code
stringlengths 52
7.75k
| docs
stringlengths 1
5.85k
|
---|---|
def date_from_string(string, format_string=None):
if isinstance(format_string, str):
return datetime.datetime.strptime(string, format_string).date()
elif format_string is None:
format_string = [
"%Y-%m-%d",
"%m-%d-%Y",
"%m/%d/%Y",
"%d/%m/%Y",
]
for format in format_string:
try:
return datetime.datetime.strptime(string, format).date()
except ValueError:
continue
raise ValueError("Could not produce date from string: {}".format(string)) | Runs through a few common string formats for datetimes,
and attempts to coerce them into a datetime. Alternatively,
format_string can provide either a single string to attempt
or an iterable of strings to attempt. |
def to_datetime(plain_date, hours=0, minutes=0, seconds=0, ms=0):
# don't mess with datetimes
if isinstance(plain_date, datetime.datetime):
return plain_date
return datetime.datetime(
plain_date.year,
plain_date.month,
plain_date.day,
hours,
minutes,
seconds,
ms,
) | given a datetime.date, gives back a datetime.datetime |
def get_containing_period(cls, *periods):
if any(not isinstance(period, TimePeriod) for period in periods):
raise TypeError("periods must all be TimePeriods: {}".format(periods))
latest = datetime.datetime.min
earliest = datetime.datetime.max
for period in periods:
# the best we can do to conain None is None!
if period._latest is None:
latest = None
elif latest is not None and period._latest > latest:
latest = period._latest
if period._earliest is None:
earliest = None
elif earliest is not None and period._earliest < earliest:
earliest = period._earliest
return TimePeriod(earliest, latest) | Given a bunch of TimePeriods, return a TimePeriod that most closely
contains them. |
def get_attr(obj, string_rep, default=_get_attr_raise_on_attribute_error, separator="."):
attribute_chain = string_rep.split(separator)
current_obj = obj
for attr in attribute_chain:
try:
current_obj = getattr(current_obj, attr)
except AttributeError:
if default is _get_attr_raise_on_attribute_error:
raise AttributeError(
"Bad attribute \"{}\" in chain: \"{}\"".format(attr, string_rep)
)
return default
return current_obj | getattr via a chain of attributes like so:
>>> import datetime
>>> some_date = datetime.date.today()
>>> get_attr(some_date, "month.numerator.__doc__")
'int(x[, base]) -> integer\n\nConvert a string or number to an integer, ... |
def get_user_password(env, param, force=False):
username = utils.assemble_username(env, param)
if not utils.confirm_credential_display(force):
return
# Retrieve the credential from the keychain
password = password_get(username)
if password:
return (username, password)
else:
return False | Allows the user to print the credential for a particular keyring entry
to the screen |
def pull_env_credential(env, param, value):
rex = "USE_KEYRING\[([\x27\x22])(.*)\\1\]"
# This is the old-style, per-environment keyring credential
if value == "USE_KEYRING":
username = utils.assemble_username(env, param)
# This is the new-style, global keyring credential that can be applied
# to multiple environments
else:
global_identifier = re.match(rex, value).group(2)
username = utils.assemble_username('global', global_identifier)
return (username, password_get(username)) | Dissects a keyring credential lookup string from the supernova config file
and returns the username/password combo |
def password_get(username=None):
password = keyring.get_password('supernova', username)
if password is None:
split_username = tuple(username.split(':'))
msg = ("Couldn't find a credential for {0}:{1}. You need to set one "
"with: supernova-keyring -s {0} {1}").format(*split_username)
raise LookupError(msg)
else:
return password.encode('ascii') | Retrieves a password from the keychain based on the environment and
configuration parameter pair.
If this fails, None is returned. |
def set_user_password(environment, parameter, password):
username = '%s:%s' % (environment, parameter)
return password_set(username, password) | Sets a user's password in the keyring storage |
def password_set(username=None, password=None):
result = keyring.set_password('supernova', username, password)
# NOTE: keyring returns None when the storage is successful. That's weird.
if result is None:
return True
else:
return False | Stores a password in a keychain for a particular environment and
configuration parameter pair. |
def prep_shell_environment(nova_env, nova_creds):
new_env = {}
for key, value in prep_nova_creds(nova_env, nova_creds):
if type(value) == six.binary_type:
value = value.decode()
new_env[key] = value
return new_env | Appends new variables to the current shell environment temporarily. |
def prep_nova_creds(nova_env, nova_creds):
try:
raw_creds = dict(nova_creds.get('DEFAULT', {}), **nova_creds[nova_env])
except KeyError:
msg = "{0} was not found in your supernova configuration "\
"file".format(nova_env)
raise KeyError(msg)
proxy_re = re.compile(r"(^http_proxy|^https_proxy)")
creds = []
for param, value in raw_creds.items():
if not proxy_re.match(param):
param = param.upper()
if not hasattr(value, 'startswith'):
continue
# Get values from the keyring if we find a USE_KEYRING constant
if value.startswith("USE_KEYRING"):
username, credential = pull_env_credential(nova_env, param,
value)
else:
credential = value.strip("\"'")
# Make sure we got something valid from the configuration file or
# the keyring
if not credential:
raise LookupError("No matching credentials found in keyring")
creds.append((param, credential))
return creds | Finds relevant config options in the supernova config and cleans them
up for novaclient. |
def load_config(config_file_override=False):
supernova_config = get_config_file(config_file_override)
supernova_config_dir = get_config_directory(config_file_override)
if not supernova_config and not supernova_config_dir:
raise Exception("Couldn't find a valid configuration file to parse")
nova_creds = ConfigObj()
# Can we successfully read the configuration file?
if supernova_config:
try:
nova_creds.merge(ConfigObj(supernova_config))
except:
raise("There's an error in your configuration file")
if supernova_config_dir:
for dir_file in os.listdir(supernova_config_dir):
full_path = ''.join((supernova_config_dir, dir_file))
try:
nova_creds.merge(ConfigObj(full_path))
except:
msg = "Skipping '%s', Parsing Error.".format(full_path)
print(msg)
create_dynamic_configs(nova_creds)
return nova_creds | Pulls the supernova configuration file and reads it |
def get_config_file(override_files=False):
if override_files:
if isinstance(override_files, six.string_types):
possible_configs = [override_files]
else:
raise Exception("Config file override must be a string")
else:
xdg_config_home = os.environ.get('XDG_CONFIG_HOME') or \
os.path.expanduser('~/.config')
possible_configs = [os.path.join(xdg_config_home, "supernova"),
os.path.expanduser("~/.supernova"),
".supernova"]
for config_file in reversed(possible_configs):
if os.path.isfile(config_file):
return config_file
return False | Looks for the most specific configuration file available. An override
can be provided as a string if needed. |
def get_config_directory(override_files=False):
if override_files:
possible_dirs = [override_files]
else:
xdg_config_home = os.environ.get('XDG_CONFIG_HOME') or \
os.path.expanduser('~/.config')
possible_dirs = [os.path.join(xdg_config_home, "supernova.d/"),
os.path.expanduser("~/.supernova.d/"),
".supernova.d/"]
for config_dir in reversed(possible_dirs):
if os.path.isdir(config_dir):
return config_dir
return False | Looks for the most specific configuration directory possible, in order to
load individual configuration files. |
def execute_executable(nova_args, env_vars):
process = subprocess.Popen(nova_args,
stdout=sys.stdout,
stderr=subprocess.PIPE,
env=env_vars)
process.wait()
return process | Executes the executable given by the user.
Hey, I know this method has a silly name, but I write the code here and
I'm silly. |
def check_for_debug(supernova_args, nova_args):
# Heat requires special handling for debug arguments
if supernova_args['debug'] and supernova_args['executable'] == 'heat':
nova_args.insert(0, '-d ')
elif supernova_args['debug']:
nova_args.insert(0, '--debug ')
return nova_args | If the user wanted to run the executable with debugging enabled, we need
to apply the correct arguments to the executable.
