code
stringlengths
52
7.75k
docs
stringlengths
1
5.85k
def open(path, vcs=None): import os assert os.path.isdir(path), path + ' is not a directory' vcs = vcs or probe(path) cls = _get_repo_class(vcs) return cls(path)
Open an existing repository :param str path: The path of the repository :param vcs: If specified, assume the given repository type to avoid auto-detection. Either ``git``, ``hg``, or ``svn``. :raises UnknownVCSType: if the repository type couldn't be inferred If ``vcs`` is not specified, it is inferred via :func:`probe`.
def _check_attributes(self, attributes, extra=None): extra = extra or () unknown_keys = set(attributes) - set(self._possible_attributes) - set(extra) if unknown_keys: logger.warning('%s got unknown attributes: %s' % (self.__class__.__name__, unknown_keys))
Check if attributes given to the constructor can be used to instanciate a valid node.
def get(self, name, strict=True): if not isinstance(name, str) or name.startswith('_'): raise AttributeError(self.__class__.__name__, name) elif strict and name not in self._possible_attributes: raise AttributeError('%s is not a valid attribute of %r.' % (name, self)) elif name in self._attributes: return self._attributes[name] else: raise exceptions.AttributeNotProvided(name)
Get an attribute of the holder (read-only access).
def addMonths(date, months): # map from Qt information if type(date).__name__ in ('QDate', 'QDateTime', 'QTime'): date = date.toPython() mult = months / abs(months) years = mult * (abs(months) / 12) months = mult * (abs(months) % 12) # calculate the new month month = date.month + months if month < 1: years -= 1 month = 12 - month elif 12 < month: years += 1 month %= 12 # calculate the new year year = date.year + years # calculate the new day check = datetime.date(year, month, 1) days = daysInMonth(check) return datetime.date(year, month, min(date.day, days))
Returns the new date based on the inputted months. :param date | <datetime.date> months | <int> :return <datetime.date>
def addYears(date, years): # map from Qt information if type(date).__name__ in ('QDate', 'QDateTime', 'QTime'): date = date.toPython() return datetime.date(date.year + years, date.month, date.day)
Returns the new date based on the inputted number of years. :param date | <datetime.date> years | <int> :return <datetime.date>
def daysInMonth(date): # map from Qt information if type(date).__name__ in ('QDate', 'QDateTime', 'QTime'): date = date.toPython() month = date.month # look for a leap year if month == 2 and not date.year % 4: return 29 return DaysInMonth.get(month, -1)
Returns the number of the days in the month for the given date. This will take into account leap years based on the inputted date's year. :param date | <datetime.date> :return <int>
def daysInYear(date): # map from Qt information if type(date).__name__ in ('QDate', 'QDateTime', 'QTime'): date = date.toPython() if type(date) != int: year = date.year else: year = date if not year % 4: return 366 return 365
Returns the number of days in the year for the given date. :param date | <datetime.date> || <int> :return <int>
def displayName(date, options=None, format='%b %d, %Y'): # map from Qt information if type(date).__name__ in ('QDate', 'QDateTime', 'QTime'): date = date.toPython() if isinstance(date, datetime.datetime): time = ' @ ' + date.strftime('%I:%M%p').strip('0M').lower() date = date.date() else: time = '' today = datetime.date.today() delta = date - today if delta.days == 0: return 'Today' + time elif delta.days == -1: return 'Yesterday' + time elif delta.days == 1: return 'Tomorrow' + time elif abs(delta.days) < 8: # look for different weeks if date.isocalendar()[1] != today.isocalendar()[1]: qualifier = 'Last ' if delta.days < 0 else 'Next ' else: qualifier = '' return qualifier + date.strftime('%A') + time else: return date.strftime(format)
Returns the display name for the inputted date, given the list of options. :param date | <datetime.date> options | <projex.dates.Names> format | <str> :return <str>
def weekdays(start, end): # don't bother calculating anything for the same inputted date if start == end: return int(start.isoweekday() not in (6, 7)) elif end < start: return -weekdays(end, start) else: strt_weekday = start.isoweekday() end_weekday = end.isoweekday() # calculate in the positive direction if end < start: return -weekdays(end, start) # calculate from the monday after the start if 5 < strt_weekday: start = start + datetime.timedelta(days=8 - strt_weekday) # calculate from the friday before the end if 5 < end_weekday: end = end - datetime.timedelta(days=end_weekday - 5) remainder = end.isoweekday() - start.isoweekday() end = end - datetime.timedelta(days=remainder) # if the end is now before the start, then both dates fell on a weekend if end < start: return 0 # otherwise, if the dates normalized to each other, then return the # remainder elif end == start: return remainder + 1 # remove the number of weekends from the start and end dates days = ((end - start).days + 1) total_days = abs(days) multiplier = days / total_days weekends = int(round(total_days / 7.0) * 2) week_days = ((total_days - weekends) + remainder) * multiplier return week_days
Returns the number of weekdays between the inputted start and end dates. This would be the equivalent of doing (end - start) to get the number of calendar days between the two dates. :param start | <datetime.date> end | <datetime.date> :return <int>
def main(args=None): if args is None: args = tag.cli.parser().parse_args() assert args.cmd in mains mainmethod = mains[args.cmd] mainmethod(args)
Entry point for the tag CLI. Isolated as a method so that the CLI can be called by other Python code (e.g. for testing), in which case the arguments are passed to the function. If no arguments are passed to the function, parse them from the command line.
def _build_request(request): msg = bytes([request['cmd']]) if 'dest' in request: msg += bytes([request['dest']]) else: msg += b'\0' if 'sha' in request: msg += request['sha'] else: for dummy in range(64): msg += b'0' logging.debug("Request (%d): %s", len(msg), msg) return msg
Build message to transfer over the socket from a request.
def main(): __async__ = True logging.basicConfig(format="%(levelname)-10s %(message)s", level=logging.DEBUG) if len(sys.argv) != 2: logging.error("Must specify configuration file") sys.exit() config = configparser.ConfigParser() config.read(sys.argv[1]) password = config.get('default', 'password') if __async__: client = Client(config.get('default', 'host'), config.getint('default', 'port'), password, _callback) else: client = Client(config.get('default', 'host'), config.getint('default', 'port'), password) status = client.messages() msg = status[0] print(msg) print(client.mp3(msg['sha'].encode('utf-8'))) while True: continue
Show example using the API.
def start(self): if not self._thread: logging.info("Starting asterisk mbox thread") # Ensure signal queue is empty try: while True: self.signal.get(False) except queue.Empty: pass self._thread = threading.Thread(target=self._loop) self._thread.setDaemon(True) self._thread.start()
Start thread.
def stop(self): if self._thread: self.signal.put("Stop") self._thread.join() if self._soc: self._soc.shutdown() self._soc.close() self._thread = None
Stop thread.
def _connect(self): self._soc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._soc.connect((self._ipaddr, self._port)) self._soc.send(_build_request({'cmd': cmd.CMD_MESSAGE_PASSWORD, 'sha': self._password}))
Connect to server.
def _recv_msg(self): command = ord(recv_blocking(self._soc, 1)) msglen = recv_blocking(self._soc, 4) msglen = ((msglen[0] << 24) + (msglen[1] << 16) + (msglen[2] << 8) + msglen[3]) msg = recv_blocking(self._soc, msglen) return command, msg
Read a message from the server.
def _loop(self): request = {} connected = False while True: timeout = None sockets = [self.request_queue, self.signal] if not connected: try: self._clear_request(request) self._connect() self._soc.send(_build_request( {'cmd': cmd.CMD_MESSAGE_LIST})) self._soc.send(_build_request( {'cmd': cmd.CMD_MESSAGE_CDR_AVAILABLE})) connected = True except ConnectionRefusedError: timeout = 5.0 if connected: sockets.append(self._soc) readable, _writable, _errored = select.select( sockets, [], [], timeout) if self.signal in readable: break if self._soc in readable: # We have incoming data try: command, msg = self._recv_msg() self._handle_msg(command, msg, request) except (RuntimeError, ConnectionResetError): logging.warning("Lost connection") connected = False self._clear_request(request) if self.request_queue in readable: request = self.request_queue.get() self.request_queue.task_done() if not connected: self._clear_request(request) else: if (request['cmd'] == cmd.CMD_MESSAGE_LIST and self._status and (not self._callback or 'sync' in request)): self.result_queue.put( [cmd.CMD_MESSAGE_LIST, self._status]) request = {} else: self._soc.send(_build_request(request))
Handle data.
def mp3(self, sha, **kwargs): return self._queue_msg({'cmd': cmd.CMD_MESSAGE_MP3, 'sha': _get_bytes(sha)}, **kwargs)
Get raw MP3 of a message.
