code
stringlengths
52
7.75k
docs
stringlengths
1
5.85k
def clear_all(): _TABLES.clear() _COLUMNS.clear() _STEPS.clear() _BROADCASTS.clear() _INJECTABLES.clear() _TABLE_CACHE.clear() _COLUMN_CACHE.clear() _INJECTABLE_CACHE.clear() for m in _MEMOIZED.values(): m.value.clear_cached() _MEMOIZED.clear() logger.debug('pipeline state cleared')
Clear any and all stored state from Orca.
def clear_cache(scope=None): if not scope: _TABLE_CACHE.clear() _COLUMN_CACHE.clear() _INJECTABLE_CACHE.clear() for m in _MEMOIZED.values(): m.value.clear_cached() logger.debug('pipeline cache cleared') else: for d in (_TABLE_CACHE, _COLUMN_CACHE, _INJECTABLE_CACHE): items = tz.valfilter(lambda x: x.scope == scope, d) for k in items: del d[k] for m in tz.filter(lambda x: x.scope == scope, _MEMOIZED.values()): m.value.clear_cached() logger.debug('cleared cached values with scope {!r}'.format(scope))
Clear all cached data. Parameters ---------- scope : {None, 'step', 'iteration', 'forever'}, optional Clear cached values with a given scope. By default all cached values are removed.
def _collect_variables(names, expressions=None): # Map registered variable labels to expressions. if not expressions: expressions = [] offset = len(names) - len(expressions) labels_map = dict(tz.concatv( tz.compatibility.zip(names[:offset], names[:offset]), tz.compatibility.zip(names[offset:], expressions))) all_variables = tz.merge(_INJECTABLES, _TABLES) variables = {} for label, expression in labels_map.items(): # In the future, more registered variable expressions could be # supported. Currently supports names of registered variables # and references to table columns. if '.' in expression: # Registered variable expression refers to column. table_name, column_name = expression.split('.') table = get_table(table_name) variables[label] = table.get_column(column_name) else: thing = all_variables[expression] if isinstance(thing, (_InjectableFuncWrapper, TableFuncWrapper)): # Registered variable object is function. variables[label] = thing() else: variables[label] = thing return variables
Map labels and expressions to registered variables. Handles argument matching. Example: _collect_variables(names=['zones', 'zone_id'], expressions=['parcels.zone_id']) Would return a dict representing: {'parcels': <DataFrameWrapper for zones>, 'zone_id': <pandas.Series for parcels.zone_id>} Parameters ---------- names : list of str List of registered variable names and/or labels. If mixing names and labels, labels must come at the end. expressions : list of str, optional List of registered variable expressions for labels defined at end of `names`. Length must match the number of labels. Returns ------- variables : dict Keys match `names`. Values correspond to registered variables, which may be wrappers or evaluated functions if appropriate.
def add_table( table_name, table, cache=False, cache_scope=_CS_FOREVER, copy_col=True): if isinstance(table, Callable): table = TableFuncWrapper(table_name, table, cache=cache, cache_scope=cache_scope, copy_col=copy_col) else: table = DataFrameWrapper(table_name, table, copy_col=copy_col) # clear any cached data from a previously registered table table.clear_cached() logger.debug('registering table {!r}'.format(table_name)) _TABLES[table_name] = table return table
Register a table with Orca. Parameters ---------- table_name : str Should be globally unique to this table. table : pandas.DataFrame or function If a function, the function should return a DataFrame. The function's argument names and keyword argument values will be matched to registered variables when the function needs to be evaluated by Orca. cache : bool, optional Whether to cache the results of a provided callable. Does not apply if `table` is a DataFrame. cache_scope : {'step', 'iteration', 'forever'}, optional Scope for which to cache data. Default is to cache forever (or until manually cleared). 'iteration' caches data for each complete iteration of the pipeline, 'step' caches data for a single step of the pipeline. copy_col : bool, optional Whether to return copies when evaluating columns. Returns ------- wrapped : `DataFrameWrapper` or `TableFuncWrapper`
def table( table_name=None, cache=False, cache_scope=_CS_FOREVER, copy_col=True): def decorator(func): if table_name: name = table_name else: name = func.__name__ add_table( name, func, cache=cache, cache_scope=cache_scope, copy_col=copy_col) return func return decorator
Decorates functions that return DataFrames. Decorator version of `add_table`. Table name defaults to name of function. The function's argument names and keyword argument values will be matched to registered variables when the function needs to be evaluated by Orca. The argument name "iter_var" may be used to have the current iteration variable injected.
def get_table(table_name): table = get_raw_table(table_name) if isinstance(table, TableFuncWrapper): table = table() return table
Get a registered table. Decorated functions will be converted to `DataFrameWrapper`. Parameters ---------- table_name : str Returns ------- table : `DataFrameWrapper`
def table_type(table_name): table = get_raw_table(table_name) if isinstance(table, DataFrameWrapper): return 'dataframe' elif isinstance(table, TableFuncWrapper): return 'function'
Returns the type of a registered table. The type can be either "dataframe" or "function". Parameters ---------- table_name : str Returns ------- table_type : {'dataframe', 'function'}
def add_column( table_name, column_name, column, cache=False, cache_scope=_CS_FOREVER): if isinstance(column, Callable): column = \ _ColumnFuncWrapper( table_name, column_name, column, cache=cache, cache_scope=cache_scope) else: column = _SeriesWrapper(table_name, column_name, column) # clear any cached data from a previously registered column column.clear_cached() logger.debug('registering column {!r} on table {!r}'.format( column_name, table_name)) _COLUMNS[(table_name, column_name)] = column return column
Add a new column to a table from a Series or callable. Parameters ---------- table_name : str Table with which the column will be associated. column_name : str Name for the column. column : pandas.Series or callable Series should have an index matching the table to which it is being added. If a callable, the function's argument names and keyword argument values will be matched to registered variables when the function needs to be evaluated by Orca. The function should return a Series. cache : bool, optional Whether to cache the results of a provided callable. Does not apply if `column` is a Series. cache_scope : {'step', 'iteration', 'forever'}, optional Scope for which to cache data. Default is to cache forever (or until manually cleared). 'iteration' caches data for each complete iteration of the pipeline, 'step' caches data for a single step of the pipeline.
def column(table_name, column_name=None, cache=False, cache_scope=_CS_FOREVER): def decorator(func): if column_name: name = column_name else: name = func.__name__ add_column( table_name, name, func, cache=cache, cache_scope=cache_scope) return func return decorator
Decorates functions that return a Series. Decorator version of `add_column`. Series index must match the named table. Column name defaults to name of function. The function's argument names and keyword argument values will be matched to registered variables when the function needs to be evaluated by Orca. The argument name "iter_var" may be used to have the current iteration variable injected. The index of the returned Series must match the named table.
def _columns_for_table(table_name): return {cname: col for (tname, cname), col in _COLUMNS.items() if tname == table_name}
Return all of the columns registered for a given table. Parameters ---------- table_name : str Returns ------- columns : dict of column wrappers Keys will be column names.