Heat is a corner case since it uses -d instead of --debug. |
def check_for_executable(supernova_args, env_vars):
exe = supernova_args.get('executable', 'default')
if exe != 'default':
return supernova_args
if 'OS_EXECUTABLE' in env_vars.keys():
supernova_args['executable'] = env_vars['OS_EXECUTABLE']
return supernova_args
supernova_args['executable'] = 'nova'
return supernova_args | It's possible that a user might set their custom executable via an
environment variable. If we detect one, we should add it to supernova's
arguments ONLY IF an executable wasn't set on the command line. The
command line executable must take priority. |
def check_for_bypass_url(raw_creds, nova_args):
if 'BYPASS_URL' in raw_creds.keys():
bypass_args = ['--bypass-url', raw_creds['BYPASS_URL']]
nova_args = bypass_args + nova_args
return nova_args | Return a list of extra args that need to be passed on cmdline to nova. |
def handle_stderr(stderr_pipe):
stderr_output = stderr_pipe.read()
if len(stderr_output) > 0:
click.secho("\n__ Error Output {0}".format('_'*62), fg='white',
bold=True)
click.echo(stderr_output)
return True | Takes stderr from the command's output and displays it AFTER the stdout
is printed by run_command(). |
def run_command(nova_creds, nova_args, supernova_args):
nova_env = supernova_args['nova_env']
# (gtmanfred) make a copy of this object. If we don't copy it, the insert
# to 0 happens multiple times because it is the same object in memory.
nova_args = copy.copy(nova_args)
# Get the environment variables ready
env_vars = os.environ.copy()
env_vars.update(credentials.prep_shell_environment(nova_env,
nova_creds))
# BYPASS_URL is a weird one, so we need to send it as an argument,
# not an environment variable.
nova_args = check_for_bypass_url(nova_creds[nova_env], nova_args)
# Check for OS_EXECUTABLE
supernova_args = check_for_executable(supernova_args, env_vars)
# Check for a debug override
nova_args = check_for_debug(supernova_args, nova_args)
# Print a small message for the user (very helpful for groups)
msg = "Running %s against %s..." % (supernova_args.get('executable'),
nova_env)
if not supernova_args.get('quiet'):
click.echo("[%s] %s " % (click.style('SUPERNOVA', fg='green'), msg))
# Call executable and connect stdout to the current terminal
# so that any unicode characters from the executable's list will be
# displayed appropriately.
#
# In other news, I hate how python 2.6 does unicode.
nova_args.insert(0, supernova_args['executable'])
nova_args = [nova_arg.strip() for nova_arg in nova_args]
process = execute_executable(nova_args, env_vars)
# If the user asked us to be quiet, then let's not print stderr
if not supernova_args.get('quiet'):
handle_stderr(process.stderr)
return process.returncode | Sets the environment variables for the executable, runs the executable,
and handles the output. |
def check_environment_presets():
presets = [x for x in os.environ.copy().keys() if x.startswith('NOVA_') or
x.startswith('OS_')]
if len(presets) < 1:
return True
else:
click.echo("_" * 80)
click.echo("*WARNING* Found existing environment variables that may "
"cause conflicts:")
for preset in presets:
click.echo(" - %s" % preset)
click.echo("_" * 80)
return False | Checks for environment variables that can cause problems with supernova |
def get_envs_in_group(group_name, nova_creds):
envs = []
for key, value in nova_creds.items():
supernova_groups = value.get('SUPERNOVA_GROUP', [])
if hasattr(supernova_groups, 'startswith'):
supernova_groups = [supernova_groups]
if group_name in supernova_groups:
envs.append(key)
elif group_name == 'all':
envs.append(key)
return envs | Takes a group_name and finds any environments that have a SUPERNOVA_GROUP
configuration line that matches the group_name. |
def is_valid_group(group_name, nova_creds):
valid_groups = []
for key, value in nova_creds.items():
supernova_groups = value.get('SUPERNOVA_GROUP', [])
if hasattr(supernova_groups, 'startswith'):
supernova_groups = [supernova_groups]
valid_groups.extend(supernova_groups)
valid_groups.append('all')
if group_name in valid_groups:
return True
else:
return False | Checks to see if the configuration file contains a SUPERNOVA_GROUP
configuration option. |
def rm_prefix(name):
if name.startswith('nova_'):
return name[5:]
elif name.startswith('novaclient_'):
return name[11:]
elif name.startswith('os_'):
return name[3:]
else:
return name | Removes nova_ os_ novaclient_ prefix from string. |
def __pad(strdata):
if request.args.get('callback'):
return "%s(%s);" % (request.args.get('callback'), strdata)
else:
return strdata | Pads `strdata` with a Request's callback argument, if specified, or does
nothing. |
def __dumps(*args, **kwargs):
indent = None
if (current_app.config.get('JSONIFY_PRETTYPRINT_REGULAR', False) and
not request.is_xhr):
indent = 2
return json.dumps(args[0] if len(args) is 1 else dict(*args, **kwargs),
indent=indent) | Serializes `args` and `kwargs` as JSON. Supports serializing an array
as the top-level object, if it is the only argument. |
def jsonpify(*args, **kwargs):
return current_app.response_class(__pad(__dumps(*args, **kwargs)),
mimetype=__mimetype()) | Creates a :class:`~flask.Response` with the JSON or JSON-P
representation of the given arguments with an `application/json`
or `application/javascript` mimetype, respectively. The arguments
to this function are the same as to the :class:`dict` constructor,
but also accept an array. If a `callback` is specified in the
request arguments, the response is JSON-Padded.
Example usage::
@app.route('/_get_current_user')
def get_current_user():
return jsonify(username=g.user.username,
email=g.user.email,
id=g.user.id)
GET /_get_current_user:
This will send a JSON response like this to the browser::
{
"username": "admin",
"email": "admin@localhost",
"id": 42
}
or, if a callback is specified,
GET /_get_current_user?callback=displayUsers
Will result in a JSON response like this to the browser::
displayUsers({
"username": "admin",
"email": "admin@localhost",
"id": 42
});
This requires Python 2.6 or an installed version of simplejson. For
security reasons only objects are supported toplevel. For more
information about this, have a look at :ref:`json-security`.
.. versionadded:: 0.2 |
def update_type_lookups(self):
self.type_to_typestring = dict(zip(self.types,
self.python_type_strings))
self.typestring_to_type = dict(zip(self.python_type_strings,
self.types)) | Update type and typestring lookup dicts.
Must be called once the ``types`` and ``python_type_strings``
attributes are set so that ``type_to_typestring`` and
``typestring_to_type`` are constructed.
.. versionadded:: 0.2
Notes
-----
Subclasses need to call this function explicitly. |
def get_type_string(self, data, type_string):
if type_string is not None:
return type_string
else:
tp = type(data)
try:
return self.type_to_typestring[tp]
except KeyError:
return self.type_to_typestring[tp.__module__ + '.'
+ tp.__name__] | Gets type string.
Finds the type string for 'data' contained in
``python_type_strings`` using its ``type``. Non-``None``
'type_string` overrides whatever type string is looked up.
The override makes it easier for subclasses to convert something
that the parent marshaller can write to disk but still put the
right type string in place).
Parameters
----------
data : type to be marshalled
The Python object that is being written to disk.
type_string : str or None
If it is a ``str``, it overrides any looked up type
string. ``None`` means don't override.
Returns
-------
str
The type string associated with 'data'. Will be
'type_string' if it is not ``None``.
Notes
-----
Subclasses probably do not need to override this method. |
def write(self, f, grp, name, data, type_string, options):
raise NotImplementedError('Can''t write data type: '
+ str(type(data))) | Writes an object's metadata to file.
Writes the Python object 'data' to 'name' in h5py.Group 'grp'.
.. versionchanged:: 0.2
Arguements changed.
Parameters
----------
f : h5py.File
The HDF5 file handle that is open.
grp : h5py.Group or h5py.File
The parent HDF5 Group (or File if at '/') that contains the
object with the specified name.
name : str
Name of the object.
data
The object to write to file.
type_string : str or None
The type string for `data`. If it is ``None``, one will have
to be gotten by ``get_type_string``.
options : hdf5storage.core.Options
hdf5storage options object.
