be used as a polysynaptic tracer that spreads across many synapses, owing to the fact that the normal, replicationcompetent form of the virus does not cause serious diseases in humans (Brandly and Hanson, 1957; Johnson et al., 1966; Brody et al., 1967) . Whether the virus is a monosynaptic or polysynaptic tracer is determined by the method of delivery of the G gene ( Figure 1A) . Advantages of VSV are that it is well-characterized, is relatively simple in comparison to PRV, and it rapidly grows to high titer in tissue culture cells. It is also being developed as a vaccine vector, often using a G of another virus as the immunogen, as well as being developed as a cytocidal agent that will target tumor cells in humans (Balachandran and Barber, 2000; Stojdl et al., 2000 Stojdl et al., , 2003 .
Previous studies of the anatomical patterns of transmission, as well as physiological recordings, have shown that the transmission of VSV and RABV among neurons is via synapses (Kelly and Strick, 2000; Wickersham et al., 2007b; Beier et al., 2011) . In addition, it has been shown that RABV, as well as lentiviruses with RABV-G in their envelope, travel retrogradely from an injection site (Mazarakis et al., 2001; Wickersham et al., 2007a) . We hypothesized that providing a recombinant VSV (rVSV) with the RABV-G would create a retrograde polysynaptic transsynaptic tracer without the biosafety concerns inherent to RABV. Our initial characterization of rVSV with RABV-G showed that indeed FIGURE 1 | Synaptic tracing strategies using VSV. (A) Schematic illustrating the strategies for polysynaptic or monosynaptic retrograde or anterograde transsynaptic transmission of rVSV encoding GFP. The initially infected cell is indicated by an asterisk. VSV encoding a glycoprotein (G) within its genome can spread polysynaptically. The direction of the spread depends on the identity of the glycoprotein. Infected neurons are shown in green. In some cases, the initially infected starter cell can be defined by the expression of an avian receptor, TVA (tagged with a red fluorescent protein). The TVA-expressing neurons can then be specifically infected by rVSV G with the EnvA/RABV-G (A/RG) glycoprotein (Wickersham et al., 2007b) on the virion surface [rVSV G(A/RG)]. These starter cells are then yellow, due to viral GFP and mCherry from TVA-mCherry expression. For monosynaptic tracing, the G protein is expressed in trans in the TVA-expressing cell, and thus complements rVSV G to allow transmission in a specific direction. (B) Genomic diagrams of rVSV vectors. All VSVs contain four essential proteins: N, P, M, and L. Some viruses encode a G gene in their genome, which allows them to spread polysynaptically. rVSV vectors typically encode a transgene in the first position, while others carry an additional transgene in the G position. (C) Morphological characterization of rVSV-infected neurons in several locations within the mouse brain. (i,ii) Caudate-putamen (CP) neurons at 4 dpi from an injection of the CP with rVSV(VSV-G) viruses encoding (i) CFP or (ii) Korange. (iii) Labeled neurons of the CA1 region of the hippocampus are shown at 5 dpi following injection into the hippocampus of rVSV(VSV-G) encoding Venus. (iv,v) Cortical pyramidal neurons are shown following injection into the CP of rVSV(RABV-G) expressing (iv) GFP at 24 hpi, or (v) mCherry at 48 hpi. Inset in (iv) is a high magnification of the neuron in panel (iv), highlighting labeling of dendritic spines. (vi) Multiple viruses can be co-injected into the same animal. Here, individual rVSV G(VSV-G) viruses encoding CFP, GFP , Venus, Korange, and mCherry were used to infect the cortex. Scale bars = 50 µm.
www.frontiersin.org February 2013 | Volume 7 | Article 11 | 2 it could be taken up as a retrograde tracer (Beier et al., 2011) .
To determine if it could transmit among neurons following its replication in neurons, and to further analyze the transmission patterns of both the monosynaptic and polysynaptic forms of rVSV with RABV-G, we made injections into several CNS and peripheral locations. In addition, we performed co-infections of rVSV with RABV-G and the anterograde form of rVSV in order to exploit the differences in the directionality of transmission of these two viruses in mapping circuits.
Schematics of viruses created and used throughout this study are shown in Figure 1 . We created rVSV vector plasmids carrying different transgenes in either the first or fifth genomic positions ( Figure 1B) . After rescuing each virus, we tested the ability of each to express transgenes in different brain regions through intracranial injections ( Figure 1C ). All rVSV vectors drove robust fluorophore expression 1 or 2 days post-infection (hpi) ( Figure 1C ) (van den Pol et al., 2009) . In fact, by 12 hpi, labeling was sufficiently bright to image fine morphological details, such as dendritic spines ( Figure 1C ,iv).
To characterize the physiological properties of cells infected with rVSV, we tested a replication-competent rVSV encoding GFP, with RABV-G in the genome in place of VSV-G [hereafter designated rVSV(RABV-G)]. van den Pol et al. reported that hippocampal neurons infected with replication-incompetent (G-deleted or " G") rVSV were physiologically healthy at 12-14 hpi, but were less so by 1 day post-infection (dpi) (van den Pol et al., 2009) . Given the known toxicity of both VSV and RABV-G (Coulon et al., 1982) , we tested the physiology of cortical pyramidal neurons in the motor cortex (M1) infected with rVSV(RABV-G). Between 12 and 18 hpi, the membrane capacitance, input resistance, resting membrane potential, and current-to-action potential firing relationship were indistinguishable between infected and uninfected neurons (Figure 2) . However, by 2 dpi, electrophysiological properties were so abnormal in the infected cortical pyramidal cells that physiological measurements could not be made.
The speed and strength of the expression of transgenes encoded by VSV depends upon the gene's genomic position (van den Pol et al., 2009; Beier et al., 2011) . Genes in the first position are expressed the most highly, with a decrease in the level of expression in positions more 3 within the viral plus strand. When GFP was inserted into the first position of VSV, GFP fluorescence was first detectable at approximately 1 hpi in cultured cells (van den Pol et al., 2009) . In order to quantify the relative expression of a fluorescent protein in the first genomic position in neurons, rat hippocampal slices were infected with a replication-incompetent rVSV that expresses mCherry (rVSV G, Figures 1A,B) . This was a G virus which had the RABV-G supplied in trans during the preparation of the virus stock [referred to as rVSV G(RABV-G)].
Average fluorescence intensity of the infected cells was measured every hour over the course of 18 h. By 4 hpi at 37 • C, red fluorescence was clearly visible, and reached maximal levels by approximately 14 hpi (N = 3, Figure 3 ). Similar results were obtained with a virus encoding GFP in the first genomic position rather than mCherry (i.e., Figure 1B ) (N = 3).
We previously demonstrated that rVSV(RABV-G) could be taken up retrogradely by neurons (Beier et al., 2011) , but these experiments did not distinguish between direct axonal uptake of the initial inoculum vs. retrograde transsynaptic transmission following viral replication. To distinguish between these two mechanisms and to extend the previous analyses, we conducted further experiments in the mammalian visual system (Figures 4A-G) . As visual cortex area 1 (V1) does not receive direct projections from retinal ganglion cells (RGCs), but rather receives secondary input from RGCs via the lateral geniculate nucleus (LGN), infection of RGCs from injection of V1 would demonstrate retrograde transmission from cells which supported at least one round of viral replication. Following a V1 injection with rVSV(RABV-G), GFP-positive RGCs were observed in the retina by 3 dpi (N = 3; Figure 4G ). Importantly, viral labeling in the brain was restricted to primary and secondary projection areas, even at 7 dpi. These included the LGN ( Figure 4D ) and the hypothalamus (Figure 4E) , two areas known to project directly to V1 (Kandel, 2000) . Selective labeling was observed in other areas, such as cortical areas surrounding V1 (Figure 4C) , which project directly to V1, and also in the superior colliculus (SC) stratum griseum centrale, which projects to the LGN ( Figure 4F) . Labeling was also observed in the nucleus basalis, which projects to the cortex, as well as many components of the basal ganglia circuit, which provide input to the thalamus [such as the caudate-putamen (CP), globus pallidus (GP), and the subthalamic nucleus (STn)]. The amygdala, which projects to the hypothalamus, was also labeled. Consistent with a lack of widespread viral transmission, animals did not exhibit signs of disease at 7 dpi.
These data show that rVSV(RABV-G) can spread in a retrograde direction from the injection site, but do not address whether the virus can spread exclusively in the retrograde direction. Directional transsynaptic specificity can only be definitively addressed using a unidirectional circuit. We therefore turned to the primary motor cortex (M1) to CP connection, in which neurons project from the cortex to the CP, but not in the other direction ( Figure 4H ) (Beier et al., 2011) . Injections of rVSV(RABV-G) into M1 should not label neurons in the CP if the virus can only label cells across synapses in the retrograde direction. Indeed, at 2 dpi, areas directly projecting to the injection site, including the contralateral cortex, were labeled ( Figure 4I ). Only axons from cortical cells were observed in the CP, with no GFP-labeled cell bodies present in the CP (Figure 4J) , consistent with lack of anterograde transsynaptic spread. By 3 dpi, a small number of medium spiny neurons (MSNs) in the CP were observed, likely via secondary spread from initially infected thalamic or GP neurons (data not shown).
A particular advantage of retrograde viral tracers is the ability to label CNS neurons projecting to peripheral sites. This has been a powerful application of both RABV and PRV (Ugolini et al., 1989; Standish et al., 1994) . To test if rVSV(RABV-G) could also perform this function, we examined the innervation of the dura surface by neurons of the trigeminal ganglion, a neuronal circuit thought to be involved in migraine headaches (Penfield and McNaughton, 1940; Mayberg et al., 1984) . These neurons have axons, but not canonical dendrites, and send projections into the spinal cord and brainstem. Therefore, the only way trigeminal neurons could become labeled from viral application to the dura is through retrograde uptake of the virus. We applied rVSV(RABV-G) to the intact dura mater and analyzed the dura, trigeminal ganglion, and CNS for labeling ( Figure 4K ). At the earliest time point examined, 3 dpi, we observed axons traveling along the dura, but little other evidence of infection ( Figure 4L) . No labeled neuronal cell bodies on the dura were observed, consistent with the lack of neurons on this surface. In contrast, we did find labeled cell bodies in the trigeminal ganglion ( Figure 4M ). No infection was seen in the CNS, even at 4 dpi, consistent with the lack of inputs from the brain into the trigeminal ganglion (N = 4 animals).
To further characterize patterns and kinetics of viral transmission and directional specificity of transsynaptic spread, injections of rVSV(RABV-G) were made into the CP ( Figure 5A ). In order to determine which cells were labeled by direct uptake of virus in the inoculum, a separate set of animals were injected into the CP with the replication-incompetent rVSV G(RABV-G) (N = 3 animals, analyzed 3 dpi). Cells labeled by rVSV G(RABV-G) were observed in the CP, GP, substantia nigra (SN), thalamus, and layers 3 and 5 of the cortex, consistent with infection at the axon terminal and retrograde labeling of cell bodies of neurons known to project directly to the CP ( Figure 5C ) (Albin et al., 1995) . Areas labeled by CP injection are indicated in Figure 5B .
The patterns of spread for the replication-competent rVSV(RABV-G) were characterized over the course of 1-5 dpi ( Figures 5D-H) . During this interval, progressively more cells in infected regions were labeled by rVSV(RABV-G), including within the CP, nucleus basalis, cortex, and GP (listed in Figure 5B ). In addition, more cortical cells were labeled in clusters near cortical pyramidal neurons, both ipsilateral and contralateral to the injected side, including neurogliaform cells (data not shown). These data are in contrast to those observed following infection with an anterograde transsynaptic tracing virus, such as rVSV with its own G gene, rVSV(VSV-G) (Figure 5B) . At 3 dpi following rVSV(VSV-G) injection into the CP, the cerebral cortex was not labeled, but regions receiving projections from the CP, such as the STn, GP, and SN, were labeled (Beier et al., 2011) .
In order to investigate other areas for evidence of cell-to-cell retrograde transsynaptic spread, the nucleus basalis was examined following infection of the CP with replication-competent rVSV(RABV-G). The nucleus basalis was labeled by 2 dpi (Figures 5E-H) , consistent with at least a single transsynaptic jump, as this area does not directly project to the CP. The virus appeared to travel transsynaptically at the rate of roughly 1 synapse per day, as evidenced by the lack of labeled neurogliaform cells in the cortex, and lack of neurons in the nucleus basalis at 1 dpi, and label appearing in these cell types/areas at 2 dpi, as previously observed (Beier et al., 2011) . Labeling remained well-restricted to the expected corticostriatal circuits at 5 dpi, suggesting that viral spread becomes less efficient after crossing one or two connections, consistent with injections into V1 (Figure 4) . While glial cells can be infected and were observed near the injection site (van den Pol et al., 2002; Chauhan et al., 2010) , infected glial cells away from the injection site generally were not observed.
One advantage of having both anterograde and retrograde forms of the same virus is that they can be used in parallel, or in tandem, to trace circuitry to and from a single or multiple sites of injection, with each virus having similar kinetics of spread and gene expression. In fact, if different fluorophores are used in different viruses, e.g., rVSV(VSV-G) and rVSV(RABV-G), then the viruses can be co-injected into the same site and their transmission can be traced independently ( Figure 6A ). This is most straightforward if there are no cells at the injection site that are initially infected by both viruses. Co-infected cells can be easily detected, as they would express both fluorescent proteins shortly after injection.
In order to determine whether two viruses would allow simultaneous anterograde and retrograde transsynaptic tracing from a single injection site, a rVSV(VSV-G) expressing Venus and a rVSV(RABV-G) expressing mCherry were injected individually (Figures 6B-D) or co-injected (Figures 6E-G) into the motor cortex, and brains were examined 3 dpi. The pattern of labeling from the co-injected brains was equivalent to the patterns observed when each virus was injected individually: rVSV(VSV-G) was observed to infect neurons in the cortex, CP, and downstream nuclei, whereas the rVSV(RABV-G) was not observed to infect neurons in the CP, but rather in the thalamus and nucleus basalis (N = 4). The initial co-infection rate is dependent upon The presence or absence of labeling is indicated by (+) and (−), respectively. The extent of labeling is indicated by the number of (+). Some animals were infected with G viruses to determine which areas were labeled by direct uptake of the virions, rather than by replication and transmission. These were sacrificed at 3 dpi. (C) Parasaggital section of a brain infected with VSV[greek delta]G(RABV-G). The injection site is marked by a red arrow. Several areas that project directly to the CP were labeled due to direct uptake of the virions, including the cortex, thalamus, and GP (arrowheads), 3 dpi. the dose of the initial inocula. When injecting 3 × 10 3 focus forming units (ffu) rVSV(VSV-G) and 3 × 10 4 ffu rVSV(RABV-G), no co-infection was observed at the injection site. Thus, co-infection of the same brain region, without co-infection of the same cells,
does not alter the spreading behavior of either rVSV(VSV-G) or rVSV(RABV-G). One example of how this dual retrograde and anterograde transsynaptic tracing system can be used is to determine if three Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 8 distinct regions are connected and the directionality of any connections. For example, the anterograde transsynaptic virus can be injected into one region, the retrograde into another, and a third region can then be examined for evidence of labeling by either or both viruses (e.g., Figure 6H ). To test this possibility, rVSV(VSV-G) was injected into the motor cortex, rVSV(RABV-G) was injected into the substantia nigra pars reticulara (SNr), and animals were sacrificed at 3 dpi. We observed that cells were singly labeled, either with Venus [rVSV(VSV-G)] or with mCherry [rVSV(RABV-G)], and were located largely in different regions of the CP (Figures 6I,J) (N = 3) . These results suggest that the anterograde connections from the cells infected with rVSV(VSV-G) in the M1 were with CP MSNs that did not project to the region of the SNr injected with rVSV(RABV-G) (N = 3 animals).
In addition to polysynaptic tracing, VSV can be modified to trace circuits monosynaptically (Beier et al., 2011) . With RABV, this was achieved in vivo by first infecting with an adeno-associated virus (AAV) expressing TVA, a receptor for an avian retrovirus, and RABV-G (Wall et al., 2010) . This was followed 3 weeks later by infection with a G RABV with an EnvA/RABV-G chimeric glycoprotein on the virion surface (Wickersham et al., 2007b) , which allowed infection specifically of the cells expressing TVA. A similar strategy was used to test rVSV's ability to monosynaptically trace retrogradely connected neurons in vivo. Inputs to choline acetyltransferase (ChAT)-expressing neurons in the striatum were used for this test. These neurons primarily receive input from the cortex and the thalamus (Thomas et al., 2000; Bloomfield et al., 2007) (Figure 7A) . In order to mark this population, we crossed ChAT-Cre mice to Ai9 mice, which express tdTomato in cells with a Cre expression history (Madisen et al., 2010) . Six-week-old mice from this cross were injected in the CP with two AAV vectors: one expressing a Cre-conditional ("floxed") TVA-mCherry fusion protein, and another expressing a floxed RABV-G. Two weeks later, the mice were injected in the same coordinates with rVSV G with the EnvA/RABV-G chimeric glycoprotein on the virion surface [rVSV G(A/RG)] (Beier et al., 2011) . Cells successfully infected with these two AAV vectors could host infection by a rVSV and should be able to produce rVSV virions with RABV-G on the surface. Such starter cells should also express tdTomato and GFP. If rVSV were to be produced, and if it were to transmit across the synapse retrogradely, cortical and thalamic neurons should be labeled by GFP. Mice injected with these AAV and rVSV viruses were sacrificed 5 days after rVSV infection, and brains analyzed for fluorescence. As expected for starter cells, some neurons in the CP expressed both tdTomato and GFP (Figure 7B) . Outside of the CP, small numbers of GFP+ neurons that were not mCherry+ were observed in the cortex (Figures 7C,D) and thalamus (Figure 7E) , consistent with retrograde spread. Control animals not expressing Cre, or not injected with AAV encoding RABV-G, did not label cells in the cortex or thalamus (N = 3 for both controls and experimental condition).
Here, we report on the use of rVSV as a retrograde transsynaptic tracer for CNS circuitry. VSV can be modified to encode the RABV-G protein in the viral genome, allowing the virus to replicate and transmit across multiple synaptically connected cells, i.e., as a polysynaptic tracer. Alternatively, if the virus has the G gene deleted from its genome and RABV-G is provided in trans, it behaves as a monosynaptic tracer (Beier et al., 2011) . Although it has been known for many years that RABV travels retrogradely among neurons (Astic et al., 1993; Ugolini, 1995; Kelly and Strick, 2003) , and pseudotyping lentiviruses with RABV-G is sufficient for axonal transport (Mazarakis et al., 2001) , the retrograde transmission specificity among neurons had not been clearly shown to be a property of the G protein itself, as it might have been due to other viral proteins in addition to, or instead of, the viral G protein. Since native VSV does not have these retrograde transsynaptic properties (van den Pol et al., 2002; Beier et al., 2011) , and the only alteration to the VSV genome was the substitution of the VSV G gene with the G gene of RABV, it is clear that the RABV glycoprotein is responsible for retrograde direction of viral transmission across synapses, at least in the case of rVSV.
