code
stringlengths 52
7.75k
| docs
stringlengths 1
5.85k
|
---|---|
def heatmap(dm, partition=None, cmap=CM.Blues, fontsize=10):
assert isinstance(dm, DistanceMatrix)
datamax = float(np.abs(dm.values).max())
length = dm.shape[0]
if partition:
sorting = np.array(flatten_list(partition.get_membership()))
new_dm = dm.reorder(dm.df.columns[sorting])
else:
new_dm = dm
fig = plt.figure()
ax = fig.add_subplot(111)
ax.xaxis.tick_top()
ax.grid(False)
tick_positions = np.array(list(range(length))) + 0.5
if fontsize is not None:
ax.set_yticks(tick_positions)
ax.set_xticks(tick_positions)
ax.set_xticklabels(new_dm.df.columns, rotation=90, fontsize=fontsize, ha='center')
ax.set_yticklabels(new_dm.df.index, fontsize=fontsize, va='center')
cbar_ticks_at = [0, 0.5 * datamax, datamax]
cax = ax.imshow(
new_dm.values,
interpolation='nearest',
extent=[0., length, length, 0.],
vmin=0,
vmax=datamax,
cmap=cmap,
)
cbar = fig.colorbar(cax, ticks=cbar_ticks_at, format='%1.2g')
cbar.set_label('Distance')
return fig | heatmap(dm, partition=None, cmap=CM.Blues, fontsize=10)
Produce a 2D plot of the distance matrix, with values encoded by
coloured cells.
Args:
partition: treeCl.Partition object - if supplied, will reorder
rows and columns of the distance matrix to reflect
the groups defined by the partition
cmap: matplotlib colourmap object - the colour palette to use
fontsize: int or None - sets the size of the locus lab
Returns:
matplotlib plottable object |
def _plotly_3d_scatter(coords, partition=None):
from plotly.graph_objs import Scatter3d, Data, Figure, Layout, Line, Margin, Marker
# auto sign-in with credentials or use py.sign_in()
colourmap = {
'A':'#1f77b4',
'B':'#ff7f0e',
'C':'#2ca02c',
'D':'#d62728',
'E':'#9467bd',
1:'#1f77b4',
2:'#ff7f0e',
3:'#2ca02c',
4:'#d62728',
5:'#9467bd'
}
df = coords.df
if partition:
assert len(partition.partition_vector) == df.shape[0]
labels = [x+1 for x in partition.partition_vector]
else:
labels = [1 for _ in range(df.shape[0])]
x, y, z = df.columns[:3]
df['Label'] = labels
colours = [colourmap[lab] for lab in df['Label']]
trace = Scatter3d(x=df[x], y=df[y], z=df[z], mode='markers',
marker=Marker(size=9, color=colours,
line=Line(color=colours, width=0.5), opacity=0.8),
text=[str(ix) for ix in df.index])
data = Data([trace])
layout = Layout(
margin=Margin(l=0, r=0, b=0, t=0 ),
hovermode='x',
)
fig = Figure(data=data, layout=layout)
return fig | _plotly_3d_scatter(coords, partition=None)
Make a scatterplot of treeCl.CoordinateMatrix using the Plotly
plotting engine |
def _add_sphere(ax):
(u, v) = np.mgrid[0:2 * np.pi:20j, 0:np.pi:10j]
x = np.cos(u) * np.sin(v)
y = np.sin(u) * np.sin(v)
z = np.cos(v)
ax.plot_wireframe(x, y, z, color='grey', linewidth=0.2)
return ax | _add_sphere(ax)
Add a wireframe unit sphere onto matplotlib 3D axes
Args:
ax - matplotlib 3D axes object
Returns:
updated matplotlib 3D axes |
def heatmap(self, partition=None, cmap=CM.Blues):
if isinstance(self.dm, DistanceMatrix):
length = self.dm.values.shape[0]
else:
length = self.dm.shape[0]
datamax = float(np.abs(self.dm).max())
fig = plt.figure()
ax = fig.add_subplot(111)
ticks_at = [0, 0.5 * datamax, datamax]
if partition:
sorting = flatten_list(partition.get_membership())
self.dm = self.dm.reorder(sorting)
cax = ax.imshow(
self.dm.values,
interpolation='nearest',
origin='lower',
extent=[0., length, 0., length],
vmin=0,
vmax=datamax,
cmap=cmap,
)
cbar = fig.colorbar(cax, ticks=ticks_at, format='%1.2g')
cbar.set_label('Distance')
return fig | Plots a visual representation of a distance matrix |
def get_tree_collection_strings(self, scale=1, guide_tree=None):
records = [self.collection[i] for i in self.indices]
return TreeCollectionTaskInterface().scrape_args(records) | Function to get input strings for tree_collection
tree_collection needs distvar, genome_map and labels -
these are returned in the order above |
def from_json(buffer, auto_flatten=True, raise_for_index=True):
buffer = to_bytes(buffer)
view_out = _ffi.new('lsm_view_t **')
index_out = _ffi.new('lsm_index_t **')
buffer = to_bytes(buffer)
rv = rustcall(
_lib.lsm_view_or_index_from_json,
buffer, len(buffer), view_out, index_out)
if rv == 1:
return View._from_ptr(view_out[0])
elif rv == 2:
index = Index._from_ptr(index_out[0])
if auto_flatten and index.can_flatten:
return index.into_view()
if raise_for_index:
raise IndexedSourceMap('Unexpected source map index',
index=index)
return index
else:
raise AssertionError('Unknown response from C ABI (%r)' % rv) | Parses a JSON string into either a view or an index. If auto flatten
is enabled a sourcemap index that does not contain external references is
automatically flattened into a view. By default if an index would be
returned an `IndexedSourceMap` error is raised instead which holds the
index. |
def from_json(buffer):
buffer = to_bytes(buffer)
return View._from_ptr(rustcall(
_lib.lsm_view_from_json,
buffer, len(buffer))) | Creates a sourcemap view from a JSON string. |
def from_memdb(buffer):
buffer = to_bytes(buffer)
return View._from_ptr(rustcall(
_lib.lsm_view_from_memdb,
buffer, len(buffer))) | Creates a sourcemap view from MemDB bytes. |
def from_memdb_file(path):
path = to_bytes(path)
return View._from_ptr(rustcall(_lib.lsm_view_from_memdb_file, path)) | Creates a sourcemap view from MemDB at a given file. |
def dump_memdb(self, with_source_contents=True, with_names=True):
len_out = _ffi.new('unsigned int *')
buf = rustcall(
_lib.lsm_view_dump_memdb,
self._get_ptr(), len_out,
with_source_contents, with_names)
try:
rv = _ffi.unpack(buf, len_out[0])
finally:
_lib.lsm_buffer_free(buf)
return rv | Dumps a sourcemap in MemDB format into bytes. |
def lookup_token(self, line, col):
# Silently ignore underflows
if line < 0 or col < 0:
return None
tok_out = _ffi.new('lsm_token_t *')
if rustcall(_lib.lsm_view_lookup_token, self._get_ptr(),
line, col, tok_out):
return convert_token(tok_out[0]) | Given a minified location, this tries to locate the closest
token that is a match. Returns `None` if no match can be found. |
def get_original_function_name(self, line, col, minified_name,
minified_source):
# Silently ignore underflows
if line < 0 or col < 0:
return None
minified_name = minified_name.encode('utf-8')
sout = _ffi.new('const char **')
try:
slen = rustcall(_lib.lsm_view_get_original_function_name,