Raises
------
NotImplementedError
If writing 'data' to file is currently not supported.
hdf5storage.exceptions.TypeNotMatlabCompatibleError
If writing a type not compatible with MATLAB and
`options.action_for_matlab_incompatible` is set to
``'error'``.
Notes
-----
Must be overridden in a subclass because a
``NotImplementedError`` is thrown immediately.
See Also
--------
hdf5storage.utilities.write_data |
def _replace_fun_unescape(m):
slsh = b'\\'.decode('ascii')
s = m.group(0)
count = s.count(slsh)
if count % 2 == 0:
return s
else:
if sys.hexversion >= 0x03000000:
c = chr(int(s[(count + 1):], base=16))
else:
c = unichr(int(s[(count + 1):], base=16))
return slsh * (count - 1) + c | Decode single hex/unicode escapes found in regex matches.
Supports single hex/unicode escapes of the form ``'\\xYY'``,
``'\\uYYYY'``, and ``'\\UYYYYYYYY'`` where Y is a hex digit. Only
decodes if there is an odd number of backslashes.
.. versionadded:: 0.2
Parameters
----------
m : regex match
Returns
-------
c : str
The unescaped character. |
def escape_path(pth):
if isinstance(pth, bytes):
pth = pth.decode('utf-8')
if sys.hexversion >= 0x03000000:
if not isinstance(pth, str):
raise TypeError('pth must be str or bytes.')
match = _find_dots_re.match(pth)
if match is None:
prefix = ''
s = pth
else:
prefix = '\\x2e' * match.end()
s = pth[match.end():]
else:
if not isinstance(pth, unicode):
raise TypeError('pth must be unicode or str.')
match = _find_dots_re.match(pth)
if match is None:
prefix = unicode('')
s = pth
else:
prefix = unicode('\\x2e') * match.end()
s = pth[match.end():]
return prefix + _find_fslashnull_re.sub(_replace_fun_escape, s) | Hex/unicode escapes a path.
Escapes a path so that it can be represented faithfully in an HDF5
file without changing directories. This means that leading ``'.'``
must be escaped. ``'/'`` and null must be escaped to. Backslashes
are escaped as double backslashes. Other escaped characters are
replaced with ``'\\xYY'``, ``'\\uYYYY', or ``'\\UYYYYYYYY'`` where Y
are hex digits depending on the unicode numerical value of the
character. for ``'.'``, both slashes, and null; this will be the
former (``'\\xYY'``).
.. versionadded:: 0.2
Parameters
----------
pth : str or bytes
The path to escape.
Returns
-------
epth : str
The escaped path.
Raises
------
TypeError
If `pth` is not the right type.
See Also
--------
unescape_path |
def unescape_path(pth):
if isinstance(pth, bytes):
pth = pth.decode('utf-8')
if sys.hexversion >= 0x03000000:
if not isinstance(pth, str):
raise TypeError('pth must be str or bytes.')
else:
if not isinstance(pth, unicode):
raise TypeError('pth must be unicode or str.')
# Look for invalid escapes.
if _find_invalid_escape_re.search(pth) is not None:
raise ValueError('Invalid escape found.')
# Do all hex/unicode escapes.
s = _find_escapes_re.sub(_replace_fun_unescape, pth)
# Do all double backslash escapes.
return s.replace(b'\\\\'.decode('ascii'), b'\\'.decode('ascii')) | Hex/unicode unescapes a path.
Unescapes a path. Valid escapeds are ``'\\xYY'``, ``'\\uYYYY', or
``'\\UYYYYYYYY'`` where Y are hex digits giving the character's
unicode numerical value and double backslashes which are the escape
for single backslashes.
.. versionadded:: 0.2
Parameters
----------
pth : str
The path to unescape.
Returns
-------
unpth : str
The unescaped path.
Raises
------
TypeError
If `pth` is not the right type.
ValueError
If an invalid escape is found.
See Also
--------
escape_path |
def does_dtype_have_a_zero_shape(dt):
components = [dt]
while 0 != len(components):
c = components.pop()
if 0 in c.shape:
return True
if c.names is not None:
components.extend([v[0] for v in c.fields.values()])
if c.base != c:
components.append(c.base)
return False | Determine whether a dtype (or its fields) have zero shape.
Determines whether the given ``numpy.dtype`` has a shape with a zero
element or if one of its fields does, or if one of its fields'
fields does, and so on recursively. The following dtypes do not have
zero shape.
* ``'uint8'``
* ``[('a', 'int32'), ('blah', 'float16', (3, 3))]``
* ``[('a', [('b', 'complex64')], (2, 1, 3))]``
But the following do
* ``('uint8', (1, 0))``
* ``[('a', 'int32'), ('blah', 'float16', (3, 0))]``
* ``[('a', [('b', 'complex64')], (2, 0, 3))]``
Parameters
----------
dt : numpy.dtype
The dtype to check.
Returns
-------
yesno : bool
Whether `dt` or one of its fields has a shape with at least one
element that is zero.
Raises
------
TypeError
If `dt` is not a ``numpy.dtype``. |
def write_data(f, grp, name, data, type_string, options):
# Get the marshaller for type(data). The required modules should be
# here and imported.
tp = type(data)
m, has_modules = \
options.marshaller_collection.get_marshaller_for_type(tp)
# If a marshaller was found and we have the required modules, use it
# to write the data. Otherwise, return an error. If we get something
# other than None back, then we must recurse through the
# entries. Also, we must set the H5PATH attribute to be the path to
# the containing group.
if m is not None and has_modules:
m.write(f, grp, name, data, type_string, options)
else:
raise NotImplementedError('Can''t write data type: '+str(tp)) | Writes a piece of data into an open HDF5 file.
Low level function to store a Python type (`data`) into the
specified Group.
Parameters
----------
f : h5py.File
The open HDF5 file.
grp : h5py.Group or h5py.File
The Group to place the data in.
name : str
The name to write the data to.
data : any
The data to write.
type_string : str or None
The type string of the data, or ``None`` to deduce
automatically.
options : hdf5storage.core.Options
The options to use when writing.
Raises
------
NotImplementedError
If writing `data` is not supported.
TypeNotMatlabCompatibleError
If writing a type not compatible with MATLAB and
`options.action_for_matlab_incompatible` is set to ``'error'``.
See Also
--------
hdf5storage.write : Higher level version.
read_data
hdf5storage.Options |
def read_object_array(f, data, options):
# Go through all the elements of data and read them using their
# references, and the putting the output in new object array.
data_derefed = np.zeros(shape=data.shape, dtype='object')
for index, x in np.ndenumerate(data):
data_derefed[index] = read_data(f, None, None,
options,
dsetgrp=f[x])
return data_derefed | Reads an array of objects recursively.
Read the elements of the given HDF5 Reference array recursively
in the and constructs a ``numpy.object_`` array from its elements,
which is returned.
Parameters
----------
f : h5py.File
The HDF5 file handle that is open.
data : numpy.ndarray of h5py.Reference
The array of HDF5 References to read and make an object array
from.
options : hdf5storage.core.Options
hdf5storage options object.
Raises
------
NotImplementedError
If reading the object from file is currently not supported.
Returns
-------
obj_array : numpy.ndarray of numpy.object\_
The Python object array containing the items pointed to by
`data`.
See Also
--------
write_object_array
hdf5storage.Options.group_for_references
h5py.Reference |
def next_unused_name_in_group(grp, length):
# While
#
# ltrs = string.ascii_letters + string.digits
# name = ''.join([random.choice(ltrs) for i in range(length)])
#
# seems intuitive, its performance is abysmal compared to
#
# '%0{0}x'.format(length) % random.getrandbits(length * 4)
#
# The difference is a factor of 20. Idea from
#
# https://stackoverflow.com/questions/2782229/most-lightweight-way-
# to-create-a-random-string-and-a-random-hexadecimal-number/
# 35161595#35161595
fmt = '%0{0}x'.format(length)
name = fmt % random.getrandbits(length * 4)
while name in grp:
name = fmt % random.getrandbits(length * 4)
return name | Gives a name that isn't used in a Group.
