Search is not available for this dataset
image
imagewidth (px) 224
224
| epoch
int64 0
2.57k
| label_str
class label 3
classes | label
class label 3
classes |
---|---|---|---|
0 | 0No Event
| 0No Event
|
|
1 | 0No Event
| 0No Event
|
|
2 | 0No Event
| 0No Event
|
|
3 | 0No Event
| 0No Event
|
|
4 | 0No Event
| 0No Event
|
|
5 | 0No Event
| 0No Event
|
|
6 | 0No Event
| 0No Event
|
|
7 | 0No Event
| 0No Event
|
|
8 | 2seiz
| 2seiz
|
|
9 | 2seiz
| 2seiz
|
|
10 | 2seiz
| 2seiz
|
|
11 | 2seiz
| 2seiz
|
|
12 | 2seiz
| 2seiz
|
|
13 | 2seiz
| 2seiz
|
|
14 | 2seiz
| 2seiz
|
|
15 | 2seiz
| 2seiz
|
|
16 | 2seiz
| 2seiz
|
|
17 | 2seiz
| 2seiz
|
|
18 | 2seiz
| 2seiz
|
|
19 | 2seiz
| 2seiz
|
|
20 | 2seiz
| 2seiz
|
|
21 | 2seiz
| 2seiz
|
|
22 | 2seiz
| 2seiz
|
|
23 | 2seiz
| 2seiz
|
|
24 | 2seiz
| 2seiz
|
|
25 | 2seiz
| 2seiz
|
|
26 | 2seiz
| 2seiz
|
|
27 | 2seiz
| 2seiz
|
|
28 | 2seiz
| 2seiz
|
|
29 | 2seiz
| 2seiz
|
|
30 | 2seiz
| 2seiz
|
|
31 | 2seiz
| 2seiz
|
|
32 | 2seiz
| 2seiz
|
|
33 | 2seiz
| 2seiz
|
|
34 | 2seiz
| 2seiz
|
|
35 | 2seiz
| 2seiz
|
|
36 | 2seiz
| 2seiz
|
|
37 | 2seiz
| 2seiz
|
|
38 | 2seiz
| 2seiz
|
|
39 | 2seiz
| 2seiz
|
|
40 | 2seiz
| 2seiz
|
|
41 | 2seiz
| 2seiz
|
|
42 | 2seiz
| 2seiz
|
|
43 | 2seiz
| 2seiz
|
|
44 | 2seiz
| 2seiz
|
|
45 | 2seiz
| 2seiz
|
|
46 | 2seiz
| 2seiz
|
|
47 | 2seiz
| 2seiz
|
|
48 | 2seiz
| 2seiz
|
|
49 | 2seiz
| 2seiz
|
|
50 | 2seiz
| 2seiz
|
|
51 | 2seiz
| 2seiz
|
|
52 | 2seiz
| 2seiz
|
|
53 | 2seiz
| 2seiz
|
|
54 | 2seiz
| 2seiz
|
|
55 | 2seiz
| 2seiz
|
|
56 | 2seiz
| 2seiz
|
|
57 | 2seiz
| 2seiz
|
|
58 | 2seiz
| 2seiz
|
|
59 | 2seiz
| 2seiz
|
|
60 | 0No Event
| 0No Event
|
|
61 | 0No Event
| 0No Event
|
|
62 | 0No Event
| 0No Event
|
|
63 | 0No Event
| 0No Event
|
|
64 | 0No Event
| 0No Event
|
|
65 | 0No Event
| 0No Event
|
|
66 | 0No Event
| 0No Event
|
|
67 | 0No Event
| 0No Event
|
|
68 | 0No Event
| 0No Event
|
|
69 | 0No Event
| 0No Event
|
|
70 | 0No Event
| 0No Event
|
|
71 | 0No Event
| 0No Event
|
|
72 | 0No Event
| 0No Event
|
|
73 | 0No Event
| 0No Event
|
|
0 | 0No Event
| 0No Event
|
|
1 | 0No Event
| 0No Event
|
|
2 | 2seiz
| 2seiz
|
|
3 | 2seiz
| 2seiz
|
|
4 | 2seiz
| 2seiz
|
|
5 | 2seiz
| 2seiz
|
|
6 | 2seiz
| 2seiz
|
|
7 | 2seiz
| 2seiz
|
|
8 | 2seiz
| 2seiz
|
|
9 | 2seiz
| 2seiz
|
|
10 | 2seiz
| 2seiz
|
|
11 | 2seiz
| 2seiz
|
|
12 | 2seiz
| 2seiz
|
|
13 | 2seiz
| 2seiz
|
|
14 | 2seiz
| 2seiz
|
|
15 | 2seiz
| 2seiz
|
|
16 | 2seiz
| 2seiz
|
|
17 | 2seiz
| 2seiz
|
|
18 | 2seiz
| 2seiz
|
|
19 | 2seiz
| 2seiz
|
|
20 | 2seiz
| 2seiz
|
|
21 | 2seiz
| 2seiz
|
|
22 | 2seiz
| 2seiz
|
|
23 | 2seiz
| 2seiz
|
|
24 | 2seiz
| 2seiz
|
|
25 | 2seiz
| 2seiz
|
End of preview. Expand
in Dataset Viewer.
Dataset Card for "seizure_eeg_train"
from datasets import load_dataset
dataset_name = "JLB-JLB/seizure_eeg_train"
dataset = load_dataset(
dataset_name,
split="train",
)
display(dataset)
# create train and test/val split
train_testvalid = dataset.train_test_split(test_size=0.1, shuffle=True, seed=12071998)
display(train_testvalid)
# get the number of different labels in the train, test and validation set
display(train_testvalid["train"].features["label"])
display(train_testvalid["test"].features["label"].num_classes)
# check how many labels/number of classes
num_classes = len(set(train_testvalid["train"]['label']))
labels = train_testvalid["train"].features['label']
print(um_classes, labels)
display(train_testvalid["train"][0]['image'])
- Downloads last month
- 1,011