def get_raw_column(table_name, column_name): try: return _COLUMNS[(table_name, column_name)] except KeyError: raise KeyError('column {!r} not found for table {!r}'.format( column_name, table_name))
Get a wrapped, registered column. This function cannot return columns that are part of wrapped DataFrames, it's only for columns registered directly through Orca. Parameters ---------- table_name : str column_name : str Returns ------- wrapped : _SeriesWrapper or _ColumnFuncWrapper
def _memoize_function(f, name, cache_scope=_CS_FOREVER): cache = {} @wraps(f) def wrapper(*args, **kwargs): try: cache_key = ( args or None, frozenset(kwargs.items()) if kwargs else None) in_cache = cache_key in cache except TypeError: raise TypeError( 'function arguments must be hashable for memoization') if _CACHING and in_cache: return cache[cache_key] else: result = f(*args, **kwargs) cache[cache_key] = result return result wrapper.__wrapped__ = f wrapper.cache = cache wrapper.clear_cached = lambda: cache.clear() _MEMOIZED[name] = CacheItem(name, wrapper, cache_scope) return wrapper
Wraps a function for memoization and ties it's cache into the Orca cacheing system. Parameters ---------- f : function name : str Name of injectable. cache_scope : {'step', 'iteration', 'forever'}, optional Scope for which to cache data. Default is to cache forever (or until manually cleared). 'iteration' caches data for each complete iteration of the pipeline, 'step' caches data for a single step of the pipeline.
def add_injectable( name, value, autocall=True, cache=False, cache_scope=_CS_FOREVER, memoize=False): if isinstance(value, Callable): if autocall: value = _InjectableFuncWrapper( name, value, cache=cache, cache_scope=cache_scope) # clear any cached data from a previously registered value value.clear_cached() elif not autocall and memoize: value = _memoize_function(value, name, cache_scope=cache_scope) logger.debug('registering injectable {!r}'.format(name)) _INJECTABLES[name] = value
Add a value that will be injected into other functions. Parameters ---------- name : str value If a callable and `autocall` is True then the function's argument names and keyword argument values will be matched to registered variables when the function needs to be evaluated by Orca. The return value will be passed to any functions using this injectable. In all other cases, `value` will be passed through untouched. autocall : bool, optional Set to True to have injectable functions automatically called (with argument matching) and the result injected instead of the function itself. cache : bool, optional Whether to cache the return value of an injectable function. Only applies when `value` is a callable and `autocall` is True. cache_scope : {'step', 'iteration', 'forever'}, optional Scope for which to cache data. Default is to cache forever (or until manually cleared). 'iteration' caches data for each complete iteration of the pipeline, 'step' caches data for a single step of the pipeline. memoize : bool, optional If autocall is False it is still possible to cache function results by setting this flag to True. Cached values are stored in a dictionary keyed by argument values, so the argument values must be hashable. Memoized functions have their caches cleared according to the same rules as universal caching.
def injectable( name=None, autocall=True, cache=False, cache_scope=_CS_FOREVER, memoize=False): def decorator(func): if name: n = name else: n = func.__name__ add_injectable( n, func, autocall=autocall, cache=cache, cache_scope=cache_scope, memoize=memoize) return func return decorator
Decorates functions that will be injected into other functions. Decorator version of `add_injectable`. Name defaults to name of function. The function's argument names and keyword argument values will be matched to registered variables when the function needs to be evaluated by Orca. The argument name "iter_var" may be used to have the current iteration variable injected.
def get_injectable(name): i = get_raw_injectable(name) return i() if isinstance(i, _InjectableFuncWrapper) else i
Get an injectable by name. *Does not* evaluate wrapped functions. Parameters ---------- name : str Returns ------- injectable Original value or evaluated value of an _InjectableFuncWrapper.
def get_injectable_func_source_data(name): if injectable_type(name) != 'function': raise ValueError('injectable {!r} is not a function'.format(name)) inj = get_raw_injectable(name) if isinstance(inj, _InjectableFuncWrapper): return utils.func_source_data(inj._func) elif hasattr(inj, '__wrapped__'): return utils.func_source_data(inj.__wrapped__) else: return utils.func_source_data(inj)
Return data about an injectable function's source, including file name, line number, and source code. Parameters ---------- name : str Returns ------- filename : str lineno : int The line number on which the function starts. source : str
def add_step(step_name, func): if isinstance(func, Callable): logger.debug('registering step {!r}'.format(step_name)) _STEPS[step_name] = _StepFuncWrapper(step_name, func) else: raise TypeError('func must be a callable')
Add a step function to Orca. The function's argument names and keyword argument values will be matched to registered variables when the function needs to be evaluated by Orca. The argument name "iter_var" may be used to have the current iteration variable injected. Parameters ---------- step_name : str func : callable
def step(step_name=None): def decorator(func): if step_name: name = step_name else: name = func.__name__ add_step(name, func) return func return decorator
Decorates functions that will be called by the `run` function. Decorator version of `add_step`. step name defaults to name of function. The function's argument names and keyword argument values will be matched to registered variables when the function needs to be evaluated by Orca. The argument name "iter_var" may be used to have the current iteration variable injected.
def broadcast(cast, onto, cast_on=None, onto_on=None, cast_index=False, onto_index=False): logger.debug( 'registering broadcast of table {!r} onto {!r}'.format(cast, onto)) _BROADCASTS[(cast, onto)] = \ Broadcast(cast, onto, cast_on, onto_on, cast_index, onto_index)
Register a rule for merging two tables by broadcasting one onto the other. Parameters ---------- cast, onto : str Names of registered tables. cast_on, onto_on : str, optional Column names used for merge, equivalent of ``left_on``/``right_on`` parameters of pandas.merge. cast_index, onto_index : bool, optional Whether to use table indexes for merge. Equivalent of ``left_index``/``right_index`` parameters of pandas.merge.
def _get_broadcasts(tables): tables = set(tables) casts = tz.keyfilter( lambda x: x[0] in tables and x[1] in tables, _BROADCASTS) if tables - set(tz.concat(casts.keys())): raise ValueError('Not enough links to merge all tables.') return casts
Get the broadcasts associated with a set of tables. Parameters ---------- tables : sequence of str Table names for which broadcasts have been registered. Returns ------- casts : dict of `Broadcast` Keys are tuples of strings like (cast_name, onto_name).
def get_broadcast(cast_name, onto_name): if is_broadcast(cast_name, onto_name): return _BROADCASTS[(cast_name, onto_name)] else: raise KeyError( 'no rule found for broadcasting {!r} onto {!r}'.format( cast_name, onto_name))
Get a single broadcast. Broadcasts are stored data about how to do a Pandas join. A Broadcast object is a namedtuple with these attributes: - cast: the name of the table being broadcast - onto: the name of the table onto which "cast" is broadcast - cast_on: The optional name of a column on which to join. None if the table index will be used instead. - onto_on: The optional name of a column on which to join. None if the table index will be used instead. - cast_index: True if the table index should be used for the join. - onto_index: True if the table index should be used for the join. Parameters ---------- cast_name : str The name of the table being braodcast. onto_name : str The name of the table onto which `cast_name` is broadcast. Returns ------- broadcast : Broadcast
def _all_reachable_tables(t): for k, v in t.items(): for tname in _all_reachable_tables(v): yield tname yield k
A generator that provides all the names of tables that can be reached via merges starting at the given target table.