def delete(self, sha, **kwargs): return self._queue_msg({'cmd': cmd.CMD_MESSAGE_DELETE, 'sha': _get_bytes(sha)}, **kwargs)
Delete a message.
def get_cdr(self, start=0, count=-1, **kwargs): sha = encode_to_sha("{:d},{:d}".format(start, count)) return self._queue_msg({'cmd': cmd.CMD_MESSAGE_CDR, 'sha': sha}, **kwargs)
Request range of CDR messages
def path(self) -> Path: args = list(self._iter_translated_field_names(self.get_path_pattern_list())) args.append(self.get_name()) return Path(*args)
A Path for this name object joining field names from `self.get_path_pattern_list` with this object's name
def fold(self, predicate): childs = {x:y.fold(predicate) for (x,y) in self._attributes.items() if isinstance(y, SerializableTypedAttributesHolder)} return predicate(self, childs)
Takes a predicate and applies it to each node starting from the leaves and making the return value propagate.
def the_one(cls): if cls.THE_ONE is None: cls.THE_ONE = cls(settings.HELP_TOKENS_INI_FILE) return cls.THE_ONE
Get the single global HelpUrlExpert object.
def get_config_value(self, section_name, option, default_option="default"): if self.config is None: self.config = configparser.ConfigParser() self.config.read(self.ini_file_name) if option: try: return self.config.get(section_name, option) except configparser.NoOptionError: log.debug( "Didn't find a configuration option for '%s' section and '%s' option", section_name, option, ) return self.config.get(section_name, default_option)
Read a value from the configuration, with a default. Args: section_name (str): name of the section in the configuration from which the option should be found. option (str): name of the configuration option. default_option (str): name of the default configuration option whose value should be returned if the requested option is not found. Returns: str: the value from the ini file.
def url_for_token(self, token): book_url = self.get_config_value("pages", token) book, _, url_tail = book_url.partition(':') book_base = settings.HELP_TOKENS_BOOKS[book] url = book_base lang = getattr(settings, "HELP_TOKENS_LANGUAGE_CODE", None) if lang is not None: lang = self.get_config_value("locales", lang) url += "/" + lang version = getattr(settings, "HELP_TOKENS_VERSION", None) if version is not None: url += "/" + version url += "/" + url_tail return url
Find the full URL for a help token.
def search_data_std(Channel, RunNos, RepeatNos, directoryPath='.'): files = glob('{}/*'.format(directoryPath)) files_CorrectChannel = [] for file_ in files: if 'CH{}'.format(Channel) in file_: files_CorrectChannel.append(file_) files_CorrectRunNo = [] for RunNo in RunNos: files_match = _fnmatch.filter( files_CorrectChannel, '*RUN*0{}_*'.format(RunNo)) for file_ in files_match: files_CorrectRunNo.append(file_) files_CorrectRepeatNo = [] for RepeatNo in RepeatNos: files_match = _fnmatch.filter( files_CorrectRunNo, '*REPEAT*0{}.*'.format(RepeatNo)) for file_ in files_match: files_CorrectRepeatNo.append(file_) return files_CorrectRepeatNo
Lets you find multiple datasets at once assuming they have a filename which contains a pattern of the form: CH<ChannelNo>_RUN00...<RunNo>_REPEAT00...<RepeatNo> Parameters ---------- Channel : int The channel you want to load RunNos : sequence Sequence of run numbers you want to load RepeatNos : sequence Sequence of repeat numbers you want to load directoryPath : string, optional The path to the directory housing the data The default is the current directory Returns ------- Data_filepaths : list A list containing the filepaths to the matching files
def multi_load_data(Channel, RunNos, RepeatNos, directoryPath='.', calcPSD=True, NPerSegmentPSD=1000000): matching_files = search_data_std(Channel=Channel, RunNos=RunNos, RepeatNos=RepeatNos, directoryPath=directoryPath) #data = [] #for filepath in matching_files_: # data.append(load_data(filepath, calcPSD=calcPSD, NPerSegmentPSD=NPerSegmentPSD)) cpu_count = _cpu_count() workerPool = _Pool(cpu_count) load_data_partial = _partial(load_data, calcPSD=calcPSD, NPerSegmentPSD=NPerSegmentPSD) data = workerPool.map(load_data_partial, matching_files) workerPool.close() workerPool.terminate() workerPool.join() #with _Pool(cpu_count) as workerPool: #load_data_partial = _partial(load_data, calcPSD=calcPSD, NPerSegmentPSD=NPerSegmentPSD) #data = workerPool.map(load_data_partial, files_CorrectRepeatNo) return data
Lets you load multiple datasets at once assuming they have a filename which contains a pattern of the form: CH<ChannelNo>_RUN00...<RunNo>_REPEAT00...<RepeatNo> Parameters ---------- Channel : int The channel you want to load RunNos : sequence Sequence of run numbers you want to load RepeatNos : sequence Sequence of repeat numbers you want to load directoryPath : string, optional The path to the directory housing the data The default is the current directory Returns ------- Data : list A list containing the DataObjects that were loaded.
def multi_load_data_custom(Channel, TraceTitle, RunNos, directoryPath='.', calcPSD=True, NPerSegmentPSD=1000000): # files = glob('{}/*'.format(directoryPath)) # files_CorrectChannel = [] # for file_ in files: # if 'C{}'.format(Channel) in file_: # files_CorrectChannel.append(file_) # files_CorrectRunNo = [] # for RunNo in RunNos: # files_match = _fnmatch.filter( # files_CorrectChannel, '*C{}'.format(Channel)+TraceTitle+str(RunNo).zfill(5)+'.*') # for file_ in files_match: # files_CorrectRunNo.append(file_) matching_files = search_data_custom(Channel, TraceTitle, RunNos, directoryPath) cpu_count = _cpu_count() workerPool = _Pool(cpu_count) # for filepath in files_CorrectRepeatNo: # print(filepath) # data.append(load_data(filepath)) load_data_partial = _partial(load_data, calcPSD=calcPSD, NPerSegmentPSD=NPerSegmentPSD) data = workerPool.map(load_data_partial, matching_files) workerPool.close() workerPool.terminate() workerPool.join() return data
Lets you load multiple datasets named with the LeCroy's custom naming scheme at once. Parameters ---------- Channel : int The channel you want to load TraceTitle : string The custom trace title of the files. RunNos : sequence Sequence of run numbers you want to load RepeatNos : sequence Sequence of repeat numbers you want to load directoryPath : string, optional The path to the directory housing the data The default is the current directory Returns ------- Data : list A list containing the DataObjects that were loaded.
def search_data_custom(Channel, TraceTitle, RunNos, directoryPath='.'): files = glob('{}/*'.format(directoryPath)) files_CorrectChannel = [] for file_ in files: if 'C{}'.format(Channel) in file_: files_CorrectChannel.append(file_) files_CorrectRunNo = [] for RunNo in RunNos: files_match = _fnmatch.filter( files_CorrectChannel, '*C{}'.format(Channel)+TraceTitle+str(RunNo).zfill(5)+'.*') for file_ in files_match: files_CorrectRunNo.append(file_) print("loading the following files: {}".format(files_CorrectRunNo)) paths = files_CorrectRunNo return paths
Lets you create a list with full file paths of the files named with the LeCroy's custom naming scheme. Parameters ---------- Channel : int The channel you want to load TraceTitle : string The custom trace title of the files. RunNos : sequence Sequence of run numbers you want to load RepeatNos : sequence Sequence of repeat numbers you want to load directoryPath : string, optional The path to the directory housing the data The default is the current directory Returns ------- Paths : list A list containing the full file paths of the files you were looking for.