Generates a name of the desired length that is not a Dataset or
Group in the given group. Note, if length is not large enough and
`grp` is full enough, there may be no available names meaning that
this function will hang.
Parameters
----------
grp : h5py.Group or h5py.File
The HDF5 Group (or File if at '/') to generate an unused name
in.
length : int
Number of characters the name should be.
Returns
-------
name : str
A name that isn't already an existing Dataset or Group in
`grp`. |
def convert_numpy_str_to_uint16(data):
# An empty string should be an empty uint16
if data.nbytes == 0:
return np.uint16([])
# We need to use the UTF-16 codec for our endianness. Using the
# right one means we don't have to worry about removing the BOM.
if sys.byteorder == 'little':
codec = 'UTF-16LE'
else:
codec = 'UTF-16BE'
# numpy.char.encode can do the conversion element wise. Then, we
# just have convert to uin16 with the appropriate dimensions. The
# dimensions are gotten from the shape of the converted data with
# the number of column increased by the number of words (pair of
# bytes) in the strings.
cdata = np.char.encode(np.atleast_1d(data), codec)
shape = list(cdata.shape)
shape[-1] *= (cdata.dtype.itemsize // 2)
return np.ndarray(shape=shape, dtype='uint16',
buffer=cdata.tostring()) | Converts a numpy.unicode\_ to UTF-16 in numpy.uint16 form.
Convert a ``numpy.unicode_`` or an array of them (they are UTF-32
strings) to UTF-16 in the equivalent array of ``numpy.uint16``. The
conversion will throw an exception if any characters cannot be
converted to UTF-16. Strings are expanded along rows (across columns)
so a 2x3x4 array of 10 element strings will get turned into a 2x30x4
array of uint16's if every UTF-32 character converts easily to a
UTF-16 singlet, as opposed to a UTF-16 doublet.
Parameters
----------
data : numpy.unicode\_ or numpy.ndarray of numpy.unicode\_
The string or array of them to convert.
Returns
-------
array : numpy.ndarray of numpy.uint16
The result of the conversion.
Raises
------
UnicodeEncodeError
If a UTF-32 character has no UTF-16 representation.
See Also
--------
convert_numpy_str_to_uint32
convert_to_numpy_str |
def convert_numpy_str_to_uint32(data):
if data.nbytes == 0:
# An empty string should be an empty uint32.
return np.uint32([])
else:
# We need to calculate the new shape from the current shape,
# which will have to be expanded along the rows to fit all the
# characters (the dtype.itemsize gets the number of bytes in
# each string, which is just 4 times the number of
# characters. Then it is a mstter of getting a view of the
# string (in flattened form so that it is contiguous) as uint32
# and then reshaping it.
shape = list(np.atleast_1d(data).shape)
shape[-1] *= data.dtype.itemsize//4
return data.flatten().view(np.uint32).reshape(tuple(shape)) | Converts a numpy.unicode\_ to its numpy.uint32 representation.
Convert a ``numpy.unicode_`` or an array of them (they are UTF-32
strings) into the equivalent array of ``numpy.uint32`` that is byte
for byte identical. Strings are expanded along rows (across columns)
so a 2x3x4 array of 10 element strings will get turned into a 2x30x4
array of uint32's.
Parameters
----------
data : numpy.unicode\_ or numpy.ndarray of numpy.unicode\_
The string or array of them to convert.
Returns
-------
array : numpy.ndarray of numpy.uint32
The result of the conversion.
See Also
--------
convert_numpy_str_to_uint16
convert_to_numpy_str |
def encode_complex(data, complex_names):
# Grab the dtype name, and convert it to the right non-complex type
# if it isn't already one.
dtype_name = data.dtype.name
if dtype_name[0:7] == 'complex':
dtype_name = 'float' + str(int(float(dtype_name[7:])/2))
# Create the new version of the data with the right field names for
# the real and complex parts. This is easy to do with putting the
# right detype in the view function.
dt = np.dtype([(complex_names[0], dtype_name),
(complex_names[1], dtype_name)])
return data.view(dt).copy() | Encodes complex data to having arbitrary complex field names.
Encodes complex `data` to have the real and imaginary field names
given in `complex_numbers`. This is needed because the field names
have to be set so that it can be written to an HDF5 file with the
right field names (HDF5 doesn't have a native complex type, so
H5T_COMPOUND have to be used).
Parameters
----------
data : arraylike
The data to encode as a complex type with the desired real and
imaginary part field names.
complex_names : tuple of 2 str
``tuple`` of the names to use (in order) for the real and
imaginary fields.
Returns
-------
d : encoded data
`data` encoded into having the specified field names for the
real and imaginary parts.
See Also
--------
decode_complex |
def convert_attribute_to_string(value):
if value is None:
return value
elif (sys.hexversion >= 0x03000000 and isinstance(value, str)) \
or (sys.hexversion < 0x03000000 \
and isinstance(value, unicode)):
return value
elif isinstance(value, bytes):
return value.decode()
elif isinstance(value, np.unicode_):
return str(value)
elif isinstance(value, np.bytes_):
return value.decode()
else:
return None | Convert an attribute value to a string.
Converts the attribute value to a string if possible (get ``None``
if isn't a string type).
.. versionadded:: 0.2
Parameters
----------
value :
The Attribute value.
Returns
-------
s : str or None
The ``str`` value of the attribute if the conversion is
possible, or ``None`` if not. |
def set_attribute(target, name, value):
try:
target.attrs.modify(name, value)
except:
target.attrs.create(name, value) | Sets an attribute on a Dataset or Group.
If the attribute `name` doesn't exist yet, it is created. If it
already exists, it is overwritten if it differs from `value`.
Notes
-----
``set_attributes_all`` is the fastest way to set and delete
Attributes in bulk.
Parameters
----------
target : Dataset or Group
Dataset or Group to set the attribute of.
name : str
Name of the attribute to set.
value : numpy type other than numpy.unicode\_
Value to set the attribute to.
See Also
--------
set_attributes_all |
def set_attribute_string(target, name, value):
set_attribute(target, name, np.bytes_(value)) | Sets an attribute to a string on a Dataset or Group.
If the attribute `name` doesn't exist yet, it is created. If it
already exists, it is overwritten if it differs from `value`.
Notes
-----
``set_attributes_all`` is the fastest way to set and delete
Attributes in bulk.
Parameters
----------
target : Dataset or Group
Dataset or Group to set the string attribute of.
name : str
Name of the attribute to set.
value : string
Value to set the attribute to. Can be any sort of string type
that will convert to a ``numpy.bytes_``
See Also
--------
set_attributes_all |
def set_attribute_string_array(target, name, string_list):
s_list = [convert_to_str(s) for s in string_list]
if sys.hexversion >= 0x03000000:
target.attrs.create(name, s_list,
dtype=h5py.special_dtype(vlen=str))
else:
target.attrs.create(name, s_list,
dtype=h5py.special_dtype(vlen=unicode)) | Sets an attribute to an array of string on a Dataset or Group.
If the attribute `name` doesn't exist yet, it is created. If it
already exists, it is overwritten with the list of string
`string_list` (they will be vlen strings).
Notes
-----
``set_attributes_all`` is the fastest way to set and delete
Attributes in bulk.
Parameters
----------
target : Dataset or Group
Dataset or Group to set the string array attribute of.
name : str
Name of the attribute to set.
string_list : list of str
List of strings to set the attribute to. Strings must be ``str``
See Also
--------
set_attributes_all |
def find_thirdparty_marshaller_plugins():
all_plugins = tuple(pkg_resources.iter_entry_points(
'hdf5storage.marshallers.plugins'))
return {ver: {p.module_name: p
for p in all_plugins if p.name == ver}
for ver in supported_marshaller_api_versions()} | Find, but don't load, all third party marshaller plugins.