def _recursive_getitem(d, key): if key in d: return d else: for v in d.values(): return _recursive_getitem(v, key) else: raise KeyError('Key not found: {}'.format(key))
Descend into a dict of dicts to return the one that contains a given key. Every value in the dict must be another dict.
def _dict_value_to_pairs(d): d = d[tz.first(d)] for k, v in d.items(): yield {k: v}
Takes the first value of a dictionary (which it self should be a dictionary) and turns it into a series of {key: value} dicts. For example, _dict_value_to_pairs({'c': {'a': 1, 'b': 2}}) will yield {'a': 1} and {'b': 2}.
def _next_merge(merge_node): if all(_is_leaf_node(d) for d in _dict_value_to_pairs(merge_node)): return merge_node else: for d in tz.remove(_is_leaf_node, _dict_value_to_pairs(merge_node)): return _next_merge(d) else: raise OrcaError('No node found for next merge.')
Gets a node that has only leaf nodes below it. This table and the ones below are ready to be merged to make a new leaf node.
def get_step_table_names(steps): table_names = set() for s in steps: table_names |= get_step(s)._tables_used() return list(table_names)
Returns a list of table names injected into the provided steps. Parameters ---------- steps: list of str Steps to gather table inputs from. Returns ------- list of str
def write_tables(fname, table_names=None, prefix=None, compress=False, local=False): if table_names is None: table_names = list_tables() tables = (get_table(t) for t in table_names) key_template = '{}/{{}}'.format(prefix) if prefix is not None else '{}' # set compression options to zlib level-1 if compress arg is True complib = compress and 'zlib' or None complevel = compress and 1 or 0 with pd.HDFStore(fname, mode='a', complib=complib, complevel=complevel) as store: for t in tables: # if local arg is True, store only local columns columns = None if local is True: columns = t.local_columns store[key_template.format(t.name)] = t.to_frame(columns=columns)
Writes tables to a pandas.HDFStore file. Parameters ---------- fname : str File name for HDFStore. Will be opened in append mode and closed at the end of this function. table_names: list of str, optional, default None List of tables to write. If None, all registered tables will be written. prefix: str If not None, used to prefix the output table names so that multiple iterations can go in the same file. compress: boolean Whether to compress output file using standard HDF5-readable zlib compression, default False.
def injectables(**kwargs): global _INJECTABLES original = _INJECTABLES.copy() _INJECTABLES.update(kwargs) yield _INJECTABLES = original
Temporarily add injectables to the pipeline environment. Takes only keyword arguments. Injectables will be returned to their original state when the context manager exits.
def temporary_tables(**kwargs): global _TABLES original = _TABLES.copy() for k, v in kwargs.items(): if not isinstance(v, pd.DataFrame): raise ValueError('tables only accepts DataFrames') add_table(k, v) yield _TABLES = original
Temporarily set DataFrames as registered tables. Tables will be returned to their original state when the context manager exits. Caching is not enabled for tables registered via this function.
def eval_variable(name, **kwargs): with injectables(**kwargs): vars = _collect_variables([name], [name]) return vars[name]
Execute a single variable function registered with Orca and return the result. Any keyword arguments are temporarily set as injectables. This gives the value as would be injected into a function. Parameters ---------- name : str Name of variable to evaluate. Use variable expressions to specify columns. Returns ------- object For injectables and columns this directly returns whatever object is returned by the registered function. For tables this returns a DataFrameWrapper as if the table had been injected into a function.
def to_frame(self, columns=None): extra_cols = _columns_for_table(self.name) if columns is not None: columns = [columns] if isinstance(columns, str) else columns columns = set(columns) set_extra_cols = set(extra_cols) local_cols = set(self.local.columns) & columns - set_extra_cols df = self.local[list(local_cols)].copy() extra_cols = {k: extra_cols[k] for k in (columns & set_extra_cols)} else: df = self.local.copy() with log_start_finish( 'computing {!r} columns for table {!r}'.format( len(extra_cols), self.name), logger): for name, col in extra_cols.items(): with log_start_finish( 'computing column {!r} for table {!r}'.format( name, self.name), logger): df[name] = col() return df
Make a DataFrame with the given columns. Will always return a copy of the underlying table. Parameters ---------- columns : sequence or string, optional Sequence of the column names desired in the DataFrame. A string can also be passed if only one column is desired. If None all columns are returned, including registered columns. Returns ------- frame : pandas.DataFrame
def update_col(self, column_name, series): logger.debug('updating column {!r} in table {!r}'.format( column_name, self.name)) self.local[column_name] = series
Add or replace a column in the underlying DataFrame. Parameters ---------- column_name : str Column to add or replace. series : pandas.Series or sequence Column data.
def get_column(self, column_name): with log_start_finish( 'getting single column {!r} from table {!r}'.format( column_name, self.name), logger): extra_cols = _columns_for_table(self.name) if column_name in extra_cols: with log_start_finish( 'computing column {!r} for table {!r}'.format( column_name, self.name), logger): column = extra_cols[column_name]() else: column = self.local[column_name] if self.copy_col: return column.copy() else: return column
Returns a column as a Series. Parameters ---------- column_name : str Returns ------- column : pandas.Series
def column_type(self, column_name): extra_cols = list_columns_for_table(self.name) if column_name in extra_cols: col = _COLUMNS[(self.name, column_name)] if isinstance(col, _SeriesWrapper): return 'series' elif isinstance(col, _ColumnFuncWrapper): return 'function' elif column_name in self.local_columns: return 'local' raise KeyError('column {!r} not found'.format(column_name))
Report column type as one of 'local', 'series', or 'function'. Parameters ---------- column_name : str Returns ------- col_type : {'local', 'series', 'function'} 'local' means that the column is part of the registered table, 'series' means the column is a registered Pandas Series, and 'function' means the column is a registered function providing a Pandas Series.
def update_col_from_series(self, column_name, series, cast=False): logger.debug('updating column {!r} in table {!r}'.format( column_name, self.name)) col_dtype = self.local[column_name].dtype if series.dtype != col_dtype: if cast: series = series.astype(col_dtype) else: err_msg = "Data type mismatch, existing:{}, update:{}" err_msg = err_msg.format(col_dtype, series.dtype) raise ValueError(err_msg) self.local.loc[series.index, column_name] = series
Update existing values in a column from another series. Index values must match in both column and series. Optionally casts data type to match the existing column. Parameters --------------- column_name : str series : panas.Series cast: bool, optional, default False
def clear_cached(self): _TABLE_CACHE.pop(self.name, None) for col in _columns_for_table(self.name).values(): col.clear_cached() logger.debug('cleared cached columns for table {!r}'.format(self.name))
Remove cached results from this table's computed columns.