The early onset of gene expression from VSV relative to RABV (one hour vs. multiple hours) makes it beneficial in experimental paradigms in which the experiment needs to be done within a narrow window of time, such as tissue slices and explants. In addition, more than one transgene can be encoded in the viral genome without the need of a 2A or IRES element. The use of the first position of the genome enhances the expression level of the transgene inserted at that location, since VSV (and RABV) express genes in a transcriptional gradient; therefore, the first gene is the most highly transcribed (Knipe, 2007) . This leads to rational predictions of expression levels so that one can choose the position of insertion of a transgene, or transgenes, according to this gradient and the desired level of expression. The size of the viral capsid is apparently not rigid, allowing for the inclusion of genomes that are substantially larger than the native genome, unlike the rigid capacity for some other viral vectors, such as AAV Yan et al., 2000) .
The fact that VSV can be made to spread anterogradely (Beier et al., 2011) or retrogradely across synapses with the change of a single gene affords several advantages over viral tracers that heretofore have not shown such flexibility in the directionality of tracing. In addition to the obvious application of tracing anterograde connections, combinations can be made to exploit the different forms of the virus. One example that employs the simultaneous infection with an anterograde and retrograde form of VSV is demonstrated in Figure 6 . This experiment was designed to address whether the anterograde projections from the cortex to the CP would label the same brain regions as were labeled by a retrograde virus injected into the SN. Although a block of superinfection by the virus may preclude infection of the same cell with multiple rVSVs, adjacent cells could still become labeled by different viruses (Whitaker-Dowling et al., 1983) . The observed results could be due to a preferential labeling by the anterograde transsynaptic virus of indirect pathway MSNs in this experiment, which then synapse onto the GP, thereby reflecting a viral bias. Alternatively, it could indicate that the cortical neurons in the injected region largely do not label the MSNs that project to the area of the SN injected with the retrograde virus. One further possibility is that too little virus was used to observe co-labeling of a given region. However, given the density of infection (i.e., Figures 6I,J) , the latter possibility seems unlikely. Additionally, the spread of the polysynaptic rVSV(RABV-G) appears to attenuate with increasing numbers of synapses crossed, permitting an analysis of more restricted viral spread. This is quite fortuitous, as if spread were to continue, it would lead to widespread infection and lethality. In addition, reconstruction of connectivity would be more difficult. This reduced efficiency appears to also hold for the monosynaptic form of VSV complemented with RABV-G, as the efficiency of transmission appeared lower than the comparable experiment with RABV (Watabe-Uchida et al., 2012) . This is likely due to viral attenuation when VSV-G is replaced with RABV-G.
We were attracted to the use of VSV as a viral tracer due to its long track record as a safe, replication-competent laboratory agent. Laboratory workers using VSV have not contracted any diseases, and natural VSV infections among human populations in Central America and the southwestern United States (Rodríguez, 2002) occur without evident pathology (Johnson et al., 1966; Brody et al., 1967) . VSV was thus an attractive candidate for its use as a polysynaptic tracer for CNS studies, which requires an ability to replicate through multiple transmission cycles. Both replicationcompetent and incompetent forms of VSV are in use under Biosafety Level 2 containment. Replication-competent RABV is Biosafety Level 3, due to the fact that infection with replicationcompetent RABV is almost always fatal to humans and in mice when infected intracerebrally (Smith, 1981; Knipe, 2007) . Differences in pathogenicity between VSV and RABV are likely due to the ability of RABV to evade the innate immune system, particularly interferon (Hangartner et al., 2006; Junt et al., 2007; Lyles and Rupprecht, 2007; Rieder and Conzelmann, 2009; Iannacone et al., 2010) . VSV infection efficiently triggers an interferon response, and it has not evolved a method of escape from this response, unlike RABV (Brzózka et al., 2006) . In fact, VSV is being pursued as a vaccine for other viruses, including RABV (Lichty et al., 2004; Publicover et al., 2004; Kapadia et al., 2005; Schwartz et al., 2007; Iyer et al., 2009; Geisbert and Feldmann, 2011) . VSV does not typically spread beyond the initially infected site in the periphery (Kramer et al., 1983; Vogel and Fertsch, 1987) . This likely is the cause of the minor or absent symptoms in humans and animals infected in nature. Polysynaptic VSV vectors are thus predicted to be much safer than polysynaptic RABV vectors. We have tested this prediction by injecting a series of mice in the footpads and hind leg muscles with rVSV(RABV-G), with the result that no injected animals showed any evidence of morbidity or mortality (Beier, Goz et al., in preparation) .
While safer for laboratory workers than RABV, the main drawback to using VSV is its rapid cellular toxicity (van den Pol et al., 2009; Beier et al., 2011) . Toxicity is due to suppression of cellular transcription and a block in the export of cellular RNAs from the nucleus to the cytoplasm (Black and Lyles, 1992; Her et al., 1997; Ahmed and Lyles, 1998; Petersen et al., 2000; von Kobbe et al., 2000) , as well as inhibition of the translation of cellular mRNAs (Francoeur et al., 1987; Jayakar et al., 2000; Kopecky et al., Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 10 2001). VSV is much quicker to enact its gene expression program than is RABV, such that cells suffer the toxic effects more quickly than after RABV infection. One aspect of VSV that can be exploited in the future to ameliorate the speed of toxicity is the use of VSV mutants and variants. One such mutant is the M51R, which permitted us to conduct physiological analyses of pre-and post-synaptic cells (Beier et al., 2011) . We are in the process of examining the transmission properties of this mutant in vivo, as well as the effects of other mutations or viral variants on prolonging the health of neurons after infection.
rVSV vectors can be used to study the connectivity of neuronal circuitry. In addition to combinations of replication-competent forms of VSV, the replication-incompetent, monosynaptic forms of the virus can be easily combined, without the need to change viruses (Beier et al., 2011) . This allows a straightforward way to study both the projections into, and out from, a genetically defined cell population. This can be done with the same viral genome, with the only change needed being the glycoprotein, for the selection of the direction of transmission. This flexibility of VSV makes it a powerful, multi-application vector for studying connectivity in the CNS.
All rVSV clones were cloned from the rVSV G backbone (Chandran et al., 2005) . mCherry, Kusabira orange, Venus, and CFP were cloned into the first (GFP) position using XhoI and MscI sites, and VSV-G (a gift from Richard Mulligan, Harvard Medical School, Boston, MA) and RABV-G (a gift from Ed Callaway, Salk Institute, San Diego, CA) were cloned into the fifth (G) position using the MluI and NotI restriction sites. Genes for fluorescent proteins were obtained from Clontech. Viruses were rescued as previously described (Whelan et al., 1995) . At 95% confluency, eight 10 cm plates of BSR cells were infected at an MOI of 0.01. Viral supernatants were collected at 24-h time intervals and ultracentrifuged at 21,000 RPM using a SW28 rotor and resuspended in 0.2% of the original volume. For titering, concentrated viral stocks were applied in a dilution series to 100% confluent BSR cells and plates were examined at 12 hpi. Viral stocks were stored at −80 • C.
For G viruses, 293T cells were transfected with PEI (Ehrhardt et al., 2006) at 70% confluency on 10 cm dishes with 5 µg of pCAG-RABV-G. Twenty-four hours post-infection, the cells were infected at an MOI of 0.01 with rVSV G expressing either GFP or mCherry. Viral supernatants were collected for the subsequent 4 days at 24 h intervals.
Virus preparations are now available from the Salk GT3 viral core (http://vectorcore.salk.edu/). All plasmids are available from Addgene (http://www.addgene.org/).
AAV-FLEx-RABV-G and AAV-FLEx-TVA-mCherry plasmids originated from the Lab of Naoshige Uchida (Watabe-Uchida et al., 2012) , and virus stocks were generous gifts from Brad Lowell, Harvard Medical School.
ChAT-Cre (B6;129S6-Chat tm1(cre)Lowl /J) and Ai9 (B6.Cg-Gt(ROSA)26Sor<tm9(CAG-tdTomato)Hze>/J) mice were obtained from the Jackson Laboratory (Madisen et al., 2010) .
Eight-week-old CD-1 mice were injected using pulled capillary microdispensers (Drummond Scientific, Cat. No: 5-000-2005) , using coordinates from The Mouse Brain in Stereotaxic Coordinates (Franklin and Paxinos, 1997) . Injection coordinates (in mm) used were: For multi-color analysis (Figures 1C,D) , 3 × 10 9 ffu/mL rVSV was injected into various regions. For CP injections, 100 nL of rVSV(RABV-G) or rVSV(VSV-G) at 3 × 10 7 ffu/mL was injected at a rate of 100 nL/min. For the replication-incompetent viruses, 100 nL of 1 × 10 7 ffu/mL rVSV G(RABV-G) or rVSV G (VSV-G) was injected. In the motor cortex, 100 nL of 1 × 10 7 ffu/mL rVSV(RABV-G) was injected, and mice harvested 2 dpi. For V1 injections, 100 nL of 3 × 10 10 ffu/mL rVSV(RABV-G) was injected, and mice were examined 3 or 7 dpi.
For infections of the dura mater, 1 µL of 3 × 10 10 ffu/mL rVSV(RABV-G) was applied to the surface of the dura. The virus was allowed to absorb, and the surface was subsequently covered in bone wax, and the wound sutured.
For co-injections of virus into the same animal, 100 nL of a combination of 3 × 10 7 ffu/mL rVSV(VSV-G) and 3 × 10 8 ffu/mL rVSV(RABV-G) were co-injected into the motor cortex, and brains examined 3 dpi. For injections of the viruses into different regions, 100 nL of 3 × 10 7 ffu/mL rVSV(VSV-G) was injected into M1, and 100 nL of 3 × 10 8 ffu/mL rVSV(RABV-G) into the SNr, and brains examined 3 dpi. A lower titer of rVSV(VSV-G) was used, as rVSV(RABV-G) is attenuated.
All mouse work was conducted in biosafety containment level 2 conditions and was approved by the Longwood Medical Area Institutional Animal Care and Use Committee.
Recordings were made from cortical pyramidal neurons in slices taken from postnatal day 12-18 mice, inoculated in the CP 12-18 h prior with rVSV(RABV-G). Coronal slices (300 µm thick) were cut in ice-cold external solution containing (in mM): 110 choline, 25 NaHCO 3 , 1.25 NaH 2 PO 4 , 2.5 KCl, 7 MgCl 2 , 0.5 CaCl 2 , 25 glucose, 11.6 Na-ascorbate, and 3.1 Na-pyruvate, bubbled with 95% O 2 and 5% CO 2 . Slices were then transferred to artificial cerebrospinal fluid (ACSF) containing (in mM): 127 NaCl, 25 NaHCO 3 , 1.25 NaH 2 PO 4 , 2.5 KCl, 1 MgCl 2 , 2 CaCl 2 , and 25 glucose, bubbled with 95% O 2 and 5% CO 2 . After an incubation period Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 11 of 30-40 min at 34 • C, slices were stored at room temperature. All experiments were conducted at room temperature (25 • C). In all experiments, 50 µM picrotoxin, 10 µM 2,3-Dioxo-6-nitro-1, 2, 3, 4 -tetrahydrobenzo [f]quinoxaline -7-sulfonamide (NBQX), and 10 µM 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) were present in the ACSF to block GABAA/C, AMPA, and NMDA receptor-mediated transmission, respectively. All chemicals were from Sigma or Tocris.
Whole-cell recordings were obtained from infected and uninfected deep layer cortical pyramidal neurons identified with video-IR/DIC and GFP fluorescence was detected using epifluorescence illumination. With the deep layers of the cortex, 2-photon laser scanning microscopy (2PLSM) was used to confirm the cell types based on morphology. Deep layer pyramidal neurons had large cell bodies, classic pyramidal shape and dendritic spines. Glass electrodes (2-4 M ) were filled with internal solution containing (in mM): 135 KMeSO 4 , 5 KCl, 5 HEPES, 4 MgATP, 0.3 NaGTP, 10 Na 2 HPO 4 , 1 EGTA, and 0.01 Alexa Fluor-594 (to image neuronal morphology) adjusted to pH 7.4 with KOH. Current and voltage recordings were made at room temperature using a AxoPatch 200B or a Multiclamp 700B amplifier. Data was filtered at 5 kHz and digitized at 10 kHz.
Imaging and physiology data were acquired and analyzed as described previously (Carter and Sabatini, 2004) . Resting membrane potential was determined by the average of three 5-s sweeps with no injected current. Passive properties of the cell, membrane (Rm) and series resistance (Rs) and capacitance (Cm), were measured while clamping cells at −65 mV and applying voltage steps from −55 to −75 mV. The current-firing relationship was determined in current clamp with 1-s periods of injected current from 100 to 500 pA.
The time course of viral gene expression experiments were carried out in organotypic hippocampal slice cultures prepared from postnatal day 5-7 Sprague-Dawley rats as described previously (Stoppini et al., 1991) . Slices were infected after 7 days in vitro, and images were acquired on a two-photon microscope. | In what direction does the Vesicular stomatitis virus spread through the nervous system? | {
"answer_start": [
3221
],
"text": [
"anterograde"
]
} | false |
1,937 | Vesicular stomatitis virus with the rabies virus glycoprotein directs retrograde transsynaptic transport among neurons in vivo
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566411/
SHA: ee48061797d29eeef5a9e606841bf8ab04b1d75b
Authors: Beier, Kevin T.; Saunders, Arpiar B.; Oldenburg, Ian A.; Sabatini, Bernardo L.; Cepko, Constance L.
Date: 2013-02-07
DOI: 10.3389/fncir.2013.00011
License: cc-by
Abstract: Defining the connections among neurons is critical to our understanding of the structure and function of the nervous system. Recombinant viruses engineered to transmit across synapses provide a powerful approach for the dissection of neuronal circuitry in vivo. We recently demonstrated that recombinant vesicular stomatitis virus (VSV) can be endowed with anterograde or retrograde transsynaptic tracing ability by providing the virus with different glycoproteins. Here we extend the characterization of the transmission and gene expression of recombinant VSV (rVSV) with the rabies virus glycoprotein (RABV-G), and provide examples of its activity relative to the anterograde transsynaptic tracer form of rVSV. rVSV with RABV-G was found to drive strong expression of transgenes and to spread rapidly from neuron to neuron in only a retrograde manner. Depending upon how the RABV-G was delivered, VSV served as a polysynaptic or monosynaptic tracer, or was able to define projections through axonal uptake and retrograde transport. In animals co-infected with rVSV in its anterograde form, rVSV with RABV-G could be used to begin to characterize the similarities and differences in connections to different areas. rVSV with RABV-G provides a flexible, rapid, and versatile tracing tool that complements the previously described VSV-based anterograde transsynaptic tracer.
Text: Mapping neuronal connectivity in the central nervous system (CNS) of even simple organisms is a difficult task. Recombinant viruses engineered to trace synaptic connections and express transgenes promise to enable higher-throughput mapping of connections among neurons than other methods, e.g., serial reconstruction from electron micrographs (Bock et al., 2011; Briggman et al., 2011) . The Pseudorabies (PRV) and Rabies viruses (RABV) have been the best characterized and most utilized circuit tracing viruses to date (Ugolini et al., 1989; Kelly and Strick, 2000) . RABV was recently modified by Wickersham and colleagues such that it can travel across only one synapse, allowing for a straightforward definition of monosynaptic connections (Wickersham et al., 2007b) . This strategy permitted the first unambiguous identification of retrogradely connected cells from an initially infected cell ("starter cell"), without the need for electrophysiology. Moreover, the starter cell could be defined through the expression of a specific viral receptor that limited the initial infection.
Recently, we created an anterograde monosynaptic virus that complements the previously available retrograde viral tracers (Beier et al., 2011) . Vesicular stomatitis virus (VSV), a virus related to RABV, with its own glycoprotein (G) gene (VSV-G), or with a G from the unrelated lymphocytic choriomeningitis virus (LCMV-G), spreads in the anterograde direction across synapses. VSV can be used as a polysynaptic tracer that spreads across many synapses, owing to the fact that the normal, replicationcompetent form of the virus does not cause serious diseases in humans (Brandly and Hanson, 1957; Johnson et al., 1966; Brody et al., 1967) . Whether the virus is a monosynaptic or polysynaptic tracer is determined by the method of delivery of the G gene ( Figure 1A) . Advantages of VSV are that it is well-characterized, is relatively simple in comparison to PRV, and it rapidly grows to high titer in tissue culture cells. It is also being developed as a vaccine vector, often using a G of another virus as the immunogen, as well as being developed as a cytocidal agent that will target tumor cells in humans (Balachandran and Barber, 2000; Stojdl et al., 2000 Stojdl et al., , 2003 .
Previous studies of the anatomical patterns of transmission, as well as physiological recordings, have shown that the transmission of VSV and RABV among neurons is via synapses (Kelly and Strick, 2000; Wickersham et al., 2007b; Beier et al., 2011) . In addition, it has been shown that RABV, as well as lentiviruses with RABV-G in their envelope, travel retrogradely from an injection site (Mazarakis et al., 2001; Wickersham et al., 2007a) . We hypothesized that providing a recombinant VSV (rVSV) with the RABV-G would create a retrograde polysynaptic transsynaptic tracer without the biosafety concerns inherent to RABV. Our initial characterization of rVSV with RABV-G showed that indeed FIGURE 1 | Synaptic tracing strategies using VSV. (A) Schematic illustrating the strategies for polysynaptic or monosynaptic retrograde or anterograde transsynaptic transmission of rVSV encoding GFP. The initially infected cell is indicated by an asterisk. VSV encoding a glycoprotein (G) within its genome can spread polysynaptically. The direction of the spread depends on the identity of the glycoprotein. Infected neurons are shown in green. In some cases, the initially infected starter cell can be defined by the expression of an avian receptor, TVA (tagged with a red fluorescent protein). The TVA-expressing neurons can then be specifically infected by rVSV G with the EnvA/RABV-G (A/RG) glycoprotein (Wickersham et al., 2007b) on the virion surface [rVSV G(A/RG)]. These starter cells are then yellow, due to viral GFP and mCherry from TVA-mCherry expression. For monosynaptic tracing, the G protein is expressed in trans in the TVA-expressing cell, and thus complements rVSV G to allow transmission in a specific direction. (B) Genomic diagrams of rVSV vectors. All VSVs contain four essential proteins: N, P, M, and L. Some viruses encode a G gene in their genome, which allows them to spread polysynaptically. rVSV vectors typically encode a transgene in the first position, while others carry an additional transgene in the G position. (C) Morphological characterization of rVSV-infected neurons in several locations within the mouse brain. (i,ii) Caudate-putamen (CP) neurons at 4 dpi from an injection of the CP with rVSV(VSV-G) viruses encoding (i) CFP or (ii) Korange. (iii) Labeled neurons of the CA1 region of the hippocampus are shown at 5 dpi following injection into the hippocampus of rVSV(VSV-G) encoding Venus. (iv,v) Cortical pyramidal neurons are shown following injection into the CP of rVSV(RABV-G) expressing (iv) GFP at 24 hpi, or (v) mCherry at 48 hpi. Inset in (iv) is a high magnification of the neuron in panel (iv), highlighting labeling of dendritic spines. (vi) Multiple viruses can be co-injected into the same animal. Here, individual rVSV G(VSV-G) viruses encoding CFP, GFP , Venus, Korange, and mCherry were used to infect the cortex. Scale bars = 50 µm.
www.frontiersin.org February 2013 | Volume 7 | Article 11 | 2 it could be taken up as a retrograde tracer (Beier et al., 2011) .