Third party marshaller plugins declare the entry point
``'hdf5storage.marshallers.plugins'`` with the name being the
Marshaller API version and the target being a function that returns
a ``tuple`` or ``list`` of all the marshallers provided by that
plugin when given the hdf5storage version (``str``) as its only
argument.
.. versionadded:: 0.2
Returns
-------
plugins : dict
The marshaller obtaining entry points from third party
plugins. The keys are the Marshaller API versions (``str``) and
the values are ``dict`` of the entry points, with the module
names as the keys (``str``) and the values being the entry
points (``pkg_resources.EntryPoint``).
See Also
--------
supported_marshaller_api_versions |
def _import_marshaller_modules(self, m):
try:
for name in m.required_modules:
if name not in sys.modules:
if _has_importlib:
importlib.import_module(name)
else:
__import__(name)
except ImportError:
return False
except:
raise
else:
return True | Imports the modules required by the marshaller.
Parameters
----------
m : marshaller
The marshaller to load the modules for.
Returns
-------
success : bool
Whether the modules `m` requires could be imported
successfully or not. |
def add_marshaller(self, marshallers):
if not isinstance(marshallers, collections.Iterable):
marshallers = [marshallers]
for m in marshallers:
if not isinstance(m, Marshallers.TypeMarshaller):
raise TypeError('Each marshaller must inherit from '
'hdf5storage.Marshallers.'
'TypeMarshaller.')
if m not in self._user_marshallers:
self._user_marshallers.append(m)
self._update_marshallers() | Add a marshaller/s to the user provided list.
Adds a marshaller or a list of them to the user provided set of
marshallers.
Note that the builtin marshallers take priority when choosing
the right marshaller.
.. versionchanged:: 0.2
All marshallers must now inherit from
``hdf5storage.Marshallers.TypeMarshaller``.
.. versionchanged:: 0.2
Builtin marshallers take priority over user provided ones.
Parameters
----------
marshallers : marshaller or iterable of marshallers
The user marshaller/s to add to the user provided
collection. Must inherit from
``hdf5storage.Marshallers.TypeMarshaller``.
Raises
------
TypeError
If one of `marshallers` is the wrong type.
See Also
--------
hdf5storage.Marshallers.TypeMarshaller |
def remove_marshaller(self, marshallers):
if not isinstance(marshallers, collections.Iterable):
marshallers = [marshallers]
for m in marshallers:
if m in self._user_marshallers:
self._user_marshallers.remove(m)
self._update_marshallers() | Removes a marshaller/s from the user provided list.
Removes a marshaller or a list of them from the user provided set
of marshallers.
Parameters
----------
marshallers : marshaller or list of marshallers
The user marshaller/s to from the user provided collection. |
def get_marshaller_for_type(self, tp):
if not isinstance(tp, str):
tp = tp.__module__ + '.' + tp.__name__
if tp in self._types:
index = self._types[tp]
else:
return None, False
m = self._marshallers[index]
if self._imported_required_modules[index]:
return m, True
if not self._has_required_modules[index]:
return m, False
success = self._import_marshaller_modules(m)
self._has_required_modules[index] = success
self._imported_required_modules[index] = success
return m, success | Gets the appropriate marshaller for a type.
Retrieves the marshaller, if any, that can be used to read/write
a Python object with type 'tp'. The modules it requires, if
available, will be loaded.
Parameters
----------
tp : type or str
Python object ``type`` (which would be the class reference)
or its string representation like ``'collections.deque'``.
Returns
-------
marshaller : marshaller or None
The marshaller that can read/write the type to
file. ``None`` if no appropriate marshaller is found.
has_required_modules : bool
Whether the required modules for reading the type are
present or not.
See Also
--------
hdf5storage.Marshallers.TypeMarshaller.types |
def get_marshaller_for_type_string(self, type_string):
if type_string in self._type_strings:
index = self._type_strings[type_string]
m = self._marshallers[index]
if self._imported_required_modules[index]:
return m, True
if not self._has_required_modules[index]:
return m, False
success = self._import_marshaller_modules(m)
self._has_required_modules[index] = success
self._imported_required_modules[index] = success
return m, success
else:
return None, False | Gets the appropriate marshaller for a type string.
Retrieves the marshaller, if any, that can be used to read/write
a Python object with the given type string. The modules it
requires, if available, will be loaded.
Parameters
----------
type_string : str
Type string for a Python object.
Returns
-------
marshaller : marshaller or None
The marshaller that can read/write the type to
file. ``None`` if no appropriate marshaller is found.
has_required_modules : bool
Whether the required modules for reading the type are
present or not.
See Also
--------
hdf5storage.Marshallers.TypeMarshaller.python_type_strings |
def get_marshaller_for_matlab_class(self, matlab_class):
if matlab_class in self._matlab_classes:
index = self._matlab_classes[matlab_class]
m = self._marshallers[index]
if self._imported_required_modules[index]:
return m, True
if not self._has_required_modules[index]:
return m, False
success = self._import_marshaller_modules(m)
self._has_required_modules[index] = success
self._imported_required_modules[index] = success
return m, success
else:
return None, False | Gets the appropriate marshaller for a MATLAB class string.
Retrieves the marshaller, if any, that can be used to read/write
a Python object associated with the given MATLAB class
string. The modules it requires, if available, will be loaded.
Parameters
----------
matlab_class : str
MATLAB class string for a Python object.
Returns
-------
marshaller : marshaller or None
The marshaller that can read/write the type to
file. ``None`` if no appropriate marshaller is found.
has_required_modules : bool
Whether the required modules for reading the type are
present or not.
See Also
--------
hdf5storage.Marshallers.TypeMarshaller.python_type_strings |
def build_cycle_graph(num_nodes):
graph = UndirectedGraph()
if num_nodes > 0:
first_node = graph.new_node()
if num_nodes > 1:
previous_node = first_node
for _ in range(num_nodes - 1):
new_node = graph.new_node()
graph.new_edge(previous_node, new_node)
previous_node = new_node
graph.new_edge(previous_node, first_node)
return graph | Builds a cycle graph with the specified number of nodes.
Ref: http://mathworld.wolfram.com/CycleGraph.html |
def build_wheel_graph(num_nodes):
# The easiest way to build a wheel graph is to build
# C_n-1 and then add a hub node and spoke edges
graph = build_cycle_graph(num_nodes - 1)
cycle_graph_vertices = graph.get_all_node_ids()
node_id = graph.new_node()
for cycle_node in cycle_graph_vertices:
graph.new_edge(node_id, cycle_node)
return graph | Builds a wheel graph with the specified number of nodes.
Ref: http://mathworld.wolfram.com/WheelGraph.html |
def build_k5_graph():
graph = UndirectedGraph()
# K5 has 5 nodes
for _ in range(5):
graph.new_node()
# K5 has 10 edges
# --Edge: a
graph.new_edge(1, 2)
# --Edge: b
graph.new_edge(2, 3)
# --Edge: c
graph.new_edge(3, 4)
# --Edge: d
graph.new_edge(4, 5)
# --Edge: e
graph.new_edge(5, 1)
# --Edge: f
graph.new_edge(1, 3)
# --Edge: g
graph.new_edge(1, 4)
# --Edge: h
graph.new_edge(2, 4)
# --Edge: i
graph.new_edge(2, 5)
# --Edge: j
graph.new_edge(3, 5)
return graph | Makes a new K5 graph.
Ref: http://mathworld.wolfram.com/Pentatope.html |
def build_k33_graph():
graph = UndirectedGraph()
# K3,3 has 6 nodes
for _ in range(1, 7):
graph.new_node()
# K3,3 has 9 edges
# --Edge: a
graph.new_edge(1, 4)
# --Edge: b
graph.new_edge(1, 5)
# --Edge: c
graph.new_edge(1, 6)
# --Edge: d
graph.new_edge(2, 4)
# --Edge: e
graph.new_edge(2, 5)
# --Edge: f
graph.new_edge(2, 6)
# --Edge: g
graph.new_edge(3, 4)
# --Edge: h
graph.new_edge(3, 5)
# --Edge: i
graph.new_edge(3, 6)
return graph | Makes a new K3,3 graph.