def calc_temp(Data_ref, Data): T = 300 * ((Data.A * Data_ref.Gamma) / (Data_ref.A * Data.Gamma)) Data.T = T return T
Calculates the temperature of a data set relative to a reference. The reference is assumed to be at 300K. Parameters ---------- Data_ref : DataObject Reference data set, assumed to be 300K Data : DataObject Data object to have the temperature calculated for Returns ------- T : uncertainties.ufloat The temperature of the data set
def calc_gamma_components(Data_ref, Data): A_prime = Data_ref.A/Data_ref.Gamma Gamma0 = Data.A/A_prime delta_Gamma = Data.Gamma - Gamma0 return Gamma0, delta_Gamma
Calculates the components of Gamma (Gamma0 and delta_Gamma), assuming that the Data_ref is uncooled data (ideally at 3mbar for best fitting). It uses the fact that A_prime=A/Gamma0 should be constant for a particular particle under changes in pressure and therefore uses the reference save to calculate A_prime (assuming the Gamma value found for the uncooled data is actually equal to Gamma0 since only collisions should be causing the damping. Therefore for the cooled data Gamma0 should equal A/A_prime and therefore we can extract Gamma0 and delta_Gamma. A_prime = ConvFactor**2 * (2*k_B*T0/(pi*m)) Parameters ---------- Data_ref : DataObject Reference data set, assumed to be 300K Data : DataObject Data object to have the temperature calculated for Returns ------- Gamma0 : uncertainties.ufloat Damping due to the environment delta_Gamma : uncertainties.ufloat Damping due to other effects (e.g. feedback cooling)
def fit_curvefit(p0, datax, datay, function, **kwargs): pfit, pcov = \ _curve_fit(function, datax, datay, p0=p0, epsfcn=0.0001, **kwargs) error = [] for i in range(len(pfit)): try: error.append(_np.absolute(pcov[i][i])**0.5) except: error.append(_np.NaN) pfit_curvefit = pfit perr_curvefit = _np.array(error) return pfit_curvefit, perr_curvefit
Fits the data to a function using scipy.optimise.curve_fit Parameters ---------- p0 : array_like initial parameters to use for fitting datax : array_like x data to use for fitting datay : array_like y data to use for fitting function : function funcion to be fit to the data kwargs keyword arguments to be passed to scipy.optimise.curve_fit Returns ------- pfit_curvefit : array Optimal values for the parameters so that the sum of the squared residuals of ydata is minimized perr_curvefit : array One standard deviation errors in the optimal values for the parameters
def moving_average(array, n=3): ret = _np.cumsum(array, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n
Calculates the moving average of an array. Parameters ---------- array : array The array to have the moving average taken of n : int The number of points of moving average to take Returns ------- MovingAverageArray : array The n-point moving average of the input array
def take_closest(myList, myNumber): pos = _bisect_left(myList, myNumber) if pos == 0: return myList[0] if pos == len(myList): return myList[-1] before = myList[pos - 1] after = myList[pos] if after - myNumber < myNumber - before: return after else: return before
Assumes myList is sorted. Returns closest value to myNumber. If two numbers are equally close, return the smallest number. Parameters ---------- myList : array The list in which to find the closest value to myNumber myNumber : float The number to find the closest to in MyList Returns ------- closestValue : float The number closest to myNumber in myList
def _position_autocorrelation_fitting_eqn(t, Gamma, AngTrapFreq): return _np.exp(-t*Gamma/2)* ( _np.cos(t* _np.sqrt(AngTrapFreq**2-Gamma**2/4)) + Gamma* _np.sin(t* _np.sqrt(AngTrapFreq**2-Gamma**2/4))/(2* _np.sqrt(AngTrapFreq**2-Gamma**2/4)) )
The value of the fitting equation: exp(-t*Gamma/2) * (cos(t* sqrt(Omega**2 - Gamma**2 /4)) + Gamma* sin(t* sqrt(Omega**2-Gamma**2 /4))/(2* sqrt(Omega**2 - Gamma**2 /4))) [eqn 4.20 taken from DOI: DOI: 10.1007/978-1-4614-6031-2] to be fit to the autocorrelation-exponential decay Parameters ---------- t : float time Gamma : float Big Gamma (in radians), i.e. damping AngTrapFreq : float Angular Trapping Frequency in Radians Returns ------- Value : float The value of the fitting equation
def PSD_fitting_eqn(A, OmegaTrap, Gamma, omega): return A / ((OmegaTrap**2 - omega**2)**2 + omega**2 * (Gamma)**2)
The value of the fitting equation: A / ((OmegaTrap**2 - omega**2)**2 + (omega * Gamma)**2) to be fit to the PSD Parameters ---------- A : float Fitting constant A A = γ**2*Γ_0*(2*K_b*T_0)/(π*m) where: γ = conversionFactor Γ_0 = Damping factor due to environment π = pi OmegaTrap : float The trapping frequency in the axis of interest (in angular frequency) Gamma : float The damping factor Gamma = Γ = Γ_0 + δΓ where: Γ_0 = Damping factor due to environment δΓ = extra damping due to feedback or other effects omega : float The angular frequency to calculate the value of the fitting equation at Returns ------- Value : float The value of the fitting equation
def PSD_fitting_eqn_with_background(A, OmegaTrap, Gamma, FlatBackground, omega): return A / ((OmegaTrap**2 - omega**2)**2 + omega**2 * (Gamma)**2) + FlatBackground
The value of the fitting equation: A / ((OmegaTrap**2 - omega**2)**2 + (omega * Gamma)**2) + FlatBackground to be fit to the PSD Parameters ---------- A : float Fitting constant A A = γ**2*Γ_0*(2*K_b*T_0)/(π*m) where: γ = conversionFactor Γ_0 = Damping factor due to environment π = pi OmegaTrap : float The trapping frequency in the axis of interest (in angular frequency) Gamma : float The damping factor Gamma = Γ = Γ_0 + δΓ where: Γ_0 = Damping factor due to environment δΓ = extra damping due to feedback or other effects FlatBackground : float Adds a constant offset to the peak to account for a flat noise background omega : float The angular frequency to calculate the value of the fitting equation at Returns ------- Value : float The value of the fitting equation
def get_ZXY_freqs(Data, zfreq, xfreq, yfreq, bandwidth=5000): trapfreqs = [] for freq in [zfreq, xfreq, yfreq]: z_f_fit_lower = take_closest(Data.freqs, freq - bandwidth / 2) z_f_fit_upper = take_closest(Data.freqs, freq + bandwidth / 2) z_indx_fit_lower = int(_np.where(Data.freqs == z_f_fit_lower)[0][0]) z_indx_fit_upper = int(_np.where(Data.freqs == z_f_fit_upper)[0][0]) z_index_OmegaTrap = _np.where(Data.PSD == max( Data.PSD[z_indx_fit_lower:z_indx_fit_upper]))[0][0] # find highest point in region about guess for trap frequency # use that as guess for trap frequency and recalculate region # about the trap frequency z_OmegaTrap = Data.freqs[z_index_OmegaTrap] trapfreqs.append(z_OmegaTrap) return trapfreqs
Determines the exact z, x and y peak frequencies from approximate frequencies by finding the highest peak in the PSD "close to" the approximate peak frequency. By "close to" I mean within the range: approxFreq - bandwidth/2 to approxFreq + bandwidth/2 Parameters ---------- Data : DataObject DataObject containing the data for which you want to determine the z, x and y frequencies. zfreq : float An approximate frequency for the z peak xfreq : float An approximate frequency for the z peak yfreq : float An approximate frequency for the z peak bandwidth : float, optional The bandwidth around the approximate peak to look for the actual peak. The default value is 5000 Returns ------- trapfreqs : list List containing the trap frequencies in the following order (z, x, y)
def IFFT_filter(Signal, SampleFreq, lowerFreq, upperFreq, PyCUDA = False): if PyCUDA==True: Signalfft=calc_fft_with_PyCUDA(Signal) else: print("starting fft") Signalfft = scipy.fftpack.fft(Signal) print("starting freq calc") freqs = _np.fft.fftfreq(len(Signal)) * SampleFreq print("starting bin zeroing") Signalfft[_np.where(freqs < lowerFreq)] = 0 Signalfft[_np.where(freqs > upperFreq)] = 0 if PyCUDA==True: FilteredSignal = 2 * calc_ifft_with_PyCUDA(Signalfft) else: print("starting ifft") FilteredSignal = 2 * scipy.fftpack.ifft(Signalfft) print("done") return _np.real(FilteredSignal)
Filters data using fft -> zeroing out fft bins -> ifft Parameters ---------- Signal : ndarray Signal to be filtered SampleFreq : float Sample frequency of signal lowerFreq : float Lower frequency of bandpass to allow through filter upperFreq : float Upper frequency of bandpass to allow through filter PyCUDA : bool, optional If True, uses PyCUDA to accelerate the FFT and IFFT via using your NVIDIA-GPU If False, performs FFT and IFFT with conventional scipy.fftpack Returns ------- FilteredData : ndarray Array containing the filtered data
def calc_fft_with_PyCUDA(Signal): print("starting fft") Signal = Signal.astype(_np.float32) Signal_gpu = _gpuarray.to_gpu(Signal) Signalfft_gpu = _gpuarray.empty(len(Signal)//2+1,_np.complex64) plan = _Plan(Signal.shape,_np.float32,_np.complex64) _fft(Signal_gpu, Signalfft_gpu, plan) Signalfft = Signalfft_gpu.get() #only 2N+1 long Signalfft = _np.hstack((Signalfft,_np.conj(_np.flipud(Signalfft[1:len(Signal)//2])))) print("fft done") return Signalfft
Calculates the FFT of the passed signal by using the scikit-cuda libary which relies on PyCUDA Parameters ---------- Signal : ndarray Signal to be transformed into Fourier space Returns ------- Signalfft : ndarray Array containing the signal's FFT