self._get_ptr(), line, col, minified_name,
minified_source, sout)
if slen > 0:
return _ffi.unpack(sout[0], slen).decode('utf-8', 'replace')
except SourceMapError:
# In some rare cases the library is/was known to panic. We do
# not want to report this upwards (this happens on slicing
# out of range on older rust versions in the rust-sourcemap
# library)
pass | Given a token location and a minified function name and the
minified source file this returns the original function name if it
can be found of the minified function in scope. |
def get_source_contents(self, src_id):
len_out = _ffi.new('unsigned int *')
must_free = _ffi.new('int *')
rv = rustcall(_lib.lsm_view_get_source_contents,
self._get_ptr(), src_id, len_out, must_free)
if rv:
try:
return _ffi.unpack(rv, len_out[0])
finally:
if must_free[0]:
_lib.lsm_buffer_free(rv) | Given a source ID this returns the embedded sourcecode if there
is. The sourcecode is returned as UTF-8 bytes for more efficient
processing. |
def has_source_contents(self, src_id):
return bool(rustcall(_lib.lsm_view_has_source_contents,
self._get_ptr(), src_id)) | Checks if some sources exist. |
def get_source_name(self, src_id):
len_out = _ffi.new('unsigned int *')
rv = rustcall(_lib.lsm_view_get_source_name,
self._get_ptr(), src_id, len_out)
if rv:
return decode_rust_str(rv, len_out[0]) | Returns the name of the given source. |
def iter_sources(self):
for src_id in xrange(self.get_source_count()):
yield src_id, self.get_source_name(src_id) | Iterates over all source names and IDs. |
def from_json(buffer):
buffer = to_bytes(buffer)
return Index._from_ptr(rustcall(
_lib.lsm_index_from_json,
buffer, len(buffer))) | Creates an index from a JSON string. |
def into_view(self):
try:
return View._from_ptr(rustcall(
_lib.lsm_index_into_view,
self._get_ptr()))
finally:
self._ptr = None | Converts the index into a view |
def from_bytes(buffer):
buffer = to_bytes(buffer)
return ProguardView._from_ptr(rustcall(
_lib.lsm_proguard_mapping_from_bytes,
buffer, len(buffer))) | Creates a sourcemap view from a JSON string. |
def from_path(filename):
filename = to_bytes(filename)
if NULL_BYTE in filename:
raise ValueError('null byte in path')
return ProguardView._from_ptr(rustcall(
_lib.lsm_proguard_mapping_from_path,
filename + b'\x00')) | Creates a sourcemap view from a file path. |
def lookup(self, dotted_path, lineno=None):
rv = None
try:
rv = rustcall(
_lib.lsm_proguard_mapping_convert_dotted_path,
self._get_ptr(),
dotted_path.encode('utf-8'), lineno or 0)
return _ffi.string(rv).decode('utf-8', 'replace')
finally:
if rv is not None:
_lib.lsm_buffer_free(rv) | Given a dotted path in the format ``class_name`` or
``class_name:method_name`` this performs an alias lookup. For
methods the line number must be supplied or the result is
unreliable. |
def apply(self, data):
if self.visitor.is_object:
obj = {}
if self.visitor.parent is None:
obj['$schema'] = self.visitor.path
obj_empty = True
for child in self.children:
empty, value = child.apply(data)
if empty and child.optional:
continue
obj_empty = False if not empty else obj_empty
if child.visitor.name in obj and child.visitor.is_array:
obj[child.visitor.name].extend(value)
else:
obj[child.visitor.name] = value
return obj_empty, obj
elif self.visitor.is_array:
empty, value = self.children.apply(data)
return empty, [value]
elif self.visitor.is_value:
return extract_value(self.mapping, self.visitor, data) | Apply the given mapping to ``data``, recursively. The return type
is a tuple of a boolean and the resulting data element. The boolean
indicates whether any values were mapped in the child nodes of the
mapping. It is used to skip optional branches of the object graph. |
def apply_iter(cls, rows, mapping, resolver, scope=None):
mapper = cls(mapping, resolver, scope=scope)
for row in rows:
_, data = mapper.apply(row)
yield data | Given an iterable ``rows`` that yield data records, and a
``mapping`` which is to be applied to them, return a tuple of
``data`` (the generated object graph) and ``err``, a validation
exception if the resulting data did not match the expected schema. |
def translate(self, text):
# Reset substitution counter
self.count = 0
# Process text
return self._make_regex().sub(self, text) | Translate text, returns the modified text. |
def cluster(self, n, embed_dim=None, algo=spectral.SPECTRAL, method=methods.KMEANS):
if n == 1:
return Partition([1] * len(self.get_dm(False)))
if embed_dim is None:
embed_dim = n
if algo == spectral.SPECTRAL:
self._coords = self.spectral_embedding(embed_dim)
elif algo == spectral.KPCA:
self._coords = self.kpca_embedding(embed_dim)
elif algo == spectral.ZELNIKMANOR:
self._coords = self.spectral_embedding_(embed_dim)
else:
raise OptionError(algo, list(spectral.reverse.values()))
if method == methods.KMEANS:
p = self.kmeans(n, self._coords.df.values)
elif method == methods.GMM:
p = self.gmm(n, self._coords.df.values)
elif method == methods.WARD:
linkmat = fastcluster.linkage(self._coords.values, 'ward')
p = _hclust(linkmat, n)
else:
raise OptionError(method, list(methods.reverse.values()))
if self._verbosity > 0:
print('Using clustering method: {}'.format(methods.reverse[method]))
return p | Cluster the embedded coordinates using spectral clustering
Parameters
----------
n: int
The number of clusters to return
embed_dim: int
The dimensionality of the underlying coordinates
Defaults to same value as n
algo: enum value (spectral.SPECTRAL | spectral.KPCA | spectral.ZELNIKMANOR)
Type of embedding to use
method: enum value (methods.KMEANS | methods.GMM)
The clustering method to use
Returns
-------
Partition: Partition object describing the data partition |
def spectral_embedding(self, n):
coords = spectral_embedding(self._affinity, n)
return CoordinateMatrix(normalise_rows(coords)) | Embed the points using spectral decomposition of the laplacian of
the affinity matrix
Parameters
----------
n: int
The number of dimensions |
def spectral_embedding_(self, n):
aff = self._affinity.copy()
aff.flat[::aff.shape[0]+1] = 0
laplacian = laplace(aff)
decomp = eigen(laplacian)
return CoordinateMatrix(normalise_rows(decomp.vecs[:,:n])) | Old method for generating coords, used on original analysis
of yeast data. Included to reproduce yeast result from paper.