Ref: http://mathworld.wolfram.com/UtilityGraph.html |
def build_groetzch_graph():
# Because the graph is so complicated, we want to
# build it via adjacency matrix specification
# -- Initialize the matrix to all zeros
adj = [[0 for _ in range(11)] for _ in range(11)]
# -- Add individual edge connections
row_connections = []
row_connections.append( (1,2,7,10) )
row_connections.append( (0,3,6,9) )
row_connections.append( (0,4,6,8) )
row_connections.append( (1,4,8,10) )
row_connections.append( (2,3,7,9) )
row_connections.append( (6,7,8,9,10) )
row_connections.append( (1,2,5) )
row_connections.append( (0,4,5) )
row_connections.append( (2,3,5) )
row_connections.append( (1,4,5) )
row_connections.append( (0,3,5) )
for j, tpl in enumerate(row_connections):
for i in tpl:
adj[j][i] = 1
adj[i][j] = 1
# Debug print the adjacency matrix
#for row in adj:
# print row
graph, _ = create_graph_from_adjacency_matrix(adj)
return graph | Makes a new Groetzsch graph.
Ref: http://mathworld.wolfram.com/GroetzschGraph.html |
def build_franklin_graph():
# The easiest way to build the Franklin graph is to start
# with C12 and add the additional 6 edges
graph = build_cycle_graph(12)
edge_tpls = [
(1,8),
(2,7),
(3,10),
(4,9),
(5,12),
(6,11)
]
for i, j in edge_tpls:
graph.new_edge(i, j)
return graph | Makes a new Franklin graph.
Ref: http://mathworld.wolfram.com/FranklinGraph.html |
def build_chvatal_graph():
# The easiest way to build the Chvatal graph is to start
# with C12 and add the additional 12 edges
graph = build_cycle_graph(12)
edge_tpls = [
(1,7), (1,9), (2,5), (2,11),
(3,7), (3,9), (4,10), (4,12),
(5,8), (6,10), (6,12), (8,11),
]
for i, j in edge_tpls:
graph.new_edge(i, j)
return graph | Makes a new Chvatal graph.
Ref: http://mathworld.wolfram.com/ChvatalGraph.html |
def new_node(self):
node_id = self.generate_node_id()
node = {'id': node_id,
'edges': [],
'data': {}
}
self.nodes[node_id] = node
self._num_nodes += 1
return node_id | Adds a new, blank node to the graph.
Returns the node id of the new node. |
def new_edge(self, node_a, node_b, cost=1):
# Verify that both nodes exist in the graph
try:
self.nodes[node_a]
except KeyError:
raise NonexistentNodeError(node_a)
try:
self.nodes[node_b]
except KeyError:
raise NonexistentNodeError(node_b)
# Create the new edge
edge_id = self.generate_edge_id()
edge = {'id': edge_id,
'vertices': (node_a, node_b),
'cost': cost,
'data': {}
}
self.edges[edge_id] = edge
self.nodes[node_a]['edges'].append(edge_id)
self._num_edges += 1
return edge_id | Adds a new edge from node_a to node_b that has a cost.
Returns the edge id of the new edge. |
def neighbors(self, node_id):
node = self.get_node(node_id)
return [self.get_edge(edge_id)['vertices'][1] for edge_id in node['edges']] | Find all the nodes where there is an edge from the specified node to that node.
Returns a list of node ids. |
def adjacent(self, node_a, node_b):
neighbors = self.neighbors(node_a)
return node_b in neighbors | Determines whether there is an edge from node_a to node_b.
Returns True if such an edge exists, otherwise returns False. |
def edge_cost(self, node_a, node_b):
cost = float('inf')
node_object_a = self.get_node(node_a)
for edge_id in node_object_a['edges']:
edge = self.get_edge(edge_id)
tpl = (node_a, node_b)
if edge['vertices'] == tpl:
cost = edge['cost']
break
return cost | Returns the cost of moving between the edge that connects node_a to node_b.
Returns +inf if no such edge exists. |
def get_node(self, node_id):
try:
node_object = self.nodes[node_id]
except KeyError:
raise NonexistentNodeError(node_id)
return node_object | Returns the node object identified by "node_id". |
def get_edge(self, edge_id):
try:
edge_object = self.edges[edge_id]
except KeyError:
raise NonexistentEdgeError(edge_id)
return edge_object | Returns the edge object identified by "edge_id". |
def delete_edge_by_nodes(self, node_a, node_b):
node = self.get_node(node_a)
# Determine the edge ids
edge_ids = []
for e_id in node['edges']:
edge = self.get_edge(e_id)
if edge['vertices'][1] == node_b:
edge_ids.append(e_id)
# Delete the edges
for e in edge_ids:
self.delete_edge_by_id(e) | Removes all the edges from node_a to node_b from the graph. |
def delete_node(self, node_id):
node = self.get_node(node_id)
# Remove all edges from the node
for e in node['edges']:
self.delete_edge_by_id(e)
# Remove all edges to the node
edges = [edge_id for edge_id, edge in list(self.edges.items()) if edge['vertices'][1] == node_id]
for e in edges:
self.delete_edge_by_id(e)
# Remove the node from the node list
del self.nodes[node_id]
self._num_nodes -= 1 | Removes the node identified by node_id from the graph. |
def move_edge_source(self, edge_id, node_a, node_b):
# Grab the edge
edge = self.get_edge(edge_id)
# Alter the vertices
edge['vertices'] = (node_b, edge['vertices'][1])
# Remove the edge from node_a
node = self.get_node(node_a)
node['edges'].remove(edge_id)
# Add the edge to node_b
node = self.get_node(node_b)
node['edges'].append(edge_id) | Moves an edge originating from node_a so that it originates from node_b. |
def move_edge_target(self, edge_id, node_a):
# Grab the edge
edge = self.get_edge(edge_id)
# Alter the vertices
edge['vertices'] = (edge['vertices'][0], node_a) | Moves an edge so that it targets node_a. |
def get_edge_ids_by_node_ids(self, node_a, node_b):
# Check if the nodes are adjacent
if not self.adjacent(node_a, node_b):
return []
# They're adjacent, so pull the list of edges from node_a and determine which ones point to node_b
node = self.get_node(node_a)
return [edge_id for edge_id in node['edges'] if self.get_edge(edge_id)['vertices'][1] == node_b] | Returns a list of edge ids connecting node_a to node_b. |
def get_first_edge_id_by_node_ids(self, node_a, node_b):
ret = self.get_edge_ids_by_node_ids(node_a, node_b)
if not ret:
return None
else:
return ret[0] | Returns the first (and possibly only) edge connecting node_a and node_b. |
def find_biconnected_components(graph):
list_of_components = []
# Run the algorithm on each of the connected components of the graph
components = get_connected_components_as_subgraphs(graph)
for component in components:
# --Call the internal biconnnected components function to find
# --the edge lists for this particular connected component
edge_list = _internal_get_biconnected_components_edge_lists(component)
list_of_components.extend(edge_list)
return list_of_components | Finds all the biconnected components in a graph.
Returns a list of lists, each containing the edges that form a biconnected component.
Returns an empty list for an empty graph. |
def find_biconnected_components_as_subgraphs(graph):
list_of_graphs = []
list_of_components = find_biconnected_components(graph)
for edge_list in list_of_components:
subgraph = get_subgraph_from_edge_list(graph, edge_list)
list_of_graphs.append(subgraph)
return list_of_graphs | Finds the biconnected components and returns them as subgraphs. |
def find_articulation_vertices(graph):
articulation_vertices = []
all_nodes = graph.get_all_node_ids()
if len(all_nodes) == 0:
return articulation_vertices
# Run the algorithm on each of the connected components of the graph
components = get_connected_components_as_subgraphs(graph)
for component in components:
# --Call the internal articulation vertices function to find
# --the node list for this particular connected component
vertex_list = _internal_get_cut_vertex_list(component)
articulation_vertices.extend(vertex_list)
return articulation_vertices | Finds all of the articulation vertices within a graph.