def calc_ifft_with_PyCUDA(Signalfft): print("starting ifft") Signalfft = Signalfft.astype(_np.complex64) Signalfft_gpu = _gpuarray.to_gpu(Signalfft[0:len(Signalfft)//2+1]) Signal_gpu = _gpuarray.empty(len(Signalfft),_np.float32) plan = _Plan(len(Signalfft),_np.complex64,_np.float32) _ifft(Signalfft_gpu, Signal_gpu, plan) Signal = Signal_gpu.get()/(2*len(Signalfft)) #normalising as CUDA IFFT is un-normalised print("ifft done") return Signal
Calculates the inverse-FFT of the passed FFT-signal by using the scikit-cuda libary which relies on PyCUDA Parameters ---------- Signalfft : ndarray FFT-Signal to be transformed into Real space Returns ------- Signal : ndarray Array containing the ifft signal
def butterworth_filter(Signal, SampleFreq, lowerFreq, upperFreq): b, a = make_butterworth_b_a(lowerFreq, upperFreq, SampleFreq) FilteredSignal = scipy.signal.filtfilt(b, a, Signal) return _np.real(FilteredSignal)
Filters data using by constructing a 5th order butterworth IIR filter and using scipy.signal.filtfilt, which does phase correction after implementing the filter (as IIR filter apply a phase change) Parameters ---------- Signal : ndarray Signal to be filtered SampleFreq : float Sample frequency of signal lowerFreq : float Lower frequency of bandpass to allow through filter upperFreq : float Upper frequency of bandpass to allow through filter Returns ------- FilteredData : ndarray Array containing the filtered data
def make_butterworth_b_a(lowcut, highcut, SampleFreq, order=5, btype='band'): nyq = 0.5 * SampleFreq low = lowcut / nyq high = highcut / nyq if btype.lower() == 'band': b, a = scipy.signal.butter(order, [low, high], btype = btype) elif btype.lower() == 'low': b, a = scipy.signal.butter(order, low, btype = btype) elif btype.lower() == 'high': b, a = scipy.signal.butter(order, high, btype = btype) else: raise ValueError('Filter type unknown') return b, a
Generates the b and a coefficients for a butterworth IIR filter. Parameters ---------- lowcut : float frequency of lower bandpass limit highcut : float frequency of higher bandpass limit SampleFreq : float Sample frequency of filter order : int, optional order of IIR filter. Is 5 by default btype : string, optional type of filter to make e.g. (band, low, high) Returns ------- b : ndarray coefficients multiplying the current and past inputs (feedforward coefficients) a : ndarray coefficients multiplying the past outputs (feedback coefficients)
def make_butterworth_bandpass_b_a(CenterFreq, bandwidth, SampleFreq, order=5, btype='band'): lowcut = CenterFreq-bandwidth/2 highcut = CenterFreq+bandwidth/2 b, a = make_butterworth_b_a(lowcut, highcut, SampleFreq, order, btype) return b, a
Generates the b and a coefficients for a butterworth bandpass IIR filter. Parameters ---------- CenterFreq : float central frequency of bandpass bandwidth : float width of the bandpass from centre to edge SampleFreq : float Sample frequency of filter order : int, optional order of IIR filter. Is 5 by default btype : string, optional type of filter to make e.g. (band, low, high) Returns ------- b : ndarray coefficients multiplying the current and past inputs (feedforward coefficients) a : ndarray coefficients multiplying the past outputs (feedback coefficients)
def IIR_filter_design(CentralFreq, bandwidth, transitionWidth, SampleFreq, GainStop=40, GainPass=0.01): NyquistFreq = SampleFreq / 2 if (CentralFreq + bandwidth / 2 + transitionWidth > NyquistFreq): raise ValueError( "Need a higher Sample Frequency for this Central Freq, Bandwidth and transition Width") CentralFreqNormed = CentralFreq / NyquistFreq bandwidthNormed = bandwidth / NyquistFreq transitionWidthNormed = transitionWidth / NyquistFreq bandpass = [CentralFreqNormed - bandwidthNormed / 2, CentralFreqNormed + bandwidthNormed / 2] bandstop = [CentralFreqNormed - bandwidthNormed / 2 - transitionWidthNormed, CentralFreqNormed + bandwidthNormed / 2 + transitionWidthNormed] print(bandpass, bandstop) b, a = scipy.signal.iirdesign(bandpass, bandstop, GainPass, GainStop) return b, a
Function to calculate the coefficients of an IIR filter, IMPORTANT NOTE: make_butterworth_bandpass_b_a and make_butterworth_b_a can produce IIR filters with higher sample rates and are prefereable due to this. Parameters ---------- CentralFreq : float Central frequency of the IIR filter to be designed bandwidth : float The width of the passband to be created about the central frequency transitionWidth : float The width of the transition band between the pass-band and stop-band SampleFreq : float The sample frequency (rate) of the data to be filtered GainStop : float, optional The dB of attenuation within the stopband (i.e. outside the passband) GainPass : float, optional The dB attenuation inside the passband (ideally close to 0 for a bandpass filter) Returns ------- b : ndarray coefficients multiplying the current and past inputs (feedforward coefficients) a : ndarray coefficients multiplying the past outputs (feedback coefficients)
def multi_subplots_time(DataArray, SubSampleN=1, units='s', xlim=None, ylim=None, LabelArray=[], show_fig=True): unit_prefix = units[:-1] # removed the last char NumDataSets = len(DataArray) if LabelArray == []: LabelArray = ["DataSet {}".format(i) for i in _np.arange(0, len(DataArray), 1)] fig, axs = _plt.subplots(NumDataSets, 1) for i, data in enumerate(DataArray): axs[i].plot(unit_conversion(data.time.get_array()[::SubSampleN], unit_prefix), data.voltage[::SubSampleN], alpha=0.8, label=LabelArray[i]) axs[i].set_xlabel("time ({})".format(units)) axs[i].grid(which="major") axs[i].legend(loc="best") axs[i].set_ylabel("voltage (V)") if xlim != None: axs[i].set_xlim(xlim) if ylim != None: axs[i].set_ylim(ylim) if show_fig == True: _plt.show() return fig, axs
plot the time trace on multiple axes Parameters ---------- DataArray : array-like array of DataObject instances for which to plot the PSDs SubSampleN : int, optional Number of intervals between points to remove (to sub-sample data so that you effectively have lower sample rate to make plotting easier and quicker. xlim : array-like, optional 2 element array specifying the lower and upper x limit for which to plot the time signal LabelArray : array-like, optional array of labels for each data-set to be plotted show_fig : bool, optional If True runs plt.show() before returning figure if False it just returns the figure object. (the default is True, it shows the figure) Returns ------- fig : matplotlib.figure.Figure object The figure object created axs : list of matplotlib.axes.Axes objects The list of axes object created
def calc_PSD(Signal, SampleFreq, NPerSegment=1000000, window="hann"): freqs, PSD = scipy.signal.welch(Signal, SampleFreq, window=window, nperseg=NPerSegment) PSD = PSD[freqs.argsort()] freqs.sort() return freqs, PSD
Extracts the pulse spectral density (PSD) from the data. Parameters ---------- Signal : array-like Array containing the signal to have the PSD calculated for SampleFreq : float Sample frequency of the signal array NPerSegment : int, optional Length of each segment used in scipy.welch default = 1000000 window : str or tuple or array_like, optional Desired window to use. See get_window for a list of windows and required parameters. If window is array_like it will be used directly as the window and its length will be used for nperseg. default = "hann" Returns ------- freqs : ndarray Array containing the frequencies at which the PSD has been calculated PSD : ndarray Array containing the value of the PSD at the corresponding frequency value in V**2/Hz
def calc_autocorrelation(Signal, FFT=False, PyCUDA=False): if FFT==True: Signal_padded = scipy.fftpack.ifftshift((Signal-_np.average(Signal))/_np.std(Signal)) n, = Signal_padded.shape Signal_padded = _np.r_[Signal_padded[:n//2], _np.zeros_like(Signal_padded), Signal_padded[n//2:]] if PyCUDA==True: f = calc_fft_with_PyCUDA(Signal_padded) else: f = scipy.fftpack.fft(Signal_padded) p = _np.absolute(f)**2 if PyCUDA==True: autocorr = calc_ifft_with_PyCUDA(p) else: autocorr = scipy.fftpack.ifft(p) return _np.real(autocorr)[:n//2]/(_np.arange(n//2)[::-1]+n//2) else: Signal = Signal - _np.mean(Signal) autocorr = scipy.signal.correlate(Signal, Signal, mode='full') return autocorr[autocorr.size//2:]/autocorr[autocorr.size//2]
Calculates the autocorrelation from a given Signal via using Parameters ---------- Signal : array-like Array containing the signal to have the autocorrelation calculated for FFT : optional, bool Uses FFT to accelerate autocorrelation calculation, but assumes certain certain periodicity on the signal to autocorrelate. Zero-padding is added to account for this periodicity assumption. PyCUDA : bool, optional If True, uses PyCUDA to accelerate the FFT and IFFT via using your NVIDIA-GPU If False, performs FFT and IFFT with conventional scipy.fftpack Returns ------- Autocorrelation : ndarray Array containing the value of the autocorrelation evaluated at the corresponding amount of shifted array-index.
