max_stars_repo_path
stringlengths
4
286
max_stars_repo_name
stringlengths
5
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.03M
content_cleaned
stringlengths
6
1.03M
language
stringclasses
111 values
language_score
float64
0.03
1
comments
stringlengths
0
556k
edu_score
float64
0.32
5.03
edu_int_score
int64
0
5
examples/scripts/flopy_lake_example.py
andrewcalderwood/flopy
351
10400
import os import sys import numpy as np import matplotlib.pyplot as plt import flopy def run(): workspace = os.path.join("lake") # make sure workspace directory exists if not os.path.exists(workspace): os.makedirs(workspace) fext = "png" narg = len(sys.argv) iarg = 0 if narg > 1: while iarg < narg - 1: iarg += 1 basearg = sys.argv[iarg].lower() if basearg == "--pdf": fext = "pdf" # save the starting path cwdpth = os.getcwd() # change to the working directory os.chdir(workspace) # We are creating a square model with a specified head equal to `h1` along all boundaries. # The head at the cell in the center in the top layer is fixed to `h2`. First, set the name # of the model and the parameters of the model: the number of layers `Nlay`, the number of rows # and columns `N`, lengths of the sides of the model `L`, aquifer thickness `H`, hydraulic # conductivity `Kh` name = "lake_example" h1 = 100 h2 = 90 Nlay = 10 N = 101 L = 400.0 H = 50.0 Kh = 1.0 # Create a MODFLOW model and store it (in this case in the variable `ml`, but you can call it # whatever you want). The modelname will be the name given to all MODFLOW files (input and output). # The exe_name should be the full path to your MODFLOW executable. The version is either 'mf2k' # for MODFLOW2000 or 'mf2005'for MODFLOW2005. ml = flopy.modflow.Modflow( modelname=name, exe_name="mf2005", version="mf2005" ) # Define the discretization of the model. All layers are given equal thickness. The `bot` array # is build from the `Hlay` values to indicate top and bottom of each layer, and `delrow` and # `delcol` are computed from model size `L` and number of cells `N`. Once these are all computed, # the Discretization file is built. bot = np.linspace(-H / Nlay, -H, Nlay) delrow = delcol = L / (N - 1) dis = flopy.modflow.ModflowDis( ml, nlay=Nlay, nrow=N, ncol=N, delr=delrow, delc=delcol, top=0.0, botm=bot, laycbd=0, ) # Next we specify the boundary conditions and starting heads with the Basic package. The `ibound` # array will be `1` in all cells in all layers, except for along the boundary and in the cell at # the center in the top layer where it is set to `-1` to indicate fixed heads. The starting heads # are used to define the heads in the fixed head cells (this is a steady simulation, so none of # the other starting values matter). So we set the starting heads to `h1` everywhere, except for # the head at the center of the model in the top layer. Nhalf = int((N - 1) / 2) ibound = np.ones((Nlay, N, N), dtype=int) ibound[:, 0, :] = -1 ibound[:, -1, :] = -1 ibound[:, :, 0] = -1 ibound[:, :, -1] = -1 ibound[0, Nhalf, Nhalf] = -1 start = h1 * np.ones((N, N)) start[Nhalf, Nhalf] = h2 # create external ibound array and starting head files files = [] hfile = f"{name}_strt.ref" np.savetxt(hfile, start) hfiles = [] for kdx in range(Nlay): file = f"{name}_ib{kdx + 1:02d}.ref" files.append(file) hfiles.append(hfile) np.savetxt(file, ibound[kdx, :, :], fmt="%5d") bas = flopy.modflow.ModflowBas(ml, ibound=files, strt=hfiles) # The aquifer properties (really only the hydraulic conductivity) are defined with the # LPF package. lpf = flopy.modflow.ModflowLpf(ml, hk=Kh) # Finally, we need to specify the solver we want to use (PCG with default values), and the # output control (using the default values). Then we are ready to write all MODFLOW input # files and run MODFLOW. pcg = flopy.modflow.ModflowPcg(ml) oc = flopy.modflow.ModflowOc(ml) ml.write_input() ml.run_model() # change back to the starting directory os.chdir(cwdpth) # Once the model has terminated normally, we can read the heads file. First, a link to the heads # file is created with `HeadFile`. The link can then be accessed with the `get_data` function, by # specifying, in this case, the step number and period number for which we want to retrieve data. # A three-dimensional array is returned of size `nlay, nrow, ncol`. Matplotlib contouring functions # are used to make contours of the layers or a cross-section. hds = flopy.utils.HeadFile(os.path.join(workspace, f"{name}.hds")) h = hds.get_data(kstpkper=(0, 0)) x = y = np.linspace(0, L, N) c = plt.contour(x, y, h[0], np.arange(90, 100.1, 0.2)) plt.clabel(c, fmt="%2.1f") plt.axis("scaled") outfig = os.path.join(workspace, f"lake1.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) x = y = np.linspace(0, L, N) c = plt.contour(x, y, h[-1], np.arange(90, 100.1, 0.2)) plt.clabel(c, fmt="%1.1f") plt.axis("scaled") outfig = os.path.join(workspace, f"lake2.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) z = np.linspace(-H / Nlay / 2, -H + H / Nlay / 2, Nlay) c = plt.contour(x, z, h[:, 50, :], np.arange(90, 100.1, 0.2)) plt.axis("scaled") outfig = os.path.join(workspace, f"lake3.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) return 0 if __name__ == "__main__": success = run()
import os import sys import numpy as np import matplotlib.pyplot as plt import flopy def run(): workspace = os.path.join("lake") # make sure workspace directory exists if not os.path.exists(workspace): os.makedirs(workspace) fext = "png" narg = len(sys.argv) iarg = 0 if narg > 1: while iarg < narg - 1: iarg += 1 basearg = sys.argv[iarg].lower() if basearg == "--pdf": fext = "pdf" # save the starting path cwdpth = os.getcwd() # change to the working directory os.chdir(workspace) # We are creating a square model with a specified head equal to `h1` along all boundaries. # The head at the cell in the center in the top layer is fixed to `h2`. First, set the name # of the model and the parameters of the model: the number of layers `Nlay`, the number of rows # and columns `N`, lengths of the sides of the model `L`, aquifer thickness `H`, hydraulic # conductivity `Kh` name = "lake_example" h1 = 100 h2 = 90 Nlay = 10 N = 101 L = 400.0 H = 50.0 Kh = 1.0 # Create a MODFLOW model and store it (in this case in the variable `ml`, but you can call it # whatever you want). The modelname will be the name given to all MODFLOW files (input and output). # The exe_name should be the full path to your MODFLOW executable. The version is either 'mf2k' # for MODFLOW2000 or 'mf2005'for MODFLOW2005. ml = flopy.modflow.Modflow( modelname=name, exe_name="mf2005", version="mf2005" ) # Define the discretization of the model. All layers are given equal thickness. The `bot` array # is build from the `Hlay` values to indicate top and bottom of each layer, and `delrow` and # `delcol` are computed from model size `L` and number of cells `N`. Once these are all computed, # the Discretization file is built. bot = np.linspace(-H / Nlay, -H, Nlay) delrow = delcol = L / (N - 1) dis = flopy.modflow.ModflowDis( ml, nlay=Nlay, nrow=N, ncol=N, delr=delrow, delc=delcol, top=0.0, botm=bot, laycbd=0, ) # Next we specify the boundary conditions and starting heads with the Basic package. The `ibound` # array will be `1` in all cells in all layers, except for along the boundary and in the cell at # the center in the top layer where it is set to `-1` to indicate fixed heads. The starting heads # are used to define the heads in the fixed head cells (this is a steady simulation, so none of # the other starting values matter). So we set the starting heads to `h1` everywhere, except for # the head at the center of the model in the top layer. Nhalf = int((N - 1) / 2) ibound = np.ones((Nlay, N, N), dtype=int) ibound[:, 0, :] = -1 ibound[:, -1, :] = -1 ibound[:, :, 0] = -1 ibound[:, :, -1] = -1 ibound[0, Nhalf, Nhalf] = -1 start = h1 * np.ones((N, N)) start[Nhalf, Nhalf] = h2 # create external ibound array and starting head files files = [] hfile = f"{name}_strt.ref" np.savetxt(hfile, start) hfiles = [] for kdx in range(Nlay): file = f"{name}_ib{kdx + 1:02d}.ref" files.append(file) hfiles.append(hfile) np.savetxt(file, ibound[kdx, :, :], fmt="%5d") bas = flopy.modflow.ModflowBas(ml, ibound=files, strt=hfiles) # The aquifer properties (really only the hydraulic conductivity) are defined with the # LPF package. lpf = flopy.modflow.ModflowLpf(ml, hk=Kh) # Finally, we need to specify the solver we want to use (PCG with default values), and the # output control (using the default values). Then we are ready to write all MODFLOW input # files and run MODFLOW. pcg = flopy.modflow.ModflowPcg(ml) oc = flopy.modflow.ModflowOc(ml) ml.write_input() ml.run_model() # change back to the starting directory os.chdir(cwdpth) # Once the model has terminated normally, we can read the heads file. First, a link to the heads # file is created with `HeadFile`. The link can then be accessed with the `get_data` function, by # specifying, in this case, the step number and period number for which we want to retrieve data. # A three-dimensional array is returned of size `nlay, nrow, ncol`. Matplotlib contouring functions # are used to make contours of the layers or a cross-section. hds = flopy.utils.HeadFile(os.path.join(workspace, f"{name}.hds")) h = hds.get_data(kstpkper=(0, 0)) x = y = np.linspace(0, L, N) c = plt.contour(x, y, h[0], np.arange(90, 100.1, 0.2)) plt.clabel(c, fmt="%2.1f") plt.axis("scaled") outfig = os.path.join(workspace, f"lake1.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) x = y = np.linspace(0, L, N) c = plt.contour(x, y, h[-1], np.arange(90, 100.1, 0.2)) plt.clabel(c, fmt="%1.1f") plt.axis("scaled") outfig = os.path.join(workspace, f"lake2.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) z = np.linspace(-H / Nlay / 2, -H + H / Nlay / 2, Nlay) c = plt.contour(x, z, h[:, 50, :], np.arange(90, 100.1, 0.2)) plt.axis("scaled") outfig = os.path.join(workspace, f"lake3.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) return 0 if __name__ == "__main__": success = run()
en
0.849596
# make sure workspace directory exists # save the starting path # change to the working directory # We are creating a square model with a specified head equal to `h1` along all boundaries. # The head at the cell in the center in the top layer is fixed to `h2`. First, set the name # of the model and the parameters of the model: the number of layers `Nlay`, the number of rows # and columns `N`, lengths of the sides of the model `L`, aquifer thickness `H`, hydraulic # conductivity `Kh` # Create a MODFLOW model and store it (in this case in the variable `ml`, but you can call it # whatever you want). The modelname will be the name given to all MODFLOW files (input and output). # The exe_name should be the full path to your MODFLOW executable. The version is either 'mf2k' # for MODFLOW2000 or 'mf2005'for MODFLOW2005. # Define the discretization of the model. All layers are given equal thickness. The `bot` array # is build from the `Hlay` values to indicate top and bottom of each layer, and `delrow` and # `delcol` are computed from model size `L` and number of cells `N`. Once these are all computed, # the Discretization file is built. # Next we specify the boundary conditions and starting heads with the Basic package. The `ibound` # array will be `1` in all cells in all layers, except for along the boundary and in the cell at # the center in the top layer where it is set to `-1` to indicate fixed heads. The starting heads # are used to define the heads in the fixed head cells (this is a steady simulation, so none of # the other starting values matter). So we set the starting heads to `h1` everywhere, except for # the head at the center of the model in the top layer. # create external ibound array and starting head files # The aquifer properties (really only the hydraulic conductivity) are defined with the # LPF package. # Finally, we need to specify the solver we want to use (PCG with default values), and the # output control (using the default values). Then we are ready to write all MODFLOW input # files and run MODFLOW. # change back to the starting directory # Once the model has terminated normally, we can read the heads file. First, a link to the heads # file is created with `HeadFile`. The link can then be accessed with the `get_data` function, by # specifying, in this case, the step number and period number for which we want to retrieve data. # A three-dimensional array is returned of size `nlay, nrow, ncol`. Matplotlib contouring functions # are used to make contours of the layers or a cross-section.
2.857816
3
P2/Caso2/clustering.py
Ocete/Inteligenica-de-Negocio
0
10401
# -*- coding: utf-8 -*- ''' Documentación sobre clustering en Python: http://scikit-learn.org/stable/modules/clustering.html http://www.learndatasci.com/k-means-clustering-algorithms-python-intro/ http://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/ http://www.learndatasci.com/k-means-clustering-algorithms-python-intro/ ''' import time import csv import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn import preprocessing from sklearn import metrics from sklearn import cluster from math import floor import seaborn as sns # Cosas bonitas por defecto sns.set() def norm_to_zero_one(df): return (df - df.min()) * 1.0 / (df.max() - df.min()) censo = pd.read_csv('../mujeres_fecundidad_INE_2018.csv') ''' for col in censo: missing_count = sum(pd.isnull(censo[col])) if missing_count > 0: print(col,missing_count) #''' #Se pueden reemplazar los valores desconocidos por un número #censo = censo.replace(np.NaN,0) # Sustituimos valores perdidos con la media for col in censo: censo[col].fillna(censo[col].mean(), inplace=True) #seleccionar casos subset = censo.loc[(censo['TRAREPRO']==1) & (censo['NEMBTRAREPRO']<=6)] # Seleccionar variables usadas = ['NHIJOS', 'TIPOTRAREPRO', 'NMESESTRAREPRO', 'NEMBTRAREPRO'] X = subset[usadas] X_normal = X.apply(norm_to_zero_one) print('Tamaño de la población tras filtrado: ',len(X_normal.index)) for col in X: missing_count = sum(pd.isnull(censo[col])) if missing_count > 0: print(col,missing_count, ' AFTER') algoritmos = (('KMeans', cluster.KMeans(init='k-means++', n_clusters=5, n_init=5)), ('MeanShift', cluster.MeanShift(cluster_all=False, min_bin_freq=3)), ('Ward', cluster.AgglomerativeClustering(n_clusters=4, linkage='ward')), ('DBScan', cluster.DBSCAN(eps=0.35, min_samples=5)), ('Birch', cluster.Birch(threshold=0.1,n_clusters=5))) cluster_predict = {} calinski = {} silh = {} times = {} n_clusters = {} clusters_fig, clusters_axis = plt.subplots(3, 2, figsize=(10,10)) clusters_colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue', '#ffb347'] ijs = [(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)] for i_alg, par in enumerate(algoritmos): name, alg = par print('----- Ejecutando ' + name,) t = time.time() cluster_predict[name] = alg.fit_predict(X_normal) tiempo = time.time() - t times[name] = tiempo metric_CH = metrics.calinski_harabasz_score(X_normal, cluster_predict[name]) calinski[name] = metric_CH metric_SC = metrics.silhouette_score(X_normal, cluster_predict[name], metric='euclidean', sample_size=floor(len(X)), random_state=123456) silh[name] = metric_SC # Asignamos de clusters a DataFrame clusters = pd.DataFrame(cluster_predict[name],index=X.index,columns=['cluster']) if (name == 'KMeans'): clusters_kmeans = clusters alg_kmeans = alg elif (name == 'Ward'): clusters_ward = clusters print("Tamaño de cada cluster:") size = clusters['cluster'].value_counts() cluster_fractions = [] for num,i in size.iteritems(): print('%s: %5d (%5.2f%%)' % (num,i,100*i/len(clusters))) cluster_fractions.append( 100*i/len(clusters) ) n_clusters[name] = len(size) # Bar charts if ( len(cluster_fractions) > 7 ): cluster_fractions = cluster_fractions[0:6] i, j = ijs[i_alg] y_pos = np.arange(len(cluster_fractions)) labels = [ "Cluster " + str(i) for i in range(len(cluster_fractions)) ] clusters_axis[i, j].bar(y_pos, cluster_fractions, tick_label=labels, color=clusters_colors) clusters_axis[i, j].set_ylim(0, 100) clusters_axis[i, j].set_title(name) if (j == 0): clusters_axis[i, j].set_ylabel("Cluster size (%)") clusters_axis[2,1].remove() #clusters_fig.savefig("clusters.png") plt.show() from prettytable import PrettyTable header = ['Algoritmo', 'CH', 'Silh', 'Tiempo', 'Número de clusters'] tabla = PrettyTable(header) for name, alg in algoritmos: tabla.add_row([name, "{0:.2f}".format(calinski[name]), "{0:.2f}".format(silh[name]), "{0:.2f}".format(times[name]), n_clusters[name]]) print(tabla) # Escribir los datos en un general.csv ''' with open('general.csv', mode='w+', newline='') as file: writer = csv.DictWriter(file, fieldnames=header) writer.writeheader() for name, _ in algoritmos: writer.writerow({'Algoritmo': name, 'CH': "{0:.2f}".format(calinski[name]), 'Silh': "{0:.2f}".format(silh[name]), 'Tiempo': "{0:.2f}".format(times[name]), 'Número de clusters': n_clusters[name]}) #''' # ----------------------- FUNCIONES DE DISTRIBUCIÓN --------- print("---------- Preparando funciones de distribución...") n_clusters_ward = n_clusters['Ward'] n_var = len(usadas) X_ward = pd.concat([X, clusters_ward], axis=1) fig, axes = plt.subplots(n_clusters_ward, n_var, sharey=True, figsize=(15,15)) fig.subplots_adjust(wspace=0, hspace=0) colors = sns.color_palette(palette=None, n_colors=n_clusters_ward, desat=None) rango = [] for j in range(n_var): rango.append([X_ward[usadas[j]].min(), X_ward[usadas[j]].max()]) for i in range(n_clusters_ward): dat_filt = X_ward.loc[X_ward['cluster']==i] for j in range(n_var): #ax = sns.kdeplot(dat_filt[usadas[j]], label="", shade=True, color=colors[i], ax=axes[i,j]) ax = sns.boxplot(dat_filt[usadas[j]], color=colors[i], flierprops={'marker':'o','markersize':4}, ax=axes[i,j]) if (i==n_clusters_ward-1): axes[i,j].set_xlabel(usadas[j]) else: axes[i,j].set_xlabel("") if (j==0): axes[i,j].set_ylabel("Cluster "+str(i)) else: axes[i,j].set_ylabel("") axes[i,j].set_yticks([]) axes[i,j].grid(axis='x', linestyle='-', linewidth='0.2', color='gray') axes[i,j].grid(axis='y', b=False) ax.set_xlim(rango[j][0]-0.05*(rango[j][1]-rango[j][0]),rango[j][1]+0.05*(rango[j][1]-rango[j][0])) plt.show() #fig.savefig("boxes.png") # ---------------- SCATTER MATRIX ----------------------- ''' plt.clf() print("---------- Preparando el scatter matrix...") # Se añade la asignación de clusters como columna a X variables = list(X_ward) variables.remove('cluster') sns_plot = sns.pairplot(X_ward, vars=variables, hue="cluster", palette='Paired', plot_kws={"s": 25}, diag_kind="hist") sns_plot.fig.subplots_adjust(wspace=.03, hspace=.03); # sns_plot.savefig("scatter_matrix.png") plt.show() #''' # ----------------------- DENDOGRAMAS ----------------------- #En clustering hay que normalizar para las métricas de distancia # X_normal = preprocessing.normalize(X, norm='l2') X_normal = (X - X.min() ) / (X.max() - X.min()) #Vamos a usar este jerárquico y nos quedamos con 100 clusters, es decir, cien ramificaciones del dendrograma ward = cluster.AgglomerativeClustering(n_clusters=20, linkage='ward') name, algorithm = ('Ward', ward) cluster_predict = {} k = {} t = time.time() cluster_predict[name] = algorithm.fit_predict(X_normal) tiempo = time.time() - t k[name] = len(set(cluster_predict[name])) # Se convierte la asignación de clusters a DataFrame clusters = pd.DataFrame(cluster_predict['Ward'],index=X.index,columns=['cluster']) # Y se añade como columna a X X_cluster = pd.concat([X, clusters], axis=1) # Filtro quitando los elementos (outliers) que caen en clusters muy pequeños en el jerárquico min_size = 3 X_filtrado = X ''' X_cluster[X_cluster.groupby('cluster').cluster.transform(len) > min_size] k_filtrado = len(set(X_filtrado['cluster'])) print("De los {:.0f} clusters hay {:.0f} con más de {:.0f} elementos. Del total de {:.0f} elementos, se seleccionan {:.0f}".format(k['Ward'],k_filtrado,min_size,len(X),len(X_filtrado))) X_filtrado = X_filtrado.drop('cluster', 1) X_filtrado = X #''' #Normalizo el conjunto filtrado X_filtrado_normal = preprocessing.normalize(X_filtrado, norm='l2') # Obtengo el dendrograma usando scipy, que realmente vuelve a ejecutar el clustering jerárquico from scipy.cluster import hierarchy linkage_array = hierarchy.ward(X_filtrado_normal) plt.clf() dendro = hierarchy.dendrogram(linkage_array,orientation='left', p=10, truncate_mode='lastp') #lo pongo en horizontal para compararlo con el generado por seaborn # puedo usar "p=10,truncate_mode='lastp'" para cortar el dendrograma en 10 hojas # Dendograma usando seaborn (que a su vez usa scipy) para incluir un heatmap X_filtrado_normal_DF = pd.DataFrame(X_filtrado_normal, index=X_filtrado.index, columns=usadas) # Añadimos una columna de label para indicar el cluster al que pertenece cada objeto labels = X_ward['cluster'] lut = dict(zip(set(labels), sns.color_palette(palette="Blues_d", n_colors=n_clusters_ward))) row_colors = pd.DataFrame(labels)['cluster'].map(lut) clustergrid = sns.clustermap(X_filtrado_normal_DF, method='ward', row_colors=row_colors, col_cluster=False, figsize=(20,10), cmap="YlGnBu", yticklabels=False) # Para añadir los labels reordenados. Ahora mismo no salen los colores en la # columna donde deberian. Intuyo que esto se debe a que los ids no encajan. #''' ordering = clustergrid.dendrogram_row.reordered_ind labels_list = [x for _, x in sorted(zip(ordering,labels), key=lambda pair: pair[0])] labels = pd.Series(labels_list, index=X_filtrado_normal_DF.index, name='cluster') lut = dict(zip(set(labels), sns.color_palette(palette="Blues_d", n_colors=n_clusters_ward))) row_colors = pd.DataFrame(labels)['cluster'].map(lut) clustergrid = sns.clustermap(X_filtrado_normal_DF, method='ward', row_colors=row_colors, col_cluster=False, figsize=(20,10), cmap="YlGnBu", yticklabels=False) #''' #plt.savefig("dendograma.png") # ----------------------- HEATMAPS ----------------------- #''' plt.figure(1) centers = pd.DataFrame(alg_kmeans.cluster_centers_, columns=list(X)) centers_desnormal = centers.copy() centers_desnormal = centers.drop([4]) # Calculamos los centroides X = pd.concat([X, clusters_ward], axis=1) for variable in list(centers): for k_cluster in range(n_clusters_ward): centroide = X.loc[(clusters_ward['cluster']==k_cluster)][variable].mean() centers_desnormal.loc[k_cluster, variable] = centroide # Normalizamos centers_normal2 = centers_desnormal.copy() centers_normal2 = (centers_normal2 - centers_normal2.min() ) / (centers_normal2.max() - centers_normal2.min()) import matplotlib.pyplot as plt heatmap_fig, ax = plt.subplots(figsize=(10,10)) heatmap = sns.heatmap(centers_normal2, cmap="YlGnBu", annot=centers_desnormal, fmt='.3f') # Para evitar que los bloques de arriba y abajo se corten por la mitad bottom, top = ax.get_ylim() ax.set_ylim(bottom + 0.5, top - 0.5) #heatmap_fig.savefig("heatmap.png") #'''
# -*- coding: utf-8 -*- ''' Documentación sobre clustering en Python: http://scikit-learn.org/stable/modules/clustering.html http://www.learndatasci.com/k-means-clustering-algorithms-python-intro/ http://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/ http://www.learndatasci.com/k-means-clustering-algorithms-python-intro/ ''' import time import csv import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn import preprocessing from sklearn import metrics from sklearn import cluster from math import floor import seaborn as sns # Cosas bonitas por defecto sns.set() def norm_to_zero_one(df): return (df - df.min()) * 1.0 / (df.max() - df.min()) censo = pd.read_csv('../mujeres_fecundidad_INE_2018.csv') ''' for col in censo: missing_count = sum(pd.isnull(censo[col])) if missing_count > 0: print(col,missing_count) #''' #Se pueden reemplazar los valores desconocidos por un número #censo = censo.replace(np.NaN,0) # Sustituimos valores perdidos con la media for col in censo: censo[col].fillna(censo[col].mean(), inplace=True) #seleccionar casos subset = censo.loc[(censo['TRAREPRO']==1) & (censo['NEMBTRAREPRO']<=6)] # Seleccionar variables usadas = ['NHIJOS', 'TIPOTRAREPRO', 'NMESESTRAREPRO', 'NEMBTRAREPRO'] X = subset[usadas] X_normal = X.apply(norm_to_zero_one) print('Tamaño de la población tras filtrado: ',len(X_normal.index)) for col in X: missing_count = sum(pd.isnull(censo[col])) if missing_count > 0: print(col,missing_count, ' AFTER') algoritmos = (('KMeans', cluster.KMeans(init='k-means++', n_clusters=5, n_init=5)), ('MeanShift', cluster.MeanShift(cluster_all=False, min_bin_freq=3)), ('Ward', cluster.AgglomerativeClustering(n_clusters=4, linkage='ward')), ('DBScan', cluster.DBSCAN(eps=0.35, min_samples=5)), ('Birch', cluster.Birch(threshold=0.1,n_clusters=5))) cluster_predict = {} calinski = {} silh = {} times = {} n_clusters = {} clusters_fig, clusters_axis = plt.subplots(3, 2, figsize=(10,10)) clusters_colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue', '#ffb347'] ijs = [(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)] for i_alg, par in enumerate(algoritmos): name, alg = par print('----- Ejecutando ' + name,) t = time.time() cluster_predict[name] = alg.fit_predict(X_normal) tiempo = time.time() - t times[name] = tiempo metric_CH = metrics.calinski_harabasz_score(X_normal, cluster_predict[name]) calinski[name] = metric_CH metric_SC = metrics.silhouette_score(X_normal, cluster_predict[name], metric='euclidean', sample_size=floor(len(X)), random_state=123456) silh[name] = metric_SC # Asignamos de clusters a DataFrame clusters = pd.DataFrame(cluster_predict[name],index=X.index,columns=['cluster']) if (name == 'KMeans'): clusters_kmeans = clusters alg_kmeans = alg elif (name == 'Ward'): clusters_ward = clusters print("Tamaño de cada cluster:") size = clusters['cluster'].value_counts() cluster_fractions = [] for num,i in size.iteritems(): print('%s: %5d (%5.2f%%)' % (num,i,100*i/len(clusters))) cluster_fractions.append( 100*i/len(clusters) ) n_clusters[name] = len(size) # Bar charts if ( len(cluster_fractions) > 7 ): cluster_fractions = cluster_fractions[0:6] i, j = ijs[i_alg] y_pos = np.arange(len(cluster_fractions)) labels = [ "Cluster " + str(i) for i in range(len(cluster_fractions)) ] clusters_axis[i, j].bar(y_pos, cluster_fractions, tick_label=labels, color=clusters_colors) clusters_axis[i, j].set_ylim(0, 100) clusters_axis[i, j].set_title(name) if (j == 0): clusters_axis[i, j].set_ylabel("Cluster size (%)") clusters_axis[2,1].remove() #clusters_fig.savefig("clusters.png") plt.show() from prettytable import PrettyTable header = ['Algoritmo', 'CH', 'Silh', 'Tiempo', 'Número de clusters'] tabla = PrettyTable(header) for name, alg in algoritmos: tabla.add_row([name, "{0:.2f}".format(calinski[name]), "{0:.2f}".format(silh[name]), "{0:.2f}".format(times[name]), n_clusters[name]]) print(tabla) # Escribir los datos en un general.csv ''' with open('general.csv', mode='w+', newline='') as file: writer = csv.DictWriter(file, fieldnames=header) writer.writeheader() for name, _ in algoritmos: writer.writerow({'Algoritmo': name, 'CH': "{0:.2f}".format(calinski[name]), 'Silh': "{0:.2f}".format(silh[name]), 'Tiempo': "{0:.2f}".format(times[name]), 'Número de clusters': n_clusters[name]}) #''' # ----------------------- FUNCIONES DE DISTRIBUCIÓN --------- print("---------- Preparando funciones de distribución...") n_clusters_ward = n_clusters['Ward'] n_var = len(usadas) X_ward = pd.concat([X, clusters_ward], axis=1) fig, axes = plt.subplots(n_clusters_ward, n_var, sharey=True, figsize=(15,15)) fig.subplots_adjust(wspace=0, hspace=0) colors = sns.color_palette(palette=None, n_colors=n_clusters_ward, desat=None) rango = [] for j in range(n_var): rango.append([X_ward[usadas[j]].min(), X_ward[usadas[j]].max()]) for i in range(n_clusters_ward): dat_filt = X_ward.loc[X_ward['cluster']==i] for j in range(n_var): #ax = sns.kdeplot(dat_filt[usadas[j]], label="", shade=True, color=colors[i], ax=axes[i,j]) ax = sns.boxplot(dat_filt[usadas[j]], color=colors[i], flierprops={'marker':'o','markersize':4}, ax=axes[i,j]) if (i==n_clusters_ward-1): axes[i,j].set_xlabel(usadas[j]) else: axes[i,j].set_xlabel("") if (j==0): axes[i,j].set_ylabel("Cluster "+str(i)) else: axes[i,j].set_ylabel("") axes[i,j].set_yticks([]) axes[i,j].grid(axis='x', linestyle='-', linewidth='0.2', color='gray') axes[i,j].grid(axis='y', b=False) ax.set_xlim(rango[j][0]-0.05*(rango[j][1]-rango[j][0]),rango[j][1]+0.05*(rango[j][1]-rango[j][0])) plt.show() #fig.savefig("boxes.png") # ---------------- SCATTER MATRIX ----------------------- ''' plt.clf() print("---------- Preparando el scatter matrix...") # Se añade la asignación de clusters como columna a X variables = list(X_ward) variables.remove('cluster') sns_plot = sns.pairplot(X_ward, vars=variables, hue="cluster", palette='Paired', plot_kws={"s": 25}, diag_kind="hist") sns_plot.fig.subplots_adjust(wspace=.03, hspace=.03); # sns_plot.savefig("scatter_matrix.png") plt.show() #''' # ----------------------- DENDOGRAMAS ----------------------- #En clustering hay que normalizar para las métricas de distancia # X_normal = preprocessing.normalize(X, norm='l2') X_normal = (X - X.min() ) / (X.max() - X.min()) #Vamos a usar este jerárquico y nos quedamos con 100 clusters, es decir, cien ramificaciones del dendrograma ward = cluster.AgglomerativeClustering(n_clusters=20, linkage='ward') name, algorithm = ('Ward', ward) cluster_predict = {} k = {} t = time.time() cluster_predict[name] = algorithm.fit_predict(X_normal) tiempo = time.time() - t k[name] = len(set(cluster_predict[name])) # Se convierte la asignación de clusters a DataFrame clusters = pd.DataFrame(cluster_predict['Ward'],index=X.index,columns=['cluster']) # Y se añade como columna a X X_cluster = pd.concat([X, clusters], axis=1) # Filtro quitando los elementos (outliers) que caen en clusters muy pequeños en el jerárquico min_size = 3 X_filtrado = X ''' X_cluster[X_cluster.groupby('cluster').cluster.transform(len) > min_size] k_filtrado = len(set(X_filtrado['cluster'])) print("De los {:.0f} clusters hay {:.0f} con más de {:.0f} elementos. Del total de {:.0f} elementos, se seleccionan {:.0f}".format(k['Ward'],k_filtrado,min_size,len(X),len(X_filtrado))) X_filtrado = X_filtrado.drop('cluster', 1) X_filtrado = X #''' #Normalizo el conjunto filtrado X_filtrado_normal = preprocessing.normalize(X_filtrado, norm='l2') # Obtengo el dendrograma usando scipy, que realmente vuelve a ejecutar el clustering jerárquico from scipy.cluster import hierarchy linkage_array = hierarchy.ward(X_filtrado_normal) plt.clf() dendro = hierarchy.dendrogram(linkage_array,orientation='left', p=10, truncate_mode='lastp') #lo pongo en horizontal para compararlo con el generado por seaborn # puedo usar "p=10,truncate_mode='lastp'" para cortar el dendrograma en 10 hojas # Dendograma usando seaborn (que a su vez usa scipy) para incluir un heatmap X_filtrado_normal_DF = pd.DataFrame(X_filtrado_normal, index=X_filtrado.index, columns=usadas) # Añadimos una columna de label para indicar el cluster al que pertenece cada objeto labels = X_ward['cluster'] lut = dict(zip(set(labels), sns.color_palette(palette="Blues_d", n_colors=n_clusters_ward))) row_colors = pd.DataFrame(labels)['cluster'].map(lut) clustergrid = sns.clustermap(X_filtrado_normal_DF, method='ward', row_colors=row_colors, col_cluster=False, figsize=(20,10), cmap="YlGnBu", yticklabels=False) # Para añadir los labels reordenados. Ahora mismo no salen los colores en la # columna donde deberian. Intuyo que esto se debe a que los ids no encajan. #''' ordering = clustergrid.dendrogram_row.reordered_ind labels_list = [x for _, x in sorted(zip(ordering,labels), key=lambda pair: pair[0])] labels = pd.Series(labels_list, index=X_filtrado_normal_DF.index, name='cluster') lut = dict(zip(set(labels), sns.color_palette(palette="Blues_d", n_colors=n_clusters_ward))) row_colors = pd.DataFrame(labels)['cluster'].map(lut) clustergrid = sns.clustermap(X_filtrado_normal_DF, method='ward', row_colors=row_colors, col_cluster=False, figsize=(20,10), cmap="YlGnBu", yticklabels=False) #''' #plt.savefig("dendograma.png") # ----------------------- HEATMAPS ----------------------- #''' plt.figure(1) centers = pd.DataFrame(alg_kmeans.cluster_centers_, columns=list(X)) centers_desnormal = centers.copy() centers_desnormal = centers.drop([4]) # Calculamos los centroides X = pd.concat([X, clusters_ward], axis=1) for variable in list(centers): for k_cluster in range(n_clusters_ward): centroide = X.loc[(clusters_ward['cluster']==k_cluster)][variable].mean() centers_desnormal.loc[k_cluster, variable] = centroide # Normalizamos centers_normal2 = centers_desnormal.copy() centers_normal2 = (centers_normal2 - centers_normal2.min() ) / (centers_normal2.max() - centers_normal2.min()) import matplotlib.pyplot as plt heatmap_fig, ax = plt.subplots(figsize=(10,10)) heatmap = sns.heatmap(centers_normal2, cmap="YlGnBu", annot=centers_desnormal, fmt='.3f') # Para evitar que los bloques de arriba y abajo se corten por la mitad bottom, top = ax.get_ylim() ax.set_ylim(bottom + 0.5, top - 0.5) #heatmap_fig.savefig("heatmap.png") #'''
es
0.488537
# -*- coding: utf-8 -*- Documentación sobre clustering en Python: http://scikit-learn.org/stable/modules/clustering.html http://www.learndatasci.com/k-means-clustering-algorithms-python-intro/ http://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/ http://www.learndatasci.com/k-means-clustering-algorithms-python-intro/ # Cosas bonitas por defecto for col in censo: missing_count = sum(pd.isnull(censo[col])) if missing_count > 0: print(col,missing_count) # #Se pueden reemplazar los valores desconocidos por un número #censo = censo.replace(np.NaN,0) # Sustituimos valores perdidos con la media #seleccionar casos # Seleccionar variables # Asignamos de clusters a DataFrame # Bar charts #clusters_fig.savefig("clusters.png") # Escribir los datos en un general.csv with open('general.csv', mode='w+', newline='') as file: writer = csv.DictWriter(file, fieldnames=header) writer.writeheader() for name, _ in algoritmos: writer.writerow({'Algoritmo': name, 'CH': "{0:.2f}".format(calinski[name]), 'Silh': "{0:.2f}".format(silh[name]), 'Tiempo': "{0:.2f}".format(times[name]), 'Número de clusters': n_clusters[name]}) # # ----------------------- FUNCIONES DE DISTRIBUCIÓN --------- #ax = sns.kdeplot(dat_filt[usadas[j]], label="", shade=True, color=colors[i], ax=axes[i,j]) #fig.savefig("boxes.png") # ---------------- SCATTER MATRIX ----------------------- plt.clf() print("---------- Preparando el scatter matrix...") # Se añade la asignación de clusters como columna a X variables = list(X_ward) variables.remove('cluster') sns_plot = sns.pairplot(X_ward, vars=variables, hue="cluster", palette='Paired', plot_kws={"s": 25}, diag_kind="hist") sns_plot.fig.subplots_adjust(wspace=.03, hspace=.03); # sns_plot.savefig("scatter_matrix.png") plt.show() # # ----------------------- DENDOGRAMAS ----------------------- #En clustering hay que normalizar para las métricas de distancia # X_normal = preprocessing.normalize(X, norm='l2') #Vamos a usar este jerárquico y nos quedamos con 100 clusters, es decir, cien ramificaciones del dendrograma # Se convierte la asignación de clusters a DataFrame # Y se añade como columna a X # Filtro quitando los elementos (outliers) que caen en clusters muy pequeños en el jerárquico X_cluster[X_cluster.groupby('cluster').cluster.transform(len) > min_size] k_filtrado = len(set(X_filtrado['cluster'])) print("De los {:.0f} clusters hay {:.0f} con más de {:.0f} elementos. Del total de {:.0f} elementos, se seleccionan {:.0f}".format(k['Ward'],k_filtrado,min_size,len(X),len(X_filtrado))) X_filtrado = X_filtrado.drop('cluster', 1) X_filtrado = X # #Normalizo el conjunto filtrado # Obtengo el dendrograma usando scipy, que realmente vuelve a ejecutar el clustering jerárquico #lo pongo en horizontal para compararlo con el generado por seaborn # puedo usar "p=10,truncate_mode='lastp'" para cortar el dendrograma en 10 hojas # Dendograma usando seaborn (que a su vez usa scipy) para incluir un heatmap # Añadimos una columna de label para indicar el cluster al que pertenece cada objeto # Para añadir los labels reordenados. Ahora mismo no salen los colores en la # columna donde deberian. Intuyo que esto se debe a que los ids no encajan. #''' #''' #plt.savefig("dendograma.png") # ----------------------- HEATMAPS ----------------------- #''' # Calculamos los centroides # Normalizamos # Para evitar que los bloques de arriba y abajo se corten por la mitad #heatmap_fig.savefig("heatmap.png") #'''
3.499292
3
signal_processing/ecg_preproc.py
DeepPSP/cpsc2020
1
10402
""" preprocess of (single lead) ecg signal: band pass --> remove baseline --> find rpeaks --> denoise (mainly deal with motion artefact) TODO: 1. motion artefact detection, and slice the signal into continuous (no motion artefact within) segments 2. to add References: ----------- [1] https://github.com/PIA-Group/BioSPPy [2] to add """ import os, time import multiprocessing as mp from copy import deepcopy from numbers import Real from typing import Union, Optional, Any, List, Dict import numpy as np from easydict import EasyDict as ED from scipy.ndimage.filters import median_filter from scipy.signal.signaltools import resample from scipy.io import savemat # from scipy.signal import medfilt # https://github.com/scipy/scipy/issues/9680 try: from biosppy.signals.tools import filter_signal except: from references.biosppy.biosppy.signals.tools import filter_signal from cfg import PreprocCfg from .ecg_rpeaks import ( xqrs_detect, gqrs_detect, pantompkins, hamilton_detect, ssf_detect, christov_detect, engzee_detect, gamboa_detect, ) from .ecg_rpeaks_dl import seq_lab_net_detect __all__ = [ "preprocess_signal", "parallel_preprocess_signal", "denoise_signal", ] QRS_DETECTORS = { "xqrs": xqrs_detect, "gqrs": gqrs_detect, "pantompkins": pantompkins, "hamilton": hamilton_detect, "ssf": ssf_detect, "christov": christov_detect, "engzee": engzee_detect, "gamboa": gamboa_detect, "seq_lab": seq_lab_net_detect, } DL_QRS_DETECTORS = [ "seq_lab", ] def preprocess_signal(raw_sig:np.ndarray, fs:Real, config:Optional[ED]=None) -> Dict[str, np.ndarray]: """ finished, checked, Parameters: ----------- raw_sig: ndarray, the raw ecg signal fs: real number, sampling frequency of `raw_sig` config: dict, optional, extra process configuration, `PreprocCfg` will be updated by this `config` Returns: -------- retval: dict, with items - 'filtered_ecg': the array of the processed ecg signal - 'rpeaks': the array of indices of rpeaks; empty if 'rpeaks' in `config` is not set NOTE: ----- output (`retval`) are resampled to have sampling frequency equal to `config.fs` (if `config` has item `fs`) or `PreprocCfg.fs` """ filtered_ecg = raw_sig.copy() cfg = deepcopy(PreprocCfg) cfg.update(config or {}) if fs != cfg.fs: filtered_ecg = resample(filtered_ecg, int(round(len(filtered_ecg)*cfg.fs/fs))) # remove baseline if 'baseline' in cfg.preproc: window1 = 2 * (cfg.baseline_window1 // 2) + 1 # window size must be odd window2 = 2 * (cfg.baseline_window2 // 2) + 1 baseline = median_filter(filtered_ecg, size=window1, mode='nearest') baseline = median_filter(baseline, size=window2, mode='nearest') filtered_ecg = filtered_ecg - baseline # filter signal if 'bandpass' in cfg.preproc: filtered_ecg = filter_signal( signal=filtered_ecg, ftype='FIR', band='bandpass', order=int(0.3 * fs), sampling_rate=fs, frequency=cfg.filter_band, )['signal'] if cfg.rpeaks and cfg.rpeaks.lower() not in DL_QRS_DETECTORS: # dl detectors not for parallel computing using `mp` detector = QRS_DETECTORS[cfg.rpeaks.lower()] rpeaks = detector(sig=filtered_ecg, fs=fs).astype(int) else: rpeaks = np.array([], dtype=int) retval = ED({ "filtered_ecg": filtered_ecg, "rpeaks": rpeaks, }) return retval def parallel_preprocess_signal(raw_sig:np.ndarray, fs:Real, config:Optional[ED]=None, save_dir:Optional[str]=None, save_fmt:str='npy', verbose:int=0) -> Dict[str, np.ndarray]: """ finished, checked, Parameters: ----------- raw_sig: ndarray, the raw ecg signal fs: real number, sampling frequency of `raw_sig` config: dict, optional, extra process configuration, `PreprocCfg` will `update` this `config` save_dir: str, optional, directory for saving the outcome ('filtered_ecg' and 'rpeaks') save_fmt: str, default 'npy', format of the save files, 'npy' or 'mat' Returns: -------- retval: dict, with items - 'filtered_ecg': the array of the processed ecg signal - 'rpeaks': the array of indices of rpeaks; empty if 'rpeaks' in `config` is not set NOTE: ----- output (`retval`) are resampled to have sampling frequency equal to `config.fs` (if `config` has item `fs`) or `PreprocCfg.fs` """ start_time = time.time() cfg = deepcopy(PreprocCfg) cfg.update(config or {}) epoch_len = int(cfg.parallel_epoch_len * fs) epoch_overlap_half = int(cfg.parallel_epoch_overlap * fs) // 2 epoch_overlap = 2 * epoch_overlap_half epoch_forward = epoch_len - epoch_overlap if len(raw_sig) <= 3 * epoch_len: # too short, no need for parallel computing retval = preprocess_signal(raw_sig, fs, cfg) if cfg.rpeaks and cfg.rpeaks.lower() in DL_QRS_DETECTORS: rpeaks = QRS_DETECTORS[cfg.rpeaks.lower()](sig=raw_sig, fs=fs, verbose=verbose).astype(int) retval.rpeaks = rpeaks return retval l_epoch = [ raw_sig[idx*epoch_forward: idx*epoch_forward + epoch_len] \ for idx in range((len(raw_sig)-epoch_overlap)//epoch_forward) ] if cfg.parallel_keep_tail: tail_start_idx = epoch_forward * len(l_epoch) + epoch_overlap if len(raw_sig) - tail_start_idx < 30 * fs: # less than 30s, make configurable? # append to the last epoch l_epoch[-1] = np.append(l_epoch[-1], raw_sig[tail_start_idx:]) else: # long enough tail_epoch = raw_sig[tail_start_idx-epoch_overlap:] l_epoch.append(tail_epoch) cpu_num = max(1, mp.cpu_count()-3) with mp.Pool(processes=cpu_num) as pool: result = pool.starmap( func=preprocess_signal, iterable=[(e, fs, cfg) for e in l_epoch], ) if cfg.parallel_keep_tail: tail_result = result[-1] result = result[:-1] filtered_ecg = result[0]['filtered_ecg'][:epoch_len-epoch_overlap_half] rpeaks = result[0]['rpeaks'][np.where(result[0]['rpeaks']<epoch_len-epoch_overlap_half)[0]] for idx, e in enumerate(result[1:]): filtered_ecg = np.append( filtered_ecg, e['filtered_ecg'][epoch_overlap_half: -epoch_overlap_half] ) epoch_rpeaks = e['rpeaks'][np.where( (e['rpeaks'] >= epoch_overlap_half) & (e['rpeaks'] < epoch_len-epoch_overlap_half) )[0]] rpeaks = np.append(rpeaks, (idx+1)*epoch_forward + epoch_rpeaks) if cfg.parallel_keep_tail: filtered_ecg = np.append(filtered_ecg, tail_result['filtered_ecg'][epoch_overlap_half:]) tail_rpeaks = tail_result['rpeaks'][np.where(tail_result['rpeaks'] >= epoch_overlap_half)[0]] rpeaks = np.append(rpeaks, len(result)*epoch_forward + tail_rpeaks) if verbose >= 1: if cfg.rpeaks.lower() in DL_QRS_DETECTORS: print(f"signal processing took {round(time.time()-start_time, 3)} seconds") else: print(f"signal processing and R peaks detection took {round(time.time()-start_time, 3)} seconds") start_time = time.time() if cfg.rpeaks and cfg.rpeaks.lower() in DL_QRS_DETECTORS: rpeaks = QRS_DETECTORS[cfg.rpeaks.lower()](sig=raw_sig, fs=fs, verbose=verbose).astype(int) if verbose >= 1: print(f"R peaks detection using {cfg.rpeaks} took {round(time.time()-start_time, 3)} seconds") if save_dir: # NOTE: this part is not tested os.makedirs(save_dir, exist_ok=True) if save_fmt.lower() == 'npy': np.save(os.path.join(save_dir, "filtered_ecg.npy"), filtered_ecg) np.save(os.path.join(save_dir, "rpeaks.npy"), rpeaks) elif save_fmt.lower() == 'mat': # save into 2 files, keep in accordance savemat(os.path.join(save_dir, "filtered_ecg.mat"), {"filtered_ecg": filtered_ecg}, format='5') savemat(os.path.join(save_dir, "rpeaks.mat"), {"rpeaks": rpeaks}, format='5') retval = ED({ "filtered_ecg": filtered_ecg, "rpeaks": rpeaks, }) return retval """ to check correctness of the function `parallel_preprocess_signal`, say for record A01, one can call >>> raw_sig = loadmat("./data/A01.mat")['ecg'].flatten() >>> processed = parallel_preprocess_signal(raw_sig, 400) >>> print(len(processed['filtered_ecg']) - len(raw_sig)) >>> start_t = int(3600*24.7811) >>> len_t = 10 >>> fig, ax = plt.subplots(figsize=(20,6)) >>> ax.plot(hehe['filtered_ecg'][start_t*400:(start_t+len_t)*400]) >>> for r in [p for p in hehe['rpeaks'] if start_t*400 <= p < (start_t+len_t)*400]: >>> ax.axvline(r-start_t*400,c='red',linestyle='dashed') >>> plt.show() or one can use the 'dataset.py' """
""" preprocess of (single lead) ecg signal: band pass --> remove baseline --> find rpeaks --> denoise (mainly deal with motion artefact) TODO: 1. motion artefact detection, and slice the signal into continuous (no motion artefact within) segments 2. to add References: ----------- [1] https://github.com/PIA-Group/BioSPPy [2] to add """ import os, time import multiprocessing as mp from copy import deepcopy from numbers import Real from typing import Union, Optional, Any, List, Dict import numpy as np from easydict import EasyDict as ED from scipy.ndimage.filters import median_filter from scipy.signal.signaltools import resample from scipy.io import savemat # from scipy.signal import medfilt # https://github.com/scipy/scipy/issues/9680 try: from biosppy.signals.tools import filter_signal except: from references.biosppy.biosppy.signals.tools import filter_signal from cfg import PreprocCfg from .ecg_rpeaks import ( xqrs_detect, gqrs_detect, pantompkins, hamilton_detect, ssf_detect, christov_detect, engzee_detect, gamboa_detect, ) from .ecg_rpeaks_dl import seq_lab_net_detect __all__ = [ "preprocess_signal", "parallel_preprocess_signal", "denoise_signal", ] QRS_DETECTORS = { "xqrs": xqrs_detect, "gqrs": gqrs_detect, "pantompkins": pantompkins, "hamilton": hamilton_detect, "ssf": ssf_detect, "christov": christov_detect, "engzee": engzee_detect, "gamboa": gamboa_detect, "seq_lab": seq_lab_net_detect, } DL_QRS_DETECTORS = [ "seq_lab", ] def preprocess_signal(raw_sig:np.ndarray, fs:Real, config:Optional[ED]=None) -> Dict[str, np.ndarray]: """ finished, checked, Parameters: ----------- raw_sig: ndarray, the raw ecg signal fs: real number, sampling frequency of `raw_sig` config: dict, optional, extra process configuration, `PreprocCfg` will be updated by this `config` Returns: -------- retval: dict, with items - 'filtered_ecg': the array of the processed ecg signal - 'rpeaks': the array of indices of rpeaks; empty if 'rpeaks' in `config` is not set NOTE: ----- output (`retval`) are resampled to have sampling frequency equal to `config.fs` (if `config` has item `fs`) or `PreprocCfg.fs` """ filtered_ecg = raw_sig.copy() cfg = deepcopy(PreprocCfg) cfg.update(config or {}) if fs != cfg.fs: filtered_ecg = resample(filtered_ecg, int(round(len(filtered_ecg)*cfg.fs/fs))) # remove baseline if 'baseline' in cfg.preproc: window1 = 2 * (cfg.baseline_window1 // 2) + 1 # window size must be odd window2 = 2 * (cfg.baseline_window2 // 2) + 1 baseline = median_filter(filtered_ecg, size=window1, mode='nearest') baseline = median_filter(baseline, size=window2, mode='nearest') filtered_ecg = filtered_ecg - baseline # filter signal if 'bandpass' in cfg.preproc: filtered_ecg = filter_signal( signal=filtered_ecg, ftype='FIR', band='bandpass', order=int(0.3 * fs), sampling_rate=fs, frequency=cfg.filter_band, )['signal'] if cfg.rpeaks and cfg.rpeaks.lower() not in DL_QRS_DETECTORS: # dl detectors not for parallel computing using `mp` detector = QRS_DETECTORS[cfg.rpeaks.lower()] rpeaks = detector(sig=filtered_ecg, fs=fs).astype(int) else: rpeaks = np.array([], dtype=int) retval = ED({ "filtered_ecg": filtered_ecg, "rpeaks": rpeaks, }) return retval def parallel_preprocess_signal(raw_sig:np.ndarray, fs:Real, config:Optional[ED]=None, save_dir:Optional[str]=None, save_fmt:str='npy', verbose:int=0) -> Dict[str, np.ndarray]: """ finished, checked, Parameters: ----------- raw_sig: ndarray, the raw ecg signal fs: real number, sampling frequency of `raw_sig` config: dict, optional, extra process configuration, `PreprocCfg` will `update` this `config` save_dir: str, optional, directory for saving the outcome ('filtered_ecg' and 'rpeaks') save_fmt: str, default 'npy', format of the save files, 'npy' or 'mat' Returns: -------- retval: dict, with items - 'filtered_ecg': the array of the processed ecg signal - 'rpeaks': the array of indices of rpeaks; empty if 'rpeaks' in `config` is not set NOTE: ----- output (`retval`) are resampled to have sampling frequency equal to `config.fs` (if `config` has item `fs`) or `PreprocCfg.fs` """ start_time = time.time() cfg = deepcopy(PreprocCfg) cfg.update(config or {}) epoch_len = int(cfg.parallel_epoch_len * fs) epoch_overlap_half = int(cfg.parallel_epoch_overlap * fs) // 2 epoch_overlap = 2 * epoch_overlap_half epoch_forward = epoch_len - epoch_overlap if len(raw_sig) <= 3 * epoch_len: # too short, no need for parallel computing retval = preprocess_signal(raw_sig, fs, cfg) if cfg.rpeaks and cfg.rpeaks.lower() in DL_QRS_DETECTORS: rpeaks = QRS_DETECTORS[cfg.rpeaks.lower()](sig=raw_sig, fs=fs, verbose=verbose).astype(int) retval.rpeaks = rpeaks return retval l_epoch = [ raw_sig[idx*epoch_forward: idx*epoch_forward + epoch_len] \ for idx in range((len(raw_sig)-epoch_overlap)//epoch_forward) ] if cfg.parallel_keep_tail: tail_start_idx = epoch_forward * len(l_epoch) + epoch_overlap if len(raw_sig) - tail_start_idx < 30 * fs: # less than 30s, make configurable? # append to the last epoch l_epoch[-1] = np.append(l_epoch[-1], raw_sig[tail_start_idx:]) else: # long enough tail_epoch = raw_sig[tail_start_idx-epoch_overlap:] l_epoch.append(tail_epoch) cpu_num = max(1, mp.cpu_count()-3) with mp.Pool(processes=cpu_num) as pool: result = pool.starmap( func=preprocess_signal, iterable=[(e, fs, cfg) for e in l_epoch], ) if cfg.parallel_keep_tail: tail_result = result[-1] result = result[:-1] filtered_ecg = result[0]['filtered_ecg'][:epoch_len-epoch_overlap_half] rpeaks = result[0]['rpeaks'][np.where(result[0]['rpeaks']<epoch_len-epoch_overlap_half)[0]] for idx, e in enumerate(result[1:]): filtered_ecg = np.append( filtered_ecg, e['filtered_ecg'][epoch_overlap_half: -epoch_overlap_half] ) epoch_rpeaks = e['rpeaks'][np.where( (e['rpeaks'] >= epoch_overlap_half) & (e['rpeaks'] < epoch_len-epoch_overlap_half) )[0]] rpeaks = np.append(rpeaks, (idx+1)*epoch_forward + epoch_rpeaks) if cfg.parallel_keep_tail: filtered_ecg = np.append(filtered_ecg, tail_result['filtered_ecg'][epoch_overlap_half:]) tail_rpeaks = tail_result['rpeaks'][np.where(tail_result['rpeaks'] >= epoch_overlap_half)[0]] rpeaks = np.append(rpeaks, len(result)*epoch_forward + tail_rpeaks) if verbose >= 1: if cfg.rpeaks.lower() in DL_QRS_DETECTORS: print(f"signal processing took {round(time.time()-start_time, 3)} seconds") else: print(f"signal processing and R peaks detection took {round(time.time()-start_time, 3)} seconds") start_time = time.time() if cfg.rpeaks and cfg.rpeaks.lower() in DL_QRS_DETECTORS: rpeaks = QRS_DETECTORS[cfg.rpeaks.lower()](sig=raw_sig, fs=fs, verbose=verbose).astype(int) if verbose >= 1: print(f"R peaks detection using {cfg.rpeaks} took {round(time.time()-start_time, 3)} seconds") if save_dir: # NOTE: this part is not tested os.makedirs(save_dir, exist_ok=True) if save_fmt.lower() == 'npy': np.save(os.path.join(save_dir, "filtered_ecg.npy"), filtered_ecg) np.save(os.path.join(save_dir, "rpeaks.npy"), rpeaks) elif save_fmt.lower() == 'mat': # save into 2 files, keep in accordance savemat(os.path.join(save_dir, "filtered_ecg.mat"), {"filtered_ecg": filtered_ecg}, format='5') savemat(os.path.join(save_dir, "rpeaks.mat"), {"rpeaks": rpeaks}, format='5') retval = ED({ "filtered_ecg": filtered_ecg, "rpeaks": rpeaks, }) return retval """ to check correctness of the function `parallel_preprocess_signal`, say for record A01, one can call >>> raw_sig = loadmat("./data/A01.mat")['ecg'].flatten() >>> processed = parallel_preprocess_signal(raw_sig, 400) >>> print(len(processed['filtered_ecg']) - len(raw_sig)) >>> start_t = int(3600*24.7811) >>> len_t = 10 >>> fig, ax = plt.subplots(figsize=(20,6)) >>> ax.plot(hehe['filtered_ecg'][start_t*400:(start_t+len_t)*400]) >>> for r in [p for p in hehe['rpeaks'] if start_t*400 <= p < (start_t+len_t)*400]: >>> ax.axvline(r-start_t*400,c='red',linestyle='dashed') >>> plt.show() or one can use the 'dataset.py' """
en
0.667407
preprocess of (single lead) ecg signal: band pass --> remove baseline --> find rpeaks --> denoise (mainly deal with motion artefact) TODO: 1. motion artefact detection, and slice the signal into continuous (no motion artefact within) segments 2. to add References: ----------- [1] https://github.com/PIA-Group/BioSPPy [2] to add # from scipy.signal import medfilt # https://github.com/scipy/scipy/issues/9680 finished, checked, Parameters: ----------- raw_sig: ndarray, the raw ecg signal fs: real number, sampling frequency of `raw_sig` config: dict, optional, extra process configuration, `PreprocCfg` will be updated by this `config` Returns: -------- retval: dict, with items - 'filtered_ecg': the array of the processed ecg signal - 'rpeaks': the array of indices of rpeaks; empty if 'rpeaks' in `config` is not set NOTE: ----- output (`retval`) are resampled to have sampling frequency equal to `config.fs` (if `config` has item `fs`) or `PreprocCfg.fs` # remove baseline # window size must be odd # filter signal # dl detectors not for parallel computing using `mp` finished, checked, Parameters: ----------- raw_sig: ndarray, the raw ecg signal fs: real number, sampling frequency of `raw_sig` config: dict, optional, extra process configuration, `PreprocCfg` will `update` this `config` save_dir: str, optional, directory for saving the outcome ('filtered_ecg' and 'rpeaks') save_fmt: str, default 'npy', format of the save files, 'npy' or 'mat' Returns: -------- retval: dict, with items - 'filtered_ecg': the array of the processed ecg signal - 'rpeaks': the array of indices of rpeaks; empty if 'rpeaks' in `config` is not set NOTE: ----- output (`retval`) are resampled to have sampling frequency equal to `config.fs` (if `config` has item `fs`) or `PreprocCfg.fs` # too short, no need for parallel computing # less than 30s, make configurable? # append to the last epoch # long enough # NOTE: this part is not tested # save into 2 files, keep in accordance to check correctness of the function `parallel_preprocess_signal`, say for record A01, one can call >>> raw_sig = loadmat("./data/A01.mat")['ecg'].flatten() >>> processed = parallel_preprocess_signal(raw_sig, 400) >>> print(len(processed['filtered_ecg']) - len(raw_sig)) >>> start_t = int(3600*24.7811) >>> len_t = 10 >>> fig, ax = plt.subplots(figsize=(20,6)) >>> ax.plot(hehe['filtered_ecg'][start_t*400:(start_t+len_t)*400]) >>> for r in [p for p in hehe['rpeaks'] if start_t*400 <= p < (start_t+len_t)*400]: >>> ax.axvline(r-start_t*400,c='red',linestyle='dashed') >>> plt.show() or one can use the 'dataset.py'
2.390558
2
ocaml/bootstrap.bzl
mobileink/obazl
0
10403
<filename>ocaml/bootstrap.bzl<gh_stars>0 ## mv to //:WORKSPACE.bzl ocaml_configure load("//ocaml/_bootstrap:ocaml.bzl", _ocaml_configure = "ocaml_configure") # load("//ocaml/_bootstrap:obazl.bzl", _obazl_configure = "obazl_configure") load("//ocaml/_rules:ocaml_repository.bzl" , _ocaml_repository = "ocaml_repository") # load("//ocaml/_rules:opam_configuration.bzl" , _opam_configuration = "opam_configuration") # load("//ocaml/_toolchains:ocaml_toolchains.bzl", # _ocaml_toolchain = "ocaml_toolchain", # _ocaml_register_toolchains = "ocaml_register_toolchains") # obazl_configure = _obazl_configure ocaml_configure = _ocaml_configure ocaml_repository = _ocaml_repository # ocaml_toolchain = _ocaml_toolchain # ocaml_register_toolchains = _ocaml_register_toolchains
<filename>ocaml/bootstrap.bzl<gh_stars>0 ## mv to //:WORKSPACE.bzl ocaml_configure load("//ocaml/_bootstrap:ocaml.bzl", _ocaml_configure = "ocaml_configure") # load("//ocaml/_bootstrap:obazl.bzl", _obazl_configure = "obazl_configure") load("//ocaml/_rules:ocaml_repository.bzl" , _ocaml_repository = "ocaml_repository") # load("//ocaml/_rules:opam_configuration.bzl" , _opam_configuration = "opam_configuration") # load("//ocaml/_toolchains:ocaml_toolchains.bzl", # _ocaml_toolchain = "ocaml_toolchain", # _ocaml_register_toolchains = "ocaml_register_toolchains") # obazl_configure = _obazl_configure ocaml_configure = _ocaml_configure ocaml_repository = _ocaml_repository # ocaml_toolchain = _ocaml_toolchain # ocaml_register_toolchains = _ocaml_register_toolchains
en
0.351615
## mv to //:WORKSPACE.bzl ocaml_configure # load("//ocaml/_bootstrap:obazl.bzl", _obazl_configure = "obazl_configure") # load("//ocaml/_rules:opam_configuration.bzl" , _opam_configuration = "opam_configuration") # load("//ocaml/_toolchains:ocaml_toolchains.bzl", # _ocaml_toolchain = "ocaml_toolchain", # _ocaml_register_toolchains = "ocaml_register_toolchains") # obazl_configure = _obazl_configure # ocaml_toolchain = _ocaml_toolchain # ocaml_register_toolchains = _ocaml_register_toolchains
1.254656
1
tsts.py
tedtroxell/metrician
0
10404
<filename>tsts.py from metrician.explainations.tests import *
<filename>tsts.py from metrician.explainations.tests import *
none
1
0.935181
1
simple/facenet.py
taflahi/facenet
5
10405
<reponame>taflahi/facenet import tensorflow as tf from .. src.align import detect_face from .. src import facenet from .. simple import download_model import sys import os from os.path import expanduser import copy import cv2 import numpy as np from scipy import spatial minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor def align_face(images, image_size=160, margin=11): with tf.Graph().as_default(): sess = tf.Session(config=tf.ConfigProto(log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) tmp_image_paths = copy.copy(images) img_list = [] for image in tmp_image_paths: img = cv2.imread(os.path.expanduser(image))[:, :, ::-1] img_size = np.asarray(img.shape)[0:2] bounding_boxes, _ = detect_face.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) if len(bounding_boxes) < 1: image_paths.remove(image) print("can't detect face, remove ", image) continue det = np.squeeze(bounding_boxes[0, 0:4]) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - margin / 2, 0) bb[1] = np.maximum(det[1] - margin / 2, 0) bb[2] = np.minimum(det[2] + margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] aligned = cv2.resize(cropped[:, :, ::-1], (image_size, image_size))[:, :, ::-1] prewhitened = facenet.prewhiten(aligned) img_list.append(prewhitened) images = np.stack(img_list) return images def embedding(images): # check is model exists home = expanduser('~') model_path = home + '/.facenet_model/20180408-102900/20180408-102900.pb' if not os.path.exists(model_path): print("model not exists, downloading model") download_model.download() print("model downloaded to " + model_path) with tf.Graph().as_default(): with tf.Session() as sess: facenet.load_model(model_path) # Get input and output tensors images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") # Run forward pass to calculate embeddings feed_dict = {images_placeholder: images, phase_train_placeholder: False} emb = sess.run(embeddings, feed_dict=feed_dict) return emb def compare(images, threshold=0.7): emb = embedding(images) sims = np.zeros((len(images), len(images))) for i in range(len(images)): for j in range(len(images)): sims[i][j] = ( 1 - spatial.distance.cosine(emb[i], emb[j]) > threshold) return sims
import tensorflow as tf from .. src.align import detect_face from .. src import facenet from .. simple import download_model import sys import os from os.path import expanduser import copy import cv2 import numpy as np from scipy import spatial minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor def align_face(images, image_size=160, margin=11): with tf.Graph().as_default(): sess = tf.Session(config=tf.ConfigProto(log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = detect_face.create_mtcnn(sess, None) tmp_image_paths = copy.copy(images) img_list = [] for image in tmp_image_paths: img = cv2.imread(os.path.expanduser(image))[:, :, ::-1] img_size = np.asarray(img.shape)[0:2] bounding_boxes, _ = detect_face.detect_face( img, minsize, pnet, rnet, onet, threshold, factor) if len(bounding_boxes) < 1: image_paths.remove(image) print("can't detect face, remove ", image) continue det = np.squeeze(bounding_boxes[0, 0:4]) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - margin / 2, 0) bb[1] = np.maximum(det[1] - margin / 2, 0) bb[2] = np.minimum(det[2] + margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] aligned = cv2.resize(cropped[:, :, ::-1], (image_size, image_size))[:, :, ::-1] prewhitened = facenet.prewhiten(aligned) img_list.append(prewhitened) images = np.stack(img_list) return images def embedding(images): # check is model exists home = expanduser('~') model_path = home + '/.facenet_model/20180408-102900/20180408-102900.pb' if not os.path.exists(model_path): print("model not exists, downloading model") download_model.download() print("model downloaded to " + model_path) with tf.Graph().as_default(): with tf.Session() as sess: facenet.load_model(model_path) # Get input and output tensors images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") # Run forward pass to calculate embeddings feed_dict = {images_placeholder: images, phase_train_placeholder: False} emb = sess.run(embeddings, feed_dict=feed_dict) return emb def compare(images, threshold=0.7): emb = embedding(images) sims = np.zeros((len(images), len(images))) for i in range(len(images)): for j in range(len(images)): sims[i][j] = ( 1 - spatial.distance.cosine(emb[i], emb[j]) > threshold) return sims
en
0.801858
# minimum size of face # three steps's threshold # scale factor # check is model exists # Get input and output tensors # Run forward pass to calculate embeddings
2.29055
2
athena/athena/errors.py
aculich/openmappr
19
10406
<gh_stars>10-100 class AthenaError(Exception): """base class for all athena exceptions""" pass class AthenaMongoError(AthenaError): """Class for all mongo related errors""" pass
class AthenaError(Exception): """base class for all athena exceptions""" pass class AthenaMongoError(AthenaError): """Class for all mongo related errors""" pass
en
0.713593
base class for all athena exceptions Class for all mongo related errors
1.830688
2
tf2stats/__init__.py
TheAntecedent/Quintessence
1
10407
<filename>tf2stats/__init__.py from .aggregated_stats import * from .game_stats import * from .stat_definitions import *
<filename>tf2stats/__init__.py from .aggregated_stats import * from .game_stats import * from .stat_definitions import *
none
1
1.145168
1
tests/test_messages/test_inbound/test_manage_all_link_record.py
michaeldavie/pyinsteon
15
10408
"""Test Manage All-Link Record.""" import unittest from binascii import unhexlify from pyinsteon.address import Address from pyinsteon.constants import AckNak, ManageAllLinkRecordAction, MessageId from pyinsteon.protocol.messages.all_link_record_flags import \ AllLinkRecordFlags from tests import set_log_levels from tests.utils import hex_to_inbound_message # pylint: disable=no-member class TestManageAllLinkRecord(unittest.TestCase): """Test Manage All-Link Record.""" def setUp(self): """Set up test.""" self.hex = "026F400405060708090a0b" self.hex_ack = "026F400405060708090a0b06" self.message_id = MessageId(0x6F) self.action = ManageAllLinkRecordAction(0x40) self.flags = AllLinkRecordFlags(0x04) self.group = int(0x05) self.address = Address("060708") self.data1 = int(0x09) self.data2 = int(0x0A) self.data3 = int(0x0B) self.ack = AckNak(0x06) self.msg, self.msg_bytes = hex_to_inbound_message(self.hex_ack) set_log_levels( logger="info", logger_pyinsteon="info", logger_messages="info", logger_topics=False, ) def test_id(self): """Test ID.""" assert self.msg.message_id == self.message_id def test_ack_nak(self): """Test ACK/NAK.""" assert self.msg.ack == self.ack def test_bytes(self): """Test bytes.""" assert bytes(self.msg) == unhexlify(self.hex_ack)
"""Test Manage All-Link Record.""" import unittest from binascii import unhexlify from pyinsteon.address import Address from pyinsteon.constants import AckNak, ManageAllLinkRecordAction, MessageId from pyinsteon.protocol.messages.all_link_record_flags import \ AllLinkRecordFlags from tests import set_log_levels from tests.utils import hex_to_inbound_message # pylint: disable=no-member class TestManageAllLinkRecord(unittest.TestCase): """Test Manage All-Link Record.""" def setUp(self): """Set up test.""" self.hex = "026F400405060708090a0b" self.hex_ack = "026F400405060708090a0b06" self.message_id = MessageId(0x6F) self.action = ManageAllLinkRecordAction(0x40) self.flags = AllLinkRecordFlags(0x04) self.group = int(0x05) self.address = Address("060708") self.data1 = int(0x09) self.data2 = int(0x0A) self.data3 = int(0x0B) self.ack = AckNak(0x06) self.msg, self.msg_bytes = hex_to_inbound_message(self.hex_ack) set_log_levels( logger="info", logger_pyinsteon="info", logger_messages="info", logger_topics=False, ) def test_id(self): """Test ID.""" assert self.msg.message_id == self.message_id def test_ack_nak(self): """Test ACK/NAK.""" assert self.msg.ack == self.ack def test_bytes(self): """Test bytes.""" assert bytes(self.msg) == unhexlify(self.hex_ack)
en
0.54433
Test Manage All-Link Record. # pylint: disable=no-member Test Manage All-Link Record. Set up test. Test ID. Test ACK/NAK. Test bytes.
2.439274
2
Clock/Clock_Fig3F.py
chAwater/OpenFig
0
10409
<reponame>chAwater/OpenFig #!/usr/bin/env python # coding: utf-8 # # Figure Info. # # | Title | Journal | Authors | Article Date | Code Date | Figure | Links | # |:------|:-------:|:-------:|:------------:|:---------:|:------:|:-----:| # |A microfluidic approach for experimentally modelling <br> the intercellular coupling system of a mammalian <br> circadian clock at single-cell level|Lab on a Chip|<NAME>|2020.03.02|2020.03.11| Fig3F | [DOI](https://doi.org/10.1039/D0LC00140F) | # # In[1]: # data_file = 'SinPeaksDOWN.xls' # new_inputs = pd.read_excel(data_file,header=None) # new_inputs.to_csv('data.csv',index=False) # In[2]: import os, sys, warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams['svg.fonttype'] = 'none' sns.set_context(context='poster') bigsize = 20 midsize = 18 smallsize = 14 hugesize = 24 # In[ ]: # Load data new_inputs = pd.read_csv('data.csv') new_inputs = new_inputs.values.flatten() new_inputs = new_inputs[~np.isnan(new_inputs)] new_inputs = pd.Series(new_inputs) dict_time = new_inputs.astype(int).value_counts() # Set start and end days d_min = np.floor( ((new_inputs-12)/24).astype(np.float).min() ) d_min = max(0, d_min) d_max = np.ceil( ((new_inputs-12)/24).astype(np.float).max() ) drug_time = 22 + np.arange(0,d_max+1)*24 # Set plot n_plot = int( d_max - d_min + 1 ) n_rows = int( np.ceil(n_plot/4) ) ratio_dfs_dict = dict(zip(np.arange(n_plot), [pd.DataFrame()]*n_plot)) fig, axs = plt.subplots( ncols=4,nrows=n_rows, figsize=(18,n_rows*4), subplot_kw={'polar':True}, gridspec_kw={'hspace':0.5}, ) axs = axs.flatten() # Plot data for each 24h for i_time in dict_time.keys(): if i_time<12: continue d_time = int( np.floor((i_time-12)/24)-d_min ) # In one day ratio_df = ratio_dfs_dict[d_time] ratio_df = ratio_df.append( { 'ref_time' : ((i_time-12) % 24), 'n' : dict_time[i_time] }, ignore_index=True) ratio_dfs_dict[d_time] = ratio_df # Date to r t_time = (((i_time-12) % 24)/24)*2*np.pi t_drug = ((1+drug_time[d_time]-12)%24)/24*2*np.pi axs[d_time].bar(t_drug, 1, width=2/24*2*np.pi, bottom=0.0, color='bisque', edgecolor='k', alpha=0.7, zorder=10) axs[d_time].scatter(t_time, 0.5, color='dodgerblue', s=dict_time[i_time]*30, alpha=0.7, zorder=20) # Plot info for each 24h for i,ax in enumerate(axs): labels = (12+np.arange(24*(d_min+i),24*(d_min+i+1),6)).astype(int).astype(str) labels[0] = str( int(labels[0])+24 ) + ' / ' + labels[0] labels[2] = labels[2] + ' h' ax.set_xticklabels( labels, fontsize=midsize ) ax.set_yticklabels([]) ax.tick_params(axis='x', pad=0) ratio_df = ratio_dfs_dict[i] if ratio_df.shape[0]!=0: r_df = pd.concat( [ ratio_df['n'], pd.cut( ratio_df['ref_time'], bins =[0, 3, 10, 14, 24 ], labels=[ 'Q1','Q2','Q3','Q4'], include_lowest=True, ) ], axis=1 ).groupby('ref_time').sum() r = np.round( 100*(r_df.loc['Q3']/r_df.sum())['n'], 1 ) ax.text( 12/24*2*np.pi, -0.5, str(r)+'%', fontsize=smallsize, ha='center', va='center', color='tomato' ) ax.plot( np.linspace(10, 14, 20)/24*2*np.pi, [0.05]*20, lw=5, color='tomato',alpha=0.7, zorder=20, ) ax.set_thetagrids([0,90,180,270]) ax.set_theta_zero_location('N') ax.set_theta_direction(-1) ax.set_rgrids([]) ax.set_rlim(0,1) ax.set_rorigin(-1.0) ax.annotate( s='', xytext=(np.pi/8,1), xy=(np.pi*3/8,1), size=40, arrowprops={ 'facecolor':'black', 'arrowstyle':'->', 'connectionstyle':"arc3,rad=-0.17", }, ) ax.text(np.pi/4,1,'Time',fontsize=smallsize, rotation=-40, ha='center',va='bottom') else: lgs = [] for s in np.arange(5,30,5): lg = ax.scatter(s, 0.5, color='dodgerblue', s=s*30, alpha=0.7, zorder=1, label=s) lgs.append(lg) lg = ax.scatter(1,1,marker='s',s=300, color='bisque', edgecolor='k', alpha=0.7, label='Drug') lgs.append(lg) ax.set_rlim(0,0.1) ax.axis('off') ax.legend( handles=lgs, ncol=2, title='# of cells', title_fontsize=midsize, fontsize=smallsize, frameon=False, labelspacing=1.5, handletextpad=0.2, columnspacing=0.4, ) fig.subplots_adjust(hspace=0.3) fig.suptitle('Cells distribution under drug treatment', y=1, fontsize=hugesize) fig.savefig('Clock_Fig3F.svg', transparent=True, bbox_inches='tight') fig.savefig('Clock_Fig3F.png', transparent=True, bbox_inches='tight') plt.show() # In[ ]:
#!/usr/bin/env python # coding: utf-8 # # Figure Info. # # | Title | Journal | Authors | Article Date | Code Date | Figure | Links | # |:------|:-------:|:-------:|:------------:|:---------:|:------:|:-----:| # |A microfluidic approach for experimentally modelling <br> the intercellular coupling system of a mammalian <br> circadian clock at single-cell level|Lab on a Chip|<NAME>|2020.03.02|2020.03.11| Fig3F | [DOI](https://doi.org/10.1039/D0LC00140F) | # # In[1]: # data_file = 'SinPeaksDOWN.xls' # new_inputs = pd.read_excel(data_file,header=None) # new_inputs.to_csv('data.csv',index=False) # In[2]: import os, sys, warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams['svg.fonttype'] = 'none' sns.set_context(context='poster') bigsize = 20 midsize = 18 smallsize = 14 hugesize = 24 # In[ ]: # Load data new_inputs = pd.read_csv('data.csv') new_inputs = new_inputs.values.flatten() new_inputs = new_inputs[~np.isnan(new_inputs)] new_inputs = pd.Series(new_inputs) dict_time = new_inputs.astype(int).value_counts() # Set start and end days d_min = np.floor( ((new_inputs-12)/24).astype(np.float).min() ) d_min = max(0, d_min) d_max = np.ceil( ((new_inputs-12)/24).astype(np.float).max() ) drug_time = 22 + np.arange(0,d_max+1)*24 # Set plot n_plot = int( d_max - d_min + 1 ) n_rows = int( np.ceil(n_plot/4) ) ratio_dfs_dict = dict(zip(np.arange(n_plot), [pd.DataFrame()]*n_plot)) fig, axs = plt.subplots( ncols=4,nrows=n_rows, figsize=(18,n_rows*4), subplot_kw={'polar':True}, gridspec_kw={'hspace':0.5}, ) axs = axs.flatten() # Plot data for each 24h for i_time in dict_time.keys(): if i_time<12: continue d_time = int( np.floor((i_time-12)/24)-d_min ) # In one day ratio_df = ratio_dfs_dict[d_time] ratio_df = ratio_df.append( { 'ref_time' : ((i_time-12) % 24), 'n' : dict_time[i_time] }, ignore_index=True) ratio_dfs_dict[d_time] = ratio_df # Date to r t_time = (((i_time-12) % 24)/24)*2*np.pi t_drug = ((1+drug_time[d_time]-12)%24)/24*2*np.pi axs[d_time].bar(t_drug, 1, width=2/24*2*np.pi, bottom=0.0, color='bisque', edgecolor='k', alpha=0.7, zorder=10) axs[d_time].scatter(t_time, 0.5, color='dodgerblue', s=dict_time[i_time]*30, alpha=0.7, zorder=20) # Plot info for each 24h for i,ax in enumerate(axs): labels = (12+np.arange(24*(d_min+i),24*(d_min+i+1),6)).astype(int).astype(str) labels[0] = str( int(labels[0])+24 ) + ' / ' + labels[0] labels[2] = labels[2] + ' h' ax.set_xticklabels( labels, fontsize=midsize ) ax.set_yticklabels([]) ax.tick_params(axis='x', pad=0) ratio_df = ratio_dfs_dict[i] if ratio_df.shape[0]!=0: r_df = pd.concat( [ ratio_df['n'], pd.cut( ratio_df['ref_time'], bins =[0, 3, 10, 14, 24 ], labels=[ 'Q1','Q2','Q3','Q4'], include_lowest=True, ) ], axis=1 ).groupby('ref_time').sum() r = np.round( 100*(r_df.loc['Q3']/r_df.sum())['n'], 1 ) ax.text( 12/24*2*np.pi, -0.5, str(r)+'%', fontsize=smallsize, ha='center', va='center', color='tomato' ) ax.plot( np.linspace(10, 14, 20)/24*2*np.pi, [0.05]*20, lw=5, color='tomato',alpha=0.7, zorder=20, ) ax.set_thetagrids([0,90,180,270]) ax.set_theta_zero_location('N') ax.set_theta_direction(-1) ax.set_rgrids([]) ax.set_rlim(0,1) ax.set_rorigin(-1.0) ax.annotate( s='', xytext=(np.pi/8,1), xy=(np.pi*3/8,1), size=40, arrowprops={ 'facecolor':'black', 'arrowstyle':'->', 'connectionstyle':"arc3,rad=-0.17", }, ) ax.text(np.pi/4,1,'Time',fontsize=smallsize, rotation=-40, ha='center',va='bottom') else: lgs = [] for s in np.arange(5,30,5): lg = ax.scatter(s, 0.5, color='dodgerblue', s=s*30, alpha=0.7, zorder=1, label=s) lgs.append(lg) lg = ax.scatter(1,1,marker='s',s=300, color='bisque', edgecolor='k', alpha=0.7, label='Drug') lgs.append(lg) ax.set_rlim(0,0.1) ax.axis('off') ax.legend( handles=lgs, ncol=2, title='# of cells', title_fontsize=midsize, fontsize=smallsize, frameon=False, labelspacing=1.5, handletextpad=0.2, columnspacing=0.4, ) fig.subplots_adjust(hspace=0.3) fig.suptitle('Cells distribution under drug treatment', y=1, fontsize=hugesize) fig.savefig('Clock_Fig3F.svg', transparent=True, bbox_inches='tight') fig.savefig('Clock_Fig3F.png', transparent=True, bbox_inches='tight') plt.show() # In[ ]:
en
0.43014
#!/usr/bin/env python # coding: utf-8 # # Figure Info. # # | Title | Journal | Authors | Article Date | Code Date | Figure | Links | # |:------|:-------:|:-------:|:------------:|:---------:|:------:|:-----:| # |A microfluidic approach for experimentally modelling <br> the intercellular coupling system of a mammalian <br> circadian clock at single-cell level|Lab on a Chip|<NAME>|2020.03.02|2020.03.11| Fig3F | [DOI](https://doi.org/10.1039/D0LC00140F) | # # In[1]: # data_file = 'SinPeaksDOWN.xls' # new_inputs = pd.read_excel(data_file,header=None) # new_inputs.to_csv('data.csv',index=False) # In[2]: # In[ ]: # Load data # Set start and end days # Set plot # Plot data for each 24h # In one day # Date to r # Plot info for each 24h # In[ ]:
2.522221
3
rameniaapp/views/report.py
awlane/ramenia
0
10410
from django.shortcuts import render, HttpResponse, HttpResponseRedirect from django.template import loader from django.conf import settings from django.contrib.auth.models import User from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle from django.views.generic import ListView, FormView, CreateView from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.decorators import login_required from rameniaapp.decorators import user_is_moderator from rameniaapp.actionhookutils import dispatch_hook from rameniaapp.utils import UserIsModeratorMixin from django.forms.widgets import Select from django.contrib import messages class ReportForm(LoginRequiredMixin, CreateView): '''Class based view for creating reports''' template_name = "report_form.html" model = Report success_url = "/app" fields = ["reason"] url_path = "/app" login_url="/app/login" def get_form(self, form_class=None): form = super(ReportForm, self).get_form(form_class) form.fields['reason'].widget.attrs.update({'class':'form-control'}) return form def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.reporter = self.request.user form.instance.status = 'OP' return super().form_valid(form) def get_context_data(self, **kwargs): '''Adds url_path value and relevant object id to template''' context = super().get_context_data(**kwargs) context["id"] = self.kwargs["id"] context["url_path"] = self.url_path return context class NoodleReportForm(ReportForm): '''Class based view for reporting noodles''' model = NoodleReport #This is used to allow the form to create the correct object url_path = "noodle_report" def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.noodle = Noodle.objects.get(pk=self.kwargs["id"]) form.instance.type = 'ND' return super().form_valid(form) def get_context_data(self, **kwargs): '''Passes item name to template''' context = super().get_context_data(**kwargs) context["name"] = Noodle.objects.get(pk=self.kwargs["id"]).name return context class ReviewReportForm(ReportForm): '''Class based view for reporting reviews''' model = ReviewReport url_path = "review_report" def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.review = Review.objects.get(pk=self.kwargs["id"]) form.instance.type = 'RV' return super().form_valid(form) def get_context_data(self, **kwargs): '''Passes item name to template''' context = super().get_context_data(**kwargs) context["name"] = Review.objects.get(pk=self.kwargs["id"]).title return context class ProfileReportForm(ReportForm): '''Class based view for reporting profile''' model = ProfileReport url_path = "profile_report" def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.profile = Profile.objects.get(pk=self.kwargs["id"]) form.instance.type = 'PF' return super().form_valid(form) def get_context_data(self, **kwargs): '''Passes item name to template''' context = super().get_context_data(**kwargs) context["name"] = Profile.objects.get(pk=self.kwargs["id"]).name return context class ReportList(LoginRequiredMixin, UserIsModeratorMixin, ListView): '''Class based view for viewing reports''' # These values are overriden for the subclasses so we can create # multiple types of noodles without rewriting code model = Report item_type = "" context_object_name = "reports" template_name = "report_view.html" login_url="/app/login" def get_queryset(self): '''Get all reports for specific objects''' if "item_id" in self.kwargs: item_tuple = self.get_item(self.kwargs["item_id"]) self.kwargs[item_tuple[0]] = item_tuple[1] # This prevents the next line from breaking del self.kwargs["item_id"] # Using get_item, this lets us filter for any kind of object without # writing extra code return self.model.objects.filter(**self.kwargs) def get_item(self, id): '''Returns a tuple containing the key name and item''' return (None, None) def get_context_data(self, **kwargs): '''Knowing the item type lets us not break things''' context = super().get_context_data(**kwargs) context['item_type'] = self.item_type return context class NoodleReportList(ReportList): '''List of noodle reports''' model = NoodleReport item_type = "Noodles" def get_item(self, id): '''Returns a tuple containing the key name and item''' noodle = Noodle.objects.get(id=id) return ("noodle", noodle) class ReviewReportList(ReportList): '''List of review reports''' model = ReviewReport item_type = "Reviews" def get_item(self, id): '''Returns a tuple containing the key name and item''' review = Review.objects.get(id=id) return ("review", review) class ProfileReportList(ReportList): '''List of profile reports''' model = ProfileReport item_type = "Profiles" def get_item(self, id): '''Returns a tuple containing the key name and item''' profile = Profile.objects.get(id=id) return ("profile", profile) @login_required(login_url="/app/login") @user_is_moderator def ban_user(request, report_type, user_id): '''Ban a user by their id; expects report_type arg for redirect reasons''' if request.method == "POST": user = User.objects.get(pk=user_id).delete() path = None if report_type == "ND": path = "reports/noodle" elif report_type == "RV": path = "reports/review" elif report_type == "PF": path = "reports/profile" messages.add_message(request, messages.WARNING, "User banned") return HttpResponseRedirect("/app/mod/{}".format(path)) else: return HttpResponseRedirect("/app/mod") @login_required(login_url="/app/login") @user_is_moderator def delete_content(request, report_id): '''This method deletes offending items that have been reported, or just their content''' if request.method == "POST": report = Report.objects.get(pk=report_id) reporter = report.reporter creator = None path = get_return_path(report) # Deleting object is dependent on type if report.type == "RV": report = ReviewReport.objects.get(pk=report_id) creator = report.review.reviewer report.review.delete() elif report.type == "ND": report = NoodleReport.objects.get(pk=report_id) creator = report.noodle.editor report.noodle.delete() elif report.type == "PF": # Deleting a profile will break fundamental assumptions, so we instead # remove all content from it. report = ProfileReport.objects.get(pk=report_id) report.profile.name = "AnonymousUser" report.profile.profile_pic = Profile._meta.get_field('profile_pic').default report.profile.metadata["Description"] = "" report.profile.save() creator = report.profile.user report.delete() # If we delete the content, it was reasonable to report it dispatch_hook(reporter, "good-report") if creator: # If the noodle's creator hasn't been banned, penalize them dispatch_hook(creator, "bad-content") messages.add_message(request, messages.WARNING, "Content deleted") return HttpResponseRedirect("/app/mod/reports/{}".format(path)) else: return HttpResponseRedirect("/app/mod") @login_required(login_url="/app/login") @user_is_moderator def update_report_status(request, report_id, status): '''Change report status to "open", "resolved", or "spam"''' if request.method == "POST": # Validate status is the correct value if status in dict(Report.STATUS_CHOICES): report = Report.objects.get(pk=report_id) report.status = status report.save() creator = None path = get_return_path(report) # Get the creator of the relevant object/report if report.type == "RV": report = ReviewReport.objects.get(pk=report_id) creator = report.review.reviewer elif report.type == "ND": report = NoodleReport.objects.get(pk=report_id) creator = report.noodle.editor elif report.type == "PF": report = ProfileReport.objects.get(pk=report_id) creator = report.profile.user # Reward people for good reports if status == "ED": if report.reporter: dispatch_hook(report.reporter, "good-report") if creator: dispatch_hook(creator, "bad-content") messages.add_message(request, messages.SUCCESS, "Report marked as resolved") # Penalize people for bad reports if status == "SP": if report.reporter: dispatch_hook(report.reporter, "bad-report") messages.add_message(request, messages.WARNING, "Report marked as spam") return HttpResponseRedirect("/app/mod/reports/{}".format(path)) else: return HttpResponseRedirect("/app/mod") @login_required(login_url="/app/login") @user_is_moderator def ignore_report(request, report_id): '''Ignore (delete) a report''' if request.method == "POST": report = Report.objects.get(pk=report_id) path = get_return_path(report) if report.reporter: # We assume a bad report is worth deleting if its creator # wasn't banned dispatch_hook(report.reporter, "bad-report") report.delete() messages.add_message(request, messages.WARNING, "Report ignored") return HttpResponseRedirect("/app/mod/reports/{}".format(path)) else: return HttpResponseRedirect("/app/mod") def get_return_path(report): '''Util method to return a correct redirect path''' if report.type == "RV": return "review" elif report.type == "ND": return "noodle" elif report.type == "PF": return "profile"
from django.shortcuts import render, HttpResponse, HttpResponseRedirect from django.template import loader from django.conf import settings from django.contrib.auth.models import User from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle from django.views.generic import ListView, FormView, CreateView from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.decorators import login_required from rameniaapp.decorators import user_is_moderator from rameniaapp.actionhookutils import dispatch_hook from rameniaapp.utils import UserIsModeratorMixin from django.forms.widgets import Select from django.contrib import messages class ReportForm(LoginRequiredMixin, CreateView): '''Class based view for creating reports''' template_name = "report_form.html" model = Report success_url = "/app" fields = ["reason"] url_path = "/app" login_url="/app/login" def get_form(self, form_class=None): form = super(ReportForm, self).get_form(form_class) form.fields['reason'].widget.attrs.update({'class':'form-control'}) return form def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.reporter = self.request.user form.instance.status = 'OP' return super().form_valid(form) def get_context_data(self, **kwargs): '''Adds url_path value and relevant object id to template''' context = super().get_context_data(**kwargs) context["id"] = self.kwargs["id"] context["url_path"] = self.url_path return context class NoodleReportForm(ReportForm): '''Class based view for reporting noodles''' model = NoodleReport #This is used to allow the form to create the correct object url_path = "noodle_report" def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.noodle = Noodle.objects.get(pk=self.kwargs["id"]) form.instance.type = 'ND' return super().form_valid(form) def get_context_data(self, **kwargs): '''Passes item name to template''' context = super().get_context_data(**kwargs) context["name"] = Noodle.objects.get(pk=self.kwargs["id"]).name return context class ReviewReportForm(ReportForm): '''Class based view for reporting reviews''' model = ReviewReport url_path = "review_report" def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.review = Review.objects.get(pk=self.kwargs["id"]) form.instance.type = 'RV' return super().form_valid(form) def get_context_data(self, **kwargs): '''Passes item name to template''' context = super().get_context_data(**kwargs) context["name"] = Review.objects.get(pk=self.kwargs["id"]).title return context class ProfileReportForm(ReportForm): '''Class based view for reporting profile''' model = ProfileReport url_path = "profile_report" def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.profile = Profile.objects.get(pk=self.kwargs["id"]) form.instance.type = 'PF' return super().form_valid(form) def get_context_data(self, **kwargs): '''Passes item name to template''' context = super().get_context_data(**kwargs) context["name"] = Profile.objects.get(pk=self.kwargs["id"]).name return context class ReportList(LoginRequiredMixin, UserIsModeratorMixin, ListView): '''Class based view for viewing reports''' # These values are overriden for the subclasses so we can create # multiple types of noodles without rewriting code model = Report item_type = "" context_object_name = "reports" template_name = "report_view.html" login_url="/app/login" def get_queryset(self): '''Get all reports for specific objects''' if "item_id" in self.kwargs: item_tuple = self.get_item(self.kwargs["item_id"]) self.kwargs[item_tuple[0]] = item_tuple[1] # This prevents the next line from breaking del self.kwargs["item_id"] # Using get_item, this lets us filter for any kind of object without # writing extra code return self.model.objects.filter(**self.kwargs) def get_item(self, id): '''Returns a tuple containing the key name and item''' return (None, None) def get_context_data(self, **kwargs): '''Knowing the item type lets us not break things''' context = super().get_context_data(**kwargs) context['item_type'] = self.item_type return context class NoodleReportList(ReportList): '''List of noodle reports''' model = NoodleReport item_type = "Noodles" def get_item(self, id): '''Returns a tuple containing the key name and item''' noodle = Noodle.objects.get(id=id) return ("noodle", noodle) class ReviewReportList(ReportList): '''List of review reports''' model = ReviewReport item_type = "Reviews" def get_item(self, id): '''Returns a tuple containing the key name and item''' review = Review.objects.get(id=id) return ("review", review) class ProfileReportList(ReportList): '''List of profile reports''' model = ProfileReport item_type = "Profiles" def get_item(self, id): '''Returns a tuple containing the key name and item''' profile = Profile.objects.get(id=id) return ("profile", profile) @login_required(login_url="/app/login") @user_is_moderator def ban_user(request, report_type, user_id): '''Ban a user by their id; expects report_type arg for redirect reasons''' if request.method == "POST": user = User.objects.get(pk=user_id).delete() path = None if report_type == "ND": path = "reports/noodle" elif report_type == "RV": path = "reports/review" elif report_type == "PF": path = "reports/profile" messages.add_message(request, messages.WARNING, "User banned") return HttpResponseRedirect("/app/mod/{}".format(path)) else: return HttpResponseRedirect("/app/mod") @login_required(login_url="/app/login") @user_is_moderator def delete_content(request, report_id): '''This method deletes offending items that have been reported, or just their content''' if request.method == "POST": report = Report.objects.get(pk=report_id) reporter = report.reporter creator = None path = get_return_path(report) # Deleting object is dependent on type if report.type == "RV": report = ReviewReport.objects.get(pk=report_id) creator = report.review.reviewer report.review.delete() elif report.type == "ND": report = NoodleReport.objects.get(pk=report_id) creator = report.noodle.editor report.noodle.delete() elif report.type == "PF": # Deleting a profile will break fundamental assumptions, so we instead # remove all content from it. report = ProfileReport.objects.get(pk=report_id) report.profile.name = "AnonymousUser" report.profile.profile_pic = Profile._meta.get_field('profile_pic').default report.profile.metadata["Description"] = "" report.profile.save() creator = report.profile.user report.delete() # If we delete the content, it was reasonable to report it dispatch_hook(reporter, "good-report") if creator: # If the noodle's creator hasn't been banned, penalize them dispatch_hook(creator, "bad-content") messages.add_message(request, messages.WARNING, "Content deleted") return HttpResponseRedirect("/app/mod/reports/{}".format(path)) else: return HttpResponseRedirect("/app/mod") @login_required(login_url="/app/login") @user_is_moderator def update_report_status(request, report_id, status): '''Change report status to "open", "resolved", or "spam"''' if request.method == "POST": # Validate status is the correct value if status in dict(Report.STATUS_CHOICES): report = Report.objects.get(pk=report_id) report.status = status report.save() creator = None path = get_return_path(report) # Get the creator of the relevant object/report if report.type == "RV": report = ReviewReport.objects.get(pk=report_id) creator = report.review.reviewer elif report.type == "ND": report = NoodleReport.objects.get(pk=report_id) creator = report.noodle.editor elif report.type == "PF": report = ProfileReport.objects.get(pk=report_id) creator = report.profile.user # Reward people for good reports if status == "ED": if report.reporter: dispatch_hook(report.reporter, "good-report") if creator: dispatch_hook(creator, "bad-content") messages.add_message(request, messages.SUCCESS, "Report marked as resolved") # Penalize people for bad reports if status == "SP": if report.reporter: dispatch_hook(report.reporter, "bad-report") messages.add_message(request, messages.WARNING, "Report marked as spam") return HttpResponseRedirect("/app/mod/reports/{}".format(path)) else: return HttpResponseRedirect("/app/mod") @login_required(login_url="/app/login") @user_is_moderator def ignore_report(request, report_id): '''Ignore (delete) a report''' if request.method == "POST": report = Report.objects.get(pk=report_id) path = get_return_path(report) if report.reporter: # We assume a bad report is worth deleting if its creator # wasn't banned dispatch_hook(report.reporter, "bad-report") report.delete() messages.add_message(request, messages.WARNING, "Report ignored") return HttpResponseRedirect("/app/mod/reports/{}".format(path)) else: return HttpResponseRedirect("/app/mod") def get_return_path(report): '''Util method to return a correct redirect path''' if report.type == "RV": return "review" elif report.type == "ND": return "noodle" elif report.type == "PF": return "profile"
en
0.885907
Class based view for creating reports Ensures hidden form values are filled Adds url_path value and relevant object id to template Class based view for reporting noodles #This is used to allow the form to create the correct object Ensures hidden form values are filled Passes item name to template Class based view for reporting reviews Ensures hidden form values are filled Passes item name to template Class based view for reporting profile Ensures hidden form values are filled Passes item name to template Class based view for viewing reports # These values are overriden for the subclasses so we can create # multiple types of noodles without rewriting code Get all reports for specific objects # This prevents the next line from breaking # Using get_item, this lets us filter for any kind of object without # writing extra code Returns a tuple containing the key name and item Knowing the item type lets us not break things List of noodle reports Returns a tuple containing the key name and item List of review reports Returns a tuple containing the key name and item List of profile reports Returns a tuple containing the key name and item Ban a user by their id; expects report_type arg for redirect reasons This method deletes offending items that have been reported, or just their content # Deleting object is dependent on type # Deleting a profile will break fundamental assumptions, so we instead # remove all content from it. # If we delete the content, it was reasonable to report it # If the noodle's creator hasn't been banned, penalize them Change report status to "open", "resolved", or "spam" # Validate status is the correct value # Get the creator of the relevant object/report # Reward people for good reports # Penalize people for bad reports Ignore (delete) a report # We assume a bad report is worth deleting if its creator # wasn't banned Util method to return a correct redirect path
1.974638
2
pyparser.py
ddurvaux/PyUnpacker
0
10411
#!/usr/bin/python # # This tool is an attempt to automate some taks related # to malware unpacking. # # Most (if not all) of the tricks used in this tool # directly comes from an excellent course given # by <NAME> (@nicolasbrulez) # # Tool developped by David DURVAUX for Autopsit # (commercial brand of N-Labs sprl) # # TODO # - everything # - VirusTotal Support # - dynamic analysis (GDB? Valgring?) # - static code analysis with Radare2 # - add argument for PEID # - save status / restore (config/analysis) # - extract fucnction without offset for comparison of samples # - .. # # __author__ = '<NAME>' __contact__ = '<EMAIL>' __version__ = '0.01' # Imports required by this tool import os import sys import json import pefile import peutils import argparse from distorm3 import Decode, Decode16Bits, Decode32Bits, Decode64Bits, Decompose, DecomposeGenerator, DF_STOP_ON_FLOW_CONTROL # Imports part of this tool import static.vivframework # --------------------------------------------------------------------------- # # REPRESENTATION OF THE CONFIGURATION # --------------------------------------------------------------------------- # class Configuration: force = False # force to redo all the analysis modstatic = None # static analysis module moddynamic = None # dynamic analysis module # DB downloaded on # https://raw.githubusercontent.com/viper-framework/viper/master/data/peid/UserDB.TXT (UPX not detected) # https://raw.githubusercontent.com/ynadji/peid/master/userdb.txt (problems) # http://blog.didierstevens.com/programs/yara-rules/ signatures = peutils.SignatureDatabase('./peid/peid-userdb-rules-with-pe-module.yara') def __init__(self): return def save(self, filename="./config.json"): config = { "force": self.force, "modstatic": self.modstatic, "moddynamic": self.moddynamic } try: # write configuration to file fd = open(filename, "w") json.dump(config, fd) fd.close() print("Configuration saved to %s" % filename) except Exception as e: print("Impossible to save configuration to %s" % filename) print(e) return def load(self, filename="./config.json"): config = {} try: # read configuration from file fd = open(filename, "r") config = json.load(fd) fd.close() # update internal state self.__dict__[key] = config[key] except Exception as e: print("Impossible to load configuration from %s" % filename) print(e) return # --------------------------------------------------------------------------- # # REPRESENTATION OF THE INFO RETRIEVED # --------------------------------------------------------------------------- # class BinaryInformations: """ This class will represent and hold all the information retrieved from the binary """ vtinfo = {} peheader = {} bininfo = {} settings = {} packed_score = 0 # current packed score packed_test = 0 # number of test done breakpoints = [] # breakoint to set for unpacking anti_debug = False def __init__(self): return def log(self): #TODO IMPLEMENT return def save(self, filename=sys.stdout): print ("NOT YET IMPLEMENTED!") return # --------------------------------------------------------------------------- # # STATIC ANALYSIS OF BINARY # --------------------------------------------------------------------------- # class StaticAnalysis: """ Tools to analyze statically binaries @TODO: define access to page_size, margin, entropy_threshold and packed_score """ # class variable configuration = None binary = None bininfo = None page_size = 0 margin= 0 entropy_threshold = 0 packed_score = 0 SFLAGS = { "CODE" : 0x00000020, "DATA" : 0x00000040, "EXEC" : 0x20000000, "READ" : 0x40000000, "WRIT" : 0x80000000 # other: check https://msdn.microsoft.com/en-us/library/ms809762.aspx } def __init__(self, binary, configuration, page_size=0x1000, margin=0.1, entropy_threshold = 7.0, packed_score=0): """ binary the path to the binary to analyze """ # set parameters self.binary = binary self.page_size = page_size self.margin = margin self.entropy_threshold = entropy_threshold self.packed_score = packed_score # instanciate internal objects self.pe = pefile.PE(binary) self.bininfo = BinaryInformations() # keep track of the current configuration self.configuration = configuration # initialize static analysis module (TODO - add support for others) self.configuration.modstatic = static.vivframework.Vivisect(self.binary, self.bininfo, self.configuration.force) # update BinaryInformation with current settings: self.bininfo.settings["peanalysis"] = { "binary" : self.binary, "page_size" : self.page_size, "margin" : self.margin, "entropy_threshold" : self.entropy_threshold, "packed_score" : self.packed_score } # CHECK BINARY SECTIONS def analyzeSections(self): """ TODO: mutliple output support, number of test Need to Add: - check section names - check where entry point is located (in the last section) - first section should be writeable - last section should be executable - ... """ # check number of sections if(len(self.pe.sections)) != 3: print "ABNOMALIE in NUMBER OF SECTIONS (%d)!!" % len(self.pe.sections) self.bininfo.packed_score += 1 self.bininfo.packed_test += 1 # check section + boundary and see if it matches for section in self.pe.sections: [name, vaddr, vsize, rsize, flags] = [section.Name, section.VirtualAddress, section.Misc_VirtualSize, section.SizeOfRawData, section.Characteristics] # check flags if( int(flags ^ (self.SFLAGS["EXEC"] | self.SFLAGS["WRIT"])) == 0 ): # check if section is executable + writeable print "ABNOMALIE SECTION SHOULD NOT BE WRITEABLE AND EXECUTABLE (W^X violation)!!" self.bininfo.packed_score += 1 # check sections sizes (incl. page alignment) # the rsize need to be written in a multiple of memory page size (min 1.) # a margin is added (could be customized) if (rsize / self.page_size + 1) * self.page_size * (1 + self.margin) < vsize: print "ABNOMALIES with VIRTUAL SIZE ALLOCATION for SECTION: %s" % name self.bininfo.packed_score += 1 # check entropy if(section.get_entropy() >= self.entropy_threshold): print "ABNORMAL ENTROPY (%s)) for SECTION: %s" % (section.get_entropy(), name) self.bininfo.packed_score += 1 # update bininfo status self.bininfo.packed_test += 3 # 3 tests are done for each section print ("TOTAL PACKED SCORE: %s / %s" % (self.bininfo.packed_score, self.bininfo.packed_test)) return self.bininfo def callPEiD(self): """ Use set of YARA rules to search for known packers TODO - add a check on signature presence or download or end - postpone initialization of signatures DB here!! """ matches = self.configuration.signatures.match(self.pe, ep_only = True) if(matches is not None): if(len(matches) > 0): print "PACKER FOUND: %s" % matches[0] return self.bininfo def graphSearch(self): """ Do a graph search in the code for leaf nodes """ self.configuration.modstatic.graphSearch() def isAntiDebug(self): if self.configuration.modstatic.isAntiDebug(): print "WARNING: ANTI-DEBUGGING TRICKS FOUND!" def searchVirtualAlloc(self): self.configuration.modstatic.searchVirtualAlloc() def getPerFunctionHash(self): self.configuration.modstatic.getPerFunctionHash() def decompile(self): """ ! need to take in account offset in memory ! -- CODE TO REMOVE -- DEPRECATED -- """ fd = open(self.binary, "rb") l = DecomposeGenerator(0x100, fd.read(), Decode32Bits, DF_STOP_ON_FLOW_CONTROL) while(l is not None): # -- BEGIN TEST CODE -- for i in l: #print "0x%08x (%02x) %-20s %s" % (i[0], i[1], i[3], i[2]) print "0x%08x %s" % (i.address, i) # -- END TEST CODE -- l = DecomposeGenerator(0x100, fd.read(), Decode32Bits, DF_STOP_ON_FLOW_CONTROL) fd.close() return # --------------------------------------------------------------------------- # # MAIN SECTION OF CODE # --------------------------------------------------------------------------- # def start_analysis(binary, configuration): sa = StaticAnalysis(binary, configuration) sa.analyzeSections() sa.callPEiD() sa.graphSearch() sa.isAntiDebug() sa.searchVirtualAlloc() sa.getPerFunctionHash() #TEST #sa.decompile() # TEST return def main(): # Argument definition parser = argparse.ArgumentParser(description='Analyse binaries and try to help with deobfuscation') parser.add_argument('-b', '--binary', help='Binary to analyze') parser.add_argument('-f', '--force', help='Force a fresh analysis, no restoration of previous work', action="store_true") parser.add_argument('-y', '--yara', help='Path to YARA DB to use to scan binary') parser.add_argument('-viv', '--vivisect', help='Path to vivisect installation') # create a configuration holder configuration = Configuration() # Start the fun part :) args = parser.parse_args() # if force flag is defined, change behaviour if args.force: configuration.force = True # set YARA DB signature if args.yara: if os.path.isfile(args.yara): configuration.signatures = args.yara else: print "ERROR: %s not found!" % args.yara exit() # TEST - save configuration for re-use #configuration.save() configuration.load() # set Vivisect path and Initialize # currently only vivisect is supported # this code need to be changed if other libraries get supported later if args.vivisect: if os.path.isdir(args.vivisect): sys.path.append(args.vivisect) else: print "ERROR: %s not found!" % args.vivisect exit() # Check if an output directory is set binary = None if args.binary: if os.path.isfile(args.binary): binary = args.binary start_analysis(binary, configuration) else: print "You need to specify a file to analyze" exit() if __name__ == "__main__": main() # --------------------------------------------------------------------------- # # That's all folk ;) # --------------------------------------------------------------------------- #