Reason for difference - switched to using spectral embedding
method provided by scikit-learn (mainly because it spreads
points over a sphere, rather than a half sphere, so looks
better plotted). Uses a different Laplacian matrix. |
def kpca_embedding(self, n):
return self.dm.embedding(n, 'kpca', affinity_matrix=self._affinity) | Embed the points using kernel PCA of the affinity matrix
Parameters
----------
n: int
The number of dimensions |
def cluster(self, n, embed_dim=None, algo=mds.CLASSICAL, method=methods.KMEANS):
if n == 1:
return Partition([1] * len(self.get_dm(False)))
if embed_dim is None:
embed_dim = n
if algo == mds.CLASSICAL:
self._coords = self.dm.embedding(embed_dim, 'cmds')
elif algo == mds.METRIC:
self._coords = self.dm.embedding(embed_dim, 'mmds')
else:
raise OptionError(algo, list(mds.reverse.values()))
if method == methods.KMEANS:
p = self.kmeans(n, self._coords.values)
elif method == methods.GMM:
p = self.gmm(n, self._coords.values)
elif method == methods.WARD:
linkmat = fastcluster.linkage(self._coords.values, 'ward')
p = _hclust(linkmat, n)
else:
raise OptionError(method, list(methods.reverse.values()))
#if self._verbosity > 0:
# print('Using clustering method: {}'.format(methods.reverse[method]))
return p | Cluster the embedded coordinates using multidimensional scaling
Parameters
----------
n: int
The number of clusters to return
embed_dim int
The dimensionality of the underlying coordinates
Defaults to same value as n
method: enum value (methods.KMEANS | methods.GMM)
The clustering method to use
Returns
-------
Partition: Partition object describing the data partition |
def cluster(self, nclusters, linkage_method=linkage.WARD, **kwargs):
if linkage_method == linkage.SINGLE:
return self._hclust(nclusters, 'single', **kwargs)
elif linkage_method == linkage.COMPLETE:
return self._hclust(nclusters, 'complete', **kwargs)
elif linkage_method == linkage.AVERAGE:
return self._hclust(nclusters, 'average', **kwargs)
elif linkage_method == linkage.WARD:
return self._hclust(nclusters, 'ward', **kwargs)
elif linkage_method == linkage.WEIGHTED:
return self._hclust(nclusters, 'weighted', **kwargs)
elif linkage_method == linkage.CENTROID:
return self._hclust(nclusters, 'centroid', **kwargs)
elif linkage_method == linkage.MEDIAN:
return self._hclust(nclusters, 'median', **kwargs)
else:
raise ValueError('Unknown linkage_method: {}'.format(linkage_method)) | Do hierarchical clustering on a distance matrix using one of the methods:
methods.SINGLE = single-linkage clustering
methods.COMPLETE = complete-linkage clustering
methods.AVERAGE = average-linkage clustering
methods.WARD = Ward's minimum variance method |
def _hclust(self, nclusters, method, noise=False):
matrix = self.get_dm(noise)
linkmat = fastcluster.linkage(squareform(matrix), method)
self.nclusters = nclusters # Store these in case we want to plot
self.linkmat = linkmat #
return _hclust(linkmat, nclusters) | :param nclusters: Number of clusters to return
:param linkage_method: single, complete, average, ward, weighted, centroid or median
(http://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html)
:param noise: Add Gaussian noise to the distance matrix prior to clustering (bool, default=False)
:return: Partition object describing clustering |
def plot_dendrogram(self, nclusters=None, leaf_font_size=8, leaf_rotation=90, names=None,
title_font_size=16, ):
if not hasattr(self, 'nclusters') and not hasattr(self, 'linkmat'):
raise ValueError("This instance has no plottable information.")
if nclusters is None:
nclusters = self.nclusters
threshold = _get_threshold(self.linkmat, nclusters)
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(11.7, 8.3))
if names is not None:
labfn=lambda leaf: names[leaf]
else:
labfn=None
leaf_rotation=0
dendrogram(
self.linkmat,
color_threshold=threshold,
leaf_font_size=leaf_font_size,
leaf_rotation=leaf_rotation,
leaf_label_func=labfn,
count_sort=True,
)
plt.suptitle('Dendrogram', fontsize=title_font_size)
# plt.title('Distance metric: {0} Linkage method: {1} Number of classes: {2}'.format(compound_key[0],
# compound_key[1], compound_key[2]), fontsize=12)
plt.axhline(threshold, color='grey', ls='dashed')
plt.xlabel('Gene')
plt.ylabel('Distance')
return fig | Plots the dendrogram of the most recently generated partition
:param nclusters: Override the plot default number of clusters
:return: matplotlib.pyplot.figure |
def dbscan(self, eps=0.75, min_samples=3):
est = DBSCAN(metric='precomputed', eps=eps, min_samples=min_samples)
est.fit(self.get_dm(False))
return Partition(est.labels_) | :param kwargs: key-value arguments to pass to DBSCAN
(eps: max dist between points in same neighbourhood,
min_samples: number of points in a neighbourhood)
:return: |
def _py2_and_3_joiner(sep, joinable):
if ISPY3:
sep = bytes(sep, DEFAULT_ENCODING)
joined = sep.join(joinable)
return joined.decode(DEFAULT_ENCODING) if ISPY3 else joined | Allow '\n'.join(...) statements to work in Py2 and Py3.
:param sep:
:param joinable:
:return: |
def _log_thread(self, pipe, queue):
# thread function to log subprocess output (LOG is a queue)
def enqueue_output(out, q):
for line in iter(out.readline, b''):
q.put(line.rstrip())
out.close()
# start thread
t = threading.Thread(target=enqueue_output,
args=(pipe, queue))
t.daemon = True # thread dies with the program
t.start()
self.threads.append(t) | Start a thread logging output from pipe |
def _search_for_executable(self, executable):
if os.path.isfile(executable):
return os.path.abspath(executable)
else:
envpath = os.getenv('PATH')
if envpath is None:
return
for path in envpath.split(os.pathsep):
exe = os.path.join(path, executable)
if os.path.isfile(exe):
return os.path.abspath(exe) | Search for file give in "executable". If it is not found, we try the environment PATH.