def _GetRealImagArray(Array): ImagArray = _np.array([num.imag for num in Array]) RealArray = _np.array([num.real for num in Array]) return RealArray, ImagArray
Returns the real and imaginary components of each element in an array and returns them in 2 resulting arrays. Parameters ---------- Array : ndarray Input array Returns ------- RealArray : ndarray The real components of the input array ImagArray : ndarray The imaginary components of the input array
def _GetComplexConjugateArray(Array): ConjArray = _np.array([num.conj() for num in Array]) return ConjArray
Calculates the complex conjugate of each element in an array and returns the resulting array. Parameters ---------- Array : ndarray Input array Returns ------- ConjArray : ndarray The complex conjugate of the input array.
def fm_discriminator(Signal): S_analytic = _hilbert(Signal) S_analytic_star = _GetComplexConjugateArray(S_analytic) S_analytic_hat = S_analytic[1:] * S_analytic_star[:-1] R, I = _GetRealImagArray(S_analytic_hat) fmDiscriminator = _np.arctan2(I, R) return fmDiscriminator
Calculates the digital FM discriminator from a real-valued time signal. Parameters ---------- Signal : array-like A real-valued time signal Returns ------- fmDiscriminator : array-like The digital FM discriminator of the argument signal
def _is_this_a_collision(ArgList): value, mean_fmd, tolerance = ArgList if not _approx_equal(mean_fmd, value, tolerance): return True else: return False
Detects if a particular point is during collision after effect (i.e. a phase shift) or not. Parameters ---------- ArgList : array_like Contains the following elements: value : float value of the FM discriminator mean_fmd : float the mean value of the FM discriminator tolerance : float The tolerance in percentage that it must be away from the mean value for it to be counted as a collision event. Returns ------- is_this_a_collision : bool True if this is a collision event, false if not.
def find_collisions(Signal, tolerance=50): fmd = fm_discriminator(Signal) mean_fmd = _np.mean(fmd) Collisions = [_is_this_a_collision( [value, mean_fmd, tolerance]) for value in fmd] return Collisions
Finds collision events in the signal from the shift in phase of the signal. Parameters ---------- Signal : array_like Array containing the values of the signal of interest containing a single frequency. tolerance : float Percentage tolerance, if the value of the FM Discriminator varies from the mean by this percentage it is counted as being during a collision event (or the aftermath of an event). Returns ------- Collisions : ndarray Array of booleans, true if during a collision event, false otherwise.
def count_collisions(Collisions): CollisionCount = 0 CollisionIndicies = [] lastval = True for i, val in enumerate(Collisions): if val == True and lastval == False: CollisionIndicies.append(i) CollisionCount += 1 lastval = val return CollisionCount, CollisionIndicies
Counts the number of unique collisions and gets the collision index. Parameters ---------- Collisions : array_like Array of booleans, containing true if during a collision event, false otherwise. Returns ------- CollisionCount : int Number of unique collisions CollisionIndicies : list Indicies of collision occurance
def parse_orgtable(lines): def parseline(l): w = l.split('|')[1:-1] return [wi.strip() for wi in w] columns = parseline(lines[0]) data = [] for line in lines[2:]: data.append(map(str, parseline(line))) dataframe = _pd.DataFrame(data=data, columns=columns) dataframe.set_index("RunNo") return dataframe
Parse an org-table (input as a list of strings split by newline) into a Pandas data frame. Parameters ---------- lines : string an org-table input as a list of strings split by newline Returns ------- dataframe : pandas.DataFrame A data frame containing the org-table's data
def steady_state_potential(xdata,HistBins=100): import numpy as _np pops=_np.histogram(xdata,HistBins)[0] bins=_np.histogram(xdata,HistBins)[1] bins=bins[0:-1] bins=bins+_np.mean(_np.diff(bins)) #normalise pops pops=pops/float(_np.sum(pops)) return bins,-_np.log(pops)
Calculates the steady state potential. Used in fit_radius_from_potentials. Parameters ---------- xdata : ndarray Position data for a degree of freedom HistBins : int Number of bins to use for histogram of xdata. Number of position points at which the potential is calculated. Returns ------- position : ndarray positions at which potential has been calculated potential : ndarray value of potential at the positions above
def dynamical_potential(xdata, dt, order=3): import numpy as _np adata = calc_acceleration(xdata, dt) xdata = xdata[2:] # removes first 2 values as differentiating twice means # we have acceleration[n] corresponds to position[n-2] z=_np.polyfit(xdata,adata,order) p=_np.poly1d(z) spring_pot=_np.polyint(p) return -spring_pot
Computes potential from spring function Parameters ---------- xdata : ndarray Position data for a degree of freedom, at which to calculate potential dt : float time between measurements order : int order of polynomial to fit Returns ------- Potential : ndarray valued of potential at positions in xdata
def calc_acceleration(xdata, dt): acceleration = _np.diff(_np.diff(xdata))/dt**2 return acceleration
Calculates the acceleration from the position Parameters ---------- xdata : ndarray Position data dt : float time between measurements Returns ------- acceleration : ndarray values of acceleration from position 2 to N.
def make_dynamical_potential_func(kBT_Gamma, density, SpringPotnlFunc): def PotentialFunc(xdata, Radius): """ calculates the potential given the position (in volts) and the radius of the particle. Parameters ---------- xdata : ndarray Positon data (in volts) Radius : float Radius in units of nm Returns ------- Potential : ndarray Dynamical Spring Potential at positions given by xdata """ mass = ((4/3)*pi*((Radius*10**-9)**3))*density yfit=(kBT_Gamma/mass) Y = yfit*SpringPotnlFunc(xdata) return Y return PotentialFunc
Creates the function that calculates the potential given the position (in volts) and the radius of the particle. Parameters ---------- kBT_Gamma : float Value of kB*T/Gamma density : float density of the nanoparticle SpringPotnlFunc : function Function which takes the value of position (in volts) and returns the spring potential Returns ------- PotentialFunc : function function that calculates the potential given the position (in volts) and the radius of the particle.