To determine if it could transmit among neurons following its replication in neurons, and to further analyze the transmission patterns of both the monosynaptic and polysynaptic forms of rVSV with RABV-G, we made injections into several CNS and peripheral locations. In addition, we performed co-infections of rVSV with RABV-G and the anterograde form of rVSV in order to exploit the differences in the directionality of transmission of these two viruses in mapping circuits.
Schematics of viruses created and used throughout this study are shown in Figure 1 . We created rVSV vector plasmids carrying different transgenes in either the first or fifth genomic positions ( Figure 1B) . After rescuing each virus, we tested the ability of each to express transgenes in different brain regions through intracranial injections ( Figure 1C ). All rVSV vectors drove robust fluorophore expression 1 or 2 days post-infection (hpi) ( Figure 1C ) (van den Pol et al., 2009) . In fact, by 12 hpi, labeling was sufficiently bright to image fine morphological details, such as dendritic spines ( Figure 1C ,iv).
To characterize the physiological properties of cells infected with rVSV, we tested a replication-competent rVSV encoding GFP, with RABV-G in the genome in place of VSV-G [hereafter designated rVSV(RABV-G)]. van den Pol et al. reported that hippocampal neurons infected with replication-incompetent (G-deleted or " G") rVSV were physiologically healthy at 12-14 hpi, but were less so by 1 day post-infection (dpi) (van den Pol et al., 2009) . Given the known toxicity of both VSV and RABV-G (Coulon et al., 1982) , we tested the physiology of cortical pyramidal neurons in the motor cortex (M1) infected with rVSV(RABV-G). Between 12 and 18 hpi, the membrane capacitance, input resistance, resting membrane potential, and current-to-action potential firing relationship were indistinguishable between infected and uninfected neurons (Figure 2) . However, by 2 dpi, electrophysiological properties were so abnormal in the infected cortical pyramidal cells that physiological measurements could not be made.
The speed and strength of the expression of transgenes encoded by VSV depends upon the gene's genomic position (van den Pol et al., 2009; Beier et al., 2011) . Genes in the first position are expressed the most highly, with a decrease in the level of expression in positions more 3 within the viral plus strand. When GFP was inserted into the first position of VSV, GFP fluorescence was first detectable at approximately 1 hpi in cultured cells (van den Pol et al., 2009) . In order to quantify the relative expression of a fluorescent protein in the first genomic position in neurons, rat hippocampal slices were infected with a replication-incompetent rVSV that expresses mCherry (rVSV G, Figures 1A,B) . This was a G virus which had the RABV-G supplied in trans during the preparation of the virus stock [referred to as rVSV G(RABV-G)].
Average fluorescence intensity of the infected cells was measured every hour over the course of 18 h. By 4 hpi at 37 • C, red fluorescence was clearly visible, and reached maximal levels by approximately 14 hpi (N = 3, Figure 3 ). Similar results were obtained with a virus encoding GFP in the first genomic position rather than mCherry (i.e., Figure 1B ) (N = 3).
We previously demonstrated that rVSV(RABV-G) could be taken up retrogradely by neurons (Beier et al., 2011) , but these experiments did not distinguish between direct axonal uptake of the initial inoculum vs. retrograde transsynaptic transmission following viral replication. To distinguish between these two mechanisms and to extend the previous analyses, we conducted further experiments in the mammalian visual system (Figures 4A-G) . As visual cortex area 1 (V1) does not receive direct projections from retinal ganglion cells (RGCs), but rather receives secondary input from RGCs via the lateral geniculate nucleus (LGN), infection of RGCs from injection of V1 would demonstrate retrograde transmission from cells which supported at least one round of viral replication. Following a V1 injection with rVSV(RABV-G), GFP-positive RGCs were observed in the retina by 3 dpi (N = 3; Figure 4G ). Importantly, viral labeling in the brain was restricted to primary and secondary projection areas, even at 7 dpi. These included the LGN ( Figure 4D ) and the hypothalamus (Figure 4E) , two areas known to project directly to V1 (Kandel, 2000) . Selective labeling was observed in other areas, such as cortical areas surrounding V1 (Figure 4C) , which project directly to V1, and also in the superior colliculus (SC) stratum griseum centrale, which projects to the LGN ( Figure 4F) . Labeling was also observed in the nucleus basalis, which projects to the cortex, as well as many components of the basal ganglia circuit, which provide input to the thalamus [such as the caudate-putamen (CP), globus pallidus (GP), and the subthalamic nucleus (STn)]. The amygdala, which projects to the hypothalamus, was also labeled. Consistent with a lack of widespread viral transmission, animals did not exhibit signs of disease at 7 dpi.
These data show that rVSV(RABV-G) can spread in a retrograde direction from the injection site, but do not address whether the virus can spread exclusively in the retrograde direction. Directional transsynaptic specificity can only be definitively addressed using a unidirectional circuit. We therefore turned to the primary motor cortex (M1) to CP connection, in which neurons project from the cortex to the CP, but not in the other direction ( Figure 4H ) (Beier et al., 2011) . Injections of rVSV(RABV-G) into M1 should not label neurons in the CP if the virus can only label cells across synapses in the retrograde direction. Indeed, at 2 dpi, areas directly projecting to the injection site, including the contralateral cortex, were labeled ( Figure 4I ). Only axons from cortical cells were observed in the CP, with no GFP-labeled cell bodies present in the CP (Figure 4J) , consistent with lack of anterograde transsynaptic spread. By 3 dpi, a small number of medium spiny neurons (MSNs) in the CP were observed, likely via secondary spread from initially infected thalamic or GP neurons (data not shown).
A particular advantage of retrograde viral tracers is the ability to label CNS neurons projecting to peripheral sites. This has been a powerful application of both RABV and PRV (Ugolini et al., 1989; Standish et al., 1994) . To test if rVSV(RABV-G) could also perform this function, we examined the innervation of the dura surface by neurons of the trigeminal ganglion, a neuronal circuit thought to be involved in migraine headaches (Penfield and McNaughton, 1940; Mayberg et al., 1984) . These neurons have axons, but not canonical dendrites, and send projections into the spinal cord and brainstem. Therefore, the only way trigeminal neurons could become labeled from viral application to the dura is through retrograde uptake of the virus. We applied rVSV(RABV-G) to the intact dura mater and analyzed the dura, trigeminal ganglion, and CNS for labeling ( Figure 4K ). At the earliest time point examined, 3 dpi, we observed axons traveling along the dura, but little other evidence of infection ( Figure 4L) . No labeled neuronal cell bodies on the dura were observed, consistent with the lack of neurons on this surface. In contrast, we did find labeled cell bodies in the trigeminal ganglion ( Figure 4M ). No infection was seen in the CNS, even at 4 dpi, consistent with the lack of inputs from the brain into the trigeminal ganglion (N = 4 animals).
To further characterize patterns and kinetics of viral transmission and directional specificity of transsynaptic spread, injections of rVSV(RABV-G) were made into the CP ( Figure 5A ). In order to determine which cells were labeled by direct uptake of virus in the inoculum, a separate set of animals were injected into the CP with the replication-incompetent rVSV G(RABV-G) (N = 3 animals, analyzed 3 dpi). Cells labeled by rVSV G(RABV-G) were observed in the CP, GP, substantia nigra (SN), thalamus, and layers 3 and 5 of the cortex, consistent with infection at the axon terminal and retrograde labeling of cell bodies of neurons known to project directly to the CP ( Figure 5C ) (Albin et al., 1995) . Areas labeled by CP injection are indicated in Figure 5B .
The patterns of spread for the replication-competent rVSV(RABV-G) were characterized over the course of 1-5 dpi ( Figures 5D-H) . During this interval, progressively more cells in infected regions were labeled by rVSV(RABV-G), including within the CP, nucleus basalis, cortex, and GP (listed in Figure 5B ). In addition, more cortical cells were labeled in clusters near cortical pyramidal neurons, both ipsilateral and contralateral to the injected side, including neurogliaform cells (data not shown). These data are in contrast to those observed following infection with an anterograde transsynaptic tracing virus, such as rVSV with its own G gene, rVSV(VSV-G) (Figure 5B) . At 3 dpi following rVSV(VSV-G) injection into the CP, the cerebral cortex was not labeled, but regions receiving projections from the CP, such as the STn, GP, and SN, were labeled (Beier et al., 2011) .
In order to investigate other areas for evidence of cell-to-cell retrograde transsynaptic spread, the nucleus basalis was examined following infection of the CP with replication-competent rVSV(RABV-G). The nucleus basalis was labeled by 2 dpi (Figures 5E-H) , consistent with at least a single transsynaptic jump, as this area does not directly project to the CP. The virus appeared to travel transsynaptically at the rate of roughly 1 synapse per day, as evidenced by the lack of labeled neurogliaform cells in the cortex, and lack of neurons in the nucleus basalis at 1 dpi, and label appearing in these cell types/areas at 2 dpi, as previously observed (Beier et al., 2011) . Labeling remained well-restricted to the expected corticostriatal circuits at 5 dpi, suggesting that viral spread becomes less efficient after crossing one or two connections, consistent with injections into V1 (Figure 4) . While glial cells can be infected and were observed near the injection site (van den Pol et al., 2002; Chauhan et al., 2010) , infected glial cells away from the injection site generally were not observed.
One advantage of having both anterograde and retrograde forms of the same virus is that they can be used in parallel, or in tandem, to trace circuitry to and from a single or multiple sites of injection, with each virus having similar kinetics of spread and gene expression. In fact, if different fluorophores are used in different viruses, e.g., rVSV(VSV-G) and rVSV(RABV-G), then the viruses can be co-injected into the same site and their transmission can be traced independently ( Figure 6A ). This is most straightforward if there are no cells at the injection site that are initially infected by both viruses. Co-infected cells can be easily detected, as they would express both fluorescent proteins shortly after injection.
In order to determine whether two viruses would allow simultaneous anterograde and retrograde transsynaptic tracing from a single injection site, a rVSV(VSV-G) expressing Venus and a rVSV(RABV-G) expressing mCherry were injected individually (Figures 6B-D) or co-injected (Figures 6E-G) into the motor cortex, and brains were examined 3 dpi. The pattern of labeling from the co-injected brains was equivalent to the patterns observed when each virus was injected individually: rVSV(VSV-G) was observed to infect neurons in the cortex, CP, and downstream nuclei, whereas the rVSV(RABV-G) was not observed to infect neurons in the CP, but rather in the thalamus and nucleus basalis (N = 4). The initial co-infection rate is dependent upon The presence or absence of labeling is indicated by (+) and (−), respectively. The extent of labeling is indicated by the number of (+). Some animals were infected with G viruses to determine which areas were labeled by direct uptake of the virions, rather than by replication and transmission. These were sacrificed at 3 dpi. (C) Parasaggital section of a brain infected with VSV[greek delta]G(RABV-G). The injection site is marked by a red arrow. Several areas that project directly to the CP were labeled due to direct uptake of the virions, including the cortex, thalamus, and GP (arrowheads), 3 dpi. the dose of the initial inocula. When injecting 3 × 10 3 focus forming units (ffu) rVSV(VSV-G) and 3 × 10 4 ffu rVSV(RABV-G), no co-infection was observed at the injection site. Thus, co-infection of the same brain region, without co-infection of the same cells,
does not alter the spreading behavior of either rVSV(VSV-G) or rVSV(RABV-G). One example of how this dual retrograde and anterograde transsynaptic tracing system can be used is to determine if three Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 8 distinct regions are connected and the directionality of any connections. For example, the anterograde transsynaptic virus can be injected into one region, the retrograde into another, and a third region can then be examined for evidence of labeling by either or both viruses (e.g., Figure 6H ). To test this possibility, rVSV(VSV-G) was injected into the motor cortex, rVSV(RABV-G) was injected into the substantia nigra pars reticulara (SNr), and animals were sacrificed at 3 dpi. We observed that cells were singly labeled, either with Venus [rVSV(VSV-G)] or with mCherry [rVSV(RABV-G)], and were located largely in different regions of the CP (Figures 6I,J) (N = 3) . These results suggest that the anterograde connections from the cells infected with rVSV(VSV-G) in the M1 were with CP MSNs that did not project to the region of the SNr injected with rVSV(RABV-G) (N = 3 animals).
In addition to polysynaptic tracing, VSV can be modified to trace circuits monosynaptically (Beier et al., 2011) . With RABV, this was achieved in vivo by first infecting with an adeno-associated virus (AAV) expressing TVA, a receptor for an avian retrovirus, and RABV-G (Wall et al., 2010) . This was followed 3 weeks later by infection with a G RABV with an EnvA/RABV-G chimeric glycoprotein on the virion surface (Wickersham et al., 2007b) , which allowed infection specifically of the cells expressing TVA. A similar strategy was used to test rVSV's ability to monosynaptically trace retrogradely connected neurons in vivo. Inputs to choline acetyltransferase (ChAT)-expressing neurons in the striatum were used for this test. These neurons primarily receive input from the cortex and the thalamus (Thomas et al., 2000; Bloomfield et al., 2007) (Figure 7A) . In order to mark this population, we crossed ChAT-Cre mice to Ai9 mice, which express tdTomato in cells with a Cre expression history (Madisen et al., 2010) . Six-week-old mice from this cross were injected in the CP with two AAV vectors: one expressing a Cre-conditional ("floxed") TVA-mCherry fusion protein, and another expressing a floxed RABV-G. Two weeks later, the mice were injected in the same coordinates with rVSV G with the EnvA/RABV-G chimeric glycoprotein on the virion surface [rVSV G(A/RG)] (Beier et al., 2011) . Cells successfully infected with these two AAV vectors could host infection by a rVSV and should be able to produce rVSV virions with RABV-G on the surface. Such starter cells should also express tdTomato and GFP. If rVSV were to be produced, and if it were to transmit across the synapse retrogradely, cortical and thalamic neurons should be labeled by GFP. Mice injected with these AAV and rVSV viruses were sacrificed 5 days after rVSV infection, and brains analyzed for fluorescence. As expected for starter cells, some neurons in the CP expressed both tdTomato and GFP (Figure 7B) . Outside of the CP, small numbers of GFP+ neurons that were not mCherry+ were observed in the cortex (Figures 7C,D) and thalamus (Figure 7E) , consistent with retrograde spread. Control animals not expressing Cre, or not injected with AAV encoding RABV-G, did not label cells in the cortex or thalamus (N = 3 for both controls and experimental condition).
Here, we report on the use of rVSV as a retrograde transsynaptic tracer for CNS circuitry. VSV can be modified to encode the RABV-G protein in the viral genome, allowing the virus to replicate and transmit across multiple synaptically connected cells, i.e., as a polysynaptic tracer. Alternatively, if the virus has the G gene deleted from its genome and RABV-G is provided in trans, it behaves as a monosynaptic tracer (Beier et al., 2011) . Although it has been known for many years that RABV travels retrogradely among neurons (Astic et al., 1993; Ugolini, 1995; Kelly and Strick, 2003) , and pseudotyping lentiviruses with RABV-G is sufficient for axonal transport (Mazarakis et al., 2001) , the retrograde transmission specificity among neurons had not been clearly shown to be a property of the G protein itself, as it might have been due to other viral proteins in addition to, or instead of, the viral G protein. Since native VSV does not have these retrograde transsynaptic properties (van den Pol et al., 2002; Beier et al., 2011) , and the only alteration to the VSV genome was the substitution of the VSV G gene with the G gene of RABV, it is clear that the RABV glycoprotein is responsible for retrograde direction of viral transmission across synapses, at least in the case of rVSV.
The early onset of gene expression from VSV relative to RABV (one hour vs. multiple hours) makes it beneficial in experimental paradigms in which the experiment needs to be done within a narrow window of time, such as tissue slices and explants. In addition, more than one transgene can be encoded in the viral genome without the need of a 2A or IRES element. The use of the first position of the genome enhances the expression level of the transgene inserted at that location, since VSV (and RABV) express genes in a transcriptional gradient; therefore, the first gene is the most highly transcribed (Knipe, 2007) . This leads to rational predictions of expression levels so that one can choose the position of insertion of a transgene, or transgenes, according to this gradient and the desired level of expression. The size of the viral capsid is apparently not rigid, allowing for the inclusion of genomes that are substantially larger than the native genome, unlike the rigid capacity for some other viral vectors, such as AAV Yan et al., 2000) .
The fact that VSV can be made to spread anterogradely (Beier et al., 2011) or retrogradely across synapses with the change of a single gene affords several advantages over viral tracers that heretofore have not shown such flexibility in the directionality of tracing. In addition to the obvious application of tracing anterograde connections, combinations can be made to exploit the different forms of the virus. One example that employs the simultaneous infection with an anterograde and retrograde form of VSV is demonstrated in Figure 6 . This experiment was designed to address whether the anterograde projections from the cortex to the CP would label the same brain regions as were labeled by a retrograde virus injected into the SN. Although a block of superinfection by the virus may preclude infection of the same cell with multiple rVSVs, adjacent cells could still become labeled by different viruses (Whitaker-Dowling et al., 1983) . The observed results could be due to a preferential labeling by the anterograde transsynaptic virus of indirect pathway MSNs in this experiment, which then synapse onto the GP, thereby reflecting a viral bias. Alternatively, it could indicate that the cortical neurons in the injected region largely do not label the MSNs that project to the area of the SN injected with the retrograde virus. One further possibility is that too little virus was used to observe co-labeling of a given region. However, given the density of infection (i.e., Figures 6I,J) , the latter possibility seems unlikely. Additionally, the spread of the polysynaptic rVSV(RABV-G) appears to attenuate with increasing numbers of synapses crossed, permitting an analysis of more restricted viral spread. This is quite fortuitous, as if spread were to continue, it would lead to widespread infection and lethality. In addition, reconstruction of connectivity would be more difficult. This reduced efficiency appears to also hold for the monosynaptic form of VSV complemented with RABV-G, as the efficiency of transmission appeared lower than the comparable experiment with RABV (Watabe-Uchida et al., 2012) . This is likely due to viral attenuation when VSV-G is replaced with RABV-G.