Returns either the absolute path to the found executable, or None if the executable
couldn't be found. |
def get_stderr(self, tail=None):
if self.finished():
self.join_threads()
while not self.stderr_q.empty():
self.stderr_l.append(self.stderr_q.get_nowait())
if tail is None:
tail = len(self.stderr_l)
return _py2_and_3_joiner('\n', self.stderr_l[:tail]) | Returns current total output written to standard error.
:param tail: Return this number of most-recent lines.
:return: copy of stderr stream |
def get_stdout(self, tail=None):
if self.finished():
self.join_threads()
while not self.stdout_q.empty():
self.stdout_l.append(self.stdout_q.get_nowait())
if tail is None:
tail = len(self.stdout_l)
return _py2_and_3_joiner('\n', self.stdout_l[:tail]) | Returns current total output written to standard output.
:param tail: Return this number of most-recent lines.
:return: copy of stdout stream |
def kill(self):
if self.running():
if self.verbose:
print('Killing {} with PID {}'.format(self.exe, self.process.pid))
self.process.kill()
# Threads *should* tidy up after themselves, but we do it explicitly
self.join_threads() | Kill the running process (if there is one)
:return: void |
def _command_template(self, switches, objectInput=None):
command = ["java", "-jar", self.file_jar, "-eUTF-8"]
if self.memory_allocation:
command.append("-Xmx{}".format(self.memory_allocation))
command.extend(switches)
if not objectInput:
objectInput = subprocess.PIPE
log.debug("Subprocess command: {}".format(", ".join(command)))
if six.PY2:
with open(os.devnull, "w") as devnull:
out = subprocess.Popen(
command,
stdin=objectInput,
stdout=subprocess.PIPE,
stderr=devnull)
elif six.PY3:
out = subprocess.Popen(
command,
stdin=objectInput,
stdout=subprocess.PIPE,
stderr=subprocess.DEVNULL)
stdoutdata, _ = out.communicate()
return stdoutdata.decode("utf-8").strip() | Template for Tika app commands
Args:
switches (list): list of switches to Tika app Jar
objectInput (object): file object/standard input to analyze
Return:
Standard output data (unicode Python 2, str Python 3) |
def detect_content_type(self, path=None, payload=None, objectInput=None):
# From Python detection content type from stdin doesn't work TO FIX
if objectInput:
message = "Detection content type with file object is not stable."
log.exception(message)
raise TikaAppError(message)
f = file_path(path, payload, objectInput)
switches = ["-d", f]
result = self._command_template(switches).lower()
return result, path, f | Return the content type of passed file or payload.
Args:
path (string): Path of file to analyze
payload (string): Payload base64 to analyze
objectInput (object): file object/standard input to analyze
Returns:
content type of file (string) |
def extract_only_content(self, path=None, payload=None, objectInput=None):
if objectInput:
switches = ["-t"]
result = self._command_template(switches, objectInput)
return result, True, None
else:
f = file_path(path, payload)
switches = ["-t", f]
result = self._command_template(switches)
return result, path, f | Return only the text content of passed file.
These parameters are in OR. Only one of them can be analyzed.
Args:
path (string): Path of file to analyze
payload (string): Payload base64 to analyze
objectInput (object): file object/standard input to analyze
Returns:
text of file passed (string) |
def extract_all_content(
self,
path=None,
payload=None,
objectInput=None,
pretty_print=False,
convert_to_obj=False,
):
f = file_path(path, payload, objectInput)
switches = ["-J", "-t", "-r", f]
if not pretty_print:
switches.remove("-r")
result = self._command_template(switches)
if result and convert_to_obj:
result = json.loads(result, encoding="utf-8")
return result, path, f | This function returns a JSON of all contents and
metadata of passed file
Args:
path (string): Path of file to analyze
payload (string): Payload base64 to analyze
objectInput (object): file object/standard input to analyze
pretty_print (boolean): If True adds newlines and whitespace,
for better readability
convert_to_obj (boolean): If True convert JSON in object |
def sanitize(func):
def wrapper(*args, **kwargs):
return normalize('NFC', func(*args, **kwargs))
return wrapper | NFC is the normalization form recommended by W3C. |
def clean(func):
def wrapper(*args, **kwargs):
# tuple: output command, path given from command line,
# path of templ file when you give the payload
out, given_path, path = func(*args, **kwargs)
try:
if not given_path:
os.remove(path)
except OSError:
pass
return out
return wrapper | This decorator removes the temp file from disk. This is the case where
you want to analyze from a payload. |
def file_path(path=None, payload=None, objectInput=None):
f = path if path else write_payload(payload, objectInput)
if not os.path.exists(f):
msg = "File {!r} does not exist".format(f)
log.exception(msg)
raise TikaAppFilePathError(msg)
return f | Given a file path, payload or file object, it writes file on disk and
returns the temp path.
Args:
path (string): path of real file
payload(string): payload in base64 of file
objectInput (object): file object/standard input to analyze
Returns:
Path of file |
def write_payload(payload=None, objectInput=None):
temp = tempfile.mkstemp()[1]
log.debug("Write payload in temp file {!r}".format(temp))
with open(temp, 'wb') as f:
if payload:
payload = base64.b64decode(payload)
elif objectInput:
if six.PY3:
payload = objectInput.buffer.read()
elif six.PY2:
payload = objectInput.read()
f.write(payload)
return temp | This function writes a base64 payload or file object on disk.