def local_columns(self): if self._columns: return self._columns else: self._call_func() return self._columns
Only the columns contained in the DataFrame returned by the wrapped function. (No registered columns included.)
def _call_func(self): if _CACHING and self.cache and self.name in _TABLE_CACHE: logger.debug('returning table {!r} from cache'.format(self.name)) return _TABLE_CACHE[self.name].value with log_start_finish( 'call function to get frame for table {!r}'.format( self.name), logger): kwargs = _collect_variables(names=self._argspec.args, expressions=self._argspec.defaults) frame = self._func(**kwargs) self._columns = list(frame.columns) self._index = frame.index self._len = len(frame) wrapped = DataFrameWrapper(self.name, frame, copy_col=self.copy_col) if self.cache: _TABLE_CACHE[self.name] = CacheItem( self.name, wrapped, self.cache_scope) return wrapped
Call the wrapped function and return the result wrapped by DataFrameWrapper. Also updates attributes like columns, index, and length.
def get_column(self, column_name): frame = self._call_func() return DataFrameWrapper(self.name, frame, copy_col=self.copy_col).get_column(column_name)
Returns a column as a Series. Parameters ---------- column_name : str Returns ------- column : pandas.Series
def clear_cached(self): x = _COLUMN_CACHE.pop((self.table_name, self.name), None) if x is not None: logger.debug( 'cleared cached value for column {!r} in table {!r}'.format( self.name, self.table_name))
Remove any cached result of this column.
def clear_cached(self): x = _INJECTABLE_CACHE.pop(self.name, None) if x: logger.debug( 'injectable {!r} removed from cache'.format(self.name))
Clear a cached result for this injectable.
def _tables_used(self): args = list(self._argspec.args) if self._argspec.defaults: default_args = list(self._argspec.defaults) else: default_args = [] # Combine names from argument names and argument default values. names = args[:len(args) - len(default_args)] + default_args tables = set() for name in names: parent_name = name.split('.')[0] if is_table(parent_name): tables.add(parent_name) return tables
Tables injected into the step. Returns ------- tables : set of str
def qbe_tree(graph, nodes, root=None): if root: start = root else: index = random.randint(0, len(nodes) - 1) start = nodes[index] # A queue to BFS instead DFS to_visit = deque() cnodes = copy(nodes) visited = set() # Format is (parent, parent_edge, neighbor, neighbor_field) to_visit.append((None, None, start, None)) tree = {} while len(to_visit) != 0 and nodes: parent, parent_edge, v, v_edge = to_visit.pop() # Prune if v in nodes: nodes.remove(v) node = graph[v] if v not in visited and len(node) > 1: visited.add(v) # Preorder process if all((parent, parent_edge, v, v_edge)): if parent not in tree: tree[parent] = [] if (parent_edge, v, v_edge) not in tree[parent]: tree[parent].append((parent_edge, v, v_edge)) if v not in tree: tree[v] = [] if (v_edge, parent, parent_edge) not in tree[v]: tree[v].append((v_edge, parent, parent_edge)) # Iteration for node_edge, neighbor, neighbor_edge in node: value = (v, node_edge, neighbor, neighbor_edge) to_visit.append(value) remove_leafs(tree, cnodes) return tree, (len(nodes) == 0)
Given a graph, nodes to explore and an optinal root, do a breadth-first search in order to return the tree.
def combine(items, k=None): length_items = len(items) lengths = [len(i) for i in items] length = reduce(lambda x, y: x * y, lengths) repeats = [reduce(lambda x, y: x * y, lengths[i:]) for i in range(1, length_items)] + [1] if k is not None: k = k % length # Python division by default is integer division (~ floor(a/b)) indices = [old_div((k % (lengths[i] * repeats[i])), repeats[i]) for i in range(length_items)] return [items[i][indices[i]] for i in range(length_items)] else: matrix = [] for i, item in enumerate(items): row = [] for subset in item: row.extend([subset] * repeats[i]) times = old_div(length, len(row)) matrix.append(row * times) # Transpose the matrix or return the columns instead rows return list(zip(*matrix))
Create a matrix in wich each row is a tuple containing one of solutions or solution k-esima.
def pickle_encode(session_dict): "Returns the given session dictionary pickled and encoded as a string." pickled = pickle.dumps(session_dict, pickle.HIGHEST_PROTOCOL) return base64.encodestring(pickled + get_query_hash(pickled).encode()f pickle_encode(session_dict): "Returns the given session dictionary pickled and encoded as a string." pickled = pickle.dumps(session_dict, pickle.HIGHEST_PROTOCOL) return base64.encodestring(pickled + get_query_hash(pickled).encode())
Returns the given session dictionary pickled and encoded as a string.
def func_source_data(func): filename = inspect.getsourcefile(func) lineno = inspect.getsourcelines(func)[1] source = inspect.getsource(func) return filename, lineno, source
Return data about a function source, including file name, line number, and source code. Parameters ---------- func : object May be anything support by the inspect module, such as a function, method, or class. Returns ------- filename : str lineno : int The line number on which the function starts. source : str
def clean(self): if any(self.errors): # Don't bother validating the formset unless each form is valid on # its own return (selects, aliases, froms, wheres, sorts, groups_by, params) = self.get_query_parts() if not selects: validation_message = _(u"At least you must check a row to get.") raise forms.ValidationError(validation_message) self._selects = selects self._aliases = aliases self._froms = froms self._wheres = wheres self._sorts = sorts self._groups_by = groups_by self._params = params
Checks that there is almost one field to select
def get_results(self, limit=None, offset=None, query=None, admin_name=None, row_number=False): add_extra_ids = (admin_name is not None) if not query: sql = self.get_raw_query(limit=limit, offset=offset, add_extra_ids=add_extra_ids) else: sql = query if settings.DEBUG: print(sql) cursor = self._db_connection.cursor() cursor.execute(sql, tuple(self._params)) query_results = cursor.fetchall() if admin_name and not self._groups_by: selects = self._get_selects_with_extra_ids() results = [] try: offset = int(offset) except ValueError: offset = 0 for r, row in enumerate(query_results): i = 0 l = len(row) if row_number: result = [(r + offset + 1, u"#row%s" % (r + offset + 1))] else: result = [] while i < l: appmodel, field = selects[i].split(".") appmodel = self._unquote_name(appmodel) field = self._unquote_name(field) try: if appmodel in self._models: _model = self._models[appmodel] _appmodel = u"%s_%s" % (_model._meta.app_label, _model._meta.model_name) else: _appmodel = appmodel admin_url = reverse("%s:%s_change" % ( admin_name, _appmodel), args=[row[i + 1]] ) except NoReverseMatch: admin_url = None result.append((row[i], admin_url)) i += 2 results.append(result) return results else: if row_number: results = [] for r, row in enumerate(query_results): result = [r + 1] for cell in row: result.append(cell) results.append(result) return results else: return query_results
Fetch all results after perform SQL query and
def parse_content_type(content_type): if '; charset=' in content_type: return tuple(content_type.split('; charset=')) else: if 'text' in content_type: encoding = 'ISO-8859-1' else: try: format = formats.find_by_content_type(content_type) except formats.UnknownFormat: encoding = 'ISO-8859-1' else: encoding = format.default_encoding or 'ISO-8859-1' return (content_type, encoding)
Return a tuple of content type and charset. :param content_type: A string describing a content type.