We were attracted to the use of VSV as a viral tracer due to its long track record as a safe, replication-competent laboratory agent. Laboratory workers using VSV have not contracted any diseases, and natural VSV infections among human populations in Central America and the southwestern United States (Rodríguez, 2002) occur without evident pathology (Johnson et al., 1966; Brody et al., 1967) . VSV was thus an attractive candidate for its use as a polysynaptic tracer for CNS studies, which requires an ability to replicate through multiple transmission cycles. Both replicationcompetent and incompetent forms of VSV are in use under Biosafety Level 2 containment. Replication-competent RABV is Biosafety Level 3, due to the fact that infection with replicationcompetent RABV is almost always fatal to humans and in mice when infected intracerebrally (Smith, 1981; Knipe, 2007) . Differences in pathogenicity between VSV and RABV are likely due to the ability of RABV to evade the innate immune system, particularly interferon (Hangartner et al., 2006; Junt et al., 2007; Lyles and Rupprecht, 2007; Rieder and Conzelmann, 2009; Iannacone et al., 2010) . VSV infection efficiently triggers an interferon response, and it has not evolved a method of escape from this response, unlike RABV (Brzózka et al., 2006) . In fact, VSV is being pursued as a vaccine for other viruses, including RABV (Lichty et al., 2004; Publicover et al., 2004; Kapadia et al., 2005; Schwartz et al., 2007; Iyer et al., 2009; Geisbert and Feldmann, 2011) . VSV does not typically spread beyond the initially infected site in the periphery (Kramer et al., 1983; Vogel and Fertsch, 1987) . This likely is the cause of the minor or absent symptoms in humans and animals infected in nature. Polysynaptic VSV vectors are thus predicted to be much safer than polysynaptic RABV vectors. We have tested this prediction by injecting a series of mice in the footpads and hind leg muscles with rVSV(RABV-G), with the result that no injected animals showed any evidence of morbidity or mortality (Beier, Goz et al., in preparation) .
While safer for laboratory workers than RABV, the main drawback to using VSV is its rapid cellular toxicity (van den Pol et al., 2009; Beier et al., 2011) . Toxicity is due to suppression of cellular transcription and a block in the export of cellular RNAs from the nucleus to the cytoplasm (Black and Lyles, 1992; Her et al., 1997; Ahmed and Lyles, 1998; Petersen et al., 2000; von Kobbe et al., 2000) , as well as inhibition of the translation of cellular mRNAs (Francoeur et al., 1987; Jayakar et al., 2000; Kopecky et al., Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 10 2001). VSV is much quicker to enact its gene expression program than is RABV, such that cells suffer the toxic effects more quickly than after RABV infection. One aspect of VSV that can be exploited in the future to ameliorate the speed of toxicity is the use of VSV mutants and variants. One such mutant is the M51R, which permitted us to conduct physiological analyses of pre-and post-synaptic cells (Beier et al., 2011) . We are in the process of examining the transmission properties of this mutant in vivo, as well as the effects of other mutations or viral variants on prolonging the health of neurons after infection.
rVSV vectors can be used to study the connectivity of neuronal circuitry. In addition to combinations of replication-competent forms of VSV, the replication-incompetent, monosynaptic forms of the virus can be easily combined, without the need to change viruses (Beier et al., 2011) . This allows a straightforward way to study both the projections into, and out from, a genetically defined cell population. This can be done with the same viral genome, with the only change needed being the glycoprotein, for the selection of the direction of transmission. This flexibility of VSV makes it a powerful, multi-application vector for studying connectivity in the CNS.
All rVSV clones were cloned from the rVSV G backbone (Chandran et al., 2005) . mCherry, Kusabira orange, Venus, and CFP were cloned into the first (GFP) position using XhoI and MscI sites, and VSV-G (a gift from Richard Mulligan, Harvard Medical School, Boston, MA) and RABV-G (a gift from Ed Callaway, Salk Institute, San Diego, CA) were cloned into the fifth (G) position using the MluI and NotI restriction sites. Genes for fluorescent proteins were obtained from Clontech. Viruses were rescued as previously described (Whelan et al., 1995) . At 95% confluency, eight 10 cm plates of BSR cells were infected at an MOI of 0.01. Viral supernatants were collected at 24-h time intervals and ultracentrifuged at 21,000 RPM using a SW28 rotor and resuspended in 0.2% of the original volume. For titering, concentrated viral stocks were applied in a dilution series to 100% confluent BSR cells and plates were examined at 12 hpi. Viral stocks were stored at −80 • C.
For G viruses, 293T cells were transfected with PEI (Ehrhardt et al., 2006) at 70% confluency on 10 cm dishes with 5 µg of pCAG-RABV-G. Twenty-four hours post-infection, the cells were infected at an MOI of 0.01 with rVSV G expressing either GFP or mCherry. Viral supernatants were collected for the subsequent 4 days at 24 h intervals.
Virus preparations are now available from the Salk GT3 viral core (http://vectorcore.salk.edu/). All plasmids are available from Addgene (http://www.addgene.org/).
AAV-FLEx-RABV-G and AAV-FLEx-TVA-mCherry plasmids originated from the Lab of Naoshige Uchida (Watabe-Uchida et al., 2012) , and virus stocks were generous gifts from Brad Lowell, Harvard Medical School.
ChAT-Cre (B6;129S6-Chat tm1(cre)Lowl /J) and Ai9 (B6.Cg-Gt(ROSA)26Sor<tm9(CAG-tdTomato)Hze>/J) mice were obtained from the Jackson Laboratory (Madisen et al., 2010) .
Eight-week-old CD-1 mice were injected using pulled capillary microdispensers (Drummond Scientific, Cat. No: 5-000-2005) , using coordinates from The Mouse Brain in Stereotaxic Coordinates (Franklin and Paxinos, 1997) . Injection coordinates (in mm) used were: For multi-color analysis (Figures 1C,D) , 3 × 10 9 ffu/mL rVSV was injected into various regions. For CP injections, 100 nL of rVSV(RABV-G) or rVSV(VSV-G) at 3 × 10 7 ffu/mL was injected at a rate of 100 nL/min. For the replication-incompetent viruses, 100 nL of 1 × 10 7 ffu/mL rVSV G(RABV-G) or rVSV G (VSV-G) was injected. In the motor cortex, 100 nL of 1 × 10 7 ffu/mL rVSV(RABV-G) was injected, and mice harvested 2 dpi. For V1 injections, 100 nL of 3 × 10 10 ffu/mL rVSV(RABV-G) was injected, and mice were examined 3 or 7 dpi.
For infections of the dura mater, 1 µL of 3 × 10 10 ffu/mL rVSV(RABV-G) was applied to the surface of the dura. The virus was allowed to absorb, and the surface was subsequently covered in bone wax, and the wound sutured.
For co-injections of virus into the same animal, 100 nL of a combination of 3 × 10 7 ffu/mL rVSV(VSV-G) and 3 × 10 8 ffu/mL rVSV(RABV-G) were co-injected into the motor cortex, and brains examined 3 dpi. For injections of the viruses into different regions, 100 nL of 3 × 10 7 ffu/mL rVSV(VSV-G) was injected into M1, and 100 nL of 3 × 10 8 ffu/mL rVSV(RABV-G) into the SNr, and brains examined 3 dpi. A lower titer of rVSV(VSV-G) was used, as rVSV(RABV-G) is attenuated.
All mouse work was conducted in biosafety containment level 2 conditions and was approved by the Longwood Medical Area Institutional Animal Care and Use Committee.
Recordings were made from cortical pyramidal neurons in slices taken from postnatal day 12-18 mice, inoculated in the CP 12-18 h prior with rVSV(RABV-G). Coronal slices (300 µm thick) were cut in ice-cold external solution containing (in mM): 110 choline, 25 NaHCO 3 , 1.25 NaH 2 PO 4 , 2.5 KCl, 7 MgCl 2 , 0.5 CaCl 2 , 25 glucose, 11.6 Na-ascorbate, and 3.1 Na-pyruvate, bubbled with 95% O 2 and 5% CO 2 . Slices were then transferred to artificial cerebrospinal fluid (ACSF) containing (in mM): 127 NaCl, 25 NaHCO 3 , 1.25 NaH 2 PO 4 , 2.5 KCl, 1 MgCl 2 , 2 CaCl 2 , and 25 glucose, bubbled with 95% O 2 and 5% CO 2 . After an incubation period Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 11 of 30-40 min at 34 • C, slices were stored at room temperature. All experiments were conducted at room temperature (25 • C). In all experiments, 50 µM picrotoxin, 10 µM 2,3-Dioxo-6-nitro-1, 2, 3, 4 -tetrahydrobenzo [f]quinoxaline -7-sulfonamide (NBQX), and 10 µM 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) were present in the ACSF to block GABAA/C, AMPA, and NMDA receptor-mediated transmission, respectively. All chemicals were from Sigma or Tocris.
Whole-cell recordings were obtained from infected and uninfected deep layer cortical pyramidal neurons identified with video-IR/DIC and GFP fluorescence was detected using epifluorescence illumination. With the deep layers of the cortex, 2-photon laser scanning microscopy (2PLSM) was used to confirm the cell types based on morphology. Deep layer pyramidal neurons had large cell bodies, classic pyramidal shape and dendritic spines. Glass electrodes (2-4 M ) were filled with internal solution containing (in mM): 135 KMeSO 4 , 5 KCl, 5 HEPES, 4 MgATP, 0.3 NaGTP, 10 Na 2 HPO 4 , 1 EGTA, and 0.01 Alexa Fluor-594 (to image neuronal morphology) adjusted to pH 7.4 with KOH. Current and voltage recordings were made at room temperature using a AxoPatch 200B or a Multiclamp 700B amplifier. Data was filtered at 5 kHz and digitized at 10 kHz.
Imaging and physiology data were acquired and analyzed as described previously (Carter and Sabatini, 2004) . Resting membrane potential was determined by the average of three 5-s sweeps with no injected current. Passive properties of the cell, membrane (Rm) and series resistance (Rs) and capacitance (Cm), were measured while clamping cells at −65 mV and applying voltage steps from −55 to −75 mV. The current-firing relationship was determined in current clamp with 1-s periods of injected current from 100 to 500 pA.
The time course of viral gene expression experiments were carried out in organotypic hippocampal slice cultures prepared from postnatal day 5-7 Sprague-Dawley rats as described previously (Stoppini et al., 1991) . Slices were infected after 7 days in vitro, and images were acquired on a two-photon microscope. | What determines the whether the spread of Vesicular stomatitis virus is monosynaptic or polysynaptic? | {
"answer_start": [
3603
],
"text": [
"method of delivery of the G gene"
]
} | false |
1,938 | Vesicular stomatitis virus with the rabies virus glycoprotein directs retrograde transsynaptic transport among neurons in vivo
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566411/
SHA: ee48061797d29eeef5a9e606841bf8ab04b1d75b
Authors: Beier, Kevin T.; Saunders, Arpiar B.; Oldenburg, Ian A.; Sabatini, Bernardo L.; Cepko, Constance L.
Date: 2013-02-07
DOI: 10.3389/fncir.2013.00011
License: cc-by
Abstract: Defining the connections among neurons is critical to our understanding of the structure and function of the nervous system. Recombinant viruses engineered to transmit across synapses provide a powerful approach for the dissection of neuronal circuitry in vivo. We recently demonstrated that recombinant vesicular stomatitis virus (VSV) can be endowed with anterograde or retrograde transsynaptic tracing ability by providing the virus with different glycoproteins. Here we extend the characterization of the transmission and gene expression of recombinant VSV (rVSV) with the rabies virus glycoprotein (RABV-G), and provide examples of its activity relative to the anterograde transsynaptic tracer form of rVSV. rVSV with RABV-G was found to drive strong expression of transgenes and to spread rapidly from neuron to neuron in only a retrograde manner. Depending upon how the RABV-G was delivered, VSV served as a polysynaptic or monosynaptic tracer, or was able to define projections through axonal uptake and retrograde transport. In animals co-infected with rVSV in its anterograde form, rVSV with RABV-G could be used to begin to characterize the similarities and differences in connections to different areas. rVSV with RABV-G provides a flexible, rapid, and versatile tracing tool that complements the previously described VSV-based anterograde transsynaptic tracer.
Text: Mapping neuronal connectivity in the central nervous system (CNS) of even simple organisms is a difficult task. Recombinant viruses engineered to trace synaptic connections and express transgenes promise to enable higher-throughput mapping of connections among neurons than other methods, e.g., serial reconstruction from electron micrographs (Bock et al., 2011; Briggman et al., 2011) . The Pseudorabies (PRV) and Rabies viruses (RABV) have been the best characterized and most utilized circuit tracing viruses to date (Ugolini et al., 1989; Kelly and Strick, 2000) . RABV was recently modified by Wickersham and colleagues such that it can travel across only one synapse, allowing for a straightforward definition of monosynaptic connections (Wickersham et al., 2007b) . This strategy permitted the first unambiguous identification of retrogradely connected cells from an initially infected cell ("starter cell"), without the need for electrophysiology. Moreover, the starter cell could be defined through the expression of a specific viral receptor that limited the initial infection.
Recently, we created an anterograde monosynaptic virus that complements the previously available retrograde viral tracers (Beier et al., 2011) . Vesicular stomatitis virus (VSV), a virus related to RABV, with its own glycoprotein (G) gene (VSV-G), or with a G from the unrelated lymphocytic choriomeningitis virus (LCMV-G), spreads in the anterograde direction across synapses. VSV can be used as a polysynaptic tracer that spreads across many synapses, owing to the fact that the normal, replicationcompetent form of the virus does not cause serious diseases in humans (Brandly and Hanson, 1957; Johnson et al., 1966; Brody et al., 1967) . Whether the virus is a monosynaptic or polysynaptic tracer is determined by the method of delivery of the G gene ( Figure 1A) . Advantages of VSV are that it is well-characterized, is relatively simple in comparison to PRV, and it rapidly grows to high titer in tissue culture cells. It is also being developed as a vaccine vector, often using a G of another virus as the immunogen, as well as being developed as a cytocidal agent that will target tumor cells in humans (Balachandran and Barber, 2000; Stojdl et al., 2000 Stojdl et al., , 2003 .
Previous studies of the anatomical patterns of transmission, as well as physiological recordings, have shown that the transmission of VSV and RABV among neurons is via synapses (Kelly and Strick, 2000; Wickersham et al., 2007b; Beier et al., 2011) . In addition, it has been shown that RABV, as well as lentiviruses with RABV-G in their envelope, travel retrogradely from an injection site (Mazarakis et al., 2001; Wickersham et al., 2007a) . We hypothesized that providing a recombinant VSV (rVSV) with the RABV-G would create a retrograde polysynaptic transsynaptic tracer without the biosafety concerns inherent to RABV. Our initial characterization of rVSV with RABV-G showed that indeed FIGURE 1 | Synaptic tracing strategies using VSV. (A) Schematic illustrating the strategies for polysynaptic or monosynaptic retrograde or anterograde transsynaptic transmission of rVSV encoding GFP. The initially infected cell is indicated by an asterisk. VSV encoding a glycoprotein (G) within its genome can spread polysynaptically. The direction of the spread depends on the identity of the glycoprotein. Infected neurons are shown in green. In some cases, the initially infected starter cell can be defined by the expression of an avian receptor, TVA (tagged with a red fluorescent protein). The TVA-expressing neurons can then be specifically infected by rVSV G with the EnvA/RABV-G (A/RG) glycoprotein (Wickersham et al., 2007b) on the virion surface [rVSV G(A/RG)]. These starter cells are then yellow, due to viral GFP and mCherry from TVA-mCherry expression. For monosynaptic tracing, the G protein is expressed in trans in the TVA-expressing cell, and thus complements rVSV G to allow transmission in a specific direction. (B) Genomic diagrams of rVSV vectors. All VSVs contain four essential proteins: N, P, M, and L. Some viruses encode a G gene in their genome, which allows them to spread polysynaptically. rVSV vectors typically encode a transgene in the first position, while others carry an additional transgene in the G position. (C) Morphological characterization of rVSV-infected neurons in several locations within the mouse brain. (i,ii) Caudate-putamen (CP) neurons at 4 dpi from an injection of the CP with rVSV(VSV-G) viruses encoding (i) CFP or (ii) Korange. (iii) Labeled neurons of the CA1 region of the hippocampus are shown at 5 dpi following injection into the hippocampus of rVSV(VSV-G) encoding Venus. (iv,v) Cortical pyramidal neurons are shown following injection into the CP of rVSV(RABV-G) expressing (iv) GFP at 24 hpi, or (v) mCherry at 48 hpi. Inset in (iv) is a high magnification of the neuron in panel (iv), highlighting labeling of dendritic spines. (vi) Multiple viruses can be co-injected into the same animal. Here, individual rVSV G(VSV-G) viruses encoding CFP, GFP , Venus, Korange, and mCherry were used to infect the cortex. Scale bars = 50 µm.
www.frontiersin.org February 2013 | Volume 7 | Article 11 | 2 it could be taken up as a retrograde tracer (Beier et al., 2011) .
To determine if it could transmit among neurons following its replication in neurons, and to further analyze the transmission patterns of both the monosynaptic and polysynaptic forms of rVSV with RABV-G, we made injections into several CNS and peripheral locations. In addition, we performed co-infections of rVSV with RABV-G and the anterograde form of rVSV in order to exploit the differences in the directionality of transmission of these two viruses in mapping circuits.
Schematics of viruses created and used throughout this study are shown in Figure 1 . We created rVSV vector plasmids carrying different transgenes in either the first or fifth genomic positions ( Figure 1B) . After rescuing each virus, we tested the ability of each to express transgenes in different brain regions through intracranial injections ( Figure 1C ). All rVSV vectors drove robust fluorophore expression 1 or 2 days post-infection (hpi) ( Figure 1C ) (van den Pol et al., 2009) . In fact, by 12 hpi, labeling was sufficiently bright to image fine morphological details, such as dendritic spines ( Figure 1C ,iv).
To characterize the physiological properties of cells infected with rVSV, we tested a replication-competent rVSV encoding GFP, with RABV-G in the genome in place of VSV-G [hereafter designated rVSV(RABV-G)]. van den Pol et al. reported that hippocampal neurons infected with replication-incompetent (G-deleted or " G") rVSV were physiologically healthy at 12-14 hpi, but were less so by 1 day post-infection (dpi) (van den Pol et al., 2009) . Given the known toxicity of both VSV and RABV-G (Coulon et al., 1982) , we tested the physiology of cortical pyramidal neurons in the motor cortex (M1) infected with rVSV(RABV-G). Between 12 and 18 hpi, the membrane capacitance, input resistance, resting membrane potential, and current-to-action potential firing relationship were indistinguishable between infected and uninfected neurons (Figure 2) . However, by 2 dpi, electrophysiological properties were so abnormal in the infected cortical pyramidal cells that physiological measurements could not be made.