Args:
payload (string): payload in base64
objectInput (object): file object/standard input to analyze
Returns:
Path of file |
def get_subject(self, data):
if not isinstance(data, Mapping):
return None
if data.get(self.subject):
return data.get(self.subject)
return uuid.uuid4().urn | Try to get a unique ID from the object. By default, this will be
the 'id' field of any given object, or a field specified by the
'rdfSubject' property. If no other option is available, a UUID will be
generated. |
def reverse(self):
name = self.schema.get('rdfReverse')
if name is not None:
return name
if self.parent is not None and self.parent.is_array:
return self.parent.reverse | Reverse links make sense for object to object links where we later
may want to also query the reverse of the relationship, e.g. when obj1
is a child of obj2, we want to infer that obj2 is a parent of obj1. |
def triplify(self, data, parent=None):
if data is None:
return
if self.is_object:
for res in self._triplify_object(data, parent):
yield res
elif self.is_array:
for item in data:
for res in self.items.triplify(item, parent):
yield res
else:
# TODO: figure out if I ever want to check for reverse here.
type_name = typecast.name(data)
obj = typecast.stringify(type_name, data)
if obj is not None:
obj = obj.strip()
yield (parent, self.predicate, obj, type_name) | Recursively generate statements from the data supplied. |
def _triplify_object(self, data, parent):
subject = self.get_subject(data)
if self.path:
yield (subject, TYPE_SCHEMA, self.path, TYPE_SCHEMA)
if parent is not None:
yield (parent, self.predicate, subject, TYPE_LINK)
if self.reverse is not None:
yield (subject, self.reverse, parent, TYPE_LINK)
for prop in self.properties:
for res in prop.triplify(data.get(prop.name), subject):
yield res | Create bi-directional statements for object relationships. |
def objectify(self, load, node, depth=2, path=None):
if path is None:
path = set()
if self.is_object:
if depth < 1:
return
return self._objectify_object(load, node, depth, path)
elif self.is_array:
if depth < 1:
return
return [self.items.objectify(load, node, depth, path)]
else:
return node | Given a node ID, return an object the information available about
this node. This accepts a loader function as it's first argument, which
is expected to return all tuples of (predicate, object, source) for
the given subject. |
def get_json(request, token):
result = []
searchtext = request.GET['q']
if len(searchtext) >= 3:
pickled = _simple_autocomplete_queryset_cache.get(token, None)
if pickled is not None:
app_label, model_name, query = pickle.loads(pickled)
model = apps.get_model(app_label, model_name)
queryset = QuerySet(model=model, query=query)
fieldname = get_search_fieldname(model)
di = {'%s__istartswith' % fieldname: searchtext}
app_label_model = '%s.%s' % (app_label, model_name)
max_items = get_setting(app_label_model, 'max_items', 10)
items = queryset.filter(**di).order_by(fieldname)[:max_items]
# Check for duplicate strings
counts = {}
for item in items:
if hasattr(item, "__unicode__"):
key = item.__unicode__()
else:
key = str(item)
#key = unicode(item)
counts.setdefault(key, 0)
counts[key] += 1
# Assemble result set
for item in items:
#key = value = unicode(item)
if hasattr(item, "__unicode__"):
key = value = item.__unicode__()
else:
key = value = str(item)
value = getattr(item, fieldname)
if counts[key] > 1:
func = get_setting(
app_label_model,
'duplicate_format_function',
lambda obj, model, content_type: content_type.name
)
content_type = ContentType.objects.get_for_model(model)
value = '%s (%s)' % (value, func(item, model, content_type))
result.append((item.id, value))
else:
result = 'CACHE_MISS'
return HttpResponse(json.dumps(result)) | Return matching results as JSON |
def _dash_f_e_to_dict(self, info_filename, tree_filename):
with open(info_filename) as fl:
models, likelihood, partition_params = self._dash_f_e_parser.parseFile(fl).asList()
with open(tree_filename) as fl:
tree = fl.read()
d = {'likelihood': likelihood, 'ml_tree': tree, 'partitions': {}}
for model, params in zip(models, partition_params):
subdict = {}
index, name, _, alpha, rates, freqs = params
subdict['alpha'] = alpha
subdict['name'] = name
subdict['rates'] = rates
subdict['frequencies'] = freqs
subdict['model'] = model
d['partitions'][index] = subdict
return d | Raxml provides an option to fit model params to a tree,
selected with -f e.
The output is different and needs a different parser. |
def to_dict(self, info_filename, tree_filename, dash_f_e=False):
logger.debug('info_filename: {} {}'
.format(info_filename, '(FOUND)' if os.path.exists(info_filename) else '(NOT FOUND)'))
logger.debug('tree_filename: {} {}'
.format(tree_filename, '(FOUND)' if os.path.exists(tree_filename) else '(NOT FOUND)'))
if dash_f_e:
return self._dash_f_e_to_dict(info_filename, tree_filename)
else:
return self._to_dict(info_filename, tree_filename) | Parse raxml output and return a dict
Option dash_f_e=True will parse the output of a raxml -f e run,
which has different output |
def freader(filename, gz=False, bz=False):
filecheck(filename)
if filename.endswith('.gz'):
gz = True
elif filename.endswith('.bz2'):
bz = True
if gz:
return gzip.open(filename, 'rb')
elif bz:
return bz2.BZ2File(filename, 'rb')
else:
return io.open(filename, 'rb') | Returns a filereader object that can handle gzipped input |
def fwriter(filename, gz=False, bz=False):
if filename.endswith('.gz'):
gz = True
elif filename.endswith('.bz2'):
bz = True
if gz:
if not filename.endswith('.gz'):
filename += '.gz'
return gzip.open(filename, 'wb')
elif bz:
if not filename.endswith('.bz2'):
filename += '.bz2'
return bz2.BZ2File(filename, 'w')
else:
return open(filename, 'w') | Returns a filewriter object that can write plain or gzipped output.