#!/usr/bin/python # # This tool is an attempt to automate some taks related # to malware unpacking. # # Most (if not all) of the tricks used in this tool # directly comes from an excellent course given # by <NAME> (@nicolasbrulez) # # Tool developped by David DURVAUX for Autopsit # (commercial brand of N-Labs sprl) # # TODO # - everything # - VirusTotal Support # - dynamic analysis (GDB? Valgring?) # - static code analysis with Radare2 # - add argument for PEID # - save status / restore (config/analysis) # - extract fucnction without offset for comparison of samples # - .. # # __author__ = '<NAME>' __contact__ = '<EMAIL>' __version__ = '0.01' # Imports required by this tool import os import sys import json import pefile import peutils import argparse from distorm3 import Decode, Decode16Bits, Decode32Bits, Decode64Bits, Decompose, DecomposeGenerator, DF_STOP_ON_FLOW_CONTROL # Imports part of this tool import static.vivframework # --------------------------------------------------------------------------- # # REPRESENTATION OF THE CONFIGURATION # --------------------------------------------------------------------------- # class Configuration: force = False # force to redo all the analysis modstatic = None # static analysis module moddynamic = None # dynamic analysis module # DB downloaded on # https://raw.githubusercontent.com/viper-framework/viper/master/data/peid/UserDB.TXT (UPX not detected) # https://raw.githubusercontent.com/ynadji/peid/master/userdb.txt (problems) # http://blog.didierstevens.com/programs/yara-rules/ signatures = peutils.SignatureDatabase('./peid/peid-userdb-rules-with-pe-module.yara') def __init__(self): return def save(self, filename="./config.json"): config = { "force": self.force, "modstatic": self.modstatic, "moddynamic": self.moddynamic } try: # write configuration to file fd = open(filename, "w") json.dump(config, fd) fd.close() print("Configuration saved to %s" % filename) except Exception as e: print("Impossible to save configuration to %s" % filename) print(e) return def load(self, filename="./config.json"): config = {} try: # read configuration from file fd = open(filename, "r") config = json.load(fd) fd.close() # update internal state self.__dict__[key] = config[key] except Exception as e: print("Impossible to load configuration from %s" % filename) print(e) return # --------------------------------------------------------------------------- # # REPRESENTATION OF THE INFO RETRIEVED # --------------------------------------------------------------------------- # class BinaryInformations: """ This class will represent and hold all the information retrieved from the binary """ vtinfo = {} peheader = {} bininfo = {} settings = {} packed_score = 0 # current packed score packed_test = 0 # number of test done breakpoints = [] # breakoint to set for unpacking anti_debug = False def __init__(self): return def log(self): #TODO IMPLEMENT return def save(self, filename=sys.stdout): print ("NOT YET IMPLEMENTED!") return # --------------------------------------------------------------------------- # # STATIC ANALYSIS OF BINARY # --------------------------------------------------------------------------- # class StaticAnalysis: """ Tools to analyze statically binaries @TODO: define access to page_size, margin, entropy_threshold and packed_score """ # class variable configuration = None binary = None bininfo = None page_size = 0 margin= 0 entropy_threshold = 0 packed_score = 0 SFLAGS = { "CODE" : 0x00000020, "DATA" : 0x00000040, "EXEC" : 0x20000000, "READ" : 0x40000000, "WRIT" : 0x80000000 # other: check https://msdn.microsoft.com/en-us/library/ms809762.aspx } def __init__(self, binary, configuration, page_size=0x1000, margin=0.1, entropy_threshold = 7.0, packed_score=0): """ binary the path to the binary to analyze """ # set parameters self.binary = binary self.page_size = page_size self.margin = margin self.entropy_threshold = entropy_threshold self.packed_score = packed_score # instanciate internal objects self.pe = pefile.PE(binary) self.bininfo = BinaryInformations() # keep track of the current configuration self.configuration = configuration # initialize static analysis module (TODO - add support for others) self.configuration.modstatic = static.vivframework.Vivisect(self.binary, self.bininfo, self.configuration.force) # update BinaryInformation with current settings: self.bininfo.settings["peanalysis"] = { "binary" : self.binary, "page_size" : self.page_size, "margin" : self.margin, "entropy_threshold" : self.entropy_threshold, "packed_score" : self.packed_score } # CHECK BINARY SECTIONS def analyzeSections(self): """ TODO: mutliple output support, number of test Need to Add: - check section names - check where entry point is located (in the last section) - first section should be writeable - last section should be executable - ... """ # check number of sections if(len(self.pe.sections)) != 3: print "ABNOMALIE in NUMBER OF SECTIONS (%d)!!" % len(self.pe.sections) self.bininfo.packed_score += 1 self.bininfo.packed_test += 1 # check section + boundary and see if it matches for section in self.pe.sections: [name, vaddr, vsize, rsize, flags] = [section.Name, section.VirtualAddress, section.Misc_VirtualSize, section.SizeOfRawData, section.Characteristics] # check flags if( int(flags ^ (self.SFLAGS["EXEC"] | self.SFLAGS["WRIT"])) == 0 ): # check if section is executable + writeable print "ABNOMALIE SECTION SHOULD NOT BE WRITEABLE AND EXECUTABLE (W^X violation)!!" self.bininfo.packed_score += 1 # check sections sizes (incl. page alignment) # the rsize need to be written in a multiple of memory page size (min 1.) # a margin is added (could be customized) if (rsize / self.page_size + 1) * self.page_size * (1 + self.margin) < vsize: print "ABNOMALIES with VIRTUAL SIZE ALLOCATION for SECTION: %s" % name self.bininfo.packed_score += 1 # check entropy if(section.get_entropy() >= self.entropy_threshold): print "ABNORMAL ENTROPY (%s)) for SECTION: %s" % (section.get_entropy(), name) self.bininfo.packed_score += 1 # update bininfo status self.bininfo.packed_test += 3 # 3 tests are done for each section print ("TOTAL PACKED SCORE: %s / %s" % (self.bininfo.packed_score, self.bininfo.packed_test)) return self.bininfo def callPEiD(self): """ Use set of YARA rules to search for known packers TODO - add a check on signature presence or download or end - postpone initialization of signatures DB here!! """ matches = self.configuration.signatures.match(self.pe, ep_only = True) if(matches is not None): if(len(matches) > 0): print "PACKER FOUND: %s" % matches[0] return self.bininfo def graphSearch(self): """ Do a graph search in the code for leaf nodes """ self.configuration.modstatic.graphSearch() def isAntiDebug(self): if self.configuration.modstatic.isAntiDebug(): print "WARNING: ANTI-DEBUGGING TRICKS FOUND!" def searchVirtualAlloc(self): self.configuration.modstatic.searchVirtualAlloc() def getPerFunctionHash(self): self.configuration.modstatic.getPerFunctionHash() def decompile(self): """ ! need to take in account offset in memory ! -- CODE TO REMOVE -- DEPRECATED -- """ fd = open(self.binary, "rb") l = DecomposeGenerator(0x100, fd.read(), Decode32Bits, DF_STOP_ON_FLOW_CONTROL) while(l is not None): # -- BEGIN TEST CODE -- for i in l: #print "0x%08x (%02x) %-20s %s" % (i[0], i[1], i[3], i[2]) print "0x%08x %s" % (i.address, i) # -- END TEST CODE -- l = DecomposeGenerator(0x100, fd.read(), Decode32Bits, DF_STOP_ON_FLOW_CONTROL) fd.close() return # --------------------------------------------------------------------------- # # MAIN SECTION OF CODE # --------------------------------------------------------------------------- # def start_analysis(binary, configuration): sa = StaticAnalysis(binary, configuration) sa.analyzeSections() sa.callPEiD() sa.graphSearch() sa.isAntiDebug() sa.searchVirtualAlloc() sa.getPerFunctionHash() #TEST #sa.decompile() # TEST return def main(): # Argument definition parser = argparse.ArgumentParser(description='Analyse binaries and try to help with deobfuscation') parser.add_argument('-b', '--binary', help='Binary to analyze') parser.add_argument('-f', '--force', help='Force a fresh analysis, no restoration of previous work', action="store_true") parser.add_argument('-y', '--yara', help='Path to YARA DB to use to scan binary') parser.add_argument('-viv', '--vivisect', help='Path to vivisect installation') # create a configuration holder configuration = Configuration() # Start the fun part :) args = parser.parse_args() # if force flag is defined, change behaviour if args.force: configuration.force = True # set YARA DB signature if args.yara: if os.path.isfile(args.yara): configuration.signatures = args.yara else: print "ERROR: %s not found!" % args.yara exit() # TEST - save configuration for re-use #configuration.save() configuration.load() # set Vivisect path and Initialize # currently only vivisect is supported # this code need to be changed if other libraries get supported later if args.vivisect: if os.path.isdir(args.vivisect): sys.path.append(args.vivisect) else: print "ERROR: %s not found!" % args.vivisect exit() # Check if an output directory is set binary = None if args.binary: if os.path.isfile(args.binary): binary = args.binary start_analysis(binary, configuration) else: print "You need to specify a file to analyze" exit() if __name__ == "__main__": main() # --------------------------------------------------------------------------- # # That's all folk ;) # --------------------------------------------------------------------------- #
en
0.58471
#!/usr/bin/python # # This tool is an attempt to automate some taks related # to malware unpacking. # # Most (if not all) of the tricks used in this tool # directly comes from an excellent course given # by <NAME> (@nicolasbrulez) # # Tool developped by David DURVAUX for Autopsit # (commercial brand of N-Labs sprl) # # TODO # - everything # - VirusTotal Support # - dynamic analysis (GDB? Valgring?) # - static code analysis with Radare2 # - add argument for PEID # - save status / restore (config/analysis) # - extract fucnction without offset for comparison of samples # - .. # # # Imports required by this tool # Imports part of this tool # --------------------------------------------------------------------------- # # REPRESENTATION OF THE CONFIGURATION # --------------------------------------------------------------------------- # # force to redo all the analysis # static analysis module # dynamic analysis module # DB downloaded on # https://raw.githubusercontent.com/viper-framework/viper/master/data/peid/UserDB.TXT (UPX not detected) # https://raw.githubusercontent.com/ynadji/peid/master/userdb.txt (problems) # http://blog.didierstevens.com/programs/yara-rules/ # write configuration to file # read configuration from file # update internal state # --------------------------------------------------------------------------- # # REPRESENTATION OF THE INFO RETRIEVED # --------------------------------------------------------------------------- # This class will represent and hold all the information retrieved from the binary # current packed score # number of test done # breakoint to set for unpacking #TODO IMPLEMENT # --------------------------------------------------------------------------- # # STATIC ANALYSIS OF BINARY # --------------------------------------------------------------------------- # Tools to analyze statically binaries @TODO: define access to page_size, margin, entropy_threshold and packed_score # class variable # other: check https://msdn.microsoft.com/en-us/library/ms809762.aspx binary the path to the binary to analyze # set parameters # instanciate internal objects # keep track of the current configuration # initialize static analysis module (TODO - add support for others) # update BinaryInformation with current settings: # CHECK BINARY SECTIONS TODO: mutliple output support, number of test Need to Add: - check section names - check where entry point is located (in the last section) - first section should be writeable - last section should be executable - ... # check number of sections # check section + boundary and see if it matches # check flags # check if section is executable + writeable # check sections sizes (incl. page alignment) # the rsize need to be written in a multiple of memory page size (min 1.) # a margin is added (could be customized) # check entropy # update bininfo status # 3 tests are done for each section Use set of YARA rules to search for known packers TODO - add a check on signature presence or download or end - postpone initialization of signatures DB here!! Do a graph search in the code for leaf nodes ! need to take in account offset in memory ! -- CODE TO REMOVE -- DEPRECATED -- # -- BEGIN TEST CODE -- #print "0x%08x (%02x) %-20s %s" % (i[0], i[1], i[3], i[2]) # -- END TEST CODE -- # --------------------------------------------------------------------------- # # MAIN SECTION OF CODE # --------------------------------------------------------------------------- # #TEST #sa.decompile() # TEST # Argument definition # create a configuration holder # Start the fun part :) # if force flag is defined, change behaviour # set YARA DB signature # TEST - save configuration for re-use #configuration.save() # set Vivisect path and Initialize # currently only vivisect is supported # this code need to be changed if other libraries get supported later # Check if an output directory is set # --------------------------------------------------------------------------- # # That's all folk ;) # --------------------------------------------------------------------------- #
1.971655
2
mjml/elements/head/mj_style.py
ESA-CCI-ODP/mjml-stub
23
10412
from ._head_base import HeadComponent __all__ = ['MjStyle'] class MjStyle(HeadComponent): @classmethod def default_attrs(cls): return { 'inline' : '', } def handler(self): add = self.context['add'] inline_attr = 'inlineStyle' if (self.get_attr('inline') == 'inline') else 'style' if inline_attr == 'inlineStyle': raise NotImplementedError('style inlining not supported yet') add(inline_attr, self.getContent())
from ._head_base import HeadComponent __all__ = ['MjStyle'] class MjStyle(HeadComponent): @classmethod def default_attrs(cls): return { 'inline' : '', } def handler(self): add = self.context['add'] inline_attr = 'inlineStyle' if (self.get_attr('inline') == 'inline') else 'style' if inline_attr == 'inlineStyle': raise NotImplementedError('style inlining not supported yet') add(inline_attr, self.getContent())
none
1
2.414489
2
model_zoo/official/nlp/bert/src/sample_process.py
i4oolish/mindspore
2
10413
<filename>model_zoo/official/nlp/bert/src/sample_process.py # Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """process txt""" import re import json def process_one_example_p(tokenizer, text, max_seq_len=128): """process one testline""" textlist = list(text) tokens = [] for _, word in enumerate(textlist): token = tokenizer.tokenize(word) tokens.extend(token) if len(tokens) >= max_seq_len - 1: tokens = tokens[0:(max_seq_len - 2)] ntokens = [] segment_ids = [] label_ids = [] ntokens.append("[CLS]") segment_ids.append(0) for _, token in enumerate(tokens): ntokens.append(token) segment_ids.append(0) ntokens.append("[SEP]") segment_ids.append(0) input_ids = tokenizer.convert_tokens_to_ids(ntokens) input_mask = [1] * len(input_ids) while len(input_ids) < max_seq_len: input_ids.append(0) input_mask.append(0) segment_ids.append(0) label_ids.append(0) ntokens.append("**NULL**") assert len(input_ids) == max_seq_len assert len(input_mask) == max_seq_len assert len(segment_ids) == max_seq_len feature = (input_ids, input_mask, segment_ids) return feature def label_generation(text="", probs=None, label2id_file=""): """generate label""" data = [text] probs = [probs] result = [] label2id = json.loads(open(label2id_file).read()) id2label = [k for k, v in label2id.items()] for index, prob in enumerate(probs): for v in prob[1:len(data[index]) + 1]: result.append(id2label[int(v)]) labels = {} start = None index = 0 for _, t in zip("".join(data), result): if re.search("^[BS]", t): if start is not None: label = result[index - 1][2:] if labels.get(label): te_ = text[start:index] labels[label][te_] = [[start, index - 1]] else: te_ = text[start:index] labels[label] = {te_: [[start, index - 1]]} start = index if re.search("^O", t): if start is not None: label = result[index - 1][2:] if labels.get(label): te_ = text[start:index] labels[label][te_] = [[start, index - 1]] else: te_ = text[start:index] labels[label] = {te_: [[start, index - 1]]} start = None index += 1 if start is not None: label = result[start][2:] if labels.get(label): te_ = text[start:index] labels[label][te_] = [[start, index - 1]] else: te_ = text[start:index] labels[label] = {te_: [[start, index - 1]]} return labels
<filename>model_zoo/official/nlp/bert/src/sample_process.py # Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """process txt""" import re import json def process_one_example_p(tokenizer, text, max_seq_len=128): """process one testline""" textlist = list(text) tokens = [] for _, word in enumerate(textlist): token = tokenizer.tokenize(word) tokens.extend(token) if len(tokens) >= max_seq_len - 1: tokens = tokens[0:(max_seq_len - 2)] ntokens = [] segment_ids = [] label_ids = [] ntokens.append("[CLS]") segment_ids.append(0) for _, token in enumerate(tokens): ntokens.append(token) segment_ids.append(0) ntokens.append("[SEP]") segment_ids.append(0) input_ids = tokenizer.convert_tokens_to_ids(ntokens) input_mask = [1] * len(input_ids) while len(input_ids) < max_seq_len: input_ids.append(0) input_mask.append(0) segment_ids.append(0) label_ids.append(0) ntokens.append("**NULL**") assert len(input_ids) == max_seq_len assert len(input_mask) == max_seq_len assert len(segment_ids) == max_seq_len feature = (input_ids, input_mask, segment_ids) return feature def label_generation(text="", probs=None, label2id_file=""): """generate label""" data = [text] probs = [probs] result = [] label2id = json.loads(open(label2id_file).read()) id2label = [k for k, v in label2id.items()] for index, prob in enumerate(probs): for v in prob[1:len(data[index]) + 1]: result.append(id2label[int(v)]) labels = {} start = None index = 0 for _, t in zip("".join(data), result): if re.search("^[BS]", t): if start is not None: label = result[index - 1][2:] if labels.get(label): te_ = text[start:index] labels[label][te_] = [[start, index - 1]] else: te_ = text[start:index] labels[label] = {te_: [[start, index - 1]]} start = index if re.search("^O", t): if start is not None: label = result[index - 1][2:] if labels.get(label): te_ = text[start:index] labels[label][te_] = [[start, index - 1]] else: te_ = text[start:index] labels[label] = {te_: [[start, index - 1]]} start = None index += 1 if start is not None: label = result[start][2:] if labels.get(label): te_ = text[start:index] labels[label][te_] = [[start, index - 1]] else: te_ = text[start:index] labels[label] = {te_: [[start, index - 1]]} return labels
en
0.796274
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ process txt process one testline generate label
2.58232
3
lang_model/data_loader.py
alex44jzy/FancyALMLDLNLP
0
10414
<gh_stars>0 import torch from torch.nn import functional as F from torch.utils.data import Dataset from gensim.corpora.dictionary import Dictionary class LangDataset(Dataset): def __init__(self, src_sents, trg_sents, max_len=-1): self.src_sents = src_sents self.trg_sents = trg_sents # Create the vocabulary for both the source and target. self.vocab = Dictionary(src_sents + trg_sents) # Patch the vocabularies and add the <pad> and <unk> symbols. special_tokens = {'<pad>': 0, '<unk>': 1, '</s>': 2} self.vocab.patch_with_special_tokens(special_tokens) # Keep track of how many data points. self._len = len(src_sents) if max_len < 0: # If it's not set, find the longest text in the data. max_src_len = max(len(sent) for sent in src_sents) self.max_len = max_src_len else: self.max_len = max_len def pad_sequence(self, vectorized_sent, max_len): # To pad the sentence: # Pad left = 0; Pad right = max_len - len of sent. pad_dim = (0, max_len - len(vectorized_sent)) return F.pad(vectorized_sent, pad_dim, 'constant') def __getitem__(self, index): vectorized_src = self.vectorize(self.vocab, self.src_sents[index]) vectorized_trg = self.vectorize(self.vocab, self.trg_sents[index]) return {'x': self.pad_sequence(vectorized_src, self.max_len), 'y': self.pad_sequence(vectorized_trg, self.max_len), 'x_len': len(vectorized_src), 'y_len': len(vectorized_trg)} def __len__(self): return self._len def vectorize(self, vocab, tokens): """ :param tokens: Tokens that should be vectorized. :type tokens: list(str) """ # See https://radimrehurek.com/gensim/corpora/dictionary.html#gensim.corpora.dictionary.Dictionary.doc2idx # Lets just cast list of indices into torch tensors directly =) return torch.tensor(vocab.doc2idx(tokens, unknown_word_index=1)) def unvectorize(self, vocab, indices): """ :param indices: Converts the indices back to tokens. :type tokens: list(int) """ return [vocab[i] for i in indices]
import torch from torch.nn import functional as F from torch.utils.data import Dataset from gensim.corpora.dictionary import Dictionary class LangDataset(Dataset): def __init__(self, src_sents, trg_sents, max_len=-1): self.src_sents = src_sents self.trg_sents = trg_sents # Create the vocabulary for both the source and target. self.vocab = Dictionary(src_sents + trg_sents) # Patch the vocabularies and add the <pad> and <unk> symbols. special_tokens = {'<pad>': 0, '<unk>': 1, '</s>': 2} self.vocab.patch_with_special_tokens(special_tokens) # Keep track of how many data points. self._len = len(src_sents) if max_len < 0: # If it's not set, find the longest text in the data. max_src_len = max(len(sent) for sent in src_sents) self.max_len = max_src_len else: self.max_len = max_len def pad_sequence(self, vectorized_sent, max_len): # To pad the sentence: # Pad left = 0; Pad right = max_len - len of sent. pad_dim = (0, max_len - len(vectorized_sent)) return F.pad(vectorized_sent, pad_dim, 'constant') def __getitem__(self, index): vectorized_src = self.vectorize(self.vocab, self.src_sents[index]) vectorized_trg = self.vectorize(self.vocab, self.trg_sents[index]) return {'x': self.pad_sequence(vectorized_src, self.max_len), 'y': self.pad_sequence(vectorized_trg, self.max_len), 'x_len': len(vectorized_src), 'y_len': len(vectorized_trg)} def __len__(self): return self._len def vectorize(self, vocab, tokens): """ :param tokens: Tokens that should be vectorized. :type tokens: list(str) """ # See https://radimrehurek.com/gensim/corpora/dictionary.html#gensim.corpora.dictionary.Dictionary.doc2idx # Lets just cast list of indices into torch tensors directly =) return torch.tensor(vocab.doc2idx(tokens, unknown_word_index=1)) def unvectorize(self, vocab, indices): """ :param indices: Converts the indices back to tokens. :type tokens: list(int) """ return [vocab[i] for i in indices]
en
0.718332
# Create the vocabulary for both the source and target. # Patch the vocabularies and add the <pad> and <unk> symbols. # Keep track of how many data points. # If it's not set, find the longest text in the data. # To pad the sentence: # Pad left = 0; Pad right = max_len - len of sent. :param tokens: Tokens that should be vectorized. :type tokens: list(str) # See https://radimrehurek.com/gensim/corpora/dictionary.html#gensim.corpora.dictionary.Dictionary.doc2idx # Lets just cast list of indices into torch tensors directly =) :param indices: Converts the indices back to tokens. :type tokens: list(int)
2.814436
3
models_nonconvex_simple2/ndcc13persp.py
grossmann-group/pyomo-MINLP-benchmarking
0
10415
<reponame>grossmann-group/pyomo-MINLP-benchmarking # MINLP written by GAMS Convert at 08/20/20 01:30:45 # # Equation counts # Total E G L N X C B # 297 170 42 85 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 673 631 42 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 2479 2353 126 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.x1 = Var(within=Reals,bounds=(0,None),initialize=0) m.x2 = Var(within=Reals,bounds=(0,None),initialize=0) m.x3 = Var(within=Reals,bounds=(0,None),initialize=0) m.x4 = Var(within=Reals,bounds=(0,None),initialize=0) m.x5 = Var(within=Reals,bounds=(0,None),initialize=0) m.x6 = Var(within=Reals,bounds=(0,None),initialize=0) m.x7 = Var(within=Reals,bounds=(0,None),initialize=0) m.x8 = Var(within=Reals,bounds=(0,None),initialize=0) m.x9 = Var(within=Reals,bounds=(0,None),initialize=0) m.x10 = Var(within=Reals,bounds=(0,None),initialize=0) m.x11 = Var(within=Reals,bounds=(0,None),initialize=0) m.x12 = Var(within=Reals,bounds=(0,None),initialize=0) m.x13 = Var(within=Reals,bounds=(0,None),initialize=0) m.x14 = Var(within=Reals,bounds=(0,None),initialize=0) m.x15 = Var(within=Reals,bounds=(0,None),initialize=0) m.x16 = Var(within=Reals,bounds=(0,None),initialize=0) m.x17 = Var(within=Reals,bounds=(0,None),initialize=0) m.x18 = Var(within=Reals,bounds=(0,None),initialize=0) m.x19 = Var(within=Reals,bounds=(0,None),initialize=0) m.x20 = Var(within=Reals,bounds=(0,None),initialize=0) m.x21 = Var(within=Reals,bounds=(0,None),initialize=0) m.x22 = Var(within=Reals,bounds=(0,None),initialize=0) m.x23 = Var(within=Reals,bounds=(0,None),initialize=0) m.x24 = Var(within=Reals,bounds=(0,None),initialize=0) m.x25 = Var(within=Reals,bounds=(0,None),initialize=0) m.x26 = Var(within=Reals,bounds=(0,None),initialize=0) m.x27 = Var(within=Reals,bounds=(0,None),initialize=0) m.x28 = Var(within=Reals,bounds=(0,None),initialize=0) m.x29 = Var(within=Reals,bounds=(0,None),initialize=0) m.x30 = Var(within=Reals,bounds=(0,None),initialize=0) m.x31 = Var(within=Reals,bounds=(0,None),initialize=0) m.x32 = Var(within=Reals,bounds=(0,None),initialize=0) m.x33 = Var(within=Reals,bounds=(0,None),initialize=0) m.x34 = Var(within=Reals,bounds=(0,None),initialize=0) m.x35 = Var(within=Reals,bounds=(0,None),initialize=0) m.x36 = Var(within=Reals,bounds=(0,None),initialize=0) m.x37 = Var(within=Reals,bounds=(0,None),initialize=0) m.x38 = Var(within=Reals,bounds=(0,None),initialize=0) m.x39 = Var(within=Reals,bounds=(0,None),initialize=0) m.x40 = Var(within=Reals,bounds=(0,None),initialize=0) m.x41 = Var(within=Reals,bounds=(0,None),initialize=0) m.x42 = Var(within=Reals,bounds=(0,None),initialize=0) m.x43 = Var(within=Reals,bounds=(0,None),initialize=0) m.x44 = Var(within=Reals,bounds=(0,None),initialize=0) m.x45 = Var(within=Reals,bounds=(0,None),initialize=0) m.x46 = Var(within=Reals,bounds=(0,None),initialize=0) m.x47 = Var(within=Reals,bounds=(0,None),initialize=0) m.x48 = Var(within=Reals,bounds=(0,None),initialize=0) m.x49 = Var(within=Reals,bounds=(0,None),initialize=0) m.x50 = Var(within=Reals,bounds=(0,None),initialize=0) m.x51 = Var(within=Reals,bounds=(0,None),initialize=0) m.x52 = Var(within=Reals,bounds=(0,None),initialize=0) m.x53 = Var(within=Reals,bounds=(0,None),initialize=0) m.x54 = Var(within=Reals,bounds=(0,None),initialize=0) m.x55 = Var(within=Reals,bounds=(0,None),initialize=0) m.x56 = Var(within=Reals,bounds=(0,None),initialize=0) m.x57 = Var(within=Reals,bounds=(0,None),initialize=0) m.x58 = Var(within=Reals,bounds=(0,None),initialize=0) m.x59 = Var(within=Reals,bounds=(0,None),initialize=0) m.x60 = Var(within=Reals,bounds=(0,None),initialize=0) m.x61 = Var(within=Reals,bounds=(0,None),initialize=0) m.x62 = Var(within=Reals,bounds=(0,None),initialize=0) m.x63 = Var(within=Reals,bounds=(0,None),initialize=0) m.x64 = Var(within=Reals,bounds=(0,None),initialize=0) m.x65 = Var(within=Reals,bounds=(0,None),initialize=0) m.x66 = Var(within=Reals,bounds=(0,None),initialize=0) m.x67 = Var(within=Reals,bounds=(0,None),initialize=0) m.x68 = Var(within=Reals,bounds=(0,None),initialize=0) m.x69 = Var(within=Reals,bounds=(0,None),initialize=0) m.x70 = Var(within=Reals,bounds=(0,None),initialize=0) m.x71 = Var(within=Reals,bounds=(0,None),initialize=0) m.x72 = Var(within=Reals,bounds=(0,None),initialize=0) m.x73 = Var(within=Reals,bounds=(0,None),initialize=0) m.x74 = Var(within=Reals,bounds=(0,None),initialize=0) m.x75 = Var(within=Reals,bounds=(0,None),initialize=0) m.x76 = Var(within=Reals,bounds=(0,None),initialize=0) m.x77 = Var(within=Reals,bounds=(0,None),initialize=0) m.x78 = Var(within=Reals,bounds=(0,None),initialize=0) m.x79 = Var(within=Reals,bounds=(0,None),initialize=0) m.x80 = Var(within=Reals,bounds=(0,None),initialize=0) m.x81 = Var(within=Reals,bounds=(0,None),initialize=0) m.x82 = Var(within=Reals,bounds=(0,None),initialize=0) m.x83 = Var(within=Reals,bounds=(0,None),initialize=0) m.x84 = Var(within=Reals,bounds=(0,None),initialize=0) m.x85 = Var(within=Reals,bounds=(0,None),initialize=0) m.x86 = Var(within=Reals,bounds=(0,None),initialize=0) m.x87 = Var(within=Reals,bounds=(0,None),initialize=0) m.x88 = Var(within=Reals,bounds=(0,None),initialize=0) m.x89 = Var(within=Reals,bounds=(0,None),initialize=0) m.x90 = Var(within=Reals,bounds=(0,None),initialize=0) m.x91 = Var(within=Reals,bounds=(0,None),initialize=0) m.x92 = Var(within=Reals,bounds=(0,None),initialize=0) m.x93 = Var(within=Reals,bounds=(0,None),initialize=0) m.x94 = Var(within=Reals,bounds=(0,None),initialize=0) m.x95 = Var(within=Reals,bounds=(0,None),initialize=0) m.x96 = Var(within=Reals,bounds=(0,None),initialize=0) m.x97 = Var(within=Reals,bounds=(0,None),initialize=0) m.x98 = Var(within=Reals,bounds=(0,None),initialize=0) m.x99 = Var(within=Reals,bounds=(0,None),initialize=0) m.x100 = Var(within=Reals,bounds=(0,None),initialize=0) m.x101 = Var(within=Reals,bounds=(0,None),initialize=0) m.x102 = Var(within=Reals,bounds=(0,None),initialize=0) m.x103 = Var(within=Reals,bounds=(0,None),initialize=0) m.x104 = Var(within=Reals,bounds=(0,None),initialize=0) m.x105 = Var(within=Reals,bounds=(0,None),initialize=0) m.x106 = Var(within=Reals,bounds=(0,None),initialize=0) m.x107 = Var(within=Reals,bounds=(0,None),initialize=0) m.x108 = Var(within=Reals,bounds=(0,None),initialize=0) m.x109 = Var(within=Reals,bounds=(0,None),initialize=0) m.x110 = Var(within=Reals,bounds=(0,None),initialize=0) m.x111 = Var(within=Reals,bounds=(0,None),initialize=0) m.x112 = Var(within=Reals,bounds=(0,None),initialize=0) m.x113 = Var(within=Reals,bounds=(0,None),initialize=0) m.x114 = Var(within=Reals,bounds=(0,None),initialize=0) m.x115 = Var(within=Reals,bounds=(0,None),initialize=0) m.x116 = Var(within=Reals,bounds=(0,None),initialize=0) m.x117 = Var(within=Reals,bounds=(0,None),initialize=0) m.x118 = Var(within=Reals,bounds=(0,None),initialize=0) m.x119 = Var(within=Reals,bounds=(0,None),initialize=0) m.x120 = Var(within=Reals,bounds=(0,None),initialize=0) m.x121 = Var(within=Reals,bounds=(0,None),initialize=0) m.x122 = Var(within=Reals,bounds=(0,None),initialize=0) m.x123 = Var(within=Reals,bounds=(0,None),initialize=0) m.x124 = Var(within=Reals,bounds=(0,None),initialize=0) m.x125 = Var(within=Reals,bounds=(0,None),initialize=0) m.x126 = Var(within=Reals,bounds=(0,None),initialize=0) m.x127 = Var(within=Reals,bounds=(0,None),initialize=0) m.x128 = Var(within=Reals,bounds=(0,None),initialize=0) m.x129 = Var(within=Reals,bounds=(0,None),initialize=0) m.x130 = Var(within=Reals,bounds=(0,None),initialize=0) m.x131 = Var(within=Reals,bounds=(0,None),initialize=0) m.x132 = Var(within=Reals,bounds=(0,None),initialize=0) m.x133 = Var(within=Reals,bounds=(0,None),initialize=0) m.x134 = Var(within=Reals,bounds=(0,None),initialize=0) m.x135 = Var(within=Reals,bounds=(0,None),initialize=0) m.x136 = Var(within=Reals,bounds=(0,None),initialize=0) m.x137 = Var(within=Reals,bounds=(0,None),initialize=0) m.x138 = Var(within=Reals,bounds=(0,None),initialize=0) m.x139 = Var(within=Reals,bounds=(0,None),initialize=0) m.x140 = Var(within=Reals,bounds=(0,None),initialize=0) m.x141 = Var(within=Reals,bounds=(0,None),initialize=0) m.x142 = Var(within=Reals,bounds=(0,None),initialize=0) m.x143 = Var(within=Reals,bounds=(0,None),initialize=0) m.x144 = Var(within=Reals,bounds=(0,None),initialize=0) m.x145 = Var(within=Reals,bounds=(0,None),initialize=0) m.x146 = Var(within=Reals,bounds=(0,None),initialize=0) m.x147 = Var(within=Reals,bounds=(0,None),initialize=0) m.x148 = Var(within=Reals,bounds=(0,None),initialize=0) m.x149 = Var(within=Reals,bounds=(0,None),initialize=0) m.x150 = Var(within=Reals,bounds=(0,None),initialize=0) m.x151 = Var(within=Reals,bounds=(0,None),initialize=0) m.x152 = Var(within=Reals,bounds=(0,None),initialize=0) m.x153 = Var(within=Reals,bounds=(0,None),initialize=0) m.x154 = Var(within=Reals,bounds=(0,None),initialize=0) m.x155 = Var(within=Reals,bounds=(0,None),initialize=0) m.x156 = Var(within=Reals,bounds=(0,None),initialize=0) m.x157 = Var(within=Reals,bounds=(0,None),initialize=0) m.x158 = Var(within=Reals,bounds=(0,None),initialize=0) m.x159 = Var(within=Reals,bounds=(0,None),initialize=0) m.x160 = Var(within=Reals,bounds=(0,None),initialize=0) m.x161 = Var(within=Reals,bounds=(0,None),initialize=0) m.x162 = Var(within=Reals,bounds=(0,None),initialize=0) m.x163 = Var(within=Reals,bounds=(0,None),initialize=0) m.x164 = Var(within=Reals,bounds=(0,None),initialize=0) m.x165 = Var(within=Reals,bounds=(0,None),initialize=0) m.x166 = Var(within=Reals,bounds=(0,None),initialize=0) m.x167 = Var(within=Reals,bounds=(0,None),initialize=0) m.x168 = Var(within=Reals,bounds=(0,None),initialize=0) m.x169 = Var(within=Reals,bounds=(0,None),initialize=0) m.x170 = Var(within=Reals,bounds=(0,None),initialize=0) m.x171 = Var(within=Reals,bounds=(0,None),initialize=0) m.x172 = Var(within=Reals,bounds=(0,None),initialize=0) m.x173 = Var(within=Reals,bounds=(0,None),initialize=0) m.x174 = Var(within=Reals,bounds=(0,None),initialize=0) m.x175 = Var(within=Reals,bounds=(0,None),initialize=0) m.x176 = Var(within=Reals,bounds=(0,None),initialize=0) m.x177 = Var(within=Reals,bounds=(0,None),initialize=0) m.x178 = Var(within=Reals,bounds=(0,None),initialize=0) m.x179 = Var(within=Reals,bounds=(0,None),initialize=0) m.x180 = Var(within=Reals,bounds=(0,None),initialize=0) m.x181 = Var(within=Reals,bounds=(0,None),initialize=0) m.x182 = Var(within=Reals,bounds=(0,None),initialize=0) m.x183 = Var(within=Reals,bounds=(0,None),initialize=0) m.x184 = Var(within=Reals,bounds=(0,None),initialize=0) m.x185 = Var(within=Reals,bounds=(0,None),initialize=0) m.x186 = Var(within=Reals,bounds=(0,None),initialize=0) m.x187 = Var(within=Reals,bounds=(0,None),initialize=0) m.x188 = Var(within=Reals,bounds=(0,None),initialize=0) m.x189 = Var(within=Reals,bounds=(0,None),initialize=0) m.x190 = Var(within=Reals,bounds=(0,None),initialize=0) m.x191 = Var(within=Reals,bounds=(0,None),initialize=0) m.x192 = Var(within=Reals,bounds=(0,None),initialize=0) m.x193 = Var(within=Reals,bounds=(0,None),initialize=0) m.x194 = Var(within=Reals,bounds=(0,None),initialize=0) m.x195 = Var(within=Reals,bounds=(0,None),initialize=0) m.x196 = Var(within=Reals,bounds=(0,None),initialize=0) m.x197 = Var(within=Reals,bounds=(0,None),initialize=0) m.x198 = Var(within=Reals,bounds=(0,None),initialize=0) m.x199 = Var(within=Reals,bounds=(0,None),initialize=0) m.x200 = Var(within=Reals,bounds=(0,None),initialize=0) m.x201 = Var(within=Reals,bounds=(0,None),initialize=0) m.x202 = Var(within=Reals,bounds=(0,None),initialize=0) m.x203 = Var(within=Reals,bounds=(0,None),initialize=0) m.x204 = Var(within=Reals,bounds=(0,None),initialize=0) m.x205 = Var(within=Reals,bounds=(0,None),initialize=0) m.x206 = Var(within=Reals,bounds=(0,None),initialize=0) m.x207 = Var(within=Reals,bounds=(0,None),initialize=0) m.x208 = Var(within=Reals,bounds=(0,None),initialize=0) m.x209 = Var(within=Reals,bounds=(0,None),initialize=0) m.x210 = Var(within=Reals,bounds=(0,None),initialize=0) m.x211 = Var(within=Reals,bounds=(0,None),initialize=0) m.x212 = Var(within=Reals,bounds=(0,None),initialize=0) m.x213 = Var(within=Reals,bounds=(0,None),initialize=0) m.x214 = Var(within=Reals,bounds=(0,None),initialize=0) m.x215 = Var(within=Reals,bounds=(0,None),initialize=0) m.x216 = Var(within=Reals,bounds=(0,None),initialize=0) m.x217 = Var(within=Reals,bounds=(0,None),initialize=0) m.x218 = Var(within=Reals,bounds=(0,None),initialize=0) m.x219 = Var(within=Reals,bounds=(0,None),initialize=0) m.x220 = Var(within=Reals,bounds=(0,None),initialize=0) m.x221 = Var(within=Reals,bounds=(0,None),initialize=0) m.x222 = Var(within=Reals,bounds=(0,None),initialize=0) m.x223 = Var(within=Reals,bounds=(0,None),initialize=0) m.x224 = Var(within=Reals,bounds=(0,None),initialize=0) m.x225 = Var(within=Reals,bounds=(0,None),initialize=0) m.x226 = Var(within=Reals,bounds=(0,None),initialize=0) m.x227 = Var(within=Reals,bounds=(0,None),initialize=0) m.x228 = Var(within=Reals,bounds=(0,None),initialize=0) m.x229 = Var(within=Reals,bounds=(0,None),initialize=0) m.x230 = Var(within=Reals,bounds=(0,None),initialize=0) m.x231 = Var(within=Reals,bounds=(0,None),initialize=0) m.x232 = Var(within=Reals,bounds=(0,None),initialize=0) m.x233 = Var(within=Reals,bounds=(0,None),initialize=0) m.x234 = Var(within=Reals,bounds=(0,None),initialize=0) m.x235 = Var(within=Reals,bounds=(0,None),initialize=0) m.x236 = Var(within=Reals,bounds=(0,None),initialize=0) m.x237 = Var(within=Reals,bounds=(0,None),initialize=0) m.x238 = Var(within=Reals,bounds=(0,None),initialize=0) m.x239 = Var(within=Reals,bounds=(0,None),initialize=0) m.x240 = Var(within=Reals,bounds=(0,None),initialize=0) m.x241 = Var(within=Reals,bounds=(0,None),initialize=0) m.x242 = Var(within=Reals,bounds=(0,None),initialize=0) m.x243 = Var(within=Reals,bounds=(0,None),initialize=0) m.x244 = Var(within=Reals,bounds=(0,None),initialize=0) m.x245 = Var(within=Reals,bounds=(0,None),initialize=0) m.x246 = Var(within=Reals,bounds=(0,None),initialize=0) m.x247 = Var(within=Reals,bounds=(0,None),initialize=0) m.x248 = Var(within=Reals,bounds=(0,None),initialize=0) m.x249 = Var(within=Reals,bounds=(0,None),initialize=0) m.x250 = Var(within=Reals,bounds=(0,None),initialize=0) m.x251 = Var(within=Reals,bounds=(0,None),initialize=0) m.x252 = Var(within=Reals,bounds=(0,None),initialize=0) m.x253 = Var(within=Reals,bounds=(0,None),initialize=0) m.x254 = Var(within=Reals,bounds=(0,None),initialize=0) m.x255 = Var(within=Reals,bounds=(0,None),initialize=0) m.x256 = Var(within=Reals,bounds=(0,None),initialize=0) m.x257 = Var(within=Reals,bounds=(0,None),initialize=0) m.x258 = Var(within=Reals,bounds=(0,None),initialize=0) m.x259 = Var(within=Reals,bounds=(0,None),initialize=0) m.x260 = Var(within=Reals,bounds=(0,None),initialize=0) m.x261 = Var(within=Reals,bounds=(0,None),initialize=0) m.x262 = Var(within=Reals,bounds=(0,None),initialize=0) m.x263 = Var(within=Reals,bounds=(0,None),initialize=0) m.x264 = Var(within=Reals,bounds=(0,None),initialize=0) m.x265 = Var(within=Reals,bounds=(0,None),initialize=0) m.x266 = Var(within=Reals,bounds=(0,None),initialize=0) m.x267 = Var(within=Reals,bounds=(0,None),initialize=0) m.x268 = Var(within=Reals,bounds=(0,None),initialize=0) m.x269 = Var(within=Reals,bounds=(0,None),initialize=0) m.x270 = Var(within=Reals,bounds=(0,None),initialize=0) m.x271 = Var(within=Reals,bounds=(0,None),initialize=0) m.x272 = Var(within=Reals,bounds=(0,None),initialize=0) m.x273 = Var(within=Reals,bounds=(0,None),initialize=0) m.x274 = Var(within=Reals,bounds=(0,None),initialize=0) m.x275 = Var(within=Reals,bounds=(0,None),initialize=0) m.x276 = Var(within=Reals,bounds=(0,None),initialize=0) m.x277 = Var(within=Reals,bounds=(0,None),initialize=0) m.x278 = Var(within=Reals,bounds=(0,None),initialize=0) m.x279 = Var(within=Reals,bounds=(0,None),initialize=0) m.x280 = Var(within=Reals,bounds=(0,None),initialize=0) m.x281 = Var(within=Reals,bounds=(0,None),initialize=0) m.x282 = Var(within=Reals,bounds=(0,None),initialize=0) m.x283 = Var(within=Reals,bounds=(0,None),initialize=0) m.x284 = Var(within=Reals,bounds=(0,None),initialize=0) m.x285 = Var(within=Reals,bounds=(0,None),initialize=0) m.x286 = Var(within=Reals,bounds=(0,None),initialize=0) m.x287 = Var(within=Reals,bounds=(0,None),initialize=0) m.x288 = Var(within=Reals,bounds=(0,None),initialize=0) m.x289 = Var(within=Reals,bounds=(0,None),initialize=0) m.x290 = Var(within=Reals,bounds=(0,None),initialize=0) m.x291 = Var(within=Reals,bounds=(0,None),initialize=0) m.x292 = Var(within=Reals,bounds=(0,None),initialize=0) m.x293 = Var(within=Reals,bounds=(0,None),initialize=0) m.x294 = Var(within=Reals,bounds=(0,None),initialize=0) m.x295 = Var(within=Reals,bounds=(0,None),initialize=0) m.x296 = Var(within=Reals,bounds=(0,None),initialize=0) m.x297 = Var(within=Reals,bounds=(0,None),initialize=0) m.x298 = Var(within=Reals,bounds=(0,None),initialize=0) m.x299 = Var(within=Reals,bounds=(0,None),initialize=0) m.x300 = Var(within=Reals,bounds=(0,None),initialize=0) m.x301 = Var(within=Reals,bounds=(0,None),initialize=0) m.x302 = Var(within=Reals,bounds=(0,None),initialize=0) m.x303 = Var(within=Reals,bounds=(0,None),initialize=0) m.x304 = Var(within=Reals,bounds=(0,None),initialize=0) m.x305 = Var(within=Reals,bounds=(0,None),initialize=0) m.x306 = Var(within=Reals,bounds=(0,None),initialize=0) m.x307 = Var(within=Reals,bounds=(0,None),initialize=0) m.x308 = Var(within=Reals,bounds=(0,None),initialize=0) m.x309 = Var(within=Reals,bounds=(0,None),initialize=0) m.x310 = Var(within=Reals,bounds=(0,None),initialize=0) m.x311 = Var(within=Reals,bounds=(0,None),initialize=0) m.x312 = Var(within=Reals,bounds=(0,None),initialize=0) m.x313 = Var(within=Reals,bounds=(0,None),initialize=0) m.x314 = Var(within=Reals,bounds=(0,None),initialize=0) m.x315 = Var(within=Reals,bounds=(0,None),initialize=0) m.x316 = Var(within=Reals,bounds=(0,None),initialize=0) m.x317 = Var(within=Reals,bounds=(0,None),initialize=0) m.x318 = Var(within=Reals,bounds=(0,None),initialize=0) m.x319 = Var(within=Reals,bounds=(0,None),initialize=0) m.x320 = Var(within=Reals,bounds=(0,None),initialize=0) m.x321 = Var(within=Reals,bounds=(0,None),initialize=0) m.x322 = Var(within=Reals,bounds=(0,None),initialize=0) m.x323 = Var(within=Reals,bounds=(0,None),initialize=0) m.x324 = Var(within=Reals,bounds=(0,None),initialize=0) m.x325 = Var(within=Reals,bounds=(0,None),initialize=0) m.x326 = Var(within=Reals,bounds=(0,None),initialize=0) m.x327 = Var(within=Reals,bounds=(0,None),initialize=0) m.x328 = Var(within=Reals,bounds=(0,None),initialize=0) m.x329 = Var(within=Reals,bounds=(0,None),initialize=0) m.x330 = Var(within=Reals,bounds=(0,None),initialize=0) m.x331 = Var(within=Reals,bounds=(0,None),initialize=0) m.x332 = Var(within=Reals,bounds=(0,None),initialize=0) m.x333 = Var(within=Reals,bounds=(0,None),initialize=0) m.x334 = Var(within=Reals,bounds=(0,None),initialize=0) m.x335 = Var(within=Reals,bounds=(0,None),initialize=0) m.x336 = Var(within=Reals,bounds=(0,None),initialize=0) m.x337 = Var(within=Reals,bounds=(0,None),initialize=0) m.x338 = Var(within=Reals,bounds=(0,None),initialize=0) m.x339 = Var(within=Reals,bounds=(0,None),initialize=0) m.x340 = Var(within=Reals,bounds=(0,None),initialize=0) m.x341 = Var(within=Reals,bounds=(0,None),initialize=0) m.x342 = Var(within=Reals,bounds=(0,None),initialize=0) m.x343 = Var(within=Reals,bounds=(0,None),initialize=0) m.x344 = Var(within=Reals,bounds=(0,None),initialize=0) m.x345 = Var(within=Reals,bounds=(0,None),initialize=0) m.x346 = Var(within=Reals,bounds=(0,None),initialize=0) m.x347 = Var(within=Reals,bounds=(0,None),initialize=0) m.x348 = Var(within=Reals,bounds=(0,None),initialize=0) m.x349 = Var(within=Reals,bounds=(0,None),initialize=0) m.x350 = Var(within=Reals,bounds=(0,None),initialize=0) m.x351 = Var(within=Reals,bounds=(0,None),initialize=0) m.x352 = Var(within=Reals,bounds=(0,None),initialize=0) m.x353 = Var(within=Reals,bounds=(0,None),initialize=0) m.x354 = Var(within=Reals,bounds=(0,None),initialize=0) m.x355 = Var(within=Reals,bounds=(0,None),initialize=0) m.x356 = Var(within=Reals,bounds=(0,None),initialize=0) m.x357 = Var(within=Reals,bounds=(0,None),initialize=0) m.x358 = Var(within=Reals,bounds=(0,None),initialize=0) m.x359 = Var(within=Reals,bounds=(0,None),initialize=0) m.x360 = Var(within=Reals,bounds=(0,None),initialize=0) m.x361 = Var(within=Reals,bounds=(0,None),initialize=0) m.x362 = Var(within=Reals,bounds=(0,None),initialize=0) m.x363 = Var(within=Reals,bounds=(0,None),initialize=0) m.x364 = Var(within=Reals,bounds=(0,None),initialize=0) m.x365 = Var(within=Reals,bounds=(0,None),initialize=0) m.x366 = Var(within=Reals,bounds=(0,None),initialize=0) m.x367 = Var(within=Reals,bounds=(0,None),initialize=0) m.x368 = Var(within=Reals,bounds=(0,None),initialize=0) m.x369 = Var(within=Reals,bounds=(0,None),initialize=0) m.x370 = Var(within=Reals,bounds=(0,None),initialize=0) m.x371 = Var(within=Reals,bounds=(0,None),initialize=0) m.x372 = Var(within=Reals,bounds=(0,None),initialize=0) m.x373 = Var(within=Reals,bounds=(0,None),initialize=0) m.x374 = Var(within=Reals,bounds=(0,None),initialize=0) m.x375 = Var(within=Reals,bounds=(0,None),initialize=0) m.x376 = Var(within=Reals,bounds=(0,None),initialize=0) m.x377 = Var(within=Reals,bounds=(0,None),initialize=0) m.x378 = Var(within=Reals,bounds=(0,None),initialize=0) m.x379 = Var(within=Reals,bounds=(0,None),initialize=0) m.x380 = Var(within=Reals,bounds=(0,None),initialize=0) m.x381 = Var(within=Reals,bounds=(0,None),initialize=0) m.x382 = Var(within=Reals,bounds=(0,None),initialize=0) m.x383 = Var(within=Reals,bounds=(0,None),initialize=0) m.x384 = Var(within=Reals,bounds=(0,None),initialize=0) m.x385 = Var(within=Reals,bounds=(0,None),initialize=0) m.x386 = Var(within=Reals,bounds=(0,None),initialize=0) m.x387 = Var(within=Reals,bounds=(0,None),initialize=0) m.x388 = Var(within=Reals,bounds=(0,None),initialize=0) m.x389 = Var(within=Reals,bounds=(0,None),initialize=0) m.x390 = Var(within=Reals,bounds=(0,None),initialize=0) m.x391 = Var(within=Reals,bounds=(0,None),initialize=0) m.x392 = Var(within=Reals,bounds=(0,None),initialize=0) m.x393 = Var(within=Reals,bounds=(0,None),initialize=0) m.x394 = Var(within=Reals,bounds=(0,None),initialize=0) m.x395 = Var(within=Reals,bounds=(0,None),initialize=0) m.x396 = Var(within=Reals,bounds=(0,None),initialize=0) m.x397 = Var(within=Reals,bounds=(0,None),initialize=0) m.x398 = Var(within=Reals,bounds=(0,None),initialize=0) m.x399 = Var(within=Reals,bounds=(0,None),initialize=0) m.x400 = Var(within=Reals,bounds=(0,None),initialize=0) m.x401 = Var(within=Reals,bounds=(0,None),initialize=0) m.x402 = Var(within=Reals,bounds=(0,None),initialize=0) m.x403 = Var(within=Reals,bounds=(0,None),initialize=0) m.x404 = Var(within=Reals,bounds=(0,None),initialize=0) m.x405 = Var(within=Reals,bounds=(0,None),initialize=0) m.x406 = Var(within=Reals,bounds=(0,None),initialize=0) m.x407 = Var(within=Reals,bounds=(0,None),initialize=0) m.x408 = Var(within=Reals,bounds=(0,None),initialize=0) m.x409 = Var(within=Reals,bounds=(0,None),initialize=0) m.x410 = Var(within=Reals,bounds=(0,None),initialize=0) m.x411 = Var(within=Reals,bounds=(0,None),initialize=0) m.x412 = Var(within=Reals,bounds=(0,None),initialize=0) m.x413 = Var(within=Reals,bounds=(0,None),initialize=0) m.x414 = Var(within=Reals,bounds=(0,None),initialize=0) m.x415 = Var(within=Reals,bounds=(0,None),initialize=0) m.x416 = Var(within=Reals,bounds=(0,None),initialize=0) m.x417 = Var(within=Reals,bounds=(0,None),initialize=0) m.x418 = Var(within=Reals,bounds=(0,None),initialize=0) m.x419 = Var(within=Reals,bounds=(0,None),initialize=0) m.x420 = Var(within=Reals,bounds=(0,None),initialize=0) m.x421 = Var(within=Reals,bounds=(0,None),initialize=0) m.x422 = Var(within=Reals,bounds=(0,None),initialize=0) m.x423 = Var(within=Reals,bounds=(0,None),initialize=0) m.x424 = Var(within=Reals,bounds=(0,None),initialize=0) m.x425 = Var(within=Reals,bounds=(0,None),initialize=0) m.x426 = Var(within=Reals,bounds=(0,None),initialize=0) m.x427 = Var(within=Reals,bounds=(0,None),initialize=0) m.x428 = Var(within=Reals,bounds=(0,None),initialize=0) m.x429 = Var(within=Reals,bounds=(0,None),initialize=0) m.x430 = Var(within=Reals,bounds=(0,None),initialize=0) m.x431 = Var(within=Reals,bounds=(0,None),initialize=0) m.x432 = Var(within=Reals,bounds=(0,None),initialize=0) m.x433 = Var(within=Reals,bounds=(0,None),initialize=0) m.x434 = Var(within=Reals,bounds=(0,None),initialize=0) m.x435 = Var(within=Reals,bounds=(0,None),initialize=0) m.x436 = Var(within=Reals,bounds=(0,None),initialize=0) m.x437 = Var(within=Reals,bounds=(0,None),initialize=0) m.x438 = Var(within=Reals,bounds=(0,None),initialize=0) m.x439 = Var(within=Reals,bounds=(0,None),initialize=0) m.x440 = Var(within=Reals,bounds=(0,None),initialize=0) m.x441 = Var(within=Reals,bounds=(0,None),initialize=0) m.x442 = Var(within=Reals,bounds=(0,None),initialize=0) m.x443 = Var(within=Reals,bounds=(0,None),initialize=0) m.x444 = Var(within=Reals,bounds=(0,None),initialize=0) m.x445 = Var(within=Reals,bounds=(0,None),initialize=0) m.x446 = Var(within=Reals,bounds=(0,None),initialize=0) m.x447 = Var(within=Reals,bounds=(0,None),initialize=0) m.x448 = Var(within=Reals,bounds=(0,None),initialize=0) m.x449 = Var(within=Reals,bounds=(0,None),initialize=0) m.x450 = Var(within=Reals,bounds=(0,None),initialize=0) m.x451 = Var(within=Reals,bounds=(0,None),initialize=0) m.x452 = Var(within=Reals,bounds=(0,None),initialize=0) m.x453 = Var(within=Reals,bounds=(0,None),initialize=0) m.x454 = Var(within=Reals,bounds=(0,None),initialize=0) m.x455 = Var(within=Reals,bounds=(0,None),initialize=0) m.x456 = Var(within=Reals,bounds=(0,None),initialize=0) m.x457 = Var(within=Reals,bounds=(0,None),initialize=0) m.x458 = Var(within=Reals,bounds=(0,None),initialize=0) m.x459 = Var(within=Reals,bounds=(0,None),initialize=0) m.x460 = Var(within=Reals,bounds=(0,None),initialize=0) m.x461 = Var(within=Reals,bounds=(0,None),initialize=0) m.x462 = Var(within=Reals,bounds=(0,None),initialize=0) m.x463 = Var(within=Reals,bounds=(0,None),initialize=0) m.x464 = Var(within=Reals,bounds=(0,None),initialize=0) m.x465 = Var(within=Reals,bounds=(0,None),initialize=0) m.x466 = Var(within=Reals,bounds=(0,None),initialize=0) m.x467 = Var(within=Reals,bounds=(0,None),initialize=0) m.x468 = Var(within=Reals,bounds=(0,None),initialize=0) m.x469 = Var(within=Reals,bounds=(0,None),initialize=0) m.x470 = Var(within=Reals,bounds=(0,None),initialize=0) m.x471 = Var(within=Reals,bounds=(0,None),initialize=0) m.x472 = Var(within=Reals,bounds=(0,None),initialize=0) m.x473 = Var(within=Reals,bounds=(0,None),initialize=0) m.x474 = Var(within=Reals,bounds=(0,None),initialize=0) m.x475 = Var(within=Reals,bounds=(0,None),initialize=0) m.x476 = Var(within=Reals,bounds=(0,None),initialize=0) m.x477 = Var(within=Reals,bounds=(0,None),initialize=0) m.x478 = Var(within=Reals,bounds=(0,None),initialize=0) m.x479 = Var(within=Reals,bounds=(0,None),initialize=0) m.x480 = Var(within=Reals,bounds=(0,None),initialize=0) m.x481 = Var(within=Reals,bounds=(0,None),initialize=0) m.x482 = Var(within=Reals,bounds=(0,None),initialize=0) m.x483 = Var(within=Reals,bounds=(0,None),initialize=0) m.x484 = Var(within=Reals,bounds=(0,None),initialize=0) m.x485 = Var(within=Reals,bounds=(0,None),initialize=0) m.x486 = Var(within=Reals,bounds=(0,None),initialize=0) m.x487 = Var(within=Reals,bounds=(0,None),initialize=0) m.x488 = Var(within=Reals,bounds=(0,None),initialize=0) m.x489 = Var(within=Reals,bounds=(0,None),initialize=0) m.x490 = Var(within=Reals,bounds=(0,None),initialize=0) m.x491 = Var(within=Reals,bounds=(0,None),initialize=0) m.x492 = Var(within=Reals,bounds=(0,None),initialize=0) m.x493 = Var(within=Reals,bounds=(0,None),initialize=0) m.x494 = Var(within=Reals,bounds=(0,None),initialize=0) m.x495 = Var(within=Reals,bounds=(0,None),initialize=0) m.x496 = Var(within=Reals,bounds=(0,None),initialize=0) m.x497 = Var(within=Reals,bounds=(0,None),initialize=0) m.x498 = Var(within=Reals,bounds=(0,None),initialize=0) m.x499 = Var(within=Reals,bounds=(0,None),initialize=0) m.x500 = Var(within=Reals,bounds=(0,None),initialize=0) m.x501 = Var(within=Reals,bounds=(0,None),initialize=0) m.x502 = Var(within=Reals,bounds=(0,None),initialize=0) m.x503 = Var(within=Reals,bounds=(0,None),initialize=0) m.x504 = Var(within=Reals,bounds=(0,None),initialize=0) m.x505 = Var(within=Reals,bounds=(0,None),initialize=0) m.x506 = Var(within=Reals,bounds=(0,None),initialize=0) m.x507 = Var(within=Reals,bounds=(0,None),initialize=0) m.x508 = Var(within=Reals,bounds=(0,None),initialize=0) m.x509 = Var(within=Reals,bounds=(0,None),initialize=0) m.x510 = Var(within=Reals,bounds=(0,None),initialize=0) m.x511 = Var(within=Reals,bounds=(0,None),initialize=0) m.x512 = Var(within=Reals,bounds=(0,None),initialize=0) m.x513 = Var(within=Reals,bounds=(0,None),initialize=0) m.x514 = Var(within=Reals,bounds=(0,None),initialize=0) m.x515 = Var(within=Reals,bounds=(0,None),initialize=0) m.x516 = Var(within=Reals,bounds=(0,None),initialize=0) m.x517 = Var(within=Reals,bounds=(0,None),initialize=0) m.x518 = Var(within=Reals,bounds=(0,None),initialize=0) m.x519 = Var(within=Reals,bounds=(0,None),initialize=0) m.x520 = Var(within=Reals,bounds=(0,None),initialize=0) m.x521 = Var(within=Reals,bounds=(0,None),initialize=0) m.x522 = Var(within=Reals,bounds=(0,None),initialize=0) m.x523 = Var(within=Reals,bounds=(0,None),initialize=0) m.x524 = Var(within=Reals,bounds=(0,None),initialize=0) m.x525 = Var(within=Reals,bounds=(0,None),initialize=0) m.x526 = Var(within=Reals,bounds=(0,None),initialize=0) m.x527 = Var(within=Reals,bounds=(0,None),initialize=0) m.x528 = Var(within=Reals,bounds=(0,None),initialize=0) m.x529 = Var(within=Reals,bounds=(0,None),initialize=0) m.x530 = Var(within=Reals,bounds=(0,None),initialize=0) m.x531 = Var(within=Reals,bounds=(0,None),initialize=0) m.x532 = Var(within=Reals,bounds=(0,None),initialize=0) m.x533 = Var(within=Reals,bounds=(0,None),initialize=0) m.x534 = Var(within=Reals,bounds=(0,None),initialize=0) m.x535 = Var(within=Reals,bounds=(0,None),initialize=0) m.x536 = Var(within=Reals,bounds=(0,None),initialize=0) m.x537 = Var(within=Reals,bounds=(0,None),initialize=0) m.x538 = Var(within=Reals,bounds=(0,None),initialize=0) m.x539 = Var(within=Reals,bounds=(0,None),initialize=0) m.x540 = Var(within=Reals,bounds=(0,None),initialize=0) m.x541 = Var(within=Reals,bounds=(0,None),initialize=0) m.x542 = Var(within=Reals,bounds=(0,None),initialize=0) m.x543 = Var(within=Reals,bounds=(0,None),initialize=0) m.x544 = Var(within=Reals,bounds=(0,None),initialize=0) m.x545 = Var(within=Reals,bounds=(0,None),initialize=0) m.x546 = Var(within=Reals,bounds=(0,None),initialize=0) m.b547 = Var(within=Binary,bounds=(0,1),initialize=0) m.b548 = Var(within=Binary,bounds=(0,1),initialize=0) m.b549 = Var(within=Binary,bounds=(0,1),initialize=0) m.b550 = Var(within=Binary,bounds=(0,1),initialize=0) m.b551 = Var(within=Binary,bounds=(0,1),initialize=0) m.b552 = Var(within=Binary,bounds=(0,1),initialize=0) m.b553 = Var(within=Binary,bounds=(0,1),initialize=0) m.b554 = Var(within=Binary,bounds=(0,1),initialize=0) m.b555 = Var(within=Binary,bounds=(0,1),initialize=0) m.b556 = Var(within=Binary,bounds=(0,1),initialize=0) m.b557 = Var(within=Binary,bounds=(0,1),initialize=0) m.b558 = Var(within=Binary,bounds=(0,1),initialize=0) m.b559 = Var(within=Binary,bounds=(0,1),initialize=0) m.b560 = Var(within=Binary,bounds=(0,1),initialize=0) m.b561 = Var(within=Binary,bounds=(0,1),initialize=0) m.b562 = Var(within=Binary,bounds=(0,1),initialize=0) m.b563 = Var(within=Binary,bounds=(0,1),initialize=0) m.b564 = Var(within=Binary,bounds=(0,1),initialize=0) m.b565 = Var(within=Binary,bounds=(0,1),initialize=0) m.b566 = Var(within=Binary,bounds=(0,1),initialize=0) m.b567 = Var(within=Binary,bounds=(0,1),initialize=0) m.b568 = Var(within=Binary,bounds=(0,1),initialize=0) m.b569 = Var(within=Binary,bounds=(0,1),initialize=0) m.b570 = Var(within=Binary,bounds=(0,1),initialize=0) m.b571 = Var(within=Binary,bounds=(0,1),initialize=0) m.b572 = Var(within=Binary,bounds=(0,1),initialize=0) m.b573 = Var(within=Binary,bounds=(0,1),initialize=0) m.b574 = Var(within=Binary,bounds=(0,1),initialize=0) m.b575 = Var(within=Binary,bounds=(0,1),initialize=0) m.b576 = Var(within=Binary,bounds=(0,1),initialize=0) m.b577 = Var(within=Binary,bounds=(0,1),initialize=0) m.b578 = Var(within=Binary,bounds=(0,1),initialize=0) m.b579 = Var(within=Binary,bounds=(0,1),initialize=0) m.b580 = Var(within=Binary,bounds=(0,1),initialize=0) m.b581 = Var(within=Binary,bounds=(0,1),initialize=0) m.b582 = Var(within=Binary,bounds=(0,1),initialize=0) m.b583 = Var(within=Binary,bounds=(0,1),initialize=0) m.b584 = Var(within=Binary,bounds=(0,1),initialize=0) m.b585 = Var(within=Binary,bounds=(0,1),initialize=0) m.b586 = Var(within=Binary,bounds=(0,1),initialize=0) m.b587 = Var(within=Binary,bounds=(0,1),initialize=0) m.b588 = Var(within=Binary,bounds=(0,1),initialize=0) m.x589 = Var(within=Reals,bounds=(0,None),initialize=0) m.x590 = Var(within=Reals,bounds=(0,None),initialize=0) m.x591 = Var(within=Reals,bounds=(0,None),initialize=0) m.x592 = Var(within=Reals,bounds=(0,None),initialize=0) m.x593 = Var(within=Reals,bounds=(0,None),initialize=0) m.x594 = Var(within=Reals,bounds=(0,None),initialize=0) m.x595 = Var(within=Reals,bounds=(0,None),initialize=0) m.x596 = Var(within=Reals,bounds=(0,None),initialize=0) m.x597 = Var(within=Reals,bounds=(0,None),initialize=0) m.x598 = Var(within=Reals,bounds=(0,None),initialize=0) m.x599 = Var(within=Reals,bounds=(0,None),initialize=0) m.x600 = Var(within=Reals,bounds=(0,None),initialize=0) m.x601 = Var(within=Reals,bounds=(0,None),initialize=0) m.x602 = Var(within=Reals,bounds=(0,None),initialize=0) m.x603 = Var(within=Reals,bounds=(0,None),initialize=0) m.x604 = Var(within=Reals,bounds=(0,None),initialize=0) m.x605 = Var(within=Reals,bounds=(0,None),initialize=0) m.x606 = Var(within=Reals,bounds=(0,None),initialize=0) m.x607 = Var(within=Reals,bounds=(0,None),initialize=0) m.x608 = Var(within=Reals,bounds=(0,None),initialize=0) m.x609 = Var(within=Reals,bounds=(0,None),initialize=0) m.x610 = Var(within=Reals,bounds=(0,None),initialize=0) m.x611 = Var(within=Reals,bounds=(0,None),initialize=0) m.x612 = Var(within=Reals,bounds=(0,None),initialize=0) m.x613 = Var(within=Reals,bounds=(0,None),initialize=0) m.x614 = Var(within=Reals,bounds=(0,None),initialize=0) m.x615 = Var(within=Reals,bounds=(0,None),initialize=0) m.x616 = Var(within=Reals,bounds=(0,None),initialize=0) m.x617 = Var(within=Reals,bounds=(0,None),initialize=0) m.x618 = Var(within=Reals,bounds=(0,None),initialize=0) m.x619 = Var(within=Reals,bounds=(0,None),initialize=0) m.x620 = Var(within=Reals,bounds=(0,None),initialize=0) m.x621 = Var(within=Reals,bounds=(0,None),initialize=0) m.x622 = Var(within=Reals,bounds=(0,None),initialize=0) m.x623 = Var(within=Reals,bounds=(0,None),initialize=0) m.x624 = Var(within=Reals,bounds=(0,None),initialize=0) m.x625 = Var(within=Reals,bounds=(0,None),initialize=0) m.x626 = Var(within=Reals,bounds=(0,None),initialize=0) m.x627 = Var(within=Reals,bounds=(0,None),initialize=0) m.x628 = Var(within=Reals,bounds=(0,None),initialize=0) m.x629 = Var(within=Reals,bounds=(0,None),initialize=0) m.x630 = Var(within=Reals,bounds=(0,None),initialize=0) m.x632 = Var(within=Reals,bounds=(0,None),initialize=0) m.x633 = Var(within=Reals,bounds=(0,None),initialize=0) m.x634 = Var(within=Reals,bounds=(0,None),initialize=0) m.x635 = Var(within=Reals,bounds=(0,None),initialize=0) m.x636 = Var(within=Reals,bounds=(0,None),initialize=0) m.x637 = Var(within=Reals,bounds=(0,None),initialize=0) m.x638 = Var(within=Reals,bounds=(0,None),initialize=0) m.x639 = Var(within=Reals,bounds=(0,None),initialize=0) m.x640 = Var(within=Reals,bounds=(0,None),initialize=0) m.x641 = Var(within=Reals,bounds=(0,None),initialize=0) m.x642 = Var(within=Reals,bounds=(0,None),initialize=0) m.x643 = Var(within=Reals,bounds=(0,None),initialize=0) m.x644 = Var(within=Reals,bounds=(0,None),initialize=0) m.x645 = Var(within=Reals,bounds=(0,None),initialize=0) m.x646 = Var(within=Reals,bounds=(0,None),initialize=0) m.x647 = Var(within=Reals,bounds=(0,None),initialize=0) m.x648 = Var(within=Reals,bounds=(0,None),initialize=0) m.x649 = Var(within=Reals,bounds=(0,None),initialize=0) m.x650 = Var(within=Reals,bounds=(0,None),initialize=0) m.x651 = Var(within=Reals,bounds=(0,None),initialize=0) m.x652 = Var(within=Reals,bounds=(0,None),initialize=0) m.x653 = Var(within=Reals,bounds=(0,None),initialize=0) m.x654 = Var(within=Reals,bounds=(0,None),initialize=0) m.x655 = Var(within=Reals,bounds=(0,None),initialize=0) m.x656 = Var(within=Reals,bounds=(0,None),initialize=0) m.x657 = Var(within=Reals,bounds=(0,None),initialize=0) m.x658 = Var(within=Reals,bounds=(0,None),initialize=0) m.x659 = Var(within=Reals,bounds=(0,None),initialize=0) m.x660 = Var(within=Reals,bounds=(0,None),initialize=0) m.x661 = Var(within=Reals,bounds=(0,None),initialize=0) m.x662 = Var(within=Reals,bounds=(0,None),initialize=0) m.x663 = Var(within=Reals,bounds=(0,None),initialize=0) m.x664 = Var(within=Reals,bounds=(0,None),initialize=0) m.x665 = Var(within=Reals,bounds=(0,None),initialize=0) m.x666 = Var(within=Reals,bounds=(0,None),initialize=0) m.x667 = Var(within=Reals,bounds=(0,None),initialize=0) m.x668 = Var(within=Reals,bounds=(0,None),initialize=0) m.x669 = Var(within=Reals,bounds=(0,None),initialize=0) m.x670 = Var(within=Reals,bounds=(0,None),initialize=0) m.x671 = Var(within=Reals,bounds=(0,None),initialize=0) m.x672 = Var(within=Reals,bounds=(0,None),initialize=0) m.x673 = Var(within=Reals,bounds=(0,None),initialize=0) m.obj = Objective(expr= 1.090016011*m.b547 + 3.10674202*m.b548 + 2.475702586*m.b549 + 1.966733944*m.b550 + 1.090016011*m.b551 + 2.019536713*m.b552 + 3.10674202*m.b553 + 1.383540955*m.b554 + 2.087059045*m.b555 + 3.720443668*m.b556 + 1.383540955*m.b557 + 1.794144217*m.b558 + 3.50653318*m.b559 + 1.71812596*m.b560 + 3.834780538*m.b561 + 2.087059045*m.b562 + 1.794144217*m.b563 + 2.239621249*m.b564 + 2.475702586*m.b565 + 2.019536713*m.b566 + 3.720443668*m.b567 + 3.50653318*m.b568 + 2.239621249*m.b569 + 1.098732406*m.b570 + 1.742557876*m.b571 + 1.098732406*m.b572 + 3.606882982*m.b573 + 1.71812596*m.b574 + 2.074958698*m.b575 + 1.966733944*m.b576 + 2.074958698*m.b577 + 3.859970515*m.b578 + 1.742557876*m.b579 + 3.859970515*m.b580 + 3.951460459*m.b581 + 3.834780538*m.b582 + 3.606882982*m.b583 + 2.524064089*m.b584 + 2.524064089*m.b585 + 3.982701487*m.b586 + 3.951460459*m.b587 + 3.982701487*m.b588, sense=minimize) m.c2 = Constraint(expr= - m.x1 - m.x14 - m.x27 - m.x40 + m.x53 + m.x79 + m.x235 + m.x378 == -148) m.c3 = Constraint(expr= - m.x2 - m.x15 - m.x28 - m.x41 + m.x54 + m.x80 + m.x236 + m.x379 == 12) m.c4 = Constraint(expr= - m.x3 - m.x16 - m.x29 - m.x42 + m.x55 + m.x81 + m.x237 + m.x380 == 16) m.c5 = Constraint(expr= - m.x4 - m.x17 - m.x30 - m.x43 + m.x56 + m.x82 + m.x238 + m.x381 == 21) m.c6 = Constraint(expr= - m.x5 - m.x18 - m.x31 - m.x44 + m.x57 + m.x83 + m.x239 + m.x382 == 11) m.c7 = Constraint(expr= - m.x6 - m.x19 - m.x32 - m.x45 + m.x58 + m.x84 + m.x240 + m.x383 == 24) m.c8 = Constraint(expr= - m.x7 - m.x20 - m.x33 - m.x46 + m.x59 + m.x85 + m.x241 + m.x384 == 24) m.c9 = Constraint(expr= - m.x8 - m.x21 - m.x34 - m.x47 + m.x60 + m.x86 + m.x242 + m.x385 == 8) m.c10 = Constraint(expr= - m.x9 - m.x22 - m.x35 - m.x48 + m.x61 + m.x87 + m.x243 + m.x386 == 10) m.c11 = Constraint(expr= - m.x10 - m.x23 - m.x36 - m.x49 + m.x62 + m.x88 + m.x244 + m.x387 == 18) m.c12 = Constraint(expr= - m.x11 - m.x24 - m.x37 - m.x50 + m.x63 + m.x89 + m.x245 + m.x388 == 11) m.c13 = Constraint(expr= - m.x12 - m.x25 - m.x38 - m.x51 + m.x64 + m.x90 + m.x246 + m.x389 == 20) m.c14 = Constraint(expr= - m.x13 - m.x26 - m.x39 - m.x52 + m.x65 + m.x91 + m.x247 + m.x390 == 7) m.c15 = Constraint(expr= m.x1 - m.x53 - m.x66 + m.x248 == 7) m.c16 = Constraint(expr= m.x2 - m.x54 - m.x67 + m.x249 == -175) m.c17 = Constraint(expr= m.x3 - m.x55 - m.x68 + m.x250 == 15) m.c18 = Constraint(expr= m.x4 - m.x56 - m.x69 + m.x251 == 17) m.c19 = Constraint(expr= m.x5 - m.x57 - m.x70 + m.x252 == 20) m.c20 = Constraint(expr= m.x6 - m.x58 - m.x71 + m.x253 == 24) m.c21 = Constraint(expr= m.x7 - m.x59 - m.x72 + m.x254 == 6) m.c22 = Constraint(expr= m.x8 - m.x60 - m.x73 + m.x255 == 19) m.c23 = Constraint(expr= m.x9 - m.x61 - m.x74 + m.x256 == 24) m.c24 = Constraint(expr= m.x10 - m.x62 - m.x75 + m.x257 == 11) m.c25 = Constraint(expr= m.x11 - m.x63 - m.x76 + m.x258 == 15) m.c26 = Constraint(expr= m.x12 - m.x64 - m.x77 + m.x259 == 9) m.c27 = Constraint(expr= m.x13 - m.x65 - m.x78 + m.x260 == 19) m.c28 = Constraint(expr= m.x14 - m.x79 - m.x92 - m.x105 - m.x118 + m.x131 + m.x196 + m.x261 == 15) m.c29 = Constraint(expr= m.x15 - m.x80 - m.x93 - m.x106 - m.x119 + m.x132 + m.x197 + m.x262 == 13) m.c30 = Constraint(expr= m.x16 - m.x81 - m.x94 - m.x107 - m.x120 + m.x133 + m.x198 + m.x263 == -231) m.c31 = Constraint(expr= m.x17 - m.x82 - m.x95 - m.x108 - m.x121 + m.x134 + m.x199 + m.x264 == 23) m.c32 = Constraint(expr= m.x18 - m.x83 - m.x96 - m.x109 - m.x122 + m.x135 + m.x200 + m.x265 == 18) m.c33 = Constraint(expr= m.x19 - m.x84 - m.x97 - m.x110 - m.x123 + m.x136 + m.x201 + m.x266 == 19) m.c34 = Constraint(expr= m.x20 - m.x85 - m.x98 - m.x111 - m.x124 + m.x137 + m.x202 + m.x267 == 9) m.c35 = Constraint(expr= m.x21 - m.x86 - m.x99 - m.x112 - m.x125 + m.x138 + m.x203 + m.x268 == 8) m.c36 = Constraint(expr= m.x22 - m.x87 - m.x100 - m.x113 - m.x126 + m.x139 + m.x204 + m.x269 == 16) m.c37 = Constraint(expr= m.x23 - m.x88 - m.x101 - m.x114 - m.x127 + m.x140 + m.x205 + m.x270 == 19) m.c38 = Constraint(expr= m.x24 - m.x89 - m.x102 - m.x115 - m.x128 + m.x141 + m.x206 + m.x271 == 19) m.c39 = Constraint(expr= m.x25 - m.x90 - m.x103 - m.x116 - m.x129 + m.x142 + m.x207 + m.x272 == 21) m.c40 = Constraint(expr= m.x26 - m.x91 - m.x104 - m.x117 - m.x130 + m.x143 + m.x208 + m.x273 == 8) m.c41 = Constraint(expr= m.x92 - m.x131 - m.x144 - m.x157 - m.x170 - m.x183 + m.x209 + m.x274 + m.x352 + m.x456 == 12) m.c42 = Constraint(expr= m.x93 - m.x132 - m.x145 - m.x158 - m.x171 - m.x184 + m.x210 + m.x275 + m.x353 + m.x457 == 20) m.c43 = Constraint(expr= m.x94 - m.x133 - m.x146 - m.x159 - m.x172 - m.x185 + m.x211 + m.x276 + m.x354 + m.x458 == 23) m.c44 = Constraint(expr= m.x95 - m.x134 - m.x147 - m.x160 - m.x173 - m.x186 + m.x212 + m.x277 + m.x355 + m.x459 == -187) m.c45 = Constraint(expr= m.x96 - m.x135 - m.x148 - m.x161 - m.x174 - m.x187 + m.x213 + m.x278 + m.x356 + m.x460 == 21) m.c46 = Constraint(expr= m.x97 - m.x136 - m.x149 - m.x162 - m.x175 - m.x188 + m.x214 + m.x279 + m.x357 + m.x461 == 12) m.c47 = Constraint(expr= m.x98 - m.x137 - m.x150 - m.x163 - m.x176 - m.x189 + m.x215 + m.x280 + m.x358 + m.x462 == 6) m.c48 = Constraint(expr= m.x99 - m.x138 - m.x151 - m.x164 - m.x177 - m.x190 + m.x216 + m.x281 + m.x359 + m.x463 == 11) m.c49 = Constraint(expr= m.x100 - m.x139 - m.x152 - m.x165 - m.x178 - m.x191 + m.x217 + m.x282 + m.x360 + m.x464 == 19) m.c50 = Constraint(expr= m.x101 - m.x140 - m.x153 - m.x166 - m.x179 - m.x192 + m.x218 + m.x283 + m.x361 + m.x465 == 9) m.c51 = Constraint(expr= m.x102 - m.x141 - m.x154 - m.x167 - m.x180 - m.x193 + m.x219 + m.x284 + m.x362 + m.x466 == 17) m.c52 = Constraint(expr= m.x103 - m.x142 - m.x155 - m.x168 - m.x181 - m.x194 + m.x220 + m.x285 + m.x363 + m.x467 == 23) m.c53 = Constraint(expr= m.x104 - m.x143 - m.x156 - m.x169 - m.x182 - m.x195 + m.x221 + m.x286 + m.x364 + m.x468 == 21) m.c54 = Constraint(expr= m.x105 + m.x144 - m.x196 - m.x209 - m.x222 + m.x287 == 14) m.c55 = Constraint(expr= m.x106 + m.x145 - m.x197 - m.x210 - m.x223 + m.x288 == 7) m.c56 = Constraint(expr= m.x107 + m.x146 - m.x198 - m.x211 - m.x224 + m.x289 == 22) m.c57 = Constraint(expr= m.x108 + m.x147 - m.x199 - m.x212 - m.x225 + m.x290 == 14) m.c58 = Constraint(expr= m.x109 + m.x148 - m.x200 - m.x213 - m.x226 + m.x291 == -170) m.c59 = Constraint(expr= m.x110 + m.x149 - m.x201 - m.x214 - m.x227 + m.x292 == 12) m.c60 = Constraint(expr= m.x111 + m.x150 - m.x202 - m.x215 - m.x228 + m.x293 == 13) m.c61 = Constraint(expr= m.x112 + m.x151 - m.x203 - m.x216 - m.x229 + m.x294 == 10) m.c62 = Constraint(expr= m.x113 + m.x152 - m.x204 - m.x217 - m.x230 + m.x295 == 15) m.c63 = Constraint(expr= m.x114 + m.x153 - m.x205 - m.x218 - m.x231 + m.x296 == 9) m.c64 = Constraint(expr= m.x115 + m.x154 - m.x206 - m.x219 - m.x232 + m.x297 == 14) m.c65 = Constraint(expr= m.x116 + m.x155 - m.x207 - m.x220 - m.x233 + m.x298 == 16) m.c66 = Constraint(expr= m.x117 + m.x156 - m.x208 - m.x221 - m.x234 + m.x299 == 8) m.c67 = Constraint(expr= m.x27 + m.x66 + m.x118 + m.x157 + m.x222 - m.x235 - m.x248 - m.x261 - m.x274 - m.x287 - m.x300 - m.x313 + m.x326 + m.x417 == 13) m.c68 = Constraint(expr= m.x28 + m.x67 + m.x119 + m.x158 + m.x223 - m.x236 - m.x249 - m.x262 - m.x275 - m.x288 - m.x301 - m.x314 + m.x327 + m.x418 == 22) m.c69 = Constraint(expr= m.x29 + m.x68 + m.x120 + m.x159 + m.x224 - m.x237 - m.x250 - m.x263 - m.x276 - m.x289 - m.x302 - m.x315 + m.x328 + m.x419 == 23) m.c70 = Constraint(expr= m.x30 + m.x69 + m.x121 + m.x160 + m.x225 - m.x238 - m.x251 - m.x264 - m.x277 - m.x290 - m.x303 - m.x316 + m.x329 + m.x420 == 7) m.c71 = Constraint(expr= m.x31 + m.x70 + m.x122 + m.x161 + m.x226 - m.x239 - m.x252 - m.x265 - m.x278 - m.x291 - m.x304 - m.x317 + m.x330 + m.x421 == 16) m.c72 = Constraint(expr= m.x32 + m.x71 + m.x123 + m.x162 + m.x227 - m.x240 - m.x253 - m.x266 - m.x279 - m.x292 - m.x305 - m.x318 + m.x331 + m.x422 == -169) m.c73 = Constraint(expr= m.x33 + m.x72 + m.x124 + m.x163 + m.x228 - m.x241 - m.x254 - m.x267 - m.x280 - m.x293 - m.x306 - m.x319 + m.x332 + m.x423 == 20) m.c74 = Constraint(expr= m.x34 + m.x73 + m.x125 + m.x164 + m.x229 - m.x242 - m.x255 - m.x268 - m.x281 - m.x294 - m.x307 - m.x320 + m.x333 + m.x424 == 14) m.c75 = Constraint(expr= m.x35 + m.x74 + m.x126 + m.x165 + m.x230 - m.x243 - m.x256 - m.x269 - m.x282 - m.x295 - m.x308 - m.x321 + m.x334 + m.x425 == 11) m.c76 = Constraint(expr= m.x36 + m.x75 + m.x127 + m.x166 + m.x231 - m.x244 - m.x257 - m.x270 - m.x283 - m.x296 - m.x309 - m.x322 + m.x335 + m.x426 == 13) m.c77 = Constraint(expr= m.x37 + m.x76 + m.x128 + m.x167 + m.x232 - m.x245 - m.x258 - m.x271 - m.x284 - m.x297 - m.x310 - m.x323 + m.x336 + m.x427 == 10) m.c78 = Constraint(expr= m.x38 + m.x77 + m.x129 + m.x168 + m.x233 - m.x246 - m.x259 - m.x272 - m.x285 - m.x298 - m.x311 - m.x324 + m.x337 + m.x428 == 13) m.c79 = Constraint(expr= m.x39 + m.x78 + m.x130 + m.x169 + m.x234 - m.x247 - m.x260 - m.x273 - m.x286 - m.x299 - m.x312 - m.x325 + m.x338 + m.x429 == 12) m.c80 = Constraint(expr= m.x300 - m.x326 - m.x339 + m.x469 == 6) m.c81 = Constraint(expr= m.x301 - m.x327 - m.x340 + m.x470 == 16) m.c82 = Constraint(expr= m.x302 - m.x328 - m.x341 + m.x471 == 22) m.c83 = Constraint(expr= m.x303 - m.x329 - m.x342 + m.x472 == 9) m.c84 = Constraint(expr= m.x304 - m.x330 - m.x343 + m.x473 == 13) m.c85 = Constraint(expr= m.x305 - m.x331 - m.x344 + m.x474 == 7) m.c86 = Constraint(expr= m.x306 - m.x332 - m.x345 + m.x475 == -156) m.c87 = Constraint(expr= m.x307 - m.x333 - m.x346 + m.x476 == 20) m.c88 = Constraint(expr= m.x308 - m.x334 - m.x347 + m.x477 == 19) m.c89 = Constraint(expr= m.x309 - m.x335 - m.x348 + m.x478 == 24) m.c90 = Constraint(expr= m.x310 - m.x336 - m.x349 + m.x479 == 8) m.c91 = Constraint(expr= m.x311 - m.x337 - m.x350 + m.x480 == 21) m.c92 = Constraint(expr= m.x312 - m.x338 - m.x351 + m.x481 == 6) m.c93 = Constraint(expr= m.x170 - m.x352 - m.x365 + m.x391 == 15) m.c94 = Constraint(expr= m.x171 - m.x353 - m.x366 + m.x392 == 15) m.c95 = Constraint(expr= m.x172 - m.x354 - m.x367 + m.x393 == 23) m.c96 = Constraint(expr= m.x173 - m.x355 - m.x368 + m.x394 == 25) m.c97 = Constraint(expr= m.x174 - m.x356 - m.x369 + m.x395 == 20) m.c98 = Constraint(expr= m.x175 - m.x357 - m.x370 + m.x396 == 7) m.c99 = Constraint(expr= m.x176 - m.x358 - m.x371 + m.x397 == 19) m.c100 = Constraint(expr= m.x177 - m.x359 - m.x372 + m.x398 == -177) m.c101 = Constraint(expr= m.x178 - m.x360 - m.x373 + m.x399 == 7) m.c102 = Constraint(expr= m.x179 - m.x361 - m.x374 + m.x400 == 18) m.c103 = Constraint(expr= m.x180 - m.x362 - m.x375 + m.x401 == 25) m.c104 = Constraint(expr= m.x181 - m.x363 - m.x376 + m.x402 == 20) m.c105 = Constraint(expr= m.x182 - m.x364 - m.x377 + m.x403 == 18) m.c106 = Constraint(expr= m.x40 + m.x365 - m.x378 - m.x391 - m.x404 + m.x430 == 8) m.c107 = Constraint(expr= m.x41 + m.x366 - m.x379 - m.x392 - m.x405 + m.x431 == 11) m.c108 = Constraint(expr= m.x42 + m.x367 - m.x380 - m.x393 - m.x406 + m.x432 == 23) m.c109 = Constraint(expr= m.x43 + m.x368 - m.x381 - m.x394 - m.x407 + m.x433 == 7) m.c110 = Constraint(expr= m.x44 + m.x369 - m.x382 - m.x395 - m.x408 + m.x434 == 5) m.c111 = Constraint(expr= m.x45 + m.x370 - m.x383 - m.x396 - m.x409 + m.x435 == 15) m.c112 = Constraint(expr= m.x46 + m.x371 - m.x384 - m.x397 - m.x410 + m.x436 == 7) m.c113 = Constraint(expr= m.x47 + m.x372 - m.x385 - m.x398 - m.x411 + m.x437 == 10) m.c114 = Constraint(expr= m.x48 + m.x373 - m.x386 - m.x399 - m.x412 + m.x438 == -179) m.c115 = Constraint(expr= m.x49 + m.x374 - m.x387 - m.x400 - m.x413 + m.x439 == 20) m.c116 = Constraint(expr= m.x50 + m.x375 - m.x388 - m.x401 - m.x414 + m.x440 == 18) m.c117 = Constraint(expr= m.x51 + m.x376 - m.x389 - m.x402 - m.x415 + m.x441 == 8) m.c118 = Constraint(expr= m.x52 + m.x377 - m.x390 - m.x403 - m.x416 + m.x442 == 12) m.c119 = Constraint(expr= m.x313 + m.x404 - m.x417 - m.x430 - m.x443 + m.x521 == 9) m.c120 = Constraint(expr= m.x314 + m.x405 - m.x418 - m.x431 - m.x444 + m.x522 == 12) m.c121 = Constraint(expr= m.x315 + m.x406 - m.x419 - m.x432 - m.x445 + m.x523 == 24) m.c122 = Constraint(expr= m.x316 + m.x407 - m.x420 - m.x433 - m.x446 + m.x524 == 21) m.c123 = Constraint(expr= m.x317 + m.x408 - m.x421 - m.x434 - m.x447 + m.x525 == 8) m.c124 = Constraint(expr= m.x318 + m.x409 - m.x422 - m.x435 - m.x448 + m.x526 == 9) m.c125 = Constraint(expr= m.x319 + m.x410 - m.x423 - m.x436 - m.x449 + m.x527 == 11) m.c126 = Constraint(expr= m.x320 + m.x411 - m.x424 - m.x437 - m.x450 + m.x528 == 13) m.c127 = Constraint(expr= m.x321 + m.x412 - m.x425 - m.x438 - m.x451 + m.x529 == 11) m.c128 = Constraint(expr= m.x322 + m.x413 - m.x426 - m.x439 - m.x452 + m.x530 == -183) m.c129 = Constraint(expr= m.x323 + m.x414 - m.x427 - m.x440 - m.x453 + m.x531 == 16) m.c130 = Constraint(expr= m.x324 + m.x415 - m.x428 - m.x441 - m.x454 + m.x532 == 14) m.c131 = Constraint(expr= m.x325 + m.x416 - m.x429 - m.x442 - m.x455 + m.x533 == 17) m.c132 = Constraint(expr= m.x183 + m.x339 - m.x456 - m.x469 - m.x482 + m.x495 == 22) m.c133 = Constraint(expr= m.x184 + m.x340 - m.x457 - m.x470 - m.x483 + m.x496 == 12) m.c134 = Constraint(expr= m.x185 + m.x341 - m.x458 - m.x471 - m.x484 + m.x497 == 7) m.c135 = Constraint(expr= m.x186 + m.x342 - m.x459 - m.x472 - m.x485 + m.x498 == 12) m.c136 = Constraint(expr= m.x187 + m.x343 - m.x460 - m.x473 - m.x486 + m.x499 == 12) m.c137 = Constraint(expr= m.x188 + m.x344 - m.x461 - m.x474 - m.x487 + m.x500 == 10) m.c138 = Constraint(expr= m.x189 + m.x345 - m.x462 - m.x475 - m.x488 + m.x501 == 11) m.c139 = Constraint(expr= m.x190 + m.x346 - m.x463 - m.x476 - m.x489 + m.x502 == 17) m.c140 = Constraint(expr= m.x191 + m.x347 - m.x464 - m.x477 - m.x490 + m.x503 == 17) m.c141 = Constraint(expr= m.x192 + m.x348 - m.x465 - m.x478 - m.x491 + m.x504 == 12) m.c142 = Constraint(expr= m.x193 + m.x349 - m.x466 - m.x479 - m.x492 + m.x505 == -185) m.c143 = Constraint(expr= m.x194 + m.x350 - m.x467 - m.x480 - m.x493 + m.x506 == 10) m.c144 = Constraint(expr= m.x195 + m.x351 - m.x468 - m.x481 - m.x494 + m.x507 == 21) m.c145 = Constraint(expr= m.x482 - m.x495 - m.x508 + m.x534 == 8) m.c146 = Constraint(expr= m.x483 - m.x496 - m.x509 + m.x535 == 20) m.c147 = Constraint(expr= m.x484 - m.x497 - m.x510 + m.x536 == 23) m.c148 = Constraint(expr= m.x485 - m.x498 - m.x511 + m.x537 == 18) m.c149 = Constraint(expr= m.x486 - m.x499 - m.x512 + m.x538 == 15) m.c150 = Constraint(expr= m.x487 - m.x500 - m.x513 + m.x539 == 22) m.c151 = Constraint(expr= m.x488 - m.x501 - m.x514 + m.x540 == 17) m.c152 = Constraint(expr= m.x489 - m.x502 - m.x515 + m.x541 == 24) m.c153 = Constraint(expr= m.x490 - m.x503 - m.x516 + m.x542 == 7) m.c154 = Constraint(expr= m.x491 - m.x504 - m.x517 + m.x543 == 16) m.c155 = Constraint(expr= m.x492 - m.x505 - m.x518 + m.x544 == 24) m.c156 = Constraint(expr= m.x493 - m.x506 - m.x519 + m.x545 == -200) m.c157 = Constraint(expr= m.x494 - m.x507 - m.x520 + m.x546 == 8) m.c158 = Constraint(expr= m.x443 + m.x508 - m.x521 - m.x534 == 19) m.c159 = Constraint(expr= m.x444 + m.x509 - m.x522 - m.x535 == 15) m.c160 = Constraint(expr= m.x445 + m.x510 - m.x523 - m.x536 == 10) m.c161 = Constraint(expr= m.x446 + m.x511 - m.x524 - m.x537 == 13) m.c162 = Constraint(expr= m.x447 + m.x512 - m.x525 - m.x538 == 11) m.c163 = Constraint(expr= m.x448 + m.x513 - m.x526 - m.x539 == 8) m.c164 = Constraint(expr= m.x449 + m.x514 - m.x527 - m.x540 == 13) m.c165 = Constraint(expr= m.x450 + m.x515 - m.x528 - m.x541 == 23) m.c166 = Constraint(expr= m.x451 + m.x516 - m.x529 - m.x542 == 23) m.c167 = Constraint(expr= m.x452 + m.x517 - m.x530 - m.x543 == 14) m.c168 = Constraint(expr= m.x453 + m.x518 - m.x531 - m.x544 == 8) m.c169 = Constraint(expr= m.x454 + m.x519 - m.x532 - m.x545 == 25) m.c170 = Constraint(expr= m.x455 + m.x520 - m.x533 - m.x546 == -157) m.c171 = Constraint(expr= - m.x1 - m.x2 - m.x3 - m.x4 - m.x5 - m.x6 - m.x7 - m.x8 - m.x9 - m.x10 - m.x11 - m.x12 - m.x13 + m.x632 >= 0) m.c172 = Constraint(expr= - m.x14 - m.x15 - m.x16 - m.x17 - m.x18 - m.x19 - m.x20 - m.x21 - m.x22 - m.x23 - m.x24 - m.x25 - m.x26 + m.x633 >= 0) m.c173 = Constraint(expr= - m.x27 - m.x28 - m.x29 - m.x30 - m.x31 - m.x32 - m.x33 - m.x34 - m.x35 - m.x36 - m.x37 - m.x38 - m.x39 + m.x634 >= 0) m.c174 = Constraint(expr= - m.x40 - m.x41 - m.x42 - m.x43 - m.x44 - m.x45 - m.x46 - m.x47 - m.x48 - m.x49 - m.x50 - m.x51 - m.x52 + m.x635 >= 0) m.c175 = Constraint(expr= - m.x53 - m.x54 - m.x55 - m.x56 - m.x57 - m.x58 - m.x59 - m.x60 - m.x61 - m.x62 - m.x63 - m.x64 - m.x65 + m.x636 >= 0) m.c176 = Constraint(expr= - m.x66 - m.x67 - m.x68 - m.x69 - m.x70 - m.x71 - m.x72 - m.x73 - m.x74 - m.x75 - m.x76 - m.x77 - m.x78 + m.x637 >= 0) m.c177 = Constraint(expr= - m.x79 - m.x80 - m.x81 - m.x82 - m.x83 - m.x84 - m.x85 - m.x86 - m.x87 - m.x88 - m.x89 - m.x90 - m.x91 + m.x638 >= 0) m.c178 = Constraint(expr= - m.x92 - m.x93 - m.x94 - m.x95 - m.x96 - m.x97 - m.x98 - m.x99 - m.x100 - m.x101 - m.x102 - m.x103 - m.x104 + m.x639 >= 0) m.c179 = Constraint(expr= - m.x105 - m.x106 - m.x107 - m.x108 - m.x109 - m.x110 - m.x111 - m.x112 - m.x113 - m.x114 - m.x115 - m.x116 - m.x117 + m.x640 >= 0) m.c180 = Constraint(expr= - m.x118 - m.x119 - m.x120 - m.x121 - m.x122 - m.x123 - m.x124 - m.x125 - m.x126 - m.x127 - m.x128 - m.x129 - m.x130 + m.x641 >= 0) m.c181 = Constraint(expr= - m.x131 - m.x132 - m.x133 - m.x134 - m.x135 - m.x136 - m.x137 - m.x138 - m.x139 - m.x140 - m.x141 - m.x142 - m.x143 + m.x642 >= 0) m.c182 = Constraint(expr= - m.x144 - m.x145 - m.x146 - m.x147 - m.x148 - m.x149 - m.x150 - m.x151 - m.x152 - m.x153 - m.x154 - m.x155 - m.x156 + m.x643 >= 0) m.c183 = Constraint(expr= - m.x157 - m.x158 - m.x159 - m.x160 - m.x161 - m.x162 - m.x163 - m.x164 - m.x165 - m.x166 - m.x167 - m.x168 - m.x169 + m.x644 >= 0) m.c184 = Constraint(expr= - m.x170 - m.x171 - m.x172 - m.x173 - m.x174 - m.x175 - m.x176 - m.x177 - m.x178 - m.x179 - m.x180 - m.x181 - m.x182 + m.x645 >= 0) m.c185 = Constraint(expr= - m.x183 - m.x184 - m.x185 - m.x186 - m.x187 - m.x188 - m.x189 - m.x190 - m.x191 - m.x192 - m.x193 - m.x194 - m.x195 + m.x646 >= 0) m.c186 = Constraint(expr= - m.x196 - m.x197 - m.x198 - m.x199 - m.x200 - m.x201 - m.x202 - m.x203 - m.x204 - m.x205 - m.x206 - m.x207 - m.x208 + m.x647 >= 0) m.c187 = Constraint(expr= - m.x209 - m.x210 - m.x211 - m.x212 - m.x213 - m.x214 - m.x215 - m.x216 - m.x217 - m.x218 - m.x219 - m.x220 - m.x221 + m.x648 >= 0) m.c188 = Constraint(expr= - m.x222 - m.x223 - m.x224 - m.x225 - m.x226 - m.x227 - m.x228 - m.x229 - m.x230 - m.x231 - m.x232 - m.x233 - m.x234 + m.x649 >= 0) m.c189 = Constraint(expr= - m.x235 - m.x236 - m.x237 - m.x238 - m.x239 - m.x240 - m.x241 - m.x242 - m.x243 - m.x244 - m.x245 - m.x246 - m.x247 + m.x650 >= 0) m.c190 = Constraint(expr= - m.x248 - m.x249 - m.x250 - m.x251 - m.x252 - m.x253 - m.x254 - m.x255 - m.x256 - m.x257 - m.x258 - m.x259 - m.x260 + m.x651 >= 0) m.c191 = Constraint(expr= - m.x261 - m.x262 - m.x263 - m.x264 - m.x265 - m.x266 - m.x267 - m.x268 - m.x269 - m.x270 - m.x271 - m.x272 - m.x273 + m.x652 >= 0) m.c192 = Constraint(expr= - m.x274 - m.x275 - m.x276 - m.x277 - m.x278 - m.x279 - m.x280 - m.x281 - m.x282 - m.x283 - m.x284 - m.x285 - m.x286 + m.x653 >= 0) m.c193 = Constraint(expr= - m.x287 - m.x288 - m.x289 - m.x290 - m.x291 - m.x292 - m.x293 - m.x294 - m.x295 - m.x296 - m.x297 - m.x298 - m.x299 + m.x654 >= 0) m.c194 = Constraint(expr= - m.x300 - m.x301 - m.x302 - m.x303 - m.x304 - m.x305 - m.x306 - m.x307 - m.x308 - m.x309 - m.x310 - m.x311 - m.x312 + m.x655 >= 0) m.c195 = Constraint(expr= - m.x313 - m.x314 - m.x315 - m.x316 - m.x317 - m.x318 - m.x319 - m.x320 - m.x321 - m.x322 - m.x323 - m.x324 - m.x325 + m.x656 >= 0) m.c196 = Constraint(expr= - m.x326 - m.x327 - m.x328 - m.x329 - m.x330 - m.x331 - m.x332 - m.x333 - m.x334 - m.x335 - m.x336 - m.x337 - m.x338 + m.x657 >= 0) m.c197 = Constraint(expr= - m.x339 - m.x340 - m.x341 - m.x342 - m.x343 - m.x344 - m.x345 - m.x346 - m.x347 - m.x348 - m.x349 - m.x350 - m.x351 + m.x658 >= 0) m.c198 = Constraint(expr= - m.x352 - m.x353 - m.x354 - m.x355 - m.x356 - m.x357 - m.x358 - m.x359 - m.x360 - m.x361 - m.x362 - m.x363 - m.x364 + m.x659 >= 0) m.c199 = Constraint(expr= - m.x365 - m.x366 - m.x367 - m.x368 - m.x369 - m.x370 - m.x371 - m.x372 - m.x373 - m.x374 - m.x375 - m.x376 - m.x377 + m.x660 >= 0) m.c200 = Constraint(expr= - m.x378 - m.x379 - m.x380 - m.x381 - m.x382 - m.x383 - m.x384 - m.x385 - m.x386 - m.x387 - m.x388 - m.x389 - m.x390 + m.x661 >= 0) m.c201 = Constraint(expr= - m.x391 - m.x392 - m.x393 - m.x394 - m.x395 - m.x396 - m.x397 - m.x398 - m.x399 - m.x400 - m.x401 - m.x402 - m.x403 + m.x662 >= 0) m.c202 = Constraint(expr= - m.x404 - m.x405 - m.x406 - m.x407 - m.x408 - m.x409 - m.x410 - m.x411 - m.x412 - m.x413 - m.x414 - m.x415 - m.x416 + m.x663 >= 0) m.c203 = Constraint(expr= - m.x417 - m.x418 - m.x419 - m.x420 - m.x421 - m.x422 - m.x423 - m.x424 - m.x425 - m.x426 - m.x427 - m.x428 - m.x429 + m.x664 >= 0) m.c204 = Constraint(expr= - m.x430 - m.x431 - m.x432 - m.x433 - m.x434 - m.x435 - m.x436 - m.x437 - m.x438 - m.x439 - m.x440 - m.x441 - m.x442 + m.x665 >= 0) m.c205 = Constraint(expr= - m.x443 - m.x444 - m.x445 - m.x446 - m.x447 - m.x448 - m.x449 - m.x450 - m.x451 - m.x452 - m.x453 - m.x454 - m.x455 + m.x666 >= 0) m.c206 = Constraint(expr= - m.x456 - m.x457 - m.x458 - m.x459 - m.x460 - m.x461 - m.x462 - m.x463 - m.x464 - m.x465 - m.x466 - m.x467 - m.x468 + m.x667 >= 0) m.c207 = Constraint(expr= - m.x469 - m.x470 - m.x471 - m.x472 - m.x473 - m.x474 - m.x475 - m.x476 - m.x477 - m.x478 - m.x479 - m.x480 - m.x481 + m.x668 >= 0) m.c208 = Constraint(expr= - m.x482 - m.x483 - m.x484 - m.x485 - m.x486 - m.x487 - m.x488 - m.x489 - m.x490 - m.x491 - m.x492 - m.x493 - m.x494 + m.x669 >= 0) m.c209 = Constraint(expr= - m.x495 - m.x496 - m.x497 - m.x498 - m.x499 - m.x500 - m.x501 - m.x502 - m.x503 - m.x504 - m.x505 - m.x506 - m.x507 + m.x670 >= 0) m.c210 = Constraint(expr= - m.x508 - m.x509 - m.x510 - m.x511 - m.x512 - m.x513 - m.x514 - m.x515 - m.x516 - m.x517 - m.x518 - m.x519 - m.x520 + m.x671 >= 0) m.c211 = Constraint(expr= - m.x521 - m.x522 - m.x523 - m.x524 - m.x525 - m.x526 - m.x527 - m.x528 - m.x529 - m.x530 - m.x531 - m.x532 - m.x533 + m.x672 >= 0) m.c212 = Constraint(expr= - m.x534 - m.x535 - m.x536 - m.x537 - m.x538 - m.x539 - m.x540 - m.x541 - m.x542 - m.x543 - m.x544 - m.x545 - m.x546 + m.x673 >= 0) m.c213 = Constraint(expr=166*m.x632*m.b547 - 166*m.b547*m.x589 + m.x632*m.x589 <= 0) m.c214 = Constraint(expr=463*m.x633*m.b548 - 463*m.b548*m.x590 + m.x633*m.x590 <= 0) m.c215 = Constraint(expr=522*m.x634*m.b549 - 522*m.b549*m.x591 + m.x634*m.x591 <= 0) m.c216 = Constraint(expr=141*m.x635*m.b550 - 141*m.b550*m.x592 + m.x635*m.x592 <= 0) m.c217 = Constraint(expr=166*m.x636*m.b551 - 166*m.b551*m.x593 + m.x636*m.x593 <= 0) m.c218 = Constraint(expr=265*m.x637*m.b552 - 265*m.b552*m.x594 + m.x637*m.x594 <= 0) m.c219 = Constraint(expr=463*m.x638*m.b553 - 463*m.b553*m.x595 + m.x638*m.x595 <= 0) m.c220 = Constraint(expr=456*m.x639*m.b554 - 456*m.b554*m.x596 + m.x639*m.x596 <= 0) m.c221 = Constraint(expr=526*m.x640*m.b555 - 526*m.b555*m.x597 + m.x640*m.x597 <= 0) m.c222 = Constraint(expr=152*m.x641*m.b556 - 152*m.b556*m.x598 + m.x641*m.x598 <= 0) m.c223 = Constraint(expr=456*m.x642*m.b557 - 456*m.b557*m.x599 + m.x642*m.x599 <= 0) m.c224 = Constraint(expr=384*m.x643*m.b558 - 384*m.b558*m.x600 + m.x643*m.x600 <= 0) m.c225 = Constraint(expr=441*m.x644*m.b559 - 441*m.b559*m.x601 + m.x644*m.x601 <= 0) m.c226 = Constraint(expr=309*m.x645*m.b560 - 309*m.b560*m.x602 + m.x645*m.x602 <= 0) m.c227 = Constraint(expr=233*m.x646*m.b561 - 233*m.b561*m.x603 + m.x646*m.x603 <= 0) m.c228 = Constraint(expr=526*m.x647*m.b562 - 526*m.b562*m.x604 + m.x647*m.x604 <= 0) m.c229 = Constraint(expr=384*m.x648*m.b563 - 384*m.b563*m.x605 + m.x648*m.x605 <= 0) m.c230 = Constraint(expr=203*m.x649*m.b564 - 203*m.b564*m.x606 + m.x649*m.x606 <= 0) m.c231 = Constraint(expr=522*m.x650*m.b565 - 522*m.b565*m.x607 + m.x650*m.x607 <= 0) m.c232 = Constraint(expr=265*m.x651*m.b566 - 265*m.b566*m.x608 + m.x651*m.x608 <= 0) m.c233 = Constraint(expr=152*m.x652*m.b567 - 152*m.b567*m.x609 + m.x652*m.x609 <= 0) m.c234 = Constraint(expr=441*m.x653*m.b568 - 441*m.b568*m.x610 + m.x653*m.x610 <= 0) m.c235 = Constraint(expr=203*m.x654*m.b569 - 203*m.b569*m.x611 + m.x654*m.x611 <= 0) m.c236 = Constraint(expr=284*m.x655*m.b570 - 284*m.b570*m.x612 + m.x655*m.x612 <= 0) m.c237 = Constraint(expr=426*m.x656*m.b571 - 426*m.b571*m.x613 + m.x656*m.x613 <= 0) m.c238 = Constraint(expr=284*m.x657*m.b572 - 284*m.b572*m.x614 + m.x657*m.x614 <= 0) m.c239 = Constraint(expr=109*m.x658*m.b573 - 109*m.b573*m.x615 + m.x658*m.x615 <= 0) m.c240 = Constraint(expr=309*m.x659*m.b574 - 309*m.b574*m.x616 + m.x659*m.x616 <= 0) m.c241 = Constraint(expr=434*m.x660*m.b575 - 434*m.b575*m.x617 + m.x660*m.x617 <= 0) m.c242 = Constraint(expr=141*m.x661*m.b576 - 141*m.b576*m.x618 + m.x661*m.x618 <= 0) m.c243 = Constraint(expr=434*m.x662*m.b577 - 434*m.b577*m.x619 + m.x662*m.x619 <= 0) m.c244 = Constraint(expr=403*m.x663*m.b578 - 403*m.b578*m.x620 + m.x663*m.x620 <= 0) m.c245 = Constraint(expr=426*m.x664*m.b579 - 426*m.b579*m.x621 + m.x664*m.x621 <= 0) m.c246 = Constraint(expr=403*m.x665*m.b580 - 403*m.b580*m.x622 + m.x665*m.x622 <= 0) m.c247 = Constraint(expr=151*m.x666*m.b581 - 151*m.b581*m.x623 + m.x666*m.x623 <= 0) m.c248 = Constraint(expr=233*m.x667*m.b582 - 233*m.b582*m.x624 + m.x667*m.x624 <= 0) m.c249 = Constraint(expr=109*m.x668*m.b583 - 109*m.b583*m.x625 + m.x668*m.x625 <= 0) m.c250 = Constraint(expr=367*m.x669*m.b584 - 367*m.b584*m.x626 + m.x669*m.x626 <= 0) m.c251 = Constraint(expr=367*m.x670*m.b585 - 367*m.b585*m.x627 + m.x670*m.x627 <= 0) m.c252 = Constraint(expr=382*m.x671*m.b586 - 382*m.b586*m.x628 + m.x671*m.x628 <= 0) m.c253 = Constraint(expr=151*m.x672*m.b587 - 151*m.b587*m.x629 + m.x672*m.x629 <= 0) m.c254 = Constraint(expr=382*m.x673*m.b588 - 382*m.b588*m.x630 + m.x673*m.x630 <= 0) m.c255 = Constraint(expr= m.x589 + m.x590 + m.x591 + m.x592 + m.x593 + m.x594 + m.x595 + m.x596 + m.x597 + m.x598 + m.x599 + m.x600 + m.x601 + m.x602 + m.x603 + m.x604 + m.x605 + m.x606 + m.x607 + m.x608 + m.x609 + m.x610 + m.x611 + m.x612 + m.x613 + m.x614 + m.x615 + m.x616 + m.x617 + m.x618 + m.x619 + m.x620 + m.x621 + m.x622 + m.x623 + m.x624 + m.x625 + m.x626 + m.x627 + m.x628 + m.x629 + m.x630 <= 18536) m.c256 = Constraint(expr= m.x1 + m.x2 + m.x3 + m.x4 + m.x5 + m.x6 + m.x7 + m.x8 + m.x9 + m.x10 + m.x11 + m.x12 + m.x13 - 166*m.b547 <= 0) m.c257 = Constraint(expr= m.x14 + m.x15 + m.x16 + m.x17 + m.x18 + m.x19 + m.x20 + m.x21 + m.x22 + m.x23 + m.x24 + m.x25 + m.x26 - 463*m.b548 <= 0) m.c258 = Constraint(expr= m.x27 + m.x28 + m.x29 + m.x30 + m.x31 + m.x32 + m.x33 + m.x34 + m.x35 + m.x36 + m.x37 + m.x38 + m.x39 - 522*m.b549 <= 0) m.c259 = Constraint(expr= m.x40 + m.x41 + m.x42 + m.x43 + m.x44 + m.x45 + m.x46 + m.x47 + m.x48 + m.x49 + m.x50 + m.x51 + m.x52 - 141*m.b550 <= 0) m.c260 = Constraint(expr= m.x53 + m.x54 + m.x55 + m.x56 + m.x57 + m.x58 + m.x59 + m.x60 + m.x61 + m.x62 + m.x63 + m.x64 + m.x65 - 166*m.b551 <= 0) m.c261 = Constraint(expr= m.x66 + m.x67 + m.x68 + m.x69 + m.x70 + m.x71 + m.x72 + m.x73 + m.x74 + m.x75 + m.x76 + m.x77 + m.x78 - 265*m.b552 <= 0) m.c262 = Constraint(expr= m.x79 + m.x80 + m.x81 + m.x82 + m.x83 + m.x84 + m.x85 + m.x86 + m.x87 + m.x88 + m.x89 + m.x90 + m.x91 - 463*m.b553 <= 0) m.c263 = Constraint(expr= m.x92 + m.x93 + m.x94 + m.x95 + m.x96 + m.x97 + m.x98 + m.x99 + m.x100 + m.x101 + m.x102 + m.x103 + m.x104 - 456*m.b554 <= 0) m.c264 = Constraint(expr= m.x105 + m.x106 + m.x107 + m.x108 + m.x109 + m.x110 + m.x111 + m.x112 + m.x113 + m.x114 + m.x115 + m.x116 + m.x117 - 526*m.b555 <= 0) m.c265 = Constraint(expr= m.x118 + m.x119 + m.x120 + m.x121 + m.x122 + m.x123 + m.x124 + m.x125 + m.x126 + m.x127 + m.x128 + m.x129 + m.x130 - 152*m.b556 <= 0) m.c266 = Constraint(expr= m.x131 + m.x132 + m.x133 + m.x134 + m.x135 + m.x136 + m.x137 + m.x138 + m.x139 + m.x140 + m.x141 + m.x142 + m.x143 - 456*m.b557 <= 0) m.c267 = Constraint(expr= m.x144 + m.x145 + m.x146 + m.x147 + m.x148 + m.x149 + m.x150 + m.x151 + m.x152 + m.x153 + m.x154 + m.x155 + m.x156 - 384*m.b558 <= 0) m.c268 = Constraint(expr= m.x157 + m.x158 + m.x159 + m.x160 + m.x161 + m.x162 + m.x163 + m.x164 + m.x165 + m.x166 + m.x167 + m.x168 + m.x169 - 441*m.b559 <= 0) m.c269 = Constraint(expr= m.x170 + m.x171 + m.x172 + m.x173 + m.x174 + m.x175 + m.x176 + m.x177 + m.x178 + m.x179 + m.x180 + m.x181 + m.x182 - 309*m.b560 <= 0) m.c270 = Constraint(expr= m.x183 + m.x184 + m.x185 + m.x186 + m.x187 + m.x188 + m.x189 + m.x190 + m.x191 + m.x192 + m.x193 + m.x194 + m.x195 - 233*m.b561 <= 0) m.c271 = Constraint(expr= m.x196 + m.x197 + m.x198 + m.x199 + m.x200 + m.x201 + m.x202 + m.x203 + m.x204 + m.x205 + m.x206 + m.x207 + m.x208 - 526*m.b562 <= 0) m.c272 = Constraint(expr= m.x209 + m.x210 + m.x211 + m.x212 + m.x213 + m.x214 + m.x215 + m.x216 + m.x217 + m.x218 + m.x219 + m.x220 + m.x221 - 384*m.b563 <= 0) m.c273 = Constraint(expr= m.x222 + m.x223 + m.x224 + m.x225 + m.x226 + m.x227 + m.x228 + m.x229 + m.x230 + m.x231 + m.x232 + m.x233 + m.x234 - 203*m.b564 <= 0) m.c274 = Constraint(expr= m.x235 + m.x236 + m.x237 + m.x238 + m.x239 + m.x240 + m.x241 + m.x242 + m.x243 + m.x244 + m.x245 + m.x246 + m.x247 - 522*m.b565 <= 0) m.c275 = Constraint(expr= m.x248 + m.x249 + m.x250 + m.x251 + m.x252 + m.x253 + m.x254 + m.x255 + m.x256 + m.x257 + m.x258 + m.x259 + m.x260 - 265*m.b566 <= 0) m.c276 = Constraint(expr= m.x261 + m.x262 + m.x263 + m.x264 + m.x265 + m.x266 + m.x267 + m.x268 + m.x269 + m.x270 + m.x271 + m.x272 + m.x273 - 152*m.b567 <= 0) m.c277 = Constraint(expr= m.x274 + m.x275 + m.x276 + m.x277 + m.x278 + m.x279 + m.x280 + m.x281 + m.x282 + m.x283 + m.x284 + m.x285 + m.x286 - 441*m.b568 <= 0) m.c278 = Constraint(expr= m.x287 + m.x288 + m.x289 + m.x290 + m.x291 + m.x292 + m.x293 + m.x294 + m.x295 + m.x296 + m.x297 + m.x298 + m.x299 - 203*m.b569 <= 0) m.c279 = Constraint(expr= m.x300 + m.x301 + m.x302 + m.x303 + m.x304 + m.x305 + m.x306 + m.x307 + m.x308 + m.x309 + m.x310 + m.x311 + m.x312 - 284*m.b570 <= 0) m.c280 = Constraint(expr= m.x313 + m.x314 + m.x315 + m.x316 + m.x317 + m.x318 + m.x319 + m.x320 + m.x321 + m.x322 + m.x323 + m.x324 + m.x325 - 426*m.b571 <= 0) m.c281 = Constraint(expr= m.x326 + m.x327 + m.x328 + m.x329 + m.x330 + m.x331 + m.x332 + m.x333 + m.x334 + m.x335 + m.x336 + m.x337 + m.x338 - 284*m.b572 <= 0) m.c282 = Constraint(expr= m.x339 + m.x340 + m.x341 + m.x342 + m.x343 + m.x344 + m.x345 + m.x346 + m.x347 + m.x348 + m.x349 + m.x350 + m.x351 - 109*m.b573 <= 0) m.c283 = Constraint(expr= m.x352 + m.x353 + m.x354 + m.x355 + m.x356 + m.x357 + m.x358 + m.x359 + m.x360 + m.x361 + m.x362 + m.x363 + m.x364 - 309*m.b574 <= 0) m.c284 = Constraint(expr= m.x365 + m.x366 + m.x367 + m.x368 + m.x369 + m.x370 + m.x371 + m.x372 + m.x373 + m.x374 + m.x375 + m.x376 + m.x377 - 434*m.b575 <= 0) m.c285 = Constraint(expr= m.x378 + m.x379 + m.x380 + m.x381 + m.x382 + m.x383 + m.x384 + m.x385 + m.x386 + m.x387 + m.x388 + m.x389 + m.x390 - 141*m.b576 <= 0) m.c286 = Constraint(expr= m.x391 + m.x392 + m.x393 + m.x394 + m.x395 + m.x396 + m.x397 + m.x398 + m.x399 + m.x400 + m.x401 + m.x402 + m.x403 - 434*m.b577 <= 0) m.c287 = Constraint(expr= m.x404 + m.x405 + m.x406 + m.x407 + m.x408 + m.x409 + m.x410 + m.x411 + m.x412 + m.x413 + m.x414 + m.x415 + m.x416 - 403*m.b578 <= 0) m.c288 = Constraint(expr= m.x417 + m.x418 + m.x419 + m.x420 + m.x421 + m.x422 + m.x423 + m.x424 + m.x425 + m.x426 + m.x427 + m.x428 + m.x429 - 426*m.b579 <= 0) m.c289 = Constraint(expr= m.x430 + m.x431 + m.x432 + m.x433 + m.x434 + m.x435 + m.x436 + m.x437 + m.x438 + m.x439 + m.x440 + m.x441 + m.x442 - 403*m.b580 <= 0) m.c290 = Constraint(expr= m.x443 + m.x444 + m.x445 + m.x446 + m.x447 + m.x448 + m.x449 + m.x450 + m.x451 + m.x452 + m.x453 + m.x454 + m.x455 - 151*m.b581 <= 0) m.c291 = Constraint(expr= m.x456 + m.x457 + m.x458 + m.x459 + m.x460 + m.x461 + m.x462 + m.x463 + m.x464 + m.x465 + m.x466 + m.x467 + m.x468 - 233*m.b582 <= 0) m.c292 = Constraint(expr= m.x469 + m.x470 + m.x471 + m.x472 + m.x473 + m.x474 + m.x475 + m.x476 + m.x477 + m.x478 + m.x479 + m.x480 + m.x481 - 109*m.b583 <= 0) m.c293 = Constraint(expr= m.x482 + m.x483 + m.x484 + m.x485 + m.x486 + m.x487 + m.x488 + m.x489 + m.x490 + m.x491 + m.x492 + m.x493 + m.x494 - 367*m.b584 <= 0) m.c294 = Constraint(expr= m.x495 + m.x496 + m.x497 + m.x498 + m.x499 + m.x500 + m.x501 + m.x502 + m.x503 + m.x504 + m.x505 + m.x506 + m.x507 - 367*m.b585 <= 0) m.c295 = Constraint(expr= m.x508 + m.x509 + m.x510 + m.x511 + m.x512 + m.x513 + m.x514 + m.x515 + m.x516 + m.x517 + m.x518 + m.x519 + m.x520 - 382*m.b586 <= 0) m.c296 = Constraint(expr= m.x521 + m.x522 + m.x523 + m.x524 + m.x525 + m.x526 + m.x527 + m.x528 + m.x529 + m.x530 + m.x531 + m.x532 + m.x533 - 151*m.b587 <= 0) m.c297 = Constraint(expr= m.x534 + m.x535 + m.x536 + m.x537 + m.x538 + m.x539 + m.x540 + m.x541 + m.x542 + m.x543 + m.x544 + m.x545 + m.x546 - 382*m.b588 <= 0)