The speed and strength of the expression of transgenes encoded by VSV depends upon the gene's genomic position (van den Pol et al., 2009; Beier et al., 2011) . Genes in the first position are expressed the most highly, with a decrease in the level of expression in positions more 3 within the viral plus strand. When GFP was inserted into the first position of VSV, GFP fluorescence was first detectable at approximately 1 hpi in cultured cells (van den Pol et al., 2009) . In order to quantify the relative expression of a fluorescent protein in the first genomic position in neurons, rat hippocampal slices were infected with a replication-incompetent rVSV that expresses mCherry (rVSV G, Figures 1A,B) . This was a G virus which had the RABV-G supplied in trans during the preparation of the virus stock [referred to as rVSV G(RABV-G)].
Average fluorescence intensity of the infected cells was measured every hour over the course of 18 h. By 4 hpi at 37 • C, red fluorescence was clearly visible, and reached maximal levels by approximately 14 hpi (N = 3, Figure 3 ). Similar results were obtained with a virus encoding GFP in the first genomic position rather than mCherry (i.e., Figure 1B ) (N = 3).
We previously demonstrated that rVSV(RABV-G) could be taken up retrogradely by neurons (Beier et al., 2011) , but these experiments did not distinguish between direct axonal uptake of the initial inoculum vs. retrograde transsynaptic transmission following viral replication. To distinguish between these two mechanisms and to extend the previous analyses, we conducted further experiments in the mammalian visual system (Figures 4A-G) . As visual cortex area 1 (V1) does not receive direct projections from retinal ganglion cells (RGCs), but rather receives secondary input from RGCs via the lateral geniculate nucleus (LGN), infection of RGCs from injection of V1 would demonstrate retrograde transmission from cells which supported at least one round of viral replication. Following a V1 injection with rVSV(RABV-G), GFP-positive RGCs were observed in the retina by 3 dpi (N = 3; Figure 4G ). Importantly, viral labeling in the brain was restricted to primary and secondary projection areas, even at 7 dpi. These included the LGN ( Figure 4D ) and the hypothalamus (Figure 4E) , two areas known to project directly to V1 (Kandel, 2000) . Selective labeling was observed in other areas, such as cortical areas surrounding V1 (Figure 4C) , which project directly to V1, and also in the superior colliculus (SC) stratum griseum centrale, which projects to the LGN ( Figure 4F) . Labeling was also observed in the nucleus basalis, which projects to the cortex, as well as many components of the basal ganglia circuit, which provide input to the thalamus [such as the caudate-putamen (CP), globus pallidus (GP), and the subthalamic nucleus (STn)]. The amygdala, which projects to the hypothalamus, was also labeled. Consistent with a lack of widespread viral transmission, animals did not exhibit signs of disease at 7 dpi.
These data show that rVSV(RABV-G) can spread in a retrograde direction from the injection site, but do not address whether the virus can spread exclusively in the retrograde direction. Directional transsynaptic specificity can only be definitively addressed using a unidirectional circuit. We therefore turned to the primary motor cortex (M1) to CP connection, in which neurons project from the cortex to the CP, but not in the other direction ( Figure 4H ) (Beier et al., 2011) . Injections of rVSV(RABV-G) into M1 should not label neurons in the CP if the virus can only label cells across synapses in the retrograde direction. Indeed, at 2 dpi, areas directly projecting to the injection site, including the contralateral cortex, were labeled ( Figure 4I ). Only axons from cortical cells were observed in the CP, with no GFP-labeled cell bodies present in the CP (Figure 4J) , consistent with lack of anterograde transsynaptic spread. By 3 dpi, a small number of medium spiny neurons (MSNs) in the CP were observed, likely via secondary spread from initially infected thalamic or GP neurons (data not shown).
A particular advantage of retrograde viral tracers is the ability to label CNS neurons projecting to peripheral sites. This has been a powerful application of both RABV and PRV (Ugolini et al., 1989; Standish et al., 1994) . To test if rVSV(RABV-G) could also perform this function, we examined the innervation of the dura surface by neurons of the trigeminal ganglion, a neuronal circuit thought to be involved in migraine headaches (Penfield and McNaughton, 1940; Mayberg et al., 1984) . These neurons have axons, but not canonical dendrites, and send projections into the spinal cord and brainstem. Therefore, the only way trigeminal neurons could become labeled from viral application to the dura is through retrograde uptake of the virus. We applied rVSV(RABV-G) to the intact dura mater and analyzed the dura, trigeminal ganglion, and CNS for labeling ( Figure 4K ). At the earliest time point examined, 3 dpi, we observed axons traveling along the dura, but little other evidence of infection ( Figure 4L) . No labeled neuronal cell bodies on the dura were observed, consistent with the lack of neurons on this surface. In contrast, we did find labeled cell bodies in the trigeminal ganglion ( Figure 4M ). No infection was seen in the CNS, even at 4 dpi, consistent with the lack of inputs from the brain into the trigeminal ganglion (N = 4 animals).
To further characterize patterns and kinetics of viral transmission and directional specificity of transsynaptic spread, injections of rVSV(RABV-G) were made into the CP ( Figure 5A ). In order to determine which cells were labeled by direct uptake of virus in the inoculum, a separate set of animals were injected into the CP with the replication-incompetent rVSV G(RABV-G) (N = 3 animals, analyzed 3 dpi). Cells labeled by rVSV G(RABV-G) were observed in the CP, GP, substantia nigra (SN), thalamus, and layers 3 and 5 of the cortex, consistent with infection at the axon terminal and retrograde labeling of cell bodies of neurons known to project directly to the CP ( Figure 5C ) (Albin et al., 1995) . Areas labeled by CP injection are indicated in Figure 5B .
The patterns of spread for the replication-competent rVSV(RABV-G) were characterized over the course of 1-5 dpi ( Figures 5D-H) . During this interval, progressively more cells in infected regions were labeled by rVSV(RABV-G), including within the CP, nucleus basalis, cortex, and GP (listed in Figure 5B ). In addition, more cortical cells were labeled in clusters near cortical pyramidal neurons, both ipsilateral and contralateral to the injected side, including neurogliaform cells (data not shown). These data are in contrast to those observed following infection with an anterograde transsynaptic tracing virus, such as rVSV with its own G gene, rVSV(VSV-G) (Figure 5B) . At 3 dpi following rVSV(VSV-G) injection into the CP, the cerebral cortex was not labeled, but regions receiving projections from the CP, such as the STn, GP, and SN, were labeled (Beier et al., 2011) .
In order to investigate other areas for evidence of cell-to-cell retrograde transsynaptic spread, the nucleus basalis was examined following infection of the CP with replication-competent rVSV(RABV-G). The nucleus basalis was labeled by 2 dpi (Figures 5E-H) , consistent with at least a single transsynaptic jump, as this area does not directly project to the CP. The virus appeared to travel transsynaptically at the rate of roughly 1 synapse per day, as evidenced by the lack of labeled neurogliaform cells in the cortex, and lack of neurons in the nucleus basalis at 1 dpi, and label appearing in these cell types/areas at 2 dpi, as previously observed (Beier et al., 2011) . Labeling remained well-restricted to the expected corticostriatal circuits at 5 dpi, suggesting that viral spread becomes less efficient after crossing one or two connections, consistent with injections into V1 (Figure 4) . While glial cells can be infected and were observed near the injection site (van den Pol et al., 2002; Chauhan et al., 2010) , infected glial cells away from the injection site generally were not observed.
One advantage of having both anterograde and retrograde forms of the same virus is that they can be used in parallel, or in tandem, to trace circuitry to and from a single or multiple sites of injection, with each virus having similar kinetics of spread and gene expression. In fact, if different fluorophores are used in different viruses, e.g., rVSV(VSV-G) and rVSV(RABV-G), then the viruses can be co-injected into the same site and their transmission can be traced independently ( Figure 6A ). This is most straightforward if there are no cells at the injection site that are initially infected by both viruses. Co-infected cells can be easily detected, as they would express both fluorescent proteins shortly after injection.
In order to determine whether two viruses would allow simultaneous anterograde and retrograde transsynaptic tracing from a single injection site, a rVSV(VSV-G) expressing Venus and a rVSV(RABV-G) expressing mCherry were injected individually (Figures 6B-D) or co-injected (Figures 6E-G) into the motor cortex, and brains were examined 3 dpi. The pattern of labeling from the co-injected brains was equivalent to the patterns observed when each virus was injected individually: rVSV(VSV-G) was observed to infect neurons in the cortex, CP, and downstream nuclei, whereas the rVSV(RABV-G) was not observed to infect neurons in the CP, but rather in the thalamus and nucleus basalis (N = 4). The initial co-infection rate is dependent upon The presence or absence of labeling is indicated by (+) and (−), respectively. The extent of labeling is indicated by the number of (+). Some animals were infected with G viruses to determine which areas were labeled by direct uptake of the virions, rather than by replication and transmission. These were sacrificed at 3 dpi. (C) Parasaggital section of a brain infected with VSV[greek delta]G(RABV-G). The injection site is marked by a red arrow. Several areas that project directly to the CP were labeled due to direct uptake of the virions, including the cortex, thalamus, and GP (arrowheads), 3 dpi. the dose of the initial inocula. When injecting 3 × 10 3 focus forming units (ffu) rVSV(VSV-G) and 3 × 10 4 ffu rVSV(RABV-G), no co-infection was observed at the injection site. Thus, co-infection of the same brain region, without co-infection of the same cells,
does not alter the spreading behavior of either rVSV(VSV-G) or rVSV(RABV-G). One example of how this dual retrograde and anterograde transsynaptic tracing system can be used is to determine if three Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 8 distinct regions are connected and the directionality of any connections. For example, the anterograde transsynaptic virus can be injected into one region, the retrograde into another, and a third region can then be examined for evidence of labeling by either or both viruses (e.g., Figure 6H ). To test this possibility, rVSV(VSV-G) was injected into the motor cortex, rVSV(RABV-G) was injected into the substantia nigra pars reticulara (SNr), and animals were sacrificed at 3 dpi. We observed that cells were singly labeled, either with Venus [rVSV(VSV-G)] or with mCherry [rVSV(RABV-G)], and were located largely in different regions of the CP (Figures 6I,J) (N = 3) . These results suggest that the anterograde connections from the cells infected with rVSV(VSV-G) in the M1 were with CP MSNs that did not project to the region of the SNr injected with rVSV(RABV-G) (N = 3 animals).
In addition to polysynaptic tracing, VSV can be modified to trace circuits monosynaptically (Beier et al., 2011) . With RABV, this was achieved in vivo by first infecting with an adeno-associated virus (AAV) expressing TVA, a receptor for an avian retrovirus, and RABV-G (Wall et al., 2010) . This was followed 3 weeks later by infection with a G RABV with an EnvA/RABV-G chimeric glycoprotein on the virion surface (Wickersham et al., 2007b) , which allowed infection specifically of the cells expressing TVA. A similar strategy was used to test rVSV's ability to monosynaptically trace retrogradely connected neurons in vivo. Inputs to choline acetyltransferase (ChAT)-expressing neurons in the striatum were used for this test. These neurons primarily receive input from the cortex and the thalamus (Thomas et al., 2000; Bloomfield et al., 2007) (Figure 7A) . In order to mark this population, we crossed ChAT-Cre mice to Ai9 mice, which express tdTomato in cells with a Cre expression history (Madisen et al., 2010) . Six-week-old mice from this cross were injected in the CP with two AAV vectors: one expressing a Cre-conditional ("floxed") TVA-mCherry fusion protein, and another expressing a floxed RABV-G. Two weeks later, the mice were injected in the same coordinates with rVSV G with the EnvA/RABV-G chimeric glycoprotein on the virion surface [rVSV G(A/RG)] (Beier et al., 2011) . Cells successfully infected with these two AAV vectors could host infection by a rVSV and should be able to produce rVSV virions with RABV-G on the surface. Such starter cells should also express tdTomato and GFP. If rVSV were to be produced, and if it were to transmit across the synapse retrogradely, cortical and thalamic neurons should be labeled by GFP. Mice injected with these AAV and rVSV viruses were sacrificed 5 days after rVSV infection, and brains analyzed for fluorescence. As expected for starter cells, some neurons in the CP expressed both tdTomato and GFP (Figure 7B) . Outside of the CP, small numbers of GFP+ neurons that were not mCherry+ were observed in the cortex (Figures 7C,D) and thalamus (Figure 7E) , consistent with retrograde spread. Control animals not expressing Cre, or not injected with AAV encoding RABV-G, did not label cells in the cortex or thalamus (N = 3 for both controls and experimental condition).
Here, we report on the use of rVSV as a retrograde transsynaptic tracer for CNS circuitry. VSV can be modified to encode the RABV-G protein in the viral genome, allowing the virus to replicate and transmit across multiple synaptically connected cells, i.e., as a polysynaptic tracer. Alternatively, if the virus has the G gene deleted from its genome and RABV-G is provided in trans, it behaves as a monosynaptic tracer (Beier et al., 2011) . Although it has been known for many years that RABV travels retrogradely among neurons (Astic et al., 1993; Ugolini, 1995; Kelly and Strick, 2003) , and pseudotyping lentiviruses with RABV-G is sufficient for axonal transport (Mazarakis et al., 2001) , the retrograde transmission specificity among neurons had not been clearly shown to be a property of the G protein itself, as it might have been due to other viral proteins in addition to, or instead of, the viral G protein. Since native VSV does not have these retrograde transsynaptic properties (van den Pol et al., 2002; Beier et al., 2011) , and the only alteration to the VSV genome was the substitution of the VSV G gene with the G gene of RABV, it is clear that the RABV glycoprotein is responsible for retrograde direction of viral transmission across synapses, at least in the case of rVSV.
The early onset of gene expression from VSV relative to RABV (one hour vs. multiple hours) makes it beneficial in experimental paradigms in which the experiment needs to be done within a narrow window of time, such as tissue slices and explants. In addition, more than one transgene can be encoded in the viral genome without the need of a 2A or IRES element. The use of the first position of the genome enhances the expression level of the transgene inserted at that location, since VSV (and RABV) express genes in a transcriptional gradient; therefore, the first gene is the most highly transcribed (Knipe, 2007) . This leads to rational predictions of expression levels so that one can choose the position of insertion of a transgene, or transgenes, according to this gradient and the desired level of expression. The size of the viral capsid is apparently not rigid, allowing for the inclusion of genomes that are substantially larger than the native genome, unlike the rigid capacity for some other viral vectors, such as AAV Yan et al., 2000) .
The fact that VSV can be made to spread anterogradely (Beier et al., 2011) or retrogradely across synapses with the change of a single gene affords several advantages over viral tracers that heretofore have not shown such flexibility in the directionality of tracing. In addition to the obvious application of tracing anterograde connections, combinations can be made to exploit the different forms of the virus. One example that employs the simultaneous infection with an anterograde and retrograde form of VSV is demonstrated in Figure 6 . This experiment was designed to address whether the anterograde projections from the cortex to the CP would label the same brain regions as were labeled by a retrograde virus injected into the SN. Although a block of superinfection by the virus may preclude infection of the same cell with multiple rVSVs, adjacent cells could still become labeled by different viruses (Whitaker-Dowling et al., 1983) . The observed results could be due to a preferential labeling by the anterograde transsynaptic virus of indirect pathway MSNs in this experiment, which then synapse onto the GP, thereby reflecting a viral bias. Alternatively, it could indicate that the cortical neurons in the injected region largely do not label the MSNs that project to the area of the SN injected with the retrograde virus. One further possibility is that too little virus was used to observe co-labeling of a given region. However, given the density of infection (i.e., Figures 6I,J) , the latter possibility seems unlikely. Additionally, the spread of the polysynaptic rVSV(RABV-G) appears to attenuate with increasing numbers of synapses crossed, permitting an analysis of more restricted viral spread. This is quite fortuitous, as if spread were to continue, it would lead to widespread infection and lethality. In addition, reconstruction of connectivity would be more difficult. This reduced efficiency appears to also hold for the monosynaptic form of VSV complemented with RABV-G, as the efficiency of transmission appeared lower than the comparable experiment with RABV (Watabe-Uchida et al., 2012) . This is likely due to viral attenuation when VSV-G is replaced with RABV-G.
We were attracted to the use of VSV as a viral tracer due to its long track record as a safe, replication-competent laboratory agent. Laboratory workers using VSV have not contracted any diseases, and natural VSV infections among human populations in Central America and the southwestern United States (Rodríguez, 2002) occur without evident pathology (Johnson et al., 1966; Brody et al., 1967) . VSV was thus an attractive candidate for its use as a polysynaptic tracer for CNS studies, which requires an ability to replicate through multiple transmission cycles. Both replicationcompetent and incompetent forms of VSV are in use under Biosafety Level 2 containment. Replication-competent RABV is Biosafety Level 3, due to the fact that infection with replicationcompetent RABV is almost always fatal to humans and in mice when infected intracerebrally (Smith, 1981; Knipe, 2007) . Differences in pathogenicity between VSV and RABV are likely due to the ability of RABV to evade the innate immune system, particularly interferon (Hangartner et al., 2006; Junt et al., 2007; Lyles and Rupprecht, 2007; Rieder and Conzelmann, 2009; Iannacone et al., 2010) . VSV infection efficiently triggers an interferon response, and it has not evolved a method of escape from this response, unlike RABV (Brzózka et al., 2006) . In fact, VSV is being pursued as a vaccine for other viruses, including RABV (Lichty et al., 2004; Publicover et al., 2004; Kapadia et al., 2005; Schwartz et al., 2007; Iyer et al., 2009; Geisbert and Feldmann, 2011) . VSV does not typically spread beyond the initially infected site in the periphery (Kramer et al., 1983; Vogel and Fertsch, 1987) . This likely is the cause of the minor or absent symptoms in humans and animals infected in nature. Polysynaptic VSV vectors are thus predicted to be much safer than polysynaptic RABV vectors. We have tested this prediction by injecting a series of mice in the footpads and hind leg muscles with rVSV(RABV-G), with the result that no injected animals showed any evidence of morbidity or mortality (Beier, Goz et al., in preparation) .
While safer for laboratory workers than RABV, the main drawback to using VSV is its rapid cellular toxicity (van den Pol et al., 2009; Beier et al., 2011) . Toxicity is due to suppression of cellular transcription and a block in the export of cellular RNAs from the nucleus to the cytoplasm (Black and Lyles, 1992; Her et al., 1997; Ahmed and Lyles, 1998; Petersen et al., 2000; von Kobbe et al., 2000) , as well as inhibition of the translation of cellular mRNAs (Francoeur et al., 1987; Jayakar et al., 2000; Kopecky et al., Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 10 2001). VSV is much quicker to enact its gene expression program than is RABV, such that cells suffer the toxic effects more quickly than after RABV infection. One aspect of VSV that can be exploited in the future to ameliorate the speed of toxicity is the use of VSV mutants and variants. One such mutant is the M51R, which permitted us to conduct physiological analyses of pre-and post-synaptic cells (Beier et al., 2011) . We are in the process of examining the transmission properties of this mutant in vivo, as well as the effects of other mutations or viral variants on prolonging the health of neurons after infection.
rVSV vectors can be used to study the connectivity of neuronal circuitry. In addition to combinations of replication-competent forms of VSV, the replication-incompetent, monosynaptic forms of the virus can be easily combined, without the need to change viruses (Beier et al., 2011) . This allows a straightforward way to study both the projections into, and out from, a genetically defined cell population. This can be done with the same viral genome, with the only change needed being the glycoprotein, for the selection of the direction of transmission. This flexibility of VSV makes it a powerful, multi-application vector for studying connectivity in the CNS.