Returns a list of all articulation vertices within the graph.
Returns an empty list for an empty graph. |
def output_component(graph, edge_stack, u, v):
edge_list = []
while len(edge_stack) > 0:
edge_id = edge_stack.popleft()
edge_list.append(edge_id)
edge = graph.get_edge(edge_id)
tpl_a = (u, v)
tpl_b = (v, u)
if tpl_a == edge['vertices'] or tpl_b == edge['vertices']:
break
return edge_list | Helper function to pop edges off the stack and produce a list of them. |
def depth_first_search(graph, root_node=None):
ordering, parent_lookup, children_lookup = depth_first_search_with_parent_data(graph, root_node)
return ordering | Searches through the tree in a breadth-first fashion.
If root_node is None, an arbitrary node will be used as the root.
If root_node is not None, it will be used as the root for the search tree.
Returns a list of nodes, in the order that they were reached. |
def depth_first_search_with_parent_data(graph, root_node = None, adjacency_lists = None):
ordering = []
parent_lookup = {}
children_lookup = defaultdict(lambda: [])
all_nodes = graph.get_all_node_ids()
if not all_nodes:
return ordering, parent_lookup, children_lookup
stack = deque()
discovered = defaultdict(lambda: False)
unvisited_nodes = set(all_nodes)
if root_node is None:
root_node = all_nodes[0]
if adjacency_lists is None:
adj = lambda v: graph.neighbors(v)
else:
adj = lambda v: adjacency_lists[v]
# --Initialize the stack, simulating the DFS call on the root node
stack.appendleft(root_node)
parent_lookup[root_node] = root_node
# We're using a non-recursive implementation of DFS, since Python isn't great for deep recursion
while True:
# Main DFS Loop
while len(stack) > 0:
u = stack.popleft()
if not discovered[u]:
discovered[u] = True
if u in unvisited_nodes:
unvisited_nodes.remove(u)
ordering.append(u)
neighbors = adj(u)
# When adding the new nodes to the stack, we want to add them in reverse order so that
# the order the nodes are visited is the same as with a recursive DFS implementation
for n in neighbors[::-1]:
if discovered[n]:
# If the node already exists in the discovered nodes list
# we don't want to re-add it to the stack
continue
stack.appendleft(n)
parent_lookup[n] = u
children_lookup[u].append(n)
# While there are still nodes that need visiting, repopulate the stack
if len(unvisited_nodes) > 0:
u = unvisited_nodes.pop()
stack.appendleft(u)
else:
break
return ordering, parent_lookup, children_lookup | Performs a depth-first search with visiting order of nodes determined by provided adjacency lists,
and also returns a parent lookup dict and a children lookup dict. |
def breadth_first_search(graph, root_node=None):
ordering = []
all_nodes = graph.get_all_node_ids()
if not all_nodes:
return ordering
queue = deque()
discovered = defaultdict(lambda: False)
to_visit = set(all_nodes)
if root_node is None:
root_node = all_nodes[0]
discovered[root_node] = True
queue.appendleft(root_node)
# We need to make sure we visit all the nodes, including disconnected ones
while True:
# BFS Main Loop
while len(queue) > 0:
current_node = queue.pop()
ordering.append(current_node)
to_visit.remove(current_node)
for n in graph.neighbors(current_node):
if not discovered[n]:
discovered[n] = True
queue.appendleft(n)
# New root node if we still have more nodes
if len(to_visit) > 0:
node = to_visit.pop()
to_visit.add(node) # --We need this here because we remove the node as part of the BFS algorithm
discovered[node] = True
queue.appendleft(node)
else:
break
return ordering | Searches through the tree in a breadth-first fashion.
If root_node is None, an arbitrary node will be used as the root.
If root_node is not None, it will be used as the root for the search tree.
Returns a list of nodes, in the order that they were reached. |
def graph_to_dot(graph, node_renderer=None, edge_renderer=None):
node_pairs = list(graph.nodes.items())
edge_pairs = list(graph.edges.items())
if node_renderer is None:
node_renderer_wrapper = lambda nid: ''
else:
node_renderer_wrapper = lambda nid: ' [%s]' % ','.join(
['%s=%s' % tpl for tpl in list(node_renderer(graph, nid).items())])
# Start the graph
graph_string = 'digraph G {\n'
graph_string += 'overlap=scale;\n'
# Print the nodes (placeholder)
for node_id, node in node_pairs:
graph_string += '%i%s;\n' % (node_id, node_renderer_wrapper(node_id))
# Print the edges
for edge_id, edge in edge_pairs:
node_a = edge['vertices'][0]
node_b = edge['vertices'][1]
graph_string += '%i -> %i;\n' % (node_a, node_b)
# Finish the graph
graph_string += '}'
return graph_string | Produces a DOT specification string from the provided graph. |
def get_connected_components(graph):
list_of_components = []
component = [] # Not strictly necessary due to the while loop structure, but it helps the automated analysis tools
# Store a list of all unreached vertices
unreached = set(graph.get_all_node_ids())
to_explore = deque()
while len(unreached) > 0:
# This happens when we reach the end of a connected component and still have more vertices to search through
if len(to_explore) == 0:
n = unreached.pop()
unreached.add(n)
to_explore.append(n)
component = []
list_of_components.append(component)
# This is the BFS that searches for connected vertices
while len(to_explore) > 0:
n = to_explore.pop()
if n in unreached:
component.append(n)
unreached.remove(n)
nodes = graph.neighbors(n)
for n in nodes:
if n in unreached:
to_explore.append(n)
return list_of_components | Finds all connected components of the graph.
Returns a list of lists, each containing the nodes that form a connected component.
Returns an empty list for an empty graph. |
def get_connected_components_as_subgraphs(graph):
components = get_connected_components(graph)
list_of_graphs = []
for c in components:
edge_ids = set()
nodes = [graph.get_node(node) for node in c]
for n in nodes:
# --Loop through the edges in each node, to determine if it should be included
for e in n['edges']:
# --Only add the edge to the subgraph if both ends are in the subgraph
edge = graph.get_edge(e)
a, b = edge['vertices']
if a in c and b in c:
edge_ids.add(e)
# --Build the subgraph and add it to the list
list_of_edges = list(edge_ids)
subgraph = make_subgraph(graph, c, list_of_edges)
list_of_graphs.append(subgraph)
return list_of_graphs | Finds all connected components of the graph.
Returns a list of graph objects, each representing a connected component.
Returns an empty list for an empty graph. |
def new_edge(self, node_a, node_b, cost=1):
edge_id = super(UndirectedGraph, self).new_edge(node_a, node_b, cost)
self.nodes[node_b]['edges'].append(edge_id)
return edge_id | Adds a new, undirected edge between node_a and node_b with a cost.
Returns the edge id of the new edge. |
def neighbors(self, node_id):
node = self.get_node(node_id)
flattened_nodes_list = []
for a, b in [self.get_edge(edge_id)['vertices'] for edge_id in node['edges']]:
flattened_nodes_list.append(a)
flattened_nodes_list.append(b)
node_set = set(flattened_nodes_list)
if node_id in node_set:
node_set.remove(node_id)
return [nid for nid in node_set] | Find all the nodes where there is an edge from the specified node to that node.