def parse_http_accept_header(header): components = [item.strip() for item in header.split(',')] l = [] for component in components: if ';' in component: subcomponents = [item.strip() for item in component.split(';')] l.append( ( subcomponents[0], # eg. 'text/html' subcomponents[1][2:] # eg. 'q=0.9' ) ) else: l.append((component, '1')) l.sort( key = lambda i: i[1], reverse = True ) content_types = [] for i in l: content_types.append(i[0]) return content_types
Return a list of content types listed in the HTTP Accept header ordered by quality. :param header: A string describing the contents of the HTTP Accept header.
def parse_multipart_data(request): return MultiPartParser( META=request.META, input_data=StringIO(request.body), upload_handlers=request.upload_handlers, encoding=request.encoding ).parse()
Parse a request with multipart data. :param request: A HttpRequest instance.
def override_supported_formats(formats): def decorator(function): @wraps(function) def wrapper(self, *args, **kwargs): self.supported_formats = formats return function(self, *args, **kwargs) return wrapper return decorator
Override the views class' supported formats for the decorated function. Arguments: formats -- A list of strings describing formats, e.g. ``['html', 'json']``.
def route(regex, method, name): def decorator(function): function.route = routes.route( regex = regex, view = function.__name__, method = method, name = name ) @wraps(function) def wrapper(self, *args, **kwargs): return function(self, *args, **kwargs) return wrapper return decorator
Route the decorated view. :param regex: A string describing a regular expression to which the request path will be matched. :param method: A string describing the HTTP method that this view accepts. :param name: A string describing the name of the URL pattern. ``regex`` may also be a lambda that accepts the parent resource's ``prefix`` argument and returns a string describing a regular expression to which the request path will be matched. ``name`` may also be a lambda that accepts the parent resource's ``views`` argument and returns a string describing the name of the URL pattern.
def before(method_name): def decorator(function): @wraps(function) def wrapper(self, *args, **kwargs): returns = getattr(self, method_name)(*args, **kwargs) if returns is None: return function(self, *args, **kwargs) else: if isinstance(returns, HttpResponse): return returns else: return function(self, *returns) return wrapper return decorator
Run the given method prior to the decorated view. If you return anything besides ``None`` from the given method, its return values will replace the arguments of the decorated view. If you return an instance of ``HttpResponse`` from the given method, Respite will return it immediately without delegating the request to the decorated view. Example usage:: class ArticleViews(Views): @before('_load') def show(self, request, article): return self._render( request = request, template = 'show', context = { 'article': article } ) def _load(self, request, id): try: return request, Article.objects.get(id=id) except Article.DoesNotExist: return self._error(request, 404, message='The article could not be found.') :param method: A string describing a class method.
def index(self, request): objects = self.model.objects.all() return self._render( request = request, template = 'index', context = { cc2us(pluralize(self.model.__name__)): objects, }, status = 200 )
Render a list of objects.
def new(self, request): form = (self.form or generate_form(self.model))() return self._render( request = request, template = 'new', context = { 'form': form }, status = 200 )
Render a form to create a new object.
def create(self, request): form = (self.form or generate_form(self.model))(request.POST) if form.is_valid(): object = form.save() return self._render( request = request, template = 'show', context = { cc2us(self.model.__name__): object }, status = 201 ) else: return self._render( request = request, template = 'new', context = { 'form': form }, status = 400 )
Create a new object.
def edit(self, request, id): try: object = self.model.objects.get(id=id) except self.model.DoesNotExist: return self._render( request = request, template = '404', context = { 'error': 'The %s could not be found.' % self.model.__name__.lower() }, status = 404, prefix_template_path = False ) form = (self.form or generate_form(self.model))(instance=object) # Add "_method" field to override request method to PUT form.fields['_method'] = CharField(required=True, initial='PUT', widget=HiddenInput) return self._render( request = request, template = 'edit', context = { cc2us(self.model.__name__): object, 'form': form }, status = 200 )
Render a form to edit an object.
def update(self, request, id): try: object = self.model.objects.get(id=id) except self.model.DoesNotExist: return self._render( request = request, template = '404', context = { 'error': 'The %s could not be found.' % self.model.__name__.lower() }, status = 404, prefix_template_path = False ) fields = [] for field in request.PATCH: try: self.model._meta.get_field_by_name(field) except FieldDoesNotExist: continue else: fields.append(field) Form = generate_form( model = self.model, form = self.form, fields = fields ) form = Form(request.PATCH, instance=object) if form.is_valid(): object = form.save() return self.show(request, id) else: return self._render( request = request, template = 'edit', context = { 'form': form }, status = 400 )
Update an object.
def replace(self, request, id): try: object = self.model.objects.get(id=id) except self.model.DoesNotExist: return self._render( request = request, template = '404', context = { 'error': 'The %s could not be found.' % self.model.__name__.lower() }, status = 404, prefix_template_path = False ) form = (self.form or generate_form(self.model))(request.PUT, instance=object) if form.is_valid(): object = form.save() return self.show(request, id) else: return self._render( request = request, template = 'edit', context = { 'form': form }, status = 400 )
Replace an object.
def destroy(self, request, id): try: object = self.model.objects.get(id=id) object.delete() except self.model.DoesNotExist: return self._render( request = request, template = '404', context = { 'error': 'The %s could not be found.' % self.model.__name__.lower() }, status = 404, prefix_template_path = False ) return self._render( request = request, template = 'destroy', status = 200 )
Delete an object.
def get_search_fields(cls): sfdict = {} for klass in tuple(cls.__bases__) + (cls, ): if hasattr(klass, 'search_fields'): sfdict.update(klass.search_fields) return sfdict
Returns search fields in sfdict
def find(identifier): for format in FORMATS: if identifier in [format.name, format.acronym, format.extension]: return format raise UnknownFormat('No format found with name, acronym or extension "%s"' % identifier)
Find and return a format by name, acronym or extension. :param identifier: A string describing the format.
def find_by_name(name): for format in FORMATS: if name == format.name: return format raise UnknownFormat('No format found with name "%s"' % name)
Find and return a format by name. :param name: A string describing the name of the format.
def find_by_extension(extension): for format in FORMATS: if extension in format.extensions: return format raise UnknownFormat('No format found with extension "%s"' % extension)
Find and return a format by extension. :param extension: A string describing the extension of the format.
def find_by_content_type(content_type): for format in FORMATS: if content_type in format.content_types: return format raise UnknownFormat('No format found with content type "%s"' % content_type)
Find and return a format by content type. :param content_type: A string describing the internet media type of the format.
def options(self, request, map, *args, **kwargs): options = {} for method, function in map.items(): options[method] = function.__doc__ return self._render( request = request, template = 'options', context = { 'options': options }, status = 200, headers = { 'Allow': ', '.join(options.keys()) } )
List communication options.