All rVSV clones were cloned from the rVSV G backbone (Chandran et al., 2005) . mCherry, Kusabira orange, Venus, and CFP were cloned into the first (GFP) position using XhoI and MscI sites, and VSV-G (a gift from Richard Mulligan, Harvard Medical School, Boston, MA) and RABV-G (a gift from Ed Callaway, Salk Institute, San Diego, CA) were cloned into the fifth (G) position using the MluI and NotI restriction sites. Genes for fluorescent proteins were obtained from Clontech. Viruses were rescued as previously described (Whelan et al., 1995) . At 95% confluency, eight 10 cm plates of BSR cells were infected at an MOI of 0.01. Viral supernatants were collected at 24-h time intervals and ultracentrifuged at 21,000 RPM using a SW28 rotor and resuspended in 0.2% of the original volume. For titering, concentrated viral stocks were applied in a dilution series to 100% confluent BSR cells and plates were examined at 12 hpi. Viral stocks were stored at −80 • C.
For G viruses, 293T cells were transfected with PEI (Ehrhardt et al., 2006) at 70% confluency on 10 cm dishes with 5 µg of pCAG-RABV-G. Twenty-four hours post-infection, the cells were infected at an MOI of 0.01 with rVSV G expressing either GFP or mCherry. Viral supernatants were collected for the subsequent 4 days at 24 h intervals.
Virus preparations are now available from the Salk GT3 viral core (http://vectorcore.salk.edu/). All plasmids are available from Addgene (http://www.addgene.org/).
AAV-FLEx-RABV-G and AAV-FLEx-TVA-mCherry plasmids originated from the Lab of Naoshige Uchida (Watabe-Uchida et al., 2012) , and virus stocks were generous gifts from Brad Lowell, Harvard Medical School.
ChAT-Cre (B6;129S6-Chat tm1(cre)Lowl /J) and Ai9 (B6.Cg-Gt(ROSA)26Sor<tm9(CAG-tdTomato)Hze>/J) mice were obtained from the Jackson Laboratory (Madisen et al., 2010) .
Eight-week-old CD-1 mice were injected using pulled capillary microdispensers (Drummond Scientific, Cat. No: 5-000-2005) , using coordinates from The Mouse Brain in Stereotaxic Coordinates (Franklin and Paxinos, 1997) . Injection coordinates (in mm) used were: For multi-color analysis (Figures 1C,D) , 3 × 10 9 ffu/mL rVSV was injected into various regions. For CP injections, 100 nL of rVSV(RABV-G) or rVSV(VSV-G) at 3 × 10 7 ffu/mL was injected at a rate of 100 nL/min. For the replication-incompetent viruses, 100 nL of 1 × 10 7 ffu/mL rVSV G(RABV-G) or rVSV G (VSV-G) was injected. In the motor cortex, 100 nL of 1 × 10 7 ffu/mL rVSV(RABV-G) was injected, and mice harvested 2 dpi. For V1 injections, 100 nL of 3 × 10 10 ffu/mL rVSV(RABV-G) was injected, and mice were examined 3 or 7 dpi.
For infections of the dura mater, 1 µL of 3 × 10 10 ffu/mL rVSV(RABV-G) was applied to the surface of the dura. The virus was allowed to absorb, and the surface was subsequently covered in bone wax, and the wound sutured.
For co-injections of virus into the same animal, 100 nL of a combination of 3 × 10 7 ffu/mL rVSV(VSV-G) and 3 × 10 8 ffu/mL rVSV(RABV-G) were co-injected into the motor cortex, and brains examined 3 dpi. For injections of the viruses into different regions, 100 nL of 3 × 10 7 ffu/mL rVSV(VSV-G) was injected into M1, and 100 nL of 3 × 10 8 ffu/mL rVSV(RABV-G) into the SNr, and brains examined 3 dpi. A lower titer of rVSV(VSV-G) was used, as rVSV(RABV-G) is attenuated.
All mouse work was conducted in biosafety containment level 2 conditions and was approved by the Longwood Medical Area Institutional Animal Care and Use Committee.
Recordings were made from cortical pyramidal neurons in slices taken from postnatal day 12-18 mice, inoculated in the CP 12-18 h prior with rVSV(RABV-G). Coronal slices (300 µm thick) were cut in ice-cold external solution containing (in mM): 110 choline, 25 NaHCO 3 , 1.25 NaH 2 PO 4 , 2.5 KCl, 7 MgCl 2 , 0.5 CaCl 2 , 25 glucose, 11.6 Na-ascorbate, and 3.1 Na-pyruvate, bubbled with 95% O 2 and 5% CO 2 . Slices were then transferred to artificial cerebrospinal fluid (ACSF) containing (in mM): 127 NaCl, 25 NaHCO 3 , 1.25 NaH 2 PO 4 , 2.5 KCl, 1 MgCl 2 , 2 CaCl 2 , and 25 glucose, bubbled with 95% O 2 and 5% CO 2 . After an incubation period Frontiers in Neural Circuits www.frontiersin.org February 2013 | Volume 7 | Article 11 | 11 of 30-40 min at 34 • C, slices were stored at room temperature. All experiments were conducted at room temperature (25 • C). In all experiments, 50 µM picrotoxin, 10 µM 2,3-Dioxo-6-nitro-1, 2, 3, 4 -tetrahydrobenzo [f]quinoxaline -7-sulfonamide (NBQX), and 10 µM 3-((R)-2-Carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) were present in the ACSF to block GABAA/C, AMPA, and NMDA receptor-mediated transmission, respectively. All chemicals were from Sigma or Tocris.
Whole-cell recordings were obtained from infected and uninfected deep layer cortical pyramidal neurons identified with video-IR/DIC and GFP fluorescence was detected using epifluorescence illumination. With the deep layers of the cortex, 2-photon laser scanning microscopy (2PLSM) was used to confirm the cell types based on morphology. Deep layer pyramidal neurons had large cell bodies, classic pyramidal shape and dendritic spines. Glass electrodes (2-4 M ) were filled with internal solution containing (in mM): 135 KMeSO 4 , 5 KCl, 5 HEPES, 4 MgATP, 0.3 NaGTP, 10 Na 2 HPO 4 , 1 EGTA, and 0.01 Alexa Fluor-594 (to image neuronal morphology) adjusted to pH 7.4 with KOH. Current and voltage recordings were made at room temperature using a AxoPatch 200B or a Multiclamp 700B amplifier. Data was filtered at 5 kHz and digitized at 10 kHz.
Imaging and physiology data were acquired and analyzed as described previously (Carter and Sabatini, 2004) . Resting membrane potential was determined by the average of three 5-s sweeps with no injected current. Passive properties of the cell, membrane (Rm) and series resistance (Rs) and capacitance (Cm), were measured while clamping cells at −65 mV and applying voltage steps from −55 to −75 mV. The current-firing relationship was determined in current clamp with 1-s periods of injected current from 100 to 500 pA.
The time course of viral gene expression experiments were carried out in organotypic hippocampal slice cultures prepared from postnatal day 5-7 Sprague-Dawley rats as described previously (Stoppini et al., 1991) . Slices were infected after 7 days in vitro, and images were acquired on a two-photon microscope. | What types of viruses can be used to study the connectivity of neuronal circuitry? | {
"answer_start": [
31209
],
"text": [
"rVSV vectors"
]
} | false |
2,141 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What is Carrageenan? | {
"answer_start": [
587
],
"text": [
"a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections"
]
} | false |
2,142 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What is a potential therapeutic benefit of carageenan? | {
"answer_start": [
1184
],
"text": [
"carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7)"
]
} | false |
2,143 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What is the optimal window for initiating treatment with carageenan and Zanamivir? | {
"answer_start": [
1719
],
"text": [
"72 hours post infection"
]
} | false |
2,144 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What was the mortality rate of influenza a virus subtype h7n9 (avian or bird flu)? | {
"answer_start": [
2124
],
"text": [
"more than 35%"
]
} | false |
2,145 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | How many human cases were there of influenza a virus subtype h7n9? | {
"answer_start": [
2048
],
"text": [
"more than 400 human cases"
]
} | false |
2,146 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | How did most patients contract influenza a virus subtype h7n9? | {
"answer_start": [
2139
],
"text": [
"Most patients with A(H7N9) infections had contact with poultry or visited live animal markets"
]
} | false |
2,147 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | Can influenza a virus subtype h7n9 be transmit human to human? | {
"answer_start": [
2243
],
"text": [
"some sporadic cases seemed to be a result of human to human transmissions"
]
} | false |
2,148 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What kind of disease is caused by influenza? | {
"answer_start": [
2637
],
"text": [
" influenza is an acute respiratory disease"
]
} | false |
2,149 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | How many severe cases are there for annual influenza epidemics? | {
"answer_start": [
2751
],
"text": [
" Worldwide, annual epidemics result in about three to five million cases of severe illness"
]
} | false |
2,150 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | How many deaths occur annually as a result of annual influenza epidemics? | {
"answer_start": [
2853
],
"text": [
"250,000 to 500,000"
]
} | false |
2,151 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | Is coinfection common in influenza infection? | {
"answer_start": [
3095
],
"text": [
"influenza virus infections are often accompanied by other viral pathogens"
]
} | false |
2,153 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What percentage of people infected with influenza have a viral coinfection? | {
"answer_start": [
3292
],
"text": [
"Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . "
]
} | false |
2,154 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What are common concamitant infections during the course of influenza infection? | {
"answer_start": [
3641
],
"text": [
"human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus"
]
} | false |
2,155 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What is the anti-viral mechanism of action for carrageenan? | {
"answer_start": [
5365
],
"text": [
"The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited "
]
} | false |
2,156 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What is the hypothetical mechanical benefit for carageenan in preventing and treating upper respiratory infections? | {
"answer_start": [
4871
],
"text": [
"a protective physical barrier in the nasal cavity"
]
} | false |
2,157 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What is carageenan? | {
"answer_start": [
4955
],
"text": [
"a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA "
]
} | false |
2,158 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What is the recovery benefit of carageenan in patients with any respiratory virus? | {
"answer_start": [
6219
],
"text": [
"1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population"
]
} | false |
2,159 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What is the anti-influenza benefit of carageenan? | {
"answer_start": [
6351
],
"text": [
"anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms"
]
} | false |
2,160 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What is the association between influenza viral load and carageenan? | {
"answer_start": [
6556
],
"text": [
"a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days"
]
} | false |
2,163 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | Is Oseltamivir effective when taken intranasally? | {
"answer_start": [
8137
],
"text": [
"In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally"
]
} | false |
2,164 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | What is the effect of intranasal Zanamivir on laboratory confirmed infleunza infection? | {
"answer_start": [
8751
],
"text": [
"challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms"
]
} | false |
2,165 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | Do carageenan and Zanamivir delivered intranasally have a benefit when taken for influenza subtype H7N7 infection? | {
"answer_start": [
21494
],
"text": [
"the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice"
]
} | false |
2,166 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | Do carageenan and Zanamivir delivered intranasally have a benefit when taken for influenza subtype H1N1 infection? | {
"answer_start": [
21795
],
"text": [
"carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice"
]
} | false |
2,179 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | Is there a dose-dependent response to carageenan and Zanamavir intranasal therapy? | {
"answer_start": [
27286
],
"text": [
"While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies"
]
} | false |
2,180 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | Do carageenan and Zanamavir together have a greater benefit than either in monotherapy? | {
"answer_start": [
28900
],
"text": [
"the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi"
]
} | false |
2,182 | The Intranasal Application of Zanamivir and Carrageenan Is Synergistically Active against Influenza A Virus in the Murine Model
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459876/
SHA: f0b1fa4036434b57c8307d43c39a4193f7e8053a
Authors: Morokutti-Kurz, Martina; König-Schuster, Marielle; Koller, Christiane; Graf, Christine; Graf, Philipp; Kirchoff, Norman; Reutterer, Benjamin; Seifert, Jan-Marcus; Unger, Hermann; Grassauer, Andreas; Prieschl-Grassauer, Eva; Nakowitsch, Sabine
Date: 2015-06-08
DOI: 10.1371/journal.pone.0128794
License: cc-by
Abstract: BACKGROUND: Carrageenan is a clinically proven and marketed compound for the treatment of viral upper respiratory tract infections. As infections caused by influenza virus are often accompanied by infections with other respiratory viruses the combination of a specific anti-influenza compound with the broadly active antiviral polymer has huge potential for the treatment of respiratory infections. Thus, the combination of the specific anti-influenza drug Zanamivir together with carrageenan in a formulation suitable for intranasal application was evaluated in-vitro and in-vivo. PRINCIPAL FINDINGS: We show in-vitro that carrageenan and Zanamivir act synergistically against several influenza A virus strains (H1N1(09)pdm, H3N2, H5N1, H7N7). Moreover, we demonstrate in a lethal influenza model with a low pathogenic H7N7 virus (HA closely related to the avian influenza A(H7N9) virus) and a H1N1(09)pdm influenza virus in C57BL/6 mice that the combined use of both compounds significantly increases survival of infected animals in comparison with both mono-therapies or placebo. Remarkably, this benefit is maintained even when the treatment starts up to 72 hours post infection. CONCLUSION: A nasal spray containing carrageenan and Zanamivir should therefore be tested for prevention and treatment of uncomplicated influenza in clinical trials.
Text: The periodic appearance of new influenza variants poses a worldwide pandemic threat. Since the emergence of the new A(H7N9) virus, more than 400 human cases were reported to the WHO with a mortality rate of more than 35%. Most patients with A(H7N9) infections had contact with poultry or visited live animal markets. However, some sporadic cases seemed to be a result of human to human transmissions [1, 2] . In contrast to pandemic viruses which fulminantly enter the human population and cause high mortality rates, seasonal influenza viruses generally cause uncomplicated and transient infections in humans, with virus replication localized to the upper respiratory tract [3, 4] . However, in its fully developed form influenza is an acute respiratory disease resulting in hospitalizations and deaths mainly among high-risk groups. Worldwide, annual epidemics result in about three to five million cases of severe illness, and about 250,000 to 500,000 deaths [5] . For this reason WHO [6] and CDC [7] recommend antiviral treatment for any patient with suspected influenza who is at risk for influenza complications without previous laboratory confirmation.
It is known that influenza virus infections are often accompanied by other viral pathogens [8] . Depending on the detection method (qRT-PCR or immunofluorescence) different ratios of co-infections have been found. Analysis by qRT-PCR revealed that 54.5-83.3% of influenza A or B positive patients were found to have at least one concomitant respiratory viral infection [9] [10] [11] [12] . The detection frequency with immunofluorescence was found to be even higher (90-100%) [13, 14] . Potential concomitant viral pathogens of influenza virus infections include human rhinovirus (hRV), respiratory syncytial virus, adenovirus, human coronavirus, human metapneumovirus and parainfluenza virus [14, 15] .
As a result of the multiple infections, a specific anti-influenza mono-therapy treats the influenza virus infection only, but not the infection with the concomitant viral pathogen. Hence, the therapy often fails to sufficiently resolve symptoms. This is also reflected by the fact that neuraminidase inhibitors (NI) are highly efficacious in animal models investigating influenza mono-infections [16, 17] but show lower efficacy against influenza symptoms in clinical trials in adults with natural infections [18] . Therefore, there is a high medical need for a broadly acting antiviral therapy in combination with a specific anti-influenza therapy for treatment of patients suffering from upper respiratory tract symptoms. Ideally, the substances present in the combination complement each other by different modes of action, leading to a treatment that provides full protection against a broad range of different respiratory viruses as well as different influenza strains with a low probability to induce escape mutations.
One approach for a broad antiviral therapy is the creation of a protective physical barrier in the nasal cavity using carrageenan. Carrageenan is a high molecular weight sulfated polymer derived from red seaweed (Rhodophyceae) that has been extensively used in food, cosmetic and pharmaceutical industry and is generally recognized as safe by the FDA (GRAS) (reviewed in [19] ). Three main forms of carrageenans are commercially used: kappa, iota and lambda. They differ from each other in the degree of sulfation, solubility and gelling properties [20] . The antiviral mechanism of carrageenan is based on the interference with viral attachment; as a consequence, viral entry is inhibited [21, 22] . Its antiviral activity is dependent on the type of polymer as well as the virus and the host cells [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] and has been reviewed in [33] [34] [35] . We published that iota-carrageenan is a potent inhibitor of hRV [36] and influenza A [37] replication and demonstrated the antiviral efficacy of iota-carrageenan against common cold viruses by intranasal application in several randomized, double-blind, parallel group, placebo-controlled clinical trials [38] [39] [40] . The pooled analysis of two studies conducted in 153 children and 203 adults revealed that patients infected with any respiratory virus, who were intranasally treated with iota-carrageenan showed a 1.9 day faster recovery from common cold symptoms than placebo treated patients in the intention-to-treat population [41, 42] . The anti-influenza activity was shown by subgroup analysis of 49 influenza infected patients who benefited from a 3.3 days faster recovery from symptoms. The use of carrageenan nasal spray was associated with a significant reduction of the influenza viral load in nasal fluids and a significant increase in the number of virus free patients within the treatment period of 7 days. In good accordance Prieschl-Grassauer are co-founders of Marinomed Biotechnologie GmbH. Marinomed Biotechnologie GmbH had a role in study design, data collection and analysis, decision to publish, preparation of the manuscript and is financing the processing charge of the manuscript. with the literature [9] [10] [11] [12] [13] [14] we observed that the majority of influenza virus infected patients suffered from a concomitant respiratory viral infection (66%) as determined by real-time PCR. Carrageenan containing nasal sprays are already marketed for the treatment of respiratory viral infections under different brand names in 18 countries.
At present the only available effective drugs for treatment and post exposure prevention of influenza are the NI (Oseltamivir and Zanamivir worldwide; Peramivir in Japan and South Korea). Since the large-scale use of M2 blockers for prophylaxis and treatment in humans [43] and farming [44] , the currently circulating influenza viruses already lack sensitivity to this drug group [45] .
We have already shown an additive therapeutic effect of a combination therapy with intranasally applied iota-carrageenan and orally administered Oseltamivir in lethally H1N1 A/PR/ 8/34 infected mice and a treatment start 48 hours post infection (hpi) [37] .