If gzip or bzip2 compression is asked for then the usual filename extension will be added. |
def glob_by_extensions(directory, extensions):
directorycheck(directory)
files = []
xt = files.extend
for ex in extensions:
xt(glob.glob('{0}/*.{1}'.format(directory, ex)))
return files | Returns files matched by all extensions in the extensions list |
def head(filename, n=10):
with freader(filename) as fr:
for _ in range(n):
print(fr.readline().strip()) | prints the top `n` lines of a file |
def locate_file(filename, env_var='', directory=''):
f = locate_by_env(filename, env_var) or locate_by_dir(filename, directory)
return os.path.abspath(f) if can_locate(f) else None | Locates a file given an environment variable or directory
:param filename: filename to search for
:param env_var: environment variable to look under
:param directory: directory to look in
:return: (string) absolute path to filename or None if not found |
def edge_length_check(length, edge):
try:
assert 0 <= length <= edge.length
except AssertionError:
if length < 0:
raise TreeError('Negative edge-lengths are disallowed')
raise TreeError(
'This edge isn\'t long enough to prune at length {0}\n'
'(Edge length = {1})'.format(length, edge.length)) | Raises error if length is not in interval [0, edge.length] |
def logn_correlated_rate(parent_rate, branch_length, autocorrel_param, size=1):
if autocorrel_param <= 0:
raise Exception('Autocorrelation parameter must be greater than 0')
variance = branch_length * autocorrel_param
stdev = np.sqrt(variance)
ln_descendant_rate = np.random.normal(np.log(parent_rate) - 0.5 * variance,
scale=stdev, size=size)
descendant_rate = np.exp(ln_descendant_rate)
return float(descendant_rate) if size == 1 else descendant_rate | The log of the descendent rate, ln(Rd), is ~ N(mu, bl*ac), where
the variance = bl*ac = branch_length * autocorrel_param, and mu is set
so that E[Rd] = Rp:
E[X] where ln(X) ~ N(mu, sigma^2) = exp(mu+(1/2)*sigma_sq)
so Rp = exp(mu+(1/2)*bl*ac),
ln(Rp) = mu + (1/2)*bl*ac,
ln(Rp) - (1/2)*bl*ac = mu,
so ln(Rd) ~ N(ln(Rp) - (1/2)*bl*ac, bl*ac)
(NB: Var[Rd] = Rp^2 * (exp(bl*ac)-1),
Std[Rd] = Rp * sqrt(exp(bl*ac)-1)
See: H Kishino, J L Thorne, and W J Bruno (2001) |
def _check_single_outgroup(self):
root_child_nodes = self.tree._tree.seed_node.child_nodes()
not_leaves = np.logical_not([n.is_leaf() for n in root_child_nodes])
if not_leaves[not_leaves].size <= 1:
return [root_child_nodes[np.where(not_leaves)[0]].edge]
return [] | If only one (or none) of the seed node children is not a leaf node
it is not possible to prune that edge and make a topology-changing
regraft. |
def prune(self, edge, length=None):
length = length or edge.length
edge_length_check(length, edge)
n = edge.head_node
self.tree._tree.prune_subtree(n, suppress_unifurcations=False)
n.edge_length = length
self.tree._dirty = True
return n | Prunes a subtree from the main Tree, retaining an edge length
specified by length (defaults to entire length). The length is sanity-
checked by edge_length_check, to ensure it is within the bounds
[0, edge.length].
Returns the basal node of the pruned subtree. |
def regraft(self, edge, node, length=None):
rootcheck(edge, 'SPR regraft is not allowed on the root edge')
length = length or edge.length / 2. # Length measured from head to tail
edge_length_check(length, edge)
t = edge.tail_node
h = edge.head_node
new = t.new_child(edge_length=edge.length - length)
t.remove_child(h)
new.add_child(h)
h.edge.length=length
new.add_child(node)
self.tree._dirty = True
self.tree._tree.encode_bipartitions(suppress_unifurcations=True) | Grafts a node onto an edge of the Tree, at a point specified by
length (defaults to middle of edge). |
def rspr(self, disallow_sibling_sprs=False,
keep_entire_edge=False, rescale=False):
starting_length = self.tree._tree.length()
excl = [self.tree._tree.seed_node.edge] # exclude r
if disallow_sibling_sprs:
excl.extend(self._check_single_outgroup())
prune_edge, l1 = self.tree.map_event_onto_tree(excl)
if keep_entire_edge:
l1 = prune_edge.length
prune_edge_child_nodes = prune_edge.head_node.preorder_iter()
excl.extend([node.edge for node in prune_edge_child_nodes])
if disallow_sibling_sprs:
sibs = [node.edge for node in prune_edge.head_node.sister_nodes()]
par = prune_edge.tail_node.edge
sibs.append(par)
for edge in sibs:
if edge not in excl:
excl.append(edge)
if set(self.tree._tree.preorder_edge_iter()) - set(excl) == set([]):
print(repr(self.tree))
print(self.tree._tree.as_ascii_plot())
# print(edges[prune_edge])
raise Exception('No non-sibling sprs available')
regraft_edge, l2 = self.tree.map_event_onto_tree(excl)
# edges, nodes, redges, rnodes = self.tree._name_things()
# print(edges[prune_edge], l1, edges[regraft_edge], l2)
self.spr(prune_edge, l1, regraft_edge, l2)
if rescale:
self.tree.scale(starting_length / self.tree.length())
self.tree._dirty = True | Random SPR, with prune and regraft edges chosen randomly, and
lengths drawn uniformly from the available edge lengths.
N1: disallow_sibling_sprs prevents sprs that don't alter the topology
of the tree |
def get_exchangeable_nodes(self, n):
parent = n.parent_node
a, b = random.sample(n.child_nodes(), 2)
if parent.parent_node is None:
if self.tree.rooted:
c, d = random.sample(n.sister_nodes()[0].child_nodes(), 2)
else:
c, d = random.sample(n.sister_nodes(), 2)
else:
c = random.choice(n.sister_nodes())
d = random.choice(parent.sister_nodes())
return a, b, c, d | A C | Subtrees A, B, C and D are the exchangeable nodes
\ / | around the edge headed by n
-->n | The NNI exchanges either A or B with either C or D
/ \
B D
A C C A | Subtree A is exchanged
\ / +NNI(A,C) \ / | with subtree C.
-->n ==========> -->n
/ \ / \
B D B D |
def get_children(self, inner_edge):
h = inner_edge.head_node
t = inner_edge.tail_node
if not self.tree._tree.seed_node == t:
original_seed = self.tree._tree.seed_node
self.tree._tree.reseed_at(t)
else:
original_seed = None
head_children = h.child_nodes()
tail_children = list(set(t.child_nodes()) - {h}) # See N1
if original_seed:
self.tree._tree.reseed_at(original_seed)
return {'head': head_children, 'tail': tail_children} | Given an edge in the tree, returns the child nodes of the head and
the tail nodes of the edge, for instance:
A C | A, B, C and D are the children of the edge --->,
\ / | C and D are the head node children, and A and B
t--->h | are the tail node children.
/ \
B D | Output: {'head': [<C>, <D>], 'tail': [<A>, <B>]}
N1: Edges are directional in dendropy trees. The head node of an
edge is automatically a child of the tail node, but we don't want this. |
def nni(
self,
edge,
head_subtree,
tail_subtree,
):
# This implementation works on unrooted Trees. If the input Tree is
# rooted, the ReversibleDeroot decorator will temporarily unroot the
# tree while the NNI is carried out
original_seed = self.tree._tree.seed_node
head = edge.head_node
tail = edge.tail_node
self.tree._tree.reseed_at(tail)
try:
assert head_subtree.parent_node == head
assert tail_subtree.parent_node == tail
except:
print(head, tail, head_subtree, tail_subtree)
raise
head.remove_child(head_subtree)
tail.remove_child(tail_subtree)
head.add_child(tail_subtree)
tail.add_child(head_subtree)
self.tree._tree.reseed_at(original_seed)
self.tree._tree.encode_bipartitions()
self.tree._dirty = True | *Inplace* Nearest-neighbour interchange (NNI) operation.