def _error(self, request, status, headers={}, prefix_template_path=False, **kwargs): return self._render( request = request, template = str(status), status = status, context = { 'error': kwargs }, headers = headers, prefix_template_path = prefix_template_path )
Convenience method to render an error response. The template is inferred from the status code. :param request: A django.http.HttpRequest instance. :param status: An integer describing the HTTP status code to respond with. :param headers: A dictionary describing HTTP headers. :param prefix_template_path: A boolean describing whether to prefix the template with the view's template path. :param kwargs: Any additional keyword arguments to inject. These are wrapped under ``error`` for convenience. For implementation details, see ``render``
def find(format): try: serializer = SERIALIZERS[format] except KeyError: raise UnknownSerializer('No serializer found for %s' % format.acronym) return serializer
Find and return a serializer for the given format. Arguments: format -- A Format instance.
def get_form_kwargs(self): update_data ={} sfdict = self.filter_class.get_search_fields() for fieldname in sfdict: try: has_multiple = sfdict[fieldname].get('multiple', False) except: has_multiple = False if has_multiple: value = self.request.GET.getlist(fieldname, []) else: value = self.request.GET.get(fieldname, None) update_data[fieldname] = value if self.order_field: update_data[self.order_field] = self.request.GET.get(self.order_field, None) initial = self.get_initial() initial.update(update_data) kwargs = {'initial': initial } if self.groups_for_userlist != None: pot_users = User.objects.exclude(id=self.request.user.id) if len(self.groups_for_userlist): pot_users = pot_users.filter(groups__name__in = self.groups_for_userlist) pot_users = pot_users.distinct().order_by('username') user_choices = tuple([(user.id, str(user)) for user in pot_users]) kwargs['user_choices'] = user_choices return kwargs
Returns the keyword arguments for instantiating the search form.
def us2mc(string): return re.sub(r'_([a-z])', lambda m: (m.group(1).upper()), string)
Transform an underscore_case string to a mixedCase string
def generate_form(model, form=None, fields=False, exclude=False): _model, _fields, _exclude = model, fields, exclude class Form(form or forms.ModelForm): class Meta: model = _model if _fields is not False: fields = _fields if _exclude is not False: exclude = _exclude return Form
Generate a form from a model. :param model: A Django model. :param form: A Django form. :param fields: A list of fields to include in this form. :param exclude: A list of fields to exclude in this form.
def route(regex, view, method, name): return _Route(regex, view, method, name)
Route the given view. :param regex: A string describing a regular expression to which the request path will be matched. :param view: A string describing the name of the view to delegate the request to. :param method: A string describing the HTTP method that this view accepts. :param name: A string describing the name of the URL pattern. ``regex`` may also be a lambda that accepts the parent resource's ``prefix`` argument and returns a string describing a regular expression to which the request path will be matched. ``name`` may also be a lambda that accepts the parent resource's ``views`` argument and returns a string describing the name of the URL pattern.
def sample_double_norm(mean, std_upper, std_lower, size): from scipy.special import erfinv # There's probably a better way to do this. We first draw percentiles # uniformly between 0 and 1. We want the peak of the distribution to occur # at `mean`. However, if we assign 50% of the samples to the lower half # and 50% to the upper half, the side with the smaller variance will be # overrepresented because of the 1/sigma normalization of the Gaussian # PDF. Therefore we need to divide points between the two halves with a # fraction `cutoff` (defined below) going to the lower half. Having # partitioned them this way, we can then use the standard Gaussian # quantile function to go from percentiles to sample values -- except that # we must remap from [0, cutoff] to [0, 0.5] and from [cutoff, 1] to [0.5, # 1]. samples = np.empty(size) percentiles = np.random.uniform(0., 1., size) cutoff = std_lower / (std_lower + std_upper) w = (percentiles < cutoff) percentiles[w] *= 0.5 / cutoff samples[w] = mean + np.sqrt(2) * std_lower * erfinv(2 * percentiles[w] - 1) w = ~w percentiles[w] = 1 - (1 - percentiles[w]) * 0.5 / (1 - cutoff) samples[w] = mean + np.sqrt(2) * std_upper * erfinv(2 * percentiles[w] - 1) return samples
Note that this function requires Scipy.
def sample_gamma(alpha, beta, size): if alpha <= 0: raise ValueError('alpha must be positive; got %e' % alpha) if beta <= 0: raise ValueError('beta must be positive; got %e' % beta) return np.random.gamma(alpha, scale=1./beta, size=size)
This is mostly about recording the conversion between Numpy/Scipy conventions and Wikipedia conventions. Some equations: mean = alpha / beta variance = alpha / beta**2 mode = (alpha - 1) / beta [if alpha > 1; otherwise undefined] skewness = 2 / sqrt(alpha)
def find_gamma_params(mode, std): if mode < 0: raise ValueError('input mode must be positive for gamma; got %e' % mode) var = std**2 beta = (mode + np.sqrt(mode**2 + 4 * var)) / (2 * var) j = 2 * var / mode**2 alpha = (j + 1 + np.sqrt(2 * j + 1)) / j if alpha <= 1: raise ValueError('couldn\'t compute self-consistent gamma parameters: ' 'mode=%e std=%e alpha=%e beta=%e' % (mode, std, alpha, beta)) return alpha, beta
Given a modal value and a standard deviation, compute corresponding parameters for the gamma distribution. Intended to be used to replace normal distributions when the value must be positive and the uncertainty is comparable to the best value. Conversion equations determined from the relations given in the sample_gamma() docs.
def _lval_add_towards_polarity(x, polarity): if x < 0: if polarity < 0: return Lval('toinf', x) return Lval('pastzero', x) elif polarity > 0: return Lval('toinf', x) return Lval('pastzero', x)
Compute the appropriate Lval "kind" for the limit of value `x` towards `polarity`. Either 'toinf' or 'pastzero' depending on the sign of `x` and the infinity direction of polarity.
def unwrap(msmt): if np.isscalar(msmt): return float(msmt) if isinstance(msmt, (Uval, Lval)): return msmt if isinstance(msmt, Textual): return msmt.unwrap() raise ValueError('don\'t know how to treat %r as a measurement' % msmt)
Convert the value into the most basic representation that we can do math on: float if possible, then Uval, then Lval.
def repval(msmt, limitsok=False): if np.isscalar(msmt): return float(msmt) if isinstance(msmt, Uval): return msmt.repvals(uval_default_repval_method)[0] if isinstance(msmt, Lval): if not limitsok and msmt.kind in('tozero', 'toinf', 'pastzero'): raise LimitError() return msmt.value if isinstance(msmt, Textual): return msmt.repval(limitsok=limitsok) raise ValueError('don\'t know how to treat %r as a measurement' % msmt)
Get a best-effort representative value as a float. This is DANGEROUS because it discards limit information, which is rarely wise. m_liminfo() or m_unwrap() are recommended instead.