Due to these very promising results we further developed the concept of combining carrageenan with an NI therapy. In contrast to Oseltamivir, which needs to be activated by metabolic conversion, Zanamivir is directly applied as active drug and can also be administered intranasally [46] [47] [48] [49] [50] [51] [52] . The potential of an intranasal administration of Zanamivir was investigated by GlaxoSmithKline. In seven clinical challenge trials 66 volunteers were infected with influenza B/Yamagata/16/88 and 213 with influenza A/Texas/36/91 (H1N1). 156 of these participants got intranasally applied Zanamivir at different doses (daily dose levels from 6.4 mg to 96 mg) for prophylaxis or therapy [46, 47, 53, 54] . These challenge trials showed that treatment starting before and up to 36 hours post virus inoculation was associated with prevention of laboratory confirmed influenza and febrile illness as well as a reduction in viral titers, duration of shedding and symptoms. In total, safety data from 1092 patients after intranasal application of Zanamivir were published and no evidence for Zanamivir induced adverse events or increased frequencies of local nasal intolerance in comparison to placebo groups was found [46, 49, 52] .
Taken together, the combination of a carrageenan nasal spray that provides broad antiviral activity against upper respiratory infections-including influenza-with Zanamivir, a specific anti-influenza drug, meets the existing medical need to treat multiple viral infections. In the present work we investigate the therapeutic effect of a combination of carrageenan and Zanamivir in-vitro and in an animal model.
Kappa-carrageenan and iota-carrageenan were purchased from FMC Biopolymers (Philadelphia, PA). The identity, purity (>95%) of carrageenan subtypes and the molecular weight (>100,000) was confirmed by NMR analysis as described elsewhere [55] and the presence of lambda-carrageenan was below the detection limit of 3%. The dry polymer powders were dissolved in aqua bidest (Fresenius Kabi, Austria) to a final concentration of 2.4 mg/ml iota-and 0.8 mg/ml kappa-carrageenan. This 2x stock solution was sterile filtered through a 0.22 μm filter (PAA, Switzerland) and stored at room temperature until use. For further testing the stock solution was diluted to a mixture containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan (hereinafter referred to as "carrageenan").
Zanamivir was purchased as powder (Haosun Pharma, China) and the identity and purity was confirmed by NMR analysis. Zanamivir was either dissolved in carrageenan or placebo solutions, followed by sterile filtration through a 0.22 μm filter (Sarstedt, Germany). For in-vivo studies all Zanamivir containing solutions were freshly prepared.
Madin-Darby canine kidney (MDCK) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and cultivated in a 37°C incubator (Sanyo, Japan; CO 2 : 5%, relative humidity: >95%). MDCK cells were grown in Dulbecco's minimal essential (DMEM) high glucose medium (PAA, Austria) supplemented with 10% fetal bovine serum (FBS; PAA, Austria; heat inactivated).
Influenza virus A/Hansa Hamburg/01/09 (H1N1(09)pdm) was kindly provided by Peter Staeheli Department of Virology, University of Freiburg, Germany and previously described in [56] ; A/Teal/Germany/Wv632/05 (H5N1) previously published in [57] (accession numbers CY061882-9) and A/Turkey/Germany/R11/01 (H7N7) (taxonomy ID 278191, accession number AEZ68716) were supplied by courtesy of Martin Beer, Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Riems, Germany; A/Aichi/2/68 (H3N2) was purchased from the ATCC. All influenza viruses were propagated in MDCK cells at 37°C and 5% CO 2 in influenza medium [Opti-Pro serum free medium (Gibco, Austria) supplemented with 4 mM L-glutamine (PAA, Austria), 1% antibiotic-antimycotic mix (PAA, Austria) and 5 μg/ml trypsin (Sigma Aldrich, Austria)].
To determine the 50% inhibitory concentration (IC 50 ) and the combination effect of carrageenan and Zanamivir, a semi-liquid plaque assay was developed. Into 96 well tissue culture plates 1.7x10 4 MDCK cells/well were seeded and infected at 90% confluence (24-28 hours later). Serial dilutions of carrageenan and Zanamivir were prepared in assay medium (influenza medium without trypsin). For infection, viruses were diluted to an MOI of 0.003 (H1N1(09)pdm and H3N2 Aichi), 0.015 (H5N1) or 0.004 (H7N7), respectively, in assay medium and incubated at room temperature (RT) for 10 min with the serial dilutions of carrageenan and/or Zanamivir, respectively. For evaluation of the combination effect of carrageenan and Zanamivir, viruses were diluted in assay medium containing constant concentrations of either carrageenan or Zanamivir. The other substance was serially diluted and used for virus incubation. Cells were infected in 6 replicates/compound dilution, respectively, and incubated at RT for 45 min before inoculum removal. Cells were further incubated with the respective concentration of the investigated substances present in the overlay [influenza medium with 2.25% Carboxymethylcellulose (CMC, Fluka, Austria)] for 30-42 hours at 37°C. Evolving plaques were evaluated after methanol/acetone cell fixation by immune staining with antibodies either directed against the influenza A nucleoprotein (AbD Serotec, Germany) (for H1N1(09)pdm, H5N1 and H7N7) or the hemagglutinin (AbD Serotec, Germany) (for H3N2). Analysis was done with a HRP labeled detection antibody (Thermo Scientific, Germany) using TMB (Biolegend, Germany) as substrate and a microplate reader at 450 nm. The reduction of detected signal represents a reduction in the number and size of plaques and indicates suppression of viral replication during infection and cultivation.
After the immunostaining cells were stained with 0.005% crystal violet solution to assess the condition of the cell layer and the toxicity of the compounds. IC 50 values and standard deviations were calculated for a sigmoidal dose response model using XLfit Excel add-in version 5.3.1.3.
All animal experiments were carried out according to the guidelines of the "European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes" and the Austrian law for animal experiments. All animal experiments were approved by the Veterinary University of Vienna institutional ethics committee and performed under the Austrian Federal Ministry of Science and Research experimental animal license numbers BMWF-68.205/0262-II/3b/2011 and BMWF-68.205/0142-II/3b2012. C57BL/6 mice were purchased from Janvier Labs, France and maintained under standard laboratory conditions in the animal facilities of the Veterinary University of Vienna. For euthanasia and anesthesia asphyxiation through CO 2 was used and all efforts were made to minimize suffering.
For infection experiments, 3-5 weeks old female mice were intranasally inoculated with 50 μl influenza virus solution (25 μl/nostril) containing 2.27x10 3 or 1.65x10 3 plaque-forming unit of H1N1(09)pdm or H7N7, respectively. Subsequently, treatment started 24, 48 or 72 hpi, as indicated for the different experiments. Treatment was performed intranasally either with 50 μl therapeutic solution or placebo twice per day for 5 days. As therapy either carrageenan (containing 1.2 mg/ml iota-carrageenan and 0.4 mg/ml kappa-carrageenan to provide a daily dose of 12 mg/kg body weight (BW)), Zanamivir (containing either 130 μg/ml or 390 μg/ml Zanamivir, to provide a daily dose of 1 or 3 mg/kg BW, respectively) or a combination of carrageenan and Zanamivir were used. Carrageenan and Zanamivir are used at non-toxic concentrations as shown by [58] and [59] . Mice were monitored twice daily for 15 days for survival and weight loss. Mortality also includes mice that were sacrificed for ethical considerations when they had lost more than 25% of their initial body weight. We confirm the viral infection in these animals by necropsy and scoring of the lung inflammation.
As the mechanisms underlying the antiviral activity of NI and carrageenans are fundamentally distinct, they are likely to exhibit different activities towards the individual influenza virus strains. As a result, in combination they could complement each other to provide protection against a broader spectrum of influenza virus strains than the individual compounds.
To test this hypothesis, we investigated the sensitivity of various influenza virus strains to Zanamivir and carrageenan in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells [60, 61] . Using this method, we determined the IC 50 of Zanamivir and carrageenan against influenza A viruses of human and animal origin, namely H1N1(09)pdm (A/Hansa Hamburg/01/09), H3N2 (A/Aichi/2/68), low pathogenic (LP) H5N1 (A/Teal/Germany/ Wv632/05) and LP H7N7 (A/Turkey/Germany/R11/01) ( Table 1) . Both substances were nontoxic at the highest tested concentration (400 μM Zanamivir and 533 μg/ml carrageenan), neither was their combination. Furthermore, CMC in the overlay did not show any virus inhibitory effect (data not shown). Inhibition of viral replication of all tested influenza strains was achieved with both substances. However, the IC 50 values varied widely depending on the influenza virus strain. The IC 50 values of Zanamivir ranged between 0.18 μM for H5N1 and 22.97 μM for H7N7 and that of carrageenan from 0.39 μg/ml to 118.48 μg/ml for H1N1(09)pdm and H7N7, respectively (see Table 1 ). These results demonstrate that carrageenan and Zanamivir target individual influenza strains to different extents so that they may complement each other to provide broader anti-influenza activity.
The type of compound interaction was characterized by employing isobolograms (Fig 1) . As described in [62] , isobolograms graphically compare the doses of two compounds needed to reach 50% inhibition to the predicted doses calculated based on a model of drug additivity. A curve linearity of~1 is expected for an additive compound interaction whereas a curve progression <1 argue for synergistic and >1 for an antagonistic compound interaction.
Two virus strains were selected for those experiments, one being the most sensitive to carrageenan (H1N1(09)pdm) and one being the least sensitive (H7N7). In both cases the isobolograms show a synergistic interaction of carrageenan and Zanamivir (Fig 1) . Thus, it was shown that Zanamivir and carrageenan target individual influenza viruses with different efficiencies, most probably due to their different antiviral strategies. As a result, the combination provides synergistic activity with higher protection against a broader spectrum of influenza virus strains than the individual compounds.
In the influenza animal model, C57Bl/6 mice are challenged with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). Infection and treatment (twice a day for 5 days) are done intranasally without anesthesia. We investigated whether the combination of Zanamivir and carrageenan is more efficacious in reducing mortality than the corresponding mono-therapies.
First, we determined the minimal effective dose of a Zanamivir mono-therapy that significantly improved survival time of H1N1 and H7N7 infected mice. For the H7N7 lethal infection the minimal effective dose of Zanamivir as mono-therapy ranged between 1 and 3 mg/kg BW/ day (data not shown). Next, we compared the antiviral activity of carrageenan (12 mg/kg BW/ day) and Zanamivir (1 and 3 mg/kg BW/day) mono-therapies with the respective combination versus placebo treatment. Survival rates of mice with treatment starting 24 hpi are shown in Fig 2A. All placebo treated mice died between day 7 and 9 and also in all mono-therapy groups 100% lethality was observed until day 15. In contrast, the combination therapies led to 50% and 90% survival, depending on the Zanamivir concentration. Statistical analysis showed that the Zanamivir mono-therapy 1 mg/kg BW/day did not show a significant benefit (p = 0.1810), whereas the mono-therapy with 3 mg/kg BW/day significantly increased the survival rate compared with placebo treated mice (p = 0.0016). Both Zanamivir concentrations experienced significant benefit in survival by the combination with carrageenan (p<0.0001). Similarly, the combination therapies resulted in remarkably increased survival (p = 0.0421 for 1 mg and p<0.0001 for 3 mg/kg BW/day) when compared to the carrageenan mono-therapy. No statistically significant difference was observed between the combination containing 3 mg/kg BW/day Zanamivir and that containing 1 mg/kg BW/day (p = 0.0525). However, a trend for an increased survival rate with the higher Zanamivir concentration was evident. Therefore, for further investigation the combination therapy containing 3 mg/kg BW/day Zanamivir was evaluated in lethally H7N7 infected mice.
Next, the therapeutic potential of the combination with a delayed therapy start 48 or 72 hpi versus placebo treatment was explored. The survival rates of mice are shown in Fig 2B. All placebo treated mice died until day 10 and also in the group with the treatment start 72 hpi 100% lethality was found. In contrast, the combination therapy starting 48 hpi provided a statistically significant enhanced survival rate in comparison to placebo-treated mice (p = 0.0010).
In summary, the combination of two effective, established mono-therapies resulted in a significantly enhanced survival in lethally H7N7 infected mice. Additionally, the combination therapy was highly efficient in comparison to placebo treatment even after a treatment onset up to 48 hpi.
Intranasal therapy with carrageenan and Zanamivir starting 72 hpi significantly protects lethally influenza H1N1(09)pdm infected mice Next, the minimal effective dose of Zanamivir used as mono-therapy was evaluated in a lethal H1N1(09)pdm mouse model, following the same scheme as described in the H7N7 experiments. The lowest effective dose of Zanamivir after a treatment start 24 hpi was 1 mg/kg BW/ day and its combination with carrageenan was highly effective (data not shown). In the following experiment the therapeutic potential of the combination with a therapy start 48 or 72 hpi was investigated in comparison with the respective placebo treatment.
As shown in Fig 3, the survival rates of mice treated with the combination therapy were highly significantly increased in comparison to the placebo group (p<0.0001). There was no difference in survival between the two therapy starting points, 48 or 72 hpi, which both resulted
We investigated the antiviral effect of a combination of carrageenan with the NI Zanamivir in cell culture studies and in mouse influenza infection models. We have previously shown that a combined therapy of iota-carrageenan with the NI Oseltamivir led to significantly enhanced survival in mice infected with H1N1 PR/8/34 in comparison with the respective mono-therapies [37] . However, Oseltamivir is an orally administered prodrug, which has to be converted into its active form by metabolic processing. Therefore, a further development of a combination nasal spray was not possible with Oseltamivir. Instead Zanamivir-a NI that is applied as active drug-was chosen for the development of a compound combination.
During the evaluation process we found that the binding efficiency of different carrageenan subtypes on different influenza strains varies. The combined use of iota-and kappa-carrageenan for the treatment of lethally influenza infected C57Bl/6 mice revealed a better therapeutic effect than the use of iota-carrageenan alone (S1 Fig). Thus, to provide a broader spectrum of activity against different influenza virus strains, a mixture of iota-and kappa-carrageenan (designated as carrageenan) was used for further evaluation.
For investigation of the effect of a compound combination of carrageenan and Zanamivir, we examined their inhibition efficiency, individually and in combination, against influenza viruses in an adapted plaque reduction assay with semi-liquid overlay in MDCK cells. The combination showed a synergistic inhibition of virus replication in in-vitro assays with all tested influenza viruses (Fig 1) . This indicates that the physical interaction of the polymer with the virus does not disturb the inhibition of the neuraminidase by Zanamivir. This was confirmed in in-vitro tests examining a potential influence of the polymer on the neuraminidase inhibiting activity of Zanamivir (data not shown). Hence, the observed synergistic effect is based on the combination of two distinct underlying mechanisms. As a result, in the proposed combination both mechanisms would complement each other to provide more efficient protection against a broader spectrum of influenza virus strains than the individual compounds.
The synergistic effect was also shown in lethal mice models (Fig 2 and Fig 3) . The pathogenicity of influenza viruses in mice varies and is dependent on the strain and its adaptation to the host. Depending on virus dose and strain, influenza viruses can induce lethal infections in certain mouse strains usually within two weeks [37, 63] . In our model, C57Bl/6 mice are challenged intranasally with a lethal dose of the respective virus and treated with different regimens in comparison to a vehicle control (placebo). In such a model, early virus replication takes place in the upper respiratory tract. From there, virus spreads to the lung and causes lethal pneumonia. The effect of the treatment on mortality is assessed in comparison to placebotreated control mice. Of all in-vitro tested influenza strains the H1N1(09)pdm and the LP H7N7 are particularly interesting for two reasons. First, they are highly relevant pathogens, as placebo or with the mono-therapies consisting of carrageenan (12 mg/kg BW/day) or Zanamivir (1 and 3 mg/ kg BW/day) or a combination thereof. Treatment started 24 hpi and continued for 5 days. (B) Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and intranasally treated twice per day either with placebo or a combination of carrageenan with Zanamivir (3 mg/kg BW/day). Treatment started either 48 hpi or 72 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated uninfected control mice showed 100% survival in both experiments (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. both are involved in recent influenza outbreaks. The H1N1(09)pdm is associated with more than 18,400 deaths in the season 2009/2010 while the LP H7N7 carries an HA closely related to that of the avian influenza H7N9 virus which has caused more than 175 deaths until October 2014 [64] . Second, they are of special interest for the carrageenan/Zanamivir combination approach. They have shown to differ in in-vitro susceptibility to carrageenan, Zanamivir (Table 1 ) and the combination thereof (Fig 1) . While H1N1(09)pdm was highly sensitive to inhibition by both substances alone, H7N7 required much higher concentrations of carrageenan and Zanamivir, respectively, to achieve similar inhibition efficiencies. Therefore, both virus strains were chosen to further explore the efficiency of the combination therapy in a mouse model.
We established lethal mouse models with both viruses that resulted in 6.8 and 8.5 mean survival days for LP H7N7 and H1N1(09)pdm, respectively. These results are in good accordance to similar already published lethal influenza models [65] [66] [67] . In our models the lowest effective dose for Zanamivir at a treatment start 24 hpi was found to be between 1 to 3 mg/kg BW/day for both viruses. This concentration range is relatively high in comparison to other published studies. However, these studies were done under anesthesia with different viruses and a prophylactic therapy start [65, 66] . The fact that a higher dose of NI is needed for an effective treatment when the therapy starts 24 hpi is already known for Oseltamivir [68] . Nonetheless, also data with much higher effective concentrations (10 mg/kg BW/day [69] ) and with similar concentrations of Zanamivir (2.5 mg/kg BW/day [67] ) were published as well.
We found that the combination of carrageenan with 3 mg/kg BW/day Zanamivir used for treatment of H7N7 infected mice resulted in significantly enhanced survival of mice in comparison to both mono-therapies (Fig 2) . The significantly enhanced survival compared to the placebo treated group was also found after a delayed treatment start 48 hpi. Furthermore, in the H1N1(09)pdm model the combination of carrageenan with 1 mg/kg BW/day Zanamivir showed statistically significant enhanced survival in comparison to placebo treatment even after a treatment start 72 hpi. This is a remarkable finding since NIs are normally not effective when applied 72 hpi.
The finding supports the development of the Zanamivir and carrageenan combination approach. As the intranasal treatment regime is incapable to effectively treat virus infections of the lung, the primary target of such a product is the prophylaxis and therapy of uncomplicated influenza. Since the majority of influenza infections causes uncomplicated illnesses and practically all cases of influenza start with an infection of the nasal cavity or the upper respiratory tract, the therapeutic potential is huge. However, clinical studies are required to elucidate and demonstrate the potential of the proposed combination therapy.
Combination of antiviral strategies has led to impressive achievements in the combat against other viral disease like HIV. In particular the problem of antiviral resistance could be addressed with this strategy. In the last decade concerns have been raised about the increased emergence of Oseltamivir resistant influenza viruses. The augmented appearance of viruses carrying the mutation H275Y in the neuraminidase of H1N1(09)pdm viruses that confers resistance to Oseltamivir left Zanamivir as only treatment option for symptomatic patients infected with an Oseltamivir resistant influenza strain [70] . In contrast to Oseltamivir, resistance to Zanamivir is less frequent. To date, Zanamivir resistant influenza has been detected only once, in an immunocompromised patient [71, 72] . However, lessons should be learned from previous anti-influenza interventions which resulted in occurrence of resistance against currently approved drugs [73] . Therefore, concerns are comprehensible that an increased Zanamivir use may also lead to the rapid emergence of resistances [74] . To overcome this threat, a combination of antivirals which inhibits virus replication by distinct mechanisms is a valid strategy. We checked for the possibility of generating double compound escape mutant viruses while passaging viruses in the presence of increasing concentrations of compound combinations. After 10 passages in MDCK cells no resistance to the compound combination for any tested influenza virus could be found (data not shown). However, this finding does not guarantee that emergence of Zanamivir escape mutants can be completely halted.