def calc_z0_and_conv_factor_from_ratio_of_harmonics(z, z2, NA=0.999): V1 = calc_mean_amp(z) V2 = calc_mean_amp(z2) ratio = V2/V1 beta = 4*ratio laserWavelength = 1550e-9 # in m k0 = (2*pi)/(laserWavelength) WaistSize = laserWavelength/(pi*NA) Zr = pi*WaistSize**2/laserWavelength z0 = beta/(k0 - 1/Zr) ConvFactor = V1/z0 T0 = 300 return z0, ConvFactor
Calculates the Conversion Factor and physical amplitude of motion in nms by comparison of the ratio of the heights of the z signal and second harmonic of z. Parameters ---------- z : ndarray array containing z signal in volts z2 : ndarray array containing second harmonic of z signal in volts NA : float NA of mirror used in experiment Returns ------- z0 : float Physical average amplitude of motion in nms ConvFactor : float Conversion Factor between volts and nms
def calc_mass_from_z0(z0, w0): T0 = 300 mFromEquipartition = Boltzmann*T0/(w0**2 * z0**2) return mFromEquipartition
Calculates the mass of the particle using the equipartition from the angular frequency of the z signal and the average amplitude of the z signal in nms. Parameters ---------- z0 : float Physical average amplitude of motion in nms w0 : float Angular Frequency of z motion Returns ------- mass : float mass in kgs
def calc_mass_from_fit_and_conv_factor(A, Damping, ConvFactor): T0 = 300 mFromA = 2*Boltzmann*T0/(pi*A) * ConvFactor**2 * Damping return mFromA
Calculates mass from the A parameter from fitting, the damping from fitting in angular units and the Conversion factor calculated from comparing the ratio of the z signal and first harmonic of z. Parameters ---------- A : float A factor calculated from fitting Damping : float damping in radians/second calcualted from fitting ConvFactor : float conversion factor between volts and nms Returns ------- mass : float mass in kgs
def get_time_slice(time, z, zdot=None, timeStart=None, timeEnd=None): if timeStart == None: timeStart = time[0] if timeEnd == None: timeEnd = time[-1] StartIndex = _np.where(time == take_closest(time, timeStart))[0][0] EndIndex = _np.where(time == take_closest(time, timeEnd))[0][0] time_sliced = time[StartIndex:EndIndex] z_sliced = z[StartIndex:EndIndex] if zdot != None: zdot_sliced = zdot[StartIndex:EndIndex] else: zdot_sliced = None return time_sliced, z_sliced, zdot_sliced
Get slice of time, z and (if provided) zdot from timeStart to timeEnd. Parameters ---------- time : ndarray array of time values z : ndarray array of z values zdot : ndarray, optional array of zdot (velocity) values. timeStart : float, optional time at which to start the slice. Defaults to beginnging of time trace timeEnd : float, optional time at which to end the slide. Defaults to end of time trace Returns ------- time_sliced : ndarray array of time values from timeStart to timeEnd z_sliced : ndarray array of z values from timeStart to timeEnd zdot_sliced : ndarray array of zdot values from timeStart to timeEnd. None if zdot not provided
def unit_conversion(array, unit_prefix, current_prefix=""): UnitDict = { 'E': 1e18, 'P': 1e15, 'T': 1e12, 'G': 1e9, 'M': 1e6, 'k': 1e3, '': 1, 'm': 1e-3, 'u': 1e-6, 'n': 1e-9, 'p': 1e-12, 'f': 1e-15, 'a': 1e-18, } try: Desired_units = UnitDict[unit_prefix] except KeyError: raise ValueError("You entered {} for the unit_prefix, this is not a valid prefix".format(unit_prefix)) try: Current_units = UnitDict[current_prefix] except KeyError: raise ValueError("You entered {} for the current_prefix, this is not a valid prefix".format(current_prefix)) conversion_multiplication = Current_units/Desired_units converted_array = array*conversion_multiplication return converted_array
Converts an array or value to of a certain unit scale to another unit scale. Accepted units are: E - exa - 1e18 P - peta - 1e15 T - tera - 1e12 G - giga - 1e9 M - mega - 1e6 k - kilo - 1e3 m - milli - 1e-3 u - micro - 1e-6 n - nano - 1e-9 p - pico - 1e-12 f - femto - 1e-15 a - atto - 1e-18 Parameters ---------- array : ndarray Array to be converted unit_prefix : string desired unit (metric) prefix (e.g. nm would be n, ms would be m) current_prefix : optional, string current prefix of units of data (assumed to be in SI units by default (e.g. m or s) Returns ------- converted_array : ndarray Array multiplied such as to be in the units specified
def histogram_phase(phase_slices, phase, histbins=200, show_plot=False): counts_array = _np.zeros([len(phase), histbins]) histedges = [phase_slices.min(), phase_slices.max()] for i, phase_slice in enumerate(phase_slices): # for each value of phase counts, bin_edges = _np.histogram(phase_slice, bins=histbins, range=histedges) # histogram the position distribution at that phase counts_array[i] = counts counts_array = _np.array(counts_array) counts_array_transposed = _np.transpose(counts_array).astype(float) if show_plot == True: fig = _plt.figure(figsize=(12, 6)) ax = fig.add_subplot(111) ax.set_title('Phase Distribution') ax.set_xlabel("phase (°)") ax.set_ylabel("x") _plt.imshow(counts_array_transposed, cmap='hot', interpolation='nearest', extent=[phase[0], phase[-1], histedges[0], histedges[1]]) ax.set_aspect('auto') _plt.show() return counts_array_transposed, bin_edges
histograms the phase slices such as to build a histogram of the position distribution at each phase value. Parameters ---------- phase_slices : ndarray 2d array containing slices from many oscillations at each phase phase : ndarray 1d array of phases corresponding to slices histbins : int, optional (default=200) number of bins to use in histogramming data show_plot : bool, optional (default=False) if true plots and shows the heatmap of the phase against the positon distribution Returns ------- counts_array : ndarray 2d array containing the number of counts varying with phase and position. bin_edges : ndarray positions of bin edges
def get_wigner(z, freq, sample_freq, histbins=200, show_plot=False): phase, phase_slices = extract_slices(z, freq, sample_freq, show_plot=False) counts_array, bin_edges = histogram_phase(phase_slices, phase, histbins, show_plot=show_plot) diff = bin_edges[1] - bin_edges[0] bin_centres = bin_edges[:-1] + diff iradon_output = _iradon_sart(counts_array, theta=phase) #_plt.imshow(iradon_output, extent=[bin_centres[0], bin_centres[-1], bin_centres[0], bin_centres[-1]]) #_plt.show() return iradon_output, bin_centres
Calculates an approximation to the wigner quasi-probability distribution by splitting the z position array into slices of the length of one period of the motion. This slice is then associated with phase from -180 to 180 degrees. These slices are then histogramed in order to get a distribution of counts of where the particle is observed at each phase. The 2d array containing the counts varying with position and phase is then passed through the inverse radon transformation using the Simultaneous Algebraic Reconstruction Technique approximation from the scikit-image package. Parameters ---------- z : ndarray trace of z motion freq : float frequency of motion sample_freq : float sample frequency of the z array histbins : int, optional (default=200) number of bins to use in histogramming data for each phase show_plot : bool, optional (default=False) Whether or not to plot the phase distribution Returns ------- iradon_output : ndarray 2d array of size (histbins x histbins) bin_centres : ndarray positions of the bin centres
def calc_reduced_chi_squared(y_observed, y_model, observation_error, number_of_fitted_parameters): observed = _np.array(y_observed) expected = _np.array(y_model) if observed.shape != expected.shape: raise ValueError("y_observed should have same number of elements as y_model") residuals = (observed - expected) z = residuals / observation_error # residuals divided by known error in measurement chi2 = _np.sum(z**2) # chi squared value num_of_observations = len(observed) v = num_of_observations - number_of_fitted_parameters # v = number of degrees of freedom chi2_reduced = chi2/v return chi2_reduced
Calculates the reduced chi-squared, used to compare a model to observations. For example can be used to calculate how good a fit is by using fitted y values for y_model along with observed y values and error in those y values. Reduced chi-squared should be close to 1 for a good fit, lower than 1 suggests you are overestimating the measurement error (observation_error you entered is higher than the true error in the measurement). A value higher than 1 suggests either your model is a bad fit OR you are underestimating the error in the measurement (observation_error you entered is lower than the true error in the measurement). See https://en.wikipedia.org/wiki/Reduced_chi-squared_statistic for more detail. Parameters ---------- y_observed : ndarray array of measured/observed values of some variable y which you are fitting to. y_model : ndarray array of y values predicted by your model/fit (predicted y values corresponding to y_observed) observation_error : float error in the measurements/observations of y number_of_fitted_parameters : float number of parameters in your model Returns ------- chi2_reduced : float reduced chi-squared parameter
def get_time_data(self, timeStart=None, timeEnd=None): if timeStart == None: timeStart = self.timeStart if timeEnd == None: timeEnd = self.timeEnd time = self.time.get_array() StartIndex = _np.where(time == take_closest(time, timeStart))[0][0] EndIndex = _np.where(time == take_closest(time, timeEnd))[0][0] if EndIndex == len(time) - 1: EndIndex = EndIndex + 1 # so that it does not remove the last element return time[StartIndex:EndIndex], self.voltage[StartIndex:EndIndex]