def limtype(msmt): if np.isscalar(msmt): return 0 if isinstance(msmt, Uval): return 0 if isinstance(msmt, Lval): if msmt.kind == 'undef': raise ValueError('no simple limit type for Lval %r' % msmt) # Quasi-hack here: limits of ('tozero', [positive number]) are # reported as upper limits. In a plot full of fluxes this would be # what makes sense, but note that this would be misleading if the # quantity in question was something that could go negative. p = msmt._polarity() if p == -2 or p == 1: return -1 if p == 2 or p == -1: return 1 return 0 if isinstance(msmt, Textual): return msmt.limtype() raise ValueError('don\'t know how to treat %r as a measurement' % msmt)
Return -1 if this value is some kind of upper limit, 1 if this value is some kind of lower limit, 0 otherwise.
def errinfo(msmt): if isinstance(msmt, Textual): msmt = msmt.unwrap() if np.isscalar(msmt): return 0, msmt, msmt, msmt if isinstance(msmt, Uval): rep, plus1, minus1 = msmt.repvals(uval_default_repval_method) return 0, rep, plus1, minus1 if isinstance(msmt, Lval): return limtype(msmt), msmt.value, msmt.value, msmt.value raise ValueError('don\'t know how to treat %r as a measurement' % msmt)
Return (limtype, repval, errval1, errval2). Like m_liminfo, but also provides error bar information for values that have it.
def fmtinfo(value): if value is None: raise ValueError('cannot format None!') if isinstance(value, text_type): return '', value, False if isinstance(value, bool): # Note: isinstance(True, int) = True, so this must come before the next case. if value: return 'b', 'y', False return 'b', '', False if isinstance(value, six.integer_types): return 'i', text_type(value), False if isinstance(value, float): return 'f', text_type(value), True if hasattr(value, '__pk_fmtinfo__'): return value.__pk_fmtinfo__() raise ValueError('don\'t know how to format %r as a measurement' % value)
Returns (typetag, text, is_imprecise). Unlike other functions that operate on measurements, this also operates on bools, ints, and strings.
def from_pcount(nevents): if nevents < 0: raise ValueError('Poisson parameter `nevents` must be nonnegative') return Uval(np.random.gamma(nevents + 1, size=uval_nsamples))
We assume a Poisson process. nevents is the number of events in some interval. The distribution of values is the distribution of the Poisson rate parameter given this observed number of events, where the "rate" is in units of events per interval of the same duration. The max-likelihood value is nevents, but the mean value is nevents + 1. The gamma distribution is obtained by assuming an improper, uniform prior for the rate between 0 and infinity.
def repvals(self, method): if method == 'pct': return pk_scoreatpercentile(self.d, [50., 84.134, 15.866]) if method == 'gauss': m, s = self.d.mean(), self.d.std() return np.asarray([m, m + s, m - s]) raise ValueError('unknown representative-value method "%s"' % method)
Compute representative statistical values for this Uval. `method` may be either 'pct' or 'gauss'. Returns (best, plus_one_sigma, minus_one_sigma), where `best` is the "best" value in some sense, and the others correspond to values at the ~84 and 16 percentile limits, respectively. Because of the sampled nature of the Uval system, there is no single method to compute these numbers. The "pct" method returns the 50th, 15.866th, and 84.134th percentile values. The "gauss" method computes the mean μ and standard deviation σ of the samples and returns [μ, μ+σ, μ-σ].
def repval(self, limitsok=False): if not limitsok and self.dkind in ('lower', 'upper'): raise LimitError() if self.dkind == 'unif': lower, upper = map(float, self.data) v = 0.5 * (lower + upper) elif self.dkind in _noextra_dkinds: v = float(self.data) elif self.dkind in _yesextra_dkinds: v = float(self.data[0]) else: raise RuntimeError('can\'t happen') if self.tkind == 'log10': return 10**v return v
Get a best-effort representative value as a float. This can be DANGEROUS because it discards limit information, which is rarely wise.
def in_casapy (helper, vis=None, figfile=None): if vis is None: raise ValueError ('vis') helper.casans.plotants (vis=vis, figfile=figfile)
This function is run inside the weirdo casapy IPython environment! A strange set of modules is available, and the `pwkit.environments.casa.scripting` system sets up a very particular environment to allow encapsulated scripting.
def datasets(dataset, node, ll=None, ur=None, start_date=None, end_date=None, api_key=None): payload = { "node": node, "apiKey": api_key } if dataset: payload["datasetName"] = dataset if ll and ur: payload["lowerLeft"] = { "latitude": ll["latitude"], "longitude": ll["longitude"] } payload["upperRight"] = { "latitude": ur["latitude"], "longitude": ur["longitude"] } if start_date: payload["startDate"] = start_date if end_date: payload["endDate"] = end_date return json.dumps(payload)
This method is used to find datasets available for searching. By passing no parameters except node, all available datasets are returned. Additional parameters such as temporal range and spatial bounding box can be used to find datasets that provide more specific data. The dataset name parameter can be used to limit the results based on matching the supplied value against the dataset name with assumed wildcards at the beginning and end. All parameters are optional except for the 'node' parameter. :param dataset: Dataset Identifier :param ll: Lower left corner of an AOI bounding box - in decimal form Longitude/Latitude dictionary e.g. { "longitude": 0.0, "latitude": 0.0 } :param ur: Upper right corner of an AOI bounding box - in decimal form Longitude/Latitude dictionary e.g. { "longitude": 0.0, "latitude": 0.0 } :param start_date: Used for searching scene acquisition - will accept anything that the PHP strtotime function can understand :param end_date: Used for searching scene acquisition - will accept anything that the PHP strtotime function can understand :param node: The requested Catalog :param api_key: API key is not required.
def download(dataset, node, entityids, products, api_key=None): payload = { "datasetName": dataset, "node": node, "apiKey": api_key, "entityIds": entityids, "products": products } return json.dumps(payload)
The use of this request will be to obtain valid data download URLs. :param dataset: :param entityIds: list :param products: list :param node: :param api_key: API key is required.
def download_options(dataset, node, entityids, api_key=None): payload = { "apiKey": api_key, "datasetName": dataset, "node": node, "entityIds": entityids } return json.dumps(payload)
The use of the download options request is to discover the different download options for each scene. Some download options may exist but still be unavailable due to disk usage and many other factors. If a download is unavailable it may need to be ordered. :param dataset: :param node: :param entityIds: :param api_key: API key is not required.