An edge in the tree has two or more subtrees at each end (ends are
designated 'head' and 'tail'). The NNI operation exchanges one of the
head subtrees for one of the tail subtrees, as follows:
A C C A | Subtree A is exchanged
\ / +NNI(A,C) \ / | with subtree C.
---> ==========> ---> |
/ \ / \ |
B D B D |
def rnni(self, use_weighted_choice=False, invert_weights=False):
if use_weighted_choice:
leaves = list(self.tree._tree.leaf_edge_iter())
e, _ = self.tree.map_event_onto_tree(excluded_edges=leaves, invert_weights=invert_weights)
else:
e = random.choice(self.tree.get_inner_edges())
children = self.get_children(e)
h = random.choice(children['head'])
t = random.choice(children['tail'])
self.nni(e, h, t) | Apply a random NNI operation at a randomly selected edge
The edge can be chosen uniformly, or weighted by length --
invert_weights favours short edges. |
def labels(self):
return set([n.taxon.label for n in self._tree.leaf_nodes()]) | Returns the taxon set of the tree (same as the label- or
leaf-set) |
def sample_labels(self, n):
if n >= len(self):
return self.labels
sample = random.sample(self.labels, n)
return set(sample) | Returns a set of n labels sampled from the labels of the tree
:param n: Number of labels to sample
:return: set of randomly sampled labels |
def newick(self):
n = self._tree.as_string('newick',
suppress_rooting=True,
suppress_internal_node_labels=True)
if n:
return n.strip(';\n') + ';'
return n | For more control the dendropy method self.as_string('newick', **kwargs)
can be used.
KWargs include:
suppress_internal_node_labels [True/False]
- turn on/off bootstrap labels
suppress_rooting [True/False]
- turn on/off [&U] or [&R] rooting
state labels
edge_label_compose_func
- function to convert edge lengths:
takes edge as arg, returns string |
def phylotree(self):
if not self._phylotree or self._dirty:
try:
if ISPY3:
self._phylotree = PhyloTree(self.newick.encode(), self.rooted)
else:
self._phylotree = PhyloTree(self.newick, self.rooted)
except ValueError:
logger.error('Couldn\'t convert to C++ PhyloTree -- are there bootstrap values?')
self._dirty = False
return self._phylotree | Get the c++ PhyloTree object corresponding to this tree.
:return: PhyloTree instance |
def bifurcate_base(cls, newick):
t = cls(newick)
t._tree.resolve_polytomies()
return t.newick | Rewrites a newick string so that the base is a bifurcation
(rooted tree) |
def trifurcate_base(cls, newick):
t = cls(newick)
t._tree.deroot()
return t.newick | Rewrites a newick string so that the base is a trifurcation
(usually means an unrooted tree) |
def get_inner_edges(self):
inner_edges = [e for e in self._tree.preorder_edge_iter() if e.is_internal()
and e.head_node and e.tail_node]
return inner_edges | Returns a list of the internal edges of the tree. |
def intersection(self, other):
taxa1 = self.labels
taxa2 = other.labels
return taxa1 & taxa2 | Returns the intersection of the taxon sets of two Trees |
def postorder(self, skip_seed=False):
for node in self._tree.postorder_node_iter():
if skip_seed and node is self._tree.seed_node:
continue
yield node | Return a generator that yields the nodes of the tree in postorder.
If skip_seed=True then the root node is not included. |
def preorder(self, skip_seed=False):
for node in self._tree.preorder_node_iter():
if skip_seed and node is self._tree.seed_node:
continue
yield node | Return a generator that yields the nodes of the tree in preorder.
If skip_seed=True then the root node is not included. |
def prune_to_subset(self, subset, inplace=False):
if not subset.issubset(self.labels):
print('"subset" is not a subset')
return
if not inplace:
t = self.copy()
else:
t = self
t._tree.retain_taxa_with_labels(subset)
t._tree.encode_bipartitions()
t._dirty = True
return t | Prunes the Tree to just the taxon set given in `subset` |
def randomise_branch_lengths(
self,
i=(1, 1),
l=(1, 1),
distribution_func=random.gammavariate,
inplace=False,
):
if not inplace:
t = self.copy()
else:
t = self
for n in t._tree.preorder_node_iter():
if n.is_internal():
n.edge.length = max(0, distribution_func(*i))
else:
n.edge.length = max(0, distribution_func(*l))
t._dirty = True
return t | Replaces branch lengths with values drawn from the specified
distribution_func. Parameters of the distribution are given in the
tuples i and l, for interior and leaf nodes respectively. |
def randomise_labels(
self,
inplace=False,
):
if not inplace:
t = self.copy()
else:
t = self
names = list(t.labels)
random.shuffle(names)
for l in t._tree.leaf_node_iter():
l.taxon._label = names.pop()
t._dirty = True
return t | Shuffles the leaf labels, but doesn't alter the tree structure |
def reversible_deroot(self):
root_edge = self._tree.seed_node.edge
lengths = dict([(edge, edge.length) for edge
in self._tree.seed_node.incident_edges() if edge is not root_edge])
self._tree.deroot()
reroot_edge = (set(self._tree.seed_node.incident_edges())
& set(lengths.keys())).pop()
self._tree.encode_bipartitions()
self._dirty = True
return (reroot_edge, reroot_edge.length - lengths[reroot_edge],
lengths[reroot_edge]) | Stores info required to restore rootedness to derooted Tree. Returns
the edge that was originally rooted, the length of e1, and the length
of e2.
Dendropy Derooting Process:
In a rooted tree the root node is bifurcating. Derooting makes it
trifurcating.
Call the two edges leading out of the root node e1 and e2.
Derooting with Tree.deroot() deletes one of e1 and e2 (let's say e2),
and stretches the other to the sum of their lengths. Call this e3.
Rooted tree: Derooted tree:
A A B
|_ B \ /
/ |
/e1 |e3 (length = e1+e2; e2 is deleted)
Root--o ===> |
\e2 Root--o _ C
\ _ C |
| D
D
Reverse this with Tree.reroot_at_edge(edge, length1, length2, ...) |
def autocorrelated_relaxed_clock(self, root_rate, autocorrel,
distribution='lognormal'):
optioncheck(distribution, ['exponential', 'lognormal'])
if autocorrel == 0:
for node in self._tree.preorder_node_iter():
node.rate = root_rate
return
for node in self._tree.preorder_node_iter():
if node == self._tree.seed_node:
node.rate = root_rate
else:
parent_rate = node.parent_node.rate
bl = node.edge_length
if distribution == 'lognormal':
node.rate = logn_correlated_rate(parent_rate, bl,
autocorrel)
else:
node.rate = np.random.exponential(parent_rate) | Attaches rates to each node according to autocorrelated lognormal
model from Kishino et al.(2001), or autocorrelated exponential |
def rlgt(self, time=None, times=1,
disallow_sibling_lgts=False):
lgt = LGT(self.copy())
for _ in range(times):
lgt.rlgt(time, disallow_sibling_lgts)
return lgt.tree | Uses class LGT to perform random lateral gene transfer on
ultrametric tree |
def rnni(self, times=1, **kwargs):
nni = NNI(self.copy())
for _ in range(times):
nni.rnni(**kwargs)
# nni.reroot_tree()
return nni.tree | Applies a NNI operation on a randomly chosen edge.
keyword args: use_weighted_choice (True/False) weight the random edge selection by edge length
transform (callable) transforms the edges using this function, prior to weighted selection |
def rspr(self, times=1, **kwargs):
spr = SPR(self.copy())
for _ in range(times):
spr.rspr(**kwargs)
return spr.tree | Random SPR, with prune and regraft edges chosen randomly, and
lengths drawn uniformly from the available edge lengths.