# MINLP written by GAMS Convert at 08/20/20 01:30:45 # # Equation counts # Total E G L N X C B # 297 170 42 85 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 673 631 42 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 2479 2353 126 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.x1 = Var(within=Reals,bounds=(0,None),initialize=0) m.x2 = Var(within=Reals,bounds=(0,None),initialize=0) m.x3 = Var(within=Reals,bounds=(0,None),initialize=0) m.x4 = Var(within=Reals,bounds=(0,None),initialize=0) m.x5 = Var(within=Reals,bounds=(0,None),initialize=0) m.x6 = Var(within=Reals,bounds=(0,None),initialize=0) m.x7 = Var(within=Reals,bounds=(0,None),initialize=0) m.x8 = Var(within=Reals,bounds=(0,None),initialize=0) m.x9 = Var(within=Reals,bounds=(0,None),initialize=0) m.x10 = Var(within=Reals,bounds=(0,None),initialize=0) m.x11 = Var(within=Reals,bounds=(0,None),initialize=0) m.x12 = Var(within=Reals,bounds=(0,None),initialize=0) m.x13 = Var(within=Reals,bounds=(0,None),initialize=0) m.x14 = Var(within=Reals,bounds=(0,None),initialize=0) m.x15 = Var(within=Reals,bounds=(0,None),initialize=0) m.x16 = Var(within=Reals,bounds=(0,None),initialize=0) m.x17 = Var(within=Reals,bounds=(0,None),initialize=0) m.x18 = Var(within=Reals,bounds=(0,None),initialize=0) m.x19 = Var(within=Reals,bounds=(0,None),initialize=0) m.x20 = Var(within=Reals,bounds=(0,None),initialize=0) m.x21 = Var(within=Reals,bounds=(0,None),initialize=0) m.x22 = Var(within=Reals,bounds=(0,None),initialize=0) m.x23 = Var(within=Reals,bounds=(0,None),initialize=0) m.x24 = Var(within=Reals,bounds=(0,None),initialize=0) m.x25 = Var(within=Reals,bounds=(0,None),initialize=0) m.x26 = Var(within=Reals,bounds=(0,None),initialize=0) m.x27 = Var(within=Reals,bounds=(0,None),initialize=0) m.x28 = Var(within=Reals,bounds=(0,None),initialize=0) m.x29 = Var(within=Reals,bounds=(0,None),initialize=0) m.x30 = Var(within=Reals,bounds=(0,None),initialize=0) m.x31 = Var(within=Reals,bounds=(0,None),initialize=0) m.x32 = Var(within=Reals,bounds=(0,None),initialize=0) m.x33 = Var(within=Reals,bounds=(0,None),initialize=0) m.x34 = Var(within=Reals,bounds=(0,None),initialize=0) m.x35 = Var(within=Reals,bounds=(0,None),initialize=0) m.x36 = Var(within=Reals,bounds=(0,None),initialize=0) m.x37 = Var(within=Reals,bounds=(0,None),initialize=0) m.x38 = Var(within=Reals,bounds=(0,None),initialize=0) m.x39 = Var(within=Reals,bounds=(0,None),initialize=0) m.x40 = Var(within=Reals,bounds=(0,None),initialize=0) m.x41 = Var(within=Reals,bounds=(0,None),initialize=0) m.x42 = Var(within=Reals,bounds=(0,None),initialize=0) m.x43 = Var(within=Reals,bounds=(0,None),initialize=0) m.x44 = Var(within=Reals,bounds=(0,None),initialize=0) m.x45 = Var(within=Reals,bounds=(0,None),initialize=0) m.x46 = Var(within=Reals,bounds=(0,None),initialize=0) m.x47 = Var(within=Reals,bounds=(0,None),initialize=0) m.x48 = Var(within=Reals,bounds=(0,None),initialize=0) m.x49 = Var(within=Reals,bounds=(0,None),initialize=0) m.x50 = Var(within=Reals,bounds=(0,None),initialize=0) m.x51 = Var(within=Reals,bounds=(0,None),initialize=0) m.x52 = Var(within=Reals,bounds=(0,None),initialize=0) m.x53 = Var(within=Reals,bounds=(0,None),initialize=0) m.x54 = Var(within=Reals,bounds=(0,None),initialize=0) m.x55 = Var(within=Reals,bounds=(0,None),initialize=0) m.x56 = Var(within=Reals,bounds=(0,None),initialize=0) m.x57 = Var(within=Reals,bounds=(0,None),initialize=0) m.x58 = Var(within=Reals,bounds=(0,None),initialize=0) m.x59 = Var(within=Reals,bounds=(0,None),initialize=0) m.x60 = Var(within=Reals,bounds=(0,None),initialize=0) m.x61 = Var(within=Reals,bounds=(0,None),initialize=0) m.x62 = Var(within=Reals,bounds=(0,None),initialize=0) m.x63 = Var(within=Reals,bounds=(0,None),initialize=0) m.x64 = Var(within=Reals,bounds=(0,None),initialize=0) m.x65 = Var(within=Reals,bounds=(0,None),initialize=0) m.x66 = Var(within=Reals,bounds=(0,None),initialize=0) m.x67 = Var(within=Reals,bounds=(0,None),initialize=0) m.x68 = Var(within=Reals,bounds=(0,None),initialize=0) m.x69 = Var(within=Reals,bounds=(0,None),initialize=0) m.x70 = Var(within=Reals,bounds=(0,None),initialize=0) m.x71 = Var(within=Reals,bounds=(0,None),initialize=0) m.x72 = Var(within=Reals,bounds=(0,None),initialize=0) m.x73 = Var(within=Reals,bounds=(0,None),initialize=0) m.x74 = Var(within=Reals,bounds=(0,None),initialize=0) m.x75 = Var(within=Reals,bounds=(0,None),initialize=0) m.x76 = Var(within=Reals,bounds=(0,None),initialize=0) m.x77 = Var(within=Reals,bounds=(0,None),initialize=0) m.x78 = Var(within=Reals,bounds=(0,None),initialize=0) m.x79 = Var(within=Reals,bounds=(0,None),initialize=0) m.x80 = Var(within=Reals,bounds=(0,None),initialize=0) m.x81 = Var(within=Reals,bounds=(0,None),initialize=0) m.x82 = Var(within=Reals,bounds=(0,None),initialize=0) m.x83 = Var(within=Reals,bounds=(0,None),initialize=0) m.x84 = Var(within=Reals,bounds=(0,None),initialize=0) m.x85 = Var(within=Reals,bounds=(0,None),initialize=0) m.x86 = Var(within=Reals,bounds=(0,None),initialize=0) m.x87 = Var(within=Reals,bounds=(0,None),initialize=0) m.x88 = Var(within=Reals,bounds=(0,None),initialize=0) m.x89 = Var(within=Reals,bounds=(0,None),initialize=0) m.x90 = Var(within=Reals,bounds=(0,None),initialize=0) m.x91 = Var(within=Reals,bounds=(0,None),initialize=0) m.x92 = Var(within=Reals,bounds=(0,None),initialize=0) m.x93 = Var(within=Reals,bounds=(0,None),initialize=0) m.x94 = Var(within=Reals,bounds=(0,None),initialize=0) m.x95 = Var(within=Reals,bounds=(0,None),initialize=0) m.x96 = Var(within=Reals,bounds=(0,None),initialize=0) m.x97 = Var(within=Reals,bounds=(0,None),initialize=0) m.x98 = Var(within=Reals,bounds=(0,None),initialize=0) m.x99 = Var(within=Reals,bounds=(0,None),initialize=0) m.x100 = Var(within=Reals,bounds=(0,None),initialize=0) m.x101 = Var(within=Reals,bounds=(0,None),initialize=0) m.x102 = Var(within=Reals,bounds=(0,None),initialize=0) m.x103 = Var(within=Reals,bounds=(0,None),initialize=0) m.x104 = Var(within=Reals,bounds=(0,None),initialize=0) m.x105 = Var(within=Reals,bounds=(0,None),initialize=0) m.x106 = Var(within=Reals,bounds=(0,None),initialize=0) m.x107 = Var(within=Reals,bounds=(0,None),initialize=0) m.x108 = Var(within=Reals,bounds=(0,None),initialize=0) m.x109 = Var(within=Reals,bounds=(0,None),initialize=0) m.x110 = Var(within=Reals,bounds=(0,None),initialize=0) m.x111 = Var(within=Reals,bounds=(0,None),initialize=0) m.x112 = Var(within=Reals,bounds=(0,None),initialize=0) m.x113 = Var(within=Reals,bounds=(0,None),initialize=0) m.x114 = Var(within=Reals,bounds=(0,None),initialize=0) m.x115 = Var(within=Reals,bounds=(0,None),initialize=0) m.x116 = Var(within=Reals,bounds=(0,None),initialize=0) m.x117 = Var(within=Reals,bounds=(0,None),initialize=0) m.x118 = Var(within=Reals,bounds=(0,None),initialize=0) m.x119 = Var(within=Reals,bounds=(0,None),initialize=0) m.x120 = Var(within=Reals,bounds=(0,None),initialize=0) m.x121 = Var(within=Reals,bounds=(0,None),initialize=0) m.x122 = Var(within=Reals,bounds=(0,None),initialize=0) m.x123 = Var(within=Reals,bounds=(0,None),initialize=0) m.x124 = Var(within=Reals,bounds=(0,None),initialize=0) m.x125 = Var(within=Reals,bounds=(0,None),initialize=0) m.x126 = Var(within=Reals,bounds=(0,None),initialize=0) m.x127 = Var(within=Reals,bounds=(0,None),initialize=0) m.x128 = Var(within=Reals,bounds=(0,None),initialize=0) m.x129 = Var(within=Reals,bounds=(0,None),initialize=0) m.x130 = Var(within=Reals,bounds=(0,None),initialize=0) m.x131 = Var(within=Reals,bounds=(0,None),initialize=0) m.x132 = Var(within=Reals,bounds=(0,None),initialize=0) m.x133 = Var(within=Reals,bounds=(0,None),initialize=0) m.x134 = Var(within=Reals,bounds=(0,None),initialize=0) m.x135 = Var(within=Reals,bounds=(0,None),initialize=0) m.x136 = Var(within=Reals,bounds=(0,None),initialize=0) m.x137 = Var(within=Reals,bounds=(0,None),initialize=0) m.x138 = Var(within=Reals,bounds=(0,None),initialize=0) m.x139 = Var(within=Reals,bounds=(0,None),initialize=0) m.x140 = Var(within=Reals,bounds=(0,None),initialize=0) m.x141 = Var(within=Reals,bounds=(0,None),initialize=0) m.x142 = Var(within=Reals,bounds=(0,None),initialize=0) m.x143 = Var(within=Reals,bounds=(0,None),initialize=0) m.x144 = Var(within=Reals,bounds=(0,None),initialize=0) m.x145 = Var(within=Reals,bounds=(0,None),initialize=0) m.x146 = Var(within=Reals,bounds=(0,None),initialize=0) m.x147 = Var(within=Reals,bounds=(0,None),initialize=0) m.x148 = Var(within=Reals,bounds=(0,None),initialize=0) m.x149 = Var(within=Reals,bounds=(0,None),initialize=0) m.x150 = Var(within=Reals,bounds=(0,None),initialize=0) m.x151 = Var(within=Reals,bounds=(0,None),initialize=0) m.x152 = Var(within=Reals,bounds=(0,None),initialize=0) m.x153 = Var(within=Reals,bounds=(0,None),initialize=0) m.x154 = Var(within=Reals,bounds=(0,None),initialize=0) m.x155 = Var(within=Reals,bounds=(0,None),initialize=0) m.x156 = Var(within=Reals,bounds=(0,None),initialize=0) m.x157 = Var(within=Reals,bounds=(0,None),initialize=0) m.x158 = Var(within=Reals,bounds=(0,None),initialize=0) m.x159 = Var(within=Reals,bounds=(0,None),initialize=0) m.x160 = Var(within=Reals,bounds=(0,None),initialize=0) m.x161 = Var(within=Reals,bounds=(0,None),initialize=0) m.x162 = Var(within=Reals,bounds=(0,None),initialize=0) m.x163 = Var(within=Reals,bounds=(0,None),initialize=0) m.x164 = Var(within=Reals,bounds=(0,None),initialize=0) m.x165 = Var(within=Reals,bounds=(0,None),initialize=0) m.x166 = Var(within=Reals,bounds=(0,None),initialize=0) m.x167 = Var(within=Reals,bounds=(0,None),initialize=0) m.x168 = Var(within=Reals,bounds=(0,None),initialize=0) m.x169 = Var(within=Reals,bounds=(0,None),initialize=0) m.x170 = Var(within=Reals,bounds=(0,None),initialize=0) m.x171 = Var(within=Reals,bounds=(0,None),initialize=0) m.x172 = Var(within=Reals,bounds=(0,None),initialize=0) m.x173 = Var(within=Reals,bounds=(0,None),initialize=0) m.x174 = Var(within=Reals,bounds=(0,None),initialize=0) m.x175 = Var(within=Reals,bounds=(0,None),initialize=0) m.x176 = Var(within=Reals,bounds=(0,None),initialize=0) m.x177 = Var(within=Reals,bounds=(0,None),initialize=0) m.x178 = Var(within=Reals,bounds=(0,None),initialize=0) m.x179 = Var(within=Reals,bounds=(0,None),initialize=0) m.x180 = Var(within=Reals,bounds=(0,None),initialize=0) m.x181 = Var(within=Reals,bounds=(0,None),initialize=0) m.x182 = Var(within=Reals,bounds=(0,None),initialize=0) m.x183 = Var(within=Reals,bounds=(0,None),initialize=0) m.x184 = Var(within=Reals,bounds=(0,None),initialize=0) m.x185 = Var(within=Reals,bounds=(0,None),initialize=0) m.x186 = Var(within=Reals,bounds=(0,None),initialize=0) m.x187 = Var(within=Reals,bounds=(0,None),initialize=0) m.x188 = Var(within=Reals,bounds=(0,None),initialize=0) m.x189 = Var(within=Reals,bounds=(0,None),initialize=0) m.x190 = Var(within=Reals,bounds=(0,None),initialize=0) m.x191 = Var(within=Reals,bounds=(0,None),initialize=0) m.x192 = Var(within=Reals,bounds=(0,None),initialize=0) m.x193 = Var(within=Reals,bounds=(0,None),initialize=0) m.x194 = Var(within=Reals,bounds=(0,None),initialize=0) m.x195 = Var(within=Reals,bounds=(0,None),initialize=0) m.x196 = Var(within=Reals,bounds=(0,None),initialize=0) m.x197 = Var(within=Reals,bounds=(0,None),initialize=0) m.x198 = Var(within=Reals,bounds=(0,None),initialize=0) m.x199 = Var(within=Reals,bounds=(0,None),initialize=0) m.x200 = Var(within=Reals,bounds=(0,None),initialize=0) m.x201 = Var(within=Reals,bounds=(0,None),initialize=0) m.x202 = Var(within=Reals,bounds=(0,None),initialize=0) m.x203 = Var(within=Reals,bounds=(0,None),initialize=0) m.x204 = Var(within=Reals,bounds=(0,None),initialize=0) m.x205 = Var(within=Reals,bounds=(0,None),initialize=0) m.x206 = Var(within=Reals,bounds=(0,None),initialize=0) m.x207 = Var(within=Reals,bounds=(0,None),initialize=0) m.x208 = Var(within=Reals,bounds=(0,None),initialize=0) m.x209 = Var(within=Reals,bounds=(0,None),initialize=0) m.x210 = Var(within=Reals,bounds=(0,None),initialize=0) m.x211 = Var(within=Reals,bounds=(0,None),initialize=0) m.x212 = Var(within=Reals,bounds=(0,None),initialize=0) m.x213 = Var(within=Reals,bounds=(0,None),initialize=0) m.x214 = Var(within=Reals,bounds=(0,None),initialize=0) m.x215 = Var(within=Reals,bounds=(0,None),initialize=0) m.x216 = Var(within=Reals,bounds=(0,None),initialize=0) m.x217 = Var(within=Reals,bounds=(0,None),initialize=0) m.x218 = Var(within=Reals,bounds=(0,None),initialize=0) m.x219 = Var(within=Reals,bounds=(0,None),initialize=0) m.x220 = Var(within=Reals,bounds=(0,None),initialize=0) m.x221 = Var(within=Reals,bounds=(0,None),initialize=0) m.x222 = Var(within=Reals,bounds=(0,None),initialize=0) m.x223 = Var(within=Reals,bounds=(0,None),initialize=0) m.x224 = Var(within=Reals,bounds=(0,None),initialize=0) m.x225 = Var(within=Reals,bounds=(0,None),initialize=0) m.x226 = Var(within=Reals,bounds=(0,None),initialize=0) m.x227 = Var(within=Reals,bounds=(0,None),initialize=0) m.x228 = Var(within=Reals,bounds=(0,None),initialize=0) m.x229 = Var(within=Reals,bounds=(0,None),initialize=0) m.x230 = Var(within=Reals,bounds=(0,None),initialize=0) m.x231 = Var(within=Reals,bounds=(0,None),initialize=0) m.x232 = Var(within=Reals,bounds=(0,None),initialize=0) m.x233 = Var(within=Reals,bounds=(0,None),initialize=0) m.x234 = Var(within=Reals,bounds=(0,None),initialize=0) m.x235 = Var(within=Reals,bounds=(0,None),initialize=0) m.x236 = Var(within=Reals,bounds=(0,None),initialize=0) m.x237 = Var(within=Reals,bounds=(0,None),initialize=0) m.x238 = Var(within=Reals,bounds=(0,None),initialize=0) m.x239 = Var(within=Reals,bounds=(0,None),initialize=0) m.x240 = Var(within=Reals,bounds=(0,None),initialize=0) m.x241 = Var(within=Reals,bounds=(0,None),initialize=0) m.x242 = Var(within=Reals,bounds=(0,None),initialize=0) m.x243 = Var(within=Reals,bounds=(0,None),initialize=0) m.x244 = Var(within=Reals,bounds=(0,None),initialize=0) m.x245 = Var(within=Reals,bounds=(0,None),initialize=0) m.x246 = Var(within=Reals,bounds=(0,None),initialize=0) m.x247 = Var(within=Reals,bounds=(0,None),initialize=0) m.x248 = Var(within=Reals,bounds=(0,None),initialize=0) m.x249 = Var(within=Reals,bounds=(0,None),initialize=0) m.x250 = Var(within=Reals,bounds=(0,None),initialize=0) m.x251 = Var(within=Reals,bounds=(0,None),initialize=0) m.x252 = Var(within=Reals,bounds=(0,None),initialize=0) m.x253 = Var(within=Reals,bounds=(0,None),initialize=0) m.x254 = Var(within=Reals,bounds=(0,None),initialize=0) m.x255 = Var(within=Reals,bounds=(0,None),initialize=0) m.x256 = Var(within=Reals,bounds=(0,None),initialize=0) m.x257 = Var(within=Reals,bounds=(0,None),initialize=0) m.x258 = Var(within=Reals,bounds=(0,None),initialize=0) m.x259 = Var(within=Reals,bounds=(0,None),initialize=0) m.x260 = Var(within=Reals,bounds=(0,None),initialize=0) m.x261 = Var(within=Reals,bounds=(0,None),initialize=0) m.x262 = Var(within=Reals,bounds=(0,None),initialize=0) m.x263 = Var(within=Reals,bounds=(0,None),initialize=0) m.x264 = Var(within=Reals,bounds=(0,None),initialize=0) m.x265 = Var(within=Reals,bounds=(0,None),initialize=0) m.x266 = Var(within=Reals,bounds=(0,None),initialize=0) m.x267 = Var(within=Reals,bounds=(0,None),initialize=0) m.x268 = Var(within=Reals,bounds=(0,None),initialize=0) m.x269 = Var(within=Reals,bounds=(0,None),initialize=0) m.x270 = Var(within=Reals,bounds=(0,None),initialize=0) m.x271 = Var(within=Reals,bounds=(0,None),initialize=0) m.x272 = Var(within=Reals,bounds=(0,None),initialize=0) m.x273 = Var(within=Reals,bounds=(0,None),initialize=0) m.x274 = Var(within=Reals,bounds=(0,None),initialize=0) m.x275 = Var(within=Reals,bounds=(0,None),initialize=0) m.x276 = Var(within=Reals,bounds=(0,None),initialize=0) m.x277 = Var(within=Reals,bounds=(0,None),initialize=0) m.x278 = Var(within=Reals,bounds=(0,None),initialize=0) m.x279 = Var(within=Reals,bounds=(0,None),initialize=0) m.x280 = Var(within=Reals,bounds=(0,None),initialize=0) m.x281 = Var(within=Reals,bounds=(0,None),initialize=0) m.x282 = Var(within=Reals,bounds=(0,None),initialize=0) m.x283 = Var(within=Reals,bounds=(0,None),initialize=0) m.x284 = Var(within=Reals,bounds=(0,None),initialize=0) m.x285 = Var(within=Reals,bounds=(0,None),initialize=0) m.x286 = Var(within=Reals,bounds=(0,None),initialize=0) m.x287 = Var(within=Reals,bounds=(0,None),initialize=0) m.x288 = Var(within=Reals,bounds=(0,None),initialize=0) m.x289 = Var(within=Reals,bounds=(0,None),initialize=0) m.x290 = Var(within=Reals,bounds=(0,None),initialize=0) m.x291 = Var(within=Reals,bounds=(0,None),initialize=0) m.x292 = Var(within=Reals,bounds=(0,None),initialize=0) m.x293 = Var(within=Reals,bounds=(0,None),initialize=0) m.x294 = Var(within=Reals,bounds=(0,None),initialize=0) m.x295 = Var(within=Reals,bounds=(0,None),initialize=0) m.x296 = Var(within=Reals,bounds=(0,None),initialize=0) m.x297 = Var(within=Reals,bounds=(0,None),initialize=0) m.x298 = Var(within=Reals,bounds=(0,None),initialize=0) m.x299 = Var(within=Reals,bounds=(0,None),initialize=0) m.x300 = Var(within=Reals,bounds=(0,None),initialize=0) m.x301 = Var(within=Reals,bounds=(0,None),initialize=0) m.x302 = Var(within=Reals,bounds=(0,None),initialize=0) m.x303 = Var(within=Reals,bounds=(0,None),initialize=0) m.x304 = Var(within=Reals,bounds=(0,None),initialize=0) m.x305 = Var(within=Reals,bounds=(0,None),initialize=0) m.x306 = Var(within=Reals,bounds=(0,None),initialize=0) m.x307 = Var(within=Reals,bounds=(0,None),initialize=0) m.x308 = Var(within=Reals,bounds=(0,None),initialize=0) m.x309 = Var(within=Reals,bounds=(0,None),initialize=0) m.x310 = Var(within=Reals,bounds=(0,None),initialize=0) m.x311 = Var(within=Reals,bounds=(0,None),initialize=0) m.x312 = Var(within=Reals,bounds=(0,None),initialize=0) m.x313 = Var(within=Reals,bounds=(0,None),initialize=0) m.x314 = Var(within=Reals,bounds=(0,None),initialize=0) m.x315 = Var(within=Reals,bounds=(0,None),initialize=0) m.x316 = Var(within=Reals,bounds=(0,None),initialize=0) m.x317 = Var(within=Reals,bounds=(0,None),initialize=0) m.x318 = Var(within=Reals,bounds=(0,None),initialize=0) m.x319 = Var(within=Reals,bounds=(0,None),initialize=0) m.x320 = Var(within=Reals,bounds=(0,None),initialize=0) m.x321 = Var(within=Reals,bounds=(0,None),initialize=0) m.x322 = Var(within=Reals,bounds=(0,None),initialize=0) m.x323 = Var(within=Reals,bounds=(0,None),initialize=0) m.x324 = Var(within=Reals,bounds=(0,None),initialize=0) m.x325 = Var(within=Reals,bounds=(0,None),initialize=0) m.x326 = Var(within=Reals,bounds=(0,None),initialize=0) m.x327 = Var(within=Reals,bounds=(0,None),initialize=0) m.x328 = Var(within=Reals,bounds=(0,None),initialize=0) m.x329 = Var(within=Reals,bounds=(0,None),initialize=0) m.x330 = Var(within=Reals,bounds=(0,None),initialize=0) m.x331 = Var(within=Reals,bounds=(0,None),initialize=0) m.x332 = Var(within=Reals,bounds=(0,None),initialize=0) m.x333 = Var(within=Reals,bounds=(0,None),initialize=0) m.x334 = Var(within=Reals,bounds=(0,None),initialize=0) m.x335 = Var(within=Reals,bounds=(0,None),initialize=0) m.x336 = Var(within=Reals,bounds=(0,None),initialize=0) m.x337 = Var(within=Reals,bounds=(0,None),initialize=0) m.x338 = Var(within=Reals,bounds=(0,None),initialize=0) m.x339 = Var(within=Reals,bounds=(0,None),initialize=0) m.x340 = Var(within=Reals,bounds=(0,None),initialize=0) m.x341 = Var(within=Reals,bounds=(0,None),initialize=0) m.x342 = Var(within=Reals,bounds=(0,None),initialize=0) m.x343 = Var(within=Reals,bounds=(0,None),initialize=0) m.x344 = Var(within=Reals,bounds=(0,None),initialize=0) m.x345 = Var(within=Reals,bounds=(0,None),initialize=0) m.x346 = Var(within=Reals,bounds=(0,None),initialize=0) m.x347 = Var(within=Reals,bounds=(0,None),initialize=0) m.x348 = Var(within=Reals,bounds=(0,None),initialize=0) m.x349 = Var(within=Reals,bounds=(0,None),initialize=0) m.x350 = Var(within=Reals,bounds=(0,None),initialize=0) m.x351 = Var(within=Reals,bounds=(0,None),initialize=0) m.x352 = Var(within=Reals,bounds=(0,None),initialize=0) m.x353 = Var(within=Reals,bounds=(0,None),initialize=0) m.x354 = Var(within=Reals,bounds=(0,None),initialize=0) m.x355 = Var(within=Reals,bounds=(0,None),initialize=0) m.x356 = Var(within=Reals,bounds=(0,None),initialize=0) m.x357 = Var(within=Reals,bounds=(0,None),initialize=0) m.x358 = Var(within=Reals,bounds=(0,None),initialize=0) m.x359 = Var(within=Reals,bounds=(0,None),initialize=0) m.x360 = Var(within=Reals,bounds=(0,None),initialize=0) m.x361 = Var(within=Reals,bounds=(0,None),initialize=0) m.x362 = Var(within=Reals,bounds=(0,None),initialize=0) m.x363 = Var(within=Reals,bounds=(0,None),initialize=0) m.x364 = Var(within=Reals,bounds=(0,None),initialize=0) m.x365 = Var(within=Reals,bounds=(0,None),initialize=0) m.x366 = Var(within=Reals,bounds=(0,None),initialize=0) m.x367 = Var(within=Reals,bounds=(0,None),initialize=0) m.x368 = Var(within=Reals,bounds=(0,None),initialize=0) m.x369 = Var(within=Reals,bounds=(0,None),initialize=0) m.x370 = Var(within=Reals,bounds=(0,None),initialize=0) m.x371 = Var(within=Reals,bounds=(0,None),initialize=0) m.x372 = Var(within=Reals,bounds=(0,None),initialize=0) m.x373 = Var(within=Reals,bounds=(0,None),initialize=0) m.x374 = Var(within=Reals,bounds=(0,None),initialize=0) m.x375 = Var(within=Reals,bounds=(0,None),initialize=0) m.x376 = Var(within=Reals,bounds=(0,None),initialize=0) m.x377 = Var(within=Reals,bounds=(0,None),initialize=0) m.x378 = Var(within=Reals,bounds=(0,None),initialize=0) m.x379 = Var(within=Reals,bounds=(0,None),initialize=0) m.x380 = Var(within=Reals,bounds=(0,None),initialize=0) m.x381 = Var(within=Reals,bounds=(0,None),initialize=0) m.x382 = Var(within=Reals,bounds=(0,None),initialize=0) m.x383 = Var(within=Reals,bounds=(0,None),initialize=0) m.x384 = Var(within=Reals,bounds=(0,None),initialize=0) m.x385 = Var(within=Reals,bounds=(0,None),initialize=0) m.x386 = Var(within=Reals,bounds=(0,None),initialize=0) m.x387 = Var(within=Reals,bounds=(0,None),initialize=0) m.x388 = Var(within=Reals,bounds=(0,None),initialize=0) m.x389 = Var(within=Reals,bounds=(0,None),initialize=0) m.x390 = Var(within=Reals,bounds=(0,None),initialize=0) m.x391 = Var(within=Reals,bounds=(0,None),initialize=0) m.x392 = Var(within=Reals,bounds=(0,None),initialize=0) m.x393 = Var(within=Reals,bounds=(0,None),initialize=0) m.x394 = Var(within=Reals,bounds=(0,None),initialize=0) m.x395 = Var(within=Reals,bounds=(0,None),initialize=0) m.x396 = Var(within=Reals,bounds=(0,None),initialize=0) m.x397 = Var(within=Reals,bounds=(0,None),initialize=0) m.x398 = Var(within=Reals,bounds=(0,None),initialize=0) m.x399 = Var(within=Reals,bounds=(0,None),initialize=0) m.x400 = Var(within=Reals,bounds=(0,None),initialize=0) m.x401 = Var(within=Reals,bounds=(0,None),initialize=0) m.x402 = Var(within=Reals,bounds=(0,None),initialize=0) m.x403 = Var(within=Reals,bounds=(0,None),initialize=0) m.x404 = Var(within=Reals,bounds=(0,None),initialize=0) m.x405 = Var(within=Reals,bounds=(0,None),initialize=0) m.x406 = Var(within=Reals,bounds=(0,None),initialize=0) m.x407 = Var(within=Reals,bounds=(0,None),initialize=0) m.x408 = Var(within=Reals,bounds=(0,None),initialize=0) m.x409 = Var(within=Reals,bounds=(0,None),initialize=0) m.x410 = Var(within=Reals,bounds=(0,None),initialize=0) m.x411 = Var(within=Reals,bounds=(0,None),initialize=0) m.x412 = Var(within=Reals,bounds=(0,None),initialize=0) m.x413 = Var(within=Reals,bounds=(0,None),initialize=0) m.x414 = Var(within=Reals,bounds=(0,None),initialize=0) m.x415 = Var(within=Reals,bounds=(0,None),initialize=0) m.x416 = Var(within=Reals,bounds=(0,None),initialize=0) m.x417 = Var(within=Reals,bounds=(0,None),initialize=0) m.x418 = Var(within=Reals,bounds=(0,None),initialize=0) m.x419 = Var(within=Reals,bounds=(0,None),initialize=0) m.x420 = Var(within=Reals,bounds=(0,None),initialize=0) m.x421 = Var(within=Reals,bounds=(0,None),initialize=0) m.x422 = Var(within=Reals,bounds=(0,None),initialize=0) m.x423 = Var(within=Reals,bounds=(0,None),initialize=0) m.x424 = Var(within=Reals,bounds=(0,None),initialize=0) m.x425 = Var(within=Reals,bounds=(0,None),initialize=0) m.x426 = Var(within=Reals,bounds=(0,None),initialize=0) m.x427 = Var(within=Reals,bounds=(0,None),initialize=0) m.x428 = Var(within=Reals,bounds=(0,None),initialize=0) m.x429 = Var(within=Reals,bounds=(0,None),initialize=0) m.x430 = Var(within=Reals,bounds=(0,None),initialize=0) m.x431 = Var(within=Reals,bounds=(0,None),initialize=0) m.x432 = Var(within=Reals,bounds=(0,None),initialize=0) m.x433 = Var(within=Reals,bounds=(0,None),initialize=0) m.x434 = Var(within=Reals,bounds=(0,None),initialize=0) m.x435 = Var(within=Reals,bounds=(0,None),initialize=0) m.x436 = Var(within=Reals,bounds=(0,None),initialize=0) m.x437 = Var(within=Reals,bounds=(0,None),initialize=0) m.x438 = Var(within=Reals,bounds=(0,None),initialize=0) m.x439 = Var(within=Reals,bounds=(0,None),initialize=0) m.x440 = Var(within=Reals,bounds=(0,None),initialize=0) m.x441 = Var(within=Reals,bounds=(0,None),initialize=0) m.x442 = Var(within=Reals,bounds=(0,None),initialize=0) m.x443 = Var(within=Reals,bounds=(0,None),initialize=0) m.x444 = Var(within=Reals,bounds=(0,None),initialize=0) m.x445 = Var(within=Reals,bounds=(0,None),initialize=0) m.x446 = Var(within=Reals,bounds=(0,None),initialize=0) m.x447 = Var(within=Reals,bounds=(0,None),initialize=0) m.x448 = Var(within=Reals,bounds=(0,None),initialize=0) m.x449 = Var(within=Reals,bounds=(0,None),initialize=0) m.x450 = Var(within=Reals,bounds=(0,None),initialize=0) m.x451 = Var(within=Reals,bounds=(0,None),initialize=0) m.x452 = Var(within=Reals,bounds=(0,None),initialize=0) m.x453 = Var(within=Reals,bounds=(0,None),initialize=0) m.x454 = Var(within=Reals,bounds=(0,None),initialize=0) m.x455 = Var(within=Reals,bounds=(0,None),initialize=0) m.x456 = Var(within=Reals,bounds=(0,None),initialize=0) m.x457 = Var(within=Reals,bounds=(0,None),initialize=0) m.x458 = Var(within=Reals,bounds=(0,None),initialize=0) m.x459 = Var(within=Reals,bounds=(0,None),initialize=0) m.x460 = Var(within=Reals,bounds=(0,None),initialize=0) m.x461 = Var(within=Reals,bounds=(0,None),initialize=0) m.x462 = Var(within=Reals,bounds=(0,None),initialize=0) m.x463 = Var(within=Reals,bounds=(0,None),initialize=0) m.x464 = Var(within=Reals,bounds=(0,None),initialize=0) m.x465 = Var(within=Reals,bounds=(0,None),initialize=0) m.x466 = Var(within=Reals,bounds=(0,None),initialize=0) m.x467 = Var(within=Reals,bounds=(0,None),initialize=0) m.x468 = Var(within=Reals,bounds=(0,None),initialize=0) m.x469 = Var(within=Reals,bounds=(0,None),initialize=0) m.x470 = Var(within=Reals,bounds=(0,None),initialize=0) m.x471 = Var(within=Reals,bounds=(0,None),initialize=0) m.x472 = Var(within=Reals,bounds=(0,None),initialize=0) m.x473 = Var(within=Reals,bounds=(0,None),initialize=0) m.x474 = Var(within=Reals,bounds=(0,None),initialize=0) m.x475 = Var(within=Reals,bounds=(0,None),initialize=0) m.x476 = Var(within=Reals,bounds=(0,None),initialize=0) m.x477 = Var(within=Reals,bounds=(0,None),initialize=0) m.x478 = Var(within=Reals,bounds=(0,None),initialize=0) m.x479 = Var(within=Reals,bounds=(0,None),initialize=0) m.x480 = Var(within=Reals,bounds=(0,None),initialize=0) m.x481 = Var(within=Reals,bounds=(0,None),initialize=0) m.x482 = Var(within=Reals,bounds=(0,None),initialize=0) m.x483 = Var(within=Reals,bounds=(0,None),initialize=0) m.x484 = Var(within=Reals,bounds=(0,None),initialize=0) m.x485 = Var(within=Reals,bounds=(0,None),initialize=0) m.x486 = Var(within=Reals,bounds=(0,None),initialize=0) m.x487 = Var(within=Reals,bounds=(0,None),initialize=0) m.x488 = Var(within=Reals,bounds=(0,None),initialize=0) m.x489 = Var(within=Reals,bounds=(0,None),initialize=0) m.x490 = Var(within=Reals,bounds=(0,None),initialize=0) m.x491 = Var(within=Reals,bounds=(0,None),initialize=0) m.x492 = Var(within=Reals,bounds=(0,None),initialize=0) m.x493 = Var(within=Reals,bounds=(0,None),initialize=0) m.x494 = Var(within=Reals,bounds=(0,None),initialize=0) m.x495 = Var(within=Reals,bounds=(0,None),initialize=0) m.x496 = Var(within=Reals,bounds=(0,None),initialize=0) m.x497 = Var(within=Reals,bounds=(0,None),initialize=0) m.x498 = Var(within=Reals,bounds=(0,None),initialize=0) m.x499 = Var(within=Reals,bounds=(0,None),initialize=0) m.x500 = Var(within=Reals,bounds=(0,None),initialize=0) m.x501 = Var(within=Reals,bounds=(0,None),initialize=0) m.x502 = Var(within=Reals,bounds=(0,None),initialize=0) m.x503 = Var(within=Reals,bounds=(0,None),initialize=0) m.x504 = Var(within=Reals,bounds=(0,None),initialize=0) m.x505 = Var(within=Reals,bounds=(0,None),initialize=0) m.x506 = Var(within=Reals,bounds=(0,None),initialize=0) m.x507 = Var(within=Reals,bounds=(0,None),initialize=0) m.x508 = Var(within=Reals,bounds=(0,None),initialize=0) m.x509 = Var(within=Reals,bounds=(0,None),initialize=0) m.x510 = Var(within=Reals,bounds=(0,None),initialize=0) m.x511 = Var(within=Reals,bounds=(0,None),initialize=0) m.x512 = Var(within=Reals,bounds=(0,None),initialize=0) m.x513 = Var(within=Reals,bounds=(0,None),initialize=0) m.x514 = Var(within=Reals,bounds=(0,None),initialize=0) m.x515 = Var(within=Reals,bounds=(0,None),initialize=0) m.x516 = Var(within=Reals,bounds=(0,None),initialize=0) m.x517 = Var(within=Reals,bounds=(0,None),initialize=0) m.x518 = Var(within=Reals,bounds=(0,None),initialize=0) m.x519 = Var(within=Reals,bounds=(0,None),initialize=0) m.x520 = Var(within=Reals,bounds=(0,None),initialize=0) m.x521 = Var(within=Reals,bounds=(0,None),initialize=0) m.x522 = Var(within=Reals,bounds=(0,None),initialize=0) m.x523 = Var(within=Reals,bounds=(0,None),initialize=0) m.x524 = Var(within=Reals,bounds=(0,None),initialize=0) m.x525 = Var(within=Reals,bounds=(0,None),initialize=0) m.x526 = Var(within=Reals,bounds=(0,None),initialize=0) m.x527 = Var(within=Reals,bounds=(0,None),initialize=0) m.x528 = Var(within=Reals,bounds=(0,None),initialize=0) m.x529 = Var(within=Reals,bounds=(0,None),initialize=0) m.x530 = Var(within=Reals,bounds=(0,None),initialize=0) m.x531 = Var(within=Reals,bounds=(0,None),initialize=0) m.x532 = Var(within=Reals,bounds=(0,None),initialize=0) m.x533 = Var(within=Reals,bounds=(0,None),initialize=0) m.x534 = Var(within=Reals,bounds=(0,None),initialize=0) m.x535 = Var(within=Reals,bounds=(0,None),initialize=0) m.x536 = Var(within=Reals,bounds=(0,None),initialize=0) m.x537 = Var(within=Reals,bounds=(0,None),initialize=0) m.x538 = Var(within=Reals,bounds=(0,None),initialize=0) m.x539 = Var(within=Reals,bounds=(0,None),initialize=0) m.x540 = Var(within=Reals,bounds=(0,None),initialize=0) m.x541 = Var(within=Reals,bounds=(0,None),initialize=0) m.x542 = Var(within=Reals,bounds=(0,None),initialize=0) m.x543 = Var(within=Reals,bounds=(0,None),initialize=0) m.x544 = Var(within=Reals,bounds=(0,None),initialize=0) m.x545 = Var(within=Reals,bounds=(0,None),initialize=0) m.x546 = Var(within=Reals,bounds=(0,None),initialize=0) m.b547 = Var(within=Binary,bounds=(0,1),initialize=0) m.b548 = Var(within=Binary,bounds=(0,1),initialize=0) m.b549 = Var(within=Binary,bounds=(0,1),initialize=0) m.b550 = Var(within=Binary,bounds=(0,1),initialize=0) m.b551 = Var(within=Binary,bounds=(0,1),initialize=0) m.b552 = Var(within=Binary,bounds=(0,1),initialize=0) m.b553 = Var(within=Binary,bounds=(0,1),initialize=0) m.b554 = Var(within=Binary,bounds=(0,1),initialize=0) m.b555 = Var(within=Binary,bounds=(0,1),initialize=0) m.b556 = Var(within=Binary,bounds=(0,1),initialize=0) m.b557 = Var(within=Binary,bounds=(0,1),initialize=0) m.b558 = Var(within=Binary,bounds=(0,1),initialize=0) m.b559 = Var(within=Binary,bounds=(0,1),initialize=0) m.b560 = Var(within=Binary,bounds=(0,1),initialize=0) m.b561 = Var(within=Binary,bounds=(0,1),initialize=0) m.b562 = Var(within=Binary,bounds=(0,1),initialize=0) m.b563 = Var(within=Binary,bounds=(0,1),initialize=0) m.b564 = Var(within=Binary,bounds=(0,1),initialize=0) m.b565 = Var(within=Binary,bounds=(0,1),initialize=0) m.b566 = Var(within=Binary,bounds=(0,1),initialize=0) m.b567 = Var(within=Binary,bounds=(0,1),initialize=0) m.b568 = Var(within=Binary,bounds=(0,1),initialize=0) m.b569 = Var(within=Binary,bounds=(0,1),initialize=0) m.b570 = Var(within=Binary,bounds=(0,1),initialize=0) m.b571 = Var(within=Binary,bounds=(0,1),initialize=0) m.b572 = Var(within=Binary,bounds=(0,1),initialize=0) m.b573 = Var(within=Binary,bounds=(0,1),initialize=0) m.b574 = Var(within=Binary,bounds=(0,1),initialize=0) m.b575 = Var(within=Binary,bounds=(0,1),initialize=0) m.b576 = Var(within=Binary,bounds=(0,1),initialize=0) m.b577 = Var(within=Binary,bounds=(0,1),initialize=0) m.b578 = Var(within=Binary,bounds=(0,1),initialize=0) m.b579 = Var(within=Binary,bounds=(0,1),initialize=0) m.b580 = Var(within=Binary,bounds=(0,1),initialize=0) m.b581 = Var(within=Binary,bounds=(0,1),initialize=0) m.b582 = Var(within=Binary,bounds=(0,1),initialize=0) m.b583 = Var(within=Binary,bounds=(0,1),initialize=0) m.b584 = Var(within=Binary,bounds=(0,1),initialize=0) m.b585 = Var(within=Binary,bounds=(0,1),initialize=0) m.b586 = Var(within=Binary,bounds=(0,1),initialize=0) m.b587 = Var(within=Binary,bounds=(0,1),initialize=0) m.b588 = Var(within=Binary,bounds=(0,1),initialize=0) m.x589 = Var(within=Reals,bounds=(0,None),initialize=0) m.x590 = Var(within=Reals,bounds=(0,None),initialize=0) m.x591 = Var(within=Reals,bounds=(0,None),initialize=0) m.x592 = Var(within=Reals,bounds=(0,None),initialize=0) m.x593 = Var(within=Reals,bounds=(0,None),initialize=0) m.x594 = Var(within=Reals,bounds=(0,None),initialize=0) m.x595 = Var(within=Reals,bounds=(0,None),initialize=0) m.x596 = Var(within=Reals,bounds=(0,None),initialize=0) m.x597 = Var(within=Reals,bounds=(0,None),initialize=0) m.x598 = Var(within=Reals,bounds=(0,None),initialize=0) m.x599 = Var(within=Reals,bounds=(0,None),initialize=0) m.x600 = Var(within=Reals,bounds=(0,None),initialize=0) m.x601 = Var(within=Reals,bounds=(0,None),initialize=0) m.x602 = Var(within=Reals,bounds=(0,None),initialize=0) m.x603 = Var(within=Reals,bounds=(0,None),initialize=0) m.x604 = Var(within=Reals,bounds=(0,None),initialize=0) m.x605 = Var(within=Reals,bounds=(0,None),initialize=0) m.x606 = Var(within=Reals,bounds=(0,None),initialize=0) m.x607 = Var(within=Reals,bounds=(0,None),initialize=0) m.x608 = Var(within=Reals,bounds=(0,None),initialize=0) m.x609 = Var(within=Reals,bounds=(0,None),initialize=0) m.x610 = Var(within=Reals,bounds=(0,None),initialize=0) m.x611 = Var(within=Reals,bounds=(0,None),initialize=0) m.x612 = Var(within=Reals,bounds=(0,None),initialize=0) m.x613 = Var(within=Reals,bounds=(0,None),initialize=0) m.x614 = Var(within=Reals,bounds=(0,None),initialize=0) m.x615 = Var(within=Reals,bounds=(0,None),initialize=0) m.x616 = Var(within=Reals,bounds=(0,None),initialize=0) m.x617 = Var(within=Reals,bounds=(0,None),initialize=0) m.x618 = Var(within=Reals,bounds=(0,None),initialize=0) m.x619 = Var(within=Reals,bounds=(0,None),initialize=0) m.x620 = Var(within=Reals,bounds=(0,None),initialize=0) m.x621 = Var(within=Reals,bounds=(0,None),initialize=0) m.x622 = Var(within=Reals,bounds=(0,None),initialize=0) m.x623 = Var(within=Reals,bounds=(0,None),initialize=0) m.x624 = Var(within=Reals,bounds=(0,None),initialize=0) m.x625 = Var(within=Reals,bounds=(0,None),initialize=0) m.x626 = Var(within=Reals,bounds=(0,None),initialize=0) m.x627 = Var(within=Reals,bounds=(0,None),initialize=0) m.x628 = Var(within=Reals,bounds=(0,None),initialize=0) m.x629 = Var(within=Reals,bounds=(0,None),initialize=0) m.x630 = Var(within=Reals,bounds=(0,None),initialize=0) m.x632 = Var(within=Reals,bounds=(0,None),initialize=0) m.x633 = Var(within=Reals,bounds=(0,None),initialize=0) m.x634 = Var(within=Reals,bounds=(0,None),initialize=0) m.x635 = Var(within=Reals,bounds=(0,None),initialize=0) m.x636 = Var(within=Reals,bounds=(0,None),initialize=0) m.x637 = Var(within=Reals,bounds=(0,None),initialize=0) m.x638 = Var(within=Reals,bounds=(0,None),initialize=0) m.x639 = Var(within=Reals,bounds=(0,None),initialize=0) m.x640 = Var(within=Reals,bounds=(0,None),initialize=0) m.x641 = Var(within=Reals,bounds=(0,None),initialize=0) m.x642 = Var(within=Reals,bounds=(0,None),initialize=0) m.x643 = Var(within=Reals,bounds=(0,None),initialize=0) m.x644 = Var(within=Reals,bounds=(0,None),initialize=0) m.x645 = Var(within=Reals,bounds=(0,None),initialize=0) m.x646 = Var(within=Reals,bounds=(0,None),initialize=0) m.x647 = Var(within=Reals,bounds=(0,None),initialize=0) m.x648 = Var(within=Reals,bounds=(0,None),initialize=0) m.x649 = Var(within=Reals,bounds=(0,None),initialize=0) m.x650 = Var(within=Reals,bounds=(0,None),initialize=0) m.x651 = Var(within=Reals,bounds=(0,None),initialize=0) m.x652 = Var(within=Reals,bounds=(0,None),initialize=0) m.x653 = Var(within=Reals,bounds=(0,None),initialize=0) m.x654 = Var(within=Reals,bounds=(0,None),initialize=0) m.x655 = Var(within=Reals,bounds=(0,None),initialize=0) m.x656 = Var(within=Reals,bounds=(0,None),initialize=0) m.x657 = Var(within=Reals,bounds=(0,None),initialize=0) m.x658 = Var(within=Reals,bounds=(0,None),initialize=0) m.x659 = Var(within=Reals,bounds=(0,None),initialize=0) m.x660 = Var(within=Reals,bounds=(0,None),initialize=0) m.x661 = Var(within=Reals,bounds=(0,None),initialize=0) m.x662 = Var(within=Reals,bounds=(0,None),initialize=0) m.x663 = Var(within=Reals,bounds=(0,None),initialize=0) m.x664 = Var(within=Reals,bounds=(0,None),initialize=0) m.x665 = Var(within=Reals,bounds=(0,None),initialize=0) m.x666 = Var(within=Reals,bounds=(0,None),initialize=0) m.x667 = Var(within=Reals,bounds=(0,None),initialize=0) m.x668 = Var(within=Reals,bounds=(0,None),initialize=0) m.x669 = Var(within=Reals,bounds=(0,None),initialize=0) m.x670 = Var(within=Reals,bounds=(0,None),initialize=0) m.x671 = Var(within=Reals,bounds=(0,None),initialize=0) m.x672 = Var(within=Reals,bounds=(0,None),initialize=0) m.x673 = Var(within=Reals,bounds=(0,None),initialize=0) m.obj = Objective(expr= 1.090016011*m.b547 + 3.10674202*m.b548 + 2.475702586*m.b549 + 1.966733944*m.b550 + 1.090016011*m.b551 + 2.019536713*m.b552 + 3.10674202*m.b553 + 1.383540955*m.b554 + 2.087059045*m.b555 + 3.720443668*m.b556 + 1.383540955*m.b557 + 1.794144217*m.b558 + 3.50653318*m.b559 + 1.71812596*m.b560 + 3.834780538*m.b561 + 2.087059045*m.b562 + 1.794144217*m.b563 + 2.239621249*m.b564 + 2.475702586*m.b565 + 2.019536713*m.b566 + 3.720443668*m.b567 + 3.50653318*m.b568 + 2.239621249*m.b569 + 1.098732406*m.b570 + 1.742557876*m.b571 + 1.098732406*m.b572 + 3.606882982*m.b573 + 1.71812596*m.b574 + 2.074958698*m.b575 + 1.966733944*m.b576 + 2.074958698*m.b577 + 3.859970515*m.b578 + 1.742557876*m.b579 + 3.859970515*m.b580 + 3.951460459*m.b581 + 3.834780538*m.b582 + 3.606882982*m.b583 + 2.524064089*m.b584 + 2.524064089*m.b585 + 3.982701487*m.b586 + 3.951460459*m.b587 + 3.982701487*m.b588, sense=minimize) m.c2 = Constraint(expr= - m.x1 - m.x14 - m.x27 - m.x40 + m.x53 + m.x79 + m.x235 + m.x378 == -148) m.c3 = Constraint(expr= - m.x2 - m.x15 - m.x28 - m.x41 + m.x54 + m.x80 + m.x236 + m.x379 == 12) m.c4 = Constraint(expr= - m.x3 - m.x16 - m.x29 - m.x42 + m.x55 + m.x81 + m.x237 + m.x380 == 16) m.c5 = Constraint(expr= - m.x4 - m.x17 - m.x30 - m.x43 + m.x56 + m.x82 + m.x238 + m.x381 == 21) m.c6 = Constraint(expr= - m.x5 - m.x18 - m.x31 - m.x44 + m.x57 + m.x83 + m.x239 + m.x382 == 11) m.c7 = Constraint(expr= - m.x6 - m.x19 - m.x32 - m.x45 + m.x58 + m.x84 + m.x240 + m.x383 == 24) m.c8 = Constraint(expr= - m.x7 - m.x20 - m.x33 - m.x46 + m.x59 + m.x85 + m.x241 + m.x384 == 24) m.c9 = Constraint(expr= - m.x8 - m.x21 - m.x34 - m.x47 + m.x60 + m.x86 + m.x242 + m.x385 == 8) m.c10 = Constraint(expr= - m.x9 - m.x22 - m.x35 - m.x48 + m.x61 + m.x87 + m.x243 + m.x386 == 10) m.c11 = Constraint(expr= - m.x10 - m.x23 - m.x36 - m.x49 + m.x62 + m.x88 + m.x244 + m.x387 == 18) m.c12 = Constraint(expr= - m.x11 - m.x24 - m.x37 - m.x50 + m.x63 + m.x89 + m.x245 + m.x388 == 11) m.c13 = Constraint(expr= - m.x12 - m.x25 - m.x38 - m.x51 + m.x64 + m.x90 + m.x246 + m.x389 == 20) m.c14 = Constraint(expr= - m.x13 - m.x26 - m.x39 - m.x52 + m.x65 + m.x91 + m.x247 + m.x390 == 7) m.c15 = Constraint(expr= m.x1 - m.x53 - m.x66 + m.x248 == 7) m.c16 = Constraint(expr= m.x2 - m.x54 - m.x67 + m.x249 == -175) m.c17 = Constraint(expr= m.x3 - m.x55 - m.x68 + m.x250 == 15) m.c18 = Constraint(expr= m.x4 - m.x56 - m.x69 + m.x251 == 17) m.c19 = Constraint(expr= m.x5 - m.x57 - m.x70 + m.x252 == 20) m.c20 = Constraint(expr= m.x6 - m.x58 - m.x71 + m.x253 == 24) m.c21 = Constraint(expr= m.x7 - m.x59 - m.x72 + m.x254 == 6) m.c22 = Constraint(expr= m.x8 - m.x60 - m.x73 + m.x255 == 19) m.c23 = Constraint(expr= m.x9 - m.x61 - m.x74 + m.x256 == 24) m.c24 = Constraint(expr= m.x10 - m.x62 - m.x75 + m.x257 == 11) m.c25 = Constraint(expr= m.x11 - m.x63 - m.x76 + m.x258 == 15) m.c26 = Constraint(expr= m.x12 - m.x64 - m.x77 + m.x259 == 9) m.c27 = Constraint(expr= m.x13 - m.x65 - m.x78 + m.x260 == 19) m.c28 = Constraint(expr= m.x14 - m.x79 - m.x92 - m.x105 - m.x118 + m.x131 + m.x196 + m.x261 == 15) m.c29 = Constraint(expr= m.x15 - m.x80 - m.x93 - m.x106 - m.x119 + m.x132 + m.x197 + m.x262 == 13) m.c30 = Constraint(expr= m.x16 - m.x81 - m.x94 - m.x107 - m.x120 + m.x133 + m.x198 + m.x263 == -231) m.c31 = Constraint(expr= m.x17 - m.x82 - m.x95 - m.x108 - m.x121 + m.x134 + m.x199 + m.x264 == 23) m.c32 = Constraint(expr= m.x18 - m.x83 - m.x96 - m.x109 - m.x122 + m.x135 + m.x200 + m.x265 == 18) m.c33 = Constraint(expr= m.x19 - m.x84 - m.x97 - m.x110 - m.x123 + m.x136 + m.x201 + m.x266 == 19) m.c34 = Constraint(expr= m.x20 - m.x85 - m.x98 - m.x111 - m.x124 + m.x137 + m.x202 + m.x267 == 9) m.c35 = Constraint(expr= m.x21 - m.x86 - m.x99 - m.x112 - m.x125 + m.x138 + m.x203 + m.x268 == 8) m.c36 = Constraint(expr= m.x22 - m.x87 - m.x100 - m.x113 - m.x126 + m.x139 + m.x204 + m.x269 == 16) m.c37 = Constraint(expr= m.x23 - m.x88 - m.x101 - m.x114 - m.x127 + m.x140 + m.x205 + m.x270 == 19) m.c38 = Constraint(expr= m.x24 - m.x89 - m.x102 - m.x115 - m.x128 + m.x141 + m.x206 + m.x271 == 19) m.c39 = Constraint(expr= m.x25 - m.x90 - m.x103 - m.x116 - m.x129 + m.x142 + m.x207 + m.x272 == 21) m.c40 = Constraint(expr= m.x26 - m.x91 - m.x104 - m.x117 - m.x130 + m.x143 + m.x208 + m.x273 == 8) m.c41 = Constraint(expr= m.x92 - m.x131 - m.x144 - m.x157 - m.x170 - m.x183 + m.x209 + m.x274 + m.x352 + m.x456 == 12) m.c42 = Constraint(expr= m.x93 - m.x132 - m.x145 - m.x158 - m.x171 - m.x184 + m.x210 + m.x275 + m.x353 + m.x457 == 20) m.c43 = Constraint(expr= m.x94 - m.x133 - m.x146 - m.x159 - m.x172 - m.x185 + m.x211 + m.x276 + m.x354 + m.x458 == 23) m.c44 = Constraint(expr= m.x95 - m.x134 - m.x147 - m.x160 - m.x173 - m.x186 + m.x212 + m.x277 + m.x355 + m.x459 == -187) m.c45 = Constraint(expr= m.x96 - m.x135 - m.x148 - m.x161 - m.x174 - m.x187 + m.x213 + m.x278 + m.x356 + m.x460 == 21) m.c46 = Constraint(expr= m.x97 - m.x136 - m.x149 - m.x162 - m.x175 - m.x188 + m.x214 + m.x279 + m.x357 + m.x461 == 12) m.c47 = Constraint(expr= m.x98 - m.x137 - m.x150 - m.x163 - m.x176 - m.x189 + m.x215 + m.x280 + m.x358 + m.x462 == 6) m.c48 = Constraint(expr= m.x99 - m.x138 - m.x151 - m.x164 - m.x177 - m.x190 + m.x216 + m.x281 + m.x359 + m.x463 == 11) m.c49 = Constraint(expr= m.x100 - m.x139 - m.x152 - m.x165 - m.x178 - m.x191 + m.x217 + m.x282 + m.x360 + m.x464 == 19) m.c50 = Constraint(expr= m.x101 - m.x140 - m.x153 - m.x166 - m.x179 - m.x192 + m.x218 + m.x283 + m.x361 + m.x465 == 9) m.c51 = Constraint(expr= m.x102 - m.x141 - m.x154 - m.x167 - m.x180 - m.x193 + m.x219 + m.x284 + m.x362 + m.x466 == 17) m.c52 = Constraint(expr= m.x103 - m.x142 - m.x155 - m.x168 - m.x181 - m.x194 + m.x220 + m.x285 + m.x363 + m.x467 == 23) m.c53 = Constraint(expr= m.x104 - m.x143 - m.x156 - m.x169 - m.x182 - m.x195 + m.x221 + m.x286 + m.x364 + m.x468 == 21) m.c54 = Constraint(expr= m.x105 + m.x144 - m.x196 - m.x209 - m.x222 + m.x287 == 14) m.c55 = Constraint(expr= m.x106 + m.x145 - m.x197 - m.x210 - m.x223 + m.x288 == 7) m.c56 = Constraint(expr= m.x107 + m.x146 - m.x198 - m.x211 - m.x224 + m.x289 == 22) m.c57 = Constraint(expr= m.x108 + m.x147 - m.x199 - m.x212 - m.x225 + m.x290 == 14) m.c58 = Constraint(expr= m.x109 + m.x148 - m.x200 - m.x213 - m.x226 + m.x291 == -170) m.c59 = Constraint(expr= m.x110 + m.x149 - m.x201 - m.x214 - m.x227 + m.x292 == 12) m.c60 = Constraint(expr= m.x111 + m.x150 - m.x202 - m.x215 - m.x228 + m.x293 == 13) m.c61 = Constraint(expr= m.x112 + m.x151 - m.x203 - m.x216 - m.x229 + m.x294 == 10) m.c62 = Constraint(expr= m.x113 + m.x152 - m.x204 - m.x217 - m.x230 + m.x295 == 15) m.c63 = Constraint(expr= m.x114 + m.x153 - m.x205 - m.x218 - m.x231 + m.x296 == 9) m.c64 = Constraint(expr= m.x115 + m.x154 - m.x206 - m.x219 - m.x232 + m.x297 == 14) m.c65 = Constraint(expr= m.x116 + m.x155 - m.x207 - m.x220 - m.x233 + m.x298 == 16) m.c66 = Constraint(expr= m.x117 + m.x156 - m.x208 - m.x221 - m.x234 + m.x299 == 8) m.c67 = Constraint(expr= m.x27 + m.x66 + m.x118 + m.x157 + m.x222 - m.x235 - m.x248 - m.x261 - m.x274 - m.x287 - m.x300 - m.x313 + m.x326 + m.x417 == 13) m.c68 = Constraint(expr= m.x28 + m.x67 + m.x119 + m.x158 + m.x223 - m.x236 - m.x249 - m.x262 - m.x275 - m.x288 - m.x301 - m.x314 + m.x327 + m.x418 == 22) m.c69 = Constraint(expr= m.x29 + m.x68 + m.x120 + m.x159 + m.x224 - m.x237 - m.x250 - m.x263 - m.x276 - m.x289 - m.x302 - m.x315 + m.x328 + m.x419 == 23) m.c70 = Constraint(expr= m.x30 + m.x69 + m.x121 + m.x160 + m.x225 - m.x238 - m.x251 - m.x264 - m.x277 - m.x290 - m.x303 - m.x316 + m.x329 + m.x420 == 7) m.c71 = Constraint(expr= m.x31 + m.x70 + m.x122 + m.x161 + m.x226 - m.x239 - m.x252 - m.x265 - m.x278 - m.x291 - m.x304 - m.x317 + m.x330 + m.x421 == 16) m.c72 = Constraint(expr= m.x32 + m.x71 + m.x123 + m.x162 + m.x227 - m.x240 - m.x253 - m.x266 - m.x279 - m.x292 - m.x305 - m.x318 + m.x331 + m.x422 == -169) m.c73 = Constraint(expr= m.x33 + m.x72 + m.x124 + m.x163 + m.x228 - m.x241 - m.x254 - m.x267 - m.x280 - m.x293 - m.x306 - m.x319 + m.x332 + m.x423 == 20) m.c74 = Constraint(expr= m.x34 + m.x73 + m.x125 + m.x164 + m.x229 - m.x242 - m.x255 - m.x268 - m.x281 - m.x294 - m.x307 - m.x320 + m.x333 + m.x424 == 14) m.c75 = Constraint(expr= m.x35 + m.x74 + m.x126 + m.x165 + m.x230 - m.x243 - m.x256 - m.x269 - m.x282 - m.x295 - m.x308 - m.x321 + m.x334 + m.x425 == 11) m.c76 = Constraint(expr= m.x36 + m.x75 + m.x127 + m.x166 + m.x231 - m.x244 - m.x257 - m.x270 - m.x283 - m.x296 - m.x309 - m.x322 + m.x335 + m.x426 == 13) m.c77 = Constraint(expr= m.x37 + m.x76 + m.x128 + m.x167 + m.x232 - m.x245 - m.x258 - m.x271 - m.x284 - m.x297 - m.x310 - m.x323 + m.x336 + m.x427 == 10) m.c78 = Constraint(expr= m.x38 + m.x77 + m.x129 + m.x168 + m.x233 - m.x246 - m.x259 - m.x272 - m.x285 - m.x298 - m.x311 - m.x324 + m.x337 + m.x428 == 13) m.c79 = Constraint(expr= m.x39 + m.x78 + m.x130 + m.x169 + m.x234 - m.x247 - m.x260 - m.x273 - m.x286 - m.x299 - m.x312 - m.x325 + m.x338 + m.x429 == 12) m.c80 = Constraint(expr= m.x300 - m.x326 - m.x339 + m.x469 == 6) m.c81 = Constraint(expr= m.x301 - m.x327 - m.x340 + m.x470 == 16) m.c82 = Constraint(expr= m.x302 - m.x328 - m.x341 + m.x471 == 22) m.c83 = Constraint(expr= m.x303 - m.x329 - m.x342 + m.x472 == 9) m.c84 = Constraint(expr= m.x304 - m.x330 - m.x343 + m.x473 == 13) m.c85 = Constraint(expr= m.x305 - m.x331 - m.x344 + m.x474 == 7) m.c86 = Constraint(expr= m.x306 - m.x332 - m.x345 + m.x475 == -156) m.c87 = Constraint(expr= m.x307 - m.x333 - m.x346 + m.x476 == 20) m.c88 = Constraint(expr= m.x308 - m.x334 - m.x347 + m.x477 == 19) m.c89 = Constraint(expr= m.x309 - m.x335 - m.x348 + m.x478 == 24) m.c90 = Constraint(expr= m.x310 - m.x336 - m.x349 + m.x479 == 8) m.c91 = Constraint(expr= m.x311 - m.x337 - m.x350 + m.x480 == 21) m.c92 = Constraint(expr= m.x312 - m.x338 - m.x351 + m.x481 == 6) m.c93 = Constraint(expr= m.x170 - m.x352 - m.x365 + m.x391 == 15) m.c94 = Constraint(expr= m.x171 - m.x353 - m.x366 + m.x392 == 15) m.c95 = Constraint(expr= m.x172 - m.x354 - m.x367 + m.x393 == 23) m.c96 = Constraint(expr= m.x173 - m.x355 - m.x368 + m.x394 == 25) m.c97 = Constraint(expr= m.x174 - m.x356 - m.x369 + m.x395 == 20) m.c98 = Constraint(expr= m.x175 - m.x357 - m.x370 + m.x396 == 7) m.c99 = Constraint(expr= m.x176 - m.x358 - m.x371 + m.x397 == 19) m.c100 = Constraint(expr= m.x177 - m.x359 - m.x372 + m.x398 == -177) m.c101 = Constraint(expr= m.x178 - m.x360 - m.x373 + m.x399 == 7) m.c102 = Constraint(expr= m.x179 - m.x361 - m.x374 + m.x400 == 18) m.c103 = Constraint(expr= m.x180 - m.x362 - m.x375 + m.x401 == 25) m.c104 = Constraint(expr= m.x181 - m.x363 - m.x376 + m.x402 == 20) m.c105 = Constraint(expr= m.x182 - m.x364 - m.x377 + m.x403 == 18) m.c106 = Constraint(expr= m.x40 + m.x365 - m.x378 - m.x391 - m.x404 + m.x430 == 8) m.c107 = Constraint(expr= m.x41 + m.x366 - m.x379 - m.x392 - m.x405 + m.x431 == 11) m.c108 = Constraint(expr= m.x42 + m.x367 - m.x380 - m.x393 - m.x406 + m.x432 == 23) m.c109 = Constraint(expr= m.x43 + m.x368 - m.x381 - m.x394 - m.x407 + m.x433 == 7) m.c110 = Constraint(expr= m.x44 + m.x369 - m.x382 - m.x395 - m.x408 + m.x434 == 5) m.c111 = Constraint(expr= m.x45 + m.x370 - m.x383 - m.x396 - m.x409 + m.x435 == 15) m.c112 = Constraint(expr= m.x46 + m.x371 - m.x384 - m.x397 - m.x410 + m.x436 == 7) m.c113 = Constraint(expr= m.x47 + m.x372 - m.x385 - m.x398 - m.x411 + m.x437 == 10) m.c114 = Constraint(expr= m.x48 + m.x373 - m.x386 - m.x399 - m.x412 + m.x438 == -179) m.c115 = Constraint(expr= m.x49 + m.x374 - m.x387 - m.x400 - m.x413 + m.x439 == 20) m.c116 = Constraint(expr= m.x50 + m.x375 - m.x388 - m.x401 - m.x414 + m.x440 == 18) m.c117 = Constraint(expr= m.x51 + m.x376 - m.x389 - m.x402 - m.x415 + m.x441 == 8) m.c118 = Constraint(expr= m.x52 + m.x377 - m.x390 - m.x403 - m.x416 + m.x442 == 12) m.c119 = Constraint(expr= m.x313 + m.x404 - m.x417 - m.x430 - m.x443 + m.x521 == 9) m.c120 = Constraint(expr= m.x314 + m.x405 - m.x418 - m.x431 - m.x444 + m.x522 == 12) m.c121 = Constraint(expr= m.x315 + m.x406 - m.x419 - m.x432 - m.x445 + m.x523 == 24) m.c122 = Constraint(expr= m.x316 + m.x407 - m.x420 - m.x433 - m.x446 + m.x524 == 21) m.c123 = Constraint(expr= m.x317 + m.x408 - m.x421 - m.x434 - m.x447 + m.x525 == 8) m.c124 = Constraint(expr= m.x318 + m.x409 - m.x422 - m.x435 - m.x448 + m.x526 == 9) m.c125 = Constraint(expr= m.x319 + m.x410 - m.x423 - m.x436 - m.x449 + m.x527 == 11) m.c126 = Constraint(expr= m.x320 + m.x411 - m.x424 - m.x437 - m.x450 + m.x528 == 13) m.c127 = Constraint(expr= m.x321 + m.x412 - m.x425 - m.x438 - m.x451 + m.x529 == 11) m.c128 = Constraint(expr= m.x322 + m.x413 - m.x426 - m.x439 - m.x452 + m.x530 == -183) m.c129 = Constraint(expr= m.x323 + m.x414 - m.x427 - m.x440 - m.x453 + m.x531 == 16) m.c130 = Constraint(expr= m.x324 + m.x415 - m.x428 - m.x441 - m.x454 + m.x532 == 14) m.c131 = Constraint(expr= m.x325 + m.x416 - m.x429 - m.x442 - m.x455 + m.x533 == 17) m.c132 = Constraint(expr= m.x183 + m.x339 - m.x456 - m.x469 - m.x482 + m.x495 == 22) m.c133 = Constraint(expr= m.x184 + m.x340 - m.x457 - m.x470 - m.x483 + m.x496 == 12) m.c134 = Constraint(expr= m.x185 + m.x341 - m.x458 - m.x471 - m.x484 + m.x497 == 7) m.c135 = Constraint(expr= m.x186 + m.x342 - m.x459 - m.x472 - m.x485 + m.x498 == 12) m.c136 = Constraint(expr= m.x187 + m.x343 - m.x460 - m.x473 - m.x486 + m.x499 == 12) m.c137 = Constraint(expr= m.x188 + m.x344 - m.x461 - m.x474 - m.x487 + m.x500 == 10) m.c138 = Constraint(expr= m.x189 + m.x345 - m.x462 - m.x475 - m.x488 + m.x501 == 11) m.c139 = Constraint(expr= m.x190 + m.x346 - m.x463 - m.x476 - m.x489 + m.x502 == 17) m.c140 = Constraint(expr= m.x191 + m.x347 - m.x464 - m.x477 - m.x490 + m.x503 == 17) m.c141 = Constraint(expr= m.x192 + m.x348 - m.x465 - m.x478 - m.x491 + m.x504 == 12) m.c142 = Constraint(expr= m.x193 + m.x349 - m.x466 - m.x479 - m.x492 + m.x505 == -185) m.c143 = Constraint(expr= m.x194 + m.x350 - m.x467 - m.x480 - m.x493 + m.x506 == 10) m.c144 = Constraint(expr= m.x195 + m.x351 - m.x468 - m.x481 - m.x494 + m.x507 == 21) m.c145 = Constraint(expr= m.x482 - m.x495 - m.x508 + m.x534 == 8) m.c146 = Constraint(expr= m.x483 - m.x496 - m.x509 + m.x535 == 20) m.c147 = Constraint(expr= m.x484 - m.x497 - m.x510 + m.x536 == 23) m.c148 = Constraint(expr= m.x485 - m.x498 - m.x511 + m.x537 == 18) m.c149 = Constraint(expr= m.x486 - m.x499 - m.x512 + m.x538 == 15) m.c150 = Constraint(expr= m.x487 - m.x500 - m.x513 + m.x539 == 22) m.c151 = Constraint(expr= m.x488 - m.x501 - m.x514 + m.x540 == 17) m.c152 = Constraint(expr= m.x489 - m.x502 - m.x515 + m.x541 == 24) m.c153 = Constraint(expr= m.x490 - m.x503 - m.x516 + m.x542 == 7) m.c154 = Constraint(expr= m.x491 - m.x504 - m.x517 + m.x543 == 16) m.c155 = Constraint(expr= m.x492 - m.x505 - m.x518 + m.x544 == 24) m.c156 = Constraint(expr= m.x493 - m.x506 - m.x519 + m.x545 == -200) m.c157 = Constraint(expr= m.x494 - m.x507 - m.x520 + m.x546 == 8) m.c158 = Constraint(expr= m.x443 + m.x508 - m.x521 - m.x534 == 19) m.c159 = Constraint(expr= m.x444 + m.x509 - m.x522 - m.x535 == 15) m.c160 = Constraint(expr= m.x445 + m.x510 - m.x523 - m.x536 == 10) m.c161 = Constraint(expr= m.x446 + m.x511 - m.x524 - m.x537 == 13) m.c162 = Constraint(expr= m.x447 + m.x512 - m.x525 - m.x538 == 11) m.c163 = Constraint(expr= m.x448 + m.x513 - m.x526 - m.x539 == 8) m.c164 = Constraint(expr= m.x449 + m.x514 - m.x527 - m.x540 == 13) m.c165 = Constraint(expr= m.x450 + m.x515 - m.x528 - m.x541 == 23) m.c166 = Constraint(expr= m.x451 + m.x516 - m.x529 - m.x542 == 23) m.c167 = Constraint(expr= m.x452 + m.x517 - m.x530 - m.x543 == 14) m.c168 = Constraint(expr= m.x453 + m.x518 - m.x531 - m.x544 == 8) m.c169 = Constraint(expr= m.x454 + m.x519 - m.x532 - m.x545 == 25) m.c170 = Constraint(expr= m.x455 + m.x520 - m.x533 - m.x546 == -157) m.c171 = Constraint(expr= - m.x1 - m.x2 - m.x3 - m.x4 - m.x5 - m.x6 - m.x7 - m.x8 - m.x9 - m.x10 - m.x11 - m.x12 - m.x13 + m.x632 >= 0) m.c172 = Constraint(expr= - m.x14 - m.x15 - m.x16 - m.x17 - m.x18 - m.x19 - m.x20 - m.x21 - m.x22 - m.x23 - m.x24 - m.x25 - m.x26 + m.x633 >= 0) m.c173 = Constraint(expr= - m.x27 - m.x28 - m.x29 - m.x30 - m.x31 - m.x32 - m.x33 - m.x34 - m.x35 - m.x36 - m.x37 - m.x38 - m.x39 + m.x634 >= 0) m.c174 = Constraint(expr= - m.x40 - m.x41 - m.x42 - m.x43 - m.x44 - m.x45 - m.x46 - m.x47 - m.x48 - m.x49 - m.x50 - m.x51 - m.x52 + m.x635 >= 0) m.c175 = Constraint(expr= - m.x53 - m.x54 - m.x55 - m.x56 - m.x57 - m.x58 - m.x59 - m.x60 - m.x61 - m.x62 - m.x63 - m.x64 - m.x65 + m.x636 >= 0) m.c176 = Constraint(expr= - m.x66 - m.x67 - m.x68 - m.x69 - m.x70 - m.x71 - m.x72 - m.x73 - m.x74 - m.x75 - m.x76 - m.x77 - m.x78 + m.x637 >= 0) m.c177 = Constraint(expr= - m.x79 - m.x80 - m.x81 - m.x82 - m.x83 - m.x84 - m.x85 - m.x86 - m.x87 - m.x88 - m.x89 - m.x90 - m.x91 + m.x638 >= 0) m.c178 = Constraint(expr= - m.x92 - m.x93 - m.x94 - m.x95 - m.x96 - m.x97 - m.x98 - m.x99 - m.x100 - m.x101 - m.x102 - m.x103 - m.x104 + m.x639 >= 0) m.c179 = Constraint(expr= - m.x105 - m.x106 - m.x107 - m.x108 - m.x109 - m.x110 - m.x111 - m.x112 - m.x113 - m.x114 - m.x115 - m.x116 - m.x117 + m.x640 >= 0) m.c180 = Constraint(expr= - m.x118 - m.x119 - m.x120 - m.x121 - m.x122 - m.x123 - m.x124 - m.x125 - m.x126 - m.x127 - m.x128 - m.x129 - m.x130 + m.x641 >= 0) m.c181 = Constraint(expr= - m.x131 - m.x132 - m.x133 - m.x134 - m.x135 - m.x136 - m.x137 - m.x138 - m.x139 - m.x140 - m.x141 - m.x142 - m.x143 + m.x642 >= 0) m.c182 = Constraint(expr= - m.x144 - m.x145 - m.x146 - m.x147 - m.x148 - m.x149 - m.x150 - m.x151 - m.x152 - m.x153 - m.x154 - m.x155 - m.x156 + m.x643 >= 0) m.c183 = Constraint(expr= - m.x157 - m.x158 - m.x159 - m.x160 - m.x161 - m.x162 - m.x163 - m.x164 - m.x165 - m.x166 - m.x167 - m.x168 - m.x169 + m.x644 >= 0) m.c184 = Constraint(expr= - m.x170 - m.x171 - m.x172 - m.x173 - m.x174 - m.x175 - m.x176 - m.x177 - m.x178 - m.x179 - m.x180 - m.x181 - m.x182 + m.x645 >= 0) m.c185 = Constraint(expr= - m.x183 - m.x184 - m.x185 - m.x186 - m.x187 - m.x188 - m.x189 - m.x190 - m.x191 - m.x192 - m.x193 - m.x194 - m.x195 + m.x646 >= 0) m.c186 = Constraint(expr= - m.x196 - m.x197 - m.x198 - m.x199 - m.x200 - m.x201 - m.x202 - m.x203 - m.x204 - m.x205 - m.x206 - m.x207 - m.x208 + m.x647 >= 0) m.c187 = Constraint(expr= - m.x209 - m.x210 - m.x211 - m.x212 - m.x213 - m.x214 - m.x215 - m.x216 - m.x217 - m.x218 - m.x219 - m.x220 - m.x221 + m.x648 >= 0) m.c188 = Constraint(expr= - m.x222 - m.x223 - m.x224 - m.x225 - m.x226 - m.x227 - m.x228 - m.x229 - m.x230 - m.x231 - m.x232 - m.x233 - m.x234 + m.x649 >= 0) m.c189 = Constraint(expr= - m.x235 - m.x236 - m.x237 - m.x238 - m.x239 - m.x240 - m.x241 - m.x242 - m.x243 - m.x244 - m.x245 - m.x246 - m.x247 + m.x650 >= 0) m.c190 = Constraint(expr= - m.x248 - m.x249 - m.x250 - m.x251 - m.x252 - m.x253 - m.x254 - m.x255 - m.x256 - m.x257 - m.x258 - m.x259 - m.x260 + m.x651 >= 0) m.c191 = Constraint(expr= - m.x261 - m.x262 - m.x263 - m.x264 - m.x265 - m.x266 - m.x267 - m.x268 - m.x269 - m.x270 - m.x271 - m.x272 - m.x273 + m.x652 >= 0) m.c192 = Constraint(expr= - m.x274 - m.x275 - m.x276 - m.x277 - m.x278 - m.x279 - m.x280 - m.x281 - m.x282 - m.x283 - m.x284 - m.x285 - m.x286 + m.x653 >= 0) m.c193 = Constraint(expr= - m.x287 - m.x288 - m.x289 - m.x290 - m.x291 - m.x292 - m.x293 - m.x294 - m.x295 - m.x296 - m.x297 - m.x298 - m.x299 + m.x654 >= 0) m.c194 = Constraint(expr= - m.x300 - m.x301 - m.x302 - m.x303 - m.x304 - m.x305 - m.x306 - m.x307 - m.x308 - m.x309 - m.x310 - m.x311 - m.x312 + m.x655 >= 0) m.c195 = Constraint(expr= - m.x313 - m.x314 - m.x315 - m.x316 - m.x317 - m.x318 - m.x319 - m.x320 - m.x321 - m.x322 - m.x323 - m.x324 - m.x325 + m.x656 >= 0) m.c196 = Constraint(expr= - m.x326 - m.x327 - m.x328 - m.x329 - m.x330 - m.x331 - m.x332 - m.x333 - m.x334 - m.x335 - m.x336 - m.x337 - m.x338 + m.x657 >= 0) m.c197 = Constraint(expr= - m.x339 - m.x340 - m.x341 - m.x342 - m.x343 - m.x344 - m.x345 - m.x346 - m.x347 - m.x348 - m.x349 - m.x350 - m.x351 + m.x658 >= 0) m.c198 = Constraint(expr= - m.x352 - m.x353 - m.x354 - m.x355 - m.x356 - m.x357 - m.x358 - m.x359 - m.x360 - m.x361 - m.x362 - m.x363 - m.x364 + m.x659 >= 0) m.c199 = Constraint(expr= - m.x365 - m.x366 - m.x367 - m.x368 - m.x369 - m.x370 - m.x371 - m.x372 - m.x373 - m.x374 - m.x375 - m.x376 - m.x377 + m.x660 >= 0) m.c200 = Constraint(expr= - m.x378 - m.x379 - m.x380 - m.x381 - m.x382 - m.x383 - m.x384 - m.x385 - m.x386 - m.x387 - m.x388 - m.x389 - m.x390 + m.x661 >= 0) m.c201 = Constraint(expr= - m.x391 - m.x392 - m.x393 - m.x394 - m.x395 - m.x396 - m.x397 - m.x398 - m.x399 - m.x400 - m.x401 - m.x402 - m.x403 + m.x662 >= 0) m.c202 = Constraint(expr= - m.x404 - m.x405 - m.x406 - m.x407 - m.x408 - m.x409 - m.x410 - m.x411 - m.x412 - m.x413 - m.x414 - m.x415 - m.x416 + m.x663 >= 0) m.c203 = Constraint(expr= - m.x417 - m.x418 - m.x419 - m.x420 - m.x421 - m.x422 - m.x423 - m.x424 - m.x425 - m.x426 - m.x427 - m.x428 - m.x429 + m.x664 >= 0) m.c204 = Constraint(expr= - m.x430 - m.x431 - m.x432 - m.x433 - m.x434 - m.x435 - m.x436 - m.x437 - m.x438 - m.x439 - m.x440 - m.x441 - m.x442 + m.x665 >= 0) m.c205 = Constraint(expr= - m.x443 - m.x444 - m.x445 - m.x446 - m.x447 - m.x448 - m.x449 - m.x450 - m.x451 - m.x452 - m.x453 - m.x454 - m.x455 + m.x666 >= 0) m.c206 = Constraint(expr= - m.x456 - m.x457 - m.x458 - m.x459 - m.x460 - m.x461 - m.x462 - m.x463 - m.x464 - m.x465 - m.x466 - m.x467 - m.x468 + m.x667 >= 0) m.c207 = Constraint(expr= - m.x469 - m.x470 - m.x471 - m.x472 - m.x473 - m.x474 - m.x475 - m.x476 - m.x477 - m.x478 - m.x479 - m.x480 - m.x481 + m.x668 >= 0) m.c208 = Constraint(expr= - m.x482 - m.x483 - m.x484 - m.x485 - m.x486 - m.x487 - m.x488 - m.x489 - m.x490 - m.x491 - m.x492 - m.x493 - m.x494 + m.x669 >= 0) m.c209 = Constraint(expr= - m.x495 - m.x496 - m.x497 - m.x498 - m.x499 - m.x500 - m.x501 - m.x502 - m.x503 - m.x504 - m.x505 - m.x506 - m.x507 + m.x670 >= 0) m.c210 = Constraint(expr= - m.x508 - m.x509 - m.x510 - m.x511 - m.x512 - m.x513 - m.x514 - m.x515 - m.x516 - m.x517 - m.x518 - m.x519 - m.x520 + m.x671 >= 0) m.c211 = Constraint(expr= - m.x521 - m.x522 - m.x523 - m.x524 - m.x525 - m.x526 - m.x527 - m.x528 - m.x529 - m.x530 - m.x531 - m.x532 - m.x533 + m.x672 >= 0) m.c212 = Constraint(expr= - m.x534 - m.x535 - m.x536 - m.x537 - m.x538 - m.x539 - m.x540 - m.x541 - m.x542 - m.x543 - m.x544 - m.x545 - m.x546 + m.x673 >= 0) m.c213 = Constraint(expr=166*m.x632*m.b547 - 166*m.b547*m.x589 + m.x632*m.x589 <= 0) m.c214 = Constraint(expr=463*m.x633*m.b548 - 463*m.b548*m.x590 + m.x633*m.x590 <= 0) m.c215 = Constraint(expr=522*m.x634*m.b549 - 522*m.b549*m.x591 + m.x634*m.x591 <= 0) m.c216 = Constraint(expr=141*m.x635*m.b550 - 141*m.b550*m.x592 + m.x635*m.x592 <= 0) m.c217 = Constraint(expr=166*m.x636*m.b551 - 166*m.b551*m.x593 + m.x636*m.x593 <= 0) m.c218 = Constraint(expr=265*m.x637*m.b552 - 265*m.b552*m.x594 + m.x637*m.x594 <= 0) m.c219 = Constraint(expr=463*m.x638*m.b553 - 463*m.b553*m.x595 + m.x638*m.x595 <= 0) m.c220 = Constraint(expr=456*m.x639*m.b554 - 456*m.b554*m.x596 + m.x639*m.x596 <= 0) m.c221 = Constraint(expr=526*m.x640*m.b555 - 526*m.b555*m.x597 + m.x640*m.x597 <= 0) m.c222 = Constraint(expr=152*m.x641*m.b556 - 152*m.b556*m.x598 + m.x641*m.x598 <= 0) m.c223 = Constraint(expr=456*m.x642*m.b557 - 456*m.b557*m.x599 + m.x642*m.x599 <= 0) m.c224 = Constraint(expr=384*m.x643*m.b558 - 384*m.b558*m.x600 + m.x643*m.x600 <= 0) m.c225 = Constraint(expr=441*m.x644*m.b559 - 441*m.b559*m.x601 + m.x644*m.x601 <= 0) m.c226 = Constraint(expr=309*m.x645*m.b560 - 309*m.b560*m.x602 + m.x645*m.x602 <= 0) m.c227 = Constraint(expr=233*m.x646*m.b561 - 233*m.b561*m.x603 + m.x646*m.x603 <= 0) m.c228 = Constraint(expr=526*m.x647*m.b562 - 526*m.b562*m.x604 + m.x647*m.x604 <= 0) m.c229 = Constraint(expr=384*m.x648*m.b563 - 384*m.b563*m.x605 + m.x648*m.x605 <= 0) m.c230 = Constraint(expr=203*m.x649*m.b564 - 203*m.b564*m.x606 + m.x649*m.x606 <= 0) m.c231 = Constraint(expr=522*m.x650*m.b565 - 522*m.b565*m.x607 + m.x650*m.x607 <= 0) m.c232 = Constraint(expr=265*m.x651*m.b566 - 265*m.b566*m.x608 + m.x651*m.x608 <= 0) m.c233 = Constraint(expr=152*m.x652*m.b567 - 152*m.b567*m.x609 + m.x652*m.x609 <= 0) m.c234 = Constraint(expr=441*m.x653*m.b568 - 441*m.b568*m.x610 + m.x653*m.x610 <= 0) m.c235 = Constraint(expr=203*m.x654*m.b569 - 203*m.b569*m.x611 + m.x654*m.x611 <= 0) m.c236 = Constraint(expr=284*m.x655*m.b570 - 284*m.b570*m.x612 + m.x655*m.x612 <= 0) m.c237 = Constraint(expr=426*m.x656*m.b571 - 426*m.b571*m.x613 + m.x656*m.x613 <= 0) m.c238 = Constraint(expr=284*m.x657*m.b572 - 284*m.b572*m.x614 + m.x657*m.x614 <= 0) m.c239 = Constraint(expr=109*m.x658*m.b573 - 109*m.b573*m.x615 + m.x658*m.x615 <= 0) m.c240 = Constraint(expr=309*m.x659*m.b574 - 309*m.b574*m.x616 + m.x659*m.x616 <= 0) m.c241 = Constraint(expr=434*m.x660*m.b575 - 434*m.b575*m.x617 + m.x660*m.x617 <= 0) m.c242 = Constraint(expr=141*m.x661*m.b576 - 141*m.b576*m.x618 + m.x661*m.x618 <= 0) m.c243 = Constraint(expr=434*m.x662*m.b577 - 434*m.b577*m.x619 + m.x662*m.x619 <= 0) m.c244 = Constraint(expr=403*m.x663*m.b578 - 403*m.b578*m.x620 + m.x663*m.x620 <= 0) m.c245 = Constraint(expr=426*m.x664*m.b579 - 426*m.b579*m.x621 + m.x664*m.x621 <= 0) m.c246 = Constraint(expr=403*m.x665*m.b580 - 403*m.b580*m.x622 + m.x665*m.x622 <= 0) m.c247 = Constraint(expr=151*m.x666*m.b581 - 151*m.b581*m.x623 + m.x666*m.x623 <= 0) m.c248 = Constraint(expr=233*m.x667*m.b582 - 233*m.b582*m.x624 + m.x667*m.x624 <= 0) m.c249 = Constraint(expr=109*m.x668*m.b583 - 109*m.b583*m.x625 + m.x668*m.x625 <= 0) m.c250 = Constraint(expr=367*m.x669*m.b584 - 367*m.b584*m.x626 + m.x669*m.x626 <= 0) m.c251 = Constraint(expr=367*m.x670*m.b585 - 367*m.b585*m.x627 + m.x670*m.x627 <= 0) m.c252 = Constraint(expr=382*m.x671*m.b586 - 382*m.b586*m.x628 + m.x671*m.x628 <= 0) m.c253 = Constraint(expr=151*m.x672*m.b587 - 151*m.b587*m.x629 + m.x672*m.x629 <= 0) m.c254 = Constraint(expr=382*m.x673*m.b588 - 382*m.b588*m.x630 + m.x673*m.x630 <= 0) m.c255 = Constraint(expr= m.x589 + m.x590 + m.x591 + m.x592 + m.x593 + m.x594 + m.x595 + m.x596 + m.x597 + m.x598 + m.x599 + m.x600 + m.x601 + m.x602 + m.x603 + m.x604 + m.x605 + m.x606 + m.x607 + m.x608 + m.x609 + m.x610 + m.x611 + m.x612 + m.x613 + m.x614 + m.x615 + m.x616 + m.x617 + m.x618 + m.x619 + m.x620 + m.x621 + m.x622 + m.x623 + m.x624 + m.x625 + m.x626 + m.x627 + m.x628 + m.x629 + m.x630 <= 18536) m.c256 = Constraint(expr= m.x1 + m.x2 + m.x3 + m.x4 + m.x5 + m.x6 + m.x7 + m.x8 + m.x9 + m.x10 + m.x11 + m.x12 + m.x13 - 166*m.b547 <= 0) m.c257 = Constraint(expr= m.x14 + m.x15 + m.x16 + m.x17 + m.x18 + m.x19 + m.x20 + m.x21 + m.x22 + m.x23 + m.x24 + m.x25 + m.x26 - 463*m.b548 <= 0) m.c258 = Constraint(expr= m.x27 + m.x28 + m.x29 + m.x30 + m.x31 + m.x32 + m.x33 + m.x34 + m.x35 + m.x36 + m.x37 + m.x38 + m.x39 - 522*m.b549 <= 0) m.c259 = Constraint(expr= m.x40 + m.x41 + m.x42 + m.x43 + m.x44 + m.x45 + m.x46 + m.x47 + m.x48 + m.x49 + m.x50 + m.x51 + m.x52 - 141*m.b550 <= 0) m.c260 = Constraint(expr= m.x53 + m.x54 + m.x55 + m.x56 + m.x57 + m.x58 + m.x59 + m.x60 + m.x61 + m.x62 + m.x63 + m.x64 + m.x65 - 166*m.b551 <= 0) m.c261 = Constraint(expr= m.x66 + m.x67 + m.x68 + m.x69 + m.x70 + m.x71 + m.x72 + m.x73 + m.x74 + m.x75 + m.x76 + m.x77 + m.x78 - 265*m.b552 <= 0) m.c262 = Constraint(expr= m.x79 + m.x80 + m.x81 + m.x82 + m.x83 + m.x84 + m.x85 + m.x86 + m.x87 + m.x88 + m.x89 + m.x90 + m.x91 - 463*m.b553 <= 0) m.c263 = Constraint(expr= m.x92 + m.x93 + m.x94 + m.x95 + m.x96 + m.x97 + m.x98 + m.x99 + m.x100 + m.x101 + m.x102 + m.x103 + m.x104 - 456*m.b554 <= 0) m.c264 = Constraint(expr= m.x105 + m.x106 + m.x107 + m.x108 + m.x109 + m.x110 + m.x111 + m.x112 + m.x113 + m.x114 + m.x115 + m.x116 + m.x117 - 526*m.b555 <= 0) m.c265 = Constraint(expr= m.x118 + m.x119 + m.x120 + m.x121 + m.x122 + m.x123 + m.x124 + m.x125 + m.x126 + m.x127 + m.x128 + m.x129 + m.x130 - 152*m.b556 <= 0) m.c266 = Constraint(expr= m.x131 + m.x132 + m.x133 + m.x134 + m.x135 + m.x136 + m.x137 + m.x138 + m.x139 + m.x140 + m.x141 + m.x142 + m.x143 - 456*m.b557 <= 0) m.c267 = Constraint(expr= m.x144 + m.x145 + m.x146 + m.x147 + m.x148 + m.x149 + m.x150 + m.x151 + m.x152 + m.x153 + m.x154 + m.x155 + m.x156 - 384*m.b558 <= 0) m.c268 = Constraint(expr= m.x157 + m.x158 + m.x159 + m.x160 + m.x161 + m.x162 + m.x163 + m.x164 + m.x165 + m.x166 + m.x167 + m.x168 + m.x169 - 441*m.b559 <= 0) m.c269 = Constraint(expr= m.x170 + m.x171 + m.x172 + m.x173 + m.x174 + m.x175 + m.x176 + m.x177 + m.x178 + m.x179 + m.x180 + m.x181 + m.x182 - 309*m.b560 <= 0) m.c270 = Constraint(expr= m.x183 + m.x184 + m.x185 + m.x186 + m.x187 + m.x188 + m.x189 + m.x190 + m.x191 + m.x192 + m.x193 + m.x194 + m.x195 - 233*m.b561 <= 0) m.c271 = Constraint(expr= m.x196 + m.x197 + m.x198 + m.x199 + m.x200 + m.x201 + m.x202 + m.x203 + m.x204 + m.x205 + m.x206 + m.x207 + m.x208 - 526*m.b562 <= 0) m.c272 = Constraint(expr= m.x209 + m.x210 + m.x211 + m.x212 + m.x213 + m.x214 + m.x215 + m.x216 + m.x217 + m.x218 + m.x219 + m.x220 + m.x221 - 384*m.b563 <= 0) m.c273 = Constraint(expr= m.x222 + m.x223 + m.x224 + m.x225 + m.x226 + m.x227 + m.x228 + m.x229 + m.x230 + m.x231 + m.x232 + m.x233 + m.x234 - 203*m.b564 <= 0) m.c274 = Constraint(expr= m.x235 + m.x236 + m.x237 + m.x238 + m.x239 + m.x240 + m.x241 + m.x242 + m.x243 + m.x244 + m.x245 + m.x246 + m.x247 - 522*m.b565 <= 0) m.c275 = Constraint(expr= m.x248 + m.x249 + m.x250 + m.x251 + m.x252 + m.x253 + m.x254 + m.x255 + m.x256 + m.x257 + m.x258 + m.x259 + m.x260 - 265*m.b566 <= 0) m.c276 = Constraint(expr= m.x261 + m.x262 + m.x263 + m.x264 + m.x265 + m.x266 + m.x267 + m.x268 + m.x269 + m.x270 + m.x271 + m.x272 + m.x273 - 152*m.b567 <= 0) m.c277 = Constraint(expr= m.x274 + m.x275 + m.x276 + m.x277 + m.x278 + m.x279 + m.x280 + m.x281 + m.x282 + m.x283 + m.x284 + m.x285 + m.x286 - 441*m.b568 <= 0) m.c278 = Constraint(expr= m.x287 + m.x288 + m.x289 + m.x290 + m.x291 + m.x292 + m.x293 + m.x294 + m.x295 + m.x296 + m.x297 + m.x298 + m.x299 - 203*m.b569 <= 0) m.c279 = Constraint(expr= m.x300 + m.x301 + m.x302 + m.x303 + m.x304 + m.x305 + m.x306 + m.x307 + m.x308 + m.x309 + m.x310 + m.x311 + m.x312 - 284*m.b570 <= 0) m.c280 = Constraint(expr= m.x313 + m.x314 + m.x315 + m.x316 + m.x317 + m.x318 + m.x319 + m.x320 + m.x321 + m.x322 + m.x323 + m.x324 + m.x325 - 426*m.b571 <= 0) m.c281 = Constraint(expr= m.x326 + m.x327 + m.x328 + m.x329 + m.x330 + m.x331 + m.x332 + m.x333 + m.x334 + m.x335 + m.x336 + m.x337 + m.x338 - 284*m.b572 <= 0) m.c282 = Constraint(expr= m.x339 + m.x340 + m.x341 + m.x342 + m.x343 + m.x344 + m.x345 + m.x346 + m.x347 + m.x348 + m.x349 + m.x350 + m.x351 - 109*m.b573 <= 0) m.c283 = Constraint(expr= m.x352 + m.x353 + m.x354 + m.x355 + m.x356 + m.x357 + m.x358 + m.x359 + m.x360 + m.x361 + m.x362 + m.x363 + m.x364 - 309*m.b574 <= 0) m.c284 = Constraint(expr= m.x365 + m.x366 + m.x367 + m.x368 + m.x369 + m.x370 + m.x371 + m.x372 + m.x373 + m.x374 + m.x375 + m.x376 + m.x377 - 434*m.b575 <= 0) m.c285 = Constraint(expr= m.x378 + m.x379 + m.x380 + m.x381 + m.x382 + m.x383 + m.x384 + m.x385 + m.x386 + m.x387 + m.x388 + m.x389 + m.x390 - 141*m.b576 <= 0) m.c286 = Constraint(expr= m.x391 + m.x392 + m.x393 + m.x394 + m.x395 + m.x396 + m.x397 + m.x398 + m.x399 + m.x400 + m.x401 + m.x402 + m.x403 - 434*m.b577 <= 0) m.c287 = Constraint(expr= m.x404 + m.x405 + m.x406 + m.x407 + m.x408 + m.x409 + m.x410 + m.x411 + m.x412 + m.x413 + m.x414 + m.x415 + m.x416 - 403*m.b578 <= 0) m.c288 = Constraint(expr= m.x417 + m.x418 + m.x419 + m.x420 + m.x421 + m.x422 + m.x423 + m.x424 + m.x425 + m.x426 + m.x427 + m.x428 + m.x429 - 426*m.b579 <= 0) m.c289 = Constraint(expr= m.x430 + m.x431 + m.x432 + m.x433 + m.x434 + m.x435 + m.x436 + m.x437 + m.x438 + m.x439 + m.x440 + m.x441 + m.x442 - 403*m.b580 <= 0) m.c290 = Constraint(expr= m.x443 + m.x444 + m.x445 + m.x446 + m.x447 + m.x448 + m.x449 + m.x450 + m.x451 + m.x452 + m.x453 + m.x454 + m.x455 - 151*m.b581 <= 0) m.c291 = Constraint(expr= m.x456 + m.x457 + m.x458 + m.x459 + m.x460 + m.x461 + m.x462 + m.x463 + m.x464 + m.x465 + m.x466 + m.x467 + m.x468 - 233*m.b582 <= 0) m.c292 = Constraint(expr= m.x469 + m.x470 + m.x471 + m.x472 + m.x473 + m.x474 + m.x475 + m.x476 + m.x477 + m.x478 + m.x479 + m.x480 + m.x481 - 109*m.b583 <= 0) m.c293 = Constraint(expr= m.x482 + m.x483 + m.x484 + m.x485 + m.x486 + m.x487 + m.x488 + m.x489 + m.x490 + m.x491 + m.x492 + m.x493 + m.x494 - 367*m.b584 <= 0) m.c294 = Constraint(expr= m.x495 + m.x496 + m.x497 + m.x498 + m.x499 + m.x500 + m.x501 + m.x502 + m.x503 + m.x504 + m.x505 + m.x506 + m.x507 - 367*m.b585 <= 0) m.c295 = Constraint(expr= m.x508 + m.x509 + m.x510 + m.x511 + m.x512 + m.x513 + m.x514 + m.x515 + m.x516 + m.x517 + m.x518 + m.x519 + m.x520 - 382*m.b586 <= 0) m.c296 = Constraint(expr= m.x521 + m.x522 + m.x523 + m.x524 + m.x525 + m.x526 + m.x527 + m.x528 + m.x529 + m.x530 + m.x531 + m.x532 + m.x533 - 151*m.b587 <= 0) m.c297 = Constraint(expr= m.x534 + m.x535 + m.x536 + m.x537 + m.x538 + m.x539 + m.x540 + m.x541 + m.x542 + m.x543 + m.x544 + m.x545 + m.x546 - 382*m.b588 <= 0)
en
0.748015
# MINLP written by GAMS Convert at 08/20/20 01:30:45 # # Equation counts # Total E G L N X C B # 297 170 42 85 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 673 631 42 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 2479 2353 126 0 # # Reformulation has removed 1 variable and 1 equation
1.315837
1
tests/pytests/scenarios/multimaster/conftest.py
lllamnyp/salt
0
10416
<gh_stars>0 import logging import os import shutil import subprocess import pytest import salt.utils.platform log = logging.getLogger(__name__) @pytest.fixture(scope="package", autouse=True) def skip_on_tcp_transport(request): if request.config.getoption("--transport") == "tcp": pytest.skip("Multimaster under the TPC transport is not working. See #59053") @pytest.fixture(scope="package") def salt_mm_master_1(request, salt_factories): config_defaults = { "open_mode": True, "transport": request.config.getoption("--transport"), } config_overrides = { "interface": "127.0.0.1", } factory = salt_factories.salt_master_daemon( "mm-master-1", defaults=config_defaults, overrides=config_overrides, extra_cli_arguments_after_first_start_failure=["--log-level=debug"], ) with factory.started(start_timeout=120): yield factory @pytest.fixture(scope="package") def mm_master_1_salt_cli(salt_mm_master_1): return salt_mm_master_1.get_salt_cli(timeout=120) @pytest.fixture(scope="package") def salt_mm_master_2(salt_factories, salt_mm_master_1): if salt.utils.platform.is_darwin() or salt.utils.platform.is_freebsd(): subprocess.check_output(["ifconfig", "lo0", "alias", "127.0.0.2", "up"]) config_defaults = { "open_mode": True, "transport": salt_mm_master_1.config["transport"], } config_overrides = { "interface": "127.0.0.2", } # Use the same ports for both masters, they are binding to different interfaces for key in ( "ret_port", "publish_port", ): config_overrides[key] = salt_mm_master_1.config[key] factory = salt_factories.salt_master_daemon( "mm-master-2", defaults=config_defaults, overrides=config_overrides, extra_cli_arguments_after_first_start_failure=["--log-level=debug"], ) # The secondary salt master depends on the primarily salt master fixture # because we need to clone the keys for keyfile in ("master.pem", "master.pub"): shutil.copyfile( os.path.join(salt_mm_master_1.config["pki_dir"], keyfile), os.path.join(factory.config["pki_dir"], keyfile), ) with factory.started(start_timeout=120): yield factory @pytest.fixture(scope="package") def mm_master_2_salt_cli(salt_mm_master_2): return salt_mm_master_2.get_salt_cli(timeout=120) @pytest.fixture(scope="package") def salt_mm_minion_1(salt_mm_master_1, salt_mm_master_2): config_defaults = { "transport": salt_mm_master_1.config["transport"], } mm_master_1_port = salt_mm_master_1.config["ret_port"] mm_master_1_addr = salt_mm_master_1.config["interface"] mm_master_2_port = salt_mm_master_2.config["ret_port"] mm_master_2_addr = salt_mm_master_2.config["interface"] config_overrides = { "master": [ "{}:{}".format(mm_master_1_addr, mm_master_1_port), "{}:{}".format(mm_master_2_addr, mm_master_2_port), ], "test.foo": "baz", } factory = salt_mm_master_1.salt_minion_daemon( "mm-minion-1", defaults=config_defaults, overrides=config_overrides, extra_cli_arguments_after_first_start_failure=["--log-level=debug"], ) with factory.started(start_timeout=120): yield factory @pytest.fixture(scope="package") def salt_mm_minion_2(salt_mm_master_1, salt_mm_master_2): config_defaults = { "transport": salt_mm_master_1.config["transport"], } mm_master_1_port = salt_mm_master_1.config["ret_port"] mm_master_1_addr = salt_mm_master_1.config["interface"] mm_master_2_port = salt_mm_master_2.config["ret_port"] mm_master_2_addr = salt_mm_master_2.config["interface"] config_overrides = { "master": [ "{}:{}".format(mm_master_1_addr, mm_master_1_port), "{}:{}".format(mm_master_2_addr, mm_master_2_port), ], "test.foo": "baz", } factory = salt_mm_master_2.salt_minion_daemon( "mm-minion-2", defaults=config_defaults, overrides=config_overrides, extra_cli_arguments_after_first_start_failure=["--log-level=debug"], ) with factory.started(start_timeout=120): yield factory
import logging import os import shutil import subprocess import pytest import salt.utils.platform log = logging.getLogger(__name__) @pytest.fixture(scope="package", autouse=True) def skip_on_tcp_transport(request): if request.config.getoption("--transport") == "tcp": pytest.skip("Multimaster under the TPC transport is not working. See #59053") @pytest.fixture(scope="package") def salt_mm_master_1(request, salt_factories): config_defaults = { "open_mode": True, "transport": request.config.getoption("--transport"), } config_overrides = { "interface": "127.0.0.1", } factory = salt_factories.salt_master_daemon( "mm-master-1", defaults=config_defaults, overrides=config_overrides, extra_cli_arguments_after_first_start_failure=["--log-level=debug"], ) with factory.started(start_timeout=120): yield factory @pytest.fixture(scope="package") def mm_master_1_salt_cli(salt_mm_master_1): return salt_mm_master_1.get_salt_cli(timeout=120) @pytest.fixture(scope="package") def salt_mm_master_2(salt_factories, salt_mm_master_1): if salt.utils.platform.is_darwin() or salt.utils.platform.is_freebsd(): subprocess.check_output(["ifconfig", "lo0", "alias", "127.0.0.2", "up"]) config_defaults = { "open_mode": True, "transport": salt_mm_master_1.config["transport"], } config_overrides = { "interface": "127.0.0.2", } # Use the same ports for both masters, they are binding to different interfaces for key in ( "ret_port", "publish_port", ): config_overrides[key] = salt_mm_master_1.config[key] factory = salt_factories.salt_master_daemon( "mm-master-2", defaults=config_defaults, overrides=config_overrides, extra_cli_arguments_after_first_start_failure=["--log-level=debug"], ) # The secondary salt master depends on the primarily salt master fixture # because we need to clone the keys for keyfile in ("master.pem", "master.pub"): shutil.copyfile( os.path.join(salt_mm_master_1.config["pki_dir"], keyfile), os.path.join(factory.config["pki_dir"], keyfile), ) with factory.started(start_timeout=120): yield factory @pytest.fixture(scope="package") def mm_master_2_salt_cli(salt_mm_master_2): return salt_mm_master_2.get_salt_cli(timeout=120) @pytest.fixture(scope="package") def salt_mm_minion_1(salt_mm_master_1, salt_mm_master_2): config_defaults = { "transport": salt_mm_master_1.config["transport"], } mm_master_1_port = salt_mm_master_1.config["ret_port"] mm_master_1_addr = salt_mm_master_1.config["interface"] mm_master_2_port = salt_mm_master_2.config["ret_port"] mm_master_2_addr = salt_mm_master_2.config["interface"] config_overrides = { "master": [ "{}:{}".format(mm_master_1_addr, mm_master_1_port), "{}:{}".format(mm_master_2_addr, mm_master_2_port), ], "test.foo": "baz", } factory = salt_mm_master_1.salt_minion_daemon( "mm-minion-1", defaults=config_defaults, overrides=config_overrides, extra_cli_arguments_after_first_start_failure=["--log-level=debug"], ) with factory.started(start_timeout=120): yield factory @pytest.fixture(scope="package") def salt_mm_minion_2(salt_mm_master_1, salt_mm_master_2): config_defaults = { "transport": salt_mm_master_1.config["transport"], } mm_master_1_port = salt_mm_master_1.config["ret_port"] mm_master_1_addr = salt_mm_master_1.config["interface"] mm_master_2_port = salt_mm_master_2.config["ret_port"] mm_master_2_addr = salt_mm_master_2.config["interface"] config_overrides = { "master": [ "{}:{}".format(mm_master_1_addr, mm_master_1_port), "{}:{}".format(mm_master_2_addr, mm_master_2_port), ], "test.foo": "baz", } factory = salt_mm_master_2.salt_minion_daemon( "mm-minion-2", defaults=config_defaults, overrides=config_overrides, extra_cli_arguments_after_first_start_failure=["--log-level=debug"], ) with factory.started(start_timeout=120): yield factory
en
0.891435
#59053") # Use the same ports for both masters, they are binding to different interfaces # The secondary salt master depends on the primarily salt master fixture # because we need to clone the keys
1.835832
2
supermario/supermario 1117/start_state.py
Kimmiryeong/2DGP_GameProject
0
10417
import game_framework from pico2d import * import title_state name = "StartState" image = None logo_time = 0.0 def enter(): global image image = load_image('kpu_credit.png') def exit(): global image del(image) def update(): global logo_time if (logo_time > 1.0): logo_time = 0.8 game_framework.change_state(title_state) delay(0.01) logo_time += 0.05import game_framework from pico2d import * import title_state name = "StartState" image = None logo_time = 0.0 def enter(): global image image = load_image('kpu_credit.png') def exit(): global image del(image) def update(): global logo_time if (logo_time > 1.0): logo_time = 0.8 game_framework.change_state(title_state) delay(0.01) logo_time += 0.05 def draw(): global image clear_canvas() image.draw(400,300) update_canvas() def handle_events(): events = get_events() pass def pause(): pass def resume(): pass def draw(): global image clear_canvas() image.draw(400,300) update_canvas() def handle_events(): events = get_events() pass def pause(): pass def resume(): pass
import game_framework from pico2d import * import title_state name = "StartState" image = None logo_time = 0.0 def enter(): global image image = load_image('kpu_credit.png') def exit(): global image del(image) def update(): global logo_time if (logo_time > 1.0): logo_time = 0.8 game_framework.change_state(title_state) delay(0.01) logo_time += 0.05import game_framework from pico2d import * import title_state name = "StartState" image = None logo_time = 0.0 def enter(): global image image = load_image('kpu_credit.png') def exit(): global image del(image) def update(): global logo_time if (logo_time > 1.0): logo_time = 0.8 game_framework.change_state(title_state) delay(0.01) logo_time += 0.05 def draw(): global image clear_canvas() image.draw(400,300) update_canvas() def handle_events(): events = get_events() pass def pause(): pass def resume(): pass def draw(): global image clear_canvas() image.draw(400,300) update_canvas() def handle_events(): events = get_events() pass def pause(): pass def resume(): pass
none
1
2.843141
3
egs/librispeech/ASR/transducer/test_rnn.py
rosrad/icefall
0
10418
<reponame>rosrad/icefall<gh_stars>0 #!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: <NAME>) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from transducer.rnn import ( LayerNormGRU, LayerNormGRUCell, LayerNormGRULayer, LayerNormLSTM, LayerNormLSTMCell, LayerNormLSTMLayer, ) def get_devices(): devices = [torch.device("cpu")] if torch.cuda.is_available(): devices.append(torch.device("cuda", 0)) return devices def assert_allclose(a: torch.Tensor, b: torch.Tensor, atol=1e-6, **kwargs): assert torch.allclose( a, b, atol=atol, **kwargs ), f"{(a - b).abs().max()}, {a.numel()}" def test_layernorm_lstm_cell_jit(device="cpu"): input_size = 10 hidden_size = 20 bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 cell = LayerNormLSTMCell( input_size=input_size, hidden_size=hidden_size, bias=bias, device=device, ) torch.jit.script(cell) def test_layernorm_lstm_cell_constructor(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() self_cell = LayerNormLSTMCell( input_size, hidden_size, ln=nn.Identity, device=device, ) torch_cell = nn.LSTMCell( input_size, hidden_size, ).to(device) for name, param in self_cell.named_parameters(): assert param.shape == getattr(torch_cell, name).shape assert len(self_cell.state_dict()) == len(torch_cell.state_dict()) def test_layernorm_lstm_cell_with_projection_jit(device="cpu"): input_size = 10 hidden_size = 20 proj_size = 5 self_cell = LayerNormLSTMCell( input_size, hidden_size, proj_size=proj_size, device=device, ) torch.jit.script(self_cell) def test_layernorm_lstm_cell_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_cell = LayerNormLSTMCell( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) torch_cell = nn.LSTMCell( input_size, hidden_size, bias=bias, ).to(device) with torch.no_grad(): for name, torch_param in torch_cell.named_parameters(): self_param = getattr(self_cell, name) torch_param.copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_h, self_c = self_cell(x.clone(), (h, c)) torch_h, torch_c = torch_cell(x_clone, (h, c)) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_hc = self_h * self_c torch_hc = torch_h * torch_c ( self_hc.reshape(-1) * torch.arange(self_hc.numel(), device=device) ).sum().backward() ( torch_hc.reshape(-1) * torch.arange(torch_hc.numel(), device=device) ).sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-3) def test_layernorm_lstm_cell_with_projection_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() self_cell = LayerNormLSTMCell( input_size, hidden_size, bias=bias, ln=nn.Identity, proj_size=proj_size, device=device, ) torch_cell = nn.LSTM( input_size, hidden_size, bias=bias, proj_size=proj_size, batch_first=True, ).to(device) with torch.no_grad(): for name, self_param in self_cell.named_parameters(): getattr(torch_cell, f"{name}_l0").copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size, device=device).requires_grad_() h = torch.rand(N, proj_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_h, self_c = self_cell(x.clone(), (h, c)) _, (torch_h, torch_c) = torch_cell( x_clone.unsqueeze(1), (h.unsqueeze(0), c.unsqueeze(0)) ) torch_h = torch_h.squeeze(0) torch_c = torch_c.squeeze(0) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) (self_h.sum() * self_c.sum()).backward() (torch_h.sum() * torch_c.sum()).backward() assert_allclose(x.grad, x_clone.grad, atol=1e-5) def test_layernorm_lstm_layer_jit(device="cpu"): input_size = 10 hidden_size = 20 layer = LayerNormLSTMLayer( input_size, hidden_size=hidden_size, device=device, ) torch.jit.script(layer) def test_layernorm_lstm_layer_with_project_jit(device="cpu"): input_size = 10 hidden_size = 20 proj_size = 5 layer = LayerNormLSTMLayer( input_size, hidden_size=hidden_size, proj_size=proj_size, device=device, ) torch.jit.script(layer) def test_layernorm_lstm_layer_with_projection_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() self_layer = LayerNormLSTMLayer( input_size, hidden_size, bias=bias, proj_size=proj_size, ln=nn.Identity, device=device, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() h = torch.rand(N, proj_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_y, (self_h, self_c) = self_layer(x, (h, c)) torch_layer = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, proj_size=proj_size, batch_first=True, dropout=0, bidirectional=False, ).to(device) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, (torch_h, torch_c) = torch_layer( x_clone, (h.unsqueeze(0), c.unsqueeze(0)) ) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_y.sum().backward() torch_y.sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-5) def test_layernorm_lstm_layer_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_layer = LayerNormLSTMLayer( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_y, (self_h, self_c) = self_layer(x, (h, c)) torch_layer = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, batch_first=True, dropout=0, bidirectional=False, ).to(device) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, (torch_h, torch_c) = torch_layer( x_clone, (h.unsqueeze(0), c.unsqueeze(0)) ) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_hc = self_h * self_c torch_hc = torch_h * torch_c self_hc_sum = ( self_hc.reshape(-1) * torch.arange(self_hc.numel(), device=device) ).sum() torch_hc_sum = ( torch_hc.reshape(-1) * torch.arange(torch_hc.numel(), device=device) ).sum() self_y_sum = ( self_y.reshape(-1) * torch.arange(self_y.numel(), device=device) ).sum() torch_y_sum = ( torch_y.reshape(-1) * torch.arange(torch_y.numel(), device=device) ).sum() (self_hc_sum + self_y_sum).backward() (torch_hc_sum + torch_y_sum).backward() assert_allclose(x.grad, x_clone.grad, atol=0.1) def test_layernorm_lstm_jit(device="cpu"): input_size = 2 hidden_size = 3 num_layers = 4 bias = True lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch.jit.script(lstm) def test_layernorm_lstm_with_projection_jit(device="cpu"): input_size = 2 hidden_size = 5 proj_size = 3 num_layers = 4 bias = True lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, ln=nn.Identity, device=device, ) torch.jit.script(lstm) def test_layernorm_lstm_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch_lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, batch_first=True, bidirectional=False, ).to(device) assert len(self_lstm.state_dict()) == len(torch_lstm.state_dict()) with torch.no_grad(): for name, param in self_lstm.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_lstm, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() hs = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)] cs = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)] states = list(zip(hs, cs)) x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_lstm(x, states) h = torch.stack(hs) c = torch.stack(cs) torch_y, (torch_h, torch_c) = torch_lstm(x_clone, (h, c)) assert_allclose(self_y, torch_y) self_h = torch.stack([s[0] for s in self_states]) self_c = torch.stack([s[1] for s in self_states]) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel(), device=device)).sum() t_sum = (t * torch.arange(t.numel(), device=device)).sum() shc_sum = s_sum + self_h.sum() + self_c.sum() thc_sum = t_sum + torch_h.sum() + torch_c.sum() shc_sum.backward() thc_sum.backward() assert_allclose(x.grad, x_clone.grad) def test_layernorm_lstm_with_projection_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, ln=nn.Identity, device=device, ) torch_lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, batch_first=True, bidirectional=False, ).to(device) assert len(self_lstm.state_dict()) == len(torch_lstm.state_dict()) with torch.no_grad(): for name, param in self_lstm.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_lstm, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() hs = [torch.rand(N, proj_size, device=device) for _ in range(num_layers)] cs = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)] states = list(zip(hs, cs)) x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_lstm(x, states) h = torch.stack(hs) c = torch.stack(cs) torch_y, (torch_h, torch_c) = torch_lstm(x_clone, (h, c)) assert_allclose(self_y, torch_y) self_h = torch.stack([s[0] for s in self_states]) self_c = torch.stack([s[1] for s in self_states]) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel(), device=device)).sum() t_sum = (t * torch.arange(t.numel(), device=device)).sum() shc_sum = s_sum + self_h.sum() + self_c.sum() thc_sum = t_sum + torch_h.sum() + torch_c.sum() shc_sum.backward() thc_sum.backward() assert_allclose(x.grad, x_clone.grad) def test_layernorm_gru_cell_jit(device="cpu"): input_size = 10 hidden_size = 20 cell = LayerNormGRUCell( input_size=input_size, hidden_size=hidden_size, bias=True, device=device, ) torch.jit.script(cell) def test_layernorm_gru_cell_constructor(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() self_cell = LayerNormGRUCell( input_size, hidden_size, ln=nn.Identity, device=device, ) torch_cell = nn.GRUCell( input_size, hidden_size, ).to(device) for name, param in self_cell.named_parameters(): assert param.shape == getattr(torch_cell, name).shape assert len(self_cell.state_dict()) == len(torch_cell.state_dict()) def test_layernorm_gru_cell_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_cell = LayerNormGRUCell( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) torch_cell = nn.GRUCell( input_size, hidden_size, bias=bias, ).to(device) with torch.no_grad(): for name, torch_param in torch_cell.named_parameters(): self_param = getattr(self_cell, name) torch_param.copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_h = self_cell(x.clone(), h) torch_h = torch_cell(x_clone, h) assert_allclose(self_h, torch_h, atol=1e-5) ( self_h.reshape(-1) * torch.arange(self_h.numel(), device=device) ).sum().backward() ( torch_h.reshape(-1) * torch.arange(torch_h.numel(), device=device) ).sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-3) def test_layernorm_gru_layer_jit(device="cpu"): input_size = 10 hidden_size = 20 layer = LayerNormGRULayer( input_size, hidden_size=hidden_size, device=device, ) torch.jit.script(layer) def test_layernorm_gru_layer_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_layer = LayerNormGRULayer( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_y, self_h = self_layer(x, h.clone()) torch_layer = nn.GRU( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, batch_first=True, dropout=0, bidirectional=False, ).to(device) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, torch_h = torch_layer(x_clone, h.unsqueeze(0)) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) self_y_sum = ( self_y.reshape(-1) * torch.arange(self_y.numel(), device=device) ).sum() torch_y_sum = ( torch_y.reshape(-1) * torch.arange(torch_y.numel(), device=device) ).sum() self_y_sum.backward() torch_y_sum.backward() assert_allclose(x.grad, x_clone.grad, atol=0.1) def test_layernorm_gru_jit(device="cpu"): input_size = 2 hidden_size = 3 num_layers = 4 bias = True gru = LayerNormGRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch.jit.script(gru) def test_layernorm_gru_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_gru = LayerNormGRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch_gru = nn.GRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, batch_first=True, bidirectional=False, ).to(device) assert len(self_gru.state_dict()) == len(torch_gru.state_dict()) with torch.no_grad(): for name, param in self_gru.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_gru, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() states = [ torch.rand(N, hidden_size, device=device) for _ in range(num_layers) ] x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_gru(x, states) torch_y, torch_states = torch_gru(x_clone, torch.stack(states)) assert_allclose(self_y, torch_y) self_states = torch.stack(self_states) assert_allclose(self_states, torch_states) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel(), device=device)).sum() t_sum = (t * torch.arange(t.numel(), device=device)).sum() s_state_sum = s_sum + self_states.sum() t_state_sum = t_sum + torch_states.sum() s_state_sum.backward() t_state_sum.backward() assert_allclose(x.grad, x_clone.grad, atol=1e-2) def _test_lstm(device): test_layernorm_lstm_cell_jit(device) test_layernorm_lstm_cell_constructor(device) test_layernorm_lstm_cell_with_projection_jit(device) test_layernorm_lstm_cell_forward(device) test_layernorm_lstm_cell_with_projection_forward(device) # test_layernorm_lstm_layer_jit(device) test_layernorm_lstm_layer_with_project_jit(device) test_layernorm_lstm_layer_forward(device) test_layernorm_lstm_layer_with_projection_forward(device) test_layernorm_lstm_jit(device) test_layernorm_lstm_with_projection_jit(device) test_layernorm_lstm_forward(device) test_layernorm_lstm_with_projection_forward(device) def _test_gru(device): test_layernorm_gru_cell_jit(device) test_layernorm_gru_cell_constructor(device) test_layernorm_gru_cell_forward(device) # test_layernorm_gru_layer_jit(device) test_layernorm_gru_layer_forward(device) # test_layernorm_gru_jit(device) test_layernorm_gru_forward(device) torch.set_num_threads(1) torch.set_num_interop_threads(1) def main(): for device in get_devices(): print("device", device) _test_lstm(device) _test_gru(device) if __name__ == "__main__": torch.manual_seed(20211202) main()
#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: <NAME>) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from transducer.rnn import ( LayerNormGRU, LayerNormGRUCell, LayerNormGRULayer, LayerNormLSTM, LayerNormLSTMCell, LayerNormLSTMLayer, ) def get_devices(): devices = [torch.device("cpu")] if torch.cuda.is_available(): devices.append(torch.device("cuda", 0)) return devices def assert_allclose(a: torch.Tensor, b: torch.Tensor, atol=1e-6, **kwargs): assert torch.allclose( a, b, atol=atol, **kwargs ), f"{(a - b).abs().max()}, {a.numel()}" def test_layernorm_lstm_cell_jit(device="cpu"): input_size = 10 hidden_size = 20 bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 cell = LayerNormLSTMCell( input_size=input_size, hidden_size=hidden_size, bias=bias, device=device, ) torch.jit.script(cell) def test_layernorm_lstm_cell_constructor(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() self_cell = LayerNormLSTMCell( input_size, hidden_size, ln=nn.Identity, device=device, ) torch_cell = nn.LSTMCell( input_size, hidden_size, ).to(device) for name, param in self_cell.named_parameters(): assert param.shape == getattr(torch_cell, name).shape assert len(self_cell.state_dict()) == len(torch_cell.state_dict()) def test_layernorm_lstm_cell_with_projection_jit(device="cpu"): input_size = 10 hidden_size = 20 proj_size = 5 self_cell = LayerNormLSTMCell( input_size, hidden_size, proj_size=proj_size, device=device, ) torch.jit.script(self_cell) def test_layernorm_lstm_cell_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_cell = LayerNormLSTMCell( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) torch_cell = nn.LSTMCell( input_size, hidden_size, bias=bias, ).to(device) with torch.no_grad(): for name, torch_param in torch_cell.named_parameters(): self_param = getattr(self_cell, name) torch_param.copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_h, self_c = self_cell(x.clone(), (h, c)) torch_h, torch_c = torch_cell(x_clone, (h, c)) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_hc = self_h * self_c torch_hc = torch_h * torch_c ( self_hc.reshape(-1) * torch.arange(self_hc.numel(), device=device) ).sum().backward() ( torch_hc.reshape(-1) * torch.arange(torch_hc.numel(), device=device) ).sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-3) def test_layernorm_lstm_cell_with_projection_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() self_cell = LayerNormLSTMCell( input_size, hidden_size, bias=bias, ln=nn.Identity, proj_size=proj_size, device=device, ) torch_cell = nn.LSTM( input_size, hidden_size, bias=bias, proj_size=proj_size, batch_first=True, ).to(device) with torch.no_grad(): for name, self_param in self_cell.named_parameters(): getattr(torch_cell, f"{name}_l0").copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size, device=device).requires_grad_() h = torch.rand(N, proj_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_h, self_c = self_cell(x.clone(), (h, c)) _, (torch_h, torch_c) = torch_cell( x_clone.unsqueeze(1), (h.unsqueeze(0), c.unsqueeze(0)) ) torch_h = torch_h.squeeze(0) torch_c = torch_c.squeeze(0) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) (self_h.sum() * self_c.sum()).backward() (torch_h.sum() * torch_c.sum()).backward() assert_allclose(x.grad, x_clone.grad, atol=1e-5) def test_layernorm_lstm_layer_jit(device="cpu"): input_size = 10 hidden_size = 20 layer = LayerNormLSTMLayer( input_size, hidden_size=hidden_size, device=device, ) torch.jit.script(layer) def test_layernorm_lstm_layer_with_project_jit(device="cpu"): input_size = 10 hidden_size = 20 proj_size = 5 layer = LayerNormLSTMLayer( input_size, hidden_size=hidden_size, proj_size=proj_size, device=device, ) torch.jit.script(layer) def test_layernorm_lstm_layer_with_projection_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() self_layer = LayerNormLSTMLayer( input_size, hidden_size, bias=bias, proj_size=proj_size, ln=nn.Identity, device=device, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() h = torch.rand(N, proj_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_y, (self_h, self_c) = self_layer(x, (h, c)) torch_layer = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, proj_size=proj_size, batch_first=True, dropout=0, bidirectional=False, ).to(device) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, (torch_h, torch_c) = torch_layer( x_clone, (h.unsqueeze(0), c.unsqueeze(0)) ) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_y.sum().backward() torch_y.sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-5) def test_layernorm_lstm_layer_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_layer = LayerNormLSTMLayer( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) c = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_y, (self_h, self_c) = self_layer(x, (h, c)) torch_layer = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, batch_first=True, dropout=0, bidirectional=False, ).to(device) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, (torch_h, torch_c) = torch_layer( x_clone, (h.unsqueeze(0), c.unsqueeze(0)) ) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_hc = self_h * self_c torch_hc = torch_h * torch_c self_hc_sum = ( self_hc.reshape(-1) * torch.arange(self_hc.numel(), device=device) ).sum() torch_hc_sum = ( torch_hc.reshape(-1) * torch.arange(torch_hc.numel(), device=device) ).sum() self_y_sum = ( self_y.reshape(-1) * torch.arange(self_y.numel(), device=device) ).sum() torch_y_sum = ( torch_y.reshape(-1) * torch.arange(torch_y.numel(), device=device) ).sum() (self_hc_sum + self_y_sum).backward() (torch_hc_sum + torch_y_sum).backward() assert_allclose(x.grad, x_clone.grad, atol=0.1) def test_layernorm_lstm_jit(device="cpu"): input_size = 2 hidden_size = 3 num_layers = 4 bias = True lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch.jit.script(lstm) def test_layernorm_lstm_with_projection_jit(device="cpu"): input_size = 2 hidden_size = 5 proj_size = 3 num_layers = 4 bias = True lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, ln=nn.Identity, device=device, ) torch.jit.script(lstm) def test_layernorm_lstm_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch_lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, batch_first=True, bidirectional=False, ).to(device) assert len(self_lstm.state_dict()) == len(torch_lstm.state_dict()) with torch.no_grad(): for name, param in self_lstm.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_lstm, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() hs = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)] cs = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)] states = list(zip(hs, cs)) x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_lstm(x, states) h = torch.stack(hs) c = torch.stack(cs) torch_y, (torch_h, torch_c) = torch_lstm(x_clone, (h, c)) assert_allclose(self_y, torch_y) self_h = torch.stack([s[0] for s in self_states]) self_c = torch.stack([s[1] for s in self_states]) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel(), device=device)).sum() t_sum = (t * torch.arange(t.numel(), device=device)).sum() shc_sum = s_sum + self_h.sum() + self_c.sum() thc_sum = t_sum + torch_h.sum() + torch_c.sum() shc_sum.backward() thc_sum.backward() assert_allclose(x.grad, x_clone.grad) def test_layernorm_lstm_with_projection_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, ln=nn.Identity, device=device, ) torch_lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, batch_first=True, bidirectional=False, ).to(device) assert len(self_lstm.state_dict()) == len(torch_lstm.state_dict()) with torch.no_grad(): for name, param in self_lstm.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_lstm, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() hs = [torch.rand(N, proj_size, device=device) for _ in range(num_layers)] cs = [torch.rand(N, hidden_size, device=device) for _ in range(num_layers)] states = list(zip(hs, cs)) x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_lstm(x, states) h = torch.stack(hs) c = torch.stack(cs) torch_y, (torch_h, torch_c) = torch_lstm(x_clone, (h, c)) assert_allclose(self_y, torch_y) self_h = torch.stack([s[0] for s in self_states]) self_c = torch.stack([s[1] for s in self_states]) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel(), device=device)).sum() t_sum = (t * torch.arange(t.numel(), device=device)).sum() shc_sum = s_sum + self_h.sum() + self_c.sum() thc_sum = t_sum + torch_h.sum() + torch_c.sum() shc_sum.backward() thc_sum.backward() assert_allclose(x.grad, x_clone.grad) def test_layernorm_gru_cell_jit(device="cpu"): input_size = 10 hidden_size = 20 cell = LayerNormGRUCell( input_size=input_size, hidden_size=hidden_size, bias=True, device=device, ) torch.jit.script(cell) def test_layernorm_gru_cell_constructor(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() self_cell = LayerNormGRUCell( input_size, hidden_size, ln=nn.Identity, device=device, ) torch_cell = nn.GRUCell( input_size, hidden_size, ).to(device) for name, param in self_cell.named_parameters(): assert param.shape == getattr(torch_cell, name).shape assert len(self_cell.state_dict()) == len(torch_cell.state_dict()) def test_layernorm_gru_cell_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_cell = LayerNormGRUCell( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) torch_cell = nn.GRUCell( input_size, hidden_size, bias=bias, ).to(device) with torch.no_grad(): for name, torch_param in torch_cell.named_parameters(): self_param = getattr(self_cell, name) torch_param.copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_h = self_cell(x.clone(), h) torch_h = torch_cell(x_clone, h) assert_allclose(self_h, torch_h, atol=1e-5) ( self_h.reshape(-1) * torch.arange(self_h.numel(), device=device) ).sum().backward() ( torch_h.reshape(-1) * torch.arange(torch_h.numel(), device=device) ).sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-3) def test_layernorm_gru_layer_jit(device="cpu"): input_size = 10 hidden_size = 20 layer = LayerNormGRULayer( input_size, hidden_size=hidden_size, device=device, ) torch.jit.script(layer) def test_layernorm_gru_layer_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_layer = LayerNormGRULayer( input_size, hidden_size, bias=bias, ln=nn.Identity, device=device, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() h = torch.rand(N, hidden_size, device=device) x_clone = x.detach().clone().requires_grad_() self_y, self_h = self_layer(x, h.clone()) torch_layer = nn.GRU( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, batch_first=True, dropout=0, bidirectional=False, ).to(device) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, torch_h = torch_layer(x_clone, h.unsqueeze(0)) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) self_y_sum = ( self_y.reshape(-1) * torch.arange(self_y.numel(), device=device) ).sum() torch_y_sum = ( torch_y.reshape(-1) * torch.arange(torch_y.numel(), device=device) ).sum() self_y_sum.backward() torch_y_sum.backward() assert_allclose(x.grad, x_clone.grad, atol=0.1) def test_layernorm_gru_jit(device="cpu"): input_size = 2 hidden_size = 3 num_layers = 4 bias = True gru = LayerNormGRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch.jit.script(gru) def test_layernorm_gru_forward(device="cpu"): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_gru = LayerNormGRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, device=device, ) torch_gru = nn.GRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, batch_first=True, bidirectional=False, ).to(device) assert len(self_gru.state_dict()) == len(torch_gru.state_dict()) with torch.no_grad(): for name, param in self_gru.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_gru, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size, device=device).requires_grad_() states = [ torch.rand(N, hidden_size, device=device) for _ in range(num_layers) ] x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_gru(x, states) torch_y, torch_states = torch_gru(x_clone, torch.stack(states)) assert_allclose(self_y, torch_y) self_states = torch.stack(self_states) assert_allclose(self_states, torch_states) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel(), device=device)).sum() t_sum = (t * torch.arange(t.numel(), device=device)).sum() s_state_sum = s_sum + self_states.sum() t_state_sum = t_sum + torch_states.sum() s_state_sum.backward() t_state_sum.backward() assert_allclose(x.grad, x_clone.grad, atol=1e-2) def _test_lstm(device): test_layernorm_lstm_cell_jit(device) test_layernorm_lstm_cell_constructor(device) test_layernorm_lstm_cell_with_projection_jit(device) test_layernorm_lstm_cell_forward(device) test_layernorm_lstm_cell_with_projection_forward(device) # test_layernorm_lstm_layer_jit(device) test_layernorm_lstm_layer_with_project_jit(device) test_layernorm_lstm_layer_forward(device) test_layernorm_lstm_layer_with_projection_forward(device) test_layernorm_lstm_jit(device) test_layernorm_lstm_with_projection_jit(device) test_layernorm_lstm_forward(device) test_layernorm_lstm_with_projection_forward(device) def _test_gru(device): test_layernorm_gru_cell_jit(device) test_layernorm_gru_cell_constructor(device) test_layernorm_gru_cell_forward(device) # test_layernorm_gru_layer_jit(device) test_layernorm_gru_layer_forward(device) # test_layernorm_gru_jit(device) test_layernorm_gru_forward(device) torch.set_num_threads(1) torch.set_num_interop_threads(1) def main(): for device in get_devices(): print("device", device) _test_lstm(device) _test_gru(device) if __name__ == "__main__": torch.manual_seed(20211202) main()
en
0.843535
#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: <NAME>) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # name has the form layers.0.cell.weight_hh # name has the form layers.0.cell.weight_hh # name has the form layers.0.cell.weight_hh # # #
2.148093
2
settings.py
SalinderSidhu/CHIP8
4
10419
<filename>settings.py import configparser class Settings: '''The Settings class is a wrapper for configparser and it's functions. This class simplifies the tasks of loading, storing and manipulating settings data.''' def __init__(self, filename): '''Create a new Settings object with a specific file name.''' # Exceptions self.__settingException = Exception( 'Cannot find specified setting data!') # Settings variables self.__filename = filename self.__config = configparser.ConfigParser() # Load settings from existing file (if one exists) self.__isEmpty = len(self.__config.read(self.__filename)) == 0 def isEmpty(self): '''Return True if there is not settings data loaded, otherwise return False.''' return self.__isEmpty def addNewSetting(self, category, settingDict): '''Add a new setting with the specified category and data. Save the new settings data to a file.''' self.__config[category] = settingDict.copy() self.__saveAllSettings() self.__isEmpty = False def getSetting(self, category, key): '''Return a setting value from the specified category and setting key.''' try: return self.__config.get(category, key) except KeyError: raise self.__settingException def editSetting(self, category, key, value): '''Change an existing setting with a specified category and setting key to the value specified. Save the new settings data to a file.''' try: self.__config.set(category, key, str(value)) self.__saveAllSettings() except KeyError: raise self.__settingException def __saveAllSettings(self): '''Write the current settings data to a file.''' with open(self.__filename, 'w') as configFile: self.__config.write(configFile)
<filename>settings.py import configparser class Settings: '''The Settings class is a wrapper for configparser and it's functions. This class simplifies the tasks of loading, storing and manipulating settings data.''' def __init__(self, filename): '''Create a new Settings object with a specific file name.''' # Exceptions self.__settingException = Exception( 'Cannot find specified setting data!') # Settings variables self.__filename = filename self.__config = configparser.ConfigParser() # Load settings from existing file (if one exists) self.__isEmpty = len(self.__config.read(self.__filename)) == 0 def isEmpty(self): '''Return True if there is not settings data loaded, otherwise return False.''' return self.__isEmpty def addNewSetting(self, category, settingDict): '''Add a new setting with the specified category and data. Save the new settings data to a file.''' self.__config[category] = settingDict.copy() self.__saveAllSettings() self.__isEmpty = False def getSetting(self, category, key): '''Return a setting value from the specified category and setting key.''' try: return self.__config.get(category, key) except KeyError: raise self.__settingException def editSetting(self, category, key, value): '''Change an existing setting with a specified category and setting key to the value specified. Save the new settings data to a file.''' try: self.__config.set(category, key, str(value)) self.__saveAllSettings() except KeyError: raise self.__settingException def __saveAllSettings(self): '''Write the current settings data to a file.''' with open(self.__filename, 'w') as configFile: self.__config.write(configFile)
en
0.679763
The Settings class is a wrapper for configparser and it's functions. This class simplifies the tasks of loading, storing and manipulating settings data. Create a new Settings object with a specific file name. # Exceptions # Settings variables # Load settings from existing file (if one exists) Return True if there is not settings data loaded, otherwise return False. Add a new setting with the specified category and data. Save the new settings data to a file. Return a setting value from the specified category and setting key. Change an existing setting with a specified category and setting key to the value specified. Save the new settings data to a file. Write the current settings data to a file.
3.773241
4
demisto_sdk/commands/common/hook_validations/release_notes.py
yalonso7/demisto-sdk
0
10420