Returns a list of node ids. |
def delete_edge_by_id(self, edge_id):
edge = self.get_edge(edge_id)
# Remove the edge from the "from node"
# --Determine the from node
from_node_id = edge['vertices'][0]
from_node = self.get_node(from_node_id)
# --Remove the edge from it
from_node['edges'].remove(edge_id)
# Remove the edge from the "to node"
to_node_id = edge['vertices'][1]
to_node = self.get_node(to_node_id)
# --Remove the edge from it
to_node['edges'].remove(edge_id)
# Remove the edge from the edge list
del self.edges[edge_id]
self._num_edges -= 1 | Removes the edge identified by "edge_id" from the graph. |
def move_edge_target(self, edge_id, node_a):
# Grab the edge
edge = self.get_edge(edge_id)
# Remove the edge from the original "target node"
original_target_node_id = edge['vertices'][1]
original_target_node = self.get_node(original_target_node_id)
original_target_node['edges'].remove(edge_id)
# Add the edge to the new target node
new_target_node_id = node_a
new_target_node = self.get_node(new_target_node_id)
new_target_node['edges'].append(edge_id)
# Alter the vertices on the edge
edge['vertices'] = (edge['vertices'][0], node_a) | Moves an edge so that it targets node_a. |
def find_minimum_spanning_tree(graph):
mst = []
if graph.num_nodes() == 0:
return mst
if graph.num_edges() == 0:
return mst
connected_components = get_connected_components(graph)
if len(connected_components) > 1:
raise DisconnectedGraphError
edge_list = kruskal_mst(graph)
return edge_list | Calculates a minimum spanning tree for a graph.
Returns a list of edges that define the tree.
Returns an empty list for an empty graph. |
def find_minimum_spanning_tree_as_subgraph(graph):
edge_list = find_minimum_spanning_tree(graph)
subgraph = get_subgraph_from_edge_list(graph, edge_list)
return subgraph | Calculates a minimum spanning tree and returns a graph representation. |
def find_minimum_spanning_forest(graph):
msf = []
if graph.num_nodes() == 0:
return msf
if graph.num_edges() == 0:
return msf
connected_components = get_connected_components_as_subgraphs(graph)
for subgraph in connected_components:
edge_list = kruskal_mst(subgraph)
msf.append(edge_list)
return msf | Calculates the minimum spanning forest of a disconnected graph.
Returns a list of lists, each containing the edges that define that tree.
Returns an empty list for an empty graph. |
def find_minimum_spanning_forest_as_subgraphs(graph):
forest = find_minimum_spanning_forest(graph)
list_of_subgraphs = [get_subgraph_from_edge_list(graph, edge_list) for edge_list in forest]
return list_of_subgraphs | Calculates the minimum spanning forest and returns a list of trees as subgraphs. |
def kruskal_mst(graph):
edges_accepted = 0
ds = DisjointSet()
pq = PriorityQueue()
accepted_edges = []
label_lookup = {}
nodes = graph.get_all_node_ids()
num_vertices = len(nodes)
for n in nodes:
label = ds.add_set()
label_lookup[n] = label
edges = graph.get_all_edge_objects()
for e in edges:
pq.put(e['id'], e['cost'])
while edges_accepted < (num_vertices - 1):
edge_id = pq.get()
edge = graph.get_edge(edge_id)
node_a, node_b = edge['vertices']
label_a = label_lookup[node_a]
label_b = label_lookup[node_b]
a_set = ds.find(label_a)
b_set = ds.find(label_b)
if a_set != b_set:
edges_accepted += 1
accepted_edges.append(edge_id)
ds.union(a_set, b_set)
return accepted_edges | Implements Kruskal's Algorithm for finding minimum spanning trees.
Assumes a non-empty, connected graph. |
def __get_cycle(graph, ordering, parent_lookup):
root_node = ordering[0]
for i in range(2, len(ordering)):
current_node = ordering[i]
if graph.adjacent(current_node, root_node):
path = []
while current_node != root_node:
path.append(current_node)
current_node = parent_lookup[current_node]
path.append(root_node)
path.reverse()
return path | Gets the main cycle of the dfs tree. |
def __get_segments_from_node(node, graph):
list_of_segments = []
node_object = graph.get_node(node)
for e in node_object['edges']:
list_of_segments.append(e)
return list_of_segments | Calculates the segments that can emanate from a particular node on the main cycle. |
def __get_segments_from_cycle(graph, cycle_path):
list_of_segments = []
# We work through the cycle in a bottom-up fashion
for n in cycle_path[::-1]:
segments = __get_segments_from_node(n, graph)
if segments:
list_of_segments.append(segments)
return list_of_segments | Calculates the segments that emanate from the main cycle. |
def make_subgraph(graph, vertices, edges):
# Copy the entire graph
local_graph = copy.deepcopy(graph)
# Remove all the edges that aren't in the list
edges_to_delete = [x for x in local_graph.get_all_edge_ids() if x not in edges]
for e in edges_to_delete:
local_graph.delete_edge_by_id(e)
# Remove all the vertices that aren't in the list
nodes_to_delete = [x for x in local_graph.get_all_node_ids() if x not in vertices]
for n in nodes_to_delete:
local_graph.delete_node(n)
return local_graph | Converts a subgraph given by a list of vertices and edges into a graph object. |
def convert_graph_directed_to_undirected(dg):
udg = UndirectedGraph()
# Copy the graph
# --Copy nodes
# --Copy edges
udg.nodes = copy.deepcopy(dg.nodes)
udg.edges = copy.deepcopy(dg.edges)
udg.next_node_id = dg.next_node_id
udg.next_edge_id = dg.next_edge_id
# Convert the directed edges into undirected edges
for edge_id in udg.get_all_edge_ids():
edge = udg.get_edge(edge_id)
target_node_id = edge['vertices'][1]
target_node = udg.get_node(target_node_id)
target_node['edges'].append(edge_id)
return udg | Converts a directed graph into an undirected graph. Directed edges are made undirected. |
def remove_duplicate_edges_directed(dg):
# With directed edges, we can just hash the to and from node id tuples and if
# a node happens to conflict with one that already exists, we delete it
# --For aesthetic, we sort the edge ids so that lower edge ids are kept
lookup = {}
edges = sorted(dg.get_all_edge_ids())
for edge_id in edges:
e = dg.get_edge(edge_id)
tpl = e['vertices']
if tpl in lookup:
dg.delete_edge_by_id(edge_id)
else:
lookup[tpl] = edge_id | Removes duplicate edges from a directed graph. |
def remove_duplicate_edges_undirected(udg):
# With undirected edges, we need to hash both combinations of the to-from node ids, since a-b and b-a are equivalent
# --For aesthetic, we sort the edge ids so that lower edges ids are kept
lookup = {}
edges = sorted(udg.get_all_edge_ids())
for edge_id in edges:
e = udg.get_edge(edge_id)
tpl_a = e['vertices']
tpl_b = (tpl_a[1], tpl_a[0])
if tpl_a in lookup or tpl_b in lookup:
udg.delete_edge_by_id(edge_id)
else:
lookup[tpl_a] = edge_id
lookup[tpl_b] = edge_id | Removes duplicate edges from an undirected graph. |
def get_vertices_from_edge_list(graph, edge_list):
node_set = set()
for edge_id in edge_list:
edge = graph.get_edge(edge_id)
a, b = edge['vertices']
node_set.add(a)
node_set.add(b)
return list(node_set) | Transforms a list of edges into a list of the nodes those edges connect.
Returns a list of nodes, or an empty list if given an empty list. |
def get_subgraph_from_edge_list(graph, edge_list):
node_list = get_vertices_from_edge_list(graph, edge_list)
subgraph = make_subgraph(graph, node_list, edge_list)
return subgraph | Transforms a list of edges into a subgraph. |
def merge_graphs(main_graph, addition_graph):
node_mapping = {}
edge_mapping = {}
for node in addition_graph.get_all_node_objects():
node_id = node['id']
new_id = main_graph.new_node()
node_mapping[node_id] = new_id
for edge in addition_graph.get_all_edge_objects():
edge_id = edge['id']
old_vertex_a_id, old_vertex_b_id = edge['vertices']
new_vertex_a_id = node_mapping[old_vertex_a_id]
new_vertex_b_id = node_mapping[old_vertex_b_id]
new_edge_id = main_graph.new_edge(new_vertex_a_id, new_vertex_b_id)
edge_mapping[edge_id] = new_edge_id
return node_mapping, edge_mapping | Merges an ''addition_graph'' into the ''main_graph''.
Returns a tuple of dictionaries, mapping old node ids and edge ids to new ids. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.