N1: disallow_sibling_sprs prevents sprs that don't alter the topology
of the tree |
def scale(self, factor, inplace=True):
if not inplace:
t = self.copy()
else:
t = self
t._tree.scale_edges(factor)
t._dirty = True
return t | Multiplies all branch lengths by factor. |
def strip(self, inplace=False):
if not inplace:
t = self.copy()
else:
t = self
for e in t._tree.preorder_edge_iter():
e.length = None
t._dirty = True
return t | Sets all edge lengths to None |
def translate(self, dct):
new_tree = self.copy()
for leaf in new_tree._tree.leaf_node_iter():
curr_name = leaf.taxon.label
leaf.taxon.label = dct.get(curr_name, curr_name)
return new_tree | Translate leaf names using a dictionary of names
:param dct: Dictionary of current names -> updated names
:return: Copy of tree with names changed |
def _name_things(self):
edges = {}
nodes = {None: 'root'}
for n in self._tree.postorder_node_iter():
nodes[n] = '.'.join([str(x.taxon) for x in n.leaf_nodes()])
for e in self._tree.preorder_edge_iter():
edges[e] = ' ---> '.join([nodes[e.tail_node], nodes[e.head_node]])
r_edges = {value: key for key, value in edges.items()}
r_nodes = {value: key for key, value in nodes.items()}
return edges, nodes, r_edges, r_nodes | Easy names for debugging |
def gene_tree(
self,
scale_to=None,
population_size=1,
trim_names=True,
):
tree = self.template or self.yule()
for leaf in tree._tree.leaf_node_iter():
leaf.num_genes = 1
dfr = tree._tree.seed_node.distance_from_root()
dft = tree._tree.seed_node.distance_from_tip()
tree_height = dfr + dft
if scale_to:
population_size = tree_height / scale_to
for edge in tree._tree.preorder_edge_iter():
edge.pop_size = population_size
gene_tree = dpy.simulate.treesim.constrained_kingman_tree(tree._tree)[0]
if trim_names:
for leaf in gene_tree.leaf_node_iter():
leaf.taxon.label = leaf.taxon.label.replace('\'', '').split('_')[0]
# Dendropy changed its API
return {'gene_tree': tree.__class__(gene_tree.as_string('newick', suppress_rooting=True).strip(';\n') + ';'),
'species_tree': tree} | Using the current tree object as a species tree, generate a gene
tree using the constrained Kingman coalescent process from dendropy. The
species tree should probably be a valid, ultrametric tree, generated by
some pure birth, birth-death or coalescent process, but no checks are
made. Optional kwargs are: -- scale_to, which is a floating point value
to scale the total tree tip-to-root length to, -- population_size, which
is a floating point value which all branch lengths will be divided by to
convert them to coalescent units, and -- trim_names, boolean, defaults
to true, trims off the number which dendropy appends to the sequence
name |
def fit(self, ini_betas=None, tol=1.0e-6, max_iter=200, solve='iwls'):
self.fit_params['ini_betas'] = ini_betas
self.fit_params['tol'] = tol
self.fit_params['max_iter'] = max_iter
self.fit_params['solve'] = solve
if solve.lower() == 'iwls':
params, predy, w, n_iter = iwls(
self.y, self.X, self.family, self.offset, self.y_fix, ini_betas, tol, max_iter)
self.fit_params['n_iter'] = n_iter
return GLMResults(self, params.flatten(), predy, w) | Method that fits a model with a particular estimation routine.
Parameters
----------
ini_betas : array
k*1, initial coefficient values, including constant.
Default is None, which calculates initial values during
estimation.
tol: float
Tolerence for estimation convergence.
max_iter : integer
Maximum number of iterations if convergence not
achieved.
solve :string
Technique to solve MLE equations.
'iwls' = iteratively (re)weighted least squares (default) |
def deriv2(self, p):
from statsmodels.tools.numdiff import approx_fprime_cs
# TODO: workaround proplem with numdiff for 1d
return np.diag(approx_fprime_cs(p, self.deriv)) | Second derivative of the link function g''(p)
implemented through numerical differentiation |
def inverse(self, z):
z = np.asarray(z)
t = np.exp(-z)
return 1. / (1. + t) | Inverse of the logit transform
Parameters
----------
z : array-like
The value of the logit transform at `p`
Returns
-------
p : array
Probabilities
Notes
-----
g^(-1)(z) = exp(z)/(1+exp(z)) |
def inverse(self, z):
p = np.power(z, 1. / self.power)
return p | Inverse of the power transform link function
Parameters
----------
`z` : array-like
Value of the transformed mean parameters at `p`
Returns
-------
`p` : array
Mean parameters
Notes
-----
g^(-1)(z`) = `z`**(1/`power`) |
def deriv(self, p):
return self.power * np.power(p, self.power - 1) | Derivative of the power transform
Parameters
----------
p : array-like
Mean parameters
Returns
--------
g'(p) : array
Derivative of power transform of `p`
Notes
-----
g'(`p`) = `power` * `p`**(`power` - 1) |
def deriv2(self, p):
return self.power * (self.power - 1) * np.power(p, self.power - 2) | Second derivative of the power transform
Parameters
----------
p : array-like
Mean parameters
Returns
--------
g''(p) : array
Second derivative of the power transform of `p`
Notes
-----
g''(`p`) = `power` * (`power` - 1) * `p`**(`power` - 2) |
def inverse_deriv(self, z):
return np.power(z, (1 - self.power)/self.power) / self.power | Derivative of the inverse of the power transform
Parameters
----------
z : array-like
`z` is usually the linear predictor for a GLM or GEE model.
Returns
-------
g^(-1)'(z) : array
The value of the derivative of the inverse of the power transform
function |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.