In summary, we demonstrated that the anti-influenza mechanisms of both single compounds complement each other. The combination provides synergistically better protection against a broader spectrum of influenza viruses than the individual compounds.
A nasal spray containing carrageenan together with Zanamivir provides an easy to apply treatment of upper respiratory tract infections in patients under suspicion to be influenza infected. Patients would benefit from the fast and efficient treatment of uncomplicated influenza in the upper respiratory tract. Due to the faster influenza virus clearance from the upper respiratory tract and the independent antiviral mechanism of carrageenan and Zanamivir the likelihood to develop escape mutations against Zanamivir will be reduced. Both individual compounds are able to reduce severity and/or duration of the influenza illness and a combination is expected to work similarly. Additionally, due to the broad antiviral effectiveness of carrageenan, patients will receive in parallel a treatment of concomitant viral infections. Therefore, patients will benefit from a decreased probability to develop complications. In consideration of the complications known to accompany an influenza virus illness this combinational therapy meets an urgent medical need.
A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines [43] . Even if, due to new reverse genetic techniques, less time for production of vaccines is needed, it still takes months before large quantities of vaccine are available [75] . During this time the human population should be protected to decelerate viral spread. At the moment the only available opportunities for personal protection are hygiene measures and the use of Tamiflu (brand name of Oseltamivir).
Novel protection and treatment options for influenza are desperately needed. Based on our encouraging results in mice we suggest testing a nasal spray containing carrageenan in combination with the neuraminidase inhibitor Zanamivir in clinical trials for prevention or treatment of uncomplicated influenza infections.
Supporting Information S1 Fig. Therapeutic efficacy of iota-carrageenan solely or together with kappa-carrageenan in influenza H7N7 lethal infected mice. Mice (n = 20 per group) were lethally intranasally infected without anesthesia on day 0 and accordingly intranasally treated twice per day either with placebo or with iota-carrageenan or with a mixture of iota-and kappa-carrageenan. Treatment started 24 hpi and continued for 5 days. On the y-axis the survival of mice [%] and on the x-axis the time post infection [days] is given. Placebo treated, uninfected control mice showed 100% survival (data not shown). Statistical analyses were conducted using log rank test and are shown beneath the graphs. Values of p<0.05 were considered statistically significant; non-significance (n.s.) was obtained with p-values >0.05. (TIFF) | Did the use of carageenan play a role in pandemic's caused by novel viruses? | {
"answer_start": [
32767
],
"text": [
"A second scope of this combination is the protection against newly emerging pandemic viruses during the time until identification of the virus followed by manufacturing and distribution of vaccines"
]
} | false |
4,101 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | How was ILI defined? | {
"answer_start": [
4410
],
"text": [
"as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. "
]
} | false |
4,104 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What is this assay based on? | {
"answer_start": [
5499
],
"text": [
"on the multiplex ligation-dependent probe amplification (MLPA) technology."
]
} | false |
4,102 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | How was random sampling performed? | {
"answer_start": [
5057
],
"text": [
" with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR."
]
} | false |
4,103 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What used to detect pathogens? | {
"answer_start": [
5345
],
"text": [
" Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. "
]
} | false |
4,033 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What does the retrospective study use? | {
"answer_start": [
666
],
"text": [
"nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012."
]
} | false |
4,034 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | How many swabs were randomly selected and analyzed? | {
"answer_start": [
751
],
"text": [
"250 "
]
} | false |
4,035 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | How were the swabs analyzed? | {
"answer_start": [
796
],
"text": [
" by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria."
]
} | false |
4,037 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What viruses were detected? | {
"answer_start": [
928
],
"text": [
"respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). "
]
} | false |
4,038 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What co-infections were found? | {
"answer_start": [
1110
],
"text": [
"Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses."
]
} | false |
4,039 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What seasonal differences were found? | {
"answer_start": [
1284
],
"text": [
"seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter."
]
} | false |
4,040 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What does the study highlight? | {
"answer_start": [
1501
],
"text": [
" a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. I"
]
} | false |
4,041 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What does the study show? | {
"answer_start": [
1610
],
"text": [
"that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI."
]
} | false |
4,042 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | Which are identified as major viruses mostly responsible for ILI and pneumonia in several studies? | {
"answer_start": [
1966
],
"text": [
"Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses"
]
} | false |
4,087 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What percentage of these infections are identified? | {
"answer_start": [
2294
],
"text": [
"less than 50%"
]
} | false |
4,088 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What is Reunion Island? | {
"answer_start": [
2330
],
"text": [
" a French overseas territory"
]
} | false |
4,089 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What is the number of inhabitants of Reunion Island? | {
"answer_start": [
2363
],
"text": [
" 850,000"
]
} | false |
4,090 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | Where is Reunion Island located? | {
"answer_start": [
2397
],
"text": [
"n the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.)"
]
} | false |
4,091 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What is the island's health care system similar to? | {
"answer_start": [
2579
],
"text": [
" to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France"
]
} | false |
4,092 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | When does influenza activity increase? | {
"answer_start": [
2836
],
"text": [
" during austral winter, corresponding to summer in Europe"
]
} | false |
4,093 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | When does the influenza vaccination campaign in Reunion Island start? | {
"answer_start": [
2971
],
"text": [
"April "
]
} | false |
4,094 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What is the clinical and biological influenza surveillance has been based on? | {
"answer_start": [
3162
],
"text": [
"a sentinel practitioner's network"
]
} | false |
4,095 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What is this network composed of? | {
"answer_start": [
3240
],
"text": [
"58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs."
]
} | false |
4,096 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | How are the influenza tests carried out? | {
"answer_start": [
3346
],
"text": [
" Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses"
]
} | false |
4,097 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What do 40-50% of the samples test positive for? | {
"answer_start": [
3512
],
"text": [
" for influenza A virus, A(H1N1)pdm09 or B virus"
]
} | false |
4,098 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What are the ILI samples wich test negative for influence? | {
"answer_start": [
3683
],
"text": [
"are of unknown etiology"
]
} | false |
4,099 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What tool has been developed to identify several viruses simultaneously? | {
"answer_start": [
3806
],
"text": [
", multiplex reverse transcriptase polymerase chain reaction (RT-PCR) "
]
} | false |
4,100 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | What are the objectives of the study? | {
"answer_start": [
4116
],
"text": [
"to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season."
]
} | false |
4,105 | Etiology of Influenza-Like Illnesses from Sentinel Network Practitioners in Réunion Island, 2011-2012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031398/
SHA: f5ff89ebfdd0375d034c112c6c1c7e163fa69a0c
Authors: Brottet, Elise; Jaffar-Bandjee, Marie-Christine; Li-Pat-Yuen, Ghislaine; Filleul, Laurent
Date: 2016-09-21
DOI: 10.1371/journal.pone.0163377
License: cc-by
Abstract: In Réunion Island, despite an influenza surveillance established since 1996 by the sentinel general practitioner’s network, little is known about the etiology of Influenza like-illness (ILI) that differs from influenza viruses in a tropical area. We set up a retrospective study using nasal swabs collected by sentinel GPs from ILI patients in 2011 and 2012. A total of 250 swabs were randomly selected and analyzed by multiplex reverse transcriptase polymerase chain reaction (RT-PCR) including research of 18 viruses and 4 bacteria. We detected respiratory viruses in 169/222 (76.1%) samples, mostly rhinovirus (23.4%), influenza A virus (21.2%), influenza B virus (12.6%), coronavirus (4.9%) and Human metapneumovirus (3.6%). Nine swabs (5.3% of positive swabs) revealed co-infections with two viruses identified, among which six concerned co-infections with influenza viruses. We observed important seasonal differences, with circulation of Human Metapneumoviruses, RSV A and B and coronavirus only during summer; whereas parainfluenza viruses were identified only during winter. In conclusion, this study highlights a substantial circulation of multiple respiratory pathogens in Réunion Island throughout the year. It shows that ILI are not only attributable to influenza and underlines the need for biological surveillance. As the use of multiplex RT-PCR showed its efficacy, it is now used routinely in the surveillance of ILI.
Text: Influenza like-illness (ILI) or acute respiratory infections can be caused by several types of respiratory viruses or bacteria in humans [1] . Influenza viruses, Respiratory Syncytial viruses (RSV) and Parainfluenza viruses are identified as major viruses mostly responsible for ILI and pneumonia in several studies [2] . However practitioners cannot diagnose the infection without a biological test confirmation. Unfortunately, these infections causes are identified in less than 50% [3] .
Réunion Island, a French overseas territory with 850,000 inhabitants, is located in the southern hemisphere between Madagascar and Mauritius in the Indian Ocean (Latitude: 21°05.2920 S Longitude: 55°36.4380 E.). The island benefits from a healthcare system similar to mainland France and epidemiological surveillance has been developed by the regional office of the French Institute for Public Health Surveillance (Cire OI), based on the surveillance system of mainland France [4] . Influenza activity generally increases during austral winter, corresponding to summer in Europe [5] . Since 2011, influenza vaccination campaign in Reunion Island starts in April and the vaccine used corresponds to World Health Organization recommendations for the southern hemisphere.
Since 1996, clinical and biological influenza surveillance has been based on a sentinel practitioner's network [6] . In 2014, this network was composed of 58 general practitioners (GPs) spread over the island and represented around 7% of all Réunion Island GPs. Nasal swabs are randomly collected all along the year and are tested by RT-PCR for influenza viruses. Among these surveillance samples, 40 to 50% are tested positive for influenza A virus, A(H1N1)pdm09 or B virus by the virological laboratory of the University Hospital Center of Réunion. Thus ILI samples tested negative for influenza are of unknown etiology.
Several biological tools allow identifying respiratory pathogens from nasal swab. In recent years, multiplex reverse transcriptase polymerase chain reaction (RT-PCR) has been developed to identify several viruses simultaneously [7] [8] [9] [10] . We therefore used this new method to set up a retrospective study using swabs collected by sentinel GPs from 2011 to 2012.
The main objective of our study was to characterize respiratory pathogens responsible for ILI consultations in sentinel GPs in 2011 and 2012. Secondary objectives were to highlight seasonal trends on respiratory pathogens circulation and to describe occurrence of co-infections, especially during the flu season.
ILI was defined as a sudden onset of fever more than 38 degrees Celsius and cough, associated or not with other symptoms such as breathing difficulty, headache, etc. Every week, all GPs of the sentinel network were encouraged to collect a nasal swab from the first two patients who presented ILI since less than three days. After being tested for influenza viruses, the 994 swabs collected in 2011 and 2012 are frozen at -80°C at the university hospital center (CHU) laboratory.
Based on the budget, a season-stratified sample of 250 swabs was randomly selected in order to describe circulating viruses including outside flu season. Random sampling was performed with Excel 1 using the anonymized surveillance database of the Cire OI. The sampling frame contained identification number of swab assigned by Cire OI, laboratory identification number, sex, age, date of onset of symptoms, date of swab collection and result of influenza RT-PCR.
We used Respifinder 1 Smart 22 kits a multiplex RT-PCR (PathoFinder, Maastricht, The Netherlands) which can detect 22 respiratory pathogens. This assay is based on the multiplex ligation-dependent probe amplification (MLPA) technology. The reverse transcription and preamplification steps were performed on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science). This method was chosen because of its high specificity, compared to other same methods (78% versus 33%) [3, 11] . Multiplex analysis allows for rapid production of diagnostic results. It thus allows highlighted the possible presence of eighteen respiratory viruses and four bacteria in one reaction by melt curve analysis: Influenza A not (H1N1
Statistical analyses were performed with Stata 1 and Excel 1 . Two seasons were defined to identify possible seasonal trends in circulation of the viruses: winter season during weeks 23 to 39 between June and September and summer season during the rest of the year.
Data and swabs result from a surveillance system that received regulatory approvals, including the CNIL (National Commission for Information Technology and Civil Liberties Number 1592205) approval in July 2012. All the patients have received oral information and gave their consent for swab and data collection. Data were collected for surveillance purpose and are totally anonymous.
Among the 250 randomly-selected swabs, 26 were not available anymore as they were sent to Influenza Reference Center for confirmation and characterization of the pathogenic agent. According to the sensitivity of the assay two samples could be discordant results between Influenza PCR initially realized and Multiplex PCR. Thus they were deleted from the analysis: one is positive for Influenza in singleplex and negative for all tested pathogens in multiplex and one is positive for Influenza in singleplex and positive for PIV2 in multiplex. In total, 222 analyses were considered. Moreover, 53 samples were negative for all analyzed respiratory pathogens (23.9%) and 169 samples had at least one detected pathogen (76.1%), finally a total of 178 pathogens was identified.
During the study period, a minority of the weeks (21 i.e. 20%) did not include any sampled swab, mainly outside flu season.
Patients' sex-ratio was 0.63 (86 men and 136 women) and mean age was 28.4 years [min 0; max 81]. Ten percent had less than 5 years, 24% 5-15 years, 63% 15-65 years and only 3% were 65 and older.
The respiratory pathogens most frequently identified in ILI swabs were rhinovirus (23.4%), influenza A not H1N1 (21.2%) and influenza B (12.6%) ( Table 1) .
Among the 22 respiratory pathogens tested by the multiplex, only three were not found in any analyzed sample: Parainfluenza3, Legionella pneumophila and Bordetella pertussis.
Regarding co-infections, nine swabs revealed the presence of two viruses, among which6 involved influenza viruses (Table 2) .
Analyses showed that some viruses are possibly seasonal and were circulating during a specific period of the year. They are detected only in summer for Human Metapneumovirus, RSV A and B, and influenza A(H1N1)pdm09. For the latter, it is specific to the studied period since the influenza A(H1N1)pdm09 virus reappeared in Réunion Island in October 2012 and was no longer circulating since late 2010. On the opposite, Parainfluenza 1,2 and 4 viruses were identified only in winter. For other pathogens, no specific period of detection was observed.
A weekly description of samples was realized to study the distribution of respiratory pathogens in 2011 and 2012 (Fig 1) . Results of biological analyses were compared with data of ILI consultations declared by sentinel GPs in 2011 and 2012. We observed in 2011, after a first wave in June mainly due to influenza A not H1N1 virus, a second wave of ILI consultations with mainly identification of Parainfluenza viruses and not influenza viruses. In 2012, the second epidemic wave at the end of austral winter coincided with Influenza viruses and Rhinovirus circulation.
Regarding negative swabs (Fig 2) , we observed no seasonality during the study period with a similar proportion whatever the season.
This retrospective study based on a sentinel GPs network showed that not only influenza viruses are responsible for ILI consultations. Indeed, an important circulation of multiple pathogens was observed throughout the year, with 12 different types of pathogens identified in 2011 and 2012. Respiratory viral pathogens were present in 76.1% of samples, which is largely above results from annual influenza surveillance [12] . After influenza viruses, Rhinovirus and Coronavirus were the most common respiratory viruses in Réunion Island. Although samples were not taken every week, sample was representative of ILI activity and consistent with flu season. Nevertheless, according to the low number of samples, it is difficult to conclude about seasonality. However in our study, RSV was circulating in summer season which is hot and rainy, which is confirmed by other studies in tropical region [13] .
This study also highlighted several co-infections, showing that concomitant the multiple etiology of ILI. Co-circulation was already observed in Réunion Island during the A(H1N1) pdm09 pandemic in addition to influenza virus, with identification of other respiratory viruses such as Rhinovirus or Coronavirus [14] . In mainland France, during this pandemic, circulation of major respiratory viruses was found, such as Rhinovirus, Parainfluenza, Coronavirus, Human Metapneumovirus, like in our publication [15] [16] . In our study, only 5.3% of positive swabs were co-infections whereas in two studies in Madagascar co-infections represented 27.3% and 29.4% [17] [18] .
Despite the distance of 9,300 km between Réunion and France, the island is directly connected to Europe with four daily flights to France. These exchanges can impact respiratory pathogens circulation in southern and northern hemisphere. Results of this study can therefore be of interest to both Indian Ocean and Europe countries.
Among the 148 swabs initially negative for influenza because not previously tested for any other viruses, the study found an etiology for 95 swabs. In total, only 53 swabs, representing 24% of the sample, remained without etiology with negative multiplex PCR results all along the year. Multiple hypotheses can explain this result: a poor quality of swabs, preventing from identifying a pathogen, noninfectious causes or other pathogens not included in the multiplex PCR. However, we couldn't test the negative swabs for RNAse P, a marker of human cells, which could provide a modicum of assurance that the swab contained human cells.
Concerning the two samples divergent for influenza identification between the multiplex and singleplex PCR, we discarded them for the analysis; one was positive in Influenza with singleplex and positive in PIV with multiplex. It could be a false positive result from singleplex. Indeed, as the multiplex PCR assay has a good sensitivity and is considered as a gold-standard, we decided to keep seven negative results for Influenza in singleplex and positive in Influenza in multiplex [7] [8] [9] [10] .
No case of Bordetella pertussis which causes whooping cough and Legionella pneumophila which causes Legionnaires' disease was identified in this study. However, these diseases are rare in Réunion Island, around three cases of Legionnaires' disease are declared each year.
A limit of the study is that no clinical data were available in the virological surveillance system of influenza in Réunion Island. It was impossible to compare clinical symptoms according to each pathogen and to know if there are different pathogens which cause for instance rhinitis, laryngitis or bronchitis (diseases included in ILI). A specific prospective study including clinical data might provide useful elements in the semiotics of diseases.
In conclusion, this study highlighted an important circulation of multiple pathogens in Réunion Island throughout the year. It shows that ILI is not specific to influenza and so it is essential to have biological results in order to establish the differential diagnosis and thus explain the etiology of symptoms. For a better understanding of respiratory pathogens circulating in Réunion Island, information from this study may also be useful to practitioners who see many patients in consultation with ILI. As the use of multiplex RT-PCR showed its efficacy in the ILI surveillance and allowed to highlight the circulation of other viruses and bacterial causes of respiratory infections, it is now used routinely in the surveillance of ILI. Moreover, it would be interesting to repeat this study every 3 or 5 years adding clinical data to monitor the evolution of respiratory pathogens in Réunion Island over time. | On which system the reverse transcription and preamplification steps were performed? | {
"answer_start": [
5642
],
"text": [
"on the epgradient Mastercycler 1 (Eppendorf) and the hybridization, ligation and detection steps on the LightCycler 1 480 system (Roche Applied Science)."
]
} | false |
Subsets and Splits