Gets the time and voltage data. Parameters ---------- timeStart : float, optional The time get data from. By default it uses the first time point timeEnd : float, optional The time to finish getting data from. By default it uses the last time point Returns ------- time : ndarray array containing the value of time (in seconds) at which the voltage is sampled voltage : ndarray array containing the sampled voltages
def plot_time_data(self, timeStart=None, timeEnd=None, units='s', show_fig=True): unit_prefix = units[:-1] # removed the last char if timeStart == None: timeStart = self.timeStart if timeEnd == None: timeEnd = self.timeEnd time = self.time.get_array() StartIndex = _np.where(time == take_closest(time, timeStart))[0][0] EndIndex = _np.where(time == take_closest(time, timeEnd))[0][0] fig = _plt.figure(figsize=properties['default_fig_size']) ax = fig.add_subplot(111) ax.plot(unit_conversion(time[StartIndex:EndIndex], unit_prefix), self.voltage[StartIndex:EndIndex]) ax.set_xlabel("time ({})".format(units)) ax.set_ylabel("voltage (V)") ax.set_xlim([timeStart, timeEnd]) if show_fig == True: _plt.show() return fig, ax
plot time data against voltage data. Parameters ---------- timeStart : float, optional The time to start plotting from. By default it uses the first time point timeEnd : float, optional The time to finish plotting at. By default it uses the last time point units : string, optional units of time to plot on the x axis - defaults to s show_fig : bool, optional If True runs plt.show() before returning figure if False it just returns the figure object. (the default is True, it shows the figure) Returns ------- fig : matplotlib.figure.Figure object The figure object created ax : matplotlib.axes.Axes object The subplot object created
def get_PSD(self, NPerSegment=1000000, window="hann", timeStart=None, timeEnd=None, override=False): if timeStart == None and timeEnd == None: freqs, PSD = calc_PSD(self.voltage, self.SampleFreq, NPerSegment=NPerSegment) self.PSD = PSD self.freqs = freqs else: if timeStart == None: timeStart = self.timeStart if timeEnd == None: timeEnd = self.timeEnd time = self.time.get_array() StartIndex = _np.where(time == take_closest(time, timeStart))[0][0] EndIndex = _np.where(time == take_closest(time, timeEnd))[0][0] if EndIndex == len(time) - 1: EndIndex = EndIndex + 1 # so that it does not remove the last element freqs, PSD = calc_PSD(self.voltage[StartIndex:EndIndex], self.SampleFreq, NPerSegment=NPerSegment) if override == True: self.freqs = freqs self.PSD = PSD return freqs, PSD
Extracts the power spectral density (PSD) from the data. Parameters ---------- NPerSegment : int, optional Length of each segment used in scipy.welch default = 1000000 window : str or tuple or array_like, optional Desired window to use. See get_window for a list of windows and required parameters. If window is array_like it will be used directly as the window and its length will be used for nperseg. default = "hann" Returns ------- freqs : ndarray Array containing the frequencies at which the PSD has been calculated PSD : ndarray Array containing the value of the PSD at the corresponding frequency value in V**2/Hz
def plot_PSD(self, xlim=None, units="kHz", show_fig=True, timeStart=None, timeEnd=None, *args, **kwargs): # self.get_PSD() if timeStart == None and timeEnd == None: freqs = self.freqs PSD = self.PSD else: freqs, PSD = self.get_PSD(timeStart=timeStart, timeEnd=timeEnd) unit_prefix = units[:-2] if xlim == None: xlim = [0, unit_conversion(self.SampleFreq/2, unit_prefix)] fig = _plt.figure(figsize=properties['default_fig_size']) ax = fig.add_subplot(111) ax.semilogy(unit_conversion(freqs, unit_prefix), PSD, *args, **kwargs) ax.set_xlabel("Frequency ({})".format(units)) ax.set_xlim(xlim) ax.grid(which="major") ax.set_ylabel("$S_{xx}$ ($V^2/Hz$)") if show_fig == True: _plt.show() return fig, ax
plot the pulse spectral density. Parameters ---------- xlim : array_like, optional The x limits of the plotted PSD [LowerLimit, UpperLimit] Default value is [0, SampleFreq/2] units : string, optional Units of frequency to plot on the x axis - defaults to kHz show_fig : bool, optional If True runs plt.show() before returning figure if False it just returns the figure object. (the default is True, it shows the figure) Returns ------- fig : matplotlib.figure.Figure object The figure object created ax : matplotlib.axes.Axes object The subplot object created
def calc_area_under_PSD(self, lowerFreq, upperFreq): Freq_startAreaPSD = take_closest(self.freqs, lowerFreq) index_startAreaPSD = int(_np.where(self.freqs == Freq_startAreaPSD)[0][0]) Freq_endAreaPSD = take_closest(self.freqs, upperFreq) index_endAreaPSD = int(_np.where(self.freqs == Freq_endAreaPSD)[0][0]) AreaUnderPSD = sum(self.PSD[index_startAreaPSD: index_endAreaPSD]) return AreaUnderPSD
Sums the area under the PSD from lowerFreq to upperFreq. Parameters ---------- lowerFreq : float The lower limit of frequency to sum from upperFreq : float The upper limit of frequency to sum to Returns ------- AreaUnderPSD : float The area under the PSD from lowerFreq to upperFreq
def extract_parameters(self, P_mbar, P_Error, method="chang"): [R, M, ConvFactor], [RErr, MErr, ConvFactorErr] = \ extract_parameters(P_mbar, P_Error, self.A.n, self.A.std_dev, self.Gamma.n, self.Gamma.std_dev, method = method) self.Radius = _uncertainties.ufloat(R, RErr) self.Mass = _uncertainties.ufloat(M, MErr) self.ConvFactor = _uncertainties.ufloat(ConvFactor, ConvFactorErr) return self.Radius, self.Mass, self.ConvFactor
Extracts the Radius, mass and Conversion factor for a particle. Parameters ---------- P_mbar : float The pressure in mbar when the data was taken. P_Error : float The error in the pressure value (as a decimal e.g. 15% = 0.15) Returns ------- Radius : uncertainties.ufloat The radius of the particle in m Mass : uncertainties.ufloat The mass of the particle in kg ConvFactor : uncertainties.ufloat The conversion factor between volts/m
def get_value(self, ColumnName, RunNo): Value = float(self.ORGTableData[self.ORGTableData.RunNo == '{}'.format( RunNo)][ColumnName]) return Value
Retreives the value of the collumn named ColumnName associated with a particular run number. Parameters ---------- ColumnName : string The name of the desired org-mode table's collumn RunNo : int The run number for which to retreive the pressure value Returns ------- Value : float The value for the column's name and associated run number
def steady_state_potential(xdata,HistBins=100): import numpy as np pops=np.histogram(xdata,HistBins)[0] bins=np.histogram(xdata,HistBins)[1] bins=bins[0:-1] bins=bins+np.mean(np.diff(bins)) #normalise pops pops=pops/float(np.sum(pops)) return bins,-np.log(pops)
Calculates the steady state potential. Parameters ---------- xdata : ndarray Position data for a degree of freedom HistBins : int Number of bins to use for histogram of xdata. Number of position points at which the potential is calculated. Returns ------- position : ndarray positions at which potential has been calculated potential : ndarray value of potential at the positions above
def dynamical_potential(xdata, dt, order=3): import numpy as np adata = CalcAcceleration(xdata, dt) xdata = xdata[2:] # removes first 2 values as differentiating twice means # we have acceleration[n] corresponds to position[n-2] z=np.polyfit(xdata,adata,order) p=np.poly1d(z) spring_pot=np.polyint(p) return -spring_pot
Computes potential from spring function Parameters ---------- xdata : ndarray Position data for a degree of freedom, at which to calculate potential dt : float time between measurements order : int order of polynomial to fit Returns ------- Potential : ndarray valued of potential at positions in xdata
def CalcAcceleration(xdata, dt): acceleration = np.diff(np.diff(xdata))/dt**2 return acceleration
Calculates the acceleration from the position Parameters ---------- xdata : ndarray Position data dt : float time between measurements Returns ------- acceleration : ndarray values of acceleration from position 2 to N.
def MakeDynamicPotentialFunc(kBT_Gamma, density, SpringPotnlFunc): def PotentialFunc(xdata, Radius): """ calculates the potential given the position (in volts) and the radius of the particle. Parameters ---------- xdata : ndarray Positon data (in volts) Radius : float Radius in units of nm Returns ------- Potential : ndarray Dynamical Spring Potential at positions given by xdata """ mass = ((4/3)*np.pi*((Radius*10**-9)**3))*density yfit=(kBT_Gamma/mass) Y = yfit*SpringPotnlFunc(xdata) return Y return PotentialFunc
Creates the function that calculates the potential given the position (in volts) and the radius of the particle. Parameters ---------- kBT_Gamma : float Value of kB*T/Gamma density : float density of the nanoparticle SpringPotnlFunc : function Function which takes the value of position (in volts) and returns the spring potential Returns ------- PotentialFunc : function function that calculates the potential given the position (in volts) and the radius of the particle.
def finished(finished_status, update_interval, status_key, edit_at_key): return { status_key: {"$gte": finished_status}, edit_at_key: { "$gte": x_seconds_before_now(update_interval), }, }
Create dict query for pymongo that getting all finished task. :param finished_status: int, status code that greater or equal than this will be considered as finished. :param update_interval: int, the record will be updated every x seconds. :param status_key: status code field key, support dot notation. :param edit_at_key: edit_at time field key, support dot notation. :return: dict, a pymongo filter. **中文文档** 状态码大于某个值, 并且, 更新时间在最近一段时间以内.