<filename>demisto_sdk/commands/common/hook_validations/release_notes.py from __future__ import print_function import itertools from demisto_sdk.commands.common.constants import VALIDATED_PACK_ITEM_TYPES from demisto_sdk.commands.common.errors import Errors from demisto_sdk.commands.common.hook_validations.base_validator import \ BaseValidator from demisto_sdk.commands.common.tools import (get_latest_release_notes_text, get_release_notes_file_path) from demisto_sdk.commands.update_release_notes.update_rn import UpdateRN class ReleaseNotesValidator(BaseValidator): """Release notes validator is designed to ensure the existence and correctness of the release notes in content repo. Attributes: file_path (str): the path to the file we are examining at the moment. release_notes_path (str): the path to the changelog file of the examined file. latest_release_notes (str): the text of the UNRELEASED section in the changelog file. master_diff (str): the changes in the changelog file compared to origin/master. """ def __init__(self, file_path, modified_files=None, pack_name=None, added_files=None, ignored_errors=None, print_as_warnings=False): super().__init__(ignored_errors=ignored_errors, print_as_warnings=print_as_warnings) self.file_path = file_path self.modified_files = modified_files self.added_files = added_files self.pack_name = pack_name self.release_notes_path = get_release_notes_file_path(self.file_path) self.latest_release_notes = get_latest_release_notes_text(self.release_notes_path) def are_release_notes_complete(self): is_valid = True modified_added_files = itertools.chain.from_iterable((self.added_files or [], self.modified_files or [])) if modified_added_files: for file in modified_added_files: if not any(permitted_type in file for permitted_type in VALIDATED_PACK_ITEM_TYPES): continue elif self.pack_name in file: update_rn_util = UpdateRN(pack=self.pack_name, pack_files=set(), update_type=None, added_files=set()) file_name, file_type = update_rn_util.identify_changed_file_type(file) if file_name and file_type: if (file_type not in self.latest_release_notes) or (file_name not in self.latest_release_notes): entity_name = update_rn_util.get_display_name(file) error_message, error_code = Errors.missing_release_notes_entry(file_type, self.pack_name, entity_name) if self.handle_error(error_message, error_code, self.file_path): is_valid = False return is_valid def has_release_notes_been_filled_out(self): release_notes_comments = self.latest_release_notes if len(release_notes_comments) == 0: error_message, error_code = Errors.release_notes_file_empty() if self.handle_error(error_message, error_code, file_path=self.file_path): return False elif '%%UPDATE_RN%%' in release_notes_comments: error_message, error_code = Errors.release_notes_not_finished() if self.handle_error(error_message, error_code, file_path=self.file_path): return False return True def is_file_valid(self): """Checks if given file is valid. Return: bool. True if file's release notes are valid, False otherwise. """ validations = [ self.has_release_notes_been_filled_out(), self.are_release_notes_complete() ] return all(validations)
<filename>demisto_sdk/commands/common/hook_validations/release_notes.py from __future__ import print_function import itertools from demisto_sdk.commands.common.constants import VALIDATED_PACK_ITEM_TYPES from demisto_sdk.commands.common.errors import Errors from demisto_sdk.commands.common.hook_validations.base_validator import \ BaseValidator from demisto_sdk.commands.common.tools import (get_latest_release_notes_text, get_release_notes_file_path) from demisto_sdk.commands.update_release_notes.update_rn import UpdateRN class ReleaseNotesValidator(BaseValidator): """Release notes validator is designed to ensure the existence and correctness of the release notes in content repo. Attributes: file_path (str): the path to the file we are examining at the moment. release_notes_path (str): the path to the changelog file of the examined file. latest_release_notes (str): the text of the UNRELEASED section in the changelog file. master_diff (str): the changes in the changelog file compared to origin/master. """ def __init__(self, file_path, modified_files=None, pack_name=None, added_files=None, ignored_errors=None, print_as_warnings=False): super().__init__(ignored_errors=ignored_errors, print_as_warnings=print_as_warnings) self.file_path = file_path self.modified_files = modified_files self.added_files = added_files self.pack_name = pack_name self.release_notes_path = get_release_notes_file_path(self.file_path) self.latest_release_notes = get_latest_release_notes_text(self.release_notes_path) def are_release_notes_complete(self): is_valid = True modified_added_files = itertools.chain.from_iterable((self.added_files or [], self.modified_files or [])) if modified_added_files: for file in modified_added_files: if not any(permitted_type in file for permitted_type in VALIDATED_PACK_ITEM_TYPES): continue elif self.pack_name in file: update_rn_util = UpdateRN(pack=self.pack_name, pack_files=set(), update_type=None, added_files=set()) file_name, file_type = update_rn_util.identify_changed_file_type(file) if file_name and file_type: if (file_type not in self.latest_release_notes) or (file_name not in self.latest_release_notes): entity_name = update_rn_util.get_display_name(file) error_message, error_code = Errors.missing_release_notes_entry(file_type, self.pack_name, entity_name) if self.handle_error(error_message, error_code, self.file_path): is_valid = False return is_valid def has_release_notes_been_filled_out(self): release_notes_comments = self.latest_release_notes if len(release_notes_comments) == 0: error_message, error_code = Errors.release_notes_file_empty() if self.handle_error(error_message, error_code, file_path=self.file_path): return False elif '%%UPDATE_RN%%' in release_notes_comments: error_message, error_code = Errors.release_notes_not_finished() if self.handle_error(error_message, error_code, file_path=self.file_path): return False return True def is_file_valid(self): """Checks if given file is valid. Return: bool. True if file's release notes are valid, False otherwise. """ validations = [ self.has_release_notes_been_filled_out(), self.are_release_notes_complete() ] return all(validations)
en
0.803394
Release notes validator is designed to ensure the existence and correctness of the release notes in content repo. Attributes: file_path (str): the path to the file we are examining at the moment. release_notes_path (str): the path to the changelog file of the examined file. latest_release_notes (str): the text of the UNRELEASED section in the changelog file. master_diff (str): the changes in the changelog file compared to origin/master. Checks if given file is valid. Return: bool. True if file's release notes are valid, False otherwise.
2.0718
2
PyOpenGL/PyGame/ex06/src/mathematics.py
hoppfull/Legacy-Python
0
10421
import numpy as np class ProjectionMatrix(): """This matrix provides projection distortion. Projection distortion is when things that are far away appear smaller and things that are close appear bigger. This works flawlessly so far. Takes in screen-size and provides near- and far clipping. fov is field-of-view and smaller values will make view zoom in. A value of 1 will provide a panorama image.""" def __init__(self, screen_size, zNear, zFar, fov): if fov >= 1: # Limit to 0.99 or we get infinity error at 1.0. >1.0 will give strange result. fov = 0.99999; tanHalfFOV = np.tan(fov * np.pi / 2.0) zRange = zNear - zFar; self.projectionMatrix = np.array([ [ # Row 0: screen_size[1] / (tanHalfFOV * screen_size[0]), 0, 0, 0 ], [ # Row 1: 0, 1.0 / tanHalfFOV, 0, 0 ], [ # Row 2: 0, 0, (-zNear - zFar)/zRange, 2.0 * zFar * zNear / zRange ], [ # Row 3: 0, 0, 1, 0 ], ], dtype=np.float32) def get(self): return self.projectionMatrix class ViewMatrix(): """This matrix transform a model as if it's percieved by a camera with a target 'self.t' in global world coordinates and a position 'self.p' in global world coordinates. Global coordinates are x=right, y=forth and z=up.""" def __init__(self, position): self.p = vec3(position.x, position.y, position.z) # target coordinates: self.t = vec3(0, 0, 0) # tolerance value: self.tolerance = 0.5 """The tolerance value is for testing when view lies within bounds. In case of 'self.orbitTarget()', it's for testing when view gets too close to target z-axis. In case of 'self.approachTarget()', it's for testing when view gets too close to target coordinates.""" # Sensitivity value: self.alpha = 0.01 """The sensitivity value is for tuning how sensitive 'self.orbitTarget()' and 'self.approachTarget()' are to user input.""" # Initialize the rotationMatrix as the identity matrix: self.rotationMatrix = np.matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], dtype=np.float32) def translate(self, dp): self.p = self.p.add(dp) def setPos(self, p): self.p = vec3(p.x, p.y, p.z) def lookAt(self, target=None, up=None): """This function focuses the view on a target. Tested and seem to work as it should... ........finally........""" if target != None: self.t = vec3(target.x, target.y, target.z) f = self.t.sub(self.p).norm() if up != None: u = vec3(up.x, up.y, up.z).norm() else: u = vec3(0, 0, 1) s = f.cross(u).norm() # f x u u = s.cross(f) # s x f, automatically normalized self.rotationMatrix = np.matrix([ [ s.x, s.y, s.z, 0], [ u.x, u.y, u.z, 0], [ f.x, f.y, f.z, 0], [ 0, 0, 0, 1]], dtype=np.float32) def approachTarget(self, amount): """This function approaches the view towards the target when amount is positive and moves away from the target when amount is negative. It will stay outside the self.tolerance distance. When completely close to the target, view cannot look up or down too much.""" if amount == 0: # If amount is zero, do nothing. return if self.t.sub(self.p).mag()*(1 - amount) > 2.0*self.tolerance: # If 'self.approachTarget()' will not take the view within twice the # tolerance distance, approach the target by given amount: self.p = self.p.add(self.t.sub(self.p).scale(amount)) def orbitTarget(self, axis): if axis == (0, 0): return # Do nothing # Get target2camera-vector: p = self.p.sub(self.t) # Assign passed values to variables we can change if we have to: axis_x = -axis[0] if axis[1] > 0.30/self.alpha: """If axis[1] is bigger than 0.40 / self.alpha, we get strange results becouse view can 'tunnel' over the boundary set when getting view is getting close to target z-axis. Changing tolerance doen't change it a whole lot so I'm setting a boundary value for axis[1] to +-0.30 / self.alpha which is really really large as it is.""" axis_y = 0.3 / self.alpha elif axis[1] < -0.30/self.alpha: axis_y = -0.3 / self.alpha else: axis_y = axis[1] if axis_y > 0 and p.z > 0: """Tests if user is trying to orbit the view up and if the view is above the 'equator'. The second test is to make sure the view doesn't get stuck if it gets inside the tolerance bounds and can get back out as long as it's trying to move away.""" if vec2(p.x, p.y).mag() < self.tolerance: axis_y = 0 elif axis_y < 0 and p.z < 0: """Tests if user is trying to orbit the view down and if the view is below the 'equator'. Same test but for different case as the one above.""" if vec2(p.x, p.y).mag() < self.tolerance: axis_y = 0 if axis_y == 0: #If the other axis is zero: # Amount of rotation for target-cam x-axis: (longitude, west2east) v = vec3(0, 0, 1) # v is up vector rate = axis_x elif axis_x == 0: #If the other axis is zero: # Amount of rotation for target-cam y-axis: (latitude, south2north) v = p.cross(vec3(0, 0, 1)).norm() # v is side vector rate = axis_y else: #If neither is zero # u is up vector: u = vec3(0, 0, axis_x) # s is side vector: s = p.cross(vec3(0, 0, 1)).norm().scale(axis_y) # v is combined vector: v = u.add(s).norm() rate = abs(axis_x) + abs(axis_y) sin = np.sin(self.alpha * rate) cos = np.cos(self.alpha * rate) rotateMatrix = np.matrix([ [ # Row 0: ( v.x*v.x*(1 - cos) + cos ), ( v.y*v.x*(1 - cos) - v.z*sin ), ( v.z*v.x*(1 - cos) + v.y*sin ), 0 ], [ # Row 1: ( v.x*v.y*(1 - cos) + v.z*sin ), ( v.y*v.y*(1 - cos) + cos ), ( v.z*v.y*(1 - cos) - v.x*sin ), 0 ], [ # Row 2: ( v.x*v.z*(1 - cos) - v.y*sin ), ( v.y*v.z*(1 - cos) + v.x*sin ), ( v.z*v.z*(1 - cos) + cos ), 0 ], [ # Row 3: 0, 0, 0, 1 ], ], dtype=np.float32) p = rotateMatrix.dot( np.array([p.x, p.y, p.z, 1.0]) ).getA()[0][0:3] self.p = vec3(p[0], p[1], p[2]).add(self.t) self.lookAt(self.t) def get(self): translationMatrix = np.matrix([ [1,0,0,-self.p.x], [0,1,0,-self.p.y], [0,0,1,-self.p.z], [0,0,0,1] ], dtype=np.float32) return (self.rotationMatrix*translationMatrix).getA() class ModelMatrix(): """This matrix transform a model into world coordinates. Heavily tested and should work properly. Could probably be optimized further or even translated into cython for performance.""" def __init__(self, position): self.p = vec3(position.x, position.y, position.z) self.s = vec3(1, 1, 1) self.rotationMatrix = np.matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], dtype=np.float32) def translate(self, dp): self.p = self.p.add(dp) def rotate(self, turns, unit): """Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work.""" u = unit.norm() sin = np.sin(turns * np.pi * 2) cos = np.cos(turns * np.pi * 2) self.rotationMatrix = self.rotationMatrix.dot( np.matrix([ [ # Row 0: ( u.x*u.x*(1 - cos) + cos ), ( u.y*u.x*(1 - cos) - u.z*sin ), ( u.z*u.x*(1 - cos) + u.y*sin ), 0 ], [ # Row 1: ( u.x*u.y*(1 - cos) + u.z*sin ), ( u.y*u.y*(1 - cos) + cos ), ( u.z*u.y*(1 - cos) - u.x*sin ), 0 ], [ # Row 2: ( u.x*u.z*(1 - cos) - u.y*sin ), ( u.y*u.z*(1 - cos) + u.x*sin ), ( u.z*u.z*(1 - cos) + cos ), 0 ], [ # Row 3: 0, 0, 0, 1 ], ], dtype=np.float32)) def scale(self, s): self.s = vec3(s.x, s.y, s.z) def lookAt(self, target, up=None): """Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work.""" # Get normalized vector pointing from model to target f = target.sub(self.p).norm() if up != None: u = vec3(up.x, up.y, up.z).norm() else: u = vec3(0, 0, 1) s = f.cross(u).norm() # f x u # s must be normalized! Consider when f and u are not perpendicular! u = s.cross(f) # s x f, automatically normalized self.rotationMatrix = np.matrix([ [ s.x, f.x, u.x, 0], [ s.y, f.y, u.y, 0], [ s.z, f.z, u.z, 0], [ 0, 0, 0, 1]], dtype=np.float32) def get(self): """Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work.""" translationMatrix = np.matrix([ [1,0,0,self.p.x], [0,1,0,self.p.y], [0,0,1,self.p.z], [0,0,0,1] ], dtype=np.float32) scaleMatrix = np.matrix([ [self.s.x,0,0,0], [0,self.s.y,0,0], [0,0,self.s.z,0], [0,0,0,1] ], dtype=np.float32) return (translationMatrix*self.rotationMatrix*scaleMatrix).getA() class quaternion(): def __init__(self, x, y, z, w): self.x = float(x) self.y = float(y) self.z = float(z) self.w = float(w) def mag(self): # Get length of quaternion return np.sqrt(self.x*self.x + self.y*self.y + self.y*self.y + self.y*self.y) def norm(self): # Normalize quaternion return quaternion( x= self.x / self.mag(), y= self.y / self.mag(), z= self.z / self.mag(), w= self.w / self.mag()) def conjugate(self): return quaternion( x=-self.x, y=-self.y, z=-self.z, w= self.w) def xQ(self, q): # Multiply with quaternion return quaternion( x= self.x * q.w + self.w * q.x + self.y * q.z - self.z * q.y, y= self.y * q.w + self.w * q.y + self.z * q.x - self.x * q.z, z= self.z * q.w + self.w * q.z + self.x * q.y - self.y * q.x, w= self.w * q.w - self.x * q.x - self.y * q.y - self.z * q.z) def xV(self, v): # Multiply with vector return quaternion( x= self.w*v.x + self.y*v.z - self.z*v.y, y= self.w*v.y + self.z*v.x - self.x*v.z, z= self.w*v.z + self.x*v.y - self.y*v.x, w=-self.x*v.x - self.y*v.y - self.z*v.z) class vec2(): def __init__(self, x, y): self.x = float(x) self.y = float(y) def mag(self): return np.sqrt(self.x*self.x + self.y*self.y) def norm(self): return vec2( x= self.x / self.mag(), y= self.y / self.mag()) class vec3(): def __init__(self, x, y, z): self.x = float(x) self.y = float(y) self.z = float(z) def cross(self, vector): return vec3( x= self.y*vector.z - self.z*vector.y, y= self.z*vector.x - self.x*vector.z, z= self.x*vector.y - self.y*vector.x) def dot(self, vector): return float( self.x*vector.x + self.y*vector.y + self.z*vector.z ) def mag(self): return np.sqrt(self.x*self.x + self.y*self.y + self.z*self.z) def norm(self): return vec3( x= self.x / self.mag(), y= self.y / self.mag(), z= self.z / self.mag()) def add(self, vector): return vec3( x= self.x + vector.x, y= self.y + vector.y, z= self.z + vector.z) def sub(self, vector): return vec3( x= self.x - vector.x, y= self.y - vector.y, z= self.z - vector.z) def scale(self, scalar): return vec3( self.x*scalar, self.y*scalar, self.z*scalar) def rotate(self, angle, axis): pass
import numpy as np class ProjectionMatrix(): """This matrix provides projection distortion. Projection distortion is when things that are far away appear smaller and things that are close appear bigger. This works flawlessly so far. Takes in screen-size and provides near- and far clipping. fov is field-of-view and smaller values will make view zoom in. A value of 1 will provide a panorama image.""" def __init__(self, screen_size, zNear, zFar, fov): if fov >= 1: # Limit to 0.99 or we get infinity error at 1.0. >1.0 will give strange result. fov = 0.99999; tanHalfFOV = np.tan(fov * np.pi / 2.0) zRange = zNear - zFar; self.projectionMatrix = np.array([ [ # Row 0: screen_size[1] / (tanHalfFOV * screen_size[0]), 0, 0, 0 ], [ # Row 1: 0, 1.0 / tanHalfFOV, 0, 0 ], [ # Row 2: 0, 0, (-zNear - zFar)/zRange, 2.0 * zFar * zNear / zRange ], [ # Row 3: 0, 0, 1, 0 ], ], dtype=np.float32) def get(self): return self.projectionMatrix class ViewMatrix(): """This matrix transform a model as if it's percieved by a camera with a target 'self.t' in global world coordinates and a position 'self.p' in global world coordinates. Global coordinates are x=right, y=forth and z=up.""" def __init__(self, position): self.p = vec3(position.x, position.y, position.z) # target coordinates: self.t = vec3(0, 0, 0) # tolerance value: self.tolerance = 0.5 """The tolerance value is for testing when view lies within bounds. In case of 'self.orbitTarget()', it's for testing when view gets too close to target z-axis. In case of 'self.approachTarget()', it's for testing when view gets too close to target coordinates.""" # Sensitivity value: self.alpha = 0.01 """The sensitivity value is for tuning how sensitive 'self.orbitTarget()' and 'self.approachTarget()' are to user input.""" # Initialize the rotationMatrix as the identity matrix: self.rotationMatrix = np.matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], dtype=np.float32) def translate(self, dp): self.p = self.p.add(dp) def setPos(self, p): self.p = vec3(p.x, p.y, p.z) def lookAt(self, target=None, up=None): """This function focuses the view on a target. Tested and seem to work as it should... ........finally........""" if target != None: self.t = vec3(target.x, target.y, target.z) f = self.t.sub(self.p).norm() if up != None: u = vec3(up.x, up.y, up.z).norm() else: u = vec3(0, 0, 1) s = f.cross(u).norm() # f x u u = s.cross(f) # s x f, automatically normalized self.rotationMatrix = np.matrix([ [ s.x, s.y, s.z, 0], [ u.x, u.y, u.z, 0], [ f.x, f.y, f.z, 0], [ 0, 0, 0, 1]], dtype=np.float32) def approachTarget(self, amount): """This function approaches the view towards the target when amount is positive and moves away from the target when amount is negative. It will stay outside the self.tolerance distance. When completely close to the target, view cannot look up or down too much.""" if amount == 0: # If amount is zero, do nothing. return if self.t.sub(self.p).mag()*(1 - amount) > 2.0*self.tolerance: # If 'self.approachTarget()' will not take the view within twice the # tolerance distance, approach the target by given amount: self.p = self.p.add(self.t.sub(self.p).scale(amount)) def orbitTarget(self, axis): if axis == (0, 0): return # Do nothing # Get target2camera-vector: p = self.p.sub(self.t) # Assign passed values to variables we can change if we have to: axis_x = -axis[0] if axis[1] > 0.30/self.alpha: """If axis[1] is bigger than 0.40 / self.alpha, we get strange results becouse view can 'tunnel' over the boundary set when getting view is getting close to target z-axis. Changing tolerance doen't change it a whole lot so I'm setting a boundary value for axis[1] to +-0.30 / self.alpha which is really really large as it is.""" axis_y = 0.3 / self.alpha elif axis[1] < -0.30/self.alpha: axis_y = -0.3 / self.alpha else: axis_y = axis[1] if axis_y > 0 and p.z > 0: """Tests if user is trying to orbit the view up and if the view is above the 'equator'. The second test is to make sure the view doesn't get stuck if it gets inside the tolerance bounds and can get back out as long as it's trying to move away.""" if vec2(p.x, p.y).mag() < self.tolerance: axis_y = 0 elif axis_y < 0 and p.z < 0: """Tests if user is trying to orbit the view down and if the view is below the 'equator'. Same test but for different case as the one above.""" if vec2(p.x, p.y).mag() < self.tolerance: axis_y = 0 if axis_y == 0: #If the other axis is zero: # Amount of rotation for target-cam x-axis: (longitude, west2east) v = vec3(0, 0, 1) # v is up vector rate = axis_x elif axis_x == 0: #If the other axis is zero: # Amount of rotation for target-cam y-axis: (latitude, south2north) v = p.cross(vec3(0, 0, 1)).norm() # v is side vector rate = axis_y else: #If neither is zero # u is up vector: u = vec3(0, 0, axis_x) # s is side vector: s = p.cross(vec3(0, 0, 1)).norm().scale(axis_y) # v is combined vector: v = u.add(s).norm() rate = abs(axis_x) + abs(axis_y) sin = np.sin(self.alpha * rate) cos = np.cos(self.alpha * rate) rotateMatrix = np.matrix([ [ # Row 0: ( v.x*v.x*(1 - cos) + cos ), ( v.y*v.x*(1 - cos) - v.z*sin ), ( v.z*v.x*(1 - cos) + v.y*sin ), 0 ], [ # Row 1: ( v.x*v.y*(1 - cos) + v.z*sin ), ( v.y*v.y*(1 - cos) + cos ), ( v.z*v.y*(1 - cos) - v.x*sin ), 0 ], [ # Row 2: ( v.x*v.z*(1 - cos) - v.y*sin ), ( v.y*v.z*(1 - cos) + v.x*sin ), ( v.z*v.z*(1 - cos) + cos ), 0 ], [ # Row 3: 0, 0, 0, 1 ], ], dtype=np.float32) p = rotateMatrix.dot( np.array([p.x, p.y, p.z, 1.0]) ).getA()[0][0:3] self.p = vec3(p[0], p[1], p[2]).add(self.t) self.lookAt(self.t) def get(self): translationMatrix = np.matrix([ [1,0,0,-self.p.x], [0,1,0,-self.p.y], [0,0,1,-self.p.z], [0,0,0,1] ], dtype=np.float32) return (self.rotationMatrix*translationMatrix).getA() class ModelMatrix(): """This matrix transform a model into world coordinates. Heavily tested and should work properly. Could probably be optimized further or even translated into cython for performance.""" def __init__(self, position): self.p = vec3(position.x, position.y, position.z) self.s = vec3(1, 1, 1) self.rotationMatrix = np.matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], dtype=np.float32) def translate(self, dp): self.p = self.p.add(dp) def rotate(self, turns, unit): """Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work.""" u = unit.norm() sin = np.sin(turns * np.pi * 2) cos = np.cos(turns * np.pi * 2) self.rotationMatrix = self.rotationMatrix.dot( np.matrix([ [ # Row 0: ( u.x*u.x*(1 - cos) + cos ), ( u.y*u.x*(1 - cos) - u.z*sin ), ( u.z*u.x*(1 - cos) + u.y*sin ), 0 ], [ # Row 1: ( u.x*u.y*(1 - cos) + u.z*sin ), ( u.y*u.y*(1 - cos) + cos ), ( u.z*u.y*(1 - cos) - u.x*sin ), 0 ], [ # Row 2: ( u.x*u.z*(1 - cos) - u.y*sin ), ( u.y*u.z*(1 - cos) + u.x*sin ), ( u.z*u.z*(1 - cos) + cos ), 0 ], [ # Row 3: 0, 0, 0, 1 ], ], dtype=np.float32)) def scale(self, s): self.s = vec3(s.x, s.y, s.z) def lookAt(self, target, up=None): """Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work.""" # Get normalized vector pointing from model to target f = target.sub(self.p).norm() if up != None: u = vec3(up.x, up.y, up.z).norm() else: u = vec3(0, 0, 1) s = f.cross(u).norm() # f x u # s must be normalized! Consider when f and u are not perpendicular! u = s.cross(f) # s x f, automatically normalized self.rotationMatrix = np.matrix([ [ s.x, f.x, u.x, 0], [ s.y, f.y, u.y, 0], [ s.z, f.z, u.z, 0], [ 0, 0, 0, 1]], dtype=np.float32) def get(self): """Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work.""" translationMatrix = np.matrix([ [1,0,0,self.p.x], [0,1,0,self.p.y], [0,0,1,self.p.z], [0,0,0,1] ], dtype=np.float32) scaleMatrix = np.matrix([ [self.s.x,0,0,0], [0,self.s.y,0,0], [0,0,self.s.z,0], [0,0,0,1] ], dtype=np.float32) return (translationMatrix*self.rotationMatrix*scaleMatrix).getA() class quaternion(): def __init__(self, x, y, z, w): self.x = float(x) self.y = float(y) self.z = float(z) self.w = float(w) def mag(self): # Get length of quaternion return np.sqrt(self.x*self.x + self.y*self.y + self.y*self.y + self.y*self.y) def norm(self): # Normalize quaternion return quaternion( x= self.x / self.mag(), y= self.y / self.mag(), z= self.z / self.mag(), w= self.w / self.mag()) def conjugate(self): return quaternion( x=-self.x, y=-self.y, z=-self.z, w= self.w) def xQ(self, q): # Multiply with quaternion return quaternion( x= self.x * q.w + self.w * q.x + self.y * q.z - self.z * q.y, y= self.y * q.w + self.w * q.y + self.z * q.x - self.x * q.z, z= self.z * q.w + self.w * q.z + self.x * q.y - self.y * q.x, w= self.w * q.w - self.x * q.x - self.y * q.y - self.z * q.z) def xV(self, v): # Multiply with vector return quaternion( x= self.w*v.x + self.y*v.z - self.z*v.y, y= self.w*v.y + self.z*v.x - self.x*v.z, z= self.w*v.z + self.x*v.y - self.y*v.x, w=-self.x*v.x - self.y*v.y - self.z*v.z) class vec2(): def __init__(self, x, y): self.x = float(x) self.y = float(y) def mag(self): return np.sqrt(self.x*self.x + self.y*self.y) def norm(self): return vec2( x= self.x / self.mag(), y= self.y / self.mag()) class vec3(): def __init__(self, x, y, z): self.x = float(x) self.y = float(y) self.z = float(z) def cross(self, vector): return vec3( x= self.y*vector.z - self.z*vector.y, y= self.z*vector.x - self.x*vector.z, z= self.x*vector.y - self.y*vector.x) def dot(self, vector): return float( self.x*vector.x + self.y*vector.y + self.z*vector.z ) def mag(self): return np.sqrt(self.x*self.x + self.y*self.y + self.z*self.z) def norm(self): return vec3( x= self.x / self.mag(), y= self.y / self.mag(), z= self.z / self.mag()) def add(self, vector): return vec3( x= self.x + vector.x, y= self.y + vector.y, z= self.z + vector.z) def sub(self, vector): return vec3( x= self.x - vector.x, y= self.y - vector.y, z= self.z - vector.z) def scale(self, scalar): return vec3( self.x*scalar, self.y*scalar, self.z*scalar) def rotate(self, angle, axis): pass
en
0.892765
This matrix provides projection distortion. Projection distortion is when things that are far away appear smaller and things that are close appear bigger. This works flawlessly so far. Takes in screen-size and provides near- and far clipping. fov is field-of-view and smaller values will make view zoom in. A value of 1 will provide a panorama image. # Limit to 0.99 or we get infinity error at 1.0. >1.0 will give strange result. # Row 0: # Row 1: # Row 2: # Row 3: This matrix transform a model as if it's percieved by a camera with a target 'self.t' in global world coordinates and a position 'self.p' in global world coordinates. Global coordinates are x=right, y=forth and z=up. # target coordinates: # tolerance value: The tolerance value is for testing when view lies within bounds. In case of 'self.orbitTarget()', it's for testing when view gets too close to target z-axis. In case of 'self.approachTarget()', it's for testing when view gets too close to target coordinates. # Sensitivity value: The sensitivity value is for tuning how sensitive 'self.orbitTarget()' and 'self.approachTarget()' are to user input. # Initialize the rotationMatrix as the identity matrix: This function focuses the view on a target. Tested and seem to work as it should... ........finally........ # f x u # s x f, automatically normalized This function approaches the view towards the target when amount is positive and moves away from the target when amount is negative. It will stay outside the self.tolerance distance. When completely close to the target, view cannot look up or down too much. # If amount is zero, do nothing. # If 'self.approachTarget()' will not take the view within twice the # tolerance distance, approach the target by given amount: # Do nothing # Get target2camera-vector: # Assign passed values to variables we can change if we have to: If axis[1] is bigger than 0.40 / self.alpha, we get strange results becouse view can 'tunnel' over the boundary set when getting view is getting close to target z-axis. Changing tolerance doen't change it a whole lot so I'm setting a boundary value for axis[1] to +-0.30 / self.alpha which is really really large as it is. Tests if user is trying to orbit the view up and if the view is above the 'equator'. The second test is to make sure the view doesn't get stuck if it gets inside the tolerance bounds and can get back out as long as it's trying to move away. Tests if user is trying to orbit the view down and if the view is below the 'equator'. Same test but for different case as the one above. #If the other axis is zero: # Amount of rotation for target-cam x-axis: (longitude, west2east) # v is up vector #If the other axis is zero: # Amount of rotation for target-cam y-axis: (latitude, south2north) # v is side vector #If neither is zero # u is up vector: # s is side vector: # v is combined vector: # Row 0: # Row 1: # Row 2: # Row 3: This matrix transform a model into world coordinates. Heavily tested and should work properly. Could probably be optimized further or even translated into cython for performance. Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work. # Row 0: # Row 1: # Row 2: # Row 3: Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work. # Get normalized vector pointing from model to target # f x u # s must be normalized! Consider when f and u are not perpendicular! # s x f, automatically normalized Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work. # Get length of quaternion # Normalize quaternion # Multiply with quaternion # Multiply with vector
3.3909
3
test_utils/mocks.py
radomd92/botjagwar
7
10422
from xml.dom import minidom import pywikibot from api.decorator import time_this SiteMock = pywikibot.Site class PageMock(pywikibot.Page): def __init__(self, *args, **kwargs): super(PageMock, self).__init__(*args, **kwargs) self.filename = "test_data/test_pages_%s.xml" % self.site.lang self.parsed = minidom.parse(open(self.filename, 'r')) self.pages = self.parsed.getElementsByTagName('page') def put(self, newtext, summary=None, watch=None, minor=True, botflag=None, force=False, asynchronous=False, callback=None, **kwargs): print(('Saving page [[%s]] through put' % self.title())) def save(self, summary=None, watch=None, minor=True, botflag=None, force=False, asynchronous=False, callback=None, apply_cosmetic_changes=None, quiet=False, **kwargs): print(('Saving page [[%s]] through save' % self.title())) def _save(self, summary=None, watch=None, minor=True, botflag=None, cc=None, quiet=False, **kwargs): print(('Saving page [[%s]] through save' % self.title())) @time_this('Page.get() method mock') def get(self, force=False, get_redirect=False, sysop=False): for page in self.pages: xml_title = page.getElementsByTagName( 'title')[0].childNodes[0].nodeValue if xml_title == self.title(): return page.getElementsByTagName( 'text')[0].childNodes[0].nodeValue print(('No page %s found in "%s"' % (self.title(), self.filename))) return '' p = PageMock(SiteMock('en', 'wiktionary'), 'gaon') e = p.get()
from xml.dom import minidom import pywikibot from api.decorator import time_this SiteMock = pywikibot.Site class PageMock(pywikibot.Page): def __init__(self, *args, **kwargs): super(PageMock, self).__init__(*args, **kwargs) self.filename = "test_data/test_pages_%s.xml" % self.site.lang self.parsed = minidom.parse(open(self.filename, 'r')) self.pages = self.parsed.getElementsByTagName('page') def put(self, newtext, summary=None, watch=None, minor=True, botflag=None, force=False, asynchronous=False, callback=None, **kwargs): print(('Saving page [[%s]] through put' % self.title())) def save(self, summary=None, watch=None, minor=True, botflag=None, force=False, asynchronous=False, callback=None, apply_cosmetic_changes=None, quiet=False, **kwargs): print(('Saving page [[%s]] through save' % self.title())) def _save(self, summary=None, watch=None, minor=True, botflag=None, cc=None, quiet=False, **kwargs): print(('Saving page [[%s]] through save' % self.title())) @time_this('Page.get() method mock') def get(self, force=False, get_redirect=False, sysop=False): for page in self.pages: xml_title = page.getElementsByTagName( 'title')[0].childNodes[0].nodeValue if xml_title == self.title(): return page.getElementsByTagName( 'text')[0].childNodes[0].nodeValue print(('No page %s found in "%s"' % (self.title(), self.filename))) return '' p = PageMock(SiteMock('en', 'wiktionary'), 'gaon') e = p.get()
none
1
2.480304
2
dl_tensorflow/deepdream.py
jarvisqi/deep_learning
32
10423
import os from functools import partial from io import BytesIO import numpy as np import PIL.Image import scipy.misc import tensorflow as tf graph = tf.Graph() sess = tf.InteractiveSession(graph=graph) model_fn = "./models/tensorflow_inception_graph.pb" with tf.gfile.FastGFile(model_fn, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) t_input = tf.placeholder(tf.float32, name="input") imagenet_mean = 117.0 t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0) tf.import_graph_def(graph_def, {"input": t_preprocessed}) def load_inception(): graph = tf.Graph() sess = tf.InteractiveSession(graph=graph) model_fn = "./models/tensorflow_inception_graph.pb" with tf.gfile.FastGFile(model_fn, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) # 定义t_input为我们输入的图像 t_input = tf.placeholder(np.float32, name='input') imagenet_mean = 117.0 # 输入图像需要经过处理才能送入网络中 # expand_dims是加一维,从[height, width, channel]变成[1, height, width, channel] # t_input - imagenet_mean是减去一个均值 t_preprocessed = tf.expand_dims(t_input - imagenet_mean, 0) tf.import_graph_def(graph_def, {'input': t_preprocessed}) # 找到所有卷积层 layers = [op.name for op in graph.get_operations() if op.type == "Conv2D" and "import/" in op.name] # 输出卷积层层数 print('Number of layers', len(layers)) # 特别地,输出mixed4d_3x3_bottleneck_pre_relu的形状 name = 'mixed4d_3x3_bottleneck_pre_relu' print('shape of %s: %s' %(name, str(graph.get_tensor_by_name('import/' + name + ':0').get_shape()))) def savearray(img_array, img_name): scipy.misc.toimage(img_array).save(img_name) print('img saved: %s' % img_name) def visstd(a, s=0.1): return (a-a.mean())/max(a.std(), 1e-4)*s+0.5 def resize_ratio(img, ratio): min = img.min() max = img.max() img = (img - min) / (max - min) * 255 img = np.float32(scipy.misc.imresize(img, ratio)) img = img / 255 * (max - min) + min return img def resize(img, hw): min = img.min() max = img.max() img = (img - min) / (max - min) * 255 img = np.float32(scipy.misc.imresize(img, hw)) img = img / 255 * (max - min) + min return img def calc_grad_tiled(img, t_grad, tile_size=512): sz = tile_size h, w = img.shape[:2] sx, sy = np.random.randint(sz, size=2) img_shift = np.roll(np.roll(img, sx, 1), sy, 0) # 先在行上做整体移动,再在列上做整体移动 grad = np.zeros_like(img) for y in range(0, max(h - sz // 2, sz), sz): for x in range(0, max(w - sz // 2, sz), sz): sub = img_shift[y:y + sz, x:x + sz] g = sess.run(t_grad, {t_input: sub}) grad[y:y + sz, x:x + sz] = g return np.roll(np.roll(grad, -sx, 1), -sy, 0) k = np.float32([1, 4, 6, 4, 1]) k = np.outer(k, k) k5x5 = k[:, :, None, None] / k.sum() * np.eye(3, dtype=np.float32) # 将拉普拉斯金字塔还原到原始图像 def lap_merge(levels): img = levels[0] for hi in levels[1:]: with tf.name_scope('merge'): img = tf.nn.conv2d_transpose(img, k5x5 * 4, tf.shape(hi), [1, 2, 2, 1]) + hi return img # 对img做标准化。 def normalize_std(img, eps=1e-10): with tf.name_scope('normalize'): std = tf.sqrt(tf.reduce_mean(tf.square(img))) return img / tf.maximum(std, eps) # 拉普拉斯金字塔标准化 def lap_normalize(img, scale_n=4): img = tf.expand_dims(img, 0) tlevels = lap_split_n(img, scale_n) # 每一层都做一次normalize_std tlevels = list(map(normalize_std, tlevels)) out = lap_merge(tlevels) return out[0, :, :, :] # 这个函数将图像分为低频和高频成分 def lap_split(img): with tf.name_scope('split'): # 做过一次卷积相当于一次“平滑”,因此lo为低频成分 lo = tf.nn.conv2d(img, k5x5, [1, 2, 2, 1], 'SAME') # 低频成分放缩到原始图像一样大小得到lo2,再用原始图像img减去lo2,就得到高频成分hi lo2 = tf.nn.conv2d_transpose(lo, k5x5 * 4, tf.shape(img), [1, 2, 2, 1]) hi = img - lo2 return lo, hi # 这个函数将图像img分成n层拉普拉斯金字塔 def lap_split_n(img, n): levels = [] for i in range(n): # 调用lap_split将图像分为低频和高频部分 # 高频部分保存到levels中 # 低频部分再继续分解 img, hi = lap_split(img) levels.append(hi) levels.append(img) return levels[::-1] def tffunc(*argtypes): placeholders = list(map(tf.placeholder, argtypes)) def wrap(f): out = f(*placeholders) def wrapper(*args, **kw): return out.eval(dict(zip(placeholders, args)), session=kw.get('session')) return wrapper return wrap def render_deepdream(img0, iter_n=10, step=1.5, octave_n=4, octave_scale=1.4): name = 'mixed4d_3x3_bottleneck_pre_relu' channel = 139 t_obj = graph.get_tensor_by_name("import/%s:0" % name) t_score = tf.reduce_mean(t_obj) t_grad = tf.gradients(t_score, t_input)[0] lap_n=4 # 将lap_normalize转换为正常函数 lap_norm_func = tffunc(np.float32)(partial(lap_normalize, scale_n=lap_n)) img = img0 # 同样将图像进行金字塔分解 # 此时提取高频、低频的方法比较简单。直接缩放就可以 octaves = [] for i in range(octave_n-1): hw = img.shape[:2] lo = resize(img, np.int32(np.float32(hw) / octave_scale)) hi = img - resize(lo, hw) img = lo octaves.append(hi) # 先生成低频的图像,再依次放大并加上高频 for octave in range(octave_n): if octave > 0: hi = octaves[-octave] img = resize(img, hi.shape[:2]) + hi for i in range(iter_n): g = calc_grad_tiled(img, t_grad) img += g * (step / (np.abs(g).mean() + 1e-7)) # 唯一的区别在于我们使用lap_norm_func来标准化g! # g = lap_norm_func(g) # img += g * step print('.', end=' ') img = img.clip(0, 255) savearray(img, './predict_img/deepdream.jpg') if __name__ == '__main__': img0 = PIL.Image.open('./images/test.jpg') img0 = np.float32(img0) render_deepdream(img0)
import os from functools import partial from io import BytesIO import numpy as np import PIL.Image import scipy.misc import tensorflow as tf graph = tf.Graph() sess = tf.InteractiveSession(graph=graph) model_fn = "./models/tensorflow_inception_graph.pb" with tf.gfile.FastGFile(model_fn, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) t_input = tf.placeholder(tf.float32, name="input") imagenet_mean = 117.0 t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0) tf.import_graph_def(graph_def, {"input": t_preprocessed}) def load_inception(): graph = tf.Graph() sess = tf.InteractiveSession(graph=graph) model_fn = "./models/tensorflow_inception_graph.pb" with tf.gfile.FastGFile(model_fn, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) # 定义t_input为我们输入的图像 t_input = tf.placeholder(np.float32, name='input') imagenet_mean = 117.0 # 输入图像需要经过处理才能送入网络中 # expand_dims是加一维,从[height, width, channel]变成[1, height, width, channel] # t_input - imagenet_mean是减去一个均值 t_preprocessed = tf.expand_dims(t_input - imagenet_mean, 0) tf.import_graph_def(graph_def, {'input': t_preprocessed}) # 找到所有卷积层 layers = [op.name for op in graph.get_operations() if op.type == "Conv2D" and "import/" in op.name] # 输出卷积层层数 print('Number of layers', len(layers)) # 特别地,输出mixed4d_3x3_bottleneck_pre_relu的形状 name = 'mixed4d_3x3_bottleneck_pre_relu' print('shape of %s: %s' %(name, str(graph.get_tensor_by_name('import/' + name + ':0').get_shape()))) def savearray(img_array, img_name): scipy.misc.toimage(img_array).save(img_name) print('img saved: %s' % img_name) def visstd(a, s=0.1): return (a-a.mean())/max(a.std(), 1e-4)*s+0.5 def resize_ratio(img, ratio): min = img.min() max = img.max() img = (img - min) / (max - min) * 255 img = np.float32(scipy.misc.imresize(img, ratio)) img = img / 255 * (max - min) + min return img def resize(img, hw): min = img.min() max = img.max() img = (img - min) / (max - min) * 255 img = np.float32(scipy.misc.imresize(img, hw)) img = img / 255 * (max - min) + min return img def calc_grad_tiled(img, t_grad, tile_size=512): sz = tile_size h, w = img.shape[:2] sx, sy = np.random.randint(sz, size=2) img_shift = np.roll(np.roll(img, sx, 1), sy, 0) # 先在行上做整体移动,再在列上做整体移动 grad = np.zeros_like(img) for y in range(0, max(h - sz // 2, sz), sz): for x in range(0, max(w - sz // 2, sz), sz): sub = img_shift[y:y + sz, x:x + sz] g = sess.run(t_grad, {t_input: sub}) grad[y:y + sz, x:x + sz] = g return np.roll(np.roll(grad, -sx, 1), -sy, 0) k = np.float32([1, 4, 6, 4, 1]) k = np.outer(k, k) k5x5 = k[:, :, None, None] / k.sum() * np.eye(3, dtype=np.float32) # 将拉普拉斯金字塔还原到原始图像 def lap_merge(levels): img = levels[0] for hi in levels[1:]: with tf.name_scope('merge'): img = tf.nn.conv2d_transpose(img, k5x5 * 4, tf.shape(hi), [1, 2, 2, 1]) + hi return img # 对img做标准化。 def normalize_std(img, eps=1e-10): with tf.name_scope('normalize'): std = tf.sqrt(tf.reduce_mean(tf.square(img))) return img / tf.maximum(std, eps) # 拉普拉斯金字塔标准化 def lap_normalize(img, scale_n=4): img = tf.expand_dims(img, 0) tlevels = lap_split_n(img, scale_n) # 每一层都做一次normalize_std tlevels = list(map(normalize_std, tlevels)) out = lap_merge(tlevels) return out[0, :, :, :] # 这个函数将图像分为低频和高频成分 def lap_split(img): with tf.name_scope('split'): # 做过一次卷积相当于一次“平滑”,因此lo为低频成分 lo = tf.nn.conv2d(img, k5x5, [1, 2, 2, 1], 'SAME') # 低频成分放缩到原始图像一样大小得到lo2,再用原始图像img减去lo2,就得到高频成分hi lo2 = tf.nn.conv2d_transpose(lo, k5x5 * 4, tf.shape(img), [1, 2, 2, 1]) hi = img - lo2 return lo, hi # 这个函数将图像img分成n层拉普拉斯金字塔 def lap_split_n(img, n): levels = [] for i in range(n): # 调用lap_split将图像分为低频和高频部分 # 高频部分保存到levels中 # 低频部分再继续分解 img, hi = lap_split(img) levels.append(hi) levels.append(img) return levels[::-1] def tffunc(*argtypes): placeholders = list(map(tf.placeholder, argtypes)) def wrap(f): out = f(*placeholders) def wrapper(*args, **kw): return out.eval(dict(zip(placeholders, args)), session=kw.get('session')) return wrapper return wrap def render_deepdream(img0, iter_n=10, step=1.5, octave_n=4, octave_scale=1.4): name = 'mixed4d_3x3_bottleneck_pre_relu' channel = 139 t_obj = graph.get_tensor_by_name("import/%s:0" % name) t_score = tf.reduce_mean(t_obj) t_grad = tf.gradients(t_score, t_input)[0] lap_n=4 # 将lap_normalize转换为正常函数 lap_norm_func = tffunc(np.float32)(partial(lap_normalize, scale_n=lap_n)) img = img0 # 同样将图像进行金字塔分解 # 此时提取高频、低频的方法比较简单。直接缩放就可以 octaves = [] for i in range(octave_n-1): hw = img.shape[:2] lo = resize(img, np.int32(np.float32(hw) / octave_scale)) hi = img - resize(lo, hw) img = lo octaves.append(hi) # 先生成低频的图像,再依次放大并加上高频 for octave in range(octave_n): if octave > 0: hi = octaves[-octave] img = resize(img, hi.shape[:2]) + hi for i in range(iter_n): g = calc_grad_tiled(img, t_grad) img += g * (step / (np.abs(g).mean() + 1e-7)) # 唯一的区别在于我们使用lap_norm_func来标准化g! # g = lap_norm_func(g) # img += g * step print('.', end=' ') img = img.clip(0, 255) savearray(img, './predict_img/deepdream.jpg') if __name__ == '__main__': img0 = PIL.Image.open('./images/test.jpg') img0 = np.float32(img0) render_deepdream(img0)
zh
0.912128
# 定义t_input为我们输入的图像 # 输入图像需要经过处理才能送入网络中 # expand_dims是加一维,从[height, width, channel]变成[1, height, width, channel] # t_input - imagenet_mean是减去一个均值 # 找到所有卷积层 # 输出卷积层层数 # 特别地,输出mixed4d_3x3_bottleneck_pre_relu的形状 # 先在行上做整体移动,再在列上做整体移动 # 将拉普拉斯金字塔还原到原始图像 # 对img做标准化。 # 拉普拉斯金字塔标准化 # 每一层都做一次normalize_std # 这个函数将图像分为低频和高频成分 # 做过一次卷积相当于一次“平滑”,因此lo为低频成分 # 低频成分放缩到原始图像一样大小得到lo2,再用原始图像img减去lo2,就得到高频成分hi # 这个函数将图像img分成n层拉普拉斯金字塔 # 调用lap_split将图像分为低频和高频部分 # 高频部分保存到levels中 # 低频部分再继续分解 # 将lap_normalize转换为正常函数 # 同样将图像进行金字塔分解 # 此时提取高频、低频的方法比较简单。直接缩放就可以 # 先生成低频的图像,再依次放大并加上高频 # 唯一的区别在于我们使用lap_norm_func来标准化g! # g = lap_norm_func(g) # img += g * step
2.454681
2
admin.py
BlueBlock/usage-reporter
4
10424
import calendar import datetime import logging import os import webapp2 import dbmodel TESTING = os.environ.get('SERVER_SOFTWARE', '').startswith('Development') class ResetHandler(webapp2.RequestHandler): def get(self): timestamp = calendar.timegm(datetime.datetime.utcnow().timetuple()) self.response.write('<html><body><form method="POST"><input type="text" value="' + str( timestamp) + '" name="day"><input type="submit"></form></body></html>') def post(self): timestamp = int(self.request.get('day', None)) entry_day = datetime.datetime.utcfromtimestamp(timestamp).date() logging.info('Processing day %s', entry_day) starttimestamp = calendar.timegm((entry_day.year, entry_day.month, entry_day.day, 0, 0, 0)) endtimestamp = starttimestamp + 24 * 60 * 60 logging.info('starttimestamp, endtimestamp: (%s, %s)', starttimestamp, endtimestamp) count = 0 for item in dbmodel.ReportItem.all().filter('counted', 0).filter('eventtype =', 'Information').filter( 'timestamp <', endtimestamp).filter('timestamp >=', starttimestamp).order('timestamp'): item.counted = None item.put() count += 1 for item in dbmodel.ReportItem.all().filter('counted', 1).filter('eventtype =', 'Information').filter( 'timestamp <', endtimestamp).filter('timestamp >=', starttimestamp).order('timestamp'): item.counted = None item.put() count += 1 logging.info('Reset for %s items', count) for item in dbmodel.AggregateItem.all().filter('timestamp =', starttimestamp).filter('rangetype =', 'day'): item.delete() app = webapp2.WSGIApplication([ ('/tasks/admin/reset', ResetHandler) ], debug=TESTING)
import calendar import datetime import logging import os import webapp2 import dbmodel TESTING = os.environ.get('SERVER_SOFTWARE', '').startswith('Development') class ResetHandler(webapp2.RequestHandler): def get(self): timestamp = calendar.timegm(datetime.datetime.utcnow().timetuple()) self.response.write('<html><body><form method="POST"><input type="text" value="' + str( timestamp) + '" name="day"><input type="submit"></form></body></html>') def post(self): timestamp = int(self.request.get('day', None)) entry_day = datetime.datetime.utcfromtimestamp(timestamp).date() logging.info('Processing day %s', entry_day) starttimestamp = calendar.timegm((entry_day.year, entry_day.month, entry_day.day, 0, 0, 0)) endtimestamp = starttimestamp + 24 * 60 * 60 logging.info('starttimestamp, endtimestamp: (%s, %s)', starttimestamp, endtimestamp) count = 0 for item in dbmodel.ReportItem.all().filter('counted', 0).filter('eventtype =', 'Information').filter( 'timestamp <', endtimestamp).filter('timestamp >=', starttimestamp).order('timestamp'): item.counted = None item.put() count += 1 for item in dbmodel.ReportItem.all().filter('counted', 1).filter('eventtype =', 'Information').filter( 'timestamp <', endtimestamp).filter('timestamp >=', starttimestamp).order('timestamp'): item.counted = None item.put() count += 1 logging.info('Reset for %s items', count) for item in dbmodel.AggregateItem.all().filter('timestamp =', starttimestamp).filter('rangetype =', 'day'): item.delete() app = webapp2.WSGIApplication([ ('/tasks/admin/reset', ResetHandler) ], debug=TESTING)
none
1
2.524477
3
napari/utils/colormaps/categorical_colormap_utils.py
Zac-HD/napari
1
10425
from dataclasses import dataclass from itertools import cycle from typing import Dict, Union import numpy as np from ...layers.utils.color_transformations import ( transform_color, transform_color_cycle, ) @dataclass(eq=False) class ColorCycle: """A dataclass to hold a color cycle for the fallback_colors in the CategoricalColormap Attributes ---------- values : np.ndarray The (Nx4) color array of all colors contained in the color cycle. cycle : cycle The cycle object that gives fallback colors. """ values: np.ndarray cycle: cycle @classmethod def __get_validators__(cls): yield cls.validate_type @classmethod def validate_type(cls, val): # turn a generic dict into object if isinstance(val, dict): return _coerce_colorcycle_from_dict(val) elif isinstance(val, ColorCycle): return val else: return _coerce_colorcycle_from_colors(val) def _json_encode(self): return {'values': self.values.tolist()} def __eq__(self, other): if isinstance(other, ColorCycle): eq = np.array_equal(self.values, other.values) else: eq = False return eq def _coerce_colorcycle_from_dict( val: Dict[str, Union[str, list, np.ndarray, cycle]] ) -> ColorCycle: # validate values color_values = val.get('values') if color_values is None: raise ValueError('ColorCycle requires a values argument') transformed_color_values = transform_color(color_values) # validate cycle color_cycle = val.get('cycle') if color_cycle is None: transformed_color_cycle = transform_color_cycle( color_cycle=color_values, elem_name='color_cycle', default="white", )[0] else: transformed_color_cycle = color_cycle return ColorCycle( values=transformed_color_values, cycle=transformed_color_cycle ) def _coerce_colorcycle_from_colors( val: Union[str, list, np.ndarray] ) -> ColorCycle: if isinstance(val, str): val = [val] ( transformed_color_cycle, transformed_color_values, ) = transform_color_cycle( color_cycle=val, elem_name='color_cycle', default="white", ) return ColorCycle( values=transformed_color_values, cycle=transformed_color_cycle ) def compare_colormap_dicts(cmap_1, cmap_2): if len(cmap_1) != len(cmap_2): return False for k, v in cmap_1.items(): if k not in cmap_2: return False if not np.allclose(v, cmap_2[k]): return False return True
from dataclasses import dataclass from itertools import cycle from typing import Dict, Union import numpy as np from ...layers.utils.color_transformations import ( transform_color, transform_color_cycle, ) @dataclass(eq=False) class ColorCycle: """A dataclass to hold a color cycle for the fallback_colors in the CategoricalColormap Attributes ---------- values : np.ndarray The (Nx4) color array of all colors contained in the color cycle. cycle : cycle The cycle object that gives fallback colors. """ values: np.ndarray cycle: cycle @classmethod def __get_validators__(cls): yield cls.validate_type @classmethod def validate_type(cls, val): # turn a generic dict into object if isinstance(val, dict): return _coerce_colorcycle_from_dict(val) elif isinstance(val, ColorCycle): return val else: return _coerce_colorcycle_from_colors(val) def _json_encode(self): return {'values': self.values.tolist()} def __eq__(self, other): if isinstance(other, ColorCycle): eq = np.array_equal(self.values, other.values) else: eq = False return eq def _coerce_colorcycle_from_dict( val: Dict[str, Union[str, list, np.ndarray, cycle]] ) -> ColorCycle: # validate values color_values = val.get('values') if color_values is None: raise ValueError('ColorCycle requires a values argument') transformed_color_values = transform_color(color_values) # validate cycle color_cycle = val.get('cycle') if color_cycle is None: transformed_color_cycle = transform_color_cycle( color_cycle=color_values, elem_name='color_cycle', default="white", )[0] else: transformed_color_cycle = color_cycle return ColorCycle( values=transformed_color_values, cycle=transformed_color_cycle ) def _coerce_colorcycle_from_colors( val: Union[str, list, np.ndarray] ) -> ColorCycle: if isinstance(val, str): val = [val] ( transformed_color_cycle, transformed_color_values, ) = transform_color_cycle( color_cycle=val, elem_name='color_cycle', default="white", ) return ColorCycle( values=transformed_color_values, cycle=transformed_color_cycle ) def compare_colormap_dicts(cmap_1, cmap_2): if len(cmap_1) != len(cmap_2): return False for k, v in cmap_1.items(): if k not in cmap_2: return False if not np.allclose(v, cmap_2[k]): return False return True
en
0.524431
A dataclass to hold a color cycle for the fallback_colors in the CategoricalColormap Attributes ---------- values : np.ndarray The (Nx4) color array of all colors contained in the color cycle. cycle : cycle The cycle object that gives fallback colors. # turn a generic dict into object # validate values # validate cycle
2.817931
3
src/ipywidgets_toggle_buttons/abc_toggle_buttons_with_hide.py
stas-prokopiev/ipywidgets_toggle_buttons
0
10426
"""Abstract class for all toggle buttons""" # Standard library imports import logging from collections import OrderedDict # Third party imports import ipywidgets # Local imports from .abc_toggle_buttons import BaseToggleButtons from .layouts import DICT_LAYOUT_HBOX_ANY LOGGER = logging.getLogger(__name__) class BaseToggleButtonsWithHide(BaseToggleButtons): """Abstract class for all toggle buttons Values are stored in self.widget_parent when displayed is self.widget Which is updated in the moment when display() is launched """ def __init__( self, widget_parent, options_visible=None, options_hidden=None, **kwargs ): """Initialize object""" super().__init__(widget_parent, **kwargs) # hidden attributes to setters self._options_visible = [] self._options_hidden = [] self._bool_is_hidden_options_created = False # Create scaffolds inside self.widgets self._create_scaffold_for_widget() self._dict_visible_button_by_option = OrderedDict() self._dict_hidden_button_by_option = OrderedDict() # Set options self.options_visible = options_visible self.options_hidden = options_hidden self._update_buttons_for_new_options() @property def options_visible(self): """Getter for visible options used in widget""" return self._options_visible @options_visible.setter def options_visible(self, new_value): """Setter for visible options in widget Args: new_value (list or tuple): New options to set for widgets """ if new_value is None: new_value = [] if set(new_value) == set(self.options_visible): return None self._options_visible = new_value self._create_buttons_for_visible_options() # Update hidden options to delete which exists in new visible # This will also update the whole widget self.options_hidden = self._options_hidden self.options = self._options_visible + self._options_hidden self._update_widget_view() @property def options_hidden(self): """Getter for hidden options used in widget""" return self._options_hidden @options_hidden.setter def options_hidden(self, new_value): """Setter for hidden options in widget Args: new_value (list or tuple): New options to set for widgets """ if new_value is None: new_value = [] if set(new_value) == set(self.options_hidden): return None # Filter out from hidden options all options which exists in main options_hidden_cleared = [] for str_option in new_value: if str_option not in self.options_visible: options_hidden_cleared.append(str_option) self._options_hidden = options_hidden_cleared self.options = self._options_visible + self._options_hidden # self._create_buttons_for_hidden_options() self._update_widget_view() def turn_off_all_buttons(self): """Mark all buttons as not clicked""" for str_option in self._dict_visible_button_by_option: but = self._dict_visible_button_by_option[str_option] but.button_style = "" for str_option in self._dict_hidden_button_by_option: but = self._dict_hidden_button_by_option[str_option] but.button_style = "" # Change style of selected hidden button # self._widget_but_hidden_option_selected.description = "..." # self._widget_but_hidden_option_selected.button_style = "" def _update_buttons_for_new_options(self): """Update buttons if options were changed""" self._create_buttons_for_visible_options() self._bool_is_hidden_options_created = False # self._create_buttons_for_hidden_options() def _create_scaffold_for_widget(self): """Create scaffold of ipywidget Boxes for self""" # Main buttons box self._widget_hbox_main = ipywidgets.HBox() self._widget_hbox_main.layout = ipywidgets.Layout(**DICT_LAYOUT_HBOX_ANY) # self._widget_hbox_main.layout.flex_flow = "row wrap" # Middle buttons box self._widget_hbox_middle_buttons = ipywidgets.HBox() self._widget_hbox_middle_buttons.layout = ipywidgets.Layout(**DICT_LAYOUT_HBOX_ANY) self._create_middle_buttons() # Hidden buttons box self._widget_hbox_hidden = ipywidgets.HBox() self._widget_hbox_hidden.layout = ipywidgets.Layout(**DICT_LAYOUT_HBOX_ANY) # self._widget_hbox_hidden.layout.flex_flow = "row wrap" def _create_buttons_for_visible_options(self): """Create buttons for all visible options""" self._dict_visible_button_by_option = OrderedDict() int_button_width = self._get_button_width(self.options_visible) list_buttons = [] for str_option in list(self.options_visible): but_wid = ipywidgets.Button( description=str_option, layout={"width": "%dpx" % int_button_width} ) but_wid.on_click(self._on_click_button_to_choose_option) self._dict_visible_button_by_option[str_option] = but_wid list_buttons.append(but_wid) self._widget_hbox_main.children = list_buttons def _create_middle_buttons(self): """Create buttons which are in charge what to do with hidden buttons""" self._wid_but_hide_show = ipywidgets.ToggleButton( value=False, description="Show Hidden options", button_style="info", ) self._wid_but_hide_show.layout.width = "40%" self._wid_but_hide_show.observe( lambda _: self._update_widget_view(), "value") self._widget_but_hidden_option_selected = ipywidgets.Button( description="...", disabled=True) self._widget_but_hidden_option_selected.layout.width = "40%" self._widget_hbox_middle_buttons.children = [ self._widget_but_hidden_option_selected, self._wid_but_hide_show] def _create_buttons_for_hidden_options(self): """Create buttons for all hidden options""" self._dict_hidden_button_by_option = OrderedDict() int_button_width = self._get_button_width(self.options_hidden) list_buttons = [] for str_option in list(self.options_hidden): but_wid = ipywidgets.Button( description=str_option, layout={"width": "%dpx" % int_button_width} ) if str_option in self.value: but_wid.button_style = "success" but_wid.on_click(self._on_click_button_to_choose_option) self._dict_hidden_button_by_option[str_option] = but_wid list_buttons.append(but_wid) self._widget_hbox_hidden.children = list_buttons
"""Abstract class for all toggle buttons""" # Standard library imports import logging from collections import OrderedDict # Third party imports import ipywidgets # Local imports from .abc_toggle_buttons import BaseToggleButtons from .layouts import DICT_LAYOUT_HBOX_ANY LOGGER = logging.getLogger(__name__) class BaseToggleButtonsWithHide(BaseToggleButtons): """Abstract class for all toggle buttons Values are stored in self.widget_parent when displayed is self.widget Which is updated in the moment when display() is launched """ def __init__( self, widget_parent, options_visible=None, options_hidden=None, **kwargs ): """Initialize object""" super().__init__(widget_parent, **kwargs) # hidden attributes to setters self._options_visible = [] self._options_hidden = [] self._bool_is_hidden_options_created = False # Create scaffolds inside self.widgets self._create_scaffold_for_widget() self._dict_visible_button_by_option = OrderedDict() self._dict_hidden_button_by_option = OrderedDict() # Set options self.options_visible = options_visible self.options_hidden = options_hidden self._update_buttons_for_new_options() @property def options_visible(self): """Getter for visible options used in widget""" return self._options_visible @options_visible.setter def options_visible(self, new_value): """Setter for visible options in widget Args: new_value (list or tuple): New options to set for widgets """ if new_value is None: new_value = [] if set(new_value) == set(self.options_visible): return None self._options_visible = new_value self._create_buttons_for_visible_options() # Update hidden options to delete which exists in new visible # This will also update the whole widget self.options_hidden = self._options_hidden self.options = self._options_visible + self._options_hidden self._update_widget_view() @property def options_hidden(self): """Getter for hidden options used in widget""" return self._options_hidden @options_hidden.setter def options_hidden(self, new_value): """Setter for hidden options in widget Args: new_value (list or tuple): New options to set for widgets """ if new_value is None: new_value = [] if set(new_value) == set(self.options_hidden): return None # Filter out from hidden options all options which exists in main options_hidden_cleared = [] for str_option in new_value: if str_option not in self.options_visible: options_hidden_cleared.append(str_option) self._options_hidden = options_hidden_cleared self.options = self._options_visible + self._options_hidden # self._create_buttons_for_hidden_options() self._update_widget_view() def turn_off_all_buttons(self): """Mark all buttons as not clicked""" for str_option in self._dict_visible_button_by_option: but = self._dict_visible_button_by_option[str_option] but.button_style = "" for str_option in self._dict_hidden_button_by_option: but = self._dict_hidden_button_by_option[str_option] but.button_style = "" # Change style of selected hidden button # self._widget_but_hidden_option_selected.description = "..." # self._widget_but_hidden_option_selected.button_style = "" def _update_buttons_for_new_options(self): """Update buttons if options were changed""" self._create_buttons_for_visible_options() self._bool_is_hidden_options_created = False # self._create_buttons_for_hidden_options() def _create_scaffold_for_widget(self): """Create scaffold of ipywidget Boxes for self""" # Main buttons box self._widget_hbox_main = ipywidgets.HBox() self._widget_hbox_main.layout = ipywidgets.Layout(**DICT_LAYOUT_HBOX_ANY) # self._widget_hbox_main.layout.flex_flow = "row wrap" # Middle buttons box self._widget_hbox_middle_buttons = ipywidgets.HBox() self._widget_hbox_middle_buttons.layout = ipywidgets.Layout(**DICT_LAYOUT_HBOX_ANY) self._create_middle_buttons() # Hidden buttons box self._widget_hbox_hidden = ipywidgets.HBox() self._widget_hbox_hidden.layout = ipywidgets.Layout(**DICT_LAYOUT_HBOX_ANY) # self._widget_hbox_hidden.layout.flex_flow = "row wrap" def _create_buttons_for_visible_options(self): """Create buttons for all visible options""" self._dict_visible_button_by_option = OrderedDict() int_button_width = self._get_button_width(self.options_visible) list_buttons = [] for str_option in list(self.options_visible): but_wid = ipywidgets.Button( description=str_option, layout={"width": "%dpx" % int_button_width} ) but_wid.on_click(self._on_click_button_to_choose_option) self._dict_visible_button_by_option[str_option] = but_wid list_buttons.append(but_wid) self._widget_hbox_main.children = list_buttons def _create_middle_buttons(self): """Create buttons which are in charge what to do with hidden buttons""" self._wid_but_hide_show = ipywidgets.ToggleButton( value=False, description="Show Hidden options", button_style="info", ) self._wid_but_hide_show.layout.width = "40%" self._wid_but_hide_show.observe( lambda _: self._update_widget_view(), "value") self._widget_but_hidden_option_selected = ipywidgets.Button( description="...", disabled=True) self._widget_but_hidden_option_selected.layout.width = "40%" self._widget_hbox_middle_buttons.children = [ self._widget_but_hidden_option_selected, self._wid_but_hide_show] def _create_buttons_for_hidden_options(self): """Create buttons for all hidden options""" self._dict_hidden_button_by_option = OrderedDict() int_button_width = self._get_button_width(self.options_hidden) list_buttons = [] for str_option in list(self.options_hidden): but_wid = ipywidgets.Button( description=str_option, layout={"width": "%dpx" % int_button_width} ) if str_option in self.value: but_wid.button_style = "success" but_wid.on_click(self._on_click_button_to_choose_option) self._dict_hidden_button_by_option[str_option] = but_wid list_buttons.append(but_wid) self._widget_hbox_hidden.children = list_buttons
en
0.618118
Abstract class for all toggle buttons # Standard library imports # Third party imports # Local imports Abstract class for all toggle buttons Values are stored in self.widget_parent when displayed is self.widget Which is updated in the moment when display() is launched Initialize object # hidden attributes to setters # Create scaffolds inside self.widgets # Set options Getter for visible options used in widget Setter for visible options in widget Args: new_value (list or tuple): New options to set for widgets # Update hidden options to delete which exists in new visible # This will also update the whole widget Getter for hidden options used in widget Setter for hidden options in widget Args: new_value (list or tuple): New options to set for widgets # Filter out from hidden options all options which exists in main # self._create_buttons_for_hidden_options() Mark all buttons as not clicked # Change style of selected hidden button # self._widget_but_hidden_option_selected.description = "..." # self._widget_but_hidden_option_selected.button_style = "" Update buttons if options were changed # self._create_buttons_for_hidden_options() Create scaffold of ipywidget Boxes for self # Main buttons box # self._widget_hbox_main.layout.flex_flow = "row wrap" # Middle buttons box # Hidden buttons box # self._widget_hbox_hidden.layout.flex_flow = "row wrap" Create buttons for all visible options Create buttons which are in charge what to do with hidden buttons Create buttons for all hidden options
2.608826
3
Players/DWPMPlayer.py
jokvedaras/game-framework
0
10427
__author__ = '<NAME> and <NAME>' import Player import Message # input #0 for rock #1 for paper #2 for scissors # past move is array of numbers # our move followed by their move #Our strategy is to look at all past moves #In a large number of games, you would expect # each move to be seen an even amount of times #So our strategy is to take the least seen move # and expect it to show up soon # so we will play to beat that move class DWPMPlayer(Player.Player): def __init__(self): Player.Player.__init__(self) self.past_moves = [] self.set_name("Dan and Pats Player") def play(self): return RpsPlayingStrategy.play(self.past_moves) def add_past_move(self, move): """ adds opponents move to past moves """ self.past_moves.append(move) def get_name(self): return self.name def notify(self, message): # We use notifications to store opponent's moves in past rounds # Process match-start and round-end messages # At the start of the match, clear opponent moves history since a new match has started # At the end of a round, append move to opponent's move history. Move history is used # to compute the next move played. if message.is_match_start_message(): players = message.get_players() if players[0] == self or players[1] == self: self.reset() elif message.is_round_end_message(): players = message.get_players() # Check if this message is for me and only then proceed if (players[0] == self) or (players[1] == self): # In this case, (by convention) the info is a tuple of the moves made and result # e.g. ((1, 0), (1,0)) which # means player 1 played paper (1), the player 2 played rock(0) and the result was that # player 1 won (got 1 point) and player 2 lost (got 0 point) moves, result = message.get_info() # RPS is a two person game; figure out which of the players is me # and which one is the opponent if players[0] == self: opponent = 1 else: opponent = 0 # Update opponent's past moves history self.add_past_move(moves[opponent]) def reset(self): self.past_moves = [] def set_name(self, name): self.name = name class RpsPlayingStrategy(object): @staticmethod def play(past_moves): """ our player assumes that given a high number of games, all 3 different moves of opponent will be used an equal number of times. Given a list of past_moves, we can counter an opponent's assumed move """ rock = 0 paper = 0 scissors = 0 for this_move in list(past_moves): if this_move == 0: rock += 1 elif this_move == 1: paper += 1 elif this_move == 2: scissors += 1 #determine which move has been used least if (rock < paper) and (rock < scissors): move = 0 elif paper < scissors: move = 1 else: move = 2 move = (move + 1) % 3 return move # Test driver # Run by typing "python3 RpsPlayerExample.py" if __name__ == "__main__": player = PatAndDansRPSPlayer() opponent = PatAndDansRPSPlayer() players = [opponent, player] fakemoves = (1, 2) fakeresult = (0, 1) player.notify(Message.Message.get_match_start_message(players)) player.notify(Message.Message.get_round_start_message(players)) move = player.play() print ("Move played: ", move) player.notify(Message.Message.get_round_end_message(players, fakemoves, fakeresult))
__author__ = '<NAME> and <NAME>' import Player import Message # input #0 for rock #1 for paper #2 for scissors # past move is array of numbers # our move followed by their move #Our strategy is to look at all past moves #In a large number of games, you would expect # each move to be seen an even amount of times #So our strategy is to take the least seen move # and expect it to show up soon # so we will play to beat that move class DWPMPlayer(Player.Player): def __init__(self): Player.Player.__init__(self) self.past_moves = [] self.set_name("Dan and Pats Player") def play(self): return RpsPlayingStrategy.play(self.past_moves) def add_past_move(self, move): """ adds opponents move to past moves """ self.past_moves.append(move) def get_name(self): return self.name def notify(self, message): # We use notifications to store opponent's moves in past rounds # Process match-start and round-end messages # At the start of the match, clear opponent moves history since a new match has started # At the end of a round, append move to opponent's move history. Move history is used # to compute the next move played. if message.is_match_start_message(): players = message.get_players() if players[0] == self or players[1] == self: self.reset() elif message.is_round_end_message(): players = message.get_players() # Check if this message is for me and only then proceed if (players[0] == self) or (players[1] == self): # In this case, (by convention) the info is a tuple of the moves made and result # e.g. ((1, 0), (1,0)) which # means player 1 played paper (1), the player 2 played rock(0) and the result was that # player 1 won (got 1 point) and player 2 lost (got 0 point) moves, result = message.get_info() # RPS is a two person game; figure out which of the players is me # and which one is the opponent if players[0] == self: opponent = 1 else: opponent = 0 # Update opponent's past moves history self.add_past_move(moves[opponent]) def reset(self): self.past_moves = [] def set_name(self, name): self.name = name class RpsPlayingStrategy(object): @staticmethod def play(past_moves): """ our player assumes that given a high number of games, all 3 different moves of opponent will be used an equal number of times. Given a list of past_moves, we can counter an opponent's assumed move """ rock = 0 paper = 0 scissors = 0 for this_move in list(past_moves): if this_move == 0: rock += 1 elif this_move == 1: paper += 1 elif this_move == 2: scissors += 1 #determine which move has been used least if (rock < paper) and (rock < scissors): move = 0 elif paper < scissors: move = 1 else: move = 2 move = (move + 1) % 3 return move # Test driver # Run by typing "python3 RpsPlayerExample.py" if __name__ == "__main__": player = PatAndDansRPSPlayer() opponent = PatAndDansRPSPlayer() players = [opponent, player] fakemoves = (1, 2) fakeresult = (0, 1) player.notify(Message.Message.get_match_start_message(players)) player.notify(Message.Message.get_round_start_message(players)) move = player.play() print ("Move played: ", move) player.notify(Message.Message.get_round_end_message(players, fakemoves, fakeresult))
en
0.960794
# input #0 for rock #1 for paper #2 for scissors # past move is array of numbers # our move followed by their move #Our strategy is to look at all past moves #In a large number of games, you would expect # each move to be seen an even amount of times #So our strategy is to take the least seen move # and expect it to show up soon # so we will play to beat that move adds opponents move to past moves # We use notifications to store opponent's moves in past rounds # Process match-start and round-end messages # At the start of the match, clear opponent moves history since a new match has started # At the end of a round, append move to opponent's move history. Move history is used # to compute the next move played. # Check if this message is for me and only then proceed # In this case, (by convention) the info is a tuple of the moves made and result # e.g. ((1, 0), (1,0)) which # means player 1 played paper (1), the player 2 played rock(0) and the result was that # player 1 won (got 1 point) and player 2 lost (got 0 point) # RPS is a two person game; figure out which of the players is me # and which one is the opponent # Update opponent's past moves history our player assumes that given a high number of games, all 3 different moves of opponent will be used an equal number of times. Given a list of past_moves, we can counter an opponent's assumed move #determine which move has been used least # Test driver # Run by typing "python3 RpsPlayerExample.py"
3.570548
4
example/example.py
mowshon/age-and-gender
81
10428
<filename>example/example.py from age_and_gender import * from PIL import Image, ImageDraw, ImageFont data = AgeAndGender() data.load_shape_predictor('models/shape_predictor_5_face_landmarks.dat') data.load_dnn_gender_classifier('models/dnn_gender_classifier_v1.dat') data.load_dnn_age_predictor('models/dnn_age_predictor_v1.dat') filename = 'test-image.jpg' img = Image.open(filename).convert("RGB") result = data.predict(img) font = ImageFont.truetype("Acme-Regular.ttf", 20) for info in result: shape = [(info['face'][0], info['face'][1]), (info['face'][2], info['face'][3])] draw = ImageDraw.Draw(img) gender = info['gender']['value'].title() gender_percent = int(info['gender']['confidence']) age = info['age']['value'] age_percent = int(info['age']['confidence']) draw.text( (info['face'][0] - 10, info['face'][3] + 10), f"{gender} (~{gender_percent}%)\n{age} y.o. (~{age_percent}%).", fill='white', font=font, align='center' ) draw.rectangle(shape, outline="red", width=5) img.show()
<filename>example/example.py from age_and_gender import * from PIL import Image, ImageDraw, ImageFont data = AgeAndGender() data.load_shape_predictor('models/shape_predictor_5_face_landmarks.dat') data.load_dnn_gender_classifier('models/dnn_gender_classifier_v1.dat') data.load_dnn_age_predictor('models/dnn_age_predictor_v1.dat') filename = 'test-image.jpg' img = Image.open(filename).convert("RGB") result = data.predict(img) font = ImageFont.truetype("Acme-Regular.ttf", 20) for info in result: shape = [(info['face'][0], info['face'][1]), (info['face'][2], info['face'][3])] draw = ImageDraw.Draw(img) gender = info['gender']['value'].title() gender_percent = int(info['gender']['confidence']) age = info['age']['value'] age_percent = int(info['age']['confidence']) draw.text( (info['face'][0] - 10, info['face'][3] + 10), f"{gender} (~{gender_percent}%)\n{age} y.o. (~{age_percent}%).", fill='white', font=font, align='center' ) draw.rectangle(shape, outline="red", width=5) img.show()
none
1
2.992659
3
code/generate_games.py
jppg/pygame-tictactoe
0
10429
from tictactoe import TicTacToe import random import csv import os gameNr = 1 gameLimit = 10000 lst_moves_1 = [] lst_moves_2 = [] while gameNr <= gameLimit: print("+++++++++++") print("Game#", gameNr) game = TicTacToe() tmp_moves_1 = [] tmp_moves_2 = [] while game.get_winner() == 0 and game.possible_moves() > 0: pos = game.get_positions().copy() while game.possible_moves() > 0: move = random.randint(0,9) if game.play(int(move)): if game.get_player() == 1: tmp_moves_2.append([gameNr] + [game.get_turn() - 1] + pos + [move]) else: tmp_moves_1.append([gameNr] + [game.get_turn() - 1] + pos + [move]) break print("Winner of game ", gameNr, "is", game.get_winner()) if game.get_winner() == 1: lst_moves_1.append(tmp_moves_1) #lst_moves_1.append(tmp_moves_1[len(tmp_moves_1) - 1]) else: #lst_moves_2.append(tmp_moves_2[len(tmp_moves_2) - 1]) lst_moves_2.append(tmp_moves_2) #print("List X: ", lst_moves_1) #print("List O: ", lst_moves_2) game.print_board() gameNr = gameNr + 1 with open('moves_1.csv', 'w', newline='') as f: writer = csv.writer(f) for row in lst_moves_1: writer.writerows(row) with open('moves_2.csv', 'w', newline='') as f: writer = csv.writer(f) for row in lst_moves_2: writer.writerows(row)
from tictactoe import TicTacToe import random import csv import os gameNr = 1 gameLimit = 10000 lst_moves_1 = [] lst_moves_2 = [] while gameNr <= gameLimit: print("+++++++++++") print("Game#", gameNr) game = TicTacToe() tmp_moves_1 = [] tmp_moves_2 = [] while game.get_winner() == 0 and game.possible_moves() > 0: pos = game.get_positions().copy() while game.possible_moves() > 0: move = random.randint(0,9) if game.play(int(move)): if game.get_player() == 1: tmp_moves_2.append([gameNr] + [game.get_turn() - 1] + pos + [move]) else: tmp_moves_1.append([gameNr] + [game.get_turn() - 1] + pos + [move]) break print("Winner of game ", gameNr, "is", game.get_winner()) if game.get_winner() == 1: lst_moves_1.append(tmp_moves_1) #lst_moves_1.append(tmp_moves_1[len(tmp_moves_1) - 1]) else: #lst_moves_2.append(tmp_moves_2[len(tmp_moves_2) - 1]) lst_moves_2.append(tmp_moves_2) #print("List X: ", lst_moves_1) #print("List O: ", lst_moves_2) game.print_board() gameNr = gameNr + 1 with open('moves_1.csv', 'w', newline='') as f: writer = csv.writer(f) for row in lst_moves_1: writer.writerows(row) with open('moves_2.csv', 'w', newline='') as f: writer = csv.writer(f) for row in lst_moves_2: writer.writerows(row)
en
0.119504
#", gameNr) #lst_moves_1.append(tmp_moves_1[len(tmp_moves_1) - 1]) #lst_moves_2.append(tmp_moves_2[len(tmp_moves_2) - 1]) #print("List X: ", lst_moves_1) #print("List O: ", lst_moves_2)
3.411806
3
applications/CoSimulationApplication/custom_data_structure/pyKratos/IntervalUtility.py
lcirrott/Kratos
2
10430
from __future__ import print_function, absolute_import, division # makes these scripts backward compatible with python 2.6 and 2.7 # TODO this should be implemented, see "kratos/utilities/interval_utility.h" class IntervalUtility(object): def __init__(self, settings): pass def IsInInterval(self, current_time): return True
from __future__ import print_function, absolute_import, division # makes these scripts backward compatible with python 2.6 and 2.7 # TODO this should be implemented, see "kratos/utilities/interval_utility.h" class IntervalUtility(object): def __init__(self, settings): pass def IsInInterval(self, current_time): return True
en
0.762129
# makes these scripts backward compatible with python 2.6 and 2.7 # TODO this should be implemented, see "kratos/utilities/interval_utility.h"
2.067049
2
stixcore/tmtc/tests/test_packets.py
nicHoch/STIXCore
1
10431
import bitstring import pytest from stixcore.data.test import test_data from stixcore.idb.manager import IDBManager from stixcore.tmtc.packets import ( SOURCE_PACKET_HEADER_STRUCTURE, TC_DATA_HEADER_STRUCTURE, TM_DATA_HEADER_STRUCTURE, SourcePacketHeader, TCPacket, TMDataHeader, TMPacket, ) from stixcore.tmtc.tm.tm_1 import TM_1_1 @pytest.fixture def idb(): return IDBManager(test_data.idb.DIR).get_idb("2.26.34") @pytest.mark.parametrize('class_header', [(SourcePacketHeader, SOURCE_PACKET_HEADER_STRUCTURE), (TMDataHeader, TM_DATA_HEADER_STRUCTURE)]) def test_tmtc_headers(class_header): cls, header = class_header test_fmt = ', '.join(header.values()) test_values = {n: 2**int(v.split(':')[-1])-1 for n, v in header.items()} test_binary = bitstring.pack(test_fmt, *test_values.values()) sph = cls(test_binary) assert all([getattr(sph, key) == test_values[key] for key in header.keys() if not key.startswith('spare')]) def test_tm_packet(idb): combind_structures = {**SOURCE_PACKET_HEADER_STRUCTURE, **TM_DATA_HEADER_STRUCTURE} test_fmt = ', '.join(combind_structures.values()) test_values = {n: 2 ** int(v.split(':')[-1]) - 1 for n, v in combind_structures.items()} test_binary = bitstring.pack(test_fmt, *test_values.values()) tmtc_packet = TMPacket(test_binary, idb=idb) assert all([getattr(tmtc_packet.source_packet_header, key) == test_values[key] for key in SOURCE_PACKET_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) assert all([getattr(tmtc_packet.data_header, key) == test_values[key] for key in TM_DATA_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) def test_tc_packet(): combind_structures = {**SOURCE_PACKET_HEADER_STRUCTURE, **TC_DATA_HEADER_STRUCTURE} test_fmt = ', '.join(combind_structures.values()) test_values = {n: 2 ** int(v.split(':')[-1]) - 1 for n, v in combind_structures.items()} test_values['process_id'] = 90 test_values['packet_category'] = 12 test_binary = bitstring.pack(test_fmt, *test_values.values()) tmtc_packet = TCPacket(test_binary) assert all([getattr(tmtc_packet.source_packet_header, key) == test_values[key] for key in SOURCE_PACKET_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) assert all([getattr(tmtc_packet.data_header, key) == test_values[key] for key in TC_DATA_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) def test_tm_1_1(idb): packet = TM_1_1('0x0da1c066000d100101782628a9c4e71e1dacc0a0', idb=idb) assert packet.source_packet_header.process_id == 90 assert packet.source_packet_header.packet_category == 1 assert packet.data_header.service_type == 1 assert packet.data_header.service_subtype == 1
import bitstring import pytest from stixcore.data.test import test_data from stixcore.idb.manager import IDBManager from stixcore.tmtc.packets import ( SOURCE_PACKET_HEADER_STRUCTURE, TC_DATA_HEADER_STRUCTURE, TM_DATA_HEADER_STRUCTURE, SourcePacketHeader, TCPacket, TMDataHeader, TMPacket, ) from stixcore.tmtc.tm.tm_1 import TM_1_1 @pytest.fixture def idb(): return IDBManager(test_data.idb.DIR).get_idb("2.26.34") @pytest.mark.parametrize('class_header', [(SourcePacketHeader, SOURCE_PACKET_HEADER_STRUCTURE), (TMDataHeader, TM_DATA_HEADER_STRUCTURE)]) def test_tmtc_headers(class_header): cls, header = class_header test_fmt = ', '.join(header.values()) test_values = {n: 2**int(v.split(':')[-1])-1 for n, v in header.items()} test_binary = bitstring.pack(test_fmt, *test_values.values()) sph = cls(test_binary) assert all([getattr(sph, key) == test_values[key] for key in header.keys() if not key.startswith('spare')]) def test_tm_packet(idb): combind_structures = {**SOURCE_PACKET_HEADER_STRUCTURE, **TM_DATA_HEADER_STRUCTURE} test_fmt = ', '.join(combind_structures.values()) test_values = {n: 2 ** int(v.split(':')[-1]) - 1 for n, v in combind_structures.items()} test_binary = bitstring.pack(test_fmt, *test_values.values()) tmtc_packet = TMPacket(test_binary, idb=idb) assert all([getattr(tmtc_packet.source_packet_header, key) == test_values[key] for key in SOURCE_PACKET_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) assert all([getattr(tmtc_packet.data_header, key) == test_values[key] for key in TM_DATA_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) def test_tc_packet(): combind_structures = {**SOURCE_PACKET_HEADER_STRUCTURE, **TC_DATA_HEADER_STRUCTURE} test_fmt = ', '.join(combind_structures.values()) test_values = {n: 2 ** int(v.split(':')[-1]) - 1 for n, v in combind_structures.items()} test_values['process_id'] = 90 test_values['packet_category'] = 12 test_binary = bitstring.pack(test_fmt, *test_values.values()) tmtc_packet = TCPacket(test_binary) assert all([getattr(tmtc_packet.source_packet_header, key) == test_values[key] for key in SOURCE_PACKET_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) assert all([getattr(tmtc_packet.data_header, key) == test_values[key] for key in TC_DATA_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) def test_tm_1_1(idb): packet = TM_1_1('0x0da1c066000d100101782628a9c4e71e1dacc0a0', idb=idb) assert packet.source_packet_header.process_id == 90 assert packet.source_packet_header.packet_category == 1 assert packet.data_header.service_type == 1 assert packet.data_header.service_subtype == 1
none
1
2.110349
2
python/thunder/rdds/fileio/seriesloader.py
broxtronix/thunder
0
10432
<reponame>broxtronix/thunder<gh_stars>0 """Provides SeriesLoader object and helpers, used to read Series data from disk or other filesystems. """ from collections import namedtuple import json from numpy import array, arange, frombuffer, load, ndarray, unravel_index, vstack from numpy import dtype as dtypeFunc from scipy.io import loadmat from cStringIO import StringIO import itertools import struct import urlparse import math from thunder.rdds.fileio.writers import getParallelWriterForPath from thunder.rdds.keys import Dimensions from thunder.rdds.fileio.readers import getFileReaderForPath, FileNotFoundError, appendExtensionToPathSpec from thunder.rdds.imgblocks.blocks import SimpleBlocks from thunder.rdds.series import Series from thunder.utils.common import parseMemoryString, smallestFloatType class SeriesLoader(object): """Loader object used to instantiate Series data stored in a variety of formats. """ def __init__(self, sparkContext, minPartitions=None): """Initialize a new SeriesLoader object. Parameters ---------- sparkcontext: SparkContext The pyspark SparkContext object used by the current Thunder environment. minPartitions: int minimum number of partitions to use when loading data. (Used by fromText, fromMatLocal, and fromNpyLocal) """ from thunder.utils.aws import AWSCredentials self.sc = sparkContext self.minPartitions = minPartitions self.awsCredentialsOverride = AWSCredentials.fromContext(sparkContext) def _checkOverwrite(self, outputDirPath): from thunder.utils.common import raiseErrorIfPathExists raiseErrorIfPathExists(outputDirPath, awsCredentialsOverride=self.awsCredentialsOverride) def fromArrays(self, arrays, npartitions=None): """ Create a Series object from a sequence of 1d numpy arrays on the driver. """ # recast singleton if isinstance(arrays, ndarray): arrays = [arrays] # check shape and dtype shape = arrays[0].shape dtype = arrays[0].dtype for ary in arrays: if not ary.shape == shape: raise ValueError("Inconsistent array shapes: first array had shape %s, but other array has shape %s" % (str(shape), str(ary.shape))) if not ary.dtype == dtype: raise ValueError("Inconsistent array dtypes: first array had dtype %s, but other array has dtype %s" % (str(dtype), str(ary.dtype))) # generate linear keys keys = map(lambda k: (k,), xrange(0, len(arrays))) return Series(self.sc.parallelize(zip(keys, arrays), npartitions), dtype=str(dtype)) def fromArraysAsImages(self, arrays): """Create a Series object from a sequence of numpy ndarrays resident in memory on the driver. The arrays will be interpreted as though each represents a single time point - effectively the same as if converting Images to a Series, with each array representing a volume image at a particular point in time. Thus in the resulting Series, the value of the record with key (0,0,0) will be array([arrays[0][0,0,0], arrays[1][0,0,0],... arrays[n][0,0,0]). The dimensions of the resulting Series will be *opposite* that of the passed numpy array. Their dtype will not be changed. """ # if passed a single array, cast it to a sequence of length 1 if isinstance(arrays, ndarray): arrays = [arrays] # check that shapes of passed arrays are consistent shape = arrays[0].shape dtype = arrays[0].dtype for ary in arrays: if not ary.shape == shape: raise ValueError("Inconsistent array shapes: first array had shape %s, but other array has shape %s" % (str(shape), str(ary.shape))) if not ary.dtype == dtype: raise ValueError("Inconsistent array dtypes: first array had dtype %s, but other array has dtype %s" % (str(dtype), str(ary.dtype))) # get indices so that fastest index changes first shapeiters = (xrange(n) for n in shape) keys = [idx[::-1] for idx in itertools.product(*shapeiters)] values = vstack([ary.ravel() for ary in arrays]).T dims = Dimensions.fromTuple(shape[::-1]) return Series(self.sc.parallelize(zip(keys, values), self.minPartitions), dims=dims, dtype=str(dtype)) @staticmethod def __normalizeDatafilePattern(dataPath, ext): dataPath = appendExtensionToPathSpec(dataPath, ext) # we do need to prepend a scheme here, b/c otherwise the Hadoop based readers # will adopt their default behavior and start looking on hdfs://. parseResult = urlparse.urlparse(dataPath) if parseResult.scheme: # this appears to already be a fully-qualified URI return dataPath else: # this looks like a local path spec # check whether we look like an absolute or a relative path import os dirComponent, fileComponent = os.path.split(dataPath) if not os.path.isabs(dirComponent): # need to make relative local paths absolute; our file scheme parsing isn't all that it could be. dirComponent = os.path.abspath(dirComponent) dataPath = os.path.join(dirComponent, fileComponent) return "file://" + dataPath def fromText(self, dataPath, nkeys=None, ext="txt", dtype='float64'): """ Loads Series data from text files. Parameters ---------- dataPath : string Specifies the file or files to be loaded. dataPath may be either a URI (with scheme specified) or a path on the local filesystem. If a path is passed (determined by the absence of a scheme component when attempting to parse as a URI), and it is not already a wildcard expression and does not end in <ext>, then it will be converted into a wildcard pattern by appending '/*.ext'. This conversion can be avoided by passing a "file://" URI. dtype: dtype or dtype specifier, default 'float64' """ dataPath = self.__normalizeDatafilePattern(dataPath, ext) def parse(line, nkeys_): vec = [float(x) for x in line.split(' ')] ts = array(vec[nkeys_:], dtype=dtype) keys = tuple(int(x) for x in vec[:nkeys_]) return keys, ts lines = self.sc.textFile(dataPath, self.minPartitions) data = lines.map(lambda x: parse(x, nkeys)) return Series(data, dtype=str(dtype)) # keytype, valuetype here violate camelCasing convention for consistence with JSON conf file format BinaryLoadParameters = namedtuple('BinaryLoadParameters', 'nkeys nvalues keytype valuetype') BinaryLoadParameters.__new__.__defaults__ = (None, None, 'int16', 'int16') def __loadParametersAndDefaults(self, dataPath, confFilename, nkeys, nvalues, keyType, valueType): """Collects parameters to use for binary series loading. Priority order is as follows: 1. parameters specified as keyword arguments; 2. parameters specified in a conf.json file on the local filesystem; 3. default parameters Returns ------- BinaryLoadParameters instance """ params = self.loadConf(dataPath, confFilename=confFilename) # filter dict to include only recognized field names: for k in params.keys(): if k not in SeriesLoader.BinaryLoadParameters._fields: del params[k] keywordParams = {'nkeys': nkeys, 'nvalues': nvalues, 'keytype': keyType, 'valuetype': valueType} for k, v in keywordParams.items(): if not v: del keywordParams[k] params.update(keywordParams) return SeriesLoader.BinaryLoadParameters(**params) @staticmethod def __checkBinaryParametersAreSpecified(paramsObj): """Throws ValueError if any of the field values in the passed namedtuple instance evaluate to False. Note this is okay only so long as zero is not a valid parameter value. Hmm. """ missing = [] for paramName, paramVal in paramsObj._asdict().iteritems(): if not paramVal: missing.append(paramName) if missing: raise ValueError("Missing parameters to load binary series files - " + "these must be given either as arguments or in a configuration file: " + str(tuple(missing))) def fromBinary(self, dataPath, ext='bin', confFilename='conf.json', nkeys=None, nvalues=None, keyType=None, valueType=None, newDtype='smallfloat', casting='safe', maxPartitionSize='32mb'): """ Load a Series object from a directory of binary files. Parameters ---------- dataPath : string URI or local filesystem path Specifies the directory or files to be loaded. May be formatted as a URI string with scheme (e.g. "file://", "s3n://", or "gs://"). If no scheme is present, will be interpreted as a path on the local filesystem. This path must be valid on all workers. Datafile may also refer to a single file, or to a range of files specified by a glob-style expression using a single wildcard character '*'. newDtype : dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Most methods expect Series data to be floating-point. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting : 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. maxPartitionSize : str, optional, default = '32mb' Maximum size of partitions as Java-style memory, will indirectly control the number of partitions """ paramsObj = self.__loadParametersAndDefaults(dataPath, confFilename, nkeys, nvalues, keyType, valueType) self.__checkBinaryParametersAreSpecified(paramsObj) dataPath = self.__normalizeDatafilePattern(dataPath, ext) keyDtype = dtypeFunc(paramsObj.keytype) valDtype = dtypeFunc(paramsObj.valuetype) keySize = paramsObj.nkeys * keyDtype.itemsize recordSize = keySize + paramsObj.nvalues * valDtype.itemsize from thunder.utils.common import parseMemoryString if isinstance(maxPartitionSize, basestring): size = parseMemoryString(maxPartitionSize) else: raise Exception("Invalid size specification") hadoopConf = {'recordLength': str(recordSize), 'mapred.max.split.size': str(size)} lines = self.sc.newAPIHadoopFile(dataPath, 'thunder.util.io.hadoop.FixedLengthBinaryInputFormat', 'org.apache.hadoop.io.LongWritable', 'org.apache.hadoop.io.BytesWritable', conf=hadoopConf) data = lines.map(lambda (_, v): (tuple(int(x) for x in frombuffer(buffer(v, 0, keySize), dtype=keyDtype)), frombuffer(buffer(v, keySize), dtype=valDtype))) return Series(data, dtype=str(valDtype), index=arange(paramsObj.nvalues)).astype(newDtype, casting) def _getSeriesBlocksFromStack(self, dataPath, dims, ext="stack", blockSize="150M", dtype='int16', newDtype='smallfloat', casting='safe', startIdx=None, stopIdx=None, recursive=False): """Create an RDD of <string blocklabel, (int k-tuple indices, array of datatype values)> Parameters ---------- dataPath: string URI or local filesystem path Specifies the directory or files to be loaded. May be formatted as a URI string with scheme (e.g. "file://", "s3n://" or "gs://"). If no scheme is present, will be interpreted as a path on the local filesystem. This path must be valid on all workers. Datafile may also refer to a single file, or to a range of files specified by a glob-style expression using a single wildcard character '*'. dims: tuple of positive int Dimensions of input image data, ordered with the fastest-changing dimension first. dtype: dtype or dtype specifier, optional, default 'int16' Numpy dtype of input stack data newDtype: floating-point dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Series data must be floating-point. Input data will be cast to the requested `newdtype` - see numpy `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. recursive: boolean, default False If true, will recursively descend directories rooted at dataPath, loading all files in the tree that have an extension matching 'ext'. Recursive loading is currently only implemented for local filesystems (not s3). Returns --------- pair of (RDD, ntimepoints) RDD: sequence of keys, values pairs (call using flatMap) RDD Key: tuple of int zero-based indicies of position within original image volume RDD Value: numpy array of datatype series of values at position across loaded image volumes ntimepoints: int number of time points in returned series, determined from number of stack files found at dataPath newDtype: string string representation of numpy data type of returned blocks """ dataPath = self.__normalizeDatafilePattern(dataPath, ext) blockSize = parseMemoryString(blockSize) totalDim = reduce(lambda x_, y_: x_*y_, dims) dtype = dtypeFunc(dtype) if newDtype is None or newDtype == '': newDtype = str(dtype) elif newDtype == 'smallfloat': newDtype = str(smallestFloatType(dtype)) else: newDtype = str(newDtype) reader = getFileReaderForPath(dataPath)(awsCredentialsOverride=self.awsCredentialsOverride) filenames = reader.list(dataPath, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) if not filenames: raise IOError("No files found for path '%s'" % dataPath) dataSize = totalDim * len(filenames) * dtype.itemsize nblocks = max(dataSize / blockSize, 1) # integer division if len(dims) >= 3: # for 3D stacks, do calculations to ensure that # different planes appear in distinct files blocksPerPlane = max(nblocks / dims[-1], 1) pixPerPlane = reduce(lambda x_, y_: x_*y_, dims[:-1]) # all but last dimension # get the greatest number of blocks in a plane (up to as many as requested) that still divide the plane # evenly. This will always be at least one. kUpdated = [x for x in range(1, blocksPerPlane+1) if not pixPerPlane % x][-1] nblocks = kUpdated * dims[-1] blockSizePerStack = (totalDim / nblocks) * dtype.itemsize else: # otherwise just round to make contents divide into nearly even blocks blockSizePerStack = int(math.ceil(totalDim / float(nblocks))) nblocks = int(math.ceil(totalDim / float(blockSizePerStack))) blockSizePerStack *= dtype.itemsize fileSize = totalDim * dtype.itemsize def readBlock(blockNum): # copy size out from closure; will modify later: blockSizePerStack_ = blockSizePerStack # get start position for this block position = blockNum * blockSizePerStack_ # adjust if at end of file if (position + blockSizePerStack_) > fileSize: blockSizePerStack_ = int(fileSize - position) # loop over files, loading one block from each bufs = [] for fname in filenames: buf = reader.read(fname, startOffset=position, size=blockSizePerStack_) bufs.append(frombuffer(buf, dtype=dtype)) buf = vstack(bufs).T # dimensions are now linindex x time (images) del bufs buf = buf.astype(newDtype, casting=casting, copy=False) # append subscript keys based on dimensions itemPosition = position / dtype.itemsize itemBlocksize = blockSizePerStack_ / dtype.itemsize linearIdx = arange(itemPosition, itemPosition + itemBlocksize) # zero-based keys = zip(*map(tuple, unravel_index(linearIdx, dims, order='F'))) return zip(keys, buf) # map over blocks return (self.sc.parallelize(range(0, nblocks), nblocks).flatMap(lambda bn: readBlock(bn)), len(filenames), newDtype) @staticmethod def __readMetadataFromFirstPageOfMultiTif(reader, filePath): import thunder.rdds.fileio.multitif as multitif # read first page of first file to get expected image size tiffFP = reader.open(filePath) tiffParser = multitif.TiffParser(tiffFP, debug=False) tiffHeaders = multitif.TiffData() tiffParser.parseFileHeader(destinationTiff=tiffHeaders) firstIfd = tiffParser.parseNextImageFileDirectory(destinationTiff=tiffHeaders) if not firstIfd.isLuminanceImage(): raise ValueError(("File %s does not appear to be a luminance " % filePath) + "(greyscale or bilevel) TIF image, " + "which are the only types currently supported") # keep reading pages until we reach the end of the file, in order to get number of planes: while tiffParser.parseNextImageFileDirectory(destinationTiff=tiffHeaders): pass # get dimensions npages = len(tiffHeaders.ifds) height = firstIfd.getImageHeight() width = firstIfd.getImageWidth() # get datatype bitsPerSample = firstIfd.getBitsPerSample() if not (bitsPerSample in (8, 16, 32, 64)): raise ValueError("Only 8, 16, 32, or 64 bit per pixel TIF images are supported, got %d" % bitsPerSample) sampleFormat = firstIfd.getSampleFormat() if sampleFormat == multitif.SAMPLE_FORMAT_UINT: dtStr = 'uint' elif sampleFormat == multitif.SAMPLE_FORMAT_INT: dtStr = 'int' elif sampleFormat == multitif.SAMPLE_FORMAT_FLOAT: dtStr = 'float' else: raise ValueError("Unknown TIF SampleFormat tag value %d, should be 1, 2, or 3 for uint, int, or float" % sampleFormat) dtype = dtStr+str(bitsPerSample) return height, width, npages, dtype def _getSeriesBlocksFromMultiTif(self, dataPath, ext="tif", blockSize="150M", newDtype='smallfloat', casting='safe', startIdx=None, stopIdx=None, recursive=False): import thunder.rdds.fileio.multitif as multitif import itertools from PIL import Image import io dataPath = self.__normalizeDatafilePattern(dataPath, ext) blockSize = parseMemoryString(blockSize) reader = getFileReaderForPath(dataPath)(awsCredentialsOverride=self.awsCredentialsOverride) filenames = reader.list(dataPath, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) if not filenames: raise IOError("No files found for path '%s'" % dataPath) ntimepoints = len(filenames) doMinimizeReads = dataPath.lower().startswith("s3") or dataPath.lower().startswith("gs") # check PIL version to see whether it is actually pillow or indeed old PIL and choose # conversion function appropriately. See ImagesLoader.fromMultipageTif and common.pil_to_array # for more explanation. isPillow = hasattr(Image, "PILLOW_VERSION") if isPillow: conversionFcn = array # use numpy's array() function else: from thunder.utils.common import pil_to_array conversionFcn = pil_to_array # use our modified version of matplotlib's pil_to_array height, width, npages, dtype = SeriesLoader.__readMetadataFromFirstPageOfMultiTif(reader, filenames[0]) if dtype.startswith('int'): raise ValueError('Signed integer tiff images are not supported in SeriesLoader (shuffle=False);' + ' please try loading as Images (shuffle=True)') pixelBytesize = dtypeFunc(dtype).itemsize if newDtype is None or str(newDtype) == '': newDtype = str(dtype) elif newDtype == 'smallfloat': newDtype = str(smallestFloatType(dtype)) else: newDtype = str(newDtype) # intialize at one block per plane bytesPerPlane = height * width * pixelBytesize * ntimepoints bytesPerBlock = bytesPerPlane blocksPerPlane = 1 # keep dividing while cutting our size in half still leaves us bigger than the requested size # should end up no more than 2x blockSize. while bytesPerBlock >= blockSize * 2: bytesPerBlock /= 2 blocksPerPlane *= 2 blocklenPixels = max((height * width) / blocksPerPlane, 1) # integer division while blocksPerPlane * blocklenPixels < height * width: # make sure we're reading the plane fully blocksPerPlane += 1 # prevent bringing in self in closure: awsCredentialsOverride = self.awsCredentialsOverride # keys will be planeidx, blockidx: keys = list(itertools.product(xrange(npages), xrange(blocksPerPlane))) def readBlockFromTiff(planeIdxBlockIdx): planeIdx, blockIdx = planeIdxBlockIdx blocks = [] planeShape = None blockStart = None blockEnd = None for fname in filenames: reader_ = getFileReaderForPath(fname)(awsCredentialsOverride=awsCredentialsOverride) fp = reader_.open(fname) try: if doMinimizeReads: # use multitif module to generate a fake, in-memory # one-page tif file. the advantage of this is that it # cuts way down on the many small reads that PIL/pillow # will make otherwise, which would be a problem for s3 # or Google Storage tiffParser_ = multitif.TiffParser(fp, debug=False) tiffFilebuffer = multitif.packSinglePage(tiffParser_, pageIdx=planeIdx) byteBuf = io.BytesIO(tiffFilebuffer) try: pilImg = Image.open(byteBuf) ary = conversionFcn(pilImg).T finally: byteBuf.close() del tiffFilebuffer, tiffParser_, pilImg, byteBuf else: # read tif using PIL directly pilImg = Image.open(fp) pilImg.seek(planeIdx) ary = conversionFcn(pilImg).T del pilImg if not planeShape: planeShape = ary.shape[:] blockStart = blockIdx * blocklenPixels blockEnd = min(blockStart+blocklenPixels, planeShape[0]*planeShape[1]) blocks.append(ary.ravel(order='C')[blockStart:blockEnd]) del ary finally: fp.close() buf = vstack(blocks).T # dimensions are now linindex x time (images) del blocks buf = buf.astype(newDtype, casting=casting, copy=False) # append subscript keys based on dimensions linearIdx = arange(blockStart, blockEnd) # zero-based seriesKeys = zip(*map(tuple, unravel_index(linearIdx, planeShape, order='C'))) # add plane index to end of keys if npages > 1: seriesKeys = [tuple(list(keys_)[::-1]+[planeIdx]) for keys_ in seriesKeys] else: seriesKeys = [tuple(list(keys_)[::-1]) for keys_ in seriesKeys] return zip(seriesKeys, buf) # map over blocks rdd = self.sc.parallelize(keys, len(keys)).flatMap(readBlockFromTiff) if npages > 1: dims = (npages, width, height) else: dims = (width, height) metadata = (dims, ntimepoints, newDtype) return rdd, metadata def fromStack(self, dataPath, dims, ext="stack", blockSize="150M", dtype='int16', newDtype='smallfloat', casting='safe', startIdx=None, stopIdx=None, recursive=False): """Load a Series object directly from binary image stack files. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. dims: tuple of positive int Dimensions of input image data, ordered with the fastest-changing dimension first. ext: string, optional, default "stack" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). dtype: dtype or dtype specifier, optional, default 'int16' Numpy dtype of input stack data newDtype: dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Most methods expect Series data to be floating-point. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. recursive: boolean, default False If true, will recursively descend directories rooted at dataPath, loading all files in the tree that have an extension matching 'ext'. Recursive loading is currently only implemented for local filesystems (not s3). """ seriesBlocks, npointsInSeries, newDtype = \ self._getSeriesBlocksFromStack(dataPath, dims, ext=ext, blockSize=blockSize, dtype=dtype, newDtype=newDtype, casting=casting, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) return Series(seriesBlocks, dims=dims, dtype=newDtype, index=arange(npointsInSeries)) def fromTif(self, dataPath, ext="tif", blockSize="150M", newDtype='smallfloat', casting='safe', startIdx=None, stopIdx=None, recursive=False): """Load a Series object from multipage tiff files. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. ext: string, optional, default "tif" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). newDtype: dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Most methods expect Series data to be floating-point. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. recursive: boolean, default False If true, will recursively descend directories rooted at dataPath, loading all files in the tree that have an extension matching 'ext'. Recursive loading is currently only implemented for local filesystems (not s3). """ seriesBlocks, metadata = self._getSeriesBlocksFromMultiTif(dataPath, ext=ext, blockSize=blockSize, newDtype=newDtype, casting=casting, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) dims, npointsInSeries, dtype = metadata return Series(seriesBlocks, dims=Dimensions.fromTuple(dims[::-1]), dtype=dtype, index=arange(npointsInSeries)) def __saveSeriesRdd(self, seriesBlocks, outputDirPath, dims, npointsInSeries, dtype, overwrite=False): if not overwrite: self._checkOverwrite(outputDirPath) overwrite = True # prevent additional downstream checks for this path writer = getParallelWriterForPath(outputDirPath)(outputDirPath, overwrite=overwrite, awsCredentialsOverride=self.awsCredentialsOverride) def blockToBinarySeries(kvIter): label = None keyPacker = None buf = StringIO() for seriesKey, series in kvIter: if keyPacker is None: keyPacker = struct.Struct('h'*len(seriesKey)) label = SimpleBlocks.getBinarySeriesNameForKey(seriesKey) + ".bin" buf.write(keyPacker.pack(*seriesKey)) buf.write(series.tostring()) val = buf.getvalue() buf.close() return [(label, val)] seriesBlocks.mapPartitions(blockToBinarySeries).foreach(writer.writerFcn) writeSeriesConfig(outputDirPath, len(dims), npointsInSeries, valueType=dtype, overwrite=overwrite, awsCredentialsOverride=self.awsCredentialsOverride) def saveFromStack(self, dataPath, outputDirPath, dims, ext="stack", blockSize="150M", dtype='int16', newDtype=None, casting='safe', startIdx=None, stopIdx=None, overwrite=False, recursive=False): """Write out data from binary image stack files in the Series data flat binary format. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. outputDirPath: string Path to a directory into which to write Series file output. An outputdir argument may be either a path on the local file system or a URI-like format, as in dataPath. dims: tuple of positive int Dimensions of input image data, ordered with the fastest-changing dimension first. ext: string, optional, default "stack" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). dtype: dtype or dtype specifier, optional, default 'int16' Numpy dtype of input stack data newDtype: floating-point dtype or dtype specifier or string 'smallfloat' or None, optional, default None Numpy dtype of output series binary data. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. overwrite: boolean, optional, default False If true, the directory specified by outputdirpath will first be deleted, along with all its contents, if it already exists. If false, a ValueError will be thrown if outputdirpath is found to already exist. """ if not overwrite: self._checkOverwrite(outputDirPath) overwrite = True # prevent additional downstream checks for this path seriesBlocks, npointsInSeries, newDtype = \ self._getSeriesBlocksFromStack(dataPath, dims, ext=ext, blockSize=blockSize, dtype=dtype, newDtype=newDtype, casting=casting, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) self.__saveSeriesRdd(seriesBlocks, outputDirPath, dims, npointsInSeries, newDtype, overwrite=overwrite) def saveFromTif(self, dataPath, outputDirPath, ext="tif", blockSize="150M", newDtype=None, casting='safe', startIdx=None, stopIdx=None, overwrite=False, recursive=False): """Write out data from multipage tif files in the Series data flat binary format. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. outputDirPpath: string Path to a directory into which to write Series file output. An outputdir argument may be either a path on the local file system or a URI-like format, as in dataPath. ext: string, optional, default "stack" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). newDtype: floating-point dtype or dtype specifier or string 'smallfloat' or None, optional, default None Numpy dtype of output series binary data. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. overwrite: boolean, optional, default False If true, the directory specified by outputdirpath will first be deleted, along with all its contents, if it already exists. If false, a ValueError will be thrown if outputdirpath is found to already exist. """ if not overwrite: self._checkOverwrite(outputDirPath) overwrite = True # prevent additional downstream checks for this path seriesBlocks, metadata = self._getSeriesBlocksFromMultiTif(dataPath, ext=ext, blockSize=blockSize, newDtype=newDtype, casting=casting, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) dims, npointsInSeries, dtype = metadata self.__saveSeriesRdd(seriesBlocks, outputDirPath, dims, npointsInSeries, dtype, overwrite=overwrite) def fromMatLocal(self, dataPath, varName, keyFile=None): """Loads Series data stored in a Matlab .mat file. `datafile` must refer to a path visible to all workers, such as on NFS or similar mounted shared filesystem. """ data = loadmat(dataPath)[varName] if data.ndim > 2: raise IOError('Input data must be one or two dimensional') if keyFile: keys = map(lambda x: tuple(x), loadmat(keyFile)['keys']) else: keys = arange(0, data.shape[0]) rdd = Series(self.sc.parallelize(zip(keys, data), self.minPartitions), dtype=str(data.dtype)) return rdd def fromNpyLocal(self, dataPath, keyFile=None): """Loads Series data stored in the numpy save() .npy format. `datafile` must refer to a path visible to all workers, such as on NFS or similar mounted shared filesystem. """ data = load(dataPath) if data.ndim > 2: raise IOError('Input data must be one or two dimensional') if keyFile: keys = map(lambda x: tuple(x), load(keyFile)) else: keys = arange(0, data.shape[0]) rdd = Series(self.sc.parallelize(zip(keys, data), self.minPartitions), dtype=str(data.dtype)) return rdd def loadConf(self, dataPath, confFilename='conf.json'): """Returns a dict loaded from a json file. Looks for file named `conffile` in same directory as `dataPath` Returns {} if file not found """ if not confFilename: return {} reader = getFileReaderForPath(dataPath)(awsCredentialsOverride=self.awsCredentialsOverride) try: jsonBuf = reader.read(dataPath, filename=confFilename) except FileNotFoundError: return {} params = json.loads(jsonBuf) if 'format' in params: raise Exception("Numerical format of value should be specified as 'valuetype', not 'format'") if 'keyformat' in params: raise Exception("Numerical format of key should be specified as 'keytype', not 'keyformat'") return params def writeSeriesConfig(outputDirPath, nkeys, nvalues, keyType='int16', valueType='int16', confFilename="conf.json", overwrite=True, awsCredentialsOverride=None): """ Helper function to write out a conf.json file with required information to load Series binary data. """ import json from thunder.rdds.fileio.writers import getFileWriterForPath filewriterClass = getFileWriterForPath(outputDirPath) # write configuration file # config JSON keys are lowercased "valuetype", "keytype", not valueType, keyType conf = {'input': outputDirPath, 'nkeys': nkeys, 'nvalues': nvalues, 'valuetype': str(valueType), 'keytype': str(keyType)} confWriter = filewriterClass(outputDirPath, confFilename, overwrite=overwrite, awsCredentialsOverride=awsCredentialsOverride) confWriter.writeFile(json.dumps(conf, indent=2)) # touch "SUCCESS" file as final action successWriter = filewriterClass(outputDirPath, "SUCCESS", overwrite=overwrite, awsCredentialsOverride=awsCredentialsOverride) successWriter.writeFile('')