def login(username, password, catalogId='EE'): payload = { "username": username, "password": password, "authType": "", "catalogId": catalogId } return json.dumps(payload)
This method requires SSL be used due to the sensitive nature of users passwords. Upon a successful login, an API key will be returned. This key will be active for one hour and should be destroyed upon final use of the service by calling the logout method. Users must have "Machine to Machine" access based on a user-based role in the users profile. :param username: :param password:
def metadata(dataset, node, entityids, api_key=None): payload = { "apiKey": api_key, "datasetName": dataset, "node": node, "entityIds": entityids } return json.dumps(payload)
The use of the metadata request is intended for those who have acquired scene IDs from a different source. It will return the same metadata that is available via the search request. :param dataset: :param node: :param sceneid: :param api_key:
def approx_colormap (samples, transform='none', fitfactor=1.): import scipy.interpolate as SI values = samples[0] if transform == 'none': pass elif transform == 'reverse': samples = samples[:,::-1] elif transform == 'sqrt': values = np.sqrt (values) else: raise ValueError ('unknown transformation: ' + str (transform)) nsamp = samples.shape[1] rspline = SI.splrep (values, samples[R+1], s=fitfactor/nsamp) gspline = SI.splrep (values, samples[G+1], s=fitfactor/nsamp) bspline = SI.splrep (values, samples[B+1], s=fitfactor/nsamp) def colormap (values): values = np.asarray (values) mapped = np.empty (values.shape + (3,)) flatvalues = values.flatten () flatmapped = mapped.reshape (flatvalues.shape + (3,)) flatmapped[:,R] = SI.splev (flatvalues, rspline) flatmapped[:,G] = SI.splev (flatvalues, gspline) flatmapped[:,B] = SI.splev (flatvalues, bspline) return mapped return colormap
Given a colormap sampled at various values, compute splines that interpolate in R, G, and B (separately) for fast evaluation of the colormap for arbitrary float values. We have primitive support for some transformations, though these are generally best done upstream of the color mapping code. samples - Shape (4, n). samples[0,:] are the normalized values at which the map is sampled, hopefully ranging uniformly between 0 and 1. samples[1:4,:] are the RGB values of the colormap. (They don't need to actually be RGB, but there need to be three of them.) transform - One of 'none', 'reverse', or 'sqrt'. fitfactor - Sets the tightness of the spline interpolation. Returns: a function `map` following `map(n) -> rgb`, where if `n` has shape S the result has shape shape (S + (3,)), following a spline interpolation from the sampled values.
def srgb_to_linsrgb (srgb): gamma = ((srgb + 0.055) / 1.055)**2.4 scale = srgb / 12.92 return np.where (srgb > 0.04045, gamma, scale)
Convert sRGB values to physically linear ones. The transformation is uniform in RGB, so *srgb* can be of any shape. *srgb* values should range between 0 and 1, inclusively.
def linsrgb_to_srgb (linsrgb): # From Wikipedia, but easy analogue to the above. gamma = 1.055 * linsrgb**(1./2.4) - 0.055 scale = linsrgb * 12.92 return np.where (linsrgb > 0.0031308, gamma, scale)
Convert physically linear RGB values into sRGB ones. The transform is uniform in the components, so *linsrgb* can be of any shape. *linsrgb* values should range between 0 and 1, inclusively.
def xyz_to_cielab (xyz, refwhite): norm = xyz / refwhite pow = norm**0.333333333333333 scale = 7.787037 * norm + 16./116 mapped = np.where (norm > 0.008856, pow, scale) cielab = np.empty_like (xyz) cielab[...,L] = 116 * mapped[...,Y] - 16 cielab[...,A] = 500 * (mapped[...,X] - mapped[...,Y]) cielab[...,B] = 200 * (mapped[...,Y] - mapped[...,Z]) return cielab
Convert CIE XYZ color values to CIE L*a*b*. *xyz* should be of shape (*, 3). *refwhite* is the reference white value, of shape (3, ). Return value will have same shape as *xyz*, but be in CIE L*a*b* coordinates.
def cielab_to_xyz (cielab, refwhite): def func (t): pow = t**3 scale = 0.128419 * t - 0.0177129 return np.where (t > 0.206897, pow, scale) xyz = np.empty_like (cielab) lscale = 1./116 * (cielab[...,L] + 16) xyz[...,X] = func (lscale + 0.002 * cielab[...,A]) xyz[...,Y] = func (lscale) xyz[...,Z] = func (lscale - 0.005 * cielab[...,B]) xyz *= refwhite return xyz
Convert CIE L*a*b* color values to CIE XYZ, *cielab* should be of shape (*, 3). *refwhite* is the reference white value in the L*a*b* color space, of shape (3, ). Return value has same shape as *cielab*
def cielab_to_msh (cielab): msh = np.empty_like (cielab) msh[...,M] = np.sqrt ((cielab**2).sum (axis=-1)) msh[...,S] = np.arccos (cielab[...,L] / msh[...,M]) msh[...,H] = np.arctan2 (cielab[...,B], cielab[...,A]) return msh
Convert CIE L*a*b* to Moreland's Msh colorspace. *cielab* should be of shape (*, 3). Return value will have same shape.
def msh_to_cielab (msh): cielab = np.empty_like (msh) cielab[...,L] = msh[...,M] * np.cos (msh[...,S]) cielab[...,A] = msh[...,M] * np.sin (msh[...,S]) * np.cos (msh[...,H]) cielab[...,B] = msh[...,M] * np.sin (msh[...,S]) * np.sin (msh[...,H]) return cielab
Convert Moreland's Msh colorspace to CIE L*a*b*. *msh* should be of shape (*, 3). Return value will have same shape.
def moreland_adjusthue (msh, m_unsat): if msh[M] >= m_unsat: return msh[H] # "Best we can do" hspin = (msh[S] * np.sqrt (m_unsat**2 - msh[M]**2) / (msh[M] * np.sin (msh[S]))) if msh[H] > -np.pi / 3: # "Spin away from purple" return msh[H] + hspin return msh[H] - hspin
Moreland's AdjustHue procedure to adjust the hue value of an Msh color based on ... some criterion. *msh* should be of of shape (3, ). *m_unsat* is a scalar. Return value is the adjusted h (hue) value.
def get_datasets_in_nodes(): data_dir = os.path.join(scriptdir, "..", "usgs", "data") cwic = map(lambda d: d["datasetName"], api.datasets(None, CWIC_LSI_EXPLORER_CATALOG_NODE)['data']) ee = map(lambda d: d["datasetName"], api.datasets(None, EARTH_EXPLORER_CATALOG_NODE)['data']) hdds = map(lambda d: d["datasetName"], api.datasets(None, HDDS_EXPLORER_CATALOG_NODE)['data']) lpcs = map(lambda d: d["datasetName"], api.datasets(None, LPCS_EXPLORER_CATALOG_NODE)['data']) # Create mapping from dataset to node datasets = {} datasets.update( { ds : "CWIC" for ds in cwic } ) datasets.update( { ds : "EE" for ds in ee } ) datasets.update( { ds : "HDDS" for ds in hdds } ) datasets.update( { ds : "LPCS" for ds in lpcs } ) datasets_path = os.path.join(data_dir, "datasets.json") with open(datasets_path, "w") as f: f.write(json.dumps(datasets)) # Find the datasets with ambiguous nodes cwic_ee = [ds for ds in cwic if ds in ee] cwic_hdds = [ds for ds in cwic if ds in hdds] cwic_lpcs = [ds for ds in cwic if ds in lpcs] ee_hdds = [ds for ds in ee if ds in hdds] ee_lpcs = [ds for ds in ee if ds in lpcs] hdds_lpcs = [ds for ds in hdds if ds in lpcs]
Get the node associated with each dataset. Some datasets will have an ambiguous node since they exists in more than one node.