def unfinished(finished_status, update_interval, status_key, edit_at_key): return { "$or": [ {status_key: {"$lt": finished_status}}, {edit_at_key: {"$lt": x_seconds_before_now(update_interval)}}, ] }
Create dict query for pymongo that getting all unfinished task. :param finished_status: int, status code that less than this will be considered as unfinished. :param update_interval: int, the record will be updated every x seconds. :param status_key: status code field key, support dot notation. :param edit_at_key: edit_at time field key, support dot notation. :return: dict, a pymongo filter. **中文文档** 状态码小于某个值, 或者, 现在距离更新时间已经超过一定阈值.
def getCommandLine(self): commandLine = self.precursor + self.sep if self.precursor else '' commandLine += self.cd + ' ' + self.path + self.sep if self.path else '' commandLine += PosixCommand.getCommandLine(self) return commandLine
Insert the precursor and change directory commands
def _policy_psets(policy_instances): if len(policy_instances) == 0: # Special case: find any permission sets that don't have # associated policy instances. return PermissionSet.objects.filter(policyinstance__isnull=True) else: return PermissionSet.objects.filter( policyinstance__policy__in=policy_instances).distinct()
Find all permission sets making use of all of a list of policy_instances. The input is an array of policy instances.
def _get_permission_set_tree(user): if hasattr(user, CACHED_PSET_PROPERTY_KEY): return getattr(user, CACHED_PSET_PROPERTY_KEY) if user.is_authenticated(): try: return user.permissionset.first().tree() except AttributeError: raise ObjectDoesNotExist return PermissionSet.objects.get(anonymous_user=True).tree()
Helper to return cached permission set tree from user instance if set, else generates and returns analyzed permission set tree. Does not cache set automatically, that must be done explicitely.
def ensure_permission_set_tree_cached(user): if hasattr(user, CACHED_PSET_PROPERTY_KEY): return try: setattr( user, CACHED_PSET_PROPERTY_KEY, _get_permission_set_tree(user)) except ObjectDoesNotExist: # No permission set pass
Helper to cache permission set tree on user instance
def clear_user_policies(user): if user is None: try: pset = PermissionSet.objects.get(anonymous_user=True) pset.anonymous_user = False pset.save() except ObjectDoesNotExist: return else: pset = user.permissionset.first() if pset: pset.refresh() if user is not None: pset.users.remove(user) if pset.users.count() == 0 and not pset.anonymous_user: pset.delete()
Remove all policies assigned to a user (or the anonymous user if ``user`` is ``None``).
def assign_user_policies(user, *policies_roles): clear_user_policies(user) pset = PermissionSet.objects.by_policies_and_roles(policies_roles) pset.refresh() if user is None: pset.anonymous_user = True else: pset.users.add(user) pset.save() cache.set(user_cache_key(user), None)
Assign a sequence of policies to a user (or the anonymous user is ``user`` is ``None``). (Also installed as ``assign_policies`` method on ``User`` model.
def user_assigned_policies(user): key = user_cache_key(user) cached = cache.get(key) if cached is not None: return cached if user is None: pset = PermissionSet.objects.filter(anonymous_user=True).first() else: pset = user.permissionset.first() if pset is None: return [] res = [] skip_role_policies = False skip_role = None skip_role_variables = None for pi in pset.policyinstance_set.select_related('policy', 'role'): if skip_role_policies: if pi.role == skip_role and pi.variables == skip_role_variables: continue else: skip_role_policies = False if pi.role: res.append(pi.role) skip_role = pi.role skip_role_variables = pi.variables skip_role_policies = True else: if pi.variables != '{}': res.append((pi.policy, json.loads(pi.variables))) else: res.append(pi.policy) cache.set(key, res) return res
Return sequence of policies assigned to a user (or the anonymous user is ``user`` is ``None``). (Also installed as ``assigned_policies`` method on ``User`` model.
def parsed(self): if not self._parsed: self._parsed = json.loads(self.content) return self._parsed
Get the JSON dictionary object which represents the content. This property is cached and only parses the content once.
def cleanup_logger(self): self.log_handler.close() self.log.removeHandler(self.log_handler)
Clean up logger to close out file handles. After this is called, writing to self.log will get logs ending up getting discarded.
def update_configs(self, release): git_repo = release['git_repo'] git_cache = release['git_cache'] if not os.path.isdir(git_cache): self.call(['git', 'clone', '--mirror', git_repo, git_cache]) else: self.call(['git', 'fetch', '--all', '--prune'], cwd=git_cache) git_dir = release['git_dir'] = os.path.join(release['tmp_dir'], os.path.basename(git_repo)) self.call(['git', 'clone', '-b', release['git_branch'], git_cache, git_dir]) if release['delete_repo_files']: for repo_file in glob.glob(os.path.join(git_dir, '*.repo')): self.log.info('Deleting %s' % repo_file) os.unlink(repo_file)
Update the fedora-atomic.git repositories for a given release
def mock_cmd(self, release, *cmd, **kwargs): fmt = '{mock_cmd}' if kwargs.get('new_chroot') is True: fmt +=' --new-chroot' fmt += ' --configdir={mock_dir}' return self.call(fmt.format(**release).split() + list(cmd))
Run a mock command in the chroot for a given release
def init_mock(self, release): root = '/var/lib/mock/%s' % release['mock'] if not os.path.isdir(root): self.mock_cmd(release, '--init') self.log.info('mock chroot initialized') else: if release.get('mock_clean'): self.mock_cmd(release, '--clean') self.mock_cmd(release, '--init') self.log.info('mock chroot cleaned & initialized') else: self.mock_cmd(release, '--update') self.log.info('mock chroot updated')
Initialize/update our mock chroot
def generate_mock_config(self, release): mock_tmpl = pkg_resources.resource_string(__name__, 'templates/mock.mako') mock_dir = release['mock_dir'] = os.path.join(release['tmp_dir'], 'mock') mock_cfg = os.path.join(release['mock_dir'], release['mock'] + '.cfg') os.mkdir(mock_dir) for cfg in ('site-defaults.cfg', 'logging.ini'): os.symlink('/etc/mock/%s' % cfg, os.path.join(mock_dir, cfg)) with file(mock_cfg, 'w') as cfg: mock_out = Template(mock_tmpl).render(**release) self.log.debug('Writing %s:\n%s', mock_cfg, mock_out) cfg.write(mock_out)
Dynamically generate our mock configuration
def mock_chroot(self, release, cmd, **kwargs): return self.mock_cmd(release, '--chroot', cmd, **kwargs)
Run a commend in the mock container for a release
def generate_repo_files(self, release): repo_tmpl = pkg_resources.resource_string(__name__, 'templates/repo.mako') repo_file = os.path.join(release['git_dir'], '%s.repo' % release['repo']) with file(repo_file, 'w') as repo: repo_out = Template(repo_tmpl).render(**release) self.log.debug('Writing repo file %s:\n%s', repo_file, repo_out) repo.write(repo_out) self.log.info('Wrote repo configuration to %s', repo_file)
Dynamically generate our yum repo configuration
def ostree_init(self, release): out = release['output_dir'].rstrip('/') base = os.path.dirname(out) if not os.path.isdir(base): self.log.info('Creating %s', base) os.makedirs(base, mode=0755) if not os.path.isdir(out): self.mock_chroot(release, release['ostree_init'])
Initialize the OSTree for a release
def ostree_compose(self, release): start = datetime.utcnow() treefile = os.path.join(release['git_dir'], 'treefile.json') cmd = release['ostree_compose'] % treefile with file(treefile, 'w') as tree: json.dump(release['treefile'], tree) # Only use new_chroot for the invocation, as --clean and --new-chroot are buggy together right now out, err, rcode = self.mock_chroot(release, cmd, new_chroot=True) ref = None commitid = None for line in out.split('\n'): if ' => ' in line: # This line is the: ref => commitid line line = line.replace('\n', '') ref, _, commitid = line.partition(' => ') self.log.info('rpm-ostree compose complete (%s), ref %s, commitid %s', datetime.utcnow() - start, ref, commitid) return ref, commitid
Compose the OSTree in the mock container
def update_ostree_summary(self, release): self.log.info('Updating the ostree summary for %s', release['name']) self.mock_chroot(release, release['ostree_summary']) return os.path.join(release['output_dir'], 'summary')
Update the ostree summary file and return a path to it
def sync_in(self, release): tree = release['canonical_dir'] if os.path.exists(tree) and release.get('rsync_in_objs'): out = release['output_dir'] if not os.path.isdir(out): self.log.info('Creating %s', out) os.makedirs(out) self.call(release['rsync_in_objs']) self.call(release['rsync_in_rest'])
Sync the canonical repo to our local working directory
def sync_out(self, release): if release.get('rsync_out_objs'): tree = release['canonical_dir'] if not os.path.isdir(tree): self.log.info('Creating %s', tree) os.makedirs(tree) self.call(release['rsync_out_objs']) self.call(release['rsync_out_rest'])
Sync our tree to the canonical location