"""Provides SeriesLoader object and helpers, used to read Series data from disk or other filesystems. """ from collections import namedtuple import json from numpy import array, arange, frombuffer, load, ndarray, unravel_index, vstack from numpy import dtype as dtypeFunc from scipy.io import loadmat from cStringIO import StringIO import itertools import struct import urlparse import math from thunder.rdds.fileio.writers import getParallelWriterForPath from thunder.rdds.keys import Dimensions from thunder.rdds.fileio.readers import getFileReaderForPath, FileNotFoundError, appendExtensionToPathSpec from thunder.rdds.imgblocks.blocks import SimpleBlocks from thunder.rdds.series import Series from thunder.utils.common import parseMemoryString, smallestFloatType class SeriesLoader(object): """Loader object used to instantiate Series data stored in a variety of formats. """ def __init__(self, sparkContext, minPartitions=None): """Initialize a new SeriesLoader object. Parameters ---------- sparkcontext: SparkContext The pyspark SparkContext object used by the current Thunder environment. minPartitions: int minimum number of partitions to use when loading data. (Used by fromText, fromMatLocal, and fromNpyLocal) """ from thunder.utils.aws import AWSCredentials self.sc = sparkContext self.minPartitions = minPartitions self.awsCredentialsOverride = AWSCredentials.fromContext(sparkContext) def _checkOverwrite(self, outputDirPath): from thunder.utils.common import raiseErrorIfPathExists raiseErrorIfPathExists(outputDirPath, awsCredentialsOverride=self.awsCredentialsOverride) def fromArrays(self, arrays, npartitions=None): """ Create a Series object from a sequence of 1d numpy arrays on the driver. """ # recast singleton if isinstance(arrays, ndarray): arrays = [arrays] # check shape and dtype shape = arrays[0].shape dtype = arrays[0].dtype for ary in arrays: if not ary.shape == shape: raise ValueError("Inconsistent array shapes: first array had shape %s, but other array has shape %s" % (str(shape), str(ary.shape))) if not ary.dtype == dtype: raise ValueError("Inconsistent array dtypes: first array had dtype %s, but other array has dtype %s" % (str(dtype), str(ary.dtype))) # generate linear keys keys = map(lambda k: (k,), xrange(0, len(arrays))) return Series(self.sc.parallelize(zip(keys, arrays), npartitions), dtype=str(dtype)) def fromArraysAsImages(self, arrays): """Create a Series object from a sequence of numpy ndarrays resident in memory on the driver. The arrays will be interpreted as though each represents a single time point - effectively the same as if converting Images to a Series, with each array representing a volume image at a particular point in time. Thus in the resulting Series, the value of the record with key (0,0,0) will be array([arrays[0][0,0,0], arrays[1][0,0,0],... arrays[n][0,0,0]). The dimensions of the resulting Series will be *opposite* that of the passed numpy array. Their dtype will not be changed. """ # if passed a single array, cast it to a sequence of length 1 if isinstance(arrays, ndarray): arrays = [arrays] # check that shapes of passed arrays are consistent shape = arrays[0].shape dtype = arrays[0].dtype for ary in arrays: if not ary.shape == shape: raise ValueError("Inconsistent array shapes: first array had shape %s, but other array has shape %s" % (str(shape), str(ary.shape))) if not ary.dtype == dtype: raise ValueError("Inconsistent array dtypes: first array had dtype %s, but other array has dtype %s" % (str(dtype), str(ary.dtype))) # get indices so that fastest index changes first shapeiters = (xrange(n) for n in shape) keys = [idx[::-1] for idx in itertools.product(*shapeiters)] values = vstack([ary.ravel() for ary in arrays]).T dims = Dimensions.fromTuple(shape[::-1]) return Series(self.sc.parallelize(zip(keys, values), self.minPartitions), dims=dims, dtype=str(dtype)) @staticmethod def __normalizeDatafilePattern(dataPath, ext): dataPath = appendExtensionToPathSpec(dataPath, ext) # we do need to prepend a scheme here, b/c otherwise the Hadoop based readers # will adopt their default behavior and start looking on hdfs://. parseResult = urlparse.urlparse(dataPath) if parseResult.scheme: # this appears to already be a fully-qualified URI return dataPath else: # this looks like a local path spec # check whether we look like an absolute or a relative path import os dirComponent, fileComponent = os.path.split(dataPath) if not os.path.isabs(dirComponent): # need to make relative local paths absolute; our file scheme parsing isn't all that it could be. dirComponent = os.path.abspath(dirComponent) dataPath = os.path.join(dirComponent, fileComponent) return "file://" + dataPath def fromText(self, dataPath, nkeys=None, ext="txt", dtype='float64'): """ Loads Series data from text files. Parameters ---------- dataPath : string Specifies the file or files to be loaded. dataPath may be either a URI (with scheme specified) or a path on the local filesystem. If a path is passed (determined by the absence of a scheme component when attempting to parse as a URI), and it is not already a wildcard expression and does not end in <ext>, then it will be converted into a wildcard pattern by appending '/*.ext'. This conversion can be avoided by passing a "file://" URI. dtype: dtype or dtype specifier, default 'float64' """ dataPath = self.__normalizeDatafilePattern(dataPath, ext) def parse(line, nkeys_): vec = [float(x) for x in line.split(' ')] ts = array(vec[nkeys_:], dtype=dtype) keys = tuple(int(x) for x in vec[:nkeys_]) return keys, ts lines = self.sc.textFile(dataPath, self.minPartitions) data = lines.map(lambda x: parse(x, nkeys)) return Series(data, dtype=str(dtype)) # keytype, valuetype here violate camelCasing convention for consistence with JSON conf file format BinaryLoadParameters = namedtuple('BinaryLoadParameters', 'nkeys nvalues keytype valuetype') BinaryLoadParameters.__new__.__defaults__ = (None, None, 'int16', 'int16') def __loadParametersAndDefaults(self, dataPath, confFilename, nkeys, nvalues, keyType, valueType): """Collects parameters to use for binary series loading. Priority order is as follows: 1. parameters specified as keyword arguments; 2. parameters specified in a conf.json file on the local filesystem; 3. default parameters Returns ------- BinaryLoadParameters instance """ params = self.loadConf(dataPath, confFilename=confFilename) # filter dict to include only recognized field names: for k in params.keys(): if k not in SeriesLoader.BinaryLoadParameters._fields: del params[k] keywordParams = {'nkeys': nkeys, 'nvalues': nvalues, 'keytype': keyType, 'valuetype': valueType} for k, v in keywordParams.items(): if not v: del keywordParams[k] params.update(keywordParams) return SeriesLoader.BinaryLoadParameters(**params) @staticmethod def __checkBinaryParametersAreSpecified(paramsObj): """Throws ValueError if any of the field values in the passed namedtuple instance evaluate to False. Note this is okay only so long as zero is not a valid parameter value. Hmm. """ missing = [] for paramName, paramVal in paramsObj._asdict().iteritems(): if not paramVal: missing.append(paramName) if missing: raise ValueError("Missing parameters to load binary series files - " + "these must be given either as arguments or in a configuration file: " + str(tuple(missing))) def fromBinary(self, dataPath, ext='bin', confFilename='conf.json', nkeys=None, nvalues=None, keyType=None, valueType=None, newDtype='smallfloat', casting='safe', maxPartitionSize='32mb'): """ Load a Series object from a directory of binary files. Parameters ---------- dataPath : string URI or local filesystem path Specifies the directory or files to be loaded. May be formatted as a URI string with scheme (e.g. "file://", "s3n://", or "gs://"). If no scheme is present, will be interpreted as a path on the local filesystem. This path must be valid on all workers. Datafile may also refer to a single file, or to a range of files specified by a glob-style expression using a single wildcard character '*'. newDtype : dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Most methods expect Series data to be floating-point. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting : 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. maxPartitionSize : str, optional, default = '32mb' Maximum size of partitions as Java-style memory, will indirectly control the number of partitions """ paramsObj = self.__loadParametersAndDefaults(dataPath, confFilename, nkeys, nvalues, keyType, valueType) self.__checkBinaryParametersAreSpecified(paramsObj) dataPath = self.__normalizeDatafilePattern(dataPath, ext) keyDtype = dtypeFunc(paramsObj.keytype) valDtype = dtypeFunc(paramsObj.valuetype) keySize = paramsObj.nkeys * keyDtype.itemsize recordSize = keySize + paramsObj.nvalues * valDtype.itemsize from thunder.utils.common import parseMemoryString if isinstance(maxPartitionSize, basestring): size = parseMemoryString(maxPartitionSize) else: raise Exception("Invalid size specification") hadoopConf = {'recordLength': str(recordSize), 'mapred.max.split.size': str(size)} lines = self.sc.newAPIHadoopFile(dataPath, 'thunder.util.io.hadoop.FixedLengthBinaryInputFormat', 'org.apache.hadoop.io.LongWritable', 'org.apache.hadoop.io.BytesWritable', conf=hadoopConf) data = lines.map(lambda (_, v): (tuple(int(x) for x in frombuffer(buffer(v, 0, keySize), dtype=keyDtype)), frombuffer(buffer(v, keySize), dtype=valDtype))) return Series(data, dtype=str(valDtype), index=arange(paramsObj.nvalues)).astype(newDtype, casting) def _getSeriesBlocksFromStack(self, dataPath, dims, ext="stack", blockSize="150M", dtype='int16', newDtype='smallfloat', casting='safe', startIdx=None, stopIdx=None, recursive=False): """Create an RDD of <string blocklabel, (int k-tuple indices, array of datatype values)> Parameters ---------- dataPath: string URI or local filesystem path Specifies the directory or files to be loaded. May be formatted as a URI string with scheme (e.g. "file://", "s3n://" or "gs://"). If no scheme is present, will be interpreted as a path on the local filesystem. This path must be valid on all workers. Datafile may also refer to a single file, or to a range of files specified by a glob-style expression using a single wildcard character '*'. dims: tuple of positive int Dimensions of input image data, ordered with the fastest-changing dimension first. dtype: dtype or dtype specifier, optional, default 'int16' Numpy dtype of input stack data newDtype: floating-point dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Series data must be floating-point. Input data will be cast to the requested `newdtype` - see numpy `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. recursive: boolean, default False If true, will recursively descend directories rooted at dataPath, loading all files in the tree that have an extension matching 'ext'. Recursive loading is currently only implemented for local filesystems (not s3). Returns --------- pair of (RDD, ntimepoints) RDD: sequence of keys, values pairs (call using flatMap) RDD Key: tuple of int zero-based indicies of position within original image volume RDD Value: numpy array of datatype series of values at position across loaded image volumes ntimepoints: int number of time points in returned series, determined from number of stack files found at dataPath newDtype: string string representation of numpy data type of returned blocks """ dataPath = self.__normalizeDatafilePattern(dataPath, ext) blockSize = parseMemoryString(blockSize) totalDim = reduce(lambda x_, y_: x_*y_, dims) dtype = dtypeFunc(dtype) if newDtype is None or newDtype == '': newDtype = str(dtype) elif newDtype == 'smallfloat': newDtype = str(smallestFloatType(dtype)) else: newDtype = str(newDtype) reader = getFileReaderForPath(dataPath)(awsCredentialsOverride=self.awsCredentialsOverride) filenames = reader.list(dataPath, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) if not filenames: raise IOError("No files found for path '%s'" % dataPath) dataSize = totalDim * len(filenames) * dtype.itemsize nblocks = max(dataSize / blockSize, 1) # integer division if len(dims) >= 3: # for 3D stacks, do calculations to ensure that # different planes appear in distinct files blocksPerPlane = max(nblocks / dims[-1], 1) pixPerPlane = reduce(lambda x_, y_: x_*y_, dims[:-1]) # all but last dimension # get the greatest number of blocks in a plane (up to as many as requested) that still divide the plane # evenly. This will always be at least one. kUpdated = [x for x in range(1, blocksPerPlane+1) if not pixPerPlane % x][-1] nblocks = kUpdated * dims[-1] blockSizePerStack = (totalDim / nblocks) * dtype.itemsize else: # otherwise just round to make contents divide into nearly even blocks blockSizePerStack = int(math.ceil(totalDim / float(nblocks))) nblocks = int(math.ceil(totalDim / float(blockSizePerStack))) blockSizePerStack *= dtype.itemsize fileSize = totalDim * dtype.itemsize def readBlock(blockNum): # copy size out from closure; will modify later: blockSizePerStack_ = blockSizePerStack # get start position for this block position = blockNum * blockSizePerStack_ # adjust if at end of file if (position + blockSizePerStack_) > fileSize: blockSizePerStack_ = int(fileSize - position) # loop over files, loading one block from each bufs = [] for fname in filenames: buf = reader.read(fname, startOffset=position, size=blockSizePerStack_) bufs.append(frombuffer(buf, dtype=dtype)) buf = vstack(bufs).T # dimensions are now linindex x time (images) del bufs buf = buf.astype(newDtype, casting=casting, copy=False) # append subscript keys based on dimensions itemPosition = position / dtype.itemsize itemBlocksize = blockSizePerStack_ / dtype.itemsize linearIdx = arange(itemPosition, itemPosition + itemBlocksize) # zero-based keys = zip(*map(tuple, unravel_index(linearIdx, dims, order='F'))) return zip(keys, buf) # map over blocks return (self.sc.parallelize(range(0, nblocks), nblocks).flatMap(lambda bn: readBlock(bn)), len(filenames), newDtype) @staticmethod def __readMetadataFromFirstPageOfMultiTif(reader, filePath): import thunder.rdds.fileio.multitif as multitif # read first page of first file to get expected image size tiffFP = reader.open(filePath) tiffParser = multitif.TiffParser(tiffFP, debug=False) tiffHeaders = multitif.TiffData() tiffParser.parseFileHeader(destinationTiff=tiffHeaders) firstIfd = tiffParser.parseNextImageFileDirectory(destinationTiff=tiffHeaders) if not firstIfd.isLuminanceImage(): raise ValueError(("File %s does not appear to be a luminance " % filePath) + "(greyscale or bilevel) TIF image, " + "which are the only types currently supported") # keep reading pages until we reach the end of the file, in order to get number of planes: while tiffParser.parseNextImageFileDirectory(destinationTiff=tiffHeaders): pass # get dimensions npages = len(tiffHeaders.ifds) height = firstIfd.getImageHeight() width = firstIfd.getImageWidth() # get datatype bitsPerSample = firstIfd.getBitsPerSample() if not (bitsPerSample in (8, 16, 32, 64)): raise ValueError("Only 8, 16, 32, or 64 bit per pixel TIF images are supported, got %d" % bitsPerSample) sampleFormat = firstIfd.getSampleFormat() if sampleFormat == multitif.SAMPLE_FORMAT_UINT: dtStr = 'uint' elif sampleFormat == multitif.SAMPLE_FORMAT_INT: dtStr = 'int' elif sampleFormat == multitif.SAMPLE_FORMAT_FLOAT: dtStr = 'float' else: raise ValueError("Unknown TIF SampleFormat tag value %d, should be 1, 2, or 3 for uint, int, or float" % sampleFormat) dtype = dtStr+str(bitsPerSample) return height, width, npages, dtype def _getSeriesBlocksFromMultiTif(self, dataPath, ext="tif", blockSize="150M", newDtype='smallfloat', casting='safe', startIdx=None, stopIdx=None, recursive=False): import thunder.rdds.fileio.multitif as multitif import itertools from PIL import Image import io dataPath = self.__normalizeDatafilePattern(dataPath, ext) blockSize = parseMemoryString(blockSize) reader = getFileReaderForPath(dataPath)(awsCredentialsOverride=self.awsCredentialsOverride) filenames = reader.list(dataPath, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) if not filenames: raise IOError("No files found for path '%s'" % dataPath) ntimepoints = len(filenames) doMinimizeReads = dataPath.lower().startswith("s3") or dataPath.lower().startswith("gs") # check PIL version to see whether it is actually pillow or indeed old PIL and choose # conversion function appropriately. See ImagesLoader.fromMultipageTif and common.pil_to_array # for more explanation. isPillow = hasattr(Image, "PILLOW_VERSION") if isPillow: conversionFcn = array # use numpy's array() function else: from thunder.utils.common import pil_to_array conversionFcn = pil_to_array # use our modified version of matplotlib's pil_to_array height, width, npages, dtype = SeriesLoader.__readMetadataFromFirstPageOfMultiTif(reader, filenames[0]) if dtype.startswith('int'): raise ValueError('Signed integer tiff images are not supported in SeriesLoader (shuffle=False);' + ' please try loading as Images (shuffle=True)') pixelBytesize = dtypeFunc(dtype).itemsize if newDtype is None or str(newDtype) == '': newDtype = str(dtype) elif newDtype == 'smallfloat': newDtype = str(smallestFloatType(dtype)) else: newDtype = str(newDtype) # intialize at one block per plane bytesPerPlane = height * width * pixelBytesize * ntimepoints bytesPerBlock = bytesPerPlane blocksPerPlane = 1 # keep dividing while cutting our size in half still leaves us bigger than the requested size # should end up no more than 2x blockSize. while bytesPerBlock >= blockSize * 2: bytesPerBlock /= 2 blocksPerPlane *= 2 blocklenPixels = max((height * width) / blocksPerPlane, 1) # integer division while blocksPerPlane * blocklenPixels < height * width: # make sure we're reading the plane fully blocksPerPlane += 1 # prevent bringing in self in closure: awsCredentialsOverride = self.awsCredentialsOverride # keys will be planeidx, blockidx: keys = list(itertools.product(xrange(npages), xrange(blocksPerPlane))) def readBlockFromTiff(planeIdxBlockIdx): planeIdx, blockIdx = planeIdxBlockIdx blocks = [] planeShape = None blockStart = None blockEnd = None for fname in filenames: reader_ = getFileReaderForPath(fname)(awsCredentialsOverride=awsCredentialsOverride) fp = reader_.open(fname) try: if doMinimizeReads: # use multitif module to generate a fake, in-memory # one-page tif file. the advantage of this is that it # cuts way down on the many small reads that PIL/pillow # will make otherwise, which would be a problem for s3 # or Google Storage tiffParser_ = multitif.TiffParser(fp, debug=False) tiffFilebuffer = multitif.packSinglePage(tiffParser_, pageIdx=planeIdx) byteBuf = io.BytesIO(tiffFilebuffer) try: pilImg = Image.open(byteBuf) ary = conversionFcn(pilImg).T finally: byteBuf.close() del tiffFilebuffer, tiffParser_, pilImg, byteBuf else: # read tif using PIL directly pilImg = Image.open(fp) pilImg.seek(planeIdx) ary = conversionFcn(pilImg).T del pilImg if not planeShape: planeShape = ary.shape[:] blockStart = blockIdx * blocklenPixels blockEnd = min(blockStart+blocklenPixels, planeShape[0]*planeShape[1]) blocks.append(ary.ravel(order='C')[blockStart:blockEnd]) del ary finally: fp.close() buf = vstack(blocks).T # dimensions are now linindex x time (images) del blocks buf = buf.astype(newDtype, casting=casting, copy=False) # append subscript keys based on dimensions linearIdx = arange(blockStart, blockEnd) # zero-based seriesKeys = zip(*map(tuple, unravel_index(linearIdx, planeShape, order='C'))) # add plane index to end of keys if npages > 1: seriesKeys = [tuple(list(keys_)[::-1]+[planeIdx]) for keys_ in seriesKeys] else: seriesKeys = [tuple(list(keys_)[::-1]) for keys_ in seriesKeys] return zip(seriesKeys, buf) # map over blocks rdd = self.sc.parallelize(keys, len(keys)).flatMap(readBlockFromTiff) if npages > 1: dims = (npages, width, height) else: dims = (width, height) metadata = (dims, ntimepoints, newDtype) return rdd, metadata def fromStack(self, dataPath, dims, ext="stack", blockSize="150M", dtype='int16', newDtype='smallfloat', casting='safe', startIdx=None, stopIdx=None, recursive=False): """Load a Series object directly from binary image stack files. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. dims: tuple of positive int Dimensions of input image data, ordered with the fastest-changing dimension first. ext: string, optional, default "stack" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). dtype: dtype or dtype specifier, optional, default 'int16' Numpy dtype of input stack data newDtype: dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Most methods expect Series data to be floating-point. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. recursive: boolean, default False If true, will recursively descend directories rooted at dataPath, loading all files in the tree that have an extension matching 'ext'. Recursive loading is currently only implemented for local filesystems (not s3). """ seriesBlocks, npointsInSeries, newDtype = \ self._getSeriesBlocksFromStack(dataPath, dims, ext=ext, blockSize=blockSize, dtype=dtype, newDtype=newDtype, casting=casting, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) return Series(seriesBlocks, dims=dims, dtype=newDtype, index=arange(npointsInSeries)) def fromTif(self, dataPath, ext="tif", blockSize="150M", newDtype='smallfloat', casting='safe', startIdx=None, stopIdx=None, recursive=False): """Load a Series object from multipage tiff files. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. ext: string, optional, default "tif" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). newDtype: dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Most methods expect Series data to be floating-point. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. recursive: boolean, default False If true, will recursively descend directories rooted at dataPath, loading all files in the tree that have an extension matching 'ext'. Recursive loading is currently only implemented for local filesystems (not s3). """ seriesBlocks, metadata = self._getSeriesBlocksFromMultiTif(dataPath, ext=ext, blockSize=blockSize, newDtype=newDtype, casting=casting, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) dims, npointsInSeries, dtype = metadata return Series(seriesBlocks, dims=Dimensions.fromTuple(dims[::-1]), dtype=dtype, index=arange(npointsInSeries)) def __saveSeriesRdd(self, seriesBlocks, outputDirPath, dims, npointsInSeries, dtype, overwrite=False): if not overwrite: self._checkOverwrite(outputDirPath) overwrite = True # prevent additional downstream checks for this path writer = getParallelWriterForPath(outputDirPath)(outputDirPath, overwrite=overwrite, awsCredentialsOverride=self.awsCredentialsOverride) def blockToBinarySeries(kvIter): label = None keyPacker = None buf = StringIO() for seriesKey, series in kvIter: if keyPacker is None: keyPacker = struct.Struct('h'*len(seriesKey)) label = SimpleBlocks.getBinarySeriesNameForKey(seriesKey) + ".bin" buf.write(keyPacker.pack(*seriesKey)) buf.write(series.tostring()) val = buf.getvalue() buf.close() return [(label, val)] seriesBlocks.mapPartitions(blockToBinarySeries).foreach(writer.writerFcn) writeSeriesConfig(outputDirPath, len(dims), npointsInSeries, valueType=dtype, overwrite=overwrite, awsCredentialsOverride=self.awsCredentialsOverride) def saveFromStack(self, dataPath, outputDirPath, dims, ext="stack", blockSize="150M", dtype='int16', newDtype=None, casting='safe', startIdx=None, stopIdx=None, overwrite=False, recursive=False): """Write out data from binary image stack files in the Series data flat binary format. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. outputDirPath: string Path to a directory into which to write Series file output. An outputdir argument may be either a path on the local file system or a URI-like format, as in dataPath. dims: tuple of positive int Dimensions of input image data, ordered with the fastest-changing dimension first. ext: string, optional, default "stack" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). dtype: dtype or dtype specifier, optional, default 'int16' Numpy dtype of input stack data newDtype: floating-point dtype or dtype specifier or string 'smallfloat' or None, optional, default None Numpy dtype of output series binary data. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. overwrite: boolean, optional, default False If true, the directory specified by outputdirpath will first be deleted, along with all its contents, if it already exists. If false, a ValueError will be thrown if outputdirpath is found to already exist. """ if not overwrite: self._checkOverwrite(outputDirPath) overwrite = True # prevent additional downstream checks for this path seriesBlocks, npointsInSeries, newDtype = \ self._getSeriesBlocksFromStack(dataPath, dims, ext=ext, blockSize=blockSize, dtype=dtype, newDtype=newDtype, casting=casting, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) self.__saveSeriesRdd(seriesBlocks, outputDirPath, dims, npointsInSeries, newDtype, overwrite=overwrite) def saveFromTif(self, dataPath, outputDirPath, ext="tif", blockSize="150M", newDtype=None, casting='safe', startIdx=None, stopIdx=None, overwrite=False, recursive=False): """Write out data from multipage tif files in the Series data flat binary format. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. outputDirPpath: string Path to a directory into which to write Series file output. An outputdir argument may be either a path on the local file system or a URI-like format, as in dataPath. ext: string, optional, default "stack" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). newDtype: floating-point dtype or dtype specifier or string 'smallfloat' or None, optional, default None Numpy dtype of output series binary data. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. overwrite: boolean, optional, default False If true, the directory specified by outputdirpath will first be deleted, along with all its contents, if it already exists. If false, a ValueError will be thrown if outputdirpath is found to already exist. """ if not overwrite: self._checkOverwrite(outputDirPath) overwrite = True # prevent additional downstream checks for this path seriesBlocks, metadata = self._getSeriesBlocksFromMultiTif(dataPath, ext=ext, blockSize=blockSize, newDtype=newDtype, casting=casting, startIdx=startIdx, stopIdx=stopIdx, recursive=recursive) dims, npointsInSeries, dtype = metadata self.__saveSeriesRdd(seriesBlocks, outputDirPath, dims, npointsInSeries, dtype, overwrite=overwrite) def fromMatLocal(self, dataPath, varName, keyFile=None): """Loads Series data stored in a Matlab .mat file. `datafile` must refer to a path visible to all workers, such as on NFS or similar mounted shared filesystem. """ data = loadmat(dataPath)[varName] if data.ndim > 2: raise IOError('Input data must be one or two dimensional') if keyFile: keys = map(lambda x: tuple(x), loadmat(keyFile)['keys']) else: keys = arange(0, data.shape[0]) rdd = Series(self.sc.parallelize(zip(keys, data), self.minPartitions), dtype=str(data.dtype)) return rdd def fromNpyLocal(self, dataPath, keyFile=None): """Loads Series data stored in the numpy save() .npy format. `datafile` must refer to a path visible to all workers, such as on NFS or similar mounted shared filesystem. """ data = load(dataPath) if data.ndim > 2: raise IOError('Input data must be one or two dimensional') if keyFile: keys = map(lambda x: tuple(x), load(keyFile)) else: keys = arange(0, data.shape[0]) rdd = Series(self.sc.parallelize(zip(keys, data), self.minPartitions), dtype=str(data.dtype)) return rdd def loadConf(self, dataPath, confFilename='conf.json'): """Returns a dict loaded from a json file. Looks for file named `conffile` in same directory as `dataPath` Returns {} if file not found """ if not confFilename: return {} reader = getFileReaderForPath(dataPath)(awsCredentialsOverride=self.awsCredentialsOverride) try: jsonBuf = reader.read(dataPath, filename=confFilename) except FileNotFoundError: return {} params = json.loads(jsonBuf) if 'format' in params: raise Exception("Numerical format of value should be specified as 'valuetype', not 'format'") if 'keyformat' in params: raise Exception("Numerical format of key should be specified as 'keytype', not 'keyformat'") return params def writeSeriesConfig(outputDirPath, nkeys, nvalues, keyType='int16', valueType='int16', confFilename="conf.json", overwrite=True, awsCredentialsOverride=None): """ Helper function to write out a conf.json file with required information to load Series binary data. """ import json from thunder.rdds.fileio.writers import getFileWriterForPath filewriterClass = getFileWriterForPath(outputDirPath) # write configuration file # config JSON keys are lowercased "valuetype", "keytype", not valueType, keyType conf = {'input': outputDirPath, 'nkeys': nkeys, 'nvalues': nvalues, 'valuetype': str(valueType), 'keytype': str(keyType)} confWriter = filewriterClass(outputDirPath, confFilename, overwrite=overwrite, awsCredentialsOverride=awsCredentialsOverride) confWriter.writeFile(json.dumps(conf, indent=2)) # touch "SUCCESS" file as final action successWriter = filewriterClass(outputDirPath, "SUCCESS", overwrite=overwrite, awsCredentialsOverride=awsCredentialsOverride) successWriter.writeFile('')
en
0.728846
Provides SeriesLoader object and helpers, used to read Series data from disk or other filesystems. Loader object used to instantiate Series data stored in a variety of formats. Initialize a new SeriesLoader object. Parameters ---------- sparkcontext: SparkContext The pyspark SparkContext object used by the current Thunder environment. minPartitions: int minimum number of partitions to use when loading data. (Used by fromText, fromMatLocal, and fromNpyLocal) Create a Series object from a sequence of 1d numpy arrays on the driver. # recast singleton # check shape and dtype # generate linear keys Create a Series object from a sequence of numpy ndarrays resident in memory on the driver. The arrays will be interpreted as though each represents a single time point - effectively the same as if converting Images to a Series, with each array representing a volume image at a particular point in time. Thus in the resulting Series, the value of the record with key (0,0,0) will be array([arrays[0][0,0,0], arrays[1][0,0,0],... arrays[n][0,0,0]). The dimensions of the resulting Series will be *opposite* that of the passed numpy array. Their dtype will not be changed. # if passed a single array, cast it to a sequence of length 1 # check that shapes of passed arrays are consistent # get indices so that fastest index changes first # we do need to prepend a scheme here, b/c otherwise the Hadoop based readers # will adopt their default behavior and start looking on hdfs://. # this appears to already be a fully-qualified URI # this looks like a local path spec # check whether we look like an absolute or a relative path # need to make relative local paths absolute; our file scheme parsing isn't all that it could be. Loads Series data from text files. Parameters ---------- dataPath : string Specifies the file or files to be loaded. dataPath may be either a URI (with scheme specified) or a path on the local filesystem. If a path is passed (determined by the absence of a scheme component when attempting to parse as a URI), and it is not already a wildcard expression and does not end in <ext>, then it will be converted into a wildcard pattern by appending '/*.ext'. This conversion can be avoided by passing a "file://" URI. dtype: dtype or dtype specifier, default 'float64' # keytype, valuetype here violate camelCasing convention for consistence with JSON conf file format Collects parameters to use for binary series loading. Priority order is as follows: 1. parameters specified as keyword arguments; 2. parameters specified in a conf.json file on the local filesystem; 3. default parameters Returns ------- BinaryLoadParameters instance # filter dict to include only recognized field names: Throws ValueError if any of the field values in the passed namedtuple instance evaluate to False. Note this is okay only so long as zero is not a valid parameter value. Hmm. Load a Series object from a directory of binary files. Parameters ---------- dataPath : string URI or local filesystem path Specifies the directory or files to be loaded. May be formatted as a URI string with scheme (e.g. "file://", "s3n://", or "gs://"). If no scheme is present, will be interpreted as a path on the local filesystem. This path must be valid on all workers. Datafile may also refer to a single file, or to a range of files specified by a glob-style expression using a single wildcard character '*'. newDtype : dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Most methods expect Series data to be floating-point. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting : 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. maxPartitionSize : str, optional, default = '32mb' Maximum size of partitions as Java-style memory, will indirectly control the number of partitions Create an RDD of <string blocklabel, (int k-tuple indices, array of datatype values)> Parameters ---------- dataPath: string URI or local filesystem path Specifies the directory or files to be loaded. May be formatted as a URI string with scheme (e.g. "file://", "s3n://" or "gs://"). If no scheme is present, will be interpreted as a path on the local filesystem. This path must be valid on all workers. Datafile may also refer to a single file, or to a range of files specified by a glob-style expression using a single wildcard character '*'. dims: tuple of positive int Dimensions of input image data, ordered with the fastest-changing dimension first. dtype: dtype or dtype specifier, optional, default 'int16' Numpy dtype of input stack data newDtype: floating-point dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Series data must be floating-point. Input data will be cast to the requested `newdtype` - see numpy `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. recursive: boolean, default False If true, will recursively descend directories rooted at dataPath, loading all files in the tree that have an extension matching 'ext'. Recursive loading is currently only implemented for local filesystems (not s3). Returns --------- pair of (RDD, ntimepoints) RDD: sequence of keys, values pairs (call using flatMap) RDD Key: tuple of int zero-based indicies of position within original image volume RDD Value: numpy array of datatype series of values at position across loaded image volumes ntimepoints: int number of time points in returned series, determined from number of stack files found at dataPath newDtype: string string representation of numpy data type of returned blocks # integer division # for 3D stacks, do calculations to ensure that # different planes appear in distinct files # all but last dimension # get the greatest number of blocks in a plane (up to as many as requested) that still divide the plane # evenly. This will always be at least one. # otherwise just round to make contents divide into nearly even blocks # copy size out from closure; will modify later: # get start position for this block # adjust if at end of file # loop over files, loading one block from each # dimensions are now linindex x time (images) # append subscript keys based on dimensions # zero-based # map over blocks # read first page of first file to get expected image size # keep reading pages until we reach the end of the file, in order to get number of planes: # get dimensions # get datatype # check PIL version to see whether it is actually pillow or indeed old PIL and choose # conversion function appropriately. See ImagesLoader.fromMultipageTif and common.pil_to_array # for more explanation. # use numpy's array() function # use our modified version of matplotlib's pil_to_array # intialize at one block per plane # keep dividing while cutting our size in half still leaves us bigger than the requested size # should end up no more than 2x blockSize. # integer division # make sure we're reading the plane fully # prevent bringing in self in closure: # keys will be planeidx, blockidx: # use multitif module to generate a fake, in-memory # one-page tif file. the advantage of this is that it # cuts way down on the many small reads that PIL/pillow # will make otherwise, which would be a problem for s3 # or Google Storage # read tif using PIL directly # dimensions are now linindex x time (images) # append subscript keys based on dimensions # zero-based # add plane index to end of keys # map over blocks Load a Series object directly from binary image stack files. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. dims: tuple of positive int Dimensions of input image data, ordered with the fastest-changing dimension first. ext: string, optional, default "stack" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). dtype: dtype or dtype specifier, optional, default 'int16' Numpy dtype of input stack data newDtype: dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Most methods expect Series data to be floating-point. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. recursive: boolean, default False If true, will recursively descend directories rooted at dataPath, loading all files in the tree that have an extension matching 'ext'. Recursive loading is currently only implemented for local filesystems (not s3). Load a Series object from multipage tiff files. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. ext: string, optional, default "tif" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). newDtype: dtype or dtype specifier or string 'smallfloat' or None, optional, default 'smallfloat' Numpy dtype of output series data. Most methods expect Series data to be floating-point. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. recursive: boolean, default False If true, will recursively descend directories rooted at dataPath, loading all files in the tree that have an extension matching 'ext'. Recursive loading is currently only implemented for local filesystems (not s3). # prevent additional downstream checks for this path Write out data from binary image stack files in the Series data flat binary format. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. outputDirPath: string Path to a directory into which to write Series file output. An outputdir argument may be either a path on the local file system or a URI-like format, as in dataPath. dims: tuple of positive int Dimensions of input image data, ordered with the fastest-changing dimension first. ext: string, optional, default "stack" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). dtype: dtype or dtype specifier, optional, default 'int16' Numpy dtype of input stack data newDtype: floating-point dtype or dtype specifier or string 'smallfloat' or None, optional, default None Numpy dtype of output series binary data. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. overwrite: boolean, optional, default False If true, the directory specified by outputdirpath will first be deleted, along with all its contents, if it already exists. If false, a ValueError will be thrown if outputdirpath is found to already exist. # prevent additional downstream checks for this path Write out data from multipage tif files in the Series data flat binary format. Parameters ---------- dataPath: string Path to data files or directory, specified as either a local filesystem path or in a URI-like format, including scheme. A dataPath argument may include a single '*' wildcard character in the filename. outputDirPpath: string Path to a directory into which to write Series file output. An outputdir argument may be either a path on the local file system or a URI-like format, as in dataPath. ext: string, optional, default "stack" Extension required on data files to be loaded. blockSize: string formatted as e.g. "64M", "512k", "2G", or positive int. optional, default "150M" Requested size of Series partitions in bytes (or kilobytes, megabytes, gigabytes). newDtype: floating-point dtype or dtype specifier or string 'smallfloat' or None, optional, default None Numpy dtype of output series binary data. Input data will be cast to the requested `newdtype` if not None - see Data `astype()` method. casting: 'no'|'equiv'|'safe'|'same_kind'|'unsafe', optional, default 'safe' Casting method to pass on to numpy's `astype()` method; see numpy documentation for details. startIdx, stopIdx: nonnegative int. optional. Indices of the first and last-plus-one data file to load, relative to the sorted filenames matching `dataPath` and `ext`. Interpreted according to python slice indexing conventions. overwrite: boolean, optional, default False If true, the directory specified by outputdirpath will first be deleted, along with all its contents, if it already exists. If false, a ValueError will be thrown if outputdirpath is found to already exist. # prevent additional downstream checks for this path Loads Series data stored in a Matlab .mat file. `datafile` must refer to a path visible to all workers, such as on NFS or similar mounted shared filesystem. Loads Series data stored in the numpy save() .npy format. `datafile` must refer to a path visible to all workers, such as on NFS or similar mounted shared filesystem. Returns a dict loaded from a json file. Looks for file named `conffile` in same directory as `dataPath` Returns {} if file not found Helper function to write out a conf.json file with required information to load Series binary data. # write configuration file # config JSON keys are lowercased "valuetype", "keytype", not valueType, keyType # touch "SUCCESS" file as final action
2.508989
3
mxnet/local_forward.py
rai-project/onnx_examples
0
10433
# run local models given a path, default to './mxnet_models/' import os import argparse import time import mxnet as mx import numpy as np file_path = os.path.realpath(__file__) dir_name = os.path.dirname(file_path) os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0" class cuda_profiler_start(): import numba.cuda as cuda cuda.profile_start() class cuda_profiler_stop(): import numba.cuda as cuda cuda.profile_stop() def xprint(s): pass parser = argparse.ArgumentParser( description='Predict ImageNet classes from a given image') parser.add_argument('--model_name', type=str, required=False, default='resnet50_v1', help='name of the model to use') parser.add_argument('--batch_size', type=int, required=False, default=1, help='batch size to use') parser.add_argument('--input_dim', type=int, required=False, default=224, help='input dimension') parser.add_argument('--input_channels', type=int, required=False, default=3, help='input channels') parser.add_argument('--num_iterations', type=int, required=False, default=30, help='number of iterations to run') parser.add_argument('--num_warmup', type=int, required=False, default=5, help='number of warmup iterations to run') parser.add_argument('--model_idx', type=int, required=False, default=2, help='model idx') parser.add_argument('--profile', type=bool, required=False, default=False, help='enable profiling') opt = parser.parse_args() model_name = opt.model_name batch_size = opt.batch_size input_dim = opt.input_dim input_channels = opt.input_channels num_iterations = opt.num_iterations num_warmup = opt.num_warmup model_idx = opt.model_idx profile = opt.profile ctx = mx.gpu() if len(mx.test_utils.list_gpus()) else mx.cpu() sym, arg_params, aux_params = mx.model.load_checkpoint( dir_name + '/mxnet_models/'+model_name, 0) data_names = [ graph_input for graph_input in sym.list_inputs() if graph_input not in arg_params and graph_input not in aux_params ] net = mx.mod.Module( symbol=sym, data_names=[data_names[0]], context=ctx, label_names=None, ) input_shape = (batch_size, input_channels, input_dim, input_dim) img = mx.random.uniform( shape=input_shape, ctx=ctx) net.bind(for_training=False, data_shapes=[ (data_names[0], input_shape)], label_shapes=net._label_shapes) net.set_params(arg_params, aux_params, allow_missing=True) def forward_once(): mx.nd.waitall() start = time.time() prob = net.predict(img) mx.nd.waitall() end = time.time() # stop timer return end - start for i in range(num_warmup): forward_once() res = [] if profile: cuda_profiler_start() for i in range(num_iterations): t = forward_once() res.append(t) if profile: cuda_profiler_stop() res = np.multiply(res, 1000) print("{},{},{},{},{},{}".format(model_idx+1, model_name, batch_size, np.min(res), np.average(res), np.max(res)))
# run local models given a path, default to './mxnet_models/' import os import argparse import time import mxnet as mx import numpy as np file_path = os.path.realpath(__file__) dir_name = os.path.dirname(file_path) os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0" class cuda_profiler_start(): import numba.cuda as cuda cuda.profile_start() class cuda_profiler_stop(): import numba.cuda as cuda cuda.profile_stop() def xprint(s): pass parser = argparse.ArgumentParser( description='Predict ImageNet classes from a given image') parser.add_argument('--model_name', type=str, required=False, default='resnet50_v1', help='name of the model to use') parser.add_argument('--batch_size', type=int, required=False, default=1, help='batch size to use') parser.add_argument('--input_dim', type=int, required=False, default=224, help='input dimension') parser.add_argument('--input_channels', type=int, required=False, default=3, help='input channels') parser.add_argument('--num_iterations', type=int, required=False, default=30, help='number of iterations to run') parser.add_argument('--num_warmup', type=int, required=False, default=5, help='number of warmup iterations to run') parser.add_argument('--model_idx', type=int, required=False, default=2, help='model idx') parser.add_argument('--profile', type=bool, required=False, default=False, help='enable profiling') opt = parser.parse_args() model_name = opt.model_name batch_size = opt.batch_size input_dim = opt.input_dim input_channels = opt.input_channels num_iterations = opt.num_iterations num_warmup = opt.num_warmup model_idx = opt.model_idx profile = opt.profile ctx = mx.gpu() if len(mx.test_utils.list_gpus()) else mx.cpu() sym, arg_params, aux_params = mx.model.load_checkpoint( dir_name + '/mxnet_models/'+model_name, 0) data_names = [ graph_input for graph_input in sym.list_inputs() if graph_input not in arg_params and graph_input not in aux_params ] net = mx.mod.Module( symbol=sym, data_names=[data_names[0]], context=ctx, label_names=None, ) input_shape = (batch_size, input_channels, input_dim, input_dim) img = mx.random.uniform( shape=input_shape, ctx=ctx) net.bind(for_training=False, data_shapes=[ (data_names[0], input_shape)], label_shapes=net._label_shapes) net.set_params(arg_params, aux_params, allow_missing=True) def forward_once(): mx.nd.waitall() start = time.time() prob = net.predict(img) mx.nd.waitall() end = time.time() # stop timer return end - start for i in range(num_warmup): forward_once() res = [] if profile: cuda_profiler_start() for i in range(num_iterations): t = forward_once() res.append(t) if profile: cuda_profiler_stop() res = np.multiply(res, 1000) print("{},{},{},{},{},{}".format(model_idx+1, model_name, batch_size, np.min(res), np.average(res), np.max(res)))
en
0.396913
# run local models given a path, default to './mxnet_models/' # stop timer
2.276259
2
tests/test_get_angles.py
Mopolino8/lammps-data-file
13
10434
<reponame>Mopolino8/lammps-data-file<gh_stars>10-100 from lammps_data.angles import get_angles def test_separate_diatomic_molecules_should_have_no_angles(): bonds = [(0, 1), (2, 3)] assert get_angles(bonds) == [] def test_molecule_with_two_bonds_should_have_one_angle(): bonds = [(0, 1), (1, 2)] assert get_angles(bonds) == [(0, 1, 2)] def test_different_order_of_bond_tuples_should_return_same_order_within_angle_tuples(): bonds = [(0, 1), (1, 2)] assert get_angles(bonds) == [(0, 1, 2)] bonds = [(1, 2), (0, 1)] assert get_angles(bonds) == [(0, 1, 2)] def test_different_order_of_bond_tuples_should_return_same_order_of_angle_tuples(): bonds = [(0, 1), (1, 2), (1, 3)] assert get_angles(bonds) == [(0, 1, 2), (0, 1, 3), (2, 1, 3)] bonds = [(1, 2), (0, 1), (1, 3)] assert get_angles(bonds) == [(0, 1, 2), (0, 1, 3), (2, 1, 3)] def test_tetrahedral_molecule_should_have_six_angles(): bonds = [(0, 1), (0, 2), (0, 3), (0, 4)] assert get_angles(bonds) == [(1, 0, 2), (1, 0, 3), (1, 0, 4), (2, 0, 3), (2, 0, 4), (3, 0, 4)]
from lammps_data.angles import get_angles def test_separate_diatomic_molecules_should_have_no_angles(): bonds = [(0, 1), (2, 3)] assert get_angles(bonds) == [] def test_molecule_with_two_bonds_should_have_one_angle(): bonds = [(0, 1), (1, 2)] assert get_angles(bonds) == [(0, 1, 2)] def test_different_order_of_bond_tuples_should_return_same_order_within_angle_tuples(): bonds = [(0, 1), (1, 2)] assert get_angles(bonds) == [(0, 1, 2)] bonds = [(1, 2), (0, 1)] assert get_angles(bonds) == [(0, 1, 2)] def test_different_order_of_bond_tuples_should_return_same_order_of_angle_tuples(): bonds = [(0, 1), (1, 2), (1, 3)] assert get_angles(bonds) == [(0, 1, 2), (0, 1, 3), (2, 1, 3)] bonds = [(1, 2), (0, 1), (1, 3)] assert get_angles(bonds) == [(0, 1, 2), (0, 1, 3), (2, 1, 3)] def test_tetrahedral_molecule_should_have_six_angles(): bonds = [(0, 1), (0, 2), (0, 3), (0, 4)] assert get_angles(bonds) == [(1, 0, 2), (1, 0, 3), (1, 0, 4), (2, 0, 3), (2, 0, 4), (3, 0, 4)]
none
1
2.678447
3
api/scheduler/migrations/0001_initial.py
jfaach/stock-app
0
10435
# Generated by Django 3.1.1 on 2020-12-16 03:07 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Scheduler', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('minutes', models.IntegerField(default=15)), ], ), ]
# Generated by Django 3.1.1 on 2020-12-16 03:07 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Scheduler', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('minutes', models.IntegerField(default=15)), ], ), ]
en
0.818878
# Generated by Django 3.1.1 on 2020-12-16 03:07
1.730323
2
9-Wine-Scaling.py
Pawel762/Class-7_homework
0
10436
from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split wine = load_wine() columns_names = wine.feature_names y = wine.target X = wine.data print('Pre scaling X') print(X) scaler = StandardScaler() scaler.fit(X) scaled_features = scaler.transform(X) print('Post scaling X') print(scaled_features) X_train, X_test, y_train, y_test = train_test_split(scaled_features, y, test_size=0.375)
from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split wine = load_wine() columns_names = wine.feature_names y = wine.target X = wine.data print('Pre scaling X') print(X) scaler = StandardScaler() scaler.fit(X) scaled_features = scaler.transform(X) print('Post scaling X') print(scaled_features) X_train, X_test, y_train, y_test = train_test_split(scaled_features, y, test_size=0.375)
none
1
2.952666
3
tests/conftest.py
szkkteam/flask-starter
0
10437
<reponame>szkkteam/flask-starter<filename>tests/conftest.py #!/usr/bin/env python # -*- coding: utf-8 -*- # Common Python library imports import os import pytest # Pip package imports from collections import namedtuple from flask import template_rendered from flask_security.signals import ( reset_password_instructions_sent, user_confirmed, user_registered, ) # Internal package imports from backend.app import _create_app from backend.config import TestConfig from backend.extensions import db as db_ext from backend.extensions.mail import mail from ._client import ( ApiTestClient, ApiTestResponse, HtmlTestClient, HtmlTestResponse, ) from ._model_factory import ModelFactory @pytest.fixture(autouse=True, scope='session') def app(): app = _create_app(TestConfig) #ctx = app.app_context() ctx = app.test_request_context() ctx.push() yield app ctx.pop() @pytest.yield_fixture def client(app): app.response_class = HtmlTestResponse app.test_client_class = HtmlTestClient with app.test_client() as client: yield client @pytest.yield_fixture def api_client(app): app.response_class = ApiTestResponse app.test_client_class = ApiTestClient with app.test_client() as client: yield client @pytest.fixture(autouse=True, scope='session') def db(): db_ext.create_all() yield db_ext db_ext.drop_all() @pytest.fixture(autouse=True) def db_session(db): connection = db.engine.connect() transaction = connection.begin() session = db.create_scoped_session(options=dict(bind=connection, binds={})) db.session = session try: yield session finally: transaction.rollback() connection.close() session.remove() @pytest.fixture(scope='session') def celery_config(): return {'broker_url': 'redis://localhost:6379/1', 'result_backend': 'redis://localhost:6379/1', 'accept_content': ('json', 'pickle')} @pytest.fixture() def templates(app): records = [] RenderedTemplate = namedtuple('RenderedTemplate', 'template context') def record(sender, template, context, **extra): records.append(RenderedTemplate(template, context)) template_rendered.connect(record, app) try: yield records finally: template_rendered.disconnect(record, app) @pytest.fixture() def outbox(): with mail.record_messages() as messages: yield messages @pytest.fixture() def registrations(app): records = [] def record(sender, *args, **kwargs): records.append(kwargs) user_registered.connect(record, app) try: yield records finally: user_registered.disconnect(record, app) @pytest.fixture() def confirmations(app): records = [] def record(sender, *args, **kwargs): records.append(kwargs['user']) print("Record: ", records[-1]) user_confirmed.connect(record, app) try: yield records finally: print("Disconnect record: ", records) user_confirmed.disconnect(record, app) @pytest.fixture() def password_resets(app): records = [] def record(sender, *args, **kwargs): records.append(kwargs) reset_password_instructions_sent.connect(record, app) try: yield records finally: reset_password_instructions_sent.disconnect(record, app) @pytest.fixture() def user(model_factory): yield model_factory.create('User', 'user') @pytest.fixture() def newslettersubscribe(model_factory): yield model_factory.create('NewsletterSubscribe', 'newslettersubscribe') @pytest.fixture() def admin(model_factory): yield model_factory.create('User', 'admin') @pytest.fixture() def models(request, model_factory): mark = request.param if mark is not None: return model_factory.get_models(mark) @pytest.fixture() def model_factory(app, db_session): fixtures_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'model_fixtures') yield ModelFactory(db_session, app.models, fixtures_dir)
#!/usr/bin/env python # -*- coding: utf-8 -*- # Common Python library imports import os import pytest # Pip package imports from collections import namedtuple from flask import template_rendered from flask_security.signals import ( reset_password_instructions_sent, user_confirmed, user_registered, ) # Internal package imports from backend.app import _create_app from backend.config import TestConfig from backend.extensions import db as db_ext from backend.extensions.mail import mail from ._client import ( ApiTestClient, ApiTestResponse, HtmlTestClient, HtmlTestResponse, ) from ._model_factory import ModelFactory @pytest.fixture(autouse=True, scope='session') def app(): app = _create_app(TestConfig) #ctx = app.app_context() ctx = app.test_request_context() ctx.push() yield app ctx.pop() @pytest.yield_fixture def client(app): app.response_class = HtmlTestResponse app.test_client_class = HtmlTestClient with app.test_client() as client: yield client @pytest.yield_fixture def api_client(app): app.response_class = ApiTestResponse app.test_client_class = ApiTestClient with app.test_client() as client: yield client @pytest.fixture(autouse=True, scope='session') def db(): db_ext.create_all() yield db_ext db_ext.drop_all() @pytest.fixture(autouse=True) def db_session(db): connection = db.engine.connect() transaction = connection.begin() session = db.create_scoped_session(options=dict(bind=connection, binds={})) db.session = session try: yield session finally: transaction.rollback() connection.close() session.remove() @pytest.fixture(scope='session') def celery_config(): return {'broker_url': 'redis://localhost:6379/1', 'result_backend': 'redis://localhost:6379/1', 'accept_content': ('json', 'pickle')} @pytest.fixture() def templates(app): records = [] RenderedTemplate = namedtuple('RenderedTemplate', 'template context') def record(sender, template, context, **extra): records.append(RenderedTemplate(template, context)) template_rendered.connect(record, app) try: yield records finally: template_rendered.disconnect(record, app) @pytest.fixture() def outbox(): with mail.record_messages() as messages: yield messages @pytest.fixture() def registrations(app): records = [] def record(sender, *args, **kwargs): records.append(kwargs) user_registered.connect(record, app) try: yield records finally: user_registered.disconnect(record, app) @pytest.fixture() def confirmations(app): records = [] def record(sender, *args, **kwargs): records.append(kwargs['user']) print("Record: ", records[-1]) user_confirmed.connect(record, app) try: yield records finally: print("Disconnect record: ", records) user_confirmed.disconnect(record, app) @pytest.fixture() def password_resets(app): records = [] def record(sender, *args, **kwargs): records.append(kwargs) reset_password_instructions_sent.connect(record, app) try: yield records finally: reset_password_instructions_sent.disconnect(record, app) @pytest.fixture() def user(model_factory): yield model_factory.create('User', 'user') @pytest.fixture() def newslettersubscribe(model_factory): yield model_factory.create('NewsletterSubscribe', 'newslettersubscribe') @pytest.fixture() def admin(model_factory): yield model_factory.create('User', 'admin') @pytest.fixture() def models(request, model_factory): mark = request.param if mark is not None: return model_factory.get_models(mark) @pytest.fixture() def model_factory(app, db_session): fixtures_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'model_fixtures') yield ModelFactory(db_session, app.models, fixtures_dir)
en
0.463209
#!/usr/bin/env python # -*- coding: utf-8 -*- # Common Python library imports # Pip package imports # Internal package imports #ctx = app.app_context()
1.88447
2
setup.py
YiuRULE/nats.py
0
10438
<gh_stars>0 from setuptools import setup from nats.aio.client import __version__ EXTRAS = { 'nkeys': ['nkeys'], } setup( name='nats-py', version=__version__, description='NATS client for Python', long_description='Python client for NATS, a lightweight, high-performance cloud native messaging system', classifiers=[ 'Intended Audience :: Developers', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10' ], url='https://github.com/nats-io/nats.py', author='<NAME>', author_email='<EMAIL>', license='Apache 2 License', packages=['nats', 'nats.aio', 'nats.protocol', 'nats.js'], zip_safe=True, extras_require=EXTRAS )
from setuptools import setup from nats.aio.client import __version__ EXTRAS = { 'nkeys': ['nkeys'], } setup( name='nats-py', version=__version__, description='NATS client for Python', long_description='Python client for NATS, a lightweight, high-performance cloud native messaging system', classifiers=[ 'Intended Audience :: Developers', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10' ], url='https://github.com/nats-io/nats.py', author='<NAME>', author_email='<EMAIL>', license='Apache 2 License', packages=['nats', 'nats.aio', 'nats.protocol', 'nats.js'], zip_safe=True, extras_require=EXTRAS )
none
1
1.238945
1
example_python_files/MagicDAQ,MABoard,FullDemo.py
MagicDAQ/magicdaq_docs
1
10439
############################################################## #*** MagicDAQ USB DAQ and M&A Board General Demo Script *** ############################################################## #*** Websites *** # MagicDAQ Website: # https://www.magicdaq.com/ # API Docs Website: # https://magicdaq.github.io/magicdaq_docs/ #*** Install MagicDAQ *** # Download the MagicDAQ python package from pypi # Run this command in a command prompt: # python -m pip install magicdaq # Further docs: https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ # MagicDAQ is only compatible with Python 3 on Windows. It does not work on Linux at the moment. It does not work with Python 2. #*** Using Auto Code Complete With PyCharm *** # Using a code editor like Pycharm and want to get auto complete working for the MagicDAQ package? # Docs: https://magicdaq.github.io/magicdaq_docs/#/PyCharmCodeCompletion ############################################################## #*** Imports *** ############################################################## import sys import time # Import MagicDAQ print('*** MagicDAQ Install Check ***') print('') try: # Import MagicDAQDevice object from magicdaq.api_class import MagicDAQDevice # Create daq_one object daq_one = MagicDAQDevice() print('GOOD: MagicDAQ API is installed properly.') # Get MagicDAQ Driver Version driver_version = daq_one.get_driver_version() if driver_version == 1.0: print('GOOD: MagicDAQ Driver is installed properly.') print('You are ready to use MagicDAQ!') else: print('ERROR: MagicDAQ Driver version not expected value: '+str(driver_version)) print('Try installing MagicDAQ using pip again.') print('https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ') print('Feel free to email MagicDAQ Support at: <EMAIL>') except Exception as exception_text: print('Original exception: ') print(exception_text) print('') print('ERROR: Unable to import MagicDAQ API.') print('Mostly likely, MagicDAQ has not been properly downloaded and installed using pip.') print('Please consult MagicDAQ API Docs: https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ') print('Feel free to email MagicDAQ Support at: <EMAIL>') sys.exit(0) ############################################################## #*** MagicDAQ USB DAQ MDAQ300 Features Demo *** ############################################################## # This portion of the script shows off some of the USB DAQ's features # Hardware docs: https://www.magicdaq.com/product/magic-daq/ print('') print('*** MagicDAQ USB DAQ Demo ***') print('Ensure the USB DAQ is plugged into the computer using the USB cable.') print('The DAQ does not need to be connected to the M&A board.') print('') user_input = input('Press any key to continue.') #*** Open DAQ Device *** # Remember, the daq_one object has already been created in the above 'Imports' section # We must open the daq device before performing any hardware feature manipulation # https://magicdaq.github.io/magicdaq_docs/#/MagicDAQ_Basics daq_one.open_daq_device() ############################################################### #*** Analog Output Demo: Constant, Sine, and PWM on AO1 Pin *** ############################################################### print('') print('--- Analog Output Demo: Constant, Sine, and PWM Output ---') # Set constant 3 volt output voltage on AO1 pin daq_one.set_analog_output(1,3) print('Using an oscilloscope, place the scope probe on pin AO1 and connect the scope probe GND to one of the USB DAQs AGND pins') print('You should now observe a constant 3V') print('') user_input = input('Press any key to continue.') # Configure and start 300Hz sine wave with 2V amplitude on AO1 pin daq_one.configure_analog_output_sine_wave(1,300,amplitude=2) daq_one.start_analog_output_wave(1) print('You should now observe a 300Hz sine wave with 2V amplitude.') print('') user_input = input('Press any key to continue.') # Stop previous wave daq_one.stop_analog_output_wave(1) # Configure and start PWM wave, 200 Hz, 50% duty cycle, 3.3V amplitude daq_one.configure_analog_output_pwm_wave(1,200,50,amplitude=3.3) daq_one.start_analog_output_wave(1) print('You should now observe a 200Hz PWM wave, 50% duty cycle, with 3.3V amplitude.') print('') user_input = input('Press any key to continue.') # Stop the wave daq_one.stop_analog_output_wave(1) print('The wave should now stop. You could set it to GND using set_analog_ouput() if you wanted.') print('') user_input = input('Press any key to continue.') ############################################################### #*** Pulse Counter Pin Demo: PWM waves *** ############################################################### print('') print('--- Pulse Counter Pin Demo: PWM Waves ---') # Configure a 50 KHz frequency, 75% duty cycle, continuous PWM Wave on the counter pin (CTR0) # Note that unlike the analog output pins, the CTR0 pin always outputs at an amplitude of 3.3v when producing PWM waves daq_one.configure_counter_pwm(50000,75) # Start counter wave daq_one.start_counter_pwm() print('Place your scope probe on pin CTR0') print('You should see a 50kHz, 75% duty cycle PWM wave.') print('') user_input = input('Press any key to continue.') # Now stopping the counter PWM wave daq_one.stop_counter_pwm() print('The PWM wave will now stop.') print('') user_input = input('Press any key to continue.') ############################################################### #*** Pulse Counter Pin Demo: Pulse Counting *** ############################################################### print('') print('--- Pulse Counter Pin Demo: Pulse Counting ---') print('Use a piece of wire to bridge CTR0 to DGND several times') print('CTR0 has an internal pull up resistor. You are simulating a pulse pulling the voltage to GND.') print('You will have 8 sec to simulate some pulses.') print('') user_input = input('Press any key when you are ready to start.') # Start the Pulse Counter # Pulses will be counted on the falling edge daq_one.enable_pulse_counter() # Sleep for 8 sec time.sleep(8) # Read number of pulses print('Number of pulses counted: '+str(daq_one.read_pulse_counter())) print('You are using a piece of wire, so it is likely bouncing on and off the screw terminal, counting many pulses') print('') user_input = input('Stop simulating pulses. Press any key to continue.') print('') print('Now clearing the pulse counter') daq_one.clear_pulse_counter() print('Pulse count after clearing: '+str(daq_one.read_pulse_counter())) ############################################################### #*** Digital Pin Demo *** ############################################################### print('') print('--- Digital Pin Demo ---') # Set P0.0 pin LOW daq_one.set_digital_output(0,0) print('Place scope probe on pin P0.0, pin should be LOW') print('') user_input = input('Press any key to continue.') # Set P0.0 pin HIGH daq_one.set_digital_output(0,1) print('Place scope probe on pin P0.0, pin should be HIGH') print('') user_input = input('Press any key to continue.') ############################################################### #*** Analog Input Pin Demo *** ############################################################### print('') print('--- Analog Input Pin Demo ---') # Single ended voltage measurement print('Apply voltage to AI0 pin. If you dont have a power supply handy, you can run a wire from the +5V pin to the AI0 pin.') print('') user_input = input('Press any key to continue.') print('Voltage measured at AI0: '+str(daq_one.read_analog_input(0))) print('If you are using the +5V pin, remember that this voltage is derived from the USB Power supply, so it will be what ever your USB bus ir producing, probably something slightly less than 5V.') # If you want to perform a differential input measurement # daq_one.read_diff_analog_input() # https://magicdaq.github.io/magicdaq_docs/#/read_diff_analog_input ############################################################### #*** M&A Board Demo *** ############################################################### # M&A Board hardware spec: # https://www.magicdaq.com/product/ma-board-full-kit/ print('') print('*** M&A Board Demo ***') print('Ensure the USB DAQ is connected to the M&A board using the ribbon cable.') print('Ribbon cable pin out on page 6 of: ') print('https://www.magicdaq.com/mdaq350datasheet/') print('Use the provided power cable to apply power to the M&A board.') print('') user_input = input('Press any key to continue.') ############################################################### #*** Relay Demo *** ############################################################### print('') print('--- Relay Demo ---') print('Setting all relays to closed.') daq_one.set_digital_output(7, 1) daq_one.set_digital_output(6, 1) daq_one.set_digital_output(5, 1) daq_one.set_digital_output(4, 1) time.sleep(1) relay_count = 1 digital_pin_count = 7 while relay_count <= 4: print('Relay #: ' + str(relay_count) + ' Digital Pin #: ' + str(digital_pin_count)) # Set relay to open print('Setting relay to OPEN.') daq_one.set_digital_output(digital_pin_count, 0) time.sleep(1) # Increment counters relay_count += 1 digital_pin_count -= 1 print('') print('') user_input = input('Press any key to continue.') ############################################################### #*** Vout Demo *** ############################################################### print('') print('--- Vout Demo ---') print('Vout provides a variable voltage power output capable of up to 2A') print('By characterizing your M&A board, or building a feedback loop; voltage accuracy of Vout can be made quite good.') print('See notes on page 4 of the M&A data sheet.') print('https://www.magicdaq.com/mdaq350datasheet/') # See the M&A board data sheet for the equation that describes the Vout to Vout_set (0 and 2.77 here) relationship print('') print('Vout_set Set to 0V.') print('Measure Vout with a multimeter. It should be about 10V') daq_one.set_analog_output(0, 0) print('') user_input = input('Press any key to continue.') print('Vout_set Set to 2.77V') print('Measure Vout with a multimeter. It should be about 5V') daq_one.set_analog_output(0, 2.77) print('') user_input = input('Press any key to continue.') ############################################################### #*** Low Current Measurement Demo: A1 *** ############################################################### print('') print('--- A1 Low Current Measurement Demo ---') print('Use the 3.3V board voltage and a 20K resistor to put 165uA through A1.') print('') user_input = input('Press any key to continue.') # See the M&A board data sheet for the equation that describes the Vout to current relationship pin_4_voltage = daq_one.read_analog_input(4) print('Read voltage: ' + str(pin_4_voltage)) calculated_current_amps = pin_4_voltage / (332 * 97.863) ua_current = round((calculated_current_amps / .000001), 3) print('Calculated uA current: ' + str(ua_current)) ############################################################### #*** Current Measurement Demo: A2 *** ############################################################### print('') print('--- A2 Current Measurement Demo (+/- 5A max) ---') print('Use an external 5V power supply and 5 ohm power resistor to put 1 Amp through A2.') print('') user_input = input('Press any key to continue.') # See the M&A board data sheet for the equation that describes the Vout to current relationship pin_5_voltage = daq_one.read_analog_input(5) print('Read voltage: ' + str(pin_5_voltage)) calculated_current_amps = pin_5_voltage / (.01 * 200) # ma_current = round((calculated_current_amps / .001), 3) print('Calculated A current: ' + str(calculated_current_amps)) ############################################################### #*** Current Measurement Demo: A3 *** ############################################################### print('') print('--- A3 Current Measurement Demo (+/- 1.5A max) ---') print('Use an external 5V power supply and 5 ohm power resistor to put 1 Amp through A3.') print('') user_input = input('Press any key to continue.') # See the M&A board data sheet for the equation that describes the Vout to current relationship pin_6_voltage = daq_one.read_analog_input(6) print('Read voltage: ' + str(pin_6_voltage)) calculated_current_amps = pin_6_voltage / (.033 * 200) ma_current = round((calculated_current_amps / .001), 3) print('Calculated mA current: ' + str(ma_current)) ############################################################### #*** Demo Complete. *** ############################################################### # Close connection to daq daq_one.close_daq_device()
############################################################## #*** MagicDAQ USB DAQ and M&A Board General Demo Script *** ############################################################## #*** Websites *** # MagicDAQ Website: # https://www.magicdaq.com/ # API Docs Website: # https://magicdaq.github.io/magicdaq_docs/ #*** Install MagicDAQ *** # Download the MagicDAQ python package from pypi # Run this command in a command prompt: # python -m pip install magicdaq # Further docs: https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ # MagicDAQ is only compatible with Python 3 on Windows. It does not work on Linux at the moment. It does not work with Python 2. #*** Using Auto Code Complete With PyCharm *** # Using a code editor like Pycharm and want to get auto complete working for the MagicDAQ package? # Docs: https://magicdaq.github.io/magicdaq_docs/#/PyCharmCodeCompletion ############################################################## #*** Imports *** ############################################################## import sys import time # Import MagicDAQ print('*** MagicDAQ Install Check ***') print('') try: # Import MagicDAQDevice object from magicdaq.api_class import MagicDAQDevice # Create daq_one object daq_one = MagicDAQDevice() print('GOOD: MagicDAQ API is installed properly.') # Get MagicDAQ Driver Version driver_version = daq_one.get_driver_version() if driver_version == 1.0: print('GOOD: MagicDAQ Driver is installed properly.') print('You are ready to use MagicDAQ!') else: print('ERROR: MagicDAQ Driver version not expected value: '+str(driver_version)) print('Try installing MagicDAQ using pip again.') print('https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ') print('Feel free to email MagicDAQ Support at: <EMAIL>') except Exception as exception_text: print('Original exception: ') print(exception_text) print('') print('ERROR: Unable to import MagicDAQ API.') print('Mostly likely, MagicDAQ has not been properly downloaded and installed using pip.') print('Please consult MagicDAQ API Docs: https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ') print('Feel free to email MagicDAQ Support at: <EMAIL>') sys.exit(0) ############################################################## #*** MagicDAQ USB DAQ MDAQ300 Features Demo *** ############################################################## # This portion of the script shows off some of the USB DAQ's features # Hardware docs: https://www.magicdaq.com/product/magic-daq/ print('') print('*** MagicDAQ USB DAQ Demo ***') print('Ensure the USB DAQ is plugged into the computer using the USB cable.') print('The DAQ does not need to be connected to the M&A board.') print('') user_input = input('Press any key to continue.') #*** Open DAQ Device *** # Remember, the daq_one object has already been created in the above 'Imports' section # We must open the daq device before performing any hardware feature manipulation # https://magicdaq.github.io/magicdaq_docs/#/MagicDAQ_Basics daq_one.open_daq_device() ############################################################### #*** Analog Output Demo: Constant, Sine, and PWM on AO1 Pin *** ############################################################### print('') print('--- Analog Output Demo: Constant, Sine, and PWM Output ---') # Set constant 3 volt output voltage on AO1 pin daq_one.set_analog_output(1,3) print('Using an oscilloscope, place the scope probe on pin AO1 and connect the scope probe GND to one of the USB DAQs AGND pins') print('You should now observe a constant 3V') print('') user_input = input('Press any key to continue.') # Configure and start 300Hz sine wave with 2V amplitude on AO1 pin daq_one.configure_analog_output_sine_wave(1,300,amplitude=2) daq_one.start_analog_output_wave(1) print('You should now observe a 300Hz sine wave with 2V amplitude.') print('') user_input = input('Press any key to continue.') # Stop previous wave daq_one.stop_analog_output_wave(1) # Configure and start PWM wave, 200 Hz, 50% duty cycle, 3.3V amplitude daq_one.configure_analog_output_pwm_wave(1,200,50,amplitude=3.3) daq_one.start_analog_output_wave(1) print('You should now observe a 200Hz PWM wave, 50% duty cycle, with 3.3V amplitude.') print('') user_input = input('Press any key to continue.') # Stop the wave daq_one.stop_analog_output_wave(1) print('The wave should now stop. You could set it to GND using set_analog_ouput() if you wanted.') print('') user_input = input('Press any key to continue.') ############################################################### #*** Pulse Counter Pin Demo: PWM waves *** ############################################################### print('') print('--- Pulse Counter Pin Demo: PWM Waves ---') # Configure a 50 KHz frequency, 75% duty cycle, continuous PWM Wave on the counter pin (CTR0) # Note that unlike the analog output pins, the CTR0 pin always outputs at an amplitude of 3.3v when producing PWM waves daq_one.configure_counter_pwm(50000,75) # Start counter wave daq_one.start_counter_pwm() print('Place your scope probe on pin CTR0') print('You should see a 50kHz, 75% duty cycle PWM wave.') print('') user_input = input('Press any key to continue.') # Now stopping the counter PWM wave daq_one.stop_counter_pwm() print('The PWM wave will now stop.') print('') user_input = input('Press any key to continue.') ############################################################### #*** Pulse Counter Pin Demo: Pulse Counting *** ############################################################### print('') print('--- Pulse Counter Pin Demo: Pulse Counting ---') print('Use a piece of wire to bridge CTR0 to DGND several times') print('CTR0 has an internal pull up resistor. You are simulating a pulse pulling the voltage to GND.') print('You will have 8 sec to simulate some pulses.') print('') user_input = input('Press any key when you are ready to start.') # Start the Pulse Counter # Pulses will be counted on the falling edge daq_one.enable_pulse_counter() # Sleep for 8 sec time.sleep(8) # Read number of pulses print('Number of pulses counted: '+str(daq_one.read_pulse_counter())) print('You are using a piece of wire, so it is likely bouncing on and off the screw terminal, counting many pulses') print('') user_input = input('Stop simulating pulses. Press any key to continue.') print('') print('Now clearing the pulse counter') daq_one.clear_pulse_counter() print('Pulse count after clearing: '+str(daq_one.read_pulse_counter())) ############################################################### #*** Digital Pin Demo *** ############################################################### print('') print('--- Digital Pin Demo ---') # Set P0.0 pin LOW daq_one.set_digital_output(0,0) print('Place scope probe on pin P0.0, pin should be LOW') print('') user_input = input('Press any key to continue.') # Set P0.0 pin HIGH daq_one.set_digital_output(0,1) print('Place scope probe on pin P0.0, pin should be HIGH') print('') user_input = input('Press any key to continue.') ############################################################### #*** Analog Input Pin Demo *** ############################################################### print('') print('--- Analog Input Pin Demo ---') # Single ended voltage measurement print('Apply voltage to AI0 pin. If you dont have a power supply handy, you can run a wire from the +5V pin to the AI0 pin.') print('') user_input = input('Press any key to continue.') print('Voltage measured at AI0: '+str(daq_one.read_analog_input(0))) print('If you are using the +5V pin, remember that this voltage is derived from the USB Power supply, so it will be what ever your USB bus ir producing, probably something slightly less than 5V.') # If you want to perform a differential input measurement # daq_one.read_diff_analog_input() # https://magicdaq.github.io/magicdaq_docs/#/read_diff_analog_input ############################################################### #*** M&A Board Demo *** ############################################################### # M&A Board hardware spec: # https://www.magicdaq.com/product/ma-board-full-kit/ print('') print('*** M&A Board Demo ***') print('Ensure the USB DAQ is connected to the M&A board using the ribbon cable.') print('Ribbon cable pin out on page 6 of: ') print('https://www.magicdaq.com/mdaq350datasheet/') print('Use the provided power cable to apply power to the M&A board.') print('') user_input = input('Press any key to continue.') ############################################################### #*** Relay Demo *** ############################################################### print('') print('--- Relay Demo ---') print('Setting all relays to closed.') daq_one.set_digital_output(7, 1) daq_one.set_digital_output(6, 1) daq_one.set_digital_output(5, 1) daq_one.set_digital_output(4, 1) time.sleep(1) relay_count = 1 digital_pin_count = 7 while relay_count <= 4: print('Relay #: ' + str(relay_count) + ' Digital Pin #: ' + str(digital_pin_count)) # Set relay to open print('Setting relay to OPEN.') daq_one.set_digital_output(digital_pin_count, 0) time.sleep(1) # Increment counters relay_count += 1 digital_pin_count -= 1 print('') print('') user_input = input('Press any key to continue.') ############################################################### #*** Vout Demo *** ############################################################### print('') print('--- Vout Demo ---') print('Vout provides a variable voltage power output capable of up to 2A') print('By characterizing your M&A board, or building a feedback loop; voltage accuracy of Vout can be made quite good.') print('See notes on page 4 of the M&A data sheet.') print('https://www.magicdaq.com/mdaq350datasheet/') # See the M&A board data sheet for the equation that describes the Vout to Vout_set (0 and 2.77 here) relationship print('') print('Vout_set Set to 0V.') print('Measure Vout with a multimeter. It should be about 10V') daq_one.set_analog_output(0, 0) print('') user_input = input('Press any key to continue.') print('Vout_set Set to 2.77V') print('Measure Vout with a multimeter. It should be about 5V') daq_one.set_analog_output(0, 2.77) print('') user_input = input('Press any key to continue.') ############################################################### #*** Low Current Measurement Demo: A1 *** ############################################################### print('') print('--- A1 Low Current Measurement Demo ---') print('Use the 3.3V board voltage and a 20K resistor to put 165uA through A1.') print('') user_input = input('Press any key to continue.') # See the M&A board data sheet for the equation that describes the Vout to current relationship pin_4_voltage = daq_one.read_analog_input(4) print('Read voltage: ' + str(pin_4_voltage)) calculated_current_amps = pin_4_voltage / (332 * 97.863) ua_current = round((calculated_current_amps / .000001), 3) print('Calculated uA current: ' + str(ua_current)) ############################################################### #*** Current Measurement Demo: A2 *** ############################################################### print('') print('--- A2 Current Measurement Demo (+/- 5A max) ---') print('Use an external 5V power supply and 5 ohm power resistor to put 1 Amp through A2.') print('') user_input = input('Press any key to continue.') # See the M&A board data sheet for the equation that describes the Vout to current relationship pin_5_voltage = daq_one.read_analog_input(5) print('Read voltage: ' + str(pin_5_voltage)) calculated_current_amps = pin_5_voltage / (.01 * 200) # ma_current = round((calculated_current_amps / .001), 3) print('Calculated A current: ' + str(calculated_current_amps)) ############################################################### #*** Current Measurement Demo: A3 *** ############################################################### print('') print('--- A3 Current Measurement Demo (+/- 1.5A max) ---') print('Use an external 5V power supply and 5 ohm power resistor to put 1 Amp through A3.') print('') user_input = input('Press any key to continue.') # See the M&A board data sheet for the equation that describes the Vout to current relationship pin_6_voltage = daq_one.read_analog_input(6) print('Read voltage: ' + str(pin_6_voltage)) calculated_current_amps = pin_6_voltage / (.033 * 200) ma_current = round((calculated_current_amps / .001), 3) print('Calculated mA current: ' + str(ma_current)) ############################################################### #*** Demo Complete. *** ############################################################### # Close connection to daq daq_one.close_daq_device()
de
0.403097
############################################################## #*** MagicDAQ USB DAQ and M&A Board General Demo Script *** ############################################################## #*** Websites *** # MagicDAQ Website: # https://www.magicdaq.com/ # API Docs Website: # https://magicdaq.github.io/magicdaq_docs/ #*** Install MagicDAQ *** # Download the MagicDAQ python package from pypi # Run this command in a command prompt: # python -m pip install magicdaq # Further docs: https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ # MagicDAQ is only compatible with Python 3 on Windows. It does not work on Linux at the moment. It does not work with Python 2. #*** Using Auto Code Complete With PyCharm *** # Using a code editor like Pycharm and want to get auto complete working for the MagicDAQ package? # Docs: https://magicdaq.github.io/magicdaq_docs/#/PyCharmCodeCompletion ############################################################## #*** Imports *** ############################################################## # Import MagicDAQ # Import MagicDAQDevice object # Create daq_one object # Get MagicDAQ Driver Version #/Install_MagicDAQ') #/Install_MagicDAQ') ############################################################## #*** MagicDAQ USB DAQ MDAQ300 Features Demo *** ############################################################## # This portion of the script shows off some of the USB DAQ's features # Hardware docs: https://www.magicdaq.com/product/magic-daq/ #*** Open DAQ Device *** # Remember, the daq_one object has already been created in the above 'Imports' section # We must open the daq device before performing any hardware feature manipulation # https://magicdaq.github.io/magicdaq_docs/#/MagicDAQ_Basics ############################################################### #*** Analog Output Demo: Constant, Sine, and PWM on AO1 Pin *** ############################################################### # Set constant 3 volt output voltage on AO1 pin # Configure and start 300Hz sine wave with 2V amplitude on AO1 pin # Stop previous wave # Configure and start PWM wave, 200 Hz, 50% duty cycle, 3.3V amplitude # Stop the wave ############################################################### #*** Pulse Counter Pin Demo: PWM waves *** ############################################################### # Configure a 50 KHz frequency, 75% duty cycle, continuous PWM Wave on the counter pin (CTR0) # Note that unlike the analog output pins, the CTR0 pin always outputs at an amplitude of 3.3v when producing PWM waves # Start counter wave # Now stopping the counter PWM wave ############################################################### #*** Pulse Counter Pin Demo: Pulse Counting *** ############################################################### # Start the Pulse Counter # Pulses will be counted on the falling edge # Sleep for 8 sec # Read number of pulses ############################################################### #*** Digital Pin Demo *** ############################################################### # Set P0.0 pin LOW # Set P0.0 pin HIGH ############################################################### #*** Analog Input Pin Demo *** ############################################################### # Single ended voltage measurement # If you want to perform a differential input measurement # daq_one.read_diff_analog_input() # https://magicdaq.github.io/magicdaq_docs/#/read_diff_analog_input ############################################################### #*** M&A Board Demo *** ############################################################### # M&A Board hardware spec: # https://www.magicdaq.com/product/ma-board-full-kit/ ############################################################### #*** Relay Demo *** ############################################################### #: ' + str(relay_count) + ' Digital Pin #: ' + str(digital_pin_count)) # Set relay to open # Increment counters ############################################################### #*** Vout Demo *** ############################################################### # See the M&A board data sheet for the equation that describes the Vout to Vout_set (0 and 2.77 here) relationship ############################################################### #*** Low Current Measurement Demo: A1 *** ############################################################### # See the M&A board data sheet for the equation that describes the Vout to current relationship ############################################################### #*** Current Measurement Demo: A2 *** ############################################################### # See the M&A board data sheet for the equation that describes the Vout to current relationship # ma_current = round((calculated_current_amps / .001), 3) ############################################################### #*** Current Measurement Demo: A3 *** ############################################################### # See the M&A board data sheet for the equation that describes the Vout to current relationship ############################################################### #*** Demo Complete. *** ############################################################### # Close connection to daq
2.34102
2
src/onenutil/schemas/__init__.py
LemurPwned/onenote-utils
0
10440
from .results import (ArticleSearchResult, EmbeddingsResult, SearchResult, TagResult, ZoteroExtractionResult) __all__ = [ "TagResult", "EmbeddingsResult", "ZoteroExtractionResult", "SearchResult", "ArticleSearchResult" ]
from .results import (ArticleSearchResult, EmbeddingsResult, SearchResult, TagResult, ZoteroExtractionResult) __all__ = [ "TagResult", "EmbeddingsResult", "ZoteroExtractionResult", "SearchResult", "ArticleSearchResult" ]
none
1
1.114453
1
src/account/api/serializers.py
amirpsd/drf_blog_api
33
10441
<filename>src/account/api/serializers.py from django.contrib.auth import get_user_model from rest_framework import serializers class UsersListSerializer(serializers.ModelSerializer): class Meta: model = get_user_model() fields = [ "id", "phone", "first_name", "last_name", "author", ] class UserDetailUpdateDeleteSerializer(serializers.ModelSerializer): class Meta: model = get_user_model() exclude = [ "password", ] class UserProfileSerializer(serializers.ModelSerializer): phone = serializers.ReadOnlyField() class Meta: model = get_user_model() fields = [ "id", "phone", "first_name", "last_name", "two_step_password", ] class AuthenticationSerializer(serializers.Serializer): phone = serializers.CharField( max_length=12, min_length=12, ) def validate_phone(self, value): from re import match if not match("^989\d{2}\s*?\d{3}\s*?\d{4}$", value): raise serializers.ValidationError("Invalid phone number.") return value class OtpSerializer(serializers.Serializer): code = serializers.CharField( max_length=6, min_length=6, ) password = serializers.CharField( max_length=20, required=False, ) def validate_code(self, value): try: int(value) except ValueError as _: raise serializers.ValidationError("Invalid Code.") return value class GetTwoStepPasswordSerializer(serializers.Serializer): """ Base serializer two-step-password. """ password = serializers.CharField( max_length=20, ) confirm_password = serializers.CharField( max_length=20, ) def validate(self, data): password = data.get('password') confirm_password = data.get('confirm_password') if password != confirm_password: raise serializers.ValidationError( {"Error": "Your passwords didn't match."} ) return data class ChangeTwoStepPasswordSerializer(GetTwoStepPasswordSerializer): old_password = serializers.CharField( max_length=20, )
<filename>src/account/api/serializers.py from django.contrib.auth import get_user_model from rest_framework import serializers class UsersListSerializer(serializers.ModelSerializer): class Meta: model = get_user_model() fields = [ "id", "phone", "first_name", "last_name", "author", ] class UserDetailUpdateDeleteSerializer(serializers.ModelSerializer): class Meta: model = get_user_model() exclude = [ "password", ] class UserProfileSerializer(serializers.ModelSerializer): phone = serializers.ReadOnlyField() class Meta: model = get_user_model() fields = [ "id", "phone", "first_name", "last_name", "two_step_password", ] class AuthenticationSerializer(serializers.Serializer): phone = serializers.CharField( max_length=12, min_length=12, ) def validate_phone(self, value): from re import match if not match("^989\d{2}\s*?\d{3}\s*?\d{4}$", value): raise serializers.ValidationError("Invalid phone number.") return value class OtpSerializer(serializers.Serializer): code = serializers.CharField( max_length=6, min_length=6, ) password = serializers.CharField( max_length=20, required=False, ) def validate_code(self, value): try: int(value) except ValueError as _: raise serializers.ValidationError("Invalid Code.") return value class GetTwoStepPasswordSerializer(serializers.Serializer): """ Base serializer two-step-password. """ password = serializers.CharField( max_length=20, ) confirm_password = serializers.CharField( max_length=20, ) def validate(self, data): password = data.get('password') confirm_password = data.get('confirm_password') if password != confirm_password: raise serializers.ValidationError( {"Error": "Your passwords didn't match."} ) return data class ChangeTwoStepPasswordSerializer(GetTwoStepPasswordSerializer): old_password = serializers.CharField( max_length=20, )
en
0.776362
Base serializer two-step-password.
2.349587
2
generate_figure9.py
IBM/Simultaneous-diagonalization
0
10442
# Copyright 2022 IBM Inc. All rights reserved # SPDX-License-Identifier: Apache2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is part of the code to reproduce the results in the paper: # <NAME> and <NAME>, "Circuit optimization of Hamiltonian # simulation by simultaneous diagonalization of Pauli clusters," Quantum 4, # p. 322, 2020. https://doi.org/10.22331/q-2020-09-12-322 import os import cl import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from matplotlib.ticker import FuncFormatter from itertools import permutations def plotZ(Z, exportFilename=None) : (m,n) = Z.shape cmap = colors.LinearSegmentedColormap.from_list("white_and_gray", [(1, 1, 1), (0.6, 0.6, 0.6)], N=2) fig, ax = plt.subplots() im = ax.imshow(Z.T,cmap=cmap) ax.set_yticklabels([]) ax.set_xticklabels([]) ax.set_yticks([]) ax.set_xticks([]) for i in range(1,m) : plt.plot([-0.5+i,-0.5+i],[-0.5,-0.5+n],color='k',linewidth=0.7) for i in range(1,T.n) : plt.plot([-0.5,-0.5+m],[-0.5+i,-0.5+i],color='k',linewidth=0.7) for i in range(n) : v = Z[:,i] c = np.sum(v[:-1] != v[1:]) + v[0] + v[-1] ax.text(m-0.25,i, str(c), fontsize=12, ha='left', va='center') if (exportFilename) : plt.gcf().tight_layout() plt.savefig(exportFilename + "-uncropped.pdf", transparent=True) plt.close() os.system("pdfcrop %s-uncropped.pdf %s.pdf" % (exportFilename, exportFilename)) else : plt.show() # Make sure the figure directory exists cl.ensureDirExists('fig') # Create the test problem M = cl.create_basic_problem(7,0) C = cl.generate_full_rank_weights(20,7,seed=1) M = np.dot(C,M) % 2 # Apply diagonalization and get the final Z matrix T = cl.Tableau(M) R = cl.RecordOperations(T.n) T.addRecorder(R) cl.zeroX_algorithm1_cz(T) T = cl.Tableau(M) R.apply(T) Z = T.getZ() # Plot the results plotZ(Z,'fig/Figure_9a') print("Original: %d" % cl.countCNot(Z)) idx = cl.orderZ(Z) plotZ(Z[idx,:],'fig/Figure_9b') print("Sorted : %d" % cl.countCNot(Z[idx,:])) # Generate histogram of actual permutations if (True) : base = list(range(7)) count = [] for idx2 in permutations(base) : idx1 = cl.orderZ(Z[:,idx2]) count.append(cl.countCNot(Z[idx1,:][:,idx2])) def format_percentage(y, position): return str(100 * y) # Count is always even plt.hist(count,bins=list(range(min(count)-1,max(count)+2,2)),rwidth=0.9,density=True) plt.gca().set_xticklabels([str(x) for x in range(min(count),max(count)+1,2)],fontsize=16) plt.gca().set_xticks(list(range(min(count),max(count)+1,2))) plt.gca().yaxis.set_major_formatter(FuncFormatter(format_percentage)) plt.xlabel('Number of CNOT gates',fontsize=16) plt.ylabel("Percentage",fontsize=16) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(16) plt.gcf().tight_layout() ratio = 0.5 xleft, xright = plt.gca().get_xlim() ybottom, ytop = plt.gca().get_ylim() plt.gca().set_aspect(abs((xright-xleft)/(ybottom-ytop))*ratio) plt.savefig("fig/Figure_9c-uncropped.pdf", transparent=True) plt.close() os.system("pdfcrop fig/Figure_9c-uncropped.pdf fig/Figure_9c.pdf")
# Copyright 2022 IBM Inc. All rights reserved # SPDX-License-Identifier: Apache2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is part of the code to reproduce the results in the paper: # <NAME> and <NAME>, "Circuit optimization of Hamiltonian # simulation by simultaneous diagonalization of Pauli clusters," Quantum 4, # p. 322, 2020. https://doi.org/10.22331/q-2020-09-12-322 import os import cl import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from matplotlib.ticker import FuncFormatter from itertools import permutations def plotZ(Z, exportFilename=None) : (m,n) = Z.shape cmap = colors.LinearSegmentedColormap.from_list("white_and_gray", [(1, 1, 1), (0.6, 0.6, 0.6)], N=2) fig, ax = plt.subplots() im = ax.imshow(Z.T,cmap=cmap) ax.set_yticklabels([]) ax.set_xticklabels([]) ax.set_yticks([]) ax.set_xticks([]) for i in range(1,m) : plt.plot([-0.5+i,-0.5+i],[-0.5,-0.5+n],color='k',linewidth=0.7) for i in range(1,T.n) : plt.plot([-0.5,-0.5+m],[-0.5+i,-0.5+i],color='k',linewidth=0.7) for i in range(n) : v = Z[:,i] c = np.sum(v[:-1] != v[1:]) + v[0] + v[-1] ax.text(m-0.25,i, str(c), fontsize=12, ha='left', va='center') if (exportFilename) : plt.gcf().tight_layout() plt.savefig(exportFilename + "-uncropped.pdf", transparent=True) plt.close() os.system("pdfcrop %s-uncropped.pdf %s.pdf" % (exportFilename, exportFilename)) else : plt.show() # Make sure the figure directory exists cl.ensureDirExists('fig') # Create the test problem M = cl.create_basic_problem(7,0) C = cl.generate_full_rank_weights(20,7,seed=1) M = np.dot(C,M) % 2 # Apply diagonalization and get the final Z matrix T = cl.Tableau(M) R = cl.RecordOperations(T.n) T.addRecorder(R) cl.zeroX_algorithm1_cz(T) T = cl.Tableau(M) R.apply(T) Z = T.getZ() # Plot the results plotZ(Z,'fig/Figure_9a') print("Original: %d" % cl.countCNot(Z)) idx = cl.orderZ(Z) plotZ(Z[idx,:],'fig/Figure_9b') print("Sorted : %d" % cl.countCNot(Z[idx,:])) # Generate histogram of actual permutations if (True) : base = list(range(7)) count = [] for idx2 in permutations(base) : idx1 = cl.orderZ(Z[:,idx2]) count.append(cl.countCNot(Z[idx1,:][:,idx2])) def format_percentage(y, position): return str(100 * y) # Count is always even plt.hist(count,bins=list(range(min(count)-1,max(count)+2,2)),rwidth=0.9,density=True) plt.gca().set_xticklabels([str(x) for x in range(min(count),max(count)+1,2)],fontsize=16) plt.gca().set_xticks(list(range(min(count),max(count)+1,2))) plt.gca().yaxis.set_major_formatter(FuncFormatter(format_percentage)) plt.xlabel('Number of CNOT gates',fontsize=16) plt.ylabel("Percentage",fontsize=16) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(16) plt.gcf().tight_layout() ratio = 0.5 xleft, xright = plt.gca().get_xlim() ybottom, ytop = plt.gca().get_ylim() plt.gca().set_aspect(abs((xright-xleft)/(ybottom-ytop))*ratio) plt.savefig("fig/Figure_9c-uncropped.pdf", transparent=True) plt.close() os.system("pdfcrop fig/Figure_9c-uncropped.pdf fig/Figure_9c.pdf")
en
0.8377
# Copyright 2022 IBM Inc. All rights reserved # SPDX-License-Identifier: Apache2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is part of the code to reproduce the results in the paper: # <NAME> and <NAME>, "Circuit optimization of Hamiltonian # simulation by simultaneous diagonalization of Pauli clusters," Quantum 4, # p. 322, 2020. https://doi.org/10.22331/q-2020-09-12-322 # Make sure the figure directory exists # Create the test problem # Apply diagonalization and get the final Z matrix # Plot the results # Generate histogram of actual permutations # Count is always even
2.049438
2
undeployed/legacy/Landsat/L7GapFiller_ArcInterface.py
NASA-DEVELOP/dnppy
65
10443
<filename>undeployed/legacy/Landsat/L7GapFiller_ArcInterface.py #------------------------------------------------------------------------------- # Name: module1 # Purpose: # # Author: qgeddes # # Created: 25/04/2013 # Copyright: (c) qgeddes 2013 # Licence: <your licence> #------------------------------------------------------------------------------- import L7GapFiller Scenes=arcpy.GetParameterAsText(0) Scenes=Scenes.split(";") OutputFolder=arcpy.GetParameterAsText(1) OutputFile= arcpy.GetParameterAsText(2) Output=OutputFolder+"\\"+OutputFile CloudMasks= arcpy.GetParameterAsText(3) CloudMasks= CloudMasks.split(";") Z=arcpy.GetParameter(4) arcpy.AddMessage(Z) arcpy.env.scratchWorkspace=OutputFolder arcpy.CheckOutExtension("Spatial") arcpy.env.overwriteOutput=True L7GapFiller.L7GapFill(Scenes, Output,CloudMasks,Z)
<filename>undeployed/legacy/Landsat/L7GapFiller_ArcInterface.py #------------------------------------------------------------------------------- # Name: module1 # Purpose: # # Author: qgeddes # # Created: 25/04/2013 # Copyright: (c) qgeddes 2013 # Licence: <your licence> #------------------------------------------------------------------------------- import L7GapFiller Scenes=arcpy.GetParameterAsText(0) Scenes=Scenes.split(";") OutputFolder=arcpy.GetParameterAsText(1) OutputFile= arcpy.GetParameterAsText(2) Output=OutputFolder+"\\"+OutputFile CloudMasks= arcpy.GetParameterAsText(3) CloudMasks= CloudMasks.split(";") Z=arcpy.GetParameter(4) arcpy.AddMessage(Z) arcpy.env.scratchWorkspace=OutputFolder arcpy.CheckOutExtension("Spatial") arcpy.env.overwriteOutput=True L7GapFiller.L7GapFill(Scenes, Output,CloudMasks,Z)
en
0.197105
#------------------------------------------------------------------------------- # Name: module1 # Purpose: # # Author: qgeddes # # Created: 25/04/2013 # Copyright: (c) qgeddes 2013 # Licence: <your licence> #-------------------------------------------------------------------------------
1.602437
2
tests/sentry/api/serializers/test_saved_search.py
practo/sentry
4
10444
<filename>tests/sentry/api/serializers/test_saved_search.py # -*- coding: utf-8 -*- from __future__ import absolute_import import six from sentry.api.serializers import serialize from sentry.models import SavedSearch from sentry.models.savedsearch import DEFAULT_SAVED_SEARCHES from sentry.testutils import TestCase class SavedSearchSerializerTest(TestCase): def test_simple(self): search = SavedSearch.objects.create( project=self.project, name='Something', query='some query' ) result = serialize(search) assert result['id'] == six.text_type(search.id) assert result['projectId'] == six.text_type(search.project_id) assert result['name'] == search.name assert result['query'] == search.query assert result['isDefault'] == search.is_default assert result['isUserDefault'] == search.is_default assert result['dateCreated'] == search.date_added assert not result['isPrivate'] assert not result['isGlobal'] def test_global(self): default_saved_search = DEFAULT_SAVED_SEARCHES[0] search = SavedSearch( name=default_saved_search['name'], query=default_saved_search['query'], is_global=True, ) result = serialize(search) assert result['id'] == six.text_type(search.id) assert result['projectId'] is None assert result['name'] == search.name assert result['query'] == search.query assert not result['isDefault'] assert not result['isUserDefault'] assert result['dateCreated'] == search.date_added assert not result['isPrivate'] assert result['isGlobal']
<filename>tests/sentry/api/serializers/test_saved_search.py # -*- coding: utf-8 -*- from __future__ import absolute_import import six from sentry.api.serializers import serialize from sentry.models import SavedSearch from sentry.models.savedsearch import DEFAULT_SAVED_SEARCHES from sentry.testutils import TestCase class SavedSearchSerializerTest(TestCase): def test_simple(self): search = SavedSearch.objects.create( project=self.project, name='Something', query='some query' ) result = serialize(search) assert result['id'] == six.text_type(search.id) assert result['projectId'] == six.text_type(search.project_id) assert result['name'] == search.name assert result['query'] == search.query assert result['isDefault'] == search.is_default assert result['isUserDefault'] == search.is_default assert result['dateCreated'] == search.date_added assert not result['isPrivate'] assert not result['isGlobal'] def test_global(self): default_saved_search = DEFAULT_SAVED_SEARCHES[0] search = SavedSearch( name=default_saved_search['name'], query=default_saved_search['query'], is_global=True, ) result = serialize(search) assert result['id'] == six.text_type(search.id) assert result['projectId'] is None assert result['name'] == search.name assert result['query'] == search.query assert not result['isDefault'] assert not result['isUserDefault'] assert result['dateCreated'] == search.date_added assert not result['isPrivate'] assert result['isGlobal']
en
0.769321
# -*- coding: utf-8 -*-
2.28036
2
xastropy/files/general.py
bpholden/xastropy
3
10445
""" #;+ #; NAME: #; general #; Version 1.0 #; #; PURPOSE: #; Module for monkeying with files and filenames #; 172Sep-2014 by JXP #;- #;------------------------------------------------------------------------------ """ # Import libraries import numpy as np from astropy.io import fits from astropy.io import ascii import os, pdb #### ############################### # Deal with .gz extensions, usually on FITS files # See if filenm exists, if so pass it back # def chk_for_gz(filenm,chk=None): import os, pdb # File exist? if os.path.lexists(filenm): chk=1 return filenm, chk # .gz already if filenm.find('.gz') > 0: chk=0 return filenm, chk # Add .gz if os.path.lexists(filenm+'.gz'): chk=1 return filenm+'.gz', chk else: chk=0 return filenm, chk
""" #;+ #; NAME: #; general #; Version 1.0 #; #; PURPOSE: #; Module for monkeying with files and filenames #; 172Sep-2014 by JXP #;- #;------------------------------------------------------------------------------ """ # Import libraries import numpy as np from astropy.io import fits from astropy.io import ascii import os, pdb #### ############################### # Deal with .gz extensions, usually on FITS files # See if filenm exists, if so pass it back # def chk_for_gz(filenm,chk=None): import os, pdb # File exist? if os.path.lexists(filenm): chk=1 return filenm, chk # .gz already if filenm.find('.gz') > 0: chk=0 return filenm, chk # Add .gz if os.path.lexists(filenm+'.gz'): chk=1 return filenm+'.gz', chk else: chk=0 return filenm, chk
en
0.43099
#;+ #; NAME: #; general #; Version 1.0 #; #; PURPOSE: #; Module for monkeying with files and filenames #; 172Sep-2014 by JXP #;- #;------------------------------------------------------------------------------ # Import libraries #### ############################### # Deal with .gz extensions, usually on FITS files # See if filenm exists, if so pass it back # # File exist? # .gz already # Add .gz
2.575205
3
setup.py
muatik/genderizer
54
10446
#!/usr/bin/env python try: from setuptools.core import setup except ImportError: from distutils.core import setup setup(name='genderizer', version='0.1.2.3', license='MIT', description='Genderizer tries to infer gender information looking at first name and/or making text analysis', long_description=open('README.md').read(), url='https://github.com/muatik/genderizer', author='<NAME>', author_email='<EMAIL>', maintainer='<NAME>', maintainer_email='<EMAIL>', packages=['genderizer'], package_data={'genderizer': ['data/*']}, platforms='any')
#!/usr/bin/env python try: from setuptools.core import setup except ImportError: from distutils.core import setup setup(name='genderizer', version='0.1.2.3', license='MIT', description='Genderizer tries to infer gender information looking at first name and/or making text analysis', long_description=open('README.md').read(), url='https://github.com/muatik/genderizer', author='<NAME>', author_email='<EMAIL>', maintainer='<NAME>', maintainer_email='<EMAIL>', packages=['genderizer'], package_data={'genderizer': ['data/*']}, platforms='any')
ru
0.26433
#!/usr/bin/env python
1.385871
1
ingestion/tests/unit/great_expectations/test_ometa_validation_action.py
ulixius9/OpenMetadata
0
10447
# Copyright 2022 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test suite for the action module implementation """ import os from unittest import mock from jinja2 import Environment from pytest import mark from metadata.great_expectations.action import OpenMetadataValidationAction from metadata.great_expectations.utils.ometa_config_handler import render_template @mark.parametrize( "input,expected", [ (None, "list_entities"), ("service_name", "get_by_name"), ], ) def test_get_table_entity(input, expected, mocked_ometa, mocked_ge_data_context): """Test get table entity""" ometa_validation = OpenMetadataValidationAction( data_context=mocked_ge_data_context, config_file_path="my/config/path", ometa_service_name=input, ) res = ometa_validation._get_table_entity("database", "schema", "table") assert res._type == expected def test_create_jinja_environment(fixture_jinja_environment): """Test create jinja environment""" assert isinstance(fixture_jinja_environment, Environment) @mock.patch.dict(os.environ, {"API_VERSION": "v1"}) def test_render_template(fixture_jinja_environment): """Test create jinja environment""" tmplt = render_template(fixture_jinja_environment) assert tmplt == "hostPort: http://localhost:8585\napiVersion: v1"
# Copyright 2022 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test suite for the action module implementation """ import os from unittest import mock from jinja2 import Environment from pytest import mark from metadata.great_expectations.action import OpenMetadataValidationAction from metadata.great_expectations.utils.ometa_config_handler import render_template @mark.parametrize( "input,expected", [ (None, "list_entities"), ("service_name", "get_by_name"), ], ) def test_get_table_entity(input, expected, mocked_ometa, mocked_ge_data_context): """Test get table entity""" ometa_validation = OpenMetadataValidationAction( data_context=mocked_ge_data_context, config_file_path="my/config/path", ometa_service_name=input, ) res = ometa_validation._get_table_entity("database", "schema", "table") assert res._type == expected def test_create_jinja_environment(fixture_jinja_environment): """Test create jinja environment""" assert isinstance(fixture_jinja_environment, Environment) @mock.patch.dict(os.environ, {"API_VERSION": "v1"}) def test_render_template(fixture_jinja_environment): """Test create jinja environment""" tmplt = render_template(fixture_jinja_environment) assert tmplt == "hostPort: http://localhost:8585\napiVersion: v1"
en
0.785626
# Copyright 2022 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Test suite for the action module implementation Test get table entity Test create jinja environment Test create jinja environment
1.950374
2
tests/integration/Containers.py
adnrs96/runtime
0
10448
# -*- coding: utf-8 -*- from storyruntime.Containers import Containers from storyruntime.constants.ServiceConstants import ServiceConstants import storyscript def test_containers_format_command(story): """ Ensures a simple resolve can be performed """ story_text = 'alpine echo msg:"foo"\n' story.context = {} story.app.services = { 'alpine': { ServiceConstants.config: { 'actions': { 'echo': { 'arguments': {'msg': {'type': 'string'}} } } } } } story.tree = storyscript.Api.loads(story_text).result()['tree'] assert Containers.format_command( story, story.line('1'), 'alpine', 'echo' ) == ['echo', '{"msg":"foo"}'] def test_containers_format_command_no_arguments(story): story_text = 'alpine echo\n' story.context = {} story.app.services = { 'alpine': { ServiceConstants.config: { 'actions': { 'echo': {} } } } } story.tree = storyscript.Api.loads(story_text).result()['tree'] assert Containers.format_command( story, story.line('1'), 'alpine', 'echo' ) == ['echo']
# -*- coding: utf-8 -*- from storyruntime.Containers import Containers from storyruntime.constants.ServiceConstants import ServiceConstants import storyscript def test_containers_format_command(story): """ Ensures a simple resolve can be performed """ story_text = 'alpine echo msg:"foo"\n' story.context = {} story.app.services = { 'alpine': { ServiceConstants.config: { 'actions': { 'echo': { 'arguments': {'msg': {'type': 'string'}} } } } } } story.tree = storyscript.Api.loads(story_text).result()['tree'] assert Containers.format_command( story, story.line('1'), 'alpine', 'echo' ) == ['echo', '{"msg":"foo"}'] def test_containers_format_command_no_arguments(story): story_text = 'alpine echo\n' story.context = {} story.app.services = { 'alpine': { ServiceConstants.config: { 'actions': { 'echo': {} } } } } story.tree = storyscript.Api.loads(story_text).result()['tree'] assert Containers.format_command( story, story.line('1'), 'alpine', 'echo' ) == ['echo']
en
0.875671
# -*- coding: utf-8 -*- Ensures a simple resolve can be performed
2.585179
3
project_name/core/admin.py
cosmunsoftwares/django-boilerplate
3
10449
from django.contrib import admin from django.shortcuts import redirect from django.utils.safestring import mark_safe from django.contrib.admin.widgets import AdminFileWidget class AdminImageWidget(AdminFileWidget): def render(self, name, value, attrs=None, renderer=None): output = [] if value and getattr(value, "url", None): output.append(u'<a href="%s" target="_blank">%s</a>' % (value.url, thumbnail(value))) output.append(super(AdminFileWidget, self).render(name, value, attrs, renderer)) return mark_safe(u''.join(output)) class ImageWidgetAdmin(admin.ModelAdmin): image_fields = [] def formfield_for_dbfield(self, db_field, **kwargs): if db_field.name in self.image_fields: kwargs.pop("request", None) kwargs['widget'] = AdminImageWidget return db_field.formfield(**kwargs) return super(ImageWidgetAdmin, self).formfield_for_dbfield(db_field, **kwargs) def redirect_one_object(model, obj): response = redirect(f'/admin/{model._meta.app_label}/{model._meta.model_name}/add/') if obj: response = redirect(f'/admin/{model._meta.app_label}/{model._meta.model_name}/{obj.pk}/change/') return response def thumbnail(obj, size='col-md-2'): return mark_safe('<img src="{}" class="img-thumbnail {} p-0">'.format(obj.url, size))
from django.contrib import admin from django.shortcuts import redirect from django.utils.safestring import mark_safe from django.contrib.admin.widgets import AdminFileWidget class AdminImageWidget(AdminFileWidget): def render(self, name, value, attrs=None, renderer=None): output = [] if value and getattr(value, "url", None): output.append(u'<a href="%s" target="_blank">%s</a>' % (value.url, thumbnail(value))) output.append(super(AdminFileWidget, self).render(name, value, attrs, renderer)) return mark_safe(u''.join(output)) class ImageWidgetAdmin(admin.ModelAdmin): image_fields = [] def formfield_for_dbfield(self, db_field, **kwargs): if db_field.name in self.image_fields: kwargs.pop("request", None) kwargs['widget'] = AdminImageWidget return db_field.formfield(**kwargs) return super(ImageWidgetAdmin, self).formfield_for_dbfield(db_field, **kwargs) def redirect_one_object(model, obj): response = redirect(f'/admin/{model._meta.app_label}/{model._meta.model_name}/add/') if obj: response = redirect(f'/admin/{model._meta.app_label}/{model._meta.model_name}/{obj.pk}/change/') return response def thumbnail(obj, size='col-md-2'): return mark_safe('<img src="{}" class="img-thumbnail {} p-0">'.format(obj.url, size))
none
1
2.022962
2
src/5vents.py
subhash686/aoc-2021
0
10450
<reponame>subhash686/aoc-2021 import os plane = [[0 for i in range(1000)] for j in range(1000)] count = [0] def overlapping_vents(): path = os.getcwd() file_path = os.path.join(path, 'vents.txt') file1 = open(file_path, 'r') Lines = file1.readlines() for line in Lines: input = line.strip() points = input.split(" -> ") plot(points[0], points[1]) print(count[0]) def plot(point1, point2): p1 = point1.split(",") p2 = point2.split(",") x1 = int(p1[0]) x2 = int(p2[0]) y1 = int(p1[1]) y2 = int(p2[1]) if x1 == x2 and y1 == y2: addpoints(x1, y1) elif x1 == x2: if y1 > y2: y1, y2 = y2, y1 for y in range(y1, y2+1): addpoints(x1, y) elif y1 == y2: if x1 > x2: x1, x2 = x2, x1 for x in range(x1, x2+1): addpoints(x, y1) else: slope = (y2-y1)/ (x2-x1) intercept = y1 - (x1 * slope) if x1 > x2: x1, x2 = x2, x1 for x in range(x1, x2+1): addpoints(x, int(x*slope)+int(intercept)) def addpoints(x, y): if plane[x][y] == 1: count[0] +=1 plane[x][y] += 1 if __name__ == "__main__": overlapping_vents()
import os plane = [[0 for i in range(1000)] for j in range(1000)] count = [0] def overlapping_vents(): path = os.getcwd() file_path = os.path.join(path, 'vents.txt') file1 = open(file_path, 'r') Lines = file1.readlines() for line in Lines: input = line.strip() points = input.split(" -> ") plot(points[0], points[1]) print(count[0]) def plot(point1, point2): p1 = point1.split(",") p2 = point2.split(",") x1 = int(p1[0]) x2 = int(p2[0]) y1 = int(p1[1]) y2 = int(p2[1]) if x1 == x2 and y1 == y2: addpoints(x1, y1) elif x1 == x2: if y1 > y2: y1, y2 = y2, y1 for y in range(y1, y2+1): addpoints(x1, y) elif y1 == y2: if x1 > x2: x1, x2 = x2, x1 for x in range(x1, x2+1): addpoints(x, y1) else: slope = (y2-y1)/ (x2-x1) intercept = y1 - (x1 * slope) if x1 > x2: x1, x2 = x2, x1 for x in range(x1, x2+1): addpoints(x, int(x*slope)+int(intercept)) def addpoints(x, y): if plane[x][y] == 1: count[0] +=1 plane[x][y] += 1 if __name__ == "__main__": overlapping_vents()
none
1
3.292151
3
problems/test_0073_m_plus_n_space.py
chrisxue815/leetcode_python
1
10451
import unittest class Solution: def setZeroes(self, matrix): """ :type matrix: List[List[int]] :rtype: void Do not return anything, modify matrix in-place instead. """ rows = [0] * len(matrix) cols = [0] * len(matrix[0]) for i, row in enumerate(matrix): for j, num in enumerate(row): if not num: rows[i] = 1 cols[j] = 1 for row, num in enumerate(rows): if num: for j in range(len(matrix[0])): matrix[row][j] = 0 for col, num in enumerate(cols): if num: for i in range(len(matrix)): matrix[i][col] = 0 class Test(unittest.TestCase): def test(self): self._test( [ [1, 2, 0], [1, 2, 3], [0, 2, 3], ], [ [0, 0, 0], [0, 2, 0], [0, 0, 0], ] ) def _test(self, matrix, expected): Solution().setZeroes(matrix) self.assertEqual(expected, matrix) if __name__ == '__main__': unittest.main()
import unittest class Solution: def setZeroes(self, matrix): """ :type matrix: List[List[int]] :rtype: void Do not return anything, modify matrix in-place instead. """ rows = [0] * len(matrix) cols = [0] * len(matrix[0]) for i, row in enumerate(matrix): for j, num in enumerate(row): if not num: rows[i] = 1 cols[j] = 1 for row, num in enumerate(rows): if num: for j in range(len(matrix[0])): matrix[row][j] = 0 for col, num in enumerate(cols): if num: for i in range(len(matrix)): matrix[i][col] = 0 class Test(unittest.TestCase): def test(self): self._test( [ [1, 2, 0], [1, 2, 3], [0, 2, 3], ], [ [0, 0, 0], [0, 2, 0], [0, 0, 0], ] ) def _test(self, matrix, expected): Solution().setZeroes(matrix) self.assertEqual(expected, matrix) if __name__ == '__main__': unittest.main()
en
0.397521
:type matrix: List[List[int]] :rtype: void Do not return anything, modify matrix in-place instead.
3.480713
3
xlsxwriter/test/worksheet/test_write_print_options.py
Aeon1/XlsxWriter
2
10452
<reponame>Aeon1/XlsxWriter<filename>xlsxwriter/test/worksheet/test_write_print_options.py ############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2019, <NAME>, <EMAIL> # import unittest from ...compatibility import StringIO from ...worksheet import Worksheet class TestWritePrintOptions(unittest.TestCase): """ Test the Worksheet _write_print_options() method. """ def setUp(self): self.fh = StringIO() self.worksheet = Worksheet() self.worksheet._set_filehandle(self.fh) def test_write_print_options_default(self): """Test the _write_print_options() method without options""" self.worksheet._write_print_options() exp = """""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_hcenter(self): """Test the _write_print_options() method with horizontal center""" self.worksheet.center_horizontally() self.worksheet._write_print_options() exp = """<printOptions horizontalCentered="1"/>""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_vcenter(self): """Test the _write_print_options() method with vertical center""" self.worksheet.center_vertically() self.worksheet._write_print_options() exp = """<printOptions verticalCentered="1"/>""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_center(self): """Test the _write_print_options() method with horiz + vert center""" self.worksheet.center_horizontally() self.worksheet.center_vertically() self.worksheet._write_print_options() exp = """<printOptions horizontalCentered="1" verticalCentered="1"/>""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_gridlines_default(self): """Test the _write_print_options() method with default value""" self.worksheet.hide_gridlines() self.worksheet._write_print_options() exp = """""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_gridlines_0(self): """Test the _write_print_options() method with 0 value""" self.worksheet.hide_gridlines(0) self.worksheet._write_print_options() exp = """<printOptions gridLines="1"/>""" got = self.fh.getvalue() self.assertEqual(got, exp)
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2019, <NAME>, <EMAIL> # import unittest from ...compatibility import StringIO from ...worksheet import Worksheet class TestWritePrintOptions(unittest.TestCase): """ Test the Worksheet _write_print_options() method. """ def setUp(self): self.fh = StringIO() self.worksheet = Worksheet() self.worksheet._set_filehandle(self.fh) def test_write_print_options_default(self): """Test the _write_print_options() method without options""" self.worksheet._write_print_options() exp = """""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_hcenter(self): """Test the _write_print_options() method with horizontal center""" self.worksheet.center_horizontally() self.worksheet._write_print_options() exp = """<printOptions horizontalCentered="1"/>""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_vcenter(self): """Test the _write_print_options() method with vertical center""" self.worksheet.center_vertically() self.worksheet._write_print_options() exp = """<printOptions verticalCentered="1"/>""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_center(self): """Test the _write_print_options() method with horiz + vert center""" self.worksheet.center_horizontally() self.worksheet.center_vertically() self.worksheet._write_print_options() exp = """<printOptions horizontalCentered="1" verticalCentered="1"/>""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_gridlines_default(self): """Test the _write_print_options() method with default value""" self.worksheet.hide_gridlines() self.worksheet._write_print_options() exp = """""" got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_print_options_gridlines_0(self): """Test the _write_print_options() method with 0 value""" self.worksheet.hide_gridlines(0) self.worksheet._write_print_options() exp = """<printOptions gridLines="1"/>""" got = self.fh.getvalue() self.assertEqual(got, exp)
en
0.480874
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2019, <NAME>, <EMAIL> # Test the Worksheet _write_print_options() method. Test the _write_print_options() method without options Test the _write_print_options() method with horizontal center <printOptions horizontalCentered="1"/> Test the _write_print_options() method with vertical center <printOptions verticalCentered="1"/> Test the _write_print_options() method with horiz + vert center <printOptions horizontalCentered="1" verticalCentered="1"/> Test the _write_print_options() method with default value Test the _write_print_options() method with 0 value <printOptions gridLines="1"/>
2.834799
3
neo4j_helper.py
smartaec/OpenBridgeGraph
0
10453
<reponame>smartaec/OpenBridgeGraph<filename>neo4j_helper.py from neo4j.v1 import GraphDatabase #neo4j==1.7.0 uri="bolt://localhost:7687" driver=GraphDatabase.driver(uri, auth=("neo4j", "testneo4j")) def execute_queries(scripts,message=None): with driver.session() as session: tx=session.begin_transaction() res=tx.run(';'.join(scripts)) tx.commit() return res def execute_query(script,message=None): with driver.session() as session: return session.run(script,message) def execute_read(cypher_func,message): with driver.session() as session: return session.read_transaction(cypher_func,message) def execute_write(cypher_func,message): with driver.session() as session: return session.write_transaction(cypher_func,message) def run_query(tx,script): return tx.run(script) def print_query(tx,name): for record in tx.run("MATCH (a:Person)-[:KNOWS]->(f) WHERE a.name = {name} RETURN f.name",name=name): print(record["f.name"]) return "" #execute_read(print_query,'Alice')
from neo4j.v1 import GraphDatabase #neo4j==1.7.0 uri="bolt://localhost:7687" driver=GraphDatabase.driver(uri, auth=("neo4j", "testneo4j")) def execute_queries(scripts,message=None): with driver.session() as session: tx=session.begin_transaction() res=tx.run(';'.join(scripts)) tx.commit() return res def execute_query(script,message=None): with driver.session() as session: return session.run(script,message) def execute_read(cypher_func,message): with driver.session() as session: return session.read_transaction(cypher_func,message) def execute_write(cypher_func,message): with driver.session() as session: return session.write_transaction(cypher_func,message) def run_query(tx,script): return tx.run(script) def print_query(tx,name): for record in tx.run("MATCH (a:Person)-[:KNOWS]->(f) WHERE a.name = {name} RETURN f.name",name=name): print(record["f.name"]) return "" #execute_read(print_query,'Alice')
en
0.251728
#neo4j==1.7.0 #execute_read(print_query,'Alice')
2.638175
3
tests/unit/test_juju.py
KellenRenshaw/hotsos
0
10454
<filename>tests/unit/test_juju.py import os import tempfile import mock from . import utils from hotsos.core.config import setup_config from hotsos.core.ycheck.scenarios import YScenarioChecker from hotsos.core.issues.utils import KnownBugsStore, IssuesStore from hotsos.plugin_extensions.juju import summary JOURNALCTL_CAPPEDPOSITIONLOST = """ Dec 21 14:07:53 juju-1 mongod.37017[17873]: [replication-18] CollectionCloner ns:juju.txns.log finished cloning with status: QueryPlanKilled: PlanExecutor killed: CappedPositionLost: CollectionScan died due to position in capped collection being deleted. Last seen record id: RecordId(204021366) Dec 21 14:07:53 juju-1 mongod.37017[17873]: [replication-18] collection clone for 'juju.txns.log' failed due to QueryPlanKilled: While cloning collection 'juju.txns.log' there was an error 'PlanExecutor killed: CappedPositionLost: CollectionScan died due to position in capped collection being deleted. Last seen record id: RecordId(204021366)' """ # noqa RABBITMQ_CHARM_LOGS = """ 2021-02-17 08:18:44 ERROR juju.worker.dependency engine.go:671 "uniter" manifold worker returned unexpected error: failed to initialize uniter for "unit-rabbitmq-server-0": cannot create relation state tracker: cannot remove persisted state, relation 236 has members 2021-02-17 08:20:34 ERROR juju.worker.dependency engine.go:671 "uniter" manifold worker returned unexpected error: failed to initialize uniter for "unit-rabbitmq-server-0": cannot create relation state tracker: cannot remove persisted state, relation 236 has members """ # noqa UNIT_LEADERSHIP_ERROR = """ 2021-09-16 10:28:25 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:28:47 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:29:06 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:29:53 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:30:41 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" """ # noqa class JujuTestsBase(utils.BaseTestCase): def setUp(self): super().setUp() setup_config(PLUGIN_NAME='juju') class TestJujuSummary(JujuTestsBase): def test_summary_keys(self): inst = summary.JujuSummary() self.assertEqual(list(inst.output.keys()), ['charm-repo-info', 'charms', 'machine', 'services', 'units', 'version']) def test_service_info(self): expected = {'ps': ['jujud (1)'], 'systemd': { 'enabled': ['jujud-machine-1']} } inst = summary.JujuSummary() self.assertEqual(self.part_output_to_actual(inst.output)['services'], expected) def test_machine_info(self): inst = summary.JujuSummary() self.assertTrue(inst.plugin_runnable) actual = self.part_output_to_actual(inst.output) self.assertEqual(actual['version'], '2.9.22') self.assertEqual(actual['machine'], '1') @mock.patch('hotsos.core.plugins.juju.JujuMachine') def test_get_lxd_machine_info(self, mock_machine): mock_machine.return_value = mock.MagicMock() mock_machine.return_value.id = '0-lxd-11' mock_machine.return_value.version = '2.9.9' inst = summary.JujuSummary() actual = self.part_output_to_actual(inst.output) self.assertEqual(actual['version'], '2.9.9') self.assertEqual(actual['machine'], '0-lxd-11') def test_charm_versions(self): expected = ['ceph-osd-508', 'neutron-openvswitch-457', 'nova-compute-589'] inst = summary.JujuSummary() self.assertEqual(self.part_output_to_actual(inst.output)['charms'], expected) def test_get_unit_info(self): expected = {'local': ['ceph-osd-0', 'neutron-openvswitch-1', 'nova-compute-0']} inst = summary.JujuSummary() self.assertEqual(self.part_output_to_actual(inst.output)['units'], expected) class TestJujuScenarios(JujuTestsBase): @mock.patch('hotsos.core.ycheck.engine.YDefsLoader._is_def', new=utils.is_def_filter('juju_core_bugs.yaml')) @mock.patch('hotsos.core.ycheck.engine.properties.CLIHelper') def test_1852502(self, mock_helper): mock_helper.return_value = mock.MagicMock() mock_helper.return_value.journalctl.return_value = \ JOURNALCTL_CAPPEDPOSITIONLOST.splitlines(keepends=True) YScenarioChecker()() mock_helper.return_value.journalctl.assert_called_with( unit='juju-db') msg_1852502 = ('known mongodb bug identified - ' 'https://jira.mongodb.org/browse/TOOLS-1636 ' 'Workaround is to pass --no-logs to juju ' 'create-backup. This is an issue only with Mongo ' '3. Mongo 4 does not have this issue. Upstream is ' 'working on migrating to Mongo 4 in the Juju 3.0 ' 'release.') expected = {'bugs-detected': [{'id': 'https://bugs.launchpad.net/bugs/1852502', 'desc': msg_1852502, 'origin': 'juju.01part'}]} self.assertEqual(KnownBugsStore().load(), expected) @mock.patch('hotsos.core.ycheck.engine.YDefsLoader._is_def', new=utils.is_def_filter('juju_core_bugs.yaml')) def test_1910958(self): with tempfile.TemporaryDirectory() as dtmp: setup_config(DATA_ROOT=dtmp) logfile = os.path.join(dtmp, 'var/log/juju/unit-rabbitmq-server-0.log') os.makedirs(os.path.dirname(logfile)) with open(logfile, 'w') as fd: fd.write(RABBITMQ_CHARM_LOGS) YScenarioChecker()() expected = {'bugs-detected': [{'id': 'https://bugs.launchpad.net/bugs/1910958', 'desc': ('Unit unit-rabbitmq-server-0 failed to start due ' 'to members in relation 236 that cannot be ' 'removed.'), 'origin': 'juju.01part'}]} self.assertEqual(KnownBugsStore().load(), expected) @mock.patch('hotsos.core.ycheck.engine.YDefsLoader._is_def', new=utils.is_def_filter('jujud_checks.yaml')) @mock.patch('hotsos.core.host_helpers.systemd.ServiceChecksBase.processes', {}) def test_jujud_checks(self): YScenarioChecker()() msg = ('No jujud processes found running on this host but it seems ' 'there should be since Juju is installed.') issues = list(IssuesStore().load().values())[0] self.assertEqual([issue['desc'] for issue in issues], [msg]) @mock.patch('hotsos.core.ycheck.engine.properties.CLIHelper') @mock.patch('hotsos.core.ycheck.engine.YDefsLoader._is_def', new=utils.is_def_filter('charm_checks.yaml')) def test_unit_checks(self, mock_cli): mock_cli.return_value = mock.MagicMock() with tempfile.TemporaryDirectory() as dtmp: setup_config(DATA_ROOT=dtmp) logfile = os.path.join(dtmp, 'var/log/juju/unit-keystone-2.log') os.makedirs(os.path.dirname(logfile)) with open(logfile, 'w') as fd: fd.write(UNIT_LEADERSHIP_ERROR) # first try outside age limit mock_cli.return_value.date.return_value = "2021-09-25 00:00:00" YScenarioChecker()() self.assertEqual(IssuesStore().load(), {}) # then within mock_cli.return_value.date.return_value = "2021-09-17 00:00:00" YScenarioChecker()() msg = ("Juju unit(s) 'keystone' are showing leadership errors in " "their logs from the last 7 days. Please investigate.") issues = list(IssuesStore().load().values())[0] self.assertEqual([issue['desc'] for issue in issues], [msg])
<filename>tests/unit/test_juju.py import os import tempfile import mock from . import utils from hotsos.core.config import setup_config from hotsos.core.ycheck.scenarios import YScenarioChecker from hotsos.core.issues.utils import KnownBugsStore, IssuesStore from hotsos.plugin_extensions.juju import summary JOURNALCTL_CAPPEDPOSITIONLOST = """ Dec 21 14:07:53 juju-1 mongod.37017[17873]: [replication-18] CollectionCloner ns:juju.txns.log finished cloning with status: QueryPlanKilled: PlanExecutor killed: CappedPositionLost: CollectionScan died due to position in capped collection being deleted. Last seen record id: RecordId(204021366) Dec 21 14:07:53 juju-1 mongod.37017[17873]: [replication-18] collection clone for 'juju.txns.log' failed due to QueryPlanKilled: While cloning collection 'juju.txns.log' there was an error 'PlanExecutor killed: CappedPositionLost: CollectionScan died due to position in capped collection being deleted. Last seen record id: RecordId(204021366)' """ # noqa RABBITMQ_CHARM_LOGS = """ 2021-02-17 08:18:44 ERROR juju.worker.dependency engine.go:671 "uniter" manifold worker returned unexpected error: failed to initialize uniter for "unit-rabbitmq-server-0": cannot create relation state tracker: cannot remove persisted state, relation 236 has members 2021-02-17 08:20:34 ERROR juju.worker.dependency engine.go:671 "uniter" manifold worker returned unexpected error: failed to initialize uniter for "unit-rabbitmq-server-0": cannot create relation state tracker: cannot remove persisted state, relation 236 has members """ # noqa UNIT_LEADERSHIP_ERROR = """ 2021-09-16 10:28:25 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:28:47 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:29:06 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:29:53 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:30:41 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" """ # noqa class JujuTestsBase(utils.BaseTestCase): def setUp(self): super().setUp() setup_config(PLUGIN_NAME='juju') class TestJujuSummary(JujuTestsBase): def test_summary_keys(self): inst = summary.JujuSummary() self.assertEqual(list(inst.output.keys()), ['charm-repo-info', 'charms', 'machine', 'services', 'units', 'version']) def test_service_info(self): expected = {'ps': ['jujud (1)'], 'systemd': { 'enabled': ['jujud-machine-1']} } inst = summary.JujuSummary() self.assertEqual(self.part_output_to_actual(inst.output)['services'], expected) def test_machine_info(self): inst = summary.JujuSummary() self.assertTrue(inst.plugin_runnable) actual = self.part_output_to_actual(inst.output) self.assertEqual(actual['version'], '2.9.22') self.assertEqual(actual['machine'], '1') @mock.patch('hotsos.core.plugins.juju.JujuMachine') def test_get_lxd_machine_info(self, mock_machine): mock_machine.return_value = mock.MagicMock() mock_machine.return_value.id = '0-lxd-11' mock_machine.return_value.version = '2.9.9' inst = summary.JujuSummary() actual = self.part_output_to_actual(inst.output) self.assertEqual(actual['version'], '2.9.9') self.assertEqual(actual['machine'], '0-lxd-11') def test_charm_versions(self): expected = ['ceph-osd-508', 'neutron-openvswitch-457', 'nova-compute-589'] inst = summary.JujuSummary() self.assertEqual(self.part_output_to_actual(inst.output)['charms'], expected) def test_get_unit_info(self): expected = {'local': ['ceph-osd-0', 'neutron-openvswitch-1', 'nova-compute-0']} inst = summary.JujuSummary() self.assertEqual(self.part_output_to_actual(inst.output)['units'], expected) class TestJujuScenarios(JujuTestsBase): @mock.patch('hotsos.core.ycheck.engine.YDefsLoader._is_def', new=utils.is_def_filter('juju_core_bugs.yaml')) @mock.patch('hotsos.core.ycheck.engine.properties.CLIHelper') def test_1852502(self, mock_helper): mock_helper.return_value = mock.MagicMock() mock_helper.return_value.journalctl.return_value = \ JOURNALCTL_CAPPEDPOSITIONLOST.splitlines(keepends=True) YScenarioChecker()() mock_helper.return_value.journalctl.assert_called_with( unit='juju-db') msg_1852502 = ('known mongodb bug identified - ' 'https://jira.mongodb.org/browse/TOOLS-1636 ' 'Workaround is to pass --no-logs to juju ' 'create-backup. This is an issue only with Mongo ' '3. Mongo 4 does not have this issue. Upstream is ' 'working on migrating to Mongo 4 in the Juju 3.0 ' 'release.') expected = {'bugs-detected': [{'id': 'https://bugs.launchpad.net/bugs/1852502', 'desc': msg_1852502, 'origin': 'juju.01part'}]} self.assertEqual(KnownBugsStore().load(), expected) @mock.patch('hotsos.core.ycheck.engine.YDefsLoader._is_def', new=utils.is_def_filter('juju_core_bugs.yaml')) def test_1910958(self): with tempfile.TemporaryDirectory() as dtmp: setup_config(DATA_ROOT=dtmp) logfile = os.path.join(dtmp, 'var/log/juju/unit-rabbitmq-server-0.log') os.makedirs(os.path.dirname(logfile)) with open(logfile, 'w') as fd: fd.write(RABBITMQ_CHARM_LOGS) YScenarioChecker()() expected = {'bugs-detected': [{'id': 'https://bugs.launchpad.net/bugs/1910958', 'desc': ('Unit unit-rabbitmq-server-0 failed to start due ' 'to members in relation 236 that cannot be ' 'removed.'), 'origin': 'juju.01part'}]} self.assertEqual(KnownBugsStore().load(), expected) @mock.patch('hotsos.core.ycheck.engine.YDefsLoader._is_def', new=utils.is_def_filter('jujud_checks.yaml')) @mock.patch('hotsos.core.host_helpers.systemd.ServiceChecksBase.processes', {}) def test_jujud_checks(self): YScenarioChecker()() msg = ('No jujud processes found running on this host but it seems ' 'there should be since Juju is installed.') issues = list(IssuesStore().load().values())[0] self.assertEqual([issue['desc'] for issue in issues], [msg]) @mock.patch('hotsos.core.ycheck.engine.properties.CLIHelper') @mock.patch('hotsos.core.ycheck.engine.YDefsLoader._is_def', new=utils.is_def_filter('charm_checks.yaml')) def test_unit_checks(self, mock_cli): mock_cli.return_value = mock.MagicMock() with tempfile.TemporaryDirectory() as dtmp: setup_config(DATA_ROOT=dtmp) logfile = os.path.join(dtmp, 'var/log/juju/unit-keystone-2.log') os.makedirs(os.path.dirname(logfile)) with open(logfile, 'w') as fd: fd.write(UNIT_LEADERSHIP_ERROR) # first try outside age limit mock_cli.return_value.date.return_value = "2021-09-25 00:00:00" YScenarioChecker()() self.assertEqual(IssuesStore().load(), {}) # then within mock_cli.return_value.date.return_value = "2021-09-17 00:00:00" YScenarioChecker()() msg = ("Juju unit(s) 'keystone' are showing leadership errors in " "their logs from the last 7 days. Please investigate.") issues = list(IssuesStore().load().values())[0] self.assertEqual([issue['desc'] for issue in issues], [msg])
en
0.877132
Dec 21 14:07:53 juju-1 mongod.37017[17873]: [replication-18] CollectionCloner ns:juju.txns.log finished cloning with status: QueryPlanKilled: PlanExecutor killed: CappedPositionLost: CollectionScan died due to position in capped collection being deleted. Last seen record id: RecordId(204021366) Dec 21 14:07:53 juju-1 mongod.37017[17873]: [replication-18] collection clone for 'juju.txns.log' failed due to QueryPlanKilled: While cloning collection 'juju.txns.log' there was an error 'PlanExecutor killed: CappedPositionLost: CollectionScan died due to position in capped collection being deleted. Last seen record id: RecordId(204021366)' # noqa 2021-02-17 08:18:44 ERROR juju.worker.dependency engine.go:671 "uniter" manifold worker returned unexpected error: failed to initialize uniter for "unit-rabbitmq-server-0": cannot create relation state tracker: cannot remove persisted state, relation 236 has members 2021-02-17 08:20:34 ERROR juju.worker.dependency engine.go:671 "uniter" manifold worker returned unexpected error: failed to initialize uniter for "unit-rabbitmq-server-0": cannot create relation state tracker: cannot remove persisted state, relation 236 has members # noqa 2021-09-16 10:28:25 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:28:47 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:29:06 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:29:53 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" 2021-09-16 10:30:41 WARNING leader-elected ERROR cannot write leadership settings: cannot write settings: failed to merge leadership settings: application "keystone": prerequisites failed: "keystone/2" is not leader of "keystone" # noqa # first try outside age limit # then within
1.663707
2
tools/SPGAN/main.py
by-liu/OpenUnReID
0
10455
import argparse import collections import shutil import sys import time from datetime import timedelta from pathlib import Path import torch from torch.nn.parallel import DataParallel, DistributedDataParallel try: # PyTorch >= 1.6 supports mixed precision training from torch.cuda.amp import autocast amp_support = True except: amp_support = False from openunreid.apis import GANBaseRunner, set_random_seed, infer_gan from openunreid.core.solvers import build_lr_scheduler, build_optimizer from openunreid.data import ( build_test_dataloader, build_train_dataloader, build_val_dataloader, ) from openunreid.models import build_gan_model from openunreid.models.losses import build_loss from openunreid.models.utils.extract import extract_features from openunreid.utils.config import ( cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file, ) from openunreid.utils.dist_utils import init_dist, synchronize from openunreid.utils.file_utils import mkdir_if_missing from openunreid.utils.logger import Logger class SPGANRunner(GANBaseRunner): def train_step(self, iter, batch): data_src, data_tgt = batch[0], batch[1] self.real_A = data_src['img'].cuda() self.real_B = data_tgt['img'].cuda() # Forward self.fake_B = self.model['G_A'](self.real_A) # G_A(A) self.fake_A = self.model['G_B'](self.real_B) # G_B(B) self.rec_A = self.model['G_B'](self.fake_B) # G_B(G_A(A)) self.rec_B = self.model['G_A'](self.fake_A) # G_A(G_B(B)) # G_A and G_B if iter % 2 == 0: self.set_requires_grad([self.model['D_A'], self.model['D_B'], self.model['Metric']], False) # save memory if self.scaler is None: self.optimizer['G'].zero_grad() else: with autocast(enabled=False): self.optimizer['G'].zero_grad() if self._epoch > 1: self.backward_G(retain_graph=True) self.backward_GM() else: self.backward_G() if self.scaler is None: self.optimizer['G'].step() else: with autocast(enabled=False): self.scaler.step(self.optimizer['G']) # SiaNet for SPGAN if self._epoch > 0: self.set_requires_grad([self.model['Metric']], True) if self.scaler is None: self.optimizer['Metric'].zero_grad() else: with autocast(enabled=False): self.optimizer['Metric'].zero_grad() self.backward_M() if self.scaler is None: self.optimizer['Metric'].step() else: with autocast(enabled=False): self.scaler.step(self.optimizer['Metric']) # D_A and D_B self.set_requires_grad([self.model['D_A'], self.model['D_B']], True) # self.optimizer['D'].zero_grad() # self.backward_D() # self.optimizer['D'].step() if self.scaler is None: self.optimizer['D'].zero_grad() else: with autocast(enabled=False): self.optimizer['D'].zero_grad() self.backward_D() if self.scaler is None: self.optimizer['D'].step() else: with autocast(enabled=False): self.scaler.step(self.optimizer['D']) # save translated images if self._rank == 0: self.save_imgs(['real_A', 'real_B', 'fake_A', 'fake_B', 'rec_A', 'rec_B']) return 0 def backward_GM(self): real_A_metric = self.model['Metric'](self.real_A) real_B_metric = self.model['Metric'](self.real_B) fake_A_metric = self.model['Metric'](self.fake_A) fake_B_metric = self.model['Metric'](self.fake_B) # positive pairs loss_pos = self.criterions['sia_G'](real_A_metric, fake_B_metric, 1) + \ self.criterions['sia_G'](real_B_metric, fake_A_metric, 1) # negative pairs loss_neg = self.criterions['sia_G'](fake_B_metric, real_B_metric, 0) + \ self.criterions['sia_G'](fake_A_metric, real_A_metric, 0) loss_M = (loss_pos + 0.5 * loss_neg) / 4.0 loss = loss_M * self.cfg.TRAIN.LOSS.losses['sia_G'] if self.scaler is None: loss.backward() else: with autocast(enabled=False): self.scaler.scale(loss).backward() meters = {'sia_G': loss_M.item()} self.train_progress.update(meters) def backward_M(self): real_A_metric = self.model['Metric'](self.real_A) real_B_metric = self.model['Metric'](self.real_B) fake_A_metric = self.model['Metric'](self.fake_A.detach()) fake_B_metric = self.model['Metric'](self.fake_B.detach()) # positive pairs loss_pos = self.criterions['sia_M'](real_A_metric, fake_B_metric, 1) + \ self.criterions['sia_M'](real_B_metric, fake_A_metric, 1) # negative pairs loss_neg = self.criterions['sia_M'](real_A_metric, real_B_metric, 0) loss_M = (loss_pos + 2 * loss_neg) / 3.0 loss = loss_M * self.cfg.TRAIN.LOSS.losses['sia_M'] if self.scaler is None: loss.backward() else: with autocast(enabled=False): self.scaler.scale(loss).backward() meters = {'sia_M': loss_M.item()} self.train_progress.update(meters) def parge_config(): parser = argparse.ArgumentParser(description="SPGAN training") parser.add_argument("config", help="train config file path") parser.add_argument( "--work-dir", help="the dir to save logs and models", default="" ) parser.add_argument("--resume-from", help="the checkpoint file to resume from") parser.add_argument( "--launcher", type=str, choices=["none", "pytorch", "slurm"], default="none", help="job launcher", ) parser.add_argument("--tcp-port", type=str, default="5017") parser.add_argument( "--set", dest="set_cfgs", default=None, nargs=argparse.REMAINDER, help="set extra config keys if needed", ) args = parser.parse_args() cfg_from_yaml_file(args.config, cfg) assert len(list(cfg.TRAIN.datasets.keys()))==2, \ "the number of datasets for domain-translation training should be two" cfg.launcher = args.launcher cfg.tcp_port = args.tcp_port if not args.work_dir: args.work_dir = Path(args.config).stem cfg.work_dir = cfg.LOGS_ROOT / args.work_dir mkdir_if_missing(cfg.work_dir) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs, cfg) shutil.copy(args.config, cfg.work_dir / "config.yaml") return args, cfg def main(): start_time = time.monotonic() # init distributed training args, cfg = parge_config() dist = init_dist(cfg) set_random_seed(cfg.TRAIN.seed, cfg.TRAIN.deterministic) synchronize() # init logging file logger = Logger(cfg.work_dir / 'log.txt', debug=False) sys.stdout = logger print("==========\nArgs:{}\n==========".format(args)) log_config_to_file(cfg) # build train loader train_loader, _ = build_train_dataloader(cfg, joint=False) # build model model = build_gan_model(cfg) for key in model.keys(): model[key].cuda() if dist: ddp_cfg = { "device_ids": [cfg.gpu], "output_device": cfg.gpu, "find_unused_parameters": True, } for key in model.keys(): model[key] = torch.nn.parallel.DistributedDataParallel(model[key], **ddp_cfg) elif cfg.total_gpus > 1: for key in model.keys(): model[key] = torch.nn.DataParallel(model[key]) # build optimizer optimizer = {} optimizer['G'] = build_optimizer([model['G_A'], model['G_B']], **cfg.TRAIN.OPTIM) optimizer['D'] = build_optimizer([model['D_A'], model['D_B']], **cfg.TRAIN.OPTIM) optimizer['Metric'] = build_optimizer([model['Metric']], **cfg.TRAIN.OPTIM) # build lr_scheduler if cfg.TRAIN.SCHEDULER.lr_scheduler is not None: lr_scheduler = [build_lr_scheduler(optimizer[key], **cfg.TRAIN.SCHEDULER) \ for key in optimizer.keys()] else: lr_scheduler = None # build loss functions criterions = build_loss(cfg.TRAIN.LOSS, cuda=True) # build runner runner = SPGANRunner( cfg, model, optimizer, criterions, train_loader, lr_scheduler=lr_scheduler, meter_formats={"Time": ":.3f"} ) # resume if args.resume_from: runner.resume(args.resume_from) # start training runner.run() # load the latest model # runner.resume(cfg.work_dir) # final inference test_loader, _ = build_val_dataloader( cfg, for_clustering=True, all_datasets=True ) # source to target infer_gan( cfg, model['G_A'], test_loader[0], dataset_name=list(cfg.TRAIN.datasets.keys())[0] ) # target to source infer_gan( cfg, model['G_B'], test_loader[1], dataset_name=list(cfg.TRAIN.datasets.keys())[1] ) # print time end_time = time.monotonic() print("Total running time: ", timedelta(seconds=end_time - start_time)) if __name__ == '__main__': main()
import argparse import collections import shutil import sys import time from datetime import timedelta from pathlib import Path import torch from torch.nn.parallel import DataParallel, DistributedDataParallel try: # PyTorch >= 1.6 supports mixed precision training from torch.cuda.amp import autocast amp_support = True except: amp_support = False from openunreid.apis import GANBaseRunner, set_random_seed, infer_gan from openunreid.core.solvers import build_lr_scheduler, build_optimizer from openunreid.data import ( build_test_dataloader, build_train_dataloader, build_val_dataloader, ) from openunreid.models import build_gan_model from openunreid.models.losses import build_loss from openunreid.models.utils.extract import extract_features from openunreid.utils.config import ( cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file, ) from openunreid.utils.dist_utils import init_dist, synchronize from openunreid.utils.file_utils import mkdir_if_missing from openunreid.utils.logger import Logger class SPGANRunner(GANBaseRunner): def train_step(self, iter, batch): data_src, data_tgt = batch[0], batch[1] self.real_A = data_src['img'].cuda() self.real_B = data_tgt['img'].cuda() # Forward self.fake_B = self.model['G_A'](self.real_A) # G_A(A) self.fake_A = self.model['G_B'](self.real_B) # G_B(B) self.rec_A = self.model['G_B'](self.fake_B) # G_B(G_A(A)) self.rec_B = self.model['G_A'](self.fake_A) # G_A(G_B(B)) # G_A and G_B if iter % 2 == 0: self.set_requires_grad([self.model['D_A'], self.model['D_B'], self.model['Metric']], False) # save memory if self.scaler is None: self.optimizer['G'].zero_grad() else: with autocast(enabled=False): self.optimizer['G'].zero_grad() if self._epoch > 1: self.backward_G(retain_graph=True) self.backward_GM() else: self.backward_G() if self.scaler is None: self.optimizer['G'].step() else: with autocast(enabled=False): self.scaler.step(self.optimizer['G']) # SiaNet for SPGAN if self._epoch > 0: self.set_requires_grad([self.model['Metric']], True) if self.scaler is None: self.optimizer['Metric'].zero_grad() else: with autocast(enabled=False): self.optimizer['Metric'].zero_grad() self.backward_M() if self.scaler is None: self.optimizer['Metric'].step() else: with autocast(enabled=False): self.scaler.step(self.optimizer['Metric']) # D_A and D_B self.set_requires_grad([self.model['D_A'], self.model['D_B']], True) # self.optimizer['D'].zero_grad() # self.backward_D() # self.optimizer['D'].step() if self.scaler is None: self.optimizer['D'].zero_grad() else: with autocast(enabled=False): self.optimizer['D'].zero_grad() self.backward_D() if self.scaler is None: self.optimizer['D'].step() else: with autocast(enabled=False): self.scaler.step(self.optimizer['D']) # save translated images if self._rank == 0: self.save_imgs(['real_A', 'real_B', 'fake_A', 'fake_B', 'rec_A', 'rec_B']) return 0 def backward_GM(self): real_A_metric = self.model['Metric'](self.real_A) real_B_metric = self.model['Metric'](self.real_B) fake_A_metric = self.model['Metric'](self.fake_A) fake_B_metric = self.model['Metric'](self.fake_B) # positive pairs loss_pos = self.criterions['sia_G'](real_A_metric, fake_B_metric, 1) + \ self.criterions['sia_G'](real_B_metric, fake_A_metric, 1) # negative pairs loss_neg = self.criterions['sia_G'](fake_B_metric, real_B_metric, 0) + \ self.criterions['sia_G'](fake_A_metric, real_A_metric, 0) loss_M = (loss_pos + 0.5 * loss_neg) / 4.0 loss = loss_M * self.cfg.TRAIN.LOSS.losses['sia_G'] if self.scaler is None: loss.backward() else: with autocast(enabled=False): self.scaler.scale(loss).backward() meters = {'sia_G': loss_M.item()} self.train_progress.update(meters) def backward_M(self): real_A_metric = self.model['Metric'](self.real_A) real_B_metric = self.model['Metric'](self.real_B) fake_A_metric = self.model['Metric'](self.fake_A.detach()) fake_B_metric = self.model['Metric'](self.fake_B.detach()) # positive pairs loss_pos = self.criterions['sia_M'](real_A_metric, fake_B_metric, 1) + \ self.criterions['sia_M'](real_B_metric, fake_A_metric, 1) # negative pairs loss_neg = self.criterions['sia_M'](real_A_metric, real_B_metric, 0) loss_M = (loss_pos + 2 * loss_neg) / 3.0 loss = loss_M * self.cfg.TRAIN.LOSS.losses['sia_M'] if self.scaler is None: loss.backward() else: with autocast(enabled=False): self.scaler.scale(loss).backward() meters = {'sia_M': loss_M.item()} self.train_progress.update(meters) def parge_config(): parser = argparse.ArgumentParser(description="SPGAN training") parser.add_argument("config", help="train config file path") parser.add_argument( "--work-dir", help="the dir to save logs and models", default="" ) parser.add_argument("--resume-from", help="the checkpoint file to resume from") parser.add_argument( "--launcher", type=str, choices=["none", "pytorch", "slurm"], default="none", help="job launcher", ) parser.add_argument("--tcp-port", type=str, default="5017") parser.add_argument( "--set", dest="set_cfgs", default=None, nargs=argparse.REMAINDER, help="set extra config keys if needed", ) args = parser.parse_args() cfg_from_yaml_file(args.config, cfg) assert len(list(cfg.TRAIN.datasets.keys()))==2, \ "the number of datasets for domain-translation training should be two" cfg.launcher = args.launcher cfg.tcp_port = args.tcp_port if not args.work_dir: args.work_dir = Path(args.config).stem cfg.work_dir = cfg.LOGS_ROOT / args.work_dir mkdir_if_missing(cfg.work_dir) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs, cfg) shutil.copy(args.config, cfg.work_dir / "config.yaml") return args, cfg def main(): start_time = time.monotonic() # init distributed training args, cfg = parge_config() dist = init_dist(cfg) set_random_seed(cfg.TRAIN.seed, cfg.TRAIN.deterministic) synchronize() # init logging file logger = Logger(cfg.work_dir / 'log.txt', debug=False) sys.stdout = logger print("==========\nArgs:{}\n==========".format(args)) log_config_to_file(cfg) # build train loader train_loader, _ = build_train_dataloader(cfg, joint=False) # build model model = build_gan_model(cfg) for key in model.keys(): model[key].cuda() if dist: ddp_cfg = { "device_ids": [cfg.gpu], "output_device": cfg.gpu, "find_unused_parameters": True, } for key in model.keys(): model[key] = torch.nn.parallel.DistributedDataParallel(model[key], **ddp_cfg) elif cfg.total_gpus > 1: for key in model.keys(): model[key] = torch.nn.DataParallel(model[key]) # build optimizer optimizer = {} optimizer['G'] = build_optimizer([model['G_A'], model['G_B']], **cfg.TRAIN.OPTIM) optimizer['D'] = build_optimizer([model['D_A'], model['D_B']], **cfg.TRAIN.OPTIM) optimizer['Metric'] = build_optimizer([model['Metric']], **cfg.TRAIN.OPTIM) # build lr_scheduler if cfg.TRAIN.SCHEDULER.lr_scheduler is not None: lr_scheduler = [build_lr_scheduler(optimizer[key], **cfg.TRAIN.SCHEDULER) \ for key in optimizer.keys()] else: lr_scheduler = None # build loss functions criterions = build_loss(cfg.TRAIN.LOSS, cuda=True) # build runner runner = SPGANRunner( cfg, model, optimizer, criterions, train_loader, lr_scheduler=lr_scheduler, meter_formats={"Time": ":.3f"} ) # resume if args.resume_from: runner.resume(args.resume_from) # start training runner.run() # load the latest model # runner.resume(cfg.work_dir) # final inference test_loader, _ = build_val_dataloader( cfg, for_clustering=True, all_datasets=True ) # source to target infer_gan( cfg, model['G_A'], test_loader[0], dataset_name=list(cfg.TRAIN.datasets.keys())[0] ) # target to source infer_gan( cfg, model['G_B'], test_loader[1], dataset_name=list(cfg.TRAIN.datasets.keys())[1] ) # print time end_time = time.monotonic() print("Total running time: ", timedelta(seconds=end_time - start_time)) if __name__ == '__main__': main()
en
0.529551
# PyTorch >= 1.6 supports mixed precision training # Forward # G_A(A) # G_B(B) # G_B(G_A(A)) # G_A(G_B(B)) # G_A and G_B # save memory # SiaNet for SPGAN # D_A and D_B # self.optimizer['D'].zero_grad() # self.backward_D() # self.optimizer['D'].step() # save translated images # positive pairs # negative pairs # positive pairs # negative pairs # init distributed training # init logging file # build train loader # build model # build optimizer # build lr_scheduler # build loss functions # build runner # resume # start training # load the latest model # runner.resume(cfg.work_dir) # final inference # source to target # target to source # print time
1.963891
2
utility/data_download.py
LatvianPython/wind-experience
2
10456
import logging import requests import multiprocessing import pathlib from typing import List from typing import Optional from typing import Tuple from typing import Dict from joblib import delayed from joblib import Parallel from datetime import date from datetime import timedelta logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) def next_date(start_date=date(2018, 3, 1)): days_to_download = abs(start_date - date.today()).days - 5 for date_offset in range(days_to_download): yield start_date start_date = start_date + timedelta(days=1) def download_all(inputs: List[Tuple[pathlib.Path, str]], cookies: Optional[Dict]): session = requests.session() inputs[0][0].parent.mkdir(parents=True, exist_ok=True) def download_single_link(file_path: pathlib.Path, url): thread_nr = multiprocessing.current_process().name thread_nr = thread_nr[thread_nr.rfind('-') + 1:] file_name = file_path.stem if file_path.is_file(): logger.info('{} {} already exists'.format(thread_nr, file_name)) return try: response = session.get(url=url, cookies=cookies) except TimeoutError: logger.critical('{} Timeout Error'.format(thread_nr)) return content = response.content.decode('utf-8') if response.status_code != 200: logger.critical('{} {}'.format(thread_nr, url, response.status_code)) logger.critical('{}'.format(thread_nr, content)) return else: logger.info('{} {} {} OK'.format(thread_nr, file_name, response.status_code)) with open(str(file_path), mode='w', encoding='utf-8') as output_file: output_file.write(content) num_cores = multiprocessing.cpu_count() Parallel(n_jobs=num_cores)(delayed(download_single_link)(*j) for j in inputs)
import logging import requests import multiprocessing import pathlib from typing import List from typing import Optional from typing import Tuple from typing import Dict from joblib import delayed from joblib import Parallel from datetime import date from datetime import timedelta logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) def next_date(start_date=date(2018, 3, 1)): days_to_download = abs(start_date - date.today()).days - 5 for date_offset in range(days_to_download): yield start_date start_date = start_date + timedelta(days=1) def download_all(inputs: List[Tuple[pathlib.Path, str]], cookies: Optional[Dict]): session = requests.session() inputs[0][0].parent.mkdir(parents=True, exist_ok=True) def download_single_link(file_path: pathlib.Path, url): thread_nr = multiprocessing.current_process().name thread_nr = thread_nr[thread_nr.rfind('-') + 1:] file_name = file_path.stem if file_path.is_file(): logger.info('{} {} already exists'.format(thread_nr, file_name)) return try: response = session.get(url=url, cookies=cookies) except TimeoutError: logger.critical('{} Timeout Error'.format(thread_nr)) return content = response.content.decode('utf-8') if response.status_code != 200: logger.critical('{} {}'.format(thread_nr, url, response.status_code)) logger.critical('{}'.format(thread_nr, content)) return else: logger.info('{} {} {} OK'.format(thread_nr, file_name, response.status_code)) with open(str(file_path), mode='w', encoding='utf-8') as output_file: output_file.write(content) num_cores = multiprocessing.cpu_count() Parallel(n_jobs=num_cores)(delayed(download_single_link)(*j) for j in inputs)
none
1
2.518842
3
model/net_qspline_A.py
jercoco/QSQF
0
10457
<filename>model/net_qspline_A.py<gh_stars>0 # -*- coding: utf-8 -*- """ Created on Wed Oct 21 19:52:22 2020 #Plan A @author: 18096 """ '''Defines the neural network, loss function and metrics''' #from functools import reduce import torch import torch.nn as nn from torch.nn.functional import pad from torch.autograd import Variable import logging logger = logging.getLogger('DeepAR.Net') class Net(nn.Module): def __init__(self, params,device): ''' We define a recurrent network that predicts the future values of a time-dependent variable based on past inputs and covariates. ''' super(Net, self).__init__() self.params = params self.device = device self.lstm = nn.LSTM(input_size=params.lstm_input_size, hidden_size=params.lstm_hidden_dim, num_layers=params.lstm_layers, bias=True, batch_first=False, dropout=params.lstm_dropout) # initialize LSTM forget gate bias to be 1 as recommanded by # http://proceedings.mlr.press/v37/jozefowicz15.pdf for names in self.lstm._all_weights: for name in filter(lambda n: "bias" in n, names): bias = getattr(self.lstm, name) n = bias.size(0) start, end = n // 4, n // 2 bias.data[start:end].fill_(1.) #Plan A: #beta_01:[beta0,beta1] self.beta_n1 = nn.Linear( params.lstm_hidden_dim * params.lstm_layers, 1) self.pre_beta_1 = nn.Linear( params.lstm_hidden_dim * params.lstm_layers, 1) self.pre_sigma = nn.Linear( params.lstm_hidden_dim * params.lstm_layers, params.num_spline) self.pre_gamma = nn.Linear( params.lstm_hidden_dim * params.lstm_layers, params.num_spline) # softmax to make sure Σu equals to 1 self.sigma = nn.Softmax(dim=1) # softplus to make sure gamma is positive self.gamma = nn.Softplus() # softplus to make sure beta0 is positive self.beta_1 = nn.Softplus() def forward(self, x, hidden, cell): _, (hidden, cell) = self.lstm(x, (hidden, cell)) # use h from all three layers to calculate mu and sigma hidden_permute = \ hidden.permute(1, 2, 0).contiguous().view(hidden.shape[1], -1) #Plan A: beta_n1 = self.beta_n1(hidden_permute) pre_beta_1 = self.pre_beta_1(hidden_permute) beta_1 = self.beta_1(pre_beta_1) beta_1=-beta_1 pre_sigma = self.pre_sigma(hidden_permute) sigma = self.sigma(pre_sigma) pre_gamma = self.pre_gamma(hidden_permute) gamma = self.gamma(pre_gamma) #Plan A: return ((beta_n1,beta_1,sigma,torch.squeeze(gamma)),hidden,cell) def init_hidden(self, input_size): return torch.zeros(self.params.lstm_layers, input_size, self.params.lstm_hidden_dim, device=self.device) def init_cell(self, input_size): return torch.zeros(self.params.lstm_layers, input_size, self.params.lstm_hidden_dim, device=self.device) def predict(self, x, hidden, cell, sampling=False): """ generate samples by sampling from """ batch_size = x.shape[1] samples = torch.zeros(self.params.sample_times,batch_size, self.params.pred_steps, device=self.device) for j in range(self.params.sample_times): decoder_hidden = hidden decoder_cell = cell for t in range(self.params.pred_steps): func_param,decoder_hidden,decoder_cell=\ self(x[self.params.pred_start+t].unsqueeze(0), decoder_hidden,decoder_cell) beta_n1,beta_1,sigma,gamma=func_param #pred_cdf is a uniform ditribution uniform = torch.distributions.uniform.Uniform( torch.tensor([0.0], device=sigma.device), torch.tensor([1.0], device=sigma.device)) pred_cdf=uniform.sample([batch_size]) beta_0=gamma[:,:1]-2*beta_1*sigma[:,:1] beta_N=torch.cat((beta_n1,beta_0),dim=1) beta=pad(gamma,(1,0))[:,:-1] beta[:,0]=beta_0[:,0] beta=(gamma-beta)/(2*sigma) beta=beta-pad(beta,(1,0))[:,:-1] beta[:,-1]=gamma[:,-1]-beta[:,:-1].sum(dim=1) ksi=pad(torch.cumsum(sigma,dim=1),(1,0))[:,:-1] indices=ksi<pred_cdf pred=(beta_N*pad(pred_cdf,(1,0),value=1)).sum(dim=1) pred=pred+((pred_cdf-ksi).pow(2)*beta*indices).sum(dim=1) samples[j, :, t] = pred #predict value at t-1 is as a covars for t,t+1,...,t+lag for lag in range(self.params.lag): if t<self.params.pred_steps-lag-1: x[self.params.pred_start+t+1,:,0]=pred sample_mu = torch.mean(samples, dim=0) # mean or median ? sample_std = samples.std(dim=0) return samples, sample_mu, sample_std def loss_fn(func_param, labels: Variable): beta_n1,beta_1,sigma,gamma=func_param beta_0=gamma[:,:1]-2*beta_1*sigma[:,:1] beta_N=torch.cat((beta_n1,beta_0),dim=1) beta=pad(gamma,(1,0))[:,:-1] beta[:,0]=beta_0[:,0] beta=(gamma-beta)/(2*sigma) beta=beta-pad(beta,(1,0))[:,:-1] beta[:,-1]=gamma[:,-1]-beta[:,:-1].sum(dim=1) #calculate the maximum for each segment of the spline ksi=torch.cumsum(sigma,dim=1) df1=ksi.expand(sigma.shape[1],sigma.shape[0],sigma.shape[1]).T.clone() df2=pad(ksi.T.unsqueeze(2),(1,0),'constant',value=1) ksi=pad(ksi,(1,0))[:,:-1] knots=df1-ksi knots[knots<0]=0 knots=(df2*beta_N).sum(dim=2)+(knots.pow(2)*beta).sum(dim=2) knots=pad(knots.T,(1,0))[:,:-1]#F(ksi_1~K)=0~max diff=labels.view(-1,1)-knots alpha_l=diff>0 alpha_A=torch.sum(alpha_l*beta,dim=1) alpha_B=beta_N[:,1]-2*torch.sum(alpha_l*beta*ksi,dim=1) alpha_C=beta_N[:,0]-labels+torch.sum(alpha_l*beta*ksi*ksi,dim=1) #since A may be zero, roots can be from different methods. not_zero=(alpha_A!=0) alpha=torch.zeros_like(alpha_A) #since there may be numerical calculation error,#0 idx=(alpha_B**2-4*alpha_A*alpha_C)<0#0 diff=diff.abs() index=diff==(diff.min(dim=1)[0].view(-1,1)) index[~idx,:]=False #index=diff.abs()<1e-4#0,1e-4 is a threshold #idx=index.sum(dim=1)>0#0 alpha[idx]=ksi[index]#0 alpha[~not_zero]=-alpha_C[~not_zero]/alpha_B[~not_zero] not_zero=~(~not_zero | idx)#0 delta=alpha_B[not_zero].pow(2)-4*alpha_A[not_zero]*alpha_C[not_zero] alpha[not_zero]=(-alpha_B[not_zero]+torch.sqrt(delta))/(2*alpha_A[not_zero]) crps_1=labels*(2*alpha-1) #lam2=lambda n:2*beta_N[:,n-1]*(1/n/(n+1)-alpha.pow(n)/n) #crps_2=reduce(lambda a,b:a+b,[lam2(n) for n in range(1,2+1)]) crps_2=beta_N[:,0]*(1-2*alpha)+beta_N[:,1]*(1/3-alpha.pow(2)) crps_3=torch.sum(2*beta/((2+1)*(2+2))*(1-ksi).pow(2+2),dim=1) crps_4=torch.sum(alpha_l*2*beta/(2+1)*(torch.unsqueeze(alpha,1)-ksi).pow(2+1),dim=1) crps=crps_1+crps_2+crps_3-crps_4 crps = torch.mean(crps) return crps
<filename>model/net_qspline_A.py<gh_stars>0 # -*- coding: utf-8 -*- """ Created on Wed Oct 21 19:52:22 2020 #Plan A @author: 18096 """ '''Defines the neural network, loss function and metrics''' #from functools import reduce import torch import torch.nn as nn from torch.nn.functional import pad from torch.autograd import Variable import logging logger = logging.getLogger('DeepAR.Net') class Net(nn.Module): def __init__(self, params,device): ''' We define a recurrent network that predicts the future values of a time-dependent variable based on past inputs and covariates. ''' super(Net, self).__init__() self.params = params self.device = device self.lstm = nn.LSTM(input_size=params.lstm_input_size, hidden_size=params.lstm_hidden_dim, num_layers=params.lstm_layers, bias=True, batch_first=False, dropout=params.lstm_dropout) # initialize LSTM forget gate bias to be 1 as recommanded by # http://proceedings.mlr.press/v37/jozefowicz15.pdf for names in self.lstm._all_weights: for name in filter(lambda n: "bias" in n, names): bias = getattr(self.lstm, name) n = bias.size(0) start, end = n // 4, n // 2 bias.data[start:end].fill_(1.) #Plan A: #beta_01:[beta0,beta1] self.beta_n1 = nn.Linear( params.lstm_hidden_dim * params.lstm_layers, 1) self.pre_beta_1 = nn.Linear( params.lstm_hidden_dim * params.lstm_layers, 1) self.pre_sigma = nn.Linear( params.lstm_hidden_dim * params.lstm_layers, params.num_spline) self.pre_gamma = nn.Linear( params.lstm_hidden_dim * params.lstm_layers, params.num_spline) # softmax to make sure Σu equals to 1 self.sigma = nn.Softmax(dim=1) # softplus to make sure gamma is positive self.gamma = nn.Softplus() # softplus to make sure beta0 is positive self.beta_1 = nn.Softplus() def forward(self, x, hidden, cell): _, (hidden, cell) = self.lstm(x, (hidden, cell)) # use h from all three layers to calculate mu and sigma hidden_permute = \ hidden.permute(1, 2, 0).contiguous().view(hidden.shape[1], -1) #Plan A: beta_n1 = self.beta_n1(hidden_permute) pre_beta_1 = self.pre_beta_1(hidden_permute) beta_1 = self.beta_1(pre_beta_1) beta_1=-beta_1 pre_sigma = self.pre_sigma(hidden_permute) sigma = self.sigma(pre_sigma) pre_gamma = self.pre_gamma(hidden_permute) gamma = self.gamma(pre_gamma) #Plan A: return ((beta_n1,beta_1,sigma,torch.squeeze(gamma)),hidden,cell) def init_hidden(self, input_size): return torch.zeros(self.params.lstm_layers, input_size, self.params.lstm_hidden_dim, device=self.device) def init_cell(self, input_size): return torch.zeros(self.params.lstm_layers, input_size, self.params.lstm_hidden_dim, device=self.device) def predict(self, x, hidden, cell, sampling=False): """ generate samples by sampling from """ batch_size = x.shape[1] samples = torch.zeros(self.params.sample_times,batch_size, self.params.pred_steps, device=self.device) for j in range(self.params.sample_times): decoder_hidden = hidden decoder_cell = cell for t in range(self.params.pred_steps): func_param,decoder_hidden,decoder_cell=\ self(x[self.params.pred_start+t].unsqueeze(0), decoder_hidden,decoder_cell) beta_n1,beta_1,sigma,gamma=func_param #pred_cdf is a uniform ditribution uniform = torch.distributions.uniform.Uniform( torch.tensor([0.0], device=sigma.device), torch.tensor([1.0], device=sigma.device)) pred_cdf=uniform.sample([batch_size]) beta_0=gamma[:,:1]-2*beta_1*sigma[:,:1] beta_N=torch.cat((beta_n1,beta_0),dim=1) beta=pad(gamma,(1,0))[:,:-1] beta[:,0]=beta_0[:,0] beta=(gamma-beta)/(2*sigma) beta=beta-pad(beta,(1,0))[:,:-1] beta[:,-1]=gamma[:,-1]-beta[:,:-1].sum(dim=1) ksi=pad(torch.cumsum(sigma,dim=1),(1,0))[:,:-1] indices=ksi<pred_cdf pred=(beta_N*pad(pred_cdf,(1,0),value=1)).sum(dim=1) pred=pred+((pred_cdf-ksi).pow(2)*beta*indices).sum(dim=1) samples[j, :, t] = pred #predict value at t-1 is as a covars for t,t+1,...,t+lag for lag in range(self.params.lag): if t<self.params.pred_steps-lag-1: x[self.params.pred_start+t+1,:,0]=pred sample_mu = torch.mean(samples, dim=0) # mean or median ? sample_std = samples.std(dim=0) return samples, sample_mu, sample_std def loss_fn(func_param, labels: Variable): beta_n1,beta_1,sigma,gamma=func_param beta_0=gamma[:,:1]-2*beta_1*sigma[:,:1] beta_N=torch.cat((beta_n1,beta_0),dim=1) beta=pad(gamma,(1,0))[:,:-1] beta[:,0]=beta_0[:,0] beta=(gamma-beta)/(2*sigma) beta=beta-pad(beta,(1,0))[:,:-1] beta[:,-1]=gamma[:,-1]-beta[:,:-1].sum(dim=1) #calculate the maximum for each segment of the spline ksi=torch.cumsum(sigma,dim=1) df1=ksi.expand(sigma.shape[1],sigma.shape[0],sigma.shape[1]).T.clone() df2=pad(ksi.T.unsqueeze(2),(1,0),'constant',value=1) ksi=pad(ksi,(1,0))[:,:-1] knots=df1-ksi knots[knots<0]=0 knots=(df2*beta_N).sum(dim=2)+(knots.pow(2)*beta).sum(dim=2) knots=pad(knots.T,(1,0))[:,:-1]#F(ksi_1~K)=0~max diff=labels.view(-1,1)-knots alpha_l=diff>0 alpha_A=torch.sum(alpha_l*beta,dim=1) alpha_B=beta_N[:,1]-2*torch.sum(alpha_l*beta*ksi,dim=1) alpha_C=beta_N[:,0]-labels+torch.sum(alpha_l*beta*ksi*ksi,dim=1) #since A may be zero, roots can be from different methods. not_zero=(alpha_A!=0) alpha=torch.zeros_like(alpha_A) #since there may be numerical calculation error,#0 idx=(alpha_B**2-4*alpha_A*alpha_C)<0#0 diff=diff.abs() index=diff==(diff.min(dim=1)[0].view(-1,1)) index[~idx,:]=False #index=diff.abs()<1e-4#0,1e-4 is a threshold #idx=index.sum(dim=1)>0#0 alpha[idx]=ksi[index]#0 alpha[~not_zero]=-alpha_C[~not_zero]/alpha_B[~not_zero] not_zero=~(~not_zero | idx)#0 delta=alpha_B[not_zero].pow(2)-4*alpha_A[not_zero]*alpha_C[not_zero] alpha[not_zero]=(-alpha_B[not_zero]+torch.sqrt(delta))/(2*alpha_A[not_zero]) crps_1=labels*(2*alpha-1) #lam2=lambda n:2*beta_N[:,n-1]*(1/n/(n+1)-alpha.pow(n)/n) #crps_2=reduce(lambda a,b:a+b,[lam2(n) for n in range(1,2+1)]) crps_2=beta_N[:,0]*(1-2*alpha)+beta_N[:,1]*(1/3-alpha.pow(2)) crps_3=torch.sum(2*beta/((2+1)*(2+2))*(1-ksi).pow(2+2),dim=1) crps_4=torch.sum(alpha_l*2*beta/(2+1)*(torch.unsqueeze(alpha,1)-ksi).pow(2+1),dim=1) crps=crps_1+crps_2+crps_3-crps_4 crps = torch.mean(crps) return crps
en
0.737448
# -*- coding: utf-8 -*- Created on Wed Oct 21 19:52:22 2020 #Plan A @author: 18096 Defines the neural network, loss function and metrics #from functools import reduce We define a recurrent network that predicts the future values of a time-dependent variable based on past inputs and covariates. # initialize LSTM forget gate bias to be 1 as recommanded by # http://proceedings.mlr.press/v37/jozefowicz15.pdf #Plan A: #beta_01:[beta0,beta1] # softmax to make sure Σu equals to 1 # softplus to make sure gamma is positive # softplus to make sure beta0 is positive # use h from all three layers to calculate mu and sigma #Plan A: #Plan A: generate samples by sampling from #pred_cdf is a uniform ditribution #predict value at t-1 is as a covars for t,t+1,...,t+lag # mean or median ? #calculate the maximum for each segment of the spline #F(ksi_1~K)=0~max #since A may be zero, roots can be from different methods. #since there may be numerical calculation error,#0 #0 #index=diff.abs()<1e-4#0,1e-4 is a threshold #idx=index.sum(dim=1)>0#0 #0 #0 #lam2=lambda n:2*beta_N[:,n-1]*(1/n/(n+1)-alpha.pow(n)/n) #crps_2=reduce(lambda a,b:a+b,[lam2(n) for n in range(1,2+1)])
2.378718
2
tests/repositories/helpers/methods/test_reinstall_if_needed.py
traibnn/integration
1
10458
<filename>tests/repositories/helpers/methods/test_reinstall_if_needed.py import pytest @pytest.mark.asyncio async def test_reinstall_if_needed(repository): repository.content.path.local = "/non/existing/dir" repository.data.installed = True await repository.async_reinstall_if_needed()
<filename>tests/repositories/helpers/methods/test_reinstall_if_needed.py import pytest @pytest.mark.asyncio async def test_reinstall_if_needed(repository): repository.content.path.local = "/non/existing/dir" repository.data.installed = True await repository.async_reinstall_if_needed()
none
1
1.814353
2
workflow_parser/datasource/log_engine.py
cyx1231st/workflow_parser
0
10459
<filename>workflow_parser/datasource/log_engine.py<gh_stars>0 # Copyright (c) 2017 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import print_function from abc import ABCMeta from abc import abstractmethod from collections import defaultdict import os from os import path import sys from .. import reserved_vars as rv from ..service_registry import Component from ..service_registry import ServiceRegistry from . import Line from . import Source from .exc import LogError class DriverPlugin(object): __metaclass__ = ABCMeta def __init__(self, f_filter_logfile, f_filter_logline, extensions): self._extensions = extensions self.f_filter_logfile = f_filter_logfile self.f_filter_logline = f_filter_logline def _purge_dict_empty_values(self, var_dict): for k in var_dict.keys(): if var_dict[k] in {None, ""}: var_dict.pop(k) def do_filter_logfile(self, f_dir, f_name): assert isinstance(f_dir, str) assert isinstance(f_name, str) assert f_name in f_dir # skip non-file if not path.isfile(f_dir): return False, None # check file extension ext_match = False for ext in self._extensions: if f_name.endswith("." + ext): ext_match = True if not ext_match: return False, None try: var_dict = {} ret = self.f_filter_logfile(f_dir, f_name, var_dict) assert isinstance(ret, bool) if ret: # NOTE # print("(LogDriver) loaded: %s" % f_dir) assert all(isinstance(k, str) for k in var_dict.keys()) self._purge_dict_empty_values(var_dict) return True, var_dict else: # skip return False, None except Exception as e: raise LogError( "(LogDriver) `f_filter_logfile` error when f_name=%s" % f_name, e) def do_filter_logline(self, line, lino, where): assert isinstance(line, str) assert isinstance(lino, int) assert isinstance(where, str) try: var_dict = {} ret = self.f_filter_logline(line, var_dict) assert all(isinstance(k, str) for k in var_dict.keys()) self._purge_dict_empty_values(var_dict) assert isinstance(ret, bool) return ret, var_dict except Exception as e: raise LogError("(LogDriver) `f_filter_logline` error at %s@%d %s" % (where, lino, line), e) class FileDatasource(object): def __init__(self, name, f_dir, vs, sr, plugin): assert isinstance(sr, ServiceRegistry) assert isinstance(plugin, DriverPlugin) self.sr = sr self.plugin = plugin self.name = name self.f_dir = f_dir self.total_lines = 0 self.source = Source(name, f_dir, vs) self.requests = set() @property def total_lineobjs(self): return self.source.len_lineobjs # def _buffer_lines(self, lines): # buffer_lines = Heap(key=lambda a: a.seconds) # prv_line = [None] # def _flush_line(flush=None): # while buffer_lines: # if flush and buffer_lines.distance < flush: # break # line = buffer_lines.pop() # if prv_line[0] is not None: # prv_line[0].nxt_logline = line # line.prv_logline = prv_line[0] # assert prv_line[0] <= line # yield line # prv_line[0] = line # for line in lines: # assert isinstance(line, LogLine) # buffer_lines.push(line) # for line in _flush_line(1): # yield line # for line in _flush_line(): # yield line def yield_lineobjs(self, targets_byname): with open(self.f_dir, 'r') as reader: for line in reader: self.total_lines += 1 lino = self.total_lines if_proceed, vs = self.plugin.do_filter_logline( line, lino, self.name) if if_proceed: # convert component component = vs.get(rv.COMPONENT) if component is not None: c_obj = self.sr.f_to_component(component) if not c_obj: raise LogError( "Error in %s@%d %s: unrecognized component %s" % (self.name, lino, line, component)) else: vs[rv.COMPONENT] = c_obj # collect requests request = vs.get(rv.REQUEST) if request is not None: self.requests.add(request) lineobj = self.source.append_line( lino, line, vs, targets_byname) yield lineobj @classmethod def create_byfolder(cls, log_folder, sr, plugin): assert isinstance(log_folder, str) assert isinstance(plugin, DriverPlugin) datasources = [] # current_path = path.dirname(os.path.realpath(__file__)) current_path = os.getcwd() log_folder = path.join(current_path, log_folder) for f_name in os.listdir(log_folder): f_dir = path.join(log_folder, f_name) if_proceed, vs = plugin.do_filter_logfile(f_dir, f_name) if if_proceed: # convert component component = vs.get(rv.COMPONENT) if component is not None: c_obj = self.sr.f_to_component(component) if not c_obj: raise LogError( "Error in %s: unrecognized component %s" % (f_name, component)) else: vs[rv.COMPONENT] = c_obj ds = cls(f_name.rsplit(".", 1)[0], f_dir, vs, sr, plugin) datasources.append(ds) return log_folder, datasources # step1: load related log files def loadsources(log_folder, sr, plugin): print("Load data sources...") log_folder, datasources = FileDatasource.create_byfolder( log_folder, sr, plugin) print("---------------") #### summary #### print("%d datasources from %s" % (len(datasources), log_folder)) print() return datasources # step2: read sources def readsources(datasources, sr, report): targets_byname = {} targets_byhost = defaultdict(list) targets_bycomponent = defaultdict(list) threads = set() print("Read data sources...") for datasource in datasources: for line_obj in datasource.yield_lineobjs(targets_byname): pass for targetobj in targets_byname.values(): if not isinstance(targetobj.target, str) or not targetobj.target: raise LogError("%s has invalid target: %s" % ( targetobj, target.target)) if not isinstance(targetobj.host, str) or not targetobj.host: raise LogError("%s has invalid host: %s" % ( targetobj, target.host)) if not isinstance(targetobj.component, Component): raise LogError("%s has invalid component: %s" % ( targetobj, target.component)) targets_byhost[targetobj.host].append(targetobj) targets_bycomponent[targetobj.component].append(targetobj) threads.update(targetobj.thread_objs) print("---------------") #### summary #### total_targets = len(targets_byname) total_hosts = len(targets_byhost) total_components = len(targets_bycomponent) print("%d targets, %d hosts" % (total_targets, total_hosts)) total_lines = sum(datasource.total_lines for datasource in datasources) total_lineobjs = sum(datasource.total_lineobjs for datasource in datasources) if not total_lines: print("0 valid lines") else: print("%.2f%% valid: %d lines -> %d lineobjs" % (float(total_lineobjs)/total_lines*100, total_lines, total_lineobjs)) for comp in sr.sr_components: targets = targets_bycomponent.get(comp, []) if not targets: raise LogError("ERROR! miss component %s" % comp) else: component_threads = sum(len(target.thread_objs) for target in targets) component_lines = sum(target.len_lineobjs for target in targets) min_target_threads, max_target_threads = sys.maxsize, 0 min_target_lineobjs, max_target_lineobjs = sys.maxsize, 0 hosts_ = set() for target_obj in targets: hosts_.add(target_obj.host) min_target_threads = min(min_target_threads, len(target_obj.thread_objs)) max_target_threads = max(max_target_threads, len(target_obj.thread_objs)) min_target_lineobjs = min(min_target_lineobjs, target_obj.len_lineobjs) max_target_lineobjs = max(max_target_lineobjs, target_obj.len_lineobjs) print(" %s: %d hosts, %d targets, %d threads, %d lines" % (comp, len(hosts_), len(targets), component_threads, component_lines)) print(" per-target: %.3f[%d, %d] threads, %.3f[%d, %d] loglines" % (component_threads/float(len(targets)), min_target_threads, max_target_threads, component_lines/float(len(targets)), min_target_lineobjs, max_target_lineobjs)) print() #### report ##### requests = set() for ds in datasources: requests.update(ds.requests) report.step("read", line=total_lineobjs, component=total_components, host=total_hosts, target=total_targets, thread=len(threads), request=len(requests)) return targets_byname def proceed(logfolder, sr, plugin, report): datasources = loadsources(logfolder, sr, plugin) targetobjs = readsources(datasources, sr, report) return targetobjs
<filename>workflow_parser/datasource/log_engine.py<gh_stars>0 # Copyright (c) 2017 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import print_function from abc import ABCMeta from abc import abstractmethod from collections import defaultdict import os from os import path import sys from .. import reserved_vars as rv from ..service_registry import Component from ..service_registry import ServiceRegistry from . import Line from . import Source from .exc import LogError class DriverPlugin(object): __metaclass__ = ABCMeta def __init__(self, f_filter_logfile, f_filter_logline, extensions): self._extensions = extensions self.f_filter_logfile = f_filter_logfile self.f_filter_logline = f_filter_logline def _purge_dict_empty_values(self, var_dict): for k in var_dict.keys(): if var_dict[k] in {None, ""}: var_dict.pop(k) def do_filter_logfile(self, f_dir, f_name): assert isinstance(f_dir, str) assert isinstance(f_name, str) assert f_name in f_dir # skip non-file if not path.isfile(f_dir): return False, None # check file extension ext_match = False for ext in self._extensions: if f_name.endswith("." + ext): ext_match = True if not ext_match: return False, None try: var_dict = {} ret = self.f_filter_logfile(f_dir, f_name, var_dict) assert isinstance(ret, bool) if ret: # NOTE # print("(LogDriver) loaded: %s" % f_dir) assert all(isinstance(k, str) for k in var_dict.keys()) self._purge_dict_empty_values(var_dict) return True, var_dict else: # skip return False, None except Exception as e: raise LogError( "(LogDriver) `f_filter_logfile` error when f_name=%s" % f_name, e) def do_filter_logline(self, line, lino, where): assert isinstance(line, str) assert isinstance(lino, int) assert isinstance(where, str) try: var_dict = {} ret = self.f_filter_logline(line, var_dict) assert all(isinstance(k, str) for k in var_dict.keys()) self._purge_dict_empty_values(var_dict) assert isinstance(ret, bool) return ret, var_dict except Exception as e: raise LogError("(LogDriver) `f_filter_logline` error at %s@%d %s" % (where, lino, line), e) class FileDatasource(object): def __init__(self, name, f_dir, vs, sr, plugin): assert isinstance(sr, ServiceRegistry) assert isinstance(plugin, DriverPlugin) self.sr = sr self.plugin = plugin self.name = name self.f_dir = f_dir self.total_lines = 0 self.source = Source(name, f_dir, vs) self.requests = set() @property def total_lineobjs(self): return self.source.len_lineobjs # def _buffer_lines(self, lines): # buffer_lines = Heap(key=lambda a: a.seconds) # prv_line = [None] # def _flush_line(flush=None): # while buffer_lines: # if flush and buffer_lines.distance < flush: # break # line = buffer_lines.pop() # if prv_line[0] is not None: # prv_line[0].nxt_logline = line # line.prv_logline = prv_line[0] # assert prv_line[0] <= line # yield line # prv_line[0] = line # for line in lines: # assert isinstance(line, LogLine) # buffer_lines.push(line) # for line in _flush_line(1): # yield line # for line in _flush_line(): # yield line def yield_lineobjs(self, targets_byname): with open(self.f_dir, 'r') as reader: for line in reader: self.total_lines += 1 lino = self.total_lines if_proceed, vs = self.plugin.do_filter_logline( line, lino, self.name) if if_proceed: # convert component component = vs.get(rv.COMPONENT) if component is not None: c_obj = self.sr.f_to_component(component) if not c_obj: raise LogError( "Error in %s@%d %s: unrecognized component %s" % (self.name, lino, line, component)) else: vs[rv.COMPONENT] = c_obj # collect requests request = vs.get(rv.REQUEST) if request is not None: self.requests.add(request) lineobj = self.source.append_line( lino, line, vs, targets_byname) yield lineobj @classmethod def create_byfolder(cls, log_folder, sr, plugin): assert isinstance(log_folder, str) assert isinstance(plugin, DriverPlugin) datasources = [] # current_path = path.dirname(os.path.realpath(__file__)) current_path = os.getcwd() log_folder = path.join(current_path, log_folder) for f_name in os.listdir(log_folder): f_dir = path.join(log_folder, f_name) if_proceed, vs = plugin.do_filter_logfile(f_dir, f_name) if if_proceed: # convert component component = vs.get(rv.COMPONENT) if component is not None: c_obj = self.sr.f_to_component(component) if not c_obj: raise LogError( "Error in %s: unrecognized component %s" % (f_name, component)) else: vs[rv.COMPONENT] = c_obj ds = cls(f_name.rsplit(".", 1)[0], f_dir, vs, sr, plugin) datasources.append(ds) return log_folder, datasources # step1: load related log files def loadsources(log_folder, sr, plugin): print("Load data sources...") log_folder, datasources = FileDatasource.create_byfolder( log_folder, sr, plugin) print("---------------") #### summary #### print("%d datasources from %s" % (len(datasources), log_folder)) print() return datasources # step2: read sources def readsources(datasources, sr, report): targets_byname = {} targets_byhost = defaultdict(list) targets_bycomponent = defaultdict(list) threads = set() print("Read data sources...") for datasource in datasources: for line_obj in datasource.yield_lineobjs(targets_byname): pass for targetobj in targets_byname.values(): if not isinstance(targetobj.target, str) or not targetobj.target: raise LogError("%s has invalid target: %s" % ( targetobj, target.target)) if not isinstance(targetobj.host, str) or not targetobj.host: raise LogError("%s has invalid host: %s" % ( targetobj, target.host)) if not isinstance(targetobj.component, Component): raise LogError("%s has invalid component: %s" % ( targetobj, target.component)) targets_byhost[targetobj.host].append(targetobj) targets_bycomponent[targetobj.component].append(targetobj) threads.update(targetobj.thread_objs) print("---------------") #### summary #### total_targets = len(targets_byname) total_hosts = len(targets_byhost) total_components = len(targets_bycomponent) print("%d targets, %d hosts" % (total_targets, total_hosts)) total_lines = sum(datasource.total_lines for datasource in datasources) total_lineobjs = sum(datasource.total_lineobjs for datasource in datasources) if not total_lines: print("0 valid lines") else: print("%.2f%% valid: %d lines -> %d lineobjs" % (float(total_lineobjs)/total_lines*100, total_lines, total_lineobjs)) for comp in sr.sr_components: targets = targets_bycomponent.get(comp, []) if not targets: raise LogError("ERROR! miss component %s" % comp) else: component_threads = sum(len(target.thread_objs) for target in targets) component_lines = sum(target.len_lineobjs for target in targets) min_target_threads, max_target_threads = sys.maxsize, 0 min_target_lineobjs, max_target_lineobjs = sys.maxsize, 0 hosts_ = set() for target_obj in targets: hosts_.add(target_obj.host) min_target_threads = min(min_target_threads, len(target_obj.thread_objs)) max_target_threads = max(max_target_threads, len(target_obj.thread_objs)) min_target_lineobjs = min(min_target_lineobjs, target_obj.len_lineobjs) max_target_lineobjs = max(max_target_lineobjs, target_obj.len_lineobjs) print(" %s: %d hosts, %d targets, %d threads, %d lines" % (comp, len(hosts_), len(targets), component_threads, component_lines)) print(" per-target: %.3f[%d, %d] threads, %.3f[%d, %d] loglines" % (component_threads/float(len(targets)), min_target_threads, max_target_threads, component_lines/float(len(targets)), min_target_lineobjs, max_target_lineobjs)) print() #### report ##### requests = set() for ds in datasources: requests.update(ds.requests) report.step("read", line=total_lineobjs, component=total_components, host=total_hosts, target=total_targets, thread=len(threads), request=len(requests)) return targets_byname def proceed(logfolder, sr, plugin, report): datasources = loadsources(logfolder, sr, plugin) targetobjs = readsources(datasources, sr, report) return targetobjs
en
0.719765
# Copyright (c) 2017 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # skip non-file # check file extension # NOTE # print("(LogDriver) loaded: %s" % f_dir) # skip # def _buffer_lines(self, lines): # buffer_lines = Heap(key=lambda a: a.seconds) # prv_line = [None] # def _flush_line(flush=None): # while buffer_lines: # if flush and buffer_lines.distance < flush: # break # line = buffer_lines.pop() # if prv_line[0] is not None: # prv_line[0].nxt_logline = line # line.prv_logline = prv_line[0] # assert prv_line[0] <= line # yield line # prv_line[0] = line # for line in lines: # assert isinstance(line, LogLine) # buffer_lines.push(line) # for line in _flush_line(1): # yield line # for line in _flush_line(): # yield line # convert component # collect requests # current_path = path.dirname(os.path.realpath(__file__)) # convert component # step1: load related log files #### summary #### # step2: read sources #### summary #### #### report #####
1.957511
2
IPython/lib/tests/test_irunner_pylab_magic.py
dchichkov/ipython
0
10460
"""Test suite for pylab_import_all magic Modified from the irunner module but using regex. """ # Global to make tests extra verbose and help debugging VERBOSE = True # stdlib imports import StringIO import sys import unittest import re # IPython imports from IPython.lib import irunner from IPython.testing import decorators def pylab_not_importable(): """Test if importing pylab fails with RuntimeError (true when having no display)""" try: import pylab return False except RuntimeError: return True # Testing code begins class RunnerTestCase(unittest.TestCase): def setUp(self): self.out = StringIO.StringIO() #self.out = sys.stdout def _test_runner(self,runner,source,output): """Test that a given runner's input/output match.""" runner.run_source(source) out = self.out.getvalue() #out = '' # this output contains nasty \r\n lineends, and the initial ipython # banner. clean it up for comparison, removing lines of whitespace output_l = [l for l in output.splitlines() if l and not l.isspace()] out_l = [l for l in out.splitlines() if l and not l.isspace()] mismatch = 0 if len(output_l) != len(out_l): message = ("Mismatch in number of lines\n\n" "Expected:\n" "~~~~~~~~~\n" "%s\n\n" "Got:\n" "~~~~~~~~~\n" "%s" ) % ("\n".join(output_l), "\n".join(out_l)) self.fail(message) for n in range(len(output_l)): # Do a line-by-line comparison ol1 = output_l[n].strip() ol2 = out_l[n].strip() if not re.match(ol1,ol2): mismatch += 1 if VERBOSE: print '<<< line %s does not match:' % n print repr(ol1) print repr(ol2) print '>>>' self.assert_(mismatch==0,'Number of mismatched lines: %s' % mismatch) @decorators.skipif_not_matplotlib @decorators.skipif(pylab_not_importable, "Likely a run without X.") def test_pylab_import_all_enabled(self): "Verify that plot is available when pylab_import_all = True" source = """ from IPython.config.application import Application app = Application.instance() app.pylab_import_all = True pylab ip=get_ipython() 'plot' in ip.user_ns """ output = """ In \[1\]: from IPython\.config\.application import Application In \[2\]: app = Application\.instance\(\) In \[3\]: app\.pylab_import_all = True In \[4\]: pylab ^Welcome to pylab, a matplotlib-based Python environment For more information, type 'help\(pylab\)'\. In \[5\]: ip=get_ipython\(\) In \[6\]: \'plot\' in ip\.user_ns Out\[6\]: True """ runner = irunner.IPythonRunner(out=self.out) self._test_runner(runner,source,output) @decorators.skipif_not_matplotlib @decorators.skipif(pylab_not_importable, "Likely a run without X.") def test_pylab_import_all_disabled(self): "Verify that plot is not available when pylab_import_all = False" source = """ from IPython.config.application import Application app = Application.instance() app.pylab_import_all = False pylab ip=get_ipython() 'plot' in ip.user_ns """ output = """ In \[1\]: from IPython\.config\.application import Application In \[2\]: app = Application\.instance\(\) In \[3\]: app\.pylab_import_all = False In \[4\]: pylab ^Welcome to pylab, a matplotlib-based Python environment For more information, type 'help\(pylab\)'\. In \[5\]: ip=get_ipython\(\) In \[6\]: \'plot\' in ip\.user_ns Out\[6\]: False """ runner = irunner.IPythonRunner(out=self.out) self._test_runner(runner,source,output)
"""Test suite for pylab_import_all magic Modified from the irunner module but using regex. """ # Global to make tests extra verbose and help debugging VERBOSE = True # stdlib imports import StringIO import sys import unittest import re # IPython imports from IPython.lib import irunner from IPython.testing import decorators def pylab_not_importable(): """Test if importing pylab fails with RuntimeError (true when having no display)""" try: import pylab return False except RuntimeError: return True # Testing code begins class RunnerTestCase(unittest.TestCase): def setUp(self): self.out = StringIO.StringIO() #self.out = sys.stdout def _test_runner(self,runner,source,output): """Test that a given runner's input/output match.""" runner.run_source(source) out = self.out.getvalue() #out = '' # this output contains nasty \r\n lineends, and the initial ipython # banner. clean it up for comparison, removing lines of whitespace output_l = [l for l in output.splitlines() if l and not l.isspace()] out_l = [l for l in out.splitlines() if l and not l.isspace()] mismatch = 0 if len(output_l) != len(out_l): message = ("Mismatch in number of lines\n\n" "Expected:\n" "~~~~~~~~~\n" "%s\n\n" "Got:\n" "~~~~~~~~~\n" "%s" ) % ("\n".join(output_l), "\n".join(out_l)) self.fail(message) for n in range(len(output_l)): # Do a line-by-line comparison ol1 = output_l[n].strip() ol2 = out_l[n].strip() if not re.match(ol1,ol2): mismatch += 1 if VERBOSE: print '<<< line %s does not match:' % n print repr(ol1) print repr(ol2) print '>>>' self.assert_(mismatch==0,'Number of mismatched lines: %s' % mismatch) @decorators.skipif_not_matplotlib @decorators.skipif(pylab_not_importable, "Likely a run without X.") def test_pylab_import_all_enabled(self): "Verify that plot is available when pylab_import_all = True" source = """ from IPython.config.application import Application app = Application.instance() app.pylab_import_all = True pylab ip=get_ipython() 'plot' in ip.user_ns """ output = """ In \[1\]: from IPython\.config\.application import Application In \[2\]: app = Application\.instance\(\) In \[3\]: app\.pylab_import_all = True In \[4\]: pylab ^Welcome to pylab, a matplotlib-based Python environment For more information, type 'help\(pylab\)'\. In \[5\]: ip=get_ipython\(\) In \[6\]: \'plot\' in ip\.user_ns Out\[6\]: True """ runner = irunner.IPythonRunner(out=self.out) self._test_runner(runner,source,output) @decorators.skipif_not_matplotlib @decorators.skipif(pylab_not_importable, "Likely a run without X.") def test_pylab_import_all_disabled(self): "Verify that plot is not available when pylab_import_all = False" source = """ from IPython.config.application import Application app = Application.instance() app.pylab_import_all = False pylab ip=get_ipython() 'plot' in ip.user_ns """ output = """ In \[1\]: from IPython\.config\.application import Application In \[2\]: app = Application\.instance\(\) In \[3\]: app\.pylab_import_all = False In \[4\]: pylab ^Welcome to pylab, a matplotlib-based Python environment For more information, type 'help\(pylab\)'\. In \[5\]: ip=get_ipython\(\) In \[6\]: \'plot\' in ip\.user_ns Out\[6\]: False """ runner = irunner.IPythonRunner(out=self.out) self._test_runner(runner,source,output)
en
0.581641
Test suite for pylab_import_all magic Modified from the irunner module but using regex. # Global to make tests extra verbose and help debugging # stdlib imports # IPython imports Test if importing pylab fails with RuntimeError (true when having no display) # Testing code begins #self.out = sys.stdout Test that a given runner's input/output match. #out = '' # this output contains nasty \r\n lineends, and the initial ipython # banner. clean it up for comparison, removing lines of whitespace # Do a line-by-line comparison from IPython.config.application import Application app = Application.instance() app.pylab_import_all = True pylab ip=get_ipython() 'plot' in ip.user_ns In \[1\]: from IPython\.config\.application import Application In \[2\]: app = Application\.instance\(\) In \[3\]: app\.pylab_import_all = True In \[4\]: pylab ^Welcome to pylab, a matplotlib-based Python environment For more information, type 'help\(pylab\)'\. In \[5\]: ip=get_ipython\(\) In \[6\]: \'plot\' in ip\.user_ns Out\[6\]: True from IPython.config.application import Application app = Application.instance() app.pylab_import_all = False pylab ip=get_ipython() 'plot' in ip.user_ns In \[1\]: from IPython\.config\.application import Application In \[2\]: app = Application\.instance\(\) In \[3\]: app\.pylab_import_all = False In \[4\]: pylab ^Welcome to pylab, a matplotlib-based Python environment For more information, type 'help\(pylab\)'\. In \[5\]: ip=get_ipython\(\) In \[6\]: \'plot\' in ip\.user_ns Out\[6\]: False
2.559547
3
checkpoint.py
GooLee0123/MBRNN
1
10461
import logging import os import shutil import time import torch model_state = 'model_state.pt' trainer_state = 'trainer_state.pt' class Checkpoint(): def __init__(self, step, epoch, model, optim, path=None, opt=None): self.step = step self.epoch = epoch self.model = model self.optim = optim self._path = path self.opt = opt self.logger = logging.getLogger(__name__) @property def path(self): if self._path is None: raise LookupError("The checkpoint has not been saved.") return self._path @classmethod def load(cls, model, optim=None, opt=None): logger = logging.getLogger(__name__) all_times = sorted(os.listdir(opt.ckpt_fd), reverse=True) fchckpt = os.path.join(opt.ckpt_fd, all_times[0]) logger.info("load checkpoint from %s" % fchckpt) resume_model = torch.load(os.path.join(fchckpt, model_state), map_location=opt.device) resume_checkpoint = torch.load(os.path.join(fchckpt, trainer_state), map_location=opt.device) model.load_state_dict(resume_model) if optim is not None: optim.load_state_dict(resume_checkpoint['optimizer']) return Checkpoint(step=resume_checkpoint['step'], epoch=resume_checkpoint['epoch'], model=model, optim=optim, path=opt.ckpt_fd) def save(self): date_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime()) path = os.path.join(self.opt.ckpt_fd, date_time) if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) torch.save( {'epoch': self.epoch, 'step': self.step, 'optimizer': self.optim.state_dict()}, os.path.join(path, trainer_state)) torch.save( self.model.state_dict(), os.path.join(path, model_state)) log_msg = "Validation loss being smaller than previous " log_msg += "minimum, checkpoint is saved at %s" % path self.logger.info(log_msg) return path
import logging import os import shutil import time import torch model_state = 'model_state.pt' trainer_state = 'trainer_state.pt' class Checkpoint(): def __init__(self, step, epoch, model, optim, path=None, opt=None): self.step = step self.epoch = epoch self.model = model self.optim = optim self._path = path self.opt = opt self.logger = logging.getLogger(__name__) @property def path(self): if self._path is None: raise LookupError("The checkpoint has not been saved.") return self._path @classmethod def load(cls, model, optim=None, opt=None): logger = logging.getLogger(__name__) all_times = sorted(os.listdir(opt.ckpt_fd), reverse=True) fchckpt = os.path.join(opt.ckpt_fd, all_times[0]) logger.info("load checkpoint from %s" % fchckpt) resume_model = torch.load(os.path.join(fchckpt, model_state), map_location=opt.device) resume_checkpoint = torch.load(os.path.join(fchckpt, trainer_state), map_location=opt.device) model.load_state_dict(resume_model) if optim is not None: optim.load_state_dict(resume_checkpoint['optimizer']) return Checkpoint(step=resume_checkpoint['step'], epoch=resume_checkpoint['epoch'], model=model, optim=optim, path=opt.ckpt_fd) def save(self): date_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime()) path = os.path.join(self.opt.ckpt_fd, date_time) if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) torch.save( {'epoch': self.epoch, 'step': self.step, 'optimizer': self.optim.state_dict()}, os.path.join(path, trainer_state)) torch.save( self.model.state_dict(), os.path.join(path, model_state)) log_msg = "Validation loss being smaller than previous " log_msg += "minimum, checkpoint is saved at %s" % path self.logger.info(log_msg) return path
none
1
2.37965
2
test/eval_mines_color.py
alalagong/LEDNet
3
10462
import numpy as np import torch import os import cv2 import importlib from dataset import * from PIL import Image from argparse import ArgumentParser from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision.transforms import Compose, CenterCrop, Normalize, Resize from torchvision.transforms import ToTensor, ToPILImage from dataset import cityscapes from lednet import Net from transform import Relabel, ToLabel, Colorize import visdom NUM_CHANNELS = 3 NUM_CLASSES = 20 #* *******************测试单张图片**************************** image_transform = ToPILImage() input_transform_cityscapes = Compose([ Resize((512, 1024), Image.BILINEAR), ToTensor(), # Normalize([.485, .456, .406], [.229, .224, .225]), ]) def main(args): modelpath = args.loadDir + args.loadModel weightspath = args.loadDir + args.loadWeights print("Loading model: " + modelpath) print("Loading weights: " + weightspath) model = Net(NUM_CLASSES) model = torch.nn.DataParallel(model) if (not args.cpu): model = model.cuda() # model.load_state_dict(torch.load(args.state)) # model.load_state_dict(torch.load(weightspath)) #not working if missing key def load_my_state_dict(model, state_dict): # custom function to load model when not all dict elements own_state = model.state_dict() for name, param in state_dict.items(): if name not in own_state: continue own_state[name].copy_(param) return model model = load_my_state_dict(model, torch.load(weightspath)) print("Model and weights LOADED successfully") model.eval() if (not os.path.exists(args.datadir)): print("Error: datadir could not be loaded") # loader = DataLoader( # cityscapes('/home/liqi/PycharmProjects/LEDNet/4.png', input_transform_cityscapes, target_transform_cityscapes, subset=args.subset), # num_workers=args.num_workers, batch_size=1 ,shuffle=False) input_transform_cityscapes = Compose([ Resize((512, 1024), Image.BILINEAR), ToTensor(), # Normalize([.485, .456, .406], [.229, .224, .225]), ]) name ="4.png" with open(image_path_city('/home/gongyiqun/images', name), 'rb') as f: images = load_image(f).convert('RGB') images = input_transform_cityscapes(images) # For visualizer: # must launch in other window "python3.6 -m visdom.server -port 8097" # and access localhost:8097 to see it if (args.visualize): vis = visdom.Visdom() if (not args.cpu): images = images.cuda() # labels = labels.cuda() a=torch.unsqueeze(images,0) inputs = Variable(a) # targets = Variable(labels) with torch.no_grad(): outputs = model(inputs) label = outputs[0].max(0)[1].byte().cpu().data # label_cityscapes = cityscapes_trainIds2labelIds(label.unsqueeze(0)) label_color = Colorize()(label.unsqueeze(0)) filenameSave = "./save_color/"+"Others/"+name os.makedirs(os.path.dirname(filenameSave), exist_ok=True) # image_transform(label.byte()).save(filenameSave) label_save = ToPILImage()(label_color) label_save = label_save.resize((1241, 376), Image.BILINEAR) # label_save = cv2.resize(label_save, (376, 1224),interpolation=cv2.INTER_AREA) label_save.save(filenameSave) if (args.visualize): vis.image(label_color.numpy()) # print(step, filenameSave) # for step, (images, labels, filename, filenameGt) in enumerate(loader): if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--state') parser.add_argument('--loadDir', default="../save/logs(KITTI)/") parser.add_argument('--loadWeights', default="model_best.pth") parser.add_argument('--loadModel', default="lednet.py") parser.add_argument('--subset', default="val") # can be val, test, train, demoSequence parser.add_argument('--datadir', default="") parser.add_argument('--num-workers', type=int, default=4) parser.add_argument('--batch-size', type=int, default=1) parser.add_argument('--cpu', action='store_true') parser.add_argument('--visualize', action='store_true') main(parser.parse_args())
import numpy as np import torch import os import cv2 import importlib from dataset import * from PIL import Image from argparse import ArgumentParser from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision.transforms import Compose, CenterCrop, Normalize, Resize from torchvision.transforms import ToTensor, ToPILImage from dataset import cityscapes from lednet import Net from transform import Relabel, ToLabel, Colorize import visdom NUM_CHANNELS = 3 NUM_CLASSES = 20 #* *******************测试单张图片**************************** image_transform = ToPILImage() input_transform_cityscapes = Compose([ Resize((512, 1024), Image.BILINEAR), ToTensor(), # Normalize([.485, .456, .406], [.229, .224, .225]), ]) def main(args): modelpath = args.loadDir + args.loadModel weightspath = args.loadDir + args.loadWeights print("Loading model: " + modelpath) print("Loading weights: " + weightspath) model = Net(NUM_CLASSES) model = torch.nn.DataParallel(model) if (not args.cpu): model = model.cuda() # model.load_state_dict(torch.load(args.state)) # model.load_state_dict(torch.load(weightspath)) #not working if missing key def load_my_state_dict(model, state_dict): # custom function to load model when not all dict elements own_state = model.state_dict() for name, param in state_dict.items(): if name not in own_state: continue own_state[name].copy_(param) return model model = load_my_state_dict(model, torch.load(weightspath)) print("Model and weights LOADED successfully") model.eval() if (not os.path.exists(args.datadir)): print("Error: datadir could not be loaded") # loader = DataLoader( # cityscapes('/home/liqi/PycharmProjects/LEDNet/4.png', input_transform_cityscapes, target_transform_cityscapes, subset=args.subset), # num_workers=args.num_workers, batch_size=1 ,shuffle=False) input_transform_cityscapes = Compose([ Resize((512, 1024), Image.BILINEAR), ToTensor(), # Normalize([.485, .456, .406], [.229, .224, .225]), ]) name ="4.png" with open(image_path_city('/home/gongyiqun/images', name), 'rb') as f: images = load_image(f).convert('RGB') images = input_transform_cityscapes(images) # For visualizer: # must launch in other window "python3.6 -m visdom.server -port 8097" # and access localhost:8097 to see it if (args.visualize): vis = visdom.Visdom() if (not args.cpu): images = images.cuda() # labels = labels.cuda() a=torch.unsqueeze(images,0) inputs = Variable(a) # targets = Variable(labels) with torch.no_grad(): outputs = model(inputs) label = outputs[0].max(0)[1].byte().cpu().data # label_cityscapes = cityscapes_trainIds2labelIds(label.unsqueeze(0)) label_color = Colorize()(label.unsqueeze(0)) filenameSave = "./save_color/"+"Others/"+name os.makedirs(os.path.dirname(filenameSave), exist_ok=True) # image_transform(label.byte()).save(filenameSave) label_save = ToPILImage()(label_color) label_save = label_save.resize((1241, 376), Image.BILINEAR) # label_save = cv2.resize(label_save, (376, 1224),interpolation=cv2.INTER_AREA) label_save.save(filenameSave) if (args.visualize): vis.image(label_color.numpy()) # print(step, filenameSave) # for step, (images, labels, filename, filenameGt) in enumerate(loader): if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--state') parser.add_argument('--loadDir', default="../save/logs(KITTI)/") parser.add_argument('--loadWeights', default="model_best.pth") parser.add_argument('--loadModel', default="lednet.py") parser.add_argument('--subset', default="val") # can be val, test, train, demoSequence parser.add_argument('--datadir', default="") parser.add_argument('--num-workers', type=int, default=4) parser.add_argument('--batch-size', type=int, default=1) parser.add_argument('--cpu', action='store_true') parser.add_argument('--visualize', action='store_true') main(parser.parse_args())
en
0.436171
#* *******************测试单张图片**************************** # Normalize([.485, .456, .406], [.229, .224, .225]), # model.load_state_dict(torch.load(args.state)) # model.load_state_dict(torch.load(weightspath)) #not working if missing key # custom function to load model when not all dict elements # loader = DataLoader( # cityscapes('/home/liqi/PycharmProjects/LEDNet/4.png', input_transform_cityscapes, target_transform_cityscapes, subset=args.subset), # num_workers=args.num_workers, batch_size=1 ,shuffle=False) # Normalize([.485, .456, .406], [.229, .224, .225]), # For visualizer: # must launch in other window "python3.6 -m visdom.server -port 8097" # and access localhost:8097 to see it # labels = labels.cuda() # targets = Variable(labels) # label_cityscapes = cityscapes_trainIds2labelIds(label.unsqueeze(0)) # image_transform(label.byte()).save(filenameSave) # label_save = cv2.resize(label_save, (376, 1224),interpolation=cv2.INTER_AREA) # print(step, filenameSave) # for step, (images, labels, filename, filenameGt) in enumerate(loader): # can be val, test, train, demoSequence
2.357113
2
tests/test_resource_linkage.py
firesock/pydantic-jsonapi
0
10463
import pytest from pytest import raises from pydantic_jsonapi.resource_linkage import ResourceLinkage from pydantic import BaseModel, ValidationError class ThingWithLinkageData(BaseModel): data: ResourceLinkage class TestResourceLinks: @pytest.mark.parametrize( 'linkage, message', [ ( None, 'null is valid for empty to-one relationships', ), ( [], 'empty list valid for empty to-many relationships.', ), ( {'id': 'abc123', 'type': 'item', 'meta': None}, 'single resource identifier valid for non-empty to-one relationships.', ), ( [ {'id': 'abc123', 'type': 'item', 'meta': None}, {'id': 'def456', 'type': 'item', 'meta': None}, ], 'array of resource identifiers valid for non-empty to-many relationships.', ), ], ) def test_valid_possibilities(self, linkage, message): structure_to_validate = { 'data': linkage } validated = ThingWithLinkageData(**structure_to_validate) assert validated.dict() == structure_to_validate, message def test_invalid_resource_identifier(self): structure_to_validate = { 'data': {} } with raises(ValidationError) as e: ThingWithLinkageData(**structure_to_validate) assert e.value.errors() == [ {'loc': ('data', 'id'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data', 'type'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data',), 'msg': 'value is not a valid list', 'type': 'type_error.list'}, ] def test_invalid_resource_identifier_array(self): structure_to_validate = { 'data': [ {} ], } with raises(ValidationError) as e: ThingWithLinkageData(**structure_to_validate) assert e.value.errors() == [ {'loc': ('data',), 'msg': 'value is not a valid dict', 'type': 'type_error.dict'}, {'loc': ('data', 0, 'id'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data', 0, 'type'), 'msg': 'field required', 'type': 'value_error.missing'}, ]
import pytest from pytest import raises from pydantic_jsonapi.resource_linkage import ResourceLinkage from pydantic import BaseModel, ValidationError class ThingWithLinkageData(BaseModel): data: ResourceLinkage class TestResourceLinks: @pytest.mark.parametrize( 'linkage, message', [ ( None, 'null is valid for empty to-one relationships', ), ( [], 'empty list valid for empty to-many relationships.', ), ( {'id': 'abc123', 'type': 'item', 'meta': None}, 'single resource identifier valid for non-empty to-one relationships.', ), ( [ {'id': 'abc123', 'type': 'item', 'meta': None}, {'id': 'def456', 'type': 'item', 'meta': None}, ], 'array of resource identifiers valid for non-empty to-many relationships.', ), ], ) def test_valid_possibilities(self, linkage, message): structure_to_validate = { 'data': linkage } validated = ThingWithLinkageData(**structure_to_validate) assert validated.dict() == structure_to_validate, message def test_invalid_resource_identifier(self): structure_to_validate = { 'data': {} } with raises(ValidationError) as e: ThingWithLinkageData(**structure_to_validate) assert e.value.errors() == [ {'loc': ('data', 'id'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data', 'type'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data',), 'msg': 'value is not a valid list', 'type': 'type_error.list'}, ] def test_invalid_resource_identifier_array(self): structure_to_validate = { 'data': [ {} ], } with raises(ValidationError) as e: ThingWithLinkageData(**structure_to_validate) assert e.value.errors() == [ {'loc': ('data',), 'msg': 'value is not a valid dict', 'type': 'type_error.dict'}, {'loc': ('data', 0, 'id'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data', 0, 'type'), 'msg': 'field required', 'type': 'value_error.missing'}, ]
none
1
2.512387
3
src/tensorflow/keras_cnn.py
del680202/MachineLearning-memo
4
10464
import numpy as np from keras.datasets import mnist from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD from keras.utils import np_utils import keras.callbacks import keras.backend.tensorflow_backend as KTF import tensorflow as tf batch_size = 128 nb_classes = 10 nb_epoch = 20 nb_data = 28*28 log_filepath = '/tmp/keras_log' # load data (X_train, y_train), (X_test, y_test) = mnist.load_data() # reshape X_train = X_train.reshape(X_train.shape[0], X_train.shape[1]*X_train.shape[2]) X_test = X_test.reshape(X_test.shape[0], X_test.shape[1]*X_test.shape[2]) # rescale X_train = X_train.astype(np.float32) X_train /= 255 X_test = X_test.astype(np.float32) X_test /= 255 # convert class vectors to binary class matrices (one hot vectors) Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) old_session = KTF.get_session() with tf.Graph().as_default(): session = tf.Session('') KTF.set_session(session) KTF.set_learning_phase(1) # build model model = Sequential() model.add(Dense(512, input_shape=(nb_data,), init='normal',name='dense1')) model.add(Activation('relu', name='relu1')) model.add(Dropout(0.2, name='dropout1')) model.add(Dense(512, init='normal', name='dense2')) model.add(Activation('relu', name='relu2')) model.add(Dropout(0.2, name='dropout2')) model.add(Dense(10, init='normal', name='dense3')) model.add(Activation('softmax', name='softmax1')) model.summary() model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.001), metrics=['accuracy']) tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, histogram_freq=1) cbks = [tb_cb] history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch = nb_epoch, verbose=1, callbacks=cbks) score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy;', score[1]) KTF.set_session(old_session)
import numpy as np from keras.datasets import mnist from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD from keras.utils import np_utils import keras.callbacks import keras.backend.tensorflow_backend as KTF import tensorflow as tf batch_size = 128 nb_classes = 10 nb_epoch = 20 nb_data = 28*28 log_filepath = '/tmp/keras_log' # load data (X_train, y_train), (X_test, y_test) = mnist.load_data() # reshape X_train = X_train.reshape(X_train.shape[0], X_train.shape[1]*X_train.shape[2]) X_test = X_test.reshape(X_test.shape[0], X_test.shape[1]*X_test.shape[2]) # rescale X_train = X_train.astype(np.float32) X_train /= 255 X_test = X_test.astype(np.float32) X_test /= 255 # convert class vectors to binary class matrices (one hot vectors) Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) old_session = KTF.get_session() with tf.Graph().as_default(): session = tf.Session('') KTF.set_session(session) KTF.set_learning_phase(1) # build model model = Sequential() model.add(Dense(512, input_shape=(nb_data,), init='normal',name='dense1')) model.add(Activation('relu', name='relu1')) model.add(Dropout(0.2, name='dropout1')) model.add(Dense(512, init='normal', name='dense2')) model.add(Activation('relu', name='relu2')) model.add(Dropout(0.2, name='dropout2')) model.add(Dense(10, init='normal', name='dense3')) model.add(Activation('softmax', name='softmax1')) model.summary() model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.001), metrics=['accuracy']) tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, histogram_freq=1) cbks = [tb_cb] history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch = nb_epoch, verbose=1, callbacks=cbks) score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy;', score[1]) KTF.set_session(old_session)
en
0.760369
# load data # reshape # rescale # convert class vectors to binary class matrices (one hot vectors) # build model
2.822208
3
tests/blas/nodes/ger_test.py
xiacijie/dace
1
10465
<reponame>xiacijie/dace #!/usr/bin/env python3 # Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. from dace.transformation.dataflow.streaming_memory import StreamingMemory from dace.transformation.interstate.sdfg_nesting import InlineSDFG from dace.transformation.interstate.fpga_transform_sdfg import FPGATransformSDFG import numpy as np import argparse import scipy import dace from dace.memlet import Memlet import dace.libraries.blas as blas from dace.libraries.standard.memory import aligned_ndarray def pure_graph(implementation, dtype, veclen): m = dace.symbol("m") n = dace.symbol("n") vtype = dace.vector(dtype, veclen) sdfg = dace.SDFG("ger_test") state = sdfg.add_state("ger") sdfg.add_symbol("alpha", dtype) sdfg.add_array("x", shape=[m], dtype=dtype) sdfg.add_array("y", shape=[n / veclen], dtype=vtype) sdfg.add_array("A", shape=[m, n / veclen], dtype=vtype) sdfg.add_array("res", shape=[m, n / veclen], dtype=vtype) x = state.add_read("x") y = state.add_read("y") A = state.add_read("A") res = state.add_write("res") ger_node = blas.Ger(name="ger") ger_node.implementation = implementation state.add_memlet_path(x, ger_node, dst_conn="_x", memlet=Memlet("x[0:m]")) state.add_memlet_path(y, ger_node, dst_conn="_y", memlet=Memlet(f"y[0:n/{veclen}]")) state.add_memlet_path(A, ger_node, dst_conn="_A", memlet=Memlet(f"A[0:m, 0:n/{veclen}]")) state.add_memlet_path(ger_node, res, src_conn="_res", memlet=Memlet(f"res[0:m, 0:n/{veclen}]")) return ger_node, state, sdfg def fpga_graph(dtype, veclen, tile_size_x, tile_size_y): ger_node, state, sdfg = pure_graph("FPGA", dtype, veclen) ger_node.expand(sdfg, state, tile_size_x=tile_size_x, tile_size_y=tile_size_y) sdfg.apply_transformations_repeated([FPGATransformSDFG, InlineSDFG]) sdfg.expand_library_nodes() sdfg.apply_transformations_repeated( [InlineSDFG, StreamingMemory], [{}, { "storage": dace.StorageType.FPGA_Local }]) return sdfg def run_test(ger, target): x = np.ndarray(m, dtype=np.float32) y = np.ndarray(n, dtype=np.float32) A = np.ndarray((m, n), dtype=np.float32) res = A.copy() ref = res.copy() x[:] = np.random.rand(m).astype(np.float32) y[:] = np.random.rand(n).astype(np.float32) A[:] = np.random.rand(m, n).astype(np.float32) ger(alpha=alpha, x=x, y=y, A=A, res=res, m=m, n=n) ref = scipy.linalg.blas.sger(alpha=alpha, x=x, y=y, a=A) diff = np.linalg.norm(np.subtract(res, ref)) if diff >= args.eps * n * m: raise RuntimeError( "Unexpected result returned from ger rank 1 operation: " "got:\n{}\nexpected:\n{} on {}".format(A, ref, target)) else: print("Ok") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("N", type=int, nargs="?", default=256) parser.add_argument("M", type=int, nargs="?", default=512) parser.add_argument("tile_size_x", type=int, nargs="?", default=16) parser.add_argument("tile_size_y", type=int, nargs="?", default=32) parser.add_argument("alpha", type=np.float32, nargs="?", default=1.0) parser.add_argument("--target", dest="target", default="pure") parser.add_argument("--eps", type=float, default=1e-6) parser.add_argument("--veclen", type=int, default=8) args = parser.parse_args() n = args.N m = args.M tile_size_x = args.tile_size_x tile_size_y = args.tile_size_y alpha = args.alpha veclen = args.veclen if args.target == "pure": ger_node, state, sdfg = pure_graph("pure", dace.float32, veclen) ger_node.expand(sdfg, state) sdfg.apply_transformations_repeated([InlineSDFG]) elif args.target == "fpga": sdfg = fpga_graph(dace.float32, veclen, tile_size_x, tile_size_y) else: print("Unsupported target") exit(-1) x = aligned_ndarray(np.random.rand(m).astype(np.float32), alignment=4*veclen) y = aligned_ndarray(np.random.rand(n).astype(np.float32), alignment=4*veclen) A = aligned_ndarray(np.random.rand(m, n).astype(np.float32), alignment=4*veclen) res = aligned_ndarray(np.empty(A.shape, dtype=A.dtype), alignment=4*veclen) ref = aligned_ndarray(np.empty(A.shape, dtype=A.dtype), alignment=4*veclen) res[:] = A[:] ref[:] = A[:] sdfg(x=x, y=y, A=A, res=res, m=dace.int32(m), n=dace.int32(n), alpha=alpha) ref = scipy.linalg.blas.sger(alpha=alpha, x=x, y=y, a=ref) diff = np.linalg.norm(res - ref) if diff >= args.eps * n * m: raise RuntimeError(f"Validation failed: {diff}") else: print("Validation successful.")
#!/usr/bin/env python3 # Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. from dace.transformation.dataflow.streaming_memory import StreamingMemory from dace.transformation.interstate.sdfg_nesting import InlineSDFG from dace.transformation.interstate.fpga_transform_sdfg import FPGATransformSDFG import numpy as np import argparse import scipy import dace from dace.memlet import Memlet import dace.libraries.blas as blas from dace.libraries.standard.memory import aligned_ndarray def pure_graph(implementation, dtype, veclen): m = dace.symbol("m") n = dace.symbol("n") vtype = dace.vector(dtype, veclen) sdfg = dace.SDFG("ger_test") state = sdfg.add_state("ger") sdfg.add_symbol("alpha", dtype) sdfg.add_array("x", shape=[m], dtype=dtype) sdfg.add_array("y", shape=[n / veclen], dtype=vtype) sdfg.add_array("A", shape=[m, n / veclen], dtype=vtype) sdfg.add_array("res", shape=[m, n / veclen], dtype=vtype) x = state.add_read("x") y = state.add_read("y") A = state.add_read("A") res = state.add_write("res") ger_node = blas.Ger(name="ger") ger_node.implementation = implementation state.add_memlet_path(x, ger_node, dst_conn="_x", memlet=Memlet("x[0:m]")) state.add_memlet_path(y, ger_node, dst_conn="_y", memlet=Memlet(f"y[0:n/{veclen}]")) state.add_memlet_path(A, ger_node, dst_conn="_A", memlet=Memlet(f"A[0:m, 0:n/{veclen}]")) state.add_memlet_path(ger_node, res, src_conn="_res", memlet=Memlet(f"res[0:m, 0:n/{veclen}]")) return ger_node, state, sdfg def fpga_graph(dtype, veclen, tile_size_x, tile_size_y): ger_node, state, sdfg = pure_graph("FPGA", dtype, veclen) ger_node.expand(sdfg, state, tile_size_x=tile_size_x, tile_size_y=tile_size_y) sdfg.apply_transformations_repeated([FPGATransformSDFG, InlineSDFG]) sdfg.expand_library_nodes() sdfg.apply_transformations_repeated( [InlineSDFG, StreamingMemory], [{}, { "storage": dace.StorageType.FPGA_Local }]) return sdfg def run_test(ger, target): x = np.ndarray(m, dtype=np.float32) y = np.ndarray(n, dtype=np.float32) A = np.ndarray((m, n), dtype=np.float32) res = A.copy() ref = res.copy() x[:] = np.random.rand(m).astype(np.float32) y[:] = np.random.rand(n).astype(np.float32) A[:] = np.random.rand(m, n).astype(np.float32) ger(alpha=alpha, x=x, y=y, A=A, res=res, m=m, n=n) ref = scipy.linalg.blas.sger(alpha=alpha, x=x, y=y, a=A) diff = np.linalg.norm(np.subtract(res, ref)) if diff >= args.eps * n * m: raise RuntimeError( "Unexpected result returned from ger rank 1 operation: " "got:\n{}\nexpected:\n{} on {}".format(A, ref, target)) else: print("Ok") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("N", type=int, nargs="?", default=256) parser.add_argument("M", type=int, nargs="?", default=512) parser.add_argument("tile_size_x", type=int, nargs="?", default=16) parser.add_argument("tile_size_y", type=int, nargs="?", default=32) parser.add_argument("alpha", type=np.float32, nargs="?", default=1.0) parser.add_argument("--target", dest="target", default="pure") parser.add_argument("--eps", type=float, default=1e-6) parser.add_argument("--veclen", type=int, default=8) args = parser.parse_args() n = args.N m = args.M tile_size_x = args.tile_size_x tile_size_y = args.tile_size_y alpha = args.alpha veclen = args.veclen if args.target == "pure": ger_node, state, sdfg = pure_graph("pure", dace.float32, veclen) ger_node.expand(sdfg, state) sdfg.apply_transformations_repeated([InlineSDFG]) elif args.target == "fpga": sdfg = fpga_graph(dace.float32, veclen, tile_size_x, tile_size_y) else: print("Unsupported target") exit(-1) x = aligned_ndarray(np.random.rand(m).astype(np.float32), alignment=4*veclen) y = aligned_ndarray(np.random.rand(n).astype(np.float32), alignment=4*veclen) A = aligned_ndarray(np.random.rand(m, n).astype(np.float32), alignment=4*veclen) res = aligned_ndarray(np.empty(A.shape, dtype=A.dtype), alignment=4*veclen) ref = aligned_ndarray(np.empty(A.shape, dtype=A.dtype), alignment=4*veclen) res[:] = A[:] ref[:] = A[:] sdfg(x=x, y=y, A=A, res=res, m=dace.int32(m), n=dace.int32(n), alpha=alpha) ref = scipy.linalg.blas.sger(alpha=alpha, x=x, y=y, a=ref) diff = np.linalg.norm(res - ref) if diff >= args.eps * n * m: raise RuntimeError(f"Validation failed: {diff}") else: print("Validation successful.")
en
0.474033
#!/usr/bin/env python3 # Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved.
2.053641
2
spp.py
ninfueng/torch-cifar
0
10466
<reponame>ninfueng/torch-cifar import math from typing import List, Union import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor @torch.jit.script def spatial_pyramid_pool( input: Tensor, bins: Union[int, List[int]], mode: str = "max" ) -> Tensor: """Spatial Pyramid Pooling: https://arxiv.org/pdf/1406.4729.pdf Args: input (Tensor): an input tensor expected from the convolutional layer. bins (List[int]): a list of integer of preferred size of outputs. mode (str): how to reduce the spatial space. Returns: outputs (Tensor): a flatten tensor with size (batch, bins[0] * bins[0] + bins[1] * bins[1] + ...) """ assert mode in ["max", "mean", "average", "avg"] b, _, h, w = input.shape bins = [bins] if isinstance(bins, int) else bins outputs = [] for bin_ in bins: h_kernel = math.ceil(h / bin_) w_kernel = math.ceil(w / bin_) h_stride = math.floor(h / bin_) w_stride = math.floor(w / bin_) if mode == "max": output = F.max_pool2d( input, kernel_size=(h_kernel, w_kernel), stride=(h_stride, w_stride) ) else: output = F.avg_pool2d( input, kernel_size=(h_kernel, w_kernel), stride=(h_stride, w_stride) ) output = output.view(b, -1) outputs.append(output) outputs = torch.cat(outputs, dim=-1) return outputs class SpaitalPyramidPool(nn.Module): def __init__(self, bins: Union[int, List[int]], mode: str = "max") -> None: super().__init__() self.bins = bins self.mode = mode def forward(self, input: Tensor) -> Tensor: return spatial_pyramid_pool(input, bins=self.bins, mode=self.mode) if __name__ == "__main__": input = torch.zeros(1, 512, 13, 13) output = spatial_pyramid_pool(input, [1, 2, 3], "max") print(output.shape)
import math from typing import List, Union import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor @torch.jit.script def spatial_pyramid_pool( input: Tensor, bins: Union[int, List[int]], mode: str = "max" ) -> Tensor: """Spatial Pyramid Pooling: https://arxiv.org/pdf/1406.4729.pdf Args: input (Tensor): an input tensor expected from the convolutional layer. bins (List[int]): a list of integer of preferred size of outputs. mode (str): how to reduce the spatial space. Returns: outputs (Tensor): a flatten tensor with size (batch, bins[0] * bins[0] + bins[1] * bins[1] + ...) """ assert mode in ["max", "mean", "average", "avg"] b, _, h, w = input.shape bins = [bins] if isinstance(bins, int) else bins outputs = [] for bin_ in bins: h_kernel = math.ceil(h / bin_) w_kernel = math.ceil(w / bin_) h_stride = math.floor(h / bin_) w_stride = math.floor(w / bin_) if mode == "max": output = F.max_pool2d( input, kernel_size=(h_kernel, w_kernel), stride=(h_stride, w_stride) ) else: output = F.avg_pool2d( input, kernel_size=(h_kernel, w_kernel), stride=(h_stride, w_stride) ) output = output.view(b, -1) outputs.append(output) outputs = torch.cat(outputs, dim=-1) return outputs class SpaitalPyramidPool(nn.Module): def __init__(self, bins: Union[int, List[int]], mode: str = "max") -> None: super().__init__() self.bins = bins self.mode = mode def forward(self, input: Tensor) -> Tensor: return spatial_pyramid_pool(input, bins=self.bins, mode=self.mode) if __name__ == "__main__": input = torch.zeros(1, 512, 13, 13) output = spatial_pyramid_pool(input, [1, 2, 3], "max") print(output.shape)
en
0.589503
Spatial Pyramid Pooling: https://arxiv.org/pdf/1406.4729.pdf Args: input (Tensor): an input tensor expected from the convolutional layer. bins (List[int]): a list of integer of preferred size of outputs. mode (str): how to reduce the spatial space. Returns: outputs (Tensor): a flatten tensor with size (batch, bins[0] * bins[0] + bins[1] * bins[1] + ...)
3.068665
3
src/SparseSC/utils/AzureBatch/azure_batch_client.py
wofein/SparseSC
0
10467
""" usage requires these additional modules pip install azure-batch azure-storage-blob jsonschema pyyaml && pip install git+https://github.com/microsoft/SparseSC.git@ad4bf27edb28f517508f6934f21eb65d17fb6543 && scgrad start usage: from SparseSC import fit, aggregate_batch_results from SparseSC.utils.azure_batch_client import BatchConfig, run _TIMESTAMP = datetime.utcnow().strftime("%Y%m%d%H%M%S") BATCH_DIR= "path/to/my/batch_config/" fit(x=x,..., batchDir=BATCH_DIR) my_config = BatchConfig( BATCH_ACCOUNT_NAME="MySecret", BATCH_ACCOUNT_KEY="MySecret", BATCH_ACCOUNT_URL="MySecret", STORAGE_ACCOUNT_NAME="MySecret", STORAGE_ACCOUNT_KEY="MySecret", POOL_ID="my-compute-pool", POOL_NODE_COUNT=0, POOL_LOW_PRIORITY_NODE_COUNT=20, POOL_VM_SIZE="STANDARD_A1_v2", DELETE_POOL_WHEN_DONE=False, JOB_ID="my-job" + _TIMESTAMP, DELETE_JOB_WHEN_DONE=False, CONTAINER_NAME="my-blob-container", BATCH_DIRECTORY=BATCH_DIR, ) run(my_config) fitted_model = aggregate_batch_results("path/to/my/batch_config") """ # pylint: disable=differing-type-doc, differing-param-doc, missing-param-doc, missing-raises-doc, missing-return-doc from __future__ import print_function import datetime import io import os import sys import time import pathlib import importlib from collections import defaultdict import azure.storage.blob as azureblob from azure.storage.blob.models import ContainerPermissions import azure.batch.batch_service_client as batch import azure.batch.batch_auth as batch_auth import azure.batch.models as models from SparseSC.cli.stt import get_config from ..print_progress import print_progress from .BatchConfig import BatchConfig, validate_config from yaml import load try: from yaml import CLoader as Loader except ImportError: from yaml import Loader from .constants import ( _STANDARD_OUT_FILE_NAME, _CONTAINER_OUTPUT_FILE, _CONTAINER_INPUT_FILE, _BATCH_CV_FILE_NAME, ) FOLD_FILE_PATTERN = "fold_{}.yaml" # pylint: disable=bad-continuation, invalid-name, protected-access, line-too-long, fixme sys.path.append(".") sys.path.append("..") # Update the Batch and Storage account credential strings in config.py with values # unique to your accounts. These are used when constructing connection strings # for the Batch and Storage client objects. def build_output_sas_url(config, _blob_client): """ build a sas token for the output container """ sas_token = _blob_client.generate_container_shared_access_signature( config.CONTAINER_NAME, ContainerPermissions.READ + ContainerPermissions.WRITE + ContainerPermissions.DELETE + ContainerPermissions.LIST, datetime.datetime.utcnow() + datetime.timedelta(hours=config.STORAGE_ACCESS_DURATION_HRS), start=datetime.datetime.utcnow(), ) _sas_url = "https://{}.blob.core.windows.net/{}?{}".format( config.STORAGE_ACCOUNT_NAME, config.CONTAINER_NAME, sas_token ) return _sas_url def print_batch_exception(batch_exception): """ Prints the contents of the specified Batch exception. :param batch_exception: """ print("-------------------------------------------") print("Exception encountered:") if ( batch_exception.error and batch_exception.error.message and batch_exception.error.message.value ): print(batch_exception.error.message.value) if batch_exception.error.values: print() for mesg in batch_exception.error.values: print("{}:\t{}".format(mesg.key, mesg.value)) print("-------------------------------------------") def build_output_file(container_sas_url, fold_number): """ Uploads a local file to an Azure Blob storage container. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. """ # where to store the outputs container_dest = models.OutputFileBlobContainerDestination( container_url=container_sas_url, path=FOLD_FILE_PATTERN.format(fold_number) ) dest = models.OutputFileDestination(container=container_dest) # under what conditions should you attempt to extract the outputs? upload_options = models.OutputFileUploadOptions( upload_condition=models.OutputFileUploadCondition.task_success ) # https://docs.microsoft.com/en-us/azure/batch/batch-task-output-files#specify-output-files-for-task-output return models.OutputFile( file_pattern=_CONTAINER_OUTPUT_FILE, destination=dest, upload_options=upload_options, ) def upload_file_to_container(block_blob_client, container_name, file_path, duration_hours=24): """ Uploads a local file to an Azure Blob storage container. :param block_blob_client: A blob service client. :type block_blob_client: `azure.storage.blob.BlockBlobService` :param str container_name: The name of the Azure Blob storage container. :param str file_path: The local path to the file. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. """ blob_name = os.path.basename(file_path) print("Uploading file {} to container [{}]...".format(file_path, container_name)) block_blob_client.create_blob_from_path(container_name, blob_name, file_path) sas_token = block_blob_client.generate_blob_shared_access_signature( container_name, blob_name, permission=azureblob.BlobPermissions.READ, expiry=datetime.datetime.utcnow() + datetime.timedelta(hours=duration_hours), ) sas_url = block_blob_client.make_blob_url( container_name, blob_name, sas_token=sas_token ) return models.ResourceFile(http_url=sas_url, file_path=_CONTAINER_INPUT_FILE) def create_pool(config, batch_service_client): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sku """ # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ image_ref_to_use = models.ImageReference( publisher="microsoft-azure-batch", offer="ubuntu-server-container", sku="16-04-lts", version="latest", ) if config.REGISTRY_USERNAME: registry = batch.models.ContainerRegistry( user_name=config.REGISTRY_USERNAME, password=config.REGISTRY_PASSWORD, registry_server=config.REGISTRY_SERVER, ) container_conf = batch.models.ContainerConfiguration( container_image_names=[config.DOCKER_CONTAINER], container_registries=[registry], ) else: container_conf = batch.models.ContainerConfiguration( container_image_names=[config.DOCKER_CONTAINER] ) new_pool = batch.models.PoolAddParameter( id=config.POOL_ID, virtual_machine_configuration=batch.models.VirtualMachineConfiguration( image_reference=image_ref_to_use, container_configuration=container_conf, node_agent_sku_id="batch.node.ubuntu 16.04", ), vm_size=config.POOL_VM_SIZE, target_dedicated_nodes=config.POOL_NODE_COUNT, target_low_priority_nodes=config.POOL_LOW_PRIORITY_NODE_COUNT, ) batch_service_client.pool.add(new_pool) def create_job(batch_service_client, job_id, pool_id): """ Creates a job with the specified ID, associated with the specified pool. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID for the job. :param str pool_id: The ID for the pool. """ print("Creating job [{}]...".format(job_id)) job_description = batch.models.JobAddParameter( id=job_id, pool_info=batch.models.PoolInformation(pool_id=pool_id) ) batch_service_client.job.add(job_description) def add_tasks( config, _blob_client, batch_service_client, container_sas_url, job_id, _input_file, count, ): """ Adds a task for each input file in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. :param list input_files: The input files :param output_container_sas_token: A SAS token granting write access to the specified Azure Blob storage container. """ print("Adding {} tasks to job [{}]...".format(count, job_id)) tasks = list() for fold_number in range(count): output_file = build_output_file(container_sas_url, fold_number) # command_line = '/bin/bash -c \'echo "Hello World" && echo "hello: world" > output.yaml\'' command_line = "/bin/bash -c 'stt {} {} {}'".format( _CONTAINER_INPUT_FILE, _CONTAINER_OUTPUT_FILE, fold_number ) task_container_settings = models.TaskContainerSettings( image_name=config.DOCKER_CONTAINER ) tasks.append( batch.models.TaskAddParameter( id="Task_{}".format(fold_number), command_line=command_line, resource_files=[_input_file], output_files=[output_file], container_settings=task_container_settings, ) ) batch_service_client.task.add_collection(job_id, tasks) def wait_for_tasks_to_complete(batch_service_client, job_id, timeout): """ Returns when all tasks in the specified job reach the Completed state. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The id of the job whose tasks should be to monitored. :param timedelta timeout: The duration to wait for task completion. If all tasks in the specified job do not reach Completed state within this time period, an exception will be raised. """ _start_time = datetime.datetime.now() timeout_expiration = _start_time + timeout # print( "Monitoring all tasks for 'Completed' state, timeout in {}...".format(timeout), end="",) while datetime.datetime.now() < timeout_expiration: sys.stdout.flush() tasks = [t for t in batch_service_client.task.list(job_id)] incomplete_tasks = [ task for task in tasks if task.state != models.TaskState.completed ] hours, remainder = divmod((datetime.datetime.now() - _start_time).seconds, 3600) minutes, seconds = divmod(remainder, 60) print_progress( len(tasks) - len(incomplete_tasks), len(tasks), prefix="Time elapsed {:02}:{:02}:{:02}".format( int(hours), int(minutes), int(seconds) ), decimals=1, bar_length=min(len(tasks), 50), ) error_codes = [t.execution_info.exit_code for t in tasks if t.execution_info and t.execution_info.exit_code ] if error_codes: codes = defaultdict(lambda : 0) for cd in error_codes: codes[cd] +=1 # import pdb; pdb.set_trace() raise RuntimeError( "\nSome tasks have exited with a non-zero exit code including: " + ", ".join([ "{}({})".format(k,v) for k, v in codes.items() ] )) if not incomplete_tasks: print() return True time.sleep(1) print() raise RuntimeError( "ERROR: Tasks did not reach 'Completed' state within " "timeout period of " + str(timeout) ) def print_task_output(batch_service_client, job_id, encoding=None): """Prints the stdout.txt file for each task in the job. :param batch_client: The batch client to use. :type batch_client: `batchserviceclient.BatchServiceClient` :param str job_id: The id of the job with task output files to print. """ print("Printing task output...") tasks = batch_service_client.task.list(job_id) for task in tasks: node_id = batch_service_client.task.get(job_id, task.id).node_info.node_id print("Task: {}".format(task.id)) print("Node: {}".format(node_id)) stream = batch_service_client.file.get_from_task( job_id, task.id, _STANDARD_OUT_FILE_NAME ) file_text = _read_stream_as_string(stream, encoding) print("Standard output:") print(file_text) def _read_stream_as_string(stream, encoding): """Read stream as string :param stream: input stream generator :param str encoding: The encoding of the file. The default is utf-8. :return: The file content. :rtype: str """ output = io.BytesIO() try: for data in stream: output.write(data) if encoding is None: encoding = "utf-8" return output.getvalue().decode(encoding) finally: output.close() raise RuntimeError("could not write data to stream or decode bytes") def _download_files(config, _blob_client, out_path, count): pathlib.Path(config.BATCH_DIRECTORY).mkdir(parents=True, exist_ok=True) blob_names = [b.name for b in _blob_client.list_blobs(config.CONTAINER_NAME)] for i in range(count): blob_name = FOLD_FILE_PATTERN.format(i) if not blob_name in blob_names: raise RuntimeError("incomplete blob set: missing blob {}".format(blob_name)) out_path = os.path.join(config.BATCH_DIRECTORY, blob_name) _blob_client.get_blob_to_path(config.CONTAINER_NAME, blob_name, out_path) def _download_results(config, _blob_client, out_path, count, ptrn=FOLD_FILE_PATTERN): pathlib.Path(config.BATCH_DIRECTORY).mkdir(parents=True, exist_ok=True) blob_names = [b.name for b in _blob_client.list_blobs(config.CONTAINER_NAME)] results = [] for i in range(count): blob_name = ptrn.format(i) if not blob_name in blob_names: raise RuntimeError("incomplete blob set: missing blob {}".format(blob_name)) out_path = os.path.join(config.BATCH_DIRECTORY, blob_name) with _blob_client.get_blob_to_stream( config.CONTAINER_NAME, blob_name, out_path ) as blob: results[i] = load(blob, Loader=Loader) return results def run(config: BatchConfig, wait=True) -> None: r""" :param config: A :class:`BatchConfig` instance with the Azure Batch run parameters :type config: :class:BatchConfig :param boolean wait: If true, wait for the batch to complete and then download the results to file :raises BatchErrorException: If raised by the Azure Batch Python SDK """ # pylint: disable=too-many-locals # replace any missing values in the configuration with environment variables config = validate_config(config) start_time = datetime.datetime.now().replace(microsecond=0) print( 'Synthetic Controls Run "{}" start time: {}'.format(config.JOB_ID, start_time) ) print() _LOCAL_INPUT_FILE = os.path.join(config.BATCH_DIRECTORY, _BATCH_CV_FILE_NAME) v_pen, w_pen, model_data = get_config(_LOCAL_INPUT_FILE) n_folds = len(model_data["folds"]) * len(v_pen) * len(w_pen) # Create the blob client, for use in obtaining references to # blob storage containers and uploading files to containers. blob_client = azureblob.BlockBlobService( account_name=config.STORAGE_ACCOUNT_NAME, account_key=config.STORAGE_ACCOUNT_KEY ) # Use the blob client to create the containers in Azure Storage if they # don't yet exist. blob_client.create_container(config.CONTAINER_NAME, fail_on_exist=False) CONTAINER_SAS_URL = build_output_sas_url(config, blob_client) # The collection of data files that are to be processed by the tasks. input_file_path = os.path.join(sys.path[0], _LOCAL_INPUT_FILE) # Upload the data files. input_file = upload_file_to_container( blob_client, config.CONTAINER_NAME, input_file_path, config.STORAGE_ACCESS_DURATION_HRS ) # Create a Batch service client. We'll now be interacting with the Batch # service in addition to Storage credentials = batch_auth.SharedKeyCredentials( config.BATCH_ACCOUNT_NAME, config.BATCH_ACCOUNT_KEY ) batch_client = batch.BatchServiceClient( credentials, batch_url=config.BATCH_ACCOUNT_URL ) try: # Create the pool that will contain the compute nodes that will execute the # tasks. try: create_pool(config, batch_client) print("Created pool: ", config.POOL_ID) except models.BatchErrorException: print("Using pool: ", config.POOL_ID) # Create the job that will run the tasks. create_job(batch_client, config.JOB_ID, config.POOL_ID) # Add the tasks to the job. add_tasks( config, blob_client, batch_client, CONTAINER_SAS_URL, config.JOB_ID, input_file, n_folds, ) if not wait: return # Pause execution until tasks reach Completed state. wait_for_tasks_to_complete( batch_client, config.JOB_ID, datetime.timedelta(hours=config.STORAGE_ACCESS_DURATION_HRS) ) _download_files(config, blob_client, config.BATCH_DIRECTORY, n_folds) except models.BatchErrorException as err: print_batch_exception(err) raise err # Clean up storage resources # TODO: re-enable this and delete the output container too # -- print("Deleting container [{}]...".format(input_container_name)) # -- blob_client.delete_container(input_container_name) # Print out some timing info end_time = datetime.datetime.now().replace(microsecond=0) print() print("Sample end: {}".format(end_time)) print("Elapsed time: {}".format(end_time - start_time)) print() # Clean up Batch resources (if the user so chooses). if config.DELETE_POOL_WHEN_DONE: batch_client.pool.delete(config.POOL_ID) if config.DELETE_JOB_WHEN_DONE: batch_client.job.delete(config.JOB_ID) def load_results(config: BatchConfig) -> None: r""" :param config: A :class:`BatchConfig` instance with the Azure Batch run parameters :type config: :class:BatchConfig :raises BatchErrorException: If raised by the Azure Batch Python SDK """ # pylint: disable=too-many-locals # replace any missing values in the configuration with environment variables config = validate_config(config) start_time = datetime.datetime.now().replace(microsecond=0) print('Load result for job "{}" start time: {}'.format(config.JOB_ID, start_time)) print() _LOCAL_INPUT_FILE = os.path.join(config.BATCH_DIRECTORY, _BATCH_CV_FILE_NAME) v_pen, w_pen, model_data = get_config(_LOCAL_INPUT_FILE) n_folds = len(model_data["folds"]) * len(v_pen) * len(w_pen) # Create the blob client, for use in obtaining references to # blob storage containers and uploading files to containers. blob_client = azureblob.BlockBlobService( account_name=config.STORAGE_ACCOUNT_NAME, account_key=config.STORAGE_ACCOUNT_KEY ) # Create a Batch service client. We'll now be interacting with the Batch # service in addition to Storage credentials = batch_auth.SharedKeyCredentials( config.BATCH_ACCOUNT_NAME, config.BATCH_ACCOUNT_KEY ) batch_client = batch.BatchServiceClient( credentials, batch_url=config.BATCH_ACCOUNT_URL ) try: # Pause execution until tasks reach Completed state. wait_for_tasks_to_complete( batch_client, config.JOB_ID, datetime.timedelta(hours=config.STORAGE_ACCESS_DURATION_HRS) ) _download_files(config, blob_client, config.BATCH_DIRECTORY, n_folds) except models.BatchErrorException as err: print_batch_exception(err) raise err # Clean up storage resources # TODO: re-enable this and delete the output container too # -- print("Deleting container [{}]...".format(input_container_name)) # -- blob_client.delete_container(input_container_name) # Print out some timing info end_time = datetime.datetime.now().replace(microsecond=0) print() print("Sample end: {}".format(end_time)) print("Elapsed time: {}".format(end_time - start_time)) print() # Clean up Batch resources (if the user so chooses). if config.DELETE_POOL_WHEN_DONE: batch_client.pool.delete(config.POOL_ID) if config.DELETE_JOB_WHEN_DONE: batch_client.job.delete(config.JOB_ID) if __name__ == "__main__": # TODO: this is not an ideal API config_module = importlib.__import__("config") run(config_module.config)
""" usage requires these additional modules pip install azure-batch azure-storage-blob jsonschema pyyaml && pip install git+https://github.com/microsoft/SparseSC.git@ad4bf27edb28f517508f6934f21eb65d17fb6543 && scgrad start usage: from SparseSC import fit, aggregate_batch_results from SparseSC.utils.azure_batch_client import BatchConfig, run _TIMESTAMP = datetime.utcnow().strftime("%Y%m%d%H%M%S") BATCH_DIR= "path/to/my/batch_config/" fit(x=x,..., batchDir=BATCH_DIR) my_config = BatchConfig( BATCH_ACCOUNT_NAME="MySecret", BATCH_ACCOUNT_KEY="MySecret", BATCH_ACCOUNT_URL="MySecret", STORAGE_ACCOUNT_NAME="MySecret", STORAGE_ACCOUNT_KEY="MySecret", POOL_ID="my-compute-pool", POOL_NODE_COUNT=0, POOL_LOW_PRIORITY_NODE_COUNT=20, POOL_VM_SIZE="STANDARD_A1_v2", DELETE_POOL_WHEN_DONE=False, JOB_ID="my-job" + _TIMESTAMP, DELETE_JOB_WHEN_DONE=False, CONTAINER_NAME="my-blob-container", BATCH_DIRECTORY=BATCH_DIR, ) run(my_config) fitted_model = aggregate_batch_results("path/to/my/batch_config") """ # pylint: disable=differing-type-doc, differing-param-doc, missing-param-doc, missing-raises-doc, missing-return-doc from __future__ import print_function import datetime import io import os import sys import time import pathlib import importlib from collections import defaultdict import azure.storage.blob as azureblob from azure.storage.blob.models import ContainerPermissions import azure.batch.batch_service_client as batch import azure.batch.batch_auth as batch_auth import azure.batch.models as models from SparseSC.cli.stt import get_config from ..print_progress import print_progress from .BatchConfig import BatchConfig, validate_config from yaml import load try: from yaml import CLoader as Loader except ImportError: from yaml import Loader from .constants import ( _STANDARD_OUT_FILE_NAME, _CONTAINER_OUTPUT_FILE, _CONTAINER_INPUT_FILE, _BATCH_CV_FILE_NAME, ) FOLD_FILE_PATTERN = "fold_{}.yaml" # pylint: disable=bad-continuation, invalid-name, protected-access, line-too-long, fixme sys.path.append(".") sys.path.append("..") # Update the Batch and Storage account credential strings in config.py with values # unique to your accounts. These are used when constructing connection strings # for the Batch and Storage client objects. def build_output_sas_url(config, _blob_client): """ build a sas token for the output container """ sas_token = _blob_client.generate_container_shared_access_signature( config.CONTAINER_NAME, ContainerPermissions.READ + ContainerPermissions.WRITE + ContainerPermissions.DELETE + ContainerPermissions.LIST, datetime.datetime.utcnow() + datetime.timedelta(hours=config.STORAGE_ACCESS_DURATION_HRS), start=datetime.datetime.utcnow(), ) _sas_url = "https://{}.blob.core.windows.net/{}?{}".format( config.STORAGE_ACCOUNT_NAME, config.CONTAINER_NAME, sas_token ) return _sas_url def print_batch_exception(batch_exception): """ Prints the contents of the specified Batch exception. :param batch_exception: """ print("-------------------------------------------") print("Exception encountered:") if ( batch_exception.error and batch_exception.error.message and batch_exception.error.message.value ): print(batch_exception.error.message.value) if batch_exception.error.values: print() for mesg in batch_exception.error.values: print("{}:\t{}".format(mesg.key, mesg.value)) print("-------------------------------------------") def build_output_file(container_sas_url, fold_number): """ Uploads a local file to an Azure Blob storage container. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. """ # where to store the outputs container_dest = models.OutputFileBlobContainerDestination( container_url=container_sas_url, path=FOLD_FILE_PATTERN.format(fold_number) ) dest = models.OutputFileDestination(container=container_dest) # under what conditions should you attempt to extract the outputs? upload_options = models.OutputFileUploadOptions( upload_condition=models.OutputFileUploadCondition.task_success ) # https://docs.microsoft.com/en-us/azure/batch/batch-task-output-files#specify-output-files-for-task-output return models.OutputFile( file_pattern=_CONTAINER_OUTPUT_FILE, destination=dest, upload_options=upload_options, ) def upload_file_to_container(block_blob_client, container_name, file_path, duration_hours=24): """ Uploads a local file to an Azure Blob storage container. :param block_blob_client: A blob service client. :type block_blob_client: `azure.storage.blob.BlockBlobService` :param str container_name: The name of the Azure Blob storage container. :param str file_path: The local path to the file. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. """ blob_name = os.path.basename(file_path) print("Uploading file {} to container [{}]...".format(file_path, container_name)) block_blob_client.create_blob_from_path(container_name, blob_name, file_path) sas_token = block_blob_client.generate_blob_shared_access_signature( container_name, blob_name, permission=azureblob.BlobPermissions.READ, expiry=datetime.datetime.utcnow() + datetime.timedelta(hours=duration_hours), ) sas_url = block_blob_client.make_blob_url( container_name, blob_name, sas_token=sas_token ) return models.ResourceFile(http_url=sas_url, file_path=_CONTAINER_INPUT_FILE) def create_pool(config, batch_service_client): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sku """ # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ image_ref_to_use = models.ImageReference( publisher="microsoft-azure-batch", offer="ubuntu-server-container", sku="16-04-lts", version="latest", ) if config.REGISTRY_USERNAME: registry = batch.models.ContainerRegistry( user_name=config.REGISTRY_USERNAME, password=config.REGISTRY_PASSWORD, registry_server=config.REGISTRY_SERVER, ) container_conf = batch.models.ContainerConfiguration( container_image_names=[config.DOCKER_CONTAINER], container_registries=[registry], ) else: container_conf = batch.models.ContainerConfiguration( container_image_names=[config.DOCKER_CONTAINER] ) new_pool = batch.models.PoolAddParameter( id=config.POOL_ID, virtual_machine_configuration=batch.models.VirtualMachineConfiguration( image_reference=image_ref_to_use, container_configuration=container_conf, node_agent_sku_id="batch.node.ubuntu 16.04", ), vm_size=config.POOL_VM_SIZE, target_dedicated_nodes=config.POOL_NODE_COUNT, target_low_priority_nodes=config.POOL_LOW_PRIORITY_NODE_COUNT, ) batch_service_client.pool.add(new_pool) def create_job(batch_service_client, job_id, pool_id): """ Creates a job with the specified ID, associated with the specified pool. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID for the job. :param str pool_id: The ID for the pool. """ print("Creating job [{}]...".format(job_id)) job_description = batch.models.JobAddParameter( id=job_id, pool_info=batch.models.PoolInformation(pool_id=pool_id) ) batch_service_client.job.add(job_description) def add_tasks( config, _blob_client, batch_service_client, container_sas_url, job_id, _input_file, count, ): """ Adds a task for each input file in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. :param list input_files: The input files :param output_container_sas_token: A SAS token granting write access to the specified Azure Blob storage container. """ print("Adding {} tasks to job [{}]...".format(count, job_id)) tasks = list() for fold_number in range(count): output_file = build_output_file(container_sas_url, fold_number) # command_line = '/bin/bash -c \'echo "Hello World" && echo "hello: world" > output.yaml\'' command_line = "/bin/bash -c 'stt {} {} {}'".format( _CONTAINER_INPUT_FILE, _CONTAINER_OUTPUT_FILE, fold_number ) task_container_settings = models.TaskContainerSettings( image_name=config.DOCKER_CONTAINER ) tasks.append( batch.models.TaskAddParameter( id="Task_{}".format(fold_number), command_line=command_line, resource_files=[_input_file], output_files=[output_file], container_settings=task_container_settings, ) ) batch_service_client.task.add_collection(job_id, tasks) def wait_for_tasks_to_complete(batch_service_client, job_id, timeout): """ Returns when all tasks in the specified job reach the Completed state. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The id of the job whose tasks should be to monitored. :param timedelta timeout: The duration to wait for task completion. If all tasks in the specified job do not reach Completed state within this time period, an exception will be raised. """ _start_time = datetime.datetime.now() timeout_expiration = _start_time + timeout # print( "Monitoring all tasks for 'Completed' state, timeout in {}...".format(timeout), end="",) while datetime.datetime.now() < timeout_expiration: sys.stdout.flush() tasks = [t for t in batch_service_client.task.list(job_id)] incomplete_tasks = [ task for task in tasks if task.state != models.TaskState.completed ] hours, remainder = divmod((datetime.datetime.now() - _start_time).seconds, 3600) minutes, seconds = divmod(remainder, 60) print_progress( len(tasks) - len(incomplete_tasks), len(tasks), prefix="Time elapsed {:02}:{:02}:{:02}".format( int(hours), int(minutes), int(seconds) ), decimals=1, bar_length=min(len(tasks), 50), ) error_codes = [t.execution_info.exit_code for t in tasks if t.execution_info and t.execution_info.exit_code ] if error_codes: codes = defaultdict(lambda : 0) for cd in error_codes: codes[cd] +=1 # import pdb; pdb.set_trace() raise RuntimeError( "\nSome tasks have exited with a non-zero exit code including: " + ", ".join([ "{}({})".format(k,v) for k, v in codes.items() ] )) if not incomplete_tasks: print() return True time.sleep(1) print() raise RuntimeError( "ERROR: Tasks did not reach 'Completed' state within " "timeout period of " + str(timeout) ) def print_task_output(batch_service_client, job_id, encoding=None): """Prints the stdout.txt file for each task in the job. :param batch_client: The batch client to use. :type batch_client: `batchserviceclient.BatchServiceClient` :param str job_id: The id of the job with task output files to print. """ print("Printing task output...") tasks = batch_service_client.task.list(job_id) for task in tasks: node_id = batch_service_client.task.get(job_id, task.id).node_info.node_id print("Task: {}".format(task.id)) print("Node: {}".format(node_id)) stream = batch_service_client.file.get_from_task( job_id, task.id, _STANDARD_OUT_FILE_NAME ) file_text = _read_stream_as_string(stream, encoding) print("Standard output:") print(file_text) def _read_stream_as_string(stream, encoding): """Read stream as string :param stream: input stream generator :param str encoding: The encoding of the file. The default is utf-8. :return: The file content. :rtype: str """ output = io.BytesIO() try: for data in stream: output.write(data) if encoding is None: encoding = "utf-8" return output.getvalue().decode(encoding) finally: output.close() raise RuntimeError("could not write data to stream or decode bytes") def _download_files(config, _blob_client, out_path, count): pathlib.Path(config.BATCH_DIRECTORY).mkdir(parents=True, exist_ok=True) blob_names = [b.name for b in _blob_client.list_blobs(config.CONTAINER_NAME)] for i in range(count): blob_name = FOLD_FILE_PATTERN.format(i) if not blob_name in blob_names: raise RuntimeError("incomplete blob set: missing blob {}".format(blob_name)) out_path = os.path.join(config.BATCH_DIRECTORY, blob_name) _blob_client.get_blob_to_path(config.CONTAINER_NAME, blob_name, out_path) def _download_results(config, _blob_client, out_path, count, ptrn=FOLD_FILE_PATTERN): pathlib.Path(config.BATCH_DIRECTORY).mkdir(parents=True, exist_ok=True) blob_names = [b.name for b in _blob_client.list_blobs(config.CONTAINER_NAME)] results = [] for i in range(count): blob_name = ptrn.format(i) if not blob_name in blob_names: raise RuntimeError("incomplete blob set: missing blob {}".format(blob_name)) out_path = os.path.join(config.BATCH_DIRECTORY, blob_name) with _blob_client.get_blob_to_stream( config.CONTAINER_NAME, blob_name, out_path ) as blob: results[i] = load(blob, Loader=Loader) return results def run(config: BatchConfig, wait=True) -> None: r""" :param config: A :class:`BatchConfig` instance with the Azure Batch run parameters :type config: :class:BatchConfig :param boolean wait: If true, wait for the batch to complete and then download the results to file :raises BatchErrorException: If raised by the Azure Batch Python SDK """ # pylint: disable=too-many-locals # replace any missing values in the configuration with environment variables config = validate_config(config) start_time = datetime.datetime.now().replace(microsecond=0) print( 'Synthetic Controls Run "{}" start time: {}'.format(config.JOB_ID, start_time) ) print() _LOCAL_INPUT_FILE = os.path.join(config.BATCH_DIRECTORY, _BATCH_CV_FILE_NAME) v_pen, w_pen, model_data = get_config(_LOCAL_INPUT_FILE) n_folds = len(model_data["folds"]) * len(v_pen) * len(w_pen) # Create the blob client, for use in obtaining references to # blob storage containers and uploading files to containers. blob_client = azureblob.BlockBlobService( account_name=config.STORAGE_ACCOUNT_NAME, account_key=config.STORAGE_ACCOUNT_KEY ) # Use the blob client to create the containers in Azure Storage if they # don't yet exist. blob_client.create_container(config.CONTAINER_NAME, fail_on_exist=False) CONTAINER_SAS_URL = build_output_sas_url(config, blob_client) # The collection of data files that are to be processed by the tasks. input_file_path = os.path.join(sys.path[0], _LOCAL_INPUT_FILE) # Upload the data files. input_file = upload_file_to_container( blob_client, config.CONTAINER_NAME, input_file_path, config.STORAGE_ACCESS_DURATION_HRS ) # Create a Batch service client. We'll now be interacting with the Batch # service in addition to Storage credentials = batch_auth.SharedKeyCredentials( config.BATCH_ACCOUNT_NAME, config.BATCH_ACCOUNT_KEY ) batch_client = batch.BatchServiceClient( credentials, batch_url=config.BATCH_ACCOUNT_URL ) try: # Create the pool that will contain the compute nodes that will execute the # tasks. try: create_pool(config, batch_client) print("Created pool: ", config.POOL_ID) except models.BatchErrorException: print("Using pool: ", config.POOL_ID) # Create the job that will run the tasks. create_job(batch_client, config.JOB_ID, config.POOL_ID) # Add the tasks to the job. add_tasks( config, blob_client, batch_client, CONTAINER_SAS_URL, config.JOB_ID, input_file, n_folds, ) if not wait: return # Pause execution until tasks reach Completed state. wait_for_tasks_to_complete( batch_client, config.JOB_ID, datetime.timedelta(hours=config.STORAGE_ACCESS_DURATION_HRS) ) _download_files(config, blob_client, config.BATCH_DIRECTORY, n_folds) except models.BatchErrorException as err: print_batch_exception(err) raise err # Clean up storage resources # TODO: re-enable this and delete the output container too # -- print("Deleting container [{}]...".format(input_container_name)) # -- blob_client.delete_container(input_container_name) # Print out some timing info end_time = datetime.datetime.now().replace(microsecond=0) print() print("Sample end: {}".format(end_time)) print("Elapsed time: {}".format(end_time - start_time)) print() # Clean up Batch resources (if the user so chooses). if config.DELETE_POOL_WHEN_DONE: batch_client.pool.delete(config.POOL_ID) if config.DELETE_JOB_WHEN_DONE: batch_client.job.delete(config.JOB_ID) def load_results(config: BatchConfig) -> None: r""" :param config: A :class:`BatchConfig` instance with the Azure Batch run parameters :type config: :class:BatchConfig :raises BatchErrorException: If raised by the Azure Batch Python SDK """ # pylint: disable=too-many-locals # replace any missing values in the configuration with environment variables config = validate_config(config) start_time = datetime.datetime.now().replace(microsecond=0) print('Load result for job "{}" start time: {}'.format(config.JOB_ID, start_time)) print() _LOCAL_INPUT_FILE = os.path.join(config.BATCH_DIRECTORY, _BATCH_CV_FILE_NAME) v_pen, w_pen, model_data = get_config(_LOCAL_INPUT_FILE) n_folds = len(model_data["folds"]) * len(v_pen) * len(w_pen) # Create the blob client, for use in obtaining references to # blob storage containers and uploading files to containers. blob_client = azureblob.BlockBlobService( account_name=config.STORAGE_ACCOUNT_NAME, account_key=config.STORAGE_ACCOUNT_KEY ) # Create a Batch service client. We'll now be interacting with the Batch # service in addition to Storage credentials = batch_auth.SharedKeyCredentials( config.BATCH_ACCOUNT_NAME, config.BATCH_ACCOUNT_KEY ) batch_client = batch.BatchServiceClient( credentials, batch_url=config.BATCH_ACCOUNT_URL ) try: # Pause execution until tasks reach Completed state. wait_for_tasks_to_complete( batch_client, config.JOB_ID, datetime.timedelta(hours=config.STORAGE_ACCESS_DURATION_HRS) ) _download_files(config, blob_client, config.BATCH_DIRECTORY, n_folds) except models.BatchErrorException as err: print_batch_exception(err) raise err # Clean up storage resources # TODO: re-enable this and delete the output container too # -- print("Deleting container [{}]...".format(input_container_name)) # -- blob_client.delete_container(input_container_name) # Print out some timing info end_time = datetime.datetime.now().replace(microsecond=0) print() print("Sample end: {}".format(end_time)) print("Elapsed time: {}".format(end_time - start_time)) print() # Clean up Batch resources (if the user so chooses). if config.DELETE_POOL_WHEN_DONE: batch_client.pool.delete(config.POOL_ID) if config.DELETE_JOB_WHEN_DONE: batch_client.job.delete(config.JOB_ID) if __name__ == "__main__": # TODO: this is not an ideal API config_module = importlib.__import__("config") run(config_module.config)
en
0.671033
usage requires these additional modules pip install azure-batch azure-storage-blob jsonschema pyyaml && pip install git+https://github.com/microsoft/SparseSC.git@ad4bf27edb28f517508f6934f21eb65d17fb6543 && scgrad start usage: from SparseSC import fit, aggregate_batch_results from SparseSC.utils.azure_batch_client import BatchConfig, run _TIMESTAMP = datetime.utcnow().strftime("%Y%m%d%H%M%S") BATCH_DIR= "path/to/my/batch_config/" fit(x=x,..., batchDir=BATCH_DIR) my_config = BatchConfig( BATCH_ACCOUNT_NAME="MySecret", BATCH_ACCOUNT_KEY="MySecret", BATCH_ACCOUNT_URL="MySecret", STORAGE_ACCOUNT_NAME="MySecret", STORAGE_ACCOUNT_KEY="MySecret", POOL_ID="my-compute-pool", POOL_NODE_COUNT=0, POOL_LOW_PRIORITY_NODE_COUNT=20, POOL_VM_SIZE="STANDARD_A1_v2", DELETE_POOL_WHEN_DONE=False, JOB_ID="my-job" + _TIMESTAMP, DELETE_JOB_WHEN_DONE=False, CONTAINER_NAME="my-blob-container", BATCH_DIRECTORY=BATCH_DIR, ) run(my_config) fitted_model = aggregate_batch_results("path/to/my/batch_config") # pylint: disable=differing-type-doc, differing-param-doc, missing-param-doc, missing-raises-doc, missing-return-doc # pylint: disable=bad-continuation, invalid-name, protected-access, line-too-long, fixme # Update the Batch and Storage account credential strings in config.py with values # unique to your accounts. These are used when constructing connection strings # for the Batch and Storage client objects. build a sas token for the output container Prints the contents of the specified Batch exception. :param batch_exception: Uploads a local file to an Azure Blob storage container. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. # where to store the outputs # under what conditions should you attempt to extract the outputs? # https://docs.microsoft.com/en-us/azure/batch/batch-task-output-files#specify-output-files-for-task-output Uploads a local file to an Azure Blob storage container. :param block_blob_client: A blob service client. :type block_blob_client: `azure.storage.blob.BlockBlobService` :param str container_name: The name of the Azure Blob storage container. :param str file_path: The local path to the file. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sku # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ Creates a job with the specified ID, associated with the specified pool. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID for the job. :param str pool_id: The ID for the pool. Adds a task for each input file in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. :param list input_files: The input files :param output_container_sas_token: A SAS token granting write access to the specified Azure Blob storage container. # command_line = '/bin/bash -c \'echo "Hello World" && echo "hello: world" > output.yaml\'' Returns when all tasks in the specified job reach the Completed state. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The id of the job whose tasks should be to monitored. :param timedelta timeout: The duration to wait for task completion. If all tasks in the specified job do not reach Completed state within this time period, an exception will be raised. # print( "Monitoring all tasks for 'Completed' state, timeout in {}...".format(timeout), end="",) # import pdb; pdb.set_trace() Prints the stdout.txt file for each task in the job. :param batch_client: The batch client to use. :type batch_client: `batchserviceclient.BatchServiceClient` :param str job_id: The id of the job with task output files to print. Read stream as string :param stream: input stream generator :param str encoding: The encoding of the file. The default is utf-8. :return: The file content. :rtype: str :param config: A :class:`BatchConfig` instance with the Azure Batch run parameters :type config: :class:BatchConfig :param boolean wait: If true, wait for the batch to complete and then download the results to file :raises BatchErrorException: If raised by the Azure Batch Python SDK # pylint: disable=too-many-locals # replace any missing values in the configuration with environment variables # Create the blob client, for use in obtaining references to # blob storage containers and uploading files to containers. # Use the blob client to create the containers in Azure Storage if they # don't yet exist. # The collection of data files that are to be processed by the tasks. # Upload the data files. # Create a Batch service client. We'll now be interacting with the Batch # service in addition to Storage # Create the pool that will contain the compute nodes that will execute the # tasks. # Create the job that will run the tasks. # Add the tasks to the job. # Pause execution until tasks reach Completed state. # Clean up storage resources # TODO: re-enable this and delete the output container too # -- print("Deleting container [{}]...".format(input_container_name)) # -- blob_client.delete_container(input_container_name) # Print out some timing info # Clean up Batch resources (if the user so chooses). :param config: A :class:`BatchConfig` instance with the Azure Batch run parameters :type config: :class:BatchConfig :raises BatchErrorException: If raised by the Azure Batch Python SDK # pylint: disable=too-many-locals # replace any missing values in the configuration with environment variables # Create the blob client, for use in obtaining references to # blob storage containers and uploading files to containers. # Create a Batch service client. We'll now be interacting with the Batch # service in addition to Storage # Pause execution until tasks reach Completed state. # Clean up storage resources # TODO: re-enable this and delete the output container too # -- print("Deleting container [{}]...".format(input_container_name)) # -- blob_client.delete_container(input_container_name) # Print out some timing info # Clean up Batch resources (if the user so chooses). # TODO: this is not an ideal API
2.170586
2
src/vilbert/datasets/__init__.py
NoOneUST/COMP5212
3
10468
<reponame>NoOneUST/COMP5212 from .visual_entailment_dataset import VisualEntailmentDataset
from .visual_entailment_dataset import VisualEntailmentDataset
none
1
1.014172
1
Dungeoneer/Treasure.py
jameslemon81/Dungeoneer
12
10469
<filename>Dungeoneer/Treasure.py # Basic Fantasy RPG Dungeoneer Suite # Copyright 2007-2012 <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # Redistributions of source code must retain the above copyright # notice, self list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, self list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # Neither the name of the author nor the names of any contributors # may be used to endorse or promote products derived from self software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ############################################################################### # Treasure.py -- generate treasures for Basic Fantasy RPG ############################################################################### import Gems, Art, Coins, Magic, Unknown import Dice import string def combine(lst): lst.sort() hits = 1 while hits: hits = 0 for i in range(len(lst) - 1): if lst[i] is not None and lst[i+1] is not None: if lst[i].cat == lst[i+1].cat \ and lst[i].name == lst[i+1].name \ and lst[i].value == lst[i+1].value: lst[i].qty += lst[i+1].qty lst[i+1] = None hits += 1 if hits: lst = filter(lambda x: x is not None, lst) return lst def _gen_coins(argtup): kind, n, s, b, mul = argtup return [ Coins.Coin(kind, (Dice.D(n, s, b) * mul)) ] def _gen_gems(argtup): n, s, b, mul = argtup lst = [] qty = Dice.D(n, s, b) * mul for i in range(qty): lst = lst + [ Gems.Gem() ] return lst def _gen_art(argtup): n, s, b, mul = argtup lst = [] qty = Dice.D(n, s, b) * mul for i in range(qty): lst = lst + [ Art.Art() ] return lst def __gen_magic(argtup): kind, n, s, b, mul = argtup lst = [] qty = Dice.D(n, s, b) * mul for i in range(qty): lst = lst + [ Magic.Magic(kind) ] return lst def _gen_magic(argtup): if type(argtup) is type([]): lst = [] for i in argtup: lst = lst + __gen_magic(i) return lst else: return __gen_magic(argtup) _treasure_table = { # lair treasure 'A': [ (50, _gen_coins, ("cp", 5, 6, 0, 100)), (60, _gen_coins, ("sp", 5, 6, 0, 100)), (40, _gen_coins, ("ep", 5, 4, 0, 100)), (70, _gen_coins, ("gp", 10, 6, 0, 100)), (50, _gen_coins, ("pp", 1, 10, 0, 100)), (50, _gen_gems, (6, 6, 0, 1)), (50, _gen_art, (6, 6, 0, 1)), (30, _gen_magic, ("Any", 0, 0, 3, 1)), ], 'B': [ (75, _gen_coins, ("cp", 5, 10, 0, 100)), (50, _gen_coins, ("sp", 5, 6, 0, 100)), (50, _gen_coins, ("ep", 5, 4, 0, 100)), (50, _gen_coins, ("gp", 3, 6, 0, 100)), (25, _gen_gems, (1, 6, 0, 1)), (25, _gen_art, (1, 6, 0, 1)), (10, _gen_magic, ("AW", 0, 0, 1, 1)), ], 'C': [ (60, _gen_coins, ("cp", 6, 6, 0, 100)), (60, _gen_coins, ("sp", 5, 4, 0, 100)), (30, _gen_coins, ("ep", 2, 6, 0, 100)), (25, _gen_gems, (1, 4, 0, 1)), (25, _gen_art, (1, 4, 0, 1)), (15, _gen_magic, ("Any", 1, 2, 0, 1)), ], 'D': [ (30, _gen_coins, ("cp", 4, 6, 0, 100)), (45, _gen_coins, ("sp", 6, 6, 0, 100)), (90, _gen_coins, ("gp", 5, 8, 0, 100)), (30, _gen_gems, (1, 8, 0, 1)), (30, _gen_art, (1, 8, 0, 1)), (20, _gen_magic, [ ("Any", 1, 2, 0, 1), ("Potion", 0, 0, 1, 1), ] ), ], 'E': [ (30, _gen_coins, ("cp", 2, 8, 0, 100)), (60, _gen_coins, ("sp", 6, 10, 0, 100)), (50, _gen_coins, ("ep", 3, 8, 0, 100)), (50, _gen_coins, ("gp", 4, 10, 0, 100)), (10, _gen_gems, (1, 10, 0, 1)), (10, _gen_art, (1, 10, 0, 1)), (30, _gen_magic, [ ("Any", 1, 4, 0, 1), ("Scroll", 0, 0, 1, 1), ] ), ], 'F': [ (40, _gen_coins, ("sp", 3, 8, 0, 100)), (50, _gen_coins, ("ep", 4, 8, 0, 100)), (85, _gen_coins, ("gp", 6, 10, 0, 100)), (70, _gen_coins, ("pp", 2, 8, 0, 100)), (20, _gen_gems, (2, 12, 0, 1)), (20, _gen_art, (1, 12, 0, 1)), (35, _gen_magic, [ ("Non-Weapon", 1, 4, 0, 1), ("Scroll", 0, 0, 1, 1), ("Potion", 0, 0, 1, 1), ] ), ], 'G': [ (90, _gen_coins, ("gp", 4, 6, 0, 1000)), (75, _gen_coins, ("pp", 5, 8, 0, 100)), (25, _gen_gems, (3, 6, 0, 1)), (25, _gen_art, (1, 10, 0, 1)), (50, _gen_magic, [ ("Any", 1, 4, 0, 1), ("Scroll", 0, 0, 1, 1), ] ), ], 'H': [ (75, _gen_coins, ("cp", 8, 10, 0, 100)), (75, _gen_coins, ("sp", 6, 10, 0, 1000)), (75, _gen_coins, ("ep", 3, 10, 0, 1000)), (75, _gen_coins, ("gp", 5, 8, 0, 1000)), (75, _gen_coins, ("pp", 9, 8, 0, 100)), (50, _gen_gems, ( 1, 100, 0, 1)), (50, _gen_art, (10, 4, 0, 1)), (20, _gen_magic, [ ("Any", 1, 4, 0, 1), ("Scroll", 0, 0, 1, 1), ("Potion", 0, 0, 1, 1), ] ), ], 'I': [ (80, _gen_coins, ("pp", 3, 10, 0, 100)), (50, _gen_gems, (2, 6, 0, 1)), (50, _gen_art, (2, 6, 0, 1)), (15, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'J': [ (45, _gen_coins, ("cp", 3, 8, 0, 100)), (45, _gen_coins, ("sp", 1, 8, 0, 100)), ], 'K': [ (90, _gen_coins, ("cp", 2, 10, 0, 100)), (35, _gen_coins, ("sp", 1, 8, 0, 100)), ], 'L': [ (50, _gen_gems, (1, 4, 0, 1)), ], 'M': [ (90, _gen_coins, ("gp", 4, 10, 0, 100)), (90, _gen_coins, ("pp", 2, 8, 0, 1000)), ], 'N': [ (40, _gen_magic, ("Potion", 2, 4, 0, 1)), ], 'O': [ (50, _gen_magic, ("Scroll", 1, 4, 0, 1)), ], # personal treasure 'P': [ (100, _gen_coins, ("cp", 3, 8, 0, 1)), ], 'Q': [ (100, _gen_coins, ("sp", 3, 6, 0, 1)), ], 'R': [ (100, _gen_coins, ("ep", 2, 6, 0, 1)), ], 'S': [ (100, _gen_coins, ("gp", 2, 4, 0, 1)), ], 'T': [ (100, _gen_coins, ("pp", 1, 6, 0, 1)), ], 'U': [ ( 50, _gen_coins, ("cp", 1, 20, 0, 1)), ( 50, _gen_coins, ("sp", 1, 20, 0, 1)), ( 25, _gen_coins, ("gp", 1, 20, 0, 1)), ( 5, _gen_gems, (1, 4, 0, 1)), ( 5, _gen_art, (1, 4, 0, 1)), ( 2, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'V': [ ( 25, _gen_coins, ("sp", 1, 20, 0, 1)), ( 25, _gen_coins, ("ep", 1, 20, 0, 1)), ( 50, _gen_coins, ("gp", 1, 20, 0, 1)), ( 25, _gen_coins, ("pp", 1, 20, 0, 1)), ( 10, _gen_gems, (1, 4, 0, 1)), ( 10, _gen_art, (1, 4, 0, 1)), ( 5, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U1': [ ( 75, _gen_coins, ("cp", 1, 8, 0, 100)), ( 50, _gen_coins, ("sp", 1, 6, 0, 100)), ( 25, _gen_coins, ("ep", 1, 4, 0, 100)), ( 7, _gen_coins, ("gp", 1, 4, 0, 100)), ( 1, _gen_coins, ("pp", 1, 4, 0, 100)), ( 7, _gen_gems, (1, 4, 0, 1)), ( 3, _gen_art, (1, 4, 0, 1)), ( 2, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U2': [ ( 50, _gen_coins, ("cp", 1, 10, 0, 100)), ( 50, _gen_coins, ("sp", 1, 8, 0, 100)), ( 25, _gen_coins, ("ep", 1, 6, 0, 100)), ( 20, _gen_coins, ("gp", 1, 6, 0, 100)), ( 2, _gen_coins, ("pp", 1, 4, 0, 100)), ( 10, _gen_gems, (1, 6, 0, 1)), ( 7, _gen_art, (1, 4, 0, 1)), ( 5, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U3': [ ( 30, _gen_coins, ("cp", 2, 6, 0, 100)), ( 50, _gen_coins, ("sp", 1, 10, 0, 100)), ( 25, _gen_coins, ("ep", 1, 8, 0, 100)), ( 50, _gen_coins, ("gp", 1, 6, 0, 100)), ( 4, _gen_coins, ("pp", 1, 4, 0, 100)), ( 15, _gen_gems, (1, 6, 0, 1)), ( 7, _gen_art, (1, 6, 0, 1)), ( 8, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U45': [ ( 20, _gen_coins, ("cp", 3, 6, 0, 100)), ( 50, _gen_coins, ("sp", 2, 6, 0, 100)), ( 25, _gen_coins, ("ep", 1, 10, 0, 100)), ( 50, _gen_coins, ("gp", 2, 6, 0, 100)), ( 8, _gen_coins, ("pp", 1, 4, 0, 100)), ( 20, _gen_gems, (1, 8, 0, 1)), ( 10, _gen_art, (1, 6, 0, 1)), ( 12, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U67': [ ( 15, _gen_coins, ("cp", 4, 6, 0, 100)), ( 50, _gen_coins, ("sp", 3, 6, 0, 100)), ( 25, _gen_coins, ("ep", 1, 12, 0, 100)), ( 70, _gen_coins, ("gp", 2, 8, 0, 100)), ( 15, _gen_coins, ("pp", 1, 4, 0, 100)), ( 30, _gen_gems, (1, 8, 0, 1)), ( 15, _gen_art, (1, 6, 0, 1)), ( 16, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U8': [ ( 10, _gen_coins, ("cp", 5, 6, 0, 100)), ( 50, _gen_coins, ("sp", 5, 6, 0, 100)), ( 25, _gen_coins, ("ep", 2, 8, 0, 100)), ( 75, _gen_coins, ("gp", 4, 6, 0, 100)), ( 30, _gen_coins, ("pp", 1, 4, 0, 100)), ( 40, _gen_gems, (1, 8, 0, 1)), ( 30, _gen_art, (1, 8, 0, 1)), ( 20, _gen_magic, ("Any", 0, 0, 1, 1)), ], # coinage 'cp': [ (100, _gen_coins, ("cp", 0, 0, 1, 1)), ], 'sp': [ (100, _gen_coins, ("sp", 0, 0, 1, 1)), ], 'ep': [ (100, _gen_coins, ("ep", 0, 0, 1, 1)), ], 'gp': [ (100, _gen_coins, ("gp", 0, 0, 1, 1)), ], 'pp': [ (100, _gen_coins, ("pp", 0, 0, 1, 1)), ], # magic classes 'MAGIC': [ (100, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'POTION': [ (100, _gen_magic, ("Potion", 0, 0, 1, 1)), ], 'SCROLL': [ (100, _gen_magic, ("Scroll", 0, 0, 1, 1)), ], 'RING': [ (100, _gen_magic, ("Ring", 0, 0, 1, 1)), ], 'WSR': [ (100, _gen_magic, ("WSR", 0, 0, 1, 1)), ], 'MISC': [ (100, _gen_magic, ("Misc", 0, 0, 1, 1)), ], 'ARMOR': [ (100, _gen_magic, ("Armor", 0, 0, 1, 1)), ], 'WEAPON': [ (100, _gen_magic, ("Weapon", 0, 0, 1, 1)), ], } _treasure_table['U4'] = _treasure_table['U45'] _treasure_table['U5'] = _treasure_table['U45'] _treasure_table['U6'] = _treasure_table['U67'] _treasure_table['U7'] = _treasure_table['U67'] def Types(): types = _treasure_table.keys() ones = filter(lambda x: len(x) == 1, types) mults = filter(lambda x: len(x) > 1, types) ones.sort() mults.sort() return ones + mults def Treasure(typ): tr = [] try: tbl = _treasure_table[string.upper(typ)] for i in tbl: if Dice.D(1, 100, 0) <= i[0]: tr = tr + i[1](i[2]) except: tr = [ Unknown.Unknown(typ) ] return tr def Factory(args): types = [] tr = [] mult = 1 for i in args: if type(i) is tuple: i = Dice.D(*i) try: nmult = int(i) mult = nmult types.append("%d" % mult) continue except: pass types.append(i + ",") for n in range(mult): tr += Treasure(i) types = string.join(types, " ") if types[-1] == ',': types = types[:-1] return (types.upper(), combine(tr)) if __name__ == "__main__": import sys if len(sys.argv) < 2: print "Usage: Treasure.py treasuretype [ treasuretype ... ]" sys.exit(0) types, tr = Factory(sys.argv[1:]) print "Treasure Type " + string.upper(types) vtot = 0.0 ocat = '' qty_len = 1 for t in tr: qty_len = max(len(str(t.qty)), qty_len) qty_fmt = "%" + str(qty_len) + "d" for t in tr: if t.cat != ocat: print t.cat ocat = t.cat if t.value != 0: print " ", qty_fmt % t.qty, t.name, t.value, "GP ea.", \ t.value * t.qty, "GP total" else: print " ", qty_fmt % t.qty, t.name for i in t.desc: print " ", i vtot = vtot + (t.qty * t.value) print "----- Total Value", vtot, "GP\n" # end of script.
<filename>Dungeoneer/Treasure.py # Basic Fantasy RPG Dungeoneer Suite # Copyright 2007-2012 <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # Redistributions of source code must retain the above copyright # notice, self list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, self list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # Neither the name of the author nor the names of any contributors # may be used to endorse or promote products derived from self software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ############################################################################### # Treasure.py -- generate treasures for Basic Fantasy RPG ############################################################################### import Gems, Art, Coins, Magic, Unknown import Dice import string def combine(lst): lst.sort() hits = 1 while hits: hits = 0 for i in range(len(lst) - 1): if lst[i] is not None and lst[i+1] is not None: if lst[i].cat == lst[i+1].cat \ and lst[i].name == lst[i+1].name \ and lst[i].value == lst[i+1].value: lst[i].qty += lst[i+1].qty lst[i+1] = None hits += 1 if hits: lst = filter(lambda x: x is not None, lst) return lst def _gen_coins(argtup): kind, n, s, b, mul = argtup return [ Coins.Coin(kind, (Dice.D(n, s, b) * mul)) ] def _gen_gems(argtup): n, s, b, mul = argtup lst = [] qty = Dice.D(n, s, b) * mul for i in range(qty): lst = lst + [ Gems.Gem() ] return lst def _gen_art(argtup): n, s, b, mul = argtup lst = [] qty = Dice.D(n, s, b) * mul for i in range(qty): lst = lst + [ Art.Art() ] return lst def __gen_magic(argtup): kind, n, s, b, mul = argtup lst = [] qty = Dice.D(n, s, b) * mul for i in range(qty): lst = lst + [ Magic.Magic(kind) ] return lst def _gen_magic(argtup): if type(argtup) is type([]): lst = [] for i in argtup: lst = lst + __gen_magic(i) return lst else: return __gen_magic(argtup) _treasure_table = { # lair treasure 'A': [ (50, _gen_coins, ("cp", 5, 6, 0, 100)), (60, _gen_coins, ("sp", 5, 6, 0, 100)), (40, _gen_coins, ("ep", 5, 4, 0, 100)), (70, _gen_coins, ("gp", 10, 6, 0, 100)), (50, _gen_coins, ("pp", 1, 10, 0, 100)), (50, _gen_gems, (6, 6, 0, 1)), (50, _gen_art, (6, 6, 0, 1)), (30, _gen_magic, ("Any", 0, 0, 3, 1)), ], 'B': [ (75, _gen_coins, ("cp", 5, 10, 0, 100)), (50, _gen_coins, ("sp", 5, 6, 0, 100)), (50, _gen_coins, ("ep", 5, 4, 0, 100)), (50, _gen_coins, ("gp", 3, 6, 0, 100)), (25, _gen_gems, (1, 6, 0, 1)), (25, _gen_art, (1, 6, 0, 1)), (10, _gen_magic, ("AW", 0, 0, 1, 1)), ], 'C': [ (60, _gen_coins, ("cp", 6, 6, 0, 100)), (60, _gen_coins, ("sp", 5, 4, 0, 100)), (30, _gen_coins, ("ep", 2, 6, 0, 100)), (25, _gen_gems, (1, 4, 0, 1)), (25, _gen_art, (1, 4, 0, 1)), (15, _gen_magic, ("Any", 1, 2, 0, 1)), ], 'D': [ (30, _gen_coins, ("cp", 4, 6, 0, 100)), (45, _gen_coins, ("sp", 6, 6, 0, 100)), (90, _gen_coins, ("gp", 5, 8, 0, 100)), (30, _gen_gems, (1, 8, 0, 1)), (30, _gen_art, (1, 8, 0, 1)), (20, _gen_magic, [ ("Any", 1, 2, 0, 1), ("Potion", 0, 0, 1, 1), ] ), ], 'E': [ (30, _gen_coins, ("cp", 2, 8, 0, 100)), (60, _gen_coins, ("sp", 6, 10, 0, 100)), (50, _gen_coins, ("ep", 3, 8, 0, 100)), (50, _gen_coins, ("gp", 4, 10, 0, 100)), (10, _gen_gems, (1, 10, 0, 1)), (10, _gen_art, (1, 10, 0, 1)), (30, _gen_magic, [ ("Any", 1, 4, 0, 1), ("Scroll", 0, 0, 1, 1), ] ), ], 'F': [ (40, _gen_coins, ("sp", 3, 8, 0, 100)), (50, _gen_coins, ("ep", 4, 8, 0, 100)), (85, _gen_coins, ("gp", 6, 10, 0, 100)), (70, _gen_coins, ("pp", 2, 8, 0, 100)), (20, _gen_gems, (2, 12, 0, 1)), (20, _gen_art, (1, 12, 0, 1)), (35, _gen_magic, [ ("Non-Weapon", 1, 4, 0, 1), ("Scroll", 0, 0, 1, 1), ("Potion", 0, 0, 1, 1), ] ), ], 'G': [ (90, _gen_coins, ("gp", 4, 6, 0, 1000)), (75, _gen_coins, ("pp", 5, 8, 0, 100)), (25, _gen_gems, (3, 6, 0, 1)), (25, _gen_art, (1, 10, 0, 1)), (50, _gen_magic, [ ("Any", 1, 4, 0, 1), ("Scroll", 0, 0, 1, 1), ] ), ], 'H': [ (75, _gen_coins, ("cp", 8, 10, 0, 100)), (75, _gen_coins, ("sp", 6, 10, 0, 1000)), (75, _gen_coins, ("ep", 3, 10, 0, 1000)), (75, _gen_coins, ("gp", 5, 8, 0, 1000)), (75, _gen_coins, ("pp", 9, 8, 0, 100)), (50, _gen_gems, ( 1, 100, 0, 1)), (50, _gen_art, (10, 4, 0, 1)), (20, _gen_magic, [ ("Any", 1, 4, 0, 1), ("Scroll", 0, 0, 1, 1), ("Potion", 0, 0, 1, 1), ] ), ], 'I': [ (80, _gen_coins, ("pp", 3, 10, 0, 100)), (50, _gen_gems, (2, 6, 0, 1)), (50, _gen_art, (2, 6, 0, 1)), (15, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'J': [ (45, _gen_coins, ("cp", 3, 8, 0, 100)), (45, _gen_coins, ("sp", 1, 8, 0, 100)), ], 'K': [ (90, _gen_coins, ("cp", 2, 10, 0, 100)), (35, _gen_coins, ("sp", 1, 8, 0, 100)), ], 'L': [ (50, _gen_gems, (1, 4, 0, 1)), ], 'M': [ (90, _gen_coins, ("gp", 4, 10, 0, 100)), (90, _gen_coins, ("pp", 2, 8, 0, 1000)), ], 'N': [ (40, _gen_magic, ("Potion", 2, 4, 0, 1)), ], 'O': [ (50, _gen_magic, ("Scroll", 1, 4, 0, 1)), ], # personal treasure 'P': [ (100, _gen_coins, ("cp", 3, 8, 0, 1)), ], 'Q': [ (100, _gen_coins, ("sp", 3, 6, 0, 1)), ], 'R': [ (100, _gen_coins, ("ep", 2, 6, 0, 1)), ], 'S': [ (100, _gen_coins, ("gp", 2, 4, 0, 1)), ], 'T': [ (100, _gen_coins, ("pp", 1, 6, 0, 1)), ], 'U': [ ( 50, _gen_coins, ("cp", 1, 20, 0, 1)), ( 50, _gen_coins, ("sp", 1, 20, 0, 1)), ( 25, _gen_coins, ("gp", 1, 20, 0, 1)), ( 5, _gen_gems, (1, 4, 0, 1)), ( 5, _gen_art, (1, 4, 0, 1)), ( 2, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'V': [ ( 25, _gen_coins, ("sp", 1, 20, 0, 1)), ( 25, _gen_coins, ("ep", 1, 20, 0, 1)), ( 50, _gen_coins, ("gp", 1, 20, 0, 1)), ( 25, _gen_coins, ("pp", 1, 20, 0, 1)), ( 10, _gen_gems, (1, 4, 0, 1)), ( 10, _gen_art, (1, 4, 0, 1)), ( 5, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U1': [ ( 75, _gen_coins, ("cp", 1, 8, 0, 100)), ( 50, _gen_coins, ("sp", 1, 6, 0, 100)), ( 25, _gen_coins, ("ep", 1, 4, 0, 100)), ( 7, _gen_coins, ("gp", 1, 4, 0, 100)), ( 1, _gen_coins, ("pp", 1, 4, 0, 100)), ( 7, _gen_gems, (1, 4, 0, 1)), ( 3, _gen_art, (1, 4, 0, 1)), ( 2, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U2': [ ( 50, _gen_coins, ("cp", 1, 10, 0, 100)), ( 50, _gen_coins, ("sp", 1, 8, 0, 100)), ( 25, _gen_coins, ("ep", 1, 6, 0, 100)), ( 20, _gen_coins, ("gp", 1, 6, 0, 100)), ( 2, _gen_coins, ("pp", 1, 4, 0, 100)), ( 10, _gen_gems, (1, 6, 0, 1)), ( 7, _gen_art, (1, 4, 0, 1)), ( 5, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U3': [ ( 30, _gen_coins, ("cp", 2, 6, 0, 100)), ( 50, _gen_coins, ("sp", 1, 10, 0, 100)), ( 25, _gen_coins, ("ep", 1, 8, 0, 100)), ( 50, _gen_coins, ("gp", 1, 6, 0, 100)), ( 4, _gen_coins, ("pp", 1, 4, 0, 100)), ( 15, _gen_gems, (1, 6, 0, 1)), ( 7, _gen_art, (1, 6, 0, 1)), ( 8, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U45': [ ( 20, _gen_coins, ("cp", 3, 6, 0, 100)), ( 50, _gen_coins, ("sp", 2, 6, 0, 100)), ( 25, _gen_coins, ("ep", 1, 10, 0, 100)), ( 50, _gen_coins, ("gp", 2, 6, 0, 100)), ( 8, _gen_coins, ("pp", 1, 4, 0, 100)), ( 20, _gen_gems, (1, 8, 0, 1)), ( 10, _gen_art, (1, 6, 0, 1)), ( 12, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U67': [ ( 15, _gen_coins, ("cp", 4, 6, 0, 100)), ( 50, _gen_coins, ("sp", 3, 6, 0, 100)), ( 25, _gen_coins, ("ep", 1, 12, 0, 100)), ( 70, _gen_coins, ("gp", 2, 8, 0, 100)), ( 15, _gen_coins, ("pp", 1, 4, 0, 100)), ( 30, _gen_gems, (1, 8, 0, 1)), ( 15, _gen_art, (1, 6, 0, 1)), ( 16, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'U8': [ ( 10, _gen_coins, ("cp", 5, 6, 0, 100)), ( 50, _gen_coins, ("sp", 5, 6, 0, 100)), ( 25, _gen_coins, ("ep", 2, 8, 0, 100)), ( 75, _gen_coins, ("gp", 4, 6, 0, 100)), ( 30, _gen_coins, ("pp", 1, 4, 0, 100)), ( 40, _gen_gems, (1, 8, 0, 1)), ( 30, _gen_art, (1, 8, 0, 1)), ( 20, _gen_magic, ("Any", 0, 0, 1, 1)), ], # coinage 'cp': [ (100, _gen_coins, ("cp", 0, 0, 1, 1)), ], 'sp': [ (100, _gen_coins, ("sp", 0, 0, 1, 1)), ], 'ep': [ (100, _gen_coins, ("ep", 0, 0, 1, 1)), ], 'gp': [ (100, _gen_coins, ("gp", 0, 0, 1, 1)), ], 'pp': [ (100, _gen_coins, ("pp", 0, 0, 1, 1)), ], # magic classes 'MAGIC': [ (100, _gen_magic, ("Any", 0, 0, 1, 1)), ], 'POTION': [ (100, _gen_magic, ("Potion", 0, 0, 1, 1)), ], 'SCROLL': [ (100, _gen_magic, ("Scroll", 0, 0, 1, 1)), ], 'RING': [ (100, _gen_magic, ("Ring", 0, 0, 1, 1)), ], 'WSR': [ (100, _gen_magic, ("WSR", 0, 0, 1, 1)), ], 'MISC': [ (100, _gen_magic, ("Misc", 0, 0, 1, 1)), ], 'ARMOR': [ (100, _gen_magic, ("Armor", 0, 0, 1, 1)), ], 'WEAPON': [ (100, _gen_magic, ("Weapon", 0, 0, 1, 1)), ], } _treasure_table['U4'] = _treasure_table['U45'] _treasure_table['U5'] = _treasure_table['U45'] _treasure_table['U6'] = _treasure_table['U67'] _treasure_table['U7'] = _treasure_table['U67'] def Types(): types = _treasure_table.keys() ones = filter(lambda x: len(x) == 1, types) mults = filter(lambda x: len(x) > 1, types) ones.sort() mults.sort() return ones + mults def Treasure(typ): tr = [] try: tbl = _treasure_table[string.upper(typ)] for i in tbl: if Dice.D(1, 100, 0) <= i[0]: tr = tr + i[1](i[2]) except: tr = [ Unknown.Unknown(typ) ] return tr def Factory(args): types = [] tr = [] mult = 1 for i in args: if type(i) is tuple: i = Dice.D(*i) try: nmult = int(i) mult = nmult types.append("%d" % mult) continue except: pass types.append(i + ",") for n in range(mult): tr += Treasure(i) types = string.join(types, " ") if types[-1] == ',': types = types[:-1] return (types.upper(), combine(tr)) if __name__ == "__main__": import sys if len(sys.argv) < 2: print "Usage: Treasure.py treasuretype [ treasuretype ... ]" sys.exit(0) types, tr = Factory(sys.argv[1:]) print "Treasure Type " + string.upper(types) vtot = 0.0 ocat = '' qty_len = 1 for t in tr: qty_len = max(len(str(t.qty)), qty_len) qty_fmt = "%" + str(qty_len) + "d" for t in tr: if t.cat != ocat: print t.cat ocat = t.cat if t.value != 0: print " ", qty_fmt % t.qty, t.name, t.value, "GP ea.", \ t.value * t.qty, "GP total" else: print " ", qty_fmt % t.qty, t.name for i in t.desc: print " ", i vtot = vtot + (t.qty * t.value) print "----- Total Value", vtot, "GP\n" # end of script.
en
0.59987
# Basic Fantasy RPG Dungeoneer Suite # Copyright 2007-2012 <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # Redistributions of source code must retain the above copyright # notice, self list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, self list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # Neither the name of the author nor the names of any contributors # may be used to endorse or promote products derived from self software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ############################################################################### # Treasure.py -- generate treasures for Basic Fantasy RPG ############################################################################### # lair treasure # personal treasure # coinage # magic classes # end of script.
1.550305
2
covid19/COVID19/code/controller/main.py
zhanqingheng/COVID-19
16
10470
from flask import Flask, current_app from flask import render_template from flask import jsonify from jieba.analyse import extract_tags import string from DB import chinaSQL from DB import worldSQL app = Flask(__name__, template_folder='../../web', static_folder='../../static') @app.route('/', methods=["get", "post"]) def hello_world(): return render_template("china.html") @app.route('/china', methods=["get", "post"]) def china(): return render_template("china.html") @app.route('/world', methods=["get", "post"]) def world(): return render_template("world.html") @app.route('/favicon.ico') def favicon(): return current_app.send_static_file('image/favicon-32x32-sun.ico') @app.route("/time") def time(): data = chinaSQL.time() return str(data[0]) @app.route("/chinaEightNumber") def chinaEightNumber(): data = chinaSQL.chinaEightNumber() return jsonify({"confirmTotal": data[0], "healTotal": data[1], "deadTotal": data[2], "nowConfirmTotal": data[3], "suspectTotal": data[4], "nowSevereTotal": data[5], "importedCaseTotal": data[6], "noInfectTotal": data[7], "confirmAdd": data[8], "healAdd": data[9], "deadAdd": data[10], "nowConfirmAdd": data[11], "suspectAdd": data[12], "nowSevereAdd": data[13], "importedCaseAdd": data[14], "noInfectAdd": data[15] }) @app.route('/chinaMap', methods=['GET']) def chinaMap(): data = chinaSQL.chinaMap() confirmToday, nowConfirmTotal, confirmTotal, healTotal, deadTotal = [], [], [], [], [] for a, b, c, d, e, f in data: confirmToday.append({"name": a, "value": b}) nowConfirmTotal.append({"name": a, "value": c}) confirmTotal.append({"name": a, "value": d}) healTotal.append({"name": a, "value": e}) deadTotal.append({"name": a, "value": f}) return jsonify({"confirmToday": confirmToday, "nowConfirmTotal": nowConfirmTotal, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal}) @app.route('/chinaProvinceMap', methods=['GET']) def chinaProvinceMap(): data = chinaSQL.chinaProvinceMap() confirmToday, nowConfirmTotal, confirmTotal, healTotal, deadTotal = [], [], [], [], [] for a, b, c, d, e, f in data: confirmToday.append({"name": a + "市", "value": b}) nowConfirmTotal.append({"name": a + "市", "value": c}) confirmTotal.append({"name": a + "市", "value": d}) healTotal.append({"name": a + "市", "value": e}) deadTotal.append({"name": a + "市", "value": f}) return jsonify({"confirmToday": confirmToday, "nowConfirmTotal": nowConfirmTotal, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal}) @app.route("/nationalTotal") def nationalTotal(): data = chinaSQL.nationalTotal() day, \ confirmChinaDayList, \ healChinaDayList, \ deadChinaDayList, \ importedCaseChinaDayList = [], [], [], [], [] for a, b, c, d, e in data: day.append(a.strftime("%m-%d")) confirmChinaDayList.append(b) healChinaDayList.append(c) deadChinaDayList.append(d) importedCaseChinaDayList.append(e) return jsonify({"day": day, "confirmChinaDayList": confirmChinaDayList, "healChinaDayList": healChinaDayList, "deadChinaDayList": deadChinaDayList, "importedCaseChinaDayList": importedCaseChinaDayList }) @app.route("/dailyAdditionsNationwide") def dailyAdditionsNationwide(): data = chinaSQL.dailyAdditionsNationwide() day, \ confirmChinaDayAddList, \ healChinaDayAddList, \ deadChinaDayAddList, \ importedCaseChinaDayAddList = [], [], [], [], [] for a, b, c, d, e in data[7:]: day.append(a.strftime("%m-%d")) confirmChinaDayAddList.append(b) healChinaDayAddList.append(c) deadChinaDayAddList.append(d) importedCaseChinaDayAddList.append(e) return jsonify({"day": day, "confirmChinaDayAddList": confirmChinaDayAddList, "healChinaDayAddList": healChinaDayAddList, "deadChinaDayAddList": deadChinaDayAddList, "importedCaseChinaDayAddList": importedCaseChinaDayAddList }) @app.route("/dailyCasesNationwide") def dailyCasesNationwide(): data = chinaSQL.dailyCasesNationwide() day, \ suspectChinaDayList, \ noInfectChinaDayList, \ nowConfirmChinaDayList, \ nowSevereChinaDayList = [], [], [], [], [] for a, b, c, d, e in data[7:]: day.append(a.strftime("%m-%d")) suspectChinaDayList.append(b) noInfectChinaDayList.append(c) nowConfirmChinaDayList.append(d) nowSevereChinaDayList.append(e) return jsonify({"day": day, "suspectChinaDayList": suspectChinaDayList, "noInfectChinaDayList": noInfectChinaDayList, "nowConfirmChinaDayList": nowConfirmChinaDayList, "nowSevereChinaDayList": nowSevereChinaDayList }) @app.route("/nationalCumulativeCureMortalityRate") def nationalCumulativeCureMortalityRate(): data = chinaSQL.nationalCumulativeCureMortalityRate() day, \ healRateChinaDayList, \ deadRateChinaDayList = [], [], [] for a, b, c in data[7:]: day.append(a.strftime("%m-%d")) healRateChinaDayList.append(b) deadRateChinaDayList.append(c) return jsonify({"day": day, "healRateChinaDayList": healRateChinaDayList, "deadRateChinaDayList": deadRateChinaDayList }) @app.route("/detailedDataByProvince") def detailedDataByProvince(): data = chinaSQL.detailedDataByProvince() provinceName, \ confirmTotal, \ healTotal, \ deadTotal, \ healRateTotal, \ deadRateTotal = [], [], [], [], [], [] for a, b, c, d, e, f in data: provinceName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) healRateTotal.append(e) deadRateTotal.append(f) return jsonify({"provinceName": provinceName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal, "healRateTotal": healRateTotal, "deadRateTotal": deadRateTotal }) @app.route("/cumulativeNumberOfConfirmedCasesInAllProvinces") def cumulativeNumberOfConfirmedCasesInAllProvinces(): data = chinaSQL.cumulativeNumberOfConfirmedCasesInAllProvinces() provincedetails = [] for provinceName, confirmTotal in data: provincedetails.append({"name": provinceName, "value": confirmTotal}) return jsonify({"data": provincedetails}) @app.route("/currentConfirmedDataInAllProvinces") def currentConfirmedDataInAllProvinces(): data = chinaSQL.currentConfirmedDataInAllProvinces() provinceName, \ nowConfirmTotal, \ confirmToday, \ suspectTotal = [], [], [], [] for a, b, c, d in data: provinceName.append(a) nowConfirmTotal.append(b) confirmToday.append(c) suspectTotal.append(d) return jsonify({"provinceName": provinceName, "nowConfirmTotal": nowConfirmTotal, "confirmToday": confirmToday, "suspectTotal": suspectTotal }) @app.route("/existingDiagnosticClassificationInChina") def existingDiagnosticClassificationInChina(): data = chinaSQL.existingDiagnosticClassificationInChina() nowconfirmstatis = [] nowconfirmstatis.append({"name": '港澳台现存确诊', "value": data[0][0]}) nowconfirmstatis.append({"name": '境外输入现存确诊', "value": data[0][1]}) nowconfirmstatis.append({"name": '31省本土现有确诊', "value": data[0][2]}) return jsonify({"data": nowconfirmstatis}) @app.route("/totalNumberOfOverseasImportsFromTop10Provinces") def totalNumberOfOverseasImportsFromTop10Provinces(): data = chinaSQL.totalNumberOfOverseasImportsFromTop10Provinces() importstatis = [] for province, importedCase in data: importstatis.append({"name": province, "value": importedCase}) return jsonify({"data": importstatis}) @app.route("/eachProvinceComparesYesterdayData") def eachProvinceComparesYesterdayData(): data = chinaSQL.eachProvinceComparesYesterdayData() province, \ nowConfirm, \ confirmAdd, \ heal, \ dead, \ zero = [], [], [], [], [], [] for a, b, c, d, e, f in data: province.append(a) nowConfirm.append(b) confirmAdd.append(c) heal.append(d) dead.append(e) zero.append(f) return jsonify({"province": province, "nowConfirm": nowConfirm, "confirmAdd": confirmAdd, "heal": heal, "dead": dead, "zero": zero }) @app.route("/hubeiNonHubeiNationalCumulativeData") def hubeiNonHubeiNationalCumulativeData(): data = chinaSQL.hubeiNonHubeiNationalCumulativeData() day, \ hubeiNowConfirm, \ hubeiHeal, \ hubeiDead, \ notHubeiNowConfirm, \ notHubeiHeal, \ notHubeiDead, \ countryNowConfirm, \ countryHeal, \ countryDead = [], [], [], [], [], [], [], [], [], [] for a, b, c, d, e, f, g, h, i, j in data: day.append(a.strftime("%m-%d")) hubeiNowConfirm.append(b) hubeiHeal.append(c) hubeiDead.append(d) notHubeiNowConfirm.append(e) notHubeiHeal.append(f) notHubeiDead.append(g) countryNowConfirm.append(h) countryHeal.append(i) countryDead.append(j) return jsonify({"day": day, "hubeiNowConfirm": hubeiNowConfirm, "hubeiHeal": hubeiHeal, "hubeiDead": hubeiDead, "notHubeiNowConfirm": notHubeiNowConfirm, "notHubeiHeal": notHubeiHeal, "notHubeiDead": notHubeiDead, "countryNowConfirm": countryNowConfirm, "countryHeal": countryHeal, "countryDead": countryDead }) @app.route("/hubeiNonHubeiNationalCureMortalityRate") def hubeiNonHubeiNationalCureMortalityRate(): data = chinaSQL.hubeiNonHubeiNationalCureMortalityRate() day, \ hubeiHealRate, \ hubeiDeadRate, \ notHubeiHealRate, \ notHubeiDeadRate, \ countryHealRate, \ countryDeadRate = [], [], [], [], [], [], [] for a, b, c, d, e, f, g in data: day.append(a.strftime("%m-%d")) hubeiHealRate.append(b) hubeiDeadRate.append(c) notHubeiHealRate.append(d) notHubeiDeadRate.append(e) countryHealRate.append(f) countryDeadRate.append(g) return jsonify({"day": day, "hubeiHealRate": hubeiHealRate, "hubeiDeadRate": hubeiDeadRate, "notHubeiHealRate": notHubeiHealRate, "notHubeiDeadRate": notHubeiDeadRate, "countryHealRate": countryHealRate, "countryDeadRate": countryDeadRate }) @app.route("/hubeiNonHubeiNationalDailyNew") def hubeiNonHubeiNationalDailyNew(): data = chinaSQL.hubeiNonHubeiNationalDailyNew() day, \ hubei, \ notHubei, \ country = [], [], [], [] for a, b, c, d in data[7:]: day.append(a.strftime("%m-%d")) hubei.append(b) notHubei.append(c) country.append(d) return jsonify({"day": day, "hubei": hubei, "notHubei": notHubei, "country": country }) @app.route("/wuhanNotWuhanNotHubeiNewlyConfirmed") def wuhanNotWuhanNotHubeiNewlyConfirmed(): data = chinaSQL.wuhanNotWuhanNotHubeiNewlyConfirmed() day, \ wuhan, \ notWuhan, \ notHubei = [], [], [], [] for a, b, c, d in data: day.append(a.strftime("%m-%d")) wuhan.append(b) notWuhan.append(c) notHubei.append(d) return jsonify({"day": day, "wuhan": wuhan, "notWuhan": notWuhan, "notHubei": notHubei }) @app.route("/totalConfirmedTop20UrbanAreas") def totalConfirmedTop20UrbanAreas(): data = chinaSQL.totalConfirmedTop20UrbanAreas() cityName, \ deadRateTotal, \ healRateTotal = [], [], [] for a, b, c in data: cityName.append(a) deadRateTotal.append(b) healRateTotal.append(c) return jsonify({"cityName": cityName, "deadRateTotal": deadRateTotal, "healRateTotal": healRateTotal }) @app.route("/existingConfirmedTop20UrbanAreas") def existingConfirmedTop20UrbanAreas(): data = chinaSQL.existingConfirmedTop20UrbanAreas() cityName, \ nowConfirmTotal, \ confirmToday, \ suspectTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) nowConfirmTotal.append(b) confirmToday.append(c) suspectTotal.append(d) return jsonify({"cityName": cityName, "nowConfirmTotal": nowConfirmTotal, "confirmToday": confirmToday, "suspectTotal": suspectTotal }) @app.route("/urbanDataOfHubeiProvince") def urbanDataOfHubeiProvince(): data = chinaSQL.urbanDataOfHubeiProvince() cityName, \ confirmTotal, \ healTotal, \ deadTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) return jsonify({"cityName": cityName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal }) @app.route("/accumulativeDataExceptHubeiProvince") def accumulativeDataExceptHubeiProvince(): data = chinaSQL.accumulativeDataExceptHubeiProvince() cityName, \ confirmTotal, \ healTotal, \ deadTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) return jsonify({"cityName": cityName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal }) @app.route("/provincesWithFatalCasesNationwide") def provincesWithFatalCasesNationwide(): data = chinaSQL.provincesWithFatalCasesNationwide() provincedetails = [] provincedetails.append({"name": "无死亡病例省份数量", "value": data[0][0]}) provincedetails.append({"name": "有死亡病例省份数量", "value": data[0][1]}) return jsonify({"data": provincedetails}) @app.route("/numberOfDeathsInCities") def numberOfDeathsInCities(): data = chinaSQL.numberOfDeathsInCities() dataCityCount = [] dataCityCount.append({"name": "无死亡病例城市数量", "value": data[0][0]}) dataCityCount.append({"name": "有死亡病例城市数量", "value": data[0][1]}) return jsonify({"data": dataCityCount}) @app.route("/outbreakOut") def outbreakOut(): data = chinaSQL.outbreakOut() d = [] for i in data: k = i[0].rstrip(string.digits) v = i[0][len(k):] ks = extract_tags(k) for j in ks: if not j.isdigit(): d.append({"name": j, "value": v}) return jsonify({"kws": d}) @app.route("/worldFourNumber") def worldFourNumber(): data = worldSQL.worldFourNumber() return jsonify({"nowConfirm": data[0], "confirm": data[1], "heal": data[2], "dead": data[3], "nowConfirmAdd": data[4], "confirmAdd": data[5], "healAdd": data[6], "deadAdd": data[7] }) @app.route('/worldMapNoChina', methods=['GET']) def worldMapNoChina(): data = worldSQL.worldMapNoChina() nowConfirm, confirm, heal, dead = [], [], [], [] for a, b, c, d, e in data: nowConfirm.append({"name": a, "value": b}) confirm.append({"name": a, "value": c}) heal.append({"name": a, "value": d}) dead.append({"name": a, "value": e}) data1 = worldSQL.worldMapChina() nowConfirm.append({"name": "中国", "value": data1[0][0]}) confirm.append({"name": "中国", "value": data1[0][1]}) heal.append({"name": "中国", "value": data1[0][2]}) dead.append({"name": "中国", "value": data1[0][3]}) return jsonify({"nowConfirm": nowConfirm, "confirm": confirm, "heal": heal, "dead": dead }) @app.route("/globalCumulativeTrend") def globalCumulativeTrend(): data = worldSQL.globalCumulativeTrend() day, \ confirm, \ heal, \ dead, \ newAddConfirm = [], [], [], [], [] for a, b, c, d, e in data: day.append(a.strftime("%m-%d")) confirm.append(b) heal.append(c) dead.append(d) newAddConfirm.append(e) return jsonify({"day": day, "confirm": confirm, "heal": heal, "dead": dead, "newAddConfirm": newAddConfirm }) @app.route("/globalCumulativeCureMortality") def globalCumulativeCureMortality(): data = worldSQL.globalCumulativeCureMortality() day, \ healRate, \ deadRate = [], [], [] for a, b, c in data: day.append(a.strftime("%m-%d")) healRate.append(b) deadRate.append(c) return jsonify({"day": day, "healRate": healRate, "deadRate": deadRate }) @app.route("/foreignCumulativeDiagnosisTop10Countries") def foreignCumulativeDiagnosisTop10Countries(): data = worldSQL.foreignCumulativeDiagnosisTop10Countries() name, \ nowConfirm, \ confirm, \ heal, \ dead = [], [], [], [], [] for a, b, c, d, e in data: name.append(a) nowConfirm.append(b) confirm.append(c) heal.append(d) dead.append(e) return jsonify({"name": name, "nowConfirm": nowConfirm, "confirm": confirm, "heal": heal, "dead": dead }) @app.route("/theTop10CountriesGrewFastestInSevenDays") def theTop10CountriesGrewFastestInSevenDays(): data = worldSQL.theTop10CountriesGrewFastestInSevenDays() nation, \ day7, \ day, \ rate = [], [], [], [] for a, b, c, d in data: nation.append(a) day7.append(b) day.append(c) rate.append(d) return jsonify({"nation": nation, "day7": day7, "day0": day, "rate": rate }) @app.route("/overseasCountriesWithMoreThan10000ConfirmedCases") def overseasCountriesWithMoreThan10000ConfirmedCases(): data = worldSQL.overseasCountriesWithMoreThan10000ConfirmedCases() foreignlist = [] for name, confirm in data: foreignlist.append({"name": name, "value": confirm}) return jsonify({"data": foreignlist}) @app.route("/overseasCountriesWithMoreThan10000HaveBeenConfirmedCases") def overseasCountriesWithMoreThan10000HaveBeenConfirmedCases(): data = worldSQL.overseasCountriesWithMoreThan10000HaveBeenConfirmedCases() foreignlist = [] for name, nowConfirm in data: foreignlist.append({"name": name, "value": nowConfirm}) return jsonify({"data": foreignlist}) @app.route("/newCasesInTheTop10CountriesWithin24Hours") def newCasesInTheTop10CountriesWithin24Hours(): data = worldSQL.newCasesInTheTop10CountriesWithin24Hours() nationAddConfirm = [] for nation, addConfirm in data: nationAddConfirm.append({"name": nation, "value": addConfirm}) return jsonify({"data": nationAddConfirm}) @app.route("/theNumberOfForeignCountriesWithConfirmedCases") def theNumberOfForeignCountriesWithConfirmedCases(): data = worldSQL.theNumberOfForeignCountriesWithConfirmedCases() foreignlist = [] for continent, count in data: foreignlist.append({"name": continent, "value": count}) return jsonify({"data": foreignlist}) if __name__ == '__main__': app.run()
from flask import Flask, current_app from flask import render_template from flask import jsonify from jieba.analyse import extract_tags import string from DB import chinaSQL from DB import worldSQL app = Flask(__name__, template_folder='../../web', static_folder='../../static') @app.route('/', methods=["get", "post"]) def hello_world(): return render_template("china.html") @app.route('/china', methods=["get", "post"]) def china(): return render_template("china.html") @app.route('/world', methods=["get", "post"]) def world(): return render_template("world.html") @app.route('/favicon.ico') def favicon(): return current_app.send_static_file('image/favicon-32x32-sun.ico') @app.route("/time") def time(): data = chinaSQL.time() return str(data[0]) @app.route("/chinaEightNumber") def chinaEightNumber(): data = chinaSQL.chinaEightNumber() return jsonify({"confirmTotal": data[0], "healTotal": data[1], "deadTotal": data[2], "nowConfirmTotal": data[3], "suspectTotal": data[4], "nowSevereTotal": data[5], "importedCaseTotal": data[6], "noInfectTotal": data[7], "confirmAdd": data[8], "healAdd": data[9], "deadAdd": data[10], "nowConfirmAdd": data[11], "suspectAdd": data[12], "nowSevereAdd": data[13], "importedCaseAdd": data[14], "noInfectAdd": data[15] }) @app.route('/chinaMap', methods=['GET']) def chinaMap(): data = chinaSQL.chinaMap() confirmToday, nowConfirmTotal, confirmTotal, healTotal, deadTotal = [], [], [], [], [] for a, b, c, d, e, f in data: confirmToday.append({"name": a, "value": b}) nowConfirmTotal.append({"name": a, "value": c}) confirmTotal.append({"name": a, "value": d}) healTotal.append({"name": a, "value": e}) deadTotal.append({"name": a, "value": f}) return jsonify({"confirmToday": confirmToday, "nowConfirmTotal": nowConfirmTotal, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal}) @app.route('/chinaProvinceMap', methods=['GET']) def chinaProvinceMap(): data = chinaSQL.chinaProvinceMap() confirmToday, nowConfirmTotal, confirmTotal, healTotal, deadTotal = [], [], [], [], [] for a, b, c, d, e, f in data: confirmToday.append({"name": a + "市", "value": b}) nowConfirmTotal.append({"name": a + "市", "value": c}) confirmTotal.append({"name": a + "市", "value": d}) healTotal.append({"name": a + "市", "value": e}) deadTotal.append({"name": a + "市", "value": f}) return jsonify({"confirmToday": confirmToday, "nowConfirmTotal": nowConfirmTotal, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal}) @app.route("/nationalTotal") def nationalTotal(): data = chinaSQL.nationalTotal() day, \ confirmChinaDayList, \ healChinaDayList, \ deadChinaDayList, \ importedCaseChinaDayList = [], [], [], [], [] for a, b, c, d, e in data: day.append(a.strftime("%m-%d")) confirmChinaDayList.append(b) healChinaDayList.append(c) deadChinaDayList.append(d) importedCaseChinaDayList.append(e) return jsonify({"day": day, "confirmChinaDayList": confirmChinaDayList, "healChinaDayList": healChinaDayList, "deadChinaDayList": deadChinaDayList, "importedCaseChinaDayList": importedCaseChinaDayList }) @app.route("/dailyAdditionsNationwide") def dailyAdditionsNationwide(): data = chinaSQL.dailyAdditionsNationwide() day, \ confirmChinaDayAddList, \ healChinaDayAddList, \ deadChinaDayAddList, \ importedCaseChinaDayAddList = [], [], [], [], [] for a, b, c, d, e in data[7:]: day.append(a.strftime("%m-%d")) confirmChinaDayAddList.append(b) healChinaDayAddList.append(c) deadChinaDayAddList.append(d) importedCaseChinaDayAddList.append(e) return jsonify({"day": day, "confirmChinaDayAddList": confirmChinaDayAddList, "healChinaDayAddList": healChinaDayAddList, "deadChinaDayAddList": deadChinaDayAddList, "importedCaseChinaDayAddList": importedCaseChinaDayAddList }) @app.route("/dailyCasesNationwide") def dailyCasesNationwide(): data = chinaSQL.dailyCasesNationwide() day, \ suspectChinaDayList, \ noInfectChinaDayList, \ nowConfirmChinaDayList, \ nowSevereChinaDayList = [], [], [], [], [] for a, b, c, d, e in data[7:]: day.append(a.strftime("%m-%d")) suspectChinaDayList.append(b) noInfectChinaDayList.append(c) nowConfirmChinaDayList.append(d) nowSevereChinaDayList.append(e) return jsonify({"day": day, "suspectChinaDayList": suspectChinaDayList, "noInfectChinaDayList": noInfectChinaDayList, "nowConfirmChinaDayList": nowConfirmChinaDayList, "nowSevereChinaDayList": nowSevereChinaDayList }) @app.route("/nationalCumulativeCureMortalityRate") def nationalCumulativeCureMortalityRate(): data = chinaSQL.nationalCumulativeCureMortalityRate() day, \ healRateChinaDayList, \ deadRateChinaDayList = [], [], [] for a, b, c in data[7:]: day.append(a.strftime("%m-%d")) healRateChinaDayList.append(b) deadRateChinaDayList.append(c) return jsonify({"day": day, "healRateChinaDayList": healRateChinaDayList, "deadRateChinaDayList": deadRateChinaDayList }) @app.route("/detailedDataByProvince") def detailedDataByProvince(): data = chinaSQL.detailedDataByProvince() provinceName, \ confirmTotal, \ healTotal, \ deadTotal, \ healRateTotal, \ deadRateTotal = [], [], [], [], [], [] for a, b, c, d, e, f in data: provinceName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) healRateTotal.append(e) deadRateTotal.append(f) return jsonify({"provinceName": provinceName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal, "healRateTotal": healRateTotal, "deadRateTotal": deadRateTotal }) @app.route("/cumulativeNumberOfConfirmedCasesInAllProvinces") def cumulativeNumberOfConfirmedCasesInAllProvinces(): data = chinaSQL.cumulativeNumberOfConfirmedCasesInAllProvinces() provincedetails = [] for provinceName, confirmTotal in data: provincedetails.append({"name": provinceName, "value": confirmTotal}) return jsonify({"data": provincedetails}) @app.route("/currentConfirmedDataInAllProvinces") def currentConfirmedDataInAllProvinces(): data = chinaSQL.currentConfirmedDataInAllProvinces() provinceName, \ nowConfirmTotal, \ confirmToday, \ suspectTotal = [], [], [], [] for a, b, c, d in data: provinceName.append(a) nowConfirmTotal.append(b) confirmToday.append(c) suspectTotal.append(d) return jsonify({"provinceName": provinceName, "nowConfirmTotal": nowConfirmTotal, "confirmToday": confirmToday, "suspectTotal": suspectTotal }) @app.route("/existingDiagnosticClassificationInChina") def existingDiagnosticClassificationInChina(): data = chinaSQL.existingDiagnosticClassificationInChina() nowconfirmstatis = [] nowconfirmstatis.append({"name": '港澳台现存确诊', "value": data[0][0]}) nowconfirmstatis.append({"name": '境外输入现存确诊', "value": data[0][1]}) nowconfirmstatis.append({"name": '31省本土现有确诊', "value": data[0][2]}) return jsonify({"data": nowconfirmstatis}) @app.route("/totalNumberOfOverseasImportsFromTop10Provinces") def totalNumberOfOverseasImportsFromTop10Provinces(): data = chinaSQL.totalNumberOfOverseasImportsFromTop10Provinces() importstatis = [] for province, importedCase in data: importstatis.append({"name": province, "value": importedCase}) return jsonify({"data": importstatis}) @app.route("/eachProvinceComparesYesterdayData") def eachProvinceComparesYesterdayData(): data = chinaSQL.eachProvinceComparesYesterdayData() province, \ nowConfirm, \ confirmAdd, \ heal, \ dead, \ zero = [], [], [], [], [], [] for a, b, c, d, e, f in data: province.append(a) nowConfirm.append(b) confirmAdd.append(c) heal.append(d) dead.append(e) zero.append(f) return jsonify({"province": province, "nowConfirm": nowConfirm, "confirmAdd": confirmAdd, "heal": heal, "dead": dead, "zero": zero }) @app.route("/hubeiNonHubeiNationalCumulativeData") def hubeiNonHubeiNationalCumulativeData(): data = chinaSQL.hubeiNonHubeiNationalCumulativeData() day, \ hubeiNowConfirm, \ hubeiHeal, \ hubeiDead, \ notHubeiNowConfirm, \ notHubeiHeal, \ notHubeiDead, \ countryNowConfirm, \ countryHeal, \ countryDead = [], [], [], [], [], [], [], [], [], [] for a, b, c, d, e, f, g, h, i, j in data: day.append(a.strftime("%m-%d")) hubeiNowConfirm.append(b) hubeiHeal.append(c) hubeiDead.append(d) notHubeiNowConfirm.append(e) notHubeiHeal.append(f) notHubeiDead.append(g) countryNowConfirm.append(h) countryHeal.append(i) countryDead.append(j) return jsonify({"day": day, "hubeiNowConfirm": hubeiNowConfirm, "hubeiHeal": hubeiHeal, "hubeiDead": hubeiDead, "notHubeiNowConfirm": notHubeiNowConfirm, "notHubeiHeal": notHubeiHeal, "notHubeiDead": notHubeiDead, "countryNowConfirm": countryNowConfirm, "countryHeal": countryHeal, "countryDead": countryDead }) @app.route("/hubeiNonHubeiNationalCureMortalityRate") def hubeiNonHubeiNationalCureMortalityRate(): data = chinaSQL.hubeiNonHubeiNationalCureMortalityRate() day, \ hubeiHealRate, \ hubeiDeadRate, \ notHubeiHealRate, \ notHubeiDeadRate, \ countryHealRate, \ countryDeadRate = [], [], [], [], [], [], [] for a, b, c, d, e, f, g in data: day.append(a.strftime("%m-%d")) hubeiHealRate.append(b) hubeiDeadRate.append(c) notHubeiHealRate.append(d) notHubeiDeadRate.append(e) countryHealRate.append(f) countryDeadRate.append(g) return jsonify({"day": day, "hubeiHealRate": hubeiHealRate, "hubeiDeadRate": hubeiDeadRate, "notHubeiHealRate": notHubeiHealRate, "notHubeiDeadRate": notHubeiDeadRate, "countryHealRate": countryHealRate, "countryDeadRate": countryDeadRate }) @app.route("/hubeiNonHubeiNationalDailyNew") def hubeiNonHubeiNationalDailyNew(): data = chinaSQL.hubeiNonHubeiNationalDailyNew() day, \ hubei, \ notHubei, \ country = [], [], [], [] for a, b, c, d in data[7:]: day.append(a.strftime("%m-%d")) hubei.append(b) notHubei.append(c) country.append(d) return jsonify({"day": day, "hubei": hubei, "notHubei": notHubei, "country": country }) @app.route("/wuhanNotWuhanNotHubeiNewlyConfirmed") def wuhanNotWuhanNotHubeiNewlyConfirmed(): data = chinaSQL.wuhanNotWuhanNotHubeiNewlyConfirmed() day, \ wuhan, \ notWuhan, \ notHubei = [], [], [], [] for a, b, c, d in data: day.append(a.strftime("%m-%d")) wuhan.append(b) notWuhan.append(c) notHubei.append(d) return jsonify({"day": day, "wuhan": wuhan, "notWuhan": notWuhan, "notHubei": notHubei }) @app.route("/totalConfirmedTop20UrbanAreas") def totalConfirmedTop20UrbanAreas(): data = chinaSQL.totalConfirmedTop20UrbanAreas() cityName, \ deadRateTotal, \ healRateTotal = [], [], [] for a, b, c in data: cityName.append(a) deadRateTotal.append(b) healRateTotal.append(c) return jsonify({"cityName": cityName, "deadRateTotal": deadRateTotal, "healRateTotal": healRateTotal }) @app.route("/existingConfirmedTop20UrbanAreas") def existingConfirmedTop20UrbanAreas(): data = chinaSQL.existingConfirmedTop20UrbanAreas() cityName, \ nowConfirmTotal, \ confirmToday, \ suspectTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) nowConfirmTotal.append(b) confirmToday.append(c) suspectTotal.append(d) return jsonify({"cityName": cityName, "nowConfirmTotal": nowConfirmTotal, "confirmToday": confirmToday, "suspectTotal": suspectTotal }) @app.route("/urbanDataOfHubeiProvince") def urbanDataOfHubeiProvince(): data = chinaSQL.urbanDataOfHubeiProvince() cityName, \ confirmTotal, \ healTotal, \ deadTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) return jsonify({"cityName": cityName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal }) @app.route("/accumulativeDataExceptHubeiProvince") def accumulativeDataExceptHubeiProvince(): data = chinaSQL.accumulativeDataExceptHubeiProvince() cityName, \ confirmTotal, \ healTotal, \ deadTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) return jsonify({"cityName": cityName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal }) @app.route("/provincesWithFatalCasesNationwide") def provincesWithFatalCasesNationwide(): data = chinaSQL.provincesWithFatalCasesNationwide() provincedetails = [] provincedetails.append({"name": "无死亡病例省份数量", "value": data[0][0]}) provincedetails.append({"name": "有死亡病例省份数量", "value": data[0][1]}) return jsonify({"data": provincedetails}) @app.route("/numberOfDeathsInCities") def numberOfDeathsInCities(): data = chinaSQL.numberOfDeathsInCities() dataCityCount = [] dataCityCount.append({"name": "无死亡病例城市数量", "value": data[0][0]}) dataCityCount.append({"name": "有死亡病例城市数量", "value": data[0][1]}) return jsonify({"data": dataCityCount}) @app.route("/outbreakOut") def outbreakOut(): data = chinaSQL.outbreakOut() d = [] for i in data: k = i[0].rstrip(string.digits) v = i[0][len(k):] ks = extract_tags(k) for j in ks: if not j.isdigit(): d.append({"name": j, "value": v}) return jsonify({"kws": d}) @app.route("/worldFourNumber") def worldFourNumber(): data = worldSQL.worldFourNumber() return jsonify({"nowConfirm": data[0], "confirm": data[1], "heal": data[2], "dead": data[3], "nowConfirmAdd": data[4], "confirmAdd": data[5], "healAdd": data[6], "deadAdd": data[7] }) @app.route('/worldMapNoChina', methods=['GET']) def worldMapNoChina(): data = worldSQL.worldMapNoChina() nowConfirm, confirm, heal, dead = [], [], [], [] for a, b, c, d, e in data: nowConfirm.append({"name": a, "value": b}) confirm.append({"name": a, "value": c}) heal.append({"name": a, "value": d}) dead.append({"name": a, "value": e}) data1 = worldSQL.worldMapChina() nowConfirm.append({"name": "中国", "value": data1[0][0]}) confirm.append({"name": "中国", "value": data1[0][1]}) heal.append({"name": "中国", "value": data1[0][2]}) dead.append({"name": "中国", "value": data1[0][3]}) return jsonify({"nowConfirm": nowConfirm, "confirm": confirm, "heal": heal, "dead": dead }) @app.route("/globalCumulativeTrend") def globalCumulativeTrend(): data = worldSQL.globalCumulativeTrend() day, \ confirm, \ heal, \ dead, \ newAddConfirm = [], [], [], [], [] for a, b, c, d, e in data: day.append(a.strftime("%m-%d")) confirm.append(b) heal.append(c) dead.append(d) newAddConfirm.append(e) return jsonify({"day": day, "confirm": confirm, "heal": heal, "dead": dead, "newAddConfirm": newAddConfirm }) @app.route("/globalCumulativeCureMortality") def globalCumulativeCureMortality(): data = worldSQL.globalCumulativeCureMortality() day, \ healRate, \ deadRate = [], [], [] for a, b, c in data: day.append(a.strftime("%m-%d")) healRate.append(b) deadRate.append(c) return jsonify({"day": day, "healRate": healRate, "deadRate": deadRate }) @app.route("/foreignCumulativeDiagnosisTop10Countries") def foreignCumulativeDiagnosisTop10Countries(): data = worldSQL.foreignCumulativeDiagnosisTop10Countries() name, \ nowConfirm, \ confirm, \ heal, \ dead = [], [], [], [], [] for a, b, c, d, e in data: name.append(a) nowConfirm.append(b) confirm.append(c) heal.append(d) dead.append(e) return jsonify({"name": name, "nowConfirm": nowConfirm, "confirm": confirm, "heal": heal, "dead": dead }) @app.route("/theTop10CountriesGrewFastestInSevenDays") def theTop10CountriesGrewFastestInSevenDays(): data = worldSQL.theTop10CountriesGrewFastestInSevenDays() nation, \ day7, \ day, \ rate = [], [], [], [] for a, b, c, d in data: nation.append(a) day7.append(b) day.append(c) rate.append(d) return jsonify({"nation": nation, "day7": day7, "day0": day, "rate": rate }) @app.route("/overseasCountriesWithMoreThan10000ConfirmedCases") def overseasCountriesWithMoreThan10000ConfirmedCases(): data = worldSQL.overseasCountriesWithMoreThan10000ConfirmedCases() foreignlist = [] for name, confirm in data: foreignlist.append({"name": name, "value": confirm}) return jsonify({"data": foreignlist}) @app.route("/overseasCountriesWithMoreThan10000HaveBeenConfirmedCases") def overseasCountriesWithMoreThan10000HaveBeenConfirmedCases(): data = worldSQL.overseasCountriesWithMoreThan10000HaveBeenConfirmedCases() foreignlist = [] for name, nowConfirm in data: foreignlist.append({"name": name, "value": nowConfirm}) return jsonify({"data": foreignlist}) @app.route("/newCasesInTheTop10CountriesWithin24Hours") def newCasesInTheTop10CountriesWithin24Hours(): data = worldSQL.newCasesInTheTop10CountriesWithin24Hours() nationAddConfirm = [] for nation, addConfirm in data: nationAddConfirm.append({"name": nation, "value": addConfirm}) return jsonify({"data": nationAddConfirm}) @app.route("/theNumberOfForeignCountriesWithConfirmedCases") def theNumberOfForeignCountriesWithConfirmedCases(): data = worldSQL.theNumberOfForeignCountriesWithConfirmedCases() foreignlist = [] for continent, count in data: foreignlist.append({"name": continent, "value": count}) return jsonify({"data": foreignlist}) if __name__ == '__main__': app.run()
none
1
2.447662
2
T2API/migrations/0008_product_weight.py
hackhb18-T2/api
0
10471
# Generated by Django 2.0.2 on 2018-02-17 10:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('T2API', '0007_apiuser_deviceuser'), ] operations = [ migrations.AddField( model_name='product', name='weight', field=models.IntegerField(default=None, null=True), ), ]
# Generated by Django 2.0.2 on 2018-02-17 10:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('T2API', '0007_apiuser_deviceuser'), ] operations = [ migrations.AddField( model_name='product', name='weight', field=models.IntegerField(default=None, null=True), ), ]
en
0.807271
# Generated by Django 2.0.2 on 2018-02-17 10:50
1.635558
2
contrib/cirrus/podbot.py
juhp/libpod
2
10472
#!/usr/bin/env python3 # Simple and dumb script to send a message to the #podman IRC channel on frenode # Based on example from: https://pythonspot.com/building-an-irc-bot/ import os import time import random import errno import socket import sys class IRC: response_timeout = 10 # seconds irc = socket.socket() def __init__(self, server, nickname, channel): self.server = server self.nickname = nickname self.channel = channel self.irc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) def _send(self, cmdstr): self.irc.send(bytes(cmdstr + '\r\n', 'utf-8')) def message(self, msg): data = 'PRIVMSG {0} :{1}\r\n'.format(self.channel, msg) print(data) self._send(data) @staticmethod def fix_newlines(bufr): return bufr.replace('\\r\\n', '\n') def _required_response(self, needle, haystack): start = time.time() end = start + self.response_timeout while time.time() < end: if haystack.find(needle) != -1: return (False, haystack) time.sleep(0.1) try: haystack += str(self.irc.recv(4096, socket.MSG_DONTWAIT)) except socket.error as serr: if serr.errno == errno.EWOULDBLOCK: continue raise # can't handle this return (True, haystack) # Error def connect(self, username, password): # This is ugly as sin, but seems to be a working send/expect sequence print("connecting to: {0}".format(self.server)) self.irc.connect((self.server, 6667)) #connects to the server self._send("USER {0} {0} {0} :I am {0}".format(self.nickname)) self._send("NICK {0}".format(self.nickname)) err, haystack = self._required_response('End of /MOTD command.' ''.format(self.nickname), "") if err: print(self.fix_newlines(haystack)) print("Error connecting to {0}".format(self.server)) return True print("Logging in as {0}".format(username)) self._send("PRIVMSG NickServ :IDENTIFY {0} {1}".format(username, password)) err, _ = self._required_response("You are now identified for", "") if err: print("Error logging in to {0} as {1}".format(self.server, username)) return True print("Joining {0}".format(self.channel)) self._send("JOIN {0}".format(self.channel)) err, haystack = self._required_response("{0} {1} :End of /NAMES list." "".format(self.nickname, self.channel), haystack) print(self.fix_newlines(haystack)) if err: print("Error joining {0}".format(self.channel)) return True return False def quit(self): print("Quitting") self._send("QUIT :my work is done here") self.irc.close() if len(sys.argv) < 3: print("Error: Must pass desired nick and message as parameters") else: irc = IRC("irc.freenode.net", sys.argv[1], "#podman") err = irc.connect(*os.environ.get('IRCID', 'Big Bug').split(" ", 2)) if not err: irc.message(" ".join(sys.argv[2:])) time.sleep(5.0) # avoid join/quit spam irc.quit()
#!/usr/bin/env python3 # Simple and dumb script to send a message to the #podman IRC channel on frenode # Based on example from: https://pythonspot.com/building-an-irc-bot/ import os import time import random import errno import socket import sys class IRC: response_timeout = 10 # seconds irc = socket.socket() def __init__(self, server, nickname, channel): self.server = server self.nickname = nickname self.channel = channel self.irc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) def _send(self, cmdstr): self.irc.send(bytes(cmdstr + '\r\n', 'utf-8')) def message(self, msg): data = 'PRIVMSG {0} :{1}\r\n'.format(self.channel, msg) print(data) self._send(data) @staticmethod def fix_newlines(bufr): return bufr.replace('\\r\\n', '\n') def _required_response(self, needle, haystack): start = time.time() end = start + self.response_timeout while time.time() < end: if haystack.find(needle) != -1: return (False, haystack) time.sleep(0.1) try: haystack += str(self.irc.recv(4096, socket.MSG_DONTWAIT)) except socket.error as serr: if serr.errno == errno.EWOULDBLOCK: continue raise # can't handle this return (True, haystack) # Error def connect(self, username, password): # This is ugly as sin, but seems to be a working send/expect sequence print("connecting to: {0}".format(self.server)) self.irc.connect((self.server, 6667)) #connects to the server self._send("USER {0} {0} {0} :I am {0}".format(self.nickname)) self._send("NICK {0}".format(self.nickname)) err, haystack = self._required_response('End of /MOTD command.' ''.format(self.nickname), "") if err: print(self.fix_newlines(haystack)) print("Error connecting to {0}".format(self.server)) return True print("Logging in as {0}".format(username)) self._send("PRIVMSG NickServ :IDENTIFY {0} {1}".format(username, password)) err, _ = self._required_response("You are now identified for", "") if err: print("Error logging in to {0} as {1}".format(self.server, username)) return True print("Joining {0}".format(self.channel)) self._send("JOIN {0}".format(self.channel)) err, haystack = self._required_response("{0} {1} :End of /NAMES list." "".format(self.nickname, self.channel), haystack) print(self.fix_newlines(haystack)) if err: print("Error joining {0}".format(self.channel)) return True return False def quit(self): print("Quitting") self._send("QUIT :my work is done here") self.irc.close() if len(sys.argv) < 3: print("Error: Must pass desired nick and message as parameters") else: irc = IRC("irc.freenode.net", sys.argv[1], "#podman") err = irc.connect(*os.environ.get('IRCID', 'Big Bug').split(" ", 2)) if not err: irc.message(" ".join(sys.argv[2:])) time.sleep(5.0) # avoid join/quit spam irc.quit()
en
0.89777
#!/usr/bin/env python3 # Simple and dumb script to send a message to the #podman IRC channel on frenode # Based on example from: https://pythonspot.com/building-an-irc-bot/ # seconds # can't handle this # Error # This is ugly as sin, but seems to be a working send/expect sequence #connects to the server # avoid join/quit spam
2.575957
3
changes/api/build_coverage.py
vault-the/changes
443
10473
<reponame>vault-the/changes from changes.api.base import APIView from changes.lib.coverage import get_coverage_by_build_id, merged_coverage_data from changes.models.build import Build class BuildTestCoverageAPIView(APIView): def get(self, build_id): build = Build.query.get(build_id) if build is None: return '', 404 coverage = merged_coverage_data(get_coverage_by_build_id(build.id)) return self.respond(coverage)
from changes.api.base import APIView from changes.lib.coverage import get_coverage_by_build_id, merged_coverage_data from changes.models.build import Build class BuildTestCoverageAPIView(APIView): def get(self, build_id): build = Build.query.get(build_id) if build is None: return '', 404 coverage = merged_coverage_data(get_coverage_by_build_id(build.id)) return self.respond(coverage)
none
1
2.033235
2
topopt/mechanisms/problems.py
arnavbansal2764/topopt
53
10474
<reponame>arnavbansal2764/topopt<gh_stars>10-100 """Compliant mechanism synthesis problems using topology optimization.""" import numpy import scipy.sparse from ..problems import ElasticityProblem from .boundary_conditions import MechanismSynthesisBoundaryConditions from ..utils import deleterowcol class MechanismSynthesisProblem(ElasticityProblem): r""" Topology optimization problem to generate compliant mechanisms. :math:`\begin{aligned} \max_{\boldsymbol{\rho}} \quad & \{u_{\text{out}}=\mathbf{l}^{T} \mathbf{u}\}\\ \textrm{subject to}: \quad & \mathbf{K}\mathbf{u} = \mathbf{f}_\text{in}\\ & \sum_{e=1}^N v_e\rho_e \leq V_\text{frac}, \quad 0 < \rho_\min \leq \rho_e \leq 1, \quad e=1, \dots, N.\\ \end{aligned}` where :math:`\mathbf{l}` is a vector with the value 1 at the degree(s) of freedom corresponding to the output point and with zeros at all other places. Attributes ---------- spring_stiffnesses: numpy.ndarray The spring stiffnesses of the actuator and output displacement. Emin: float The minimum stiffness of elements. Emax: float The maximum stiffness of elements. """ @staticmethod def lk(E: float = 1.0, nu: float = 0.3) -> numpy.ndarray: """ Build the element stiffness matrix. Parameters ---------- E: Young's modulus of the material. nu: Poisson's ratio of the material. Returns ------- The element stiffness matrix for the material. """ return ElasticityProblem.lk(1e0, nu) def __init__( self, bc: MechanismSynthesisBoundaryConditions, penalty: float): """ Create the topology optimization problem. Parameters ---------- nelx: Number of elements in the x direction. nely: Number of elements in the x direction. penalty: Penalty value used to penalize fractional densities in SIMP. bc: Boundary conditions of the problem. """ super().__init__(bc, penalty) self.Emin = 1e-6 # Minimum stiffness of elements self.Emax = 1e2 # Maximum stiffness of elements # Spring stiffnesses for the actuator and output displacement self.spring_stiffnesses = numpy.full( numpy.nonzero(self.f)[0].shape, 10.0) def build_K(self, xPhys: numpy.ndarray, remove_constrained: bool = True ) -> scipy.sparse.coo.coo_matrix: """ Build the stiffness matrix for the problem. Parameters ---------- xPhys: The element densisities used to build the stiffness matrix. remove_constrained: Should the constrained nodes be removed? Returns ------- The stiffness matrix for the mesh. """ # Build the stiffness matrix using inheritance K = super().build_K(xPhys, remove_constrained=False).tocsc() # Add spring stiffnesses spring_ids = numpy.nonzero(self.f)[0] K[spring_ids, spring_ids] += self.spring_stiffnesses # K = (K.T + K) / 2. # Make sure the stiffness matrix is symmetric # Remove constrained dofs from matrix and convert to coo if remove_constrained: K = deleterowcol(K, self.fixed, self.fixed) return K.tocoo() def compute_objective(self, xPhys: numpy.ndarray, dobj: numpy.ndarray ) -> float: r""" Compute the objective and gradient of the mechanism synthesis problem. The objective is :math:`u_{\text{out}}=\mathbf{l}^{T} \mathbf{u}` where :math:`\mathbf{l}` is a vector with the value 1 at the degree(s) of freedom corresponding to the output point and with zeros at all other places. The gradient of the objective is :math:`\begin{align} u_\text{out} &= \mathbf{l}^T\mathbf{u} = \mathbf{l}^T\mathbf{u} + \boldsymbol{\lambda}^T(\mathbf{K}\mathbf{u} - \mathbf{f})\\ \frac{\partial u_\text{out}}{\partial \rho_e} &= (\mathbf{K}\boldsymbol{\lambda} + \mathbf{l})^T \frac{\partial \mathbf u}{\partial \rho_e} + \boldsymbol{\lambda}^T\frac{\partial \mathbf K}{\partial \rho_e} \mathbf{u} = \boldsymbol{\lambda}^T\frac{\partial \mathbf K}{\partial \rho_e} \mathbf{u} \end{align}` where :math:`\mathbf{K}\boldsymbol{\lambda} = -\mathbf{l}`. Parameters ---------- xPhys: The density design variables. dobj: The gradient of the objective to compute. Returns ------- The objective of the compliant mechanism synthesis problem. """ # Setup and solve FE problem self.update_displacements(xPhys) u = self.u[:, 0][self.edofMat].reshape(-1, 8) # Displacement λ = self.u[:, 1][self.edofMat].reshape(-1, 8) # Fixed vector (Kλ = -l) obj = self.f[:, 1].T @ self.u[:, 0] self.obje[:] = (λ @ self.KE * u).sum(1) self.compute_young_moduli(xPhys, dobj) # Stores the derivative in dobj dobj *= -self.obje return obj
"""Compliant mechanism synthesis problems using topology optimization.""" import numpy import scipy.sparse from ..problems import ElasticityProblem from .boundary_conditions import MechanismSynthesisBoundaryConditions from ..utils import deleterowcol class MechanismSynthesisProblem(ElasticityProblem): r""" Topology optimization problem to generate compliant mechanisms. :math:`\begin{aligned} \max_{\boldsymbol{\rho}} \quad & \{u_{\text{out}}=\mathbf{l}^{T} \mathbf{u}\}\\ \textrm{subject to}: \quad & \mathbf{K}\mathbf{u} = \mathbf{f}_\text{in}\\ & \sum_{e=1}^N v_e\rho_e \leq V_\text{frac}, \quad 0 < \rho_\min \leq \rho_e \leq 1, \quad e=1, \dots, N.\\ \end{aligned}` where :math:`\mathbf{l}` is a vector with the value 1 at the degree(s) of freedom corresponding to the output point and with zeros at all other places. Attributes ---------- spring_stiffnesses: numpy.ndarray The spring stiffnesses of the actuator and output displacement. Emin: float The minimum stiffness of elements. Emax: float The maximum stiffness of elements. """ @staticmethod def lk(E: float = 1.0, nu: float = 0.3) -> numpy.ndarray: """ Build the element stiffness matrix. Parameters ---------- E: Young's modulus of the material. nu: Poisson's ratio of the material. Returns ------- The element stiffness matrix for the material. """ return ElasticityProblem.lk(1e0, nu) def __init__( self, bc: MechanismSynthesisBoundaryConditions, penalty: float): """ Create the topology optimization problem. Parameters ---------- nelx: Number of elements in the x direction. nely: Number of elements in the x direction. penalty: Penalty value used to penalize fractional densities in SIMP. bc: Boundary conditions of the problem. """ super().__init__(bc, penalty) self.Emin = 1e-6 # Minimum stiffness of elements self.Emax = 1e2 # Maximum stiffness of elements # Spring stiffnesses for the actuator and output displacement self.spring_stiffnesses = numpy.full( numpy.nonzero(self.f)[0].shape, 10.0) def build_K(self, xPhys: numpy.ndarray, remove_constrained: bool = True ) -> scipy.sparse.coo.coo_matrix: """ Build the stiffness matrix for the problem. Parameters ---------- xPhys: The element densisities used to build the stiffness matrix. remove_constrained: Should the constrained nodes be removed? Returns ------- The stiffness matrix for the mesh. """ # Build the stiffness matrix using inheritance K = super().build_K(xPhys, remove_constrained=False).tocsc() # Add spring stiffnesses spring_ids = numpy.nonzero(self.f)[0] K[spring_ids, spring_ids] += self.spring_stiffnesses # K = (K.T + K) / 2. # Make sure the stiffness matrix is symmetric # Remove constrained dofs from matrix and convert to coo if remove_constrained: K = deleterowcol(K, self.fixed, self.fixed) return K.tocoo() def compute_objective(self, xPhys: numpy.ndarray, dobj: numpy.ndarray ) -> float: r""" Compute the objective and gradient of the mechanism synthesis problem. The objective is :math:`u_{\text{out}}=\mathbf{l}^{T} \mathbf{u}` where :math:`\mathbf{l}` is a vector with the value 1 at the degree(s) of freedom corresponding to the output point and with zeros at all other places. The gradient of the objective is :math:`\begin{align} u_\text{out} &= \mathbf{l}^T\mathbf{u} = \mathbf{l}^T\mathbf{u} + \boldsymbol{\lambda}^T(\mathbf{K}\mathbf{u} - \mathbf{f})\\ \frac{\partial u_\text{out}}{\partial \rho_e} &= (\mathbf{K}\boldsymbol{\lambda} + \mathbf{l})^T \frac{\partial \mathbf u}{\partial \rho_e} + \boldsymbol{\lambda}^T\frac{\partial \mathbf K}{\partial \rho_e} \mathbf{u} = \boldsymbol{\lambda}^T\frac{\partial \mathbf K}{\partial \rho_e} \mathbf{u} \end{align}` where :math:`\mathbf{K}\boldsymbol{\lambda} = -\mathbf{l}`. Parameters ---------- xPhys: The density design variables. dobj: The gradient of the objective to compute. Returns ------- The objective of the compliant mechanism synthesis problem. """ # Setup and solve FE problem self.update_displacements(xPhys) u = self.u[:, 0][self.edofMat].reshape(-1, 8) # Displacement λ = self.u[:, 1][self.edofMat].reshape(-1, 8) # Fixed vector (Kλ = -l) obj = self.f[:, 1].T @ self.u[:, 0] self.obje[:] = (λ @ self.KE * u).sum(1) self.compute_young_moduli(xPhys, dobj) # Stores the derivative in dobj dobj *= -self.obje return obj
en
0.618272
Compliant mechanism synthesis problems using topology optimization. Topology optimization problem to generate compliant mechanisms. :math:`\begin{aligned} \max_{\boldsymbol{\rho}} \quad & \{u_{\text{out}}=\mathbf{l}^{T} \mathbf{u}\}\\ \textrm{subject to}: \quad & \mathbf{K}\mathbf{u} = \mathbf{f}_\text{in}\\ & \sum_{e=1}^N v_e\rho_e \leq V_\text{frac}, \quad 0 < \rho_\min \leq \rho_e \leq 1, \quad e=1, \dots, N.\\ \end{aligned}` where :math:`\mathbf{l}` is a vector with the value 1 at the degree(s) of freedom corresponding to the output point and with zeros at all other places. Attributes ---------- spring_stiffnesses: numpy.ndarray The spring stiffnesses of the actuator and output displacement. Emin: float The minimum stiffness of elements. Emax: float The maximum stiffness of elements. Build the element stiffness matrix. Parameters ---------- E: Young's modulus of the material. nu: Poisson's ratio of the material. Returns ------- The element stiffness matrix for the material. Create the topology optimization problem. Parameters ---------- nelx: Number of elements in the x direction. nely: Number of elements in the x direction. penalty: Penalty value used to penalize fractional densities in SIMP. bc: Boundary conditions of the problem. # Minimum stiffness of elements # Maximum stiffness of elements # Spring stiffnesses for the actuator and output displacement Build the stiffness matrix for the problem. Parameters ---------- xPhys: The element densisities used to build the stiffness matrix. remove_constrained: Should the constrained nodes be removed? Returns ------- The stiffness matrix for the mesh. # Build the stiffness matrix using inheritance # Add spring stiffnesses # K = (K.T + K) / 2. # Make sure the stiffness matrix is symmetric # Remove constrained dofs from matrix and convert to coo Compute the objective and gradient of the mechanism synthesis problem. The objective is :math:`u_{\text{out}}=\mathbf{l}^{T} \mathbf{u}` where :math:`\mathbf{l}` is a vector with the value 1 at the degree(s) of freedom corresponding to the output point and with zeros at all other places. The gradient of the objective is :math:`\begin{align} u_\text{out} &= \mathbf{l}^T\mathbf{u} = \mathbf{l}^T\mathbf{u} + \boldsymbol{\lambda}^T(\mathbf{K}\mathbf{u} - \mathbf{f})\\ \frac{\partial u_\text{out}}{\partial \rho_e} &= (\mathbf{K}\boldsymbol{\lambda} + \mathbf{l})^T \frac{\partial \mathbf u}{\partial \rho_e} + \boldsymbol{\lambda}^T\frac{\partial \mathbf K}{\partial \rho_e} \mathbf{u} = \boldsymbol{\lambda}^T\frac{\partial \mathbf K}{\partial \rho_e} \mathbf{u} \end{align}` where :math:`\mathbf{K}\boldsymbol{\lambda} = -\mathbf{l}`. Parameters ---------- xPhys: The density design variables. dobj: The gradient of the objective to compute. Returns ------- The objective of the compliant mechanism synthesis problem. # Setup and solve FE problem # Displacement # Fixed vector (Kλ = -l) # Stores the derivative in dobj
2.767374
3
tests/test_parse_icao24bit.py
Collen-Roller/arp
2
10475
import unittest from flydenity import Parser class TestParseIcao24Bit(unittest.TestCase): def setUp(self): self.parser = Parser() def test_parse_simple(self): match = self.parser.parse("3D2591", icao24bit=True) self.assertEqual(match, {"nation": "Germany", "description": "general", "iso2": "DE", "iso3": "DEU"}) def test_parse_strict(self): sloppy_reg_sloppy_parser = self.parser.parse("3DX", icao24bit=True, strict=False) sloppy_reg_strict_parser = self.parser.parse("3DX", icao24bit=True, strict=True) strict_reg_sloppy_parser = self.parser.parse("3D2591", icao24bit=True, strict=False) strict_reg_strict_parser = self.parser.parse("3D2591", icao24bit=True, strict=True) self.assertTrue(sloppy_reg_sloppy_parser == strict_reg_sloppy_parser == strict_reg_strict_parser != sloppy_reg_strict_parser) if __name__ == "__main__": unittest.main()
import unittest from flydenity import Parser class TestParseIcao24Bit(unittest.TestCase): def setUp(self): self.parser = Parser() def test_parse_simple(self): match = self.parser.parse("3D2591", icao24bit=True) self.assertEqual(match, {"nation": "Germany", "description": "general", "iso2": "DE", "iso3": "DEU"}) def test_parse_strict(self): sloppy_reg_sloppy_parser = self.parser.parse("3DX", icao24bit=True, strict=False) sloppy_reg_strict_parser = self.parser.parse("3DX", icao24bit=True, strict=True) strict_reg_sloppy_parser = self.parser.parse("3D2591", icao24bit=True, strict=False) strict_reg_strict_parser = self.parser.parse("3D2591", icao24bit=True, strict=True) self.assertTrue(sloppy_reg_sloppy_parser == strict_reg_sloppy_parser == strict_reg_strict_parser != sloppy_reg_strict_parser) if __name__ == "__main__": unittest.main()
none
1
3.119133
3
ever/util/_main.py
Bobholamovic/ever
22
10476
import os def create_project(path): dirs = ['configs', 'module', 'data'] dirs = [os.path.join(path, d) for d in dirs] for d in dirs: os.makedirs(d) train_script = r""" import ever as er def train(trainer_name): trainer = er.trainer.get_trainer(trainer_name)() trainer.run() """ with open(os.path.join(path, 'train.py'), 'w') as f: f.write(train_script) print('created project in {}'.format(path))
import os def create_project(path): dirs = ['configs', 'module', 'data'] dirs = [os.path.join(path, d) for d in dirs] for d in dirs: os.makedirs(d) train_script = r""" import ever as er def train(trainer_name): trainer = er.trainer.get_trainer(trainer_name)() trainer.run() """ with open(os.path.join(path, 'train.py'), 'w') as f: f.write(train_script) print('created project in {}'.format(path))
en
0.677289
import ever as er def train(trainer_name): trainer = er.trainer.get_trainer(trainer_name)() trainer.run()
2.599186
3
src/app/services/metrics_service.py
chrisbpoint/the-app
0
10477
class MetricsService: def __init__(self, adc_data, metrics_data): self._adc_data = adc_data self._metrics_data = metrics_data @property def metrics_data(self): return self._metrics_data def update(self): self._metrics_data.is_new_data_available = False if self._adc_data.is_new_data_available: self._metrics_data.update(self._adc_data.trace) self._metrics_data.is_new_data_available = True
class MetricsService: def __init__(self, adc_data, metrics_data): self._adc_data = adc_data self._metrics_data = metrics_data @property def metrics_data(self): return self._metrics_data def update(self): self._metrics_data.is_new_data_available = False if self._adc_data.is_new_data_available: self._metrics_data.update(self._adc_data.trace) self._metrics_data.is_new_data_available = True
none
1
2.641519
3
resthelper/tests/test_build_url.py
rklonner/resthelper
0
10478
import unittest from resthelper.utils import build_restful_url class TestBuildUrl(unittest.TestCase): def test_is_restful_https_url(self): url = build_restful_url('https://jenkins1.tttech.com', 'testuser', '/rest/1.0/request') self.assertEqual(url, 'https://[email protected]/rest/1.0/request') def test_is_restful_http_url(self): url = build_restful_url('http://jenkins1.tttech.com', 'testuser', '/rest/1.0/request') self.assertEqual(url, 'http://[email protected]/rest/1.0/request') if __name__ == '__main__': unittest.main()
import unittest from resthelper.utils import build_restful_url class TestBuildUrl(unittest.TestCase): def test_is_restful_https_url(self): url = build_restful_url('https://jenkins1.tttech.com', 'testuser', '/rest/1.0/request') self.assertEqual(url, 'https://[email protected]/rest/1.0/request') def test_is_restful_http_url(self): url = build_restful_url('http://jenkins1.tttech.com', 'testuser', '/rest/1.0/request') self.assertEqual(url, 'http://[email protected]/rest/1.0/request') if __name__ == '__main__': unittest.main()
none
1
3.033438
3
sendsms/backends/rq.py
this-is-the-bard/django-sendsms
0
10479
""" python-rq based backend This backend will send your messages asynchronously with python-rq. Before using this backend, make sure that django-rq is installed and configured. Usage ----- In settings.py SENDSMS_BACKEND = 'sendsms.backends.rq.SmsBackend' RQ_SENDSMS_BACKEND = 'actual.backend.to.use.SmsBackend' """ from sendsms.api import get_connection from sendsms.backends.base import BaseSmsBackend from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django_rq import job RQ_SENDSMS_BACKEND = getattr(settings, 'RQ_SENDSMS_BACKEND', None) if not RQ_SENDSMS_BACKEND: raise ImproperlyConfigured('Set RQ_SENDSMS_BACKEND') @job def send_messages(messages): connection = get_connection(RQ_SENDSMS_BACKEND) connection.send_messages(messages) class SmsBackend(BaseSmsBackend): def send_messages(self, messages): send_messages.delay(messages)
""" python-rq based backend This backend will send your messages asynchronously with python-rq. Before using this backend, make sure that django-rq is installed and configured. Usage ----- In settings.py SENDSMS_BACKEND = 'sendsms.backends.rq.SmsBackend' RQ_SENDSMS_BACKEND = 'actual.backend.to.use.SmsBackend' """ from sendsms.api import get_connection from sendsms.backends.base import BaseSmsBackend from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django_rq import job RQ_SENDSMS_BACKEND = getattr(settings, 'RQ_SENDSMS_BACKEND', None) if not RQ_SENDSMS_BACKEND: raise ImproperlyConfigured('Set RQ_SENDSMS_BACKEND') @job def send_messages(messages): connection = get_connection(RQ_SENDSMS_BACKEND) connection.send_messages(messages) class SmsBackend(BaseSmsBackend): def send_messages(self, messages): send_messages.delay(messages)
en
0.642827
python-rq based backend This backend will send your messages asynchronously with python-rq. Before using this backend, make sure that django-rq is installed and configured. Usage ----- In settings.py SENDSMS_BACKEND = 'sendsms.backends.rq.SmsBackend' RQ_SENDSMS_BACKEND = 'actual.backend.to.use.SmsBackend'
2.393128
2
venv/Lib/site-packages/openpyxl/worksheet/errors.py
ajayiagbebaku/NFL-Model
5,079
10480
<gh_stars>1000+ #Autogenerated schema from openpyxl.descriptors.serialisable import Serialisable from openpyxl.descriptors import ( Typed, String, Bool, Sequence, ) from openpyxl.descriptors.excel import CellRange class Extension(Serialisable): tagname = "extension" uri = String(allow_none=True) def __init__(self, uri=None, ): self.uri = uri class ExtensionList(Serialisable): tagname = "extensionList" # uses element group EG_ExtensionList ext = Sequence(expected_type=Extension) __elements__ = ('ext',) def __init__(self, ext=(), ): self.ext = ext class IgnoredError(Serialisable): tagname = "ignoredError" sqref = CellRange evalError = Bool(allow_none=True) twoDigitTextYear = Bool(allow_none=True) numberStoredAsText = Bool(allow_none=True) formula = Bool(allow_none=True) formulaRange = Bool(allow_none=True) unlockedFormula = Bool(allow_none=True) emptyCellReference = Bool(allow_none=True) listDataValidation = Bool(allow_none=True) calculatedColumn = Bool(allow_none=True) def __init__(self, sqref=None, evalError=False, twoDigitTextYear=False, numberStoredAsText=False, formula=False, formulaRange=False, unlockedFormula=False, emptyCellReference=False, listDataValidation=False, calculatedColumn=False, ): self.sqref = sqref self.evalError = evalError self.twoDigitTextYear = twoDigitTextYear self.numberStoredAsText = numberStoredAsText self.formula = formula self.formulaRange = formulaRange self.unlockedFormula = unlockedFormula self.emptyCellReference = emptyCellReference self.listDataValidation = listDataValidation self.calculatedColumn = calculatedColumn class IgnoredErrors(Serialisable): tagname = "ignoredErrors" ignoredError = Sequence(expected_type=IgnoredError) extLst = Typed(expected_type=ExtensionList, allow_none=True) __elements__ = ('ignoredError', 'extLst') def __init__(self, ignoredError=(), extLst=None, ): self.ignoredError = ignoredError self.extLst = extLst
#Autogenerated schema from openpyxl.descriptors.serialisable import Serialisable from openpyxl.descriptors import ( Typed, String, Bool, Sequence, ) from openpyxl.descriptors.excel import CellRange class Extension(Serialisable): tagname = "extension" uri = String(allow_none=True) def __init__(self, uri=None, ): self.uri = uri class ExtensionList(Serialisable): tagname = "extensionList" # uses element group EG_ExtensionList ext = Sequence(expected_type=Extension) __elements__ = ('ext',) def __init__(self, ext=(), ): self.ext = ext class IgnoredError(Serialisable): tagname = "ignoredError" sqref = CellRange evalError = Bool(allow_none=True) twoDigitTextYear = Bool(allow_none=True) numberStoredAsText = Bool(allow_none=True) formula = Bool(allow_none=True) formulaRange = Bool(allow_none=True) unlockedFormula = Bool(allow_none=True) emptyCellReference = Bool(allow_none=True) listDataValidation = Bool(allow_none=True) calculatedColumn = Bool(allow_none=True) def __init__(self, sqref=None, evalError=False, twoDigitTextYear=False, numberStoredAsText=False, formula=False, formulaRange=False, unlockedFormula=False, emptyCellReference=False, listDataValidation=False, calculatedColumn=False, ): self.sqref = sqref self.evalError = evalError self.twoDigitTextYear = twoDigitTextYear self.numberStoredAsText = numberStoredAsText self.formula = formula self.formulaRange = formulaRange self.unlockedFormula = unlockedFormula self.emptyCellReference = emptyCellReference self.listDataValidation = listDataValidation self.calculatedColumn = calculatedColumn class IgnoredErrors(Serialisable): tagname = "ignoredErrors" ignoredError = Sequence(expected_type=IgnoredError) extLst = Typed(expected_type=ExtensionList, allow_none=True) __elements__ = ('ignoredError', 'extLst') def __init__(self, ignoredError=(), extLst=None, ): self.ignoredError = ignoredError self.extLst = extLst
en
0.501669
#Autogenerated schema # uses element group EG_ExtensionList
2.477595
2
cwbot/kolextra/request/ItemDescriptionRequest.py
zeryl/RUcwbot
0
10481
<gh_stars>0 from kol.request.GenericRequest import GenericRequest from kol.manager import PatternManager import re class ItemDescriptionRequest(GenericRequest): "Gets the description of an item and then parses various information from the response." _itemIdPattern = re.compile(r'(?i)<!--\s*itemid:\s*(\d+)\s*-->') def __init__(self, session, descId): super(ItemDescriptionRequest, self).__init__(session) self.url = session.serverURL + "desc_item.php?whichitem=%s" % descId def parseResponse(self): # Get the item name. itemNamePattern = PatternManager.getOrCompilePattern("itemName") match = itemNamePattern.search(self.responseText) self.responseData["name"] = match.group(1) # Get the item image. imagePattern = PatternManager.getOrCompilePattern("itemImage") match = imagePattern.search(self.responseText) self.responseData["image"] = match.group(1) # Get the item type. typePattern = PatternManager.getOrCompilePattern("itemType") match = typePattern.search(self.responseText) if match: self.responseData["type"] = match.group(1).rstrip() # Get the autosell value. autosellPattern = PatternManager.getOrCompilePattern("itemAutosell") match = autosellPattern.search(self.responseText) if match: self.responseData["autosell"] = int(match.group(1)) else: self.responseData["autosell"] = 0 # See if this is a cooking ingredient. cookingPattern = PatternManager.getOrCompilePattern("isCookingIngredient") match = cookingPattern.search(self.responseText) if match: self.responseData["isCookingIngredient"] = True # See if the item is a cocktailcrafting ingredient. cocktailcraftingPattern = PatternManager.getOrCompilePattern("isCocktailcraftingIngredient") match = cocktailcraftingPattern.search(self.responseText) if match: self.responseData["isCocktailcraftingIngredient"] = True # See if the item is a meatsmithing component. meatsmithingPattern = PatternManager.getOrCompilePattern("isMeatsmithingComponent") match = meatsmithingPattern.search(self.responseText) if match: self.responseData["isMeatsmithingComponent"] = True # See if the item is a jewelrymaking component. jewelrymakingPattern = PatternManager.getOrCompilePattern("isJewelrymakingComponent") match = jewelrymakingPattern.search(self.responseText) if match: self.responseData["isJewelrymakingComponent"] = True # See if the itemId is listed match = self._itemIdPattern.search(self.responseText) if match: self.responseData["id"] = int(match.group(1)) else: self.responseData["id"] = None
from kol.request.GenericRequest import GenericRequest from kol.manager import PatternManager import re class ItemDescriptionRequest(GenericRequest): "Gets the description of an item and then parses various information from the response." _itemIdPattern = re.compile(r'(?i)<!--\s*itemid:\s*(\d+)\s*-->') def __init__(self, session, descId): super(ItemDescriptionRequest, self).__init__(session) self.url = session.serverURL + "desc_item.php?whichitem=%s" % descId def parseResponse(self): # Get the item name. itemNamePattern = PatternManager.getOrCompilePattern("itemName") match = itemNamePattern.search(self.responseText) self.responseData["name"] = match.group(1) # Get the item image. imagePattern = PatternManager.getOrCompilePattern("itemImage") match = imagePattern.search(self.responseText) self.responseData["image"] = match.group(1) # Get the item type. typePattern = PatternManager.getOrCompilePattern("itemType") match = typePattern.search(self.responseText) if match: self.responseData["type"] = match.group(1).rstrip() # Get the autosell value. autosellPattern = PatternManager.getOrCompilePattern("itemAutosell") match = autosellPattern.search(self.responseText) if match: self.responseData["autosell"] = int(match.group(1)) else: self.responseData["autosell"] = 0 # See if this is a cooking ingredient. cookingPattern = PatternManager.getOrCompilePattern("isCookingIngredient") match = cookingPattern.search(self.responseText) if match: self.responseData["isCookingIngredient"] = True # See if the item is a cocktailcrafting ingredient. cocktailcraftingPattern = PatternManager.getOrCompilePattern("isCocktailcraftingIngredient") match = cocktailcraftingPattern.search(self.responseText) if match: self.responseData["isCocktailcraftingIngredient"] = True # See if the item is a meatsmithing component. meatsmithingPattern = PatternManager.getOrCompilePattern("isMeatsmithingComponent") match = meatsmithingPattern.search(self.responseText) if match: self.responseData["isMeatsmithingComponent"] = True # See if the item is a jewelrymaking component. jewelrymakingPattern = PatternManager.getOrCompilePattern("isJewelrymakingComponent") match = jewelrymakingPattern.search(self.responseText) if match: self.responseData["isJewelrymakingComponent"] = True # See if the itemId is listed match = self._itemIdPattern.search(self.responseText) if match: self.responseData["id"] = int(match.group(1)) else: self.responseData["id"] = None
en
0.486876
# Get the item name. # Get the item image. # Get the item type. # Get the autosell value. # See if this is a cooking ingredient. # See if the item is a cocktailcrafting ingredient. # See if the item is a meatsmithing component. # See if the item is a jewelrymaking component. # See if the itemId is listed
2.571438
3
SmartMove/SmartConnector/cpapi/utils.py
themichaelasher/SmartMove
24
10482
import json import sys def compatible_loads(json_data): """ Function json.loads in python 3.0 - 3.5 can't handle bytes, so this function handle it. :param json_data: :return: unicode (str if it's python 3) """ if isinstance(json_data, bytes) and (3, 0) <= sys.version_info < (3, 6): json_data = json_data.decode("utf-8") return json.loads(json_data) def get_massage_from_io_error(error): """ :param: IOError :return: error message """ if sys.version_info >= (3, 0): return error.strerror else: return error.message
import json import sys def compatible_loads(json_data): """ Function json.loads in python 3.0 - 3.5 can't handle bytes, so this function handle it. :param json_data: :return: unicode (str if it's python 3) """ if isinstance(json_data, bytes) and (3, 0) <= sys.version_info < (3, 6): json_data = json_data.decode("utf-8") return json.loads(json_data) def get_massage_from_io_error(error): """ :param: IOError :return: error message """ if sys.version_info >= (3, 0): return error.strerror else: return error.message
en
0.390105
Function json.loads in python 3.0 - 3.5 can't handle bytes, so this function handle it. :param json_data: :return: unicode (str if it's python 3) :param: IOError :return: error message
3.056069
3
VokeScan.py
DaduVoke/VokeScan
2
10483
import sys,time def sprint(str): for c in str + '\n': sys.stdout.write(c) sys.stdout.flush() time.sleep(3./90) from colorama import Fore, Back, Style sprint (Fore.RED + "გამარჯობა. tool-ი შექმინლია ლევან ყიფიანი-DaduVoke-ის მიერ @2021") import socket import _thread import time class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class Core(object): ipurl=0 mode=1024 menu1=False f=None network_speed="სიჩქარე" menu2=False def GetData(self, url): self.url = url try: self.ipurl = socket.gethostbyname(self.url) except Exception as e: print ("თქვენ არასწორად შეიყვანეთ IP ან URL") exit(0) Core.ipurl=self.ipurl print (22*" ",bcolors.OKGREEN,"=/=\=\=/=\=/=\=/=\=/=\=/=\=/=\=/=\=/VokeScaner=/=\=\=/=\=/=\=/=\=/=\=/=\=/=\=/=\=",bcolors.OKGREEN) sprint('გთხოვთ აირჩიოთ 1 ან 2') while Core.menu1 is not True: choice = input("\n1 - მოკლე\n2 - გრძელი\n") if choice == "1": Core.mode=1024 menu=True break elif choice == "2": Core.mode=64000 menu = True break else: sprint("გთხოვთ აირჩიოთ პირველი ან მეორე. პროგრამის გასაშვებად ტერმინალში გამოიყენეთ ბრძანება 1 ან 2") while Core.menu2 is not True: sprint("მეორე ეტაპი! გთხოვთ აირჩიოთ გამოყენებული ინტერნეტის სიჩქარე (0.05(1) 0.03(2))") choice = input("\n1 - მოკლე \n2 - გრძელი\n") if choice == "1": Core.network_speed=0.05 menu2=True break elif choice == "2": Core.network_speed=0.3 menu2 = True break else: print("გთხოვთ აირჩიოთ პირველი ან მეორე. პროგრამის გასაშვებად ტერმინალში გამოიყენეთ ბრძანება 1 ან 2") def Start_Scan(self, port_start, port_end): Core.f = open(Core.ipurl, "a") try: for x in range(port_start,port_end): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) res = sock.connect_ex((Core.ipurl,x)) if res is 0: tmp="პორტი",x,"გახსნილია", socket.getservbyport(x) tmp1=str(tmp[0])+" "+str(tmp[1])+" "+str(tmp[2])+" "+str(tmp[3]) print(bcolors.OKGREEN,tmp1) Core.f.write(str(tmp)+"\n") Core.f.close() except Exception as e: print (e) try: scan = Core() scan.GetData(input("ჩაწერეთ IP ან მისამართი URL\n")) print(bcolors.WARNING,"სიხშირე:",Core.mode,"\n სამიზნე:",Core.ipurl,"\n სკანერის სიჩქარე:",Core.network_speed,bcolors.ENDC) print(bcolors.BOLD,"გთხოვთ დაიცადოთ რამდენიმე წამი...",bcolors.ENDC) for count in range(0,Core.mode): time.sleep(Core.network_speed) _thread.start_new_thread(scan.Start_Scan, (count,count+1)) if count > Core.mode: exit(0) except Exception as e: print (e)
import sys,time def sprint(str): for c in str + '\n': sys.stdout.write(c) sys.stdout.flush() time.sleep(3./90) from colorama import Fore, Back, Style sprint (Fore.RED + "გამარჯობა. tool-ი შექმინლია ლევან ყიფიანი-DaduVoke-ის მიერ @2021") import socket import _thread import time class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' class Core(object): ipurl=0 mode=1024 menu1=False f=None network_speed="სიჩქარე" menu2=False def GetData(self, url): self.url = url try: self.ipurl = socket.gethostbyname(self.url) except Exception as e: print ("თქვენ არასწორად შეიყვანეთ IP ან URL") exit(0) Core.ipurl=self.ipurl print (22*" ",bcolors.OKGREEN,"=/=\=\=/=\=/=\=/=\=/=\=/=\=/=\=/=\=/VokeScaner=/=\=\=/=\=/=\=/=\=/=\=/=\=/=\=/=\=",bcolors.OKGREEN) sprint('გთხოვთ აირჩიოთ 1 ან 2') while Core.menu1 is not True: choice = input("\n1 - მოკლე\n2 - გრძელი\n") if choice == "1": Core.mode=1024 menu=True break elif choice == "2": Core.mode=64000 menu = True break else: sprint("გთხოვთ აირჩიოთ პირველი ან მეორე. პროგრამის გასაშვებად ტერმინალში გამოიყენეთ ბრძანება 1 ან 2") while Core.menu2 is not True: sprint("მეორე ეტაპი! გთხოვთ აირჩიოთ გამოყენებული ინტერნეტის სიჩქარე (0.05(1) 0.03(2))") choice = input("\n1 - მოკლე \n2 - გრძელი\n") if choice == "1": Core.network_speed=0.05 menu2=True break elif choice == "2": Core.network_speed=0.3 menu2 = True break else: print("გთხოვთ აირჩიოთ პირველი ან მეორე. პროგრამის გასაშვებად ტერმინალში გამოიყენეთ ბრძანება 1 ან 2") def Start_Scan(self, port_start, port_end): Core.f = open(Core.ipurl, "a") try: for x in range(port_start,port_end): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) res = sock.connect_ex((Core.ipurl,x)) if res is 0: tmp="პორტი",x,"გახსნილია", socket.getservbyport(x) tmp1=str(tmp[0])+" "+str(tmp[1])+" "+str(tmp[2])+" "+str(tmp[3]) print(bcolors.OKGREEN,tmp1) Core.f.write(str(tmp)+"\n") Core.f.close() except Exception as e: print (e) try: scan = Core() scan.GetData(input("ჩაწერეთ IP ან მისამართი URL\n")) print(bcolors.WARNING,"სიხშირე:",Core.mode,"\n სამიზნე:",Core.ipurl,"\n სკანერის სიჩქარე:",Core.network_speed,bcolors.ENDC) print(bcolors.BOLD,"გთხოვთ დაიცადოთ რამდენიმე წამი...",bcolors.ENDC) for count in range(0,Core.mode): time.sleep(Core.network_speed) _thread.start_new_thread(scan.Start_Scan, (count,count+1)) if count > Core.mode: exit(0) except Exception as e: print (e)
none
1
2.771498
3
agent/src/clacks/agent/objects/object.py
gonicus/clacks
2
10484
<filename>agent/src/clacks/agent/objects/object.py # This file is part of the clacks framework. # # http://clacks-project.org # # Copyright: # (C) 2010-2012 GONICUS GmbH, Germany, http://www.gonicus.de # # License: # GPL-2: http://www.gnu.org/licenses/gpl-2.0.html # # See the LICENSE file in the project's top-level directory for details. """ The object base class. """ import copy import zope.event import pkg_resources import os from lxml import etree from lxml.builder import E from logging import getLogger from zope.interface import Interface, implements from clacks.common import Environment from clacks.common.utils import N_, is_uuid from clacks.common.components import PluginRegistry from clacks.common.error import ClacksErrorHandler as C from clacks.agent.objects.backend.registry import ObjectBackendRegistry from clacks.agent.exceptions import ObjectException # Status STATUS_OK = 0 STATUS_CHANGED = 1 # Register the errors handled by us C.register_codes(dict( CREATE_NEEDS_BASE=N_("Creation of '%(location)s' lacks a base DN"), READ_BACKEND_PROPERTIES=N_("Error reading properties for backend '%(backend)s'"), ATTRIBUTE_BLOCKED_BY=N_("Attribute is blocked by %(source)s==%(value)s"), ATTRIBUTE_READ_ONLY=N_("Attribute is read only"), ATTRIBUTE_MANDATORY=N_("Attribute is mandatory"), ATTRIBUTE_INVALID_CONSTANT=N_("Value is invalid - expected one of %(elements)s"), ATTRIBUTE_INVALID_LIST=N_("Value is invalid - expected a list"), ATTRIBUTE_INVALID=N_("Value is invalid - expected value of type '%(type)s'"), ATTRIBUTE_CHECK_FAILED=N_("Value is invalid"), ATTRIBUTE_NOT_UNIQUE=N_("Value is not unique (%(value)s)"), ATTRIBUTE_NOT_FOUND=N_("Attribute not found"), OBJECT_MODE_NOT_AVAILABLE=N_("Mode '%(mode)s' is not available for base objects"), OBJECT_MODE_BASE_AVAILABLE=N_("Mode '%(mode)s' is only available for base objects"), OBJECT_NOT_SUB_FOR=N_("Object of type '%(ext)s' cannot be added as to the '%(base)s' container"), OBJECT_REMOVE_NON_BASE_OBJECT=N_("Cannot remove non base object"), OBJECT_MOVE_NON_BASE_OBJECT=N_("Cannot move non base object"), OBJECT_BASE_NO_RETRACT=N_("Base object cannot be retracted"), FILTER_INVALID_KEY=N_("Invalid key '%(key)s' for filter '%(filter)s'"), FILTER_MISSING_KEY=N_("Missing key '%(key)s' after processing filter '%(filter)s'"), FILTER_NO_LIST=N_("Filter '%(filter)s' did not return a %(type)s value - a list was expected"), ATTRIBUTE_DEPEND_LOOP=N_("Potential loop in attribute dependencies") )) class Object(object): """ This class is the base class for all objects. It contains getter and setter methods for the object attributes and it is able to initialize itself by reading data from backends. It also contains the ability to execute the in- and out-filters for the object properties. All meta-classes for objects, created by the XML defintions, will inherit this class. """ _reg = None _backend = None _mode = False _propsByBackend = {} uuid = None dn = None orig_dn = None log = None createTimestamp = None modifyTimestamp = None myProperties = None env = None parent = None owner = None attributesInSaveOrder = None def __saveOrder(self): """ Returns a list containing all attributes in the correct save-order. Due to the fact that some attributes depend on another, we have to save some attributes first and then the others. """ data = self.__saveOrderHelper() attrs = [] for level in sorted(data.keys(), reverse=True): for attr in data[level]: if attr not in attrs: attrs.append(attr) return attrs def __saveOrderHelper(self, res=None, item=None, level=0): """ Helper method for '__saveOrder' to detect the dependency depth (level) for an attribute """ if not res: res = {} if not level in res: res[level] = [] if level == 10: raise ValueError(C.make_error('ATTRIBUTE_DEPEND_LOOP')) if not item: for key in self.myProperties: self.__saveOrderHelper(res, key, level + 1) else: if len(self.myProperties[item]['depends_on']): for key in self.myProperties[item]['depends_on']: self.__saveOrderHelper(res, key, level + 1) res[level].append(item) return res def __init__(self, where=None, mode="update"): self.env = Environment.getInstance() # Instantiate Backend-Registry self._reg = ObjectBackendRegistry.getInstance() self.log = getLogger(__name__) self.log.debug("new object instantiated '%s'" % type(self).__name__) # Group attributes by Backend propsByBackend = {} props = getattr(self, '__properties') self.myProperties = copy.deepcopy(props) self.attributesInSaveOrder = self.__saveOrder() atypes = self._objectFactory.getAttributeTypes() for key in self.myProperties: # Load dynamic dropdown-values if self.myProperties[key]['values_populate']: cr = PluginRegistry.getInstance('CommandRegistry') values = cr.call(self.myProperties[key]['values_populate']) if type(values).__name__ == "dict": self.myProperties[key]['values'] = values else: self.myProperties[key]['values'] = atypes['String'].convert_to(self.myProperties[key]['type'], values) # Initialize an empty array for each backend for be in self.myProperties[key]['backend']: if be not in propsByBackend: propsByBackend[be] = [] # Append property propsByBackend[be].append(key) self._propsByBackend = propsByBackend self._mode = mode # Initialize object using a DN if where: if mode == "create": if is_uuid(where): raise ValueError(C.make_error('CREATE_NEEDS_BASE', "base", location=where)) self.orig_dn = self.dn = where else: self._read(where) # Set status to modified for attributes that do not have a value but are # mandatory and have a default. # This ensures that default values are passed to the out_filters and get saved # afterwards. # (Defaults will be passed to in-filters too, if they are not overwritten by _read()) for key in self.myProperties: if not(self.myProperties[key]['value']) and self.myProperties[key]['default'] is not None and \ len(self.myProperties[key]['default']): self.myProperties[key]['value'] = copy.deepcopy(self.myProperties[key]['default']) if self.myProperties[key]['mandatory']: self.myProperties[key]['status'] = STATUS_CHANGED def set_foreign_value(self, attr, original): self.myProperties[attr]['value'] = original['value'] self.myProperties[attr]['in_value'] = original['in_value'] self.myProperties[attr]['orig_value'] = original['orig_value'] def listProperties(self): return self.myProperties.keys() def getProperties(self): return copy.deepcopy(self.myProperties) def listMethods(self): methods = getattr(self, '__methods') return methods.keys() def hasattr(self, attr): return attr in self.myProperties def _read(self, where): """ This method tries to initialize a object instance by reading data from the defined backend. Attributes will be grouped by their backend to ensure that only one request per backend will be performed. """ # Generate missing values if is_uuid(where): #pylint: disable=E1101 if self._base_object: self.dn = self._reg.uuid2dn(self._backend, where) else: self.dn = None self.uuid = where else: self.dn = where self.uuid = self._reg.dn2uuid(self._backend, where) # Get last change timestamp self.orig_dn = self.dn if self.dn: self.createTimestamp, self.modifyTimestamp = self._reg.get_timestamps(self._backend, self.dn) # Load attributes for each backend. # And then assign the values to the properties. self.log.debug("object uuid: %s" % self.uuid) for backend in self._propsByBackend: try: # Create a dictionary with all attributes we want to fetch # {attribute_name: type, name: type} info = dict([(k, self.myProperties[k]['backend_type']) for k in self._propsByBackend[backend]]) self.log.debug("loading attributes for backend '%s': %s" % (backend, str(info))) be = ObjectBackendRegistry.getBackend(backend) be_attrs = self._backendAttrs[backend] if backend in self._backendAttrs else None attrs = be.load(self.uuid, info, be_attrs) except ValueError as e: raise ObjectException(C.make_error('READ_BACKEND_PROPERTIES', backend=backend)) # Assign fetched value to the properties. for key in self._propsByBackend[backend]: if key not in attrs: self.log.debug("attribute '%s' was not returned by load" % key) continue # Keep original values, they may be overwritten in the in-filters. self.myProperties[key]['in_value'] = self.myProperties[key]['value'] = attrs[key] self.log.debug("%s: %s" % (key, self.myProperties[key]['value'])) # Once we've loaded all properties from the backend, execute the # in-filters. for key in self.myProperties: # Skip loading in-filters for None values if self.myProperties[key]['value'] is None: self.myProperties[key]['in_value'] = self.myProperties[key]['value'] = [] continue # Execute defined in-filters. if len(self.myProperties[key]['in_filter']): self.log.debug("found %s in-filter(s) for attribute '%s'" % (str(len(self.myProperties[key]['in_filter'])), key)) # Execute each in-filter for in_f in self.myProperties[key]['in_filter']: self.__processFilter(in_f, key, self.myProperties) # Convert the received type into the target type if not done already #pylint: disable=E1101 atypes = self._objectFactory.getAttributeTypes() for key in self.myProperties: # Convert values from incoming backend-type to required type if self.myProperties[key]['value']: a_type = self.myProperties[key]['type'] be_type = self.myProperties[key]['backend_type'] # Convert all values to required type if not atypes[a_type].is_valid_value(self.myProperties[key]['value']): try: self.myProperties[key]['value'] = atypes[a_type].convert_from(be_type, self.myProperties[key]['value']) except Exception as e: self.log.error("conversion of '%s' from '%s' to type '%s' failed: %s" % (key, be_type, a_type, str(e))) else: self.log.debug("converted '%s' from type '%s' to type '%s'!" % (key, be_type, a_type)) # Keep the initial value self.myProperties[key]['last_value'] = self.myProperties[key]['orig_value'] = copy.deepcopy(self.myProperties[key]['value']) def _delattr_(self, name): """ Deleter method for properties. """ if name in self.attributesInSaveOrder: # Check if this attribute is blocked by another attribute and its value. for bb in self.myProperties[name]['blocked_by']: if bb['value'] in self.myProperties[bb['name']]['value']: raise AttributeError(C.make_error( 'ATTRIBUTE_BLOCKED_BY', name, source=bb['name'], value=bb['value'])) # Do not allow to write to read-only attributes. if self.myProperties[name]['readonly']: raise AttributeError(C.make_error('ATTRIBUTE_READ_ONLY', name)) # Do not allow remove mandatory attributes if self.myProperties[name]['mandatory']: raise AttributeError(C.make_error('ATTRIBUTE_MANDATORY', name)) # If not already in removed state if len(self.myProperties[name]['value']) != 0: self.myProperties[name]['status'] = STATUS_CHANGED self.myProperties[name]['last_value'] = copy.deepcopy(self.myProperties[name]['value']) self.myProperties[name]['value'] = [] else: raise AttributeError(C.make_error('ATTRIBUTE_NOT_FOUND', name)) def _setattr_(self, name, value): """ This is the setter method for object attributes. Each given attribute value is validated with the given set of validators. """ # Store non property values try: object.__getattribute__(self, name) self.__dict__[name] = value return except AttributeError: pass # A none value was passed to clear the value if value is None: self._delattr_(name) return # Try to save as property value if name in self.myProperties: # Check if this attribute is blocked by another attribute and its value. for bb in self.myProperties[name]['blocked_by']: if bb['value'] in self.myProperties[bb['name']]['value']: raise AttributeError(C.make_error( 'ATTRIBUTE_BLOCKED_BY', name, source=bb['name'], value=bb['value'])) # Do not allow to write to read-only attributes. if self.myProperties[name]['readonly']: raise AttributeError(C.make_error('ATTRIBUTE_READ_ONLY', name)) # Check if the given value has to match one out of a given list. if len(self.myProperties[name]['values']) and value not in self.myProperties[name]['values']: raise TypeError(C.make_error( 'ATTRIBUTE_INVALID_CONSTANT', name, elements=", ".join(self.myProperties[name]['values']))) # Set the new value if self.myProperties[name]['multivalue']: # Check if the new value is s list. if type(value) != list: raise TypeError(C.make_error('ATTRIBUTE_INVALID_LIST', name)) new_value = value else: new_value = [value] # Eventually fixup value from incoming JSON string s_type = self.myProperties[name]['type'] try: new_value = self._objectFactory.getAttributeTypes()[s_type].fixup(new_value) except Exception: raise TypeError(C.make_error('ATTRIBUTE_INVALID', name, type=s_type)) # Check if the new value is valid #pylint: disable=E1101 if not self._objectFactory.getAttributeTypes()[s_type].is_valid_value(new_value): raise TypeError(C.make_error('ATTRIBUTE_INVALID', name, type=s_type)) # Validate value if self.myProperties[name]['validator']: props_copy = copy.deepcopy(self.myProperties) res, error = self.__processValidator(self.myProperties[name]['validator'], name, new_value, props_copy) if not res: if len(error): raise ValueError(C.make_error('ATTRIBUTE_CHECK_FAILED', name, details=error)) else: raise ValueError(C.make_error('ATTRIBUTE_CHECK_FAILED', name)) # Ensure that unique values stay unique. Let the backend test this. #if self.myProperties[name]['unique']: # backendI = ObjectBackendRegistry.getBackend(self.myProperties[name]['backend']) # if not backendI.is_uniq(name, new_value): # raise ObjectException(C.make_error('ATTRIBUTE_NOT_UNIQUE', name, value=value)) # Assign the properties new value. self.myProperties[name]['value'] = new_value self.log.debug("updated property value of [%s|%s] %s:%s" % (type(self).__name__, self.uuid, name, new_value)) # Update status if there's a change t = self.myProperties[name]['type'] current = copy.deepcopy(self.myProperties[name]['value']) #pylint: disable=E1101 if not self._objectFactory.getAttributeTypes()[t].values_match(self.myProperties[name]['value'], self.myProperties[name]['orig_value']): self.myProperties[name]['status'] = STATUS_CHANGED self.myProperties[name]['last_value'] = current else: raise AttributeError(C.make_error('ATTRIBUTE_NOT_FOUND', name)) def _getattr_(self, name): """ The getter method object attributes. (It differentiates between object attributes and class-members) """ methods = getattr(self, '__methods') # If the requested property exists in the object-attributes, then return it. if name in self.myProperties: # We can have single and multivalues, return the correct type here. value = None if self.myProperties[name]['multivalue']: value = self.myProperties[name]['value'] else: if len(self.myProperties[name]['value']): value = self.myProperties[name]['value'][0] return value # The requested property-name seems to be a method, return the method reference. elif name in methods: def m_call(*args, **kwargs): return methods[name]['ref'](self, *args, **kwargs) return m_call else: raise AttributeError(C.make_error('ATTRIBUTE_NOT_FOUND', name)) def getTemplate(self, theme="default"): """ Return the template data - if any. Else None. """ return Object.getNamedTemplate(self.env, self._templates, theme) @staticmethod def getNamedTemplate(env, templates, theme="default"): """ Return the template data - if any. Else None. """ ui = [] # If there's a template file, try to find it if templates: for template in templates: path = None # Absolute path if template.startswith(os.path.sep): path = template # Relative path else: # Find path path = pkg_resources.resource_filename('clacks.agent', os.path.join('data', 'templates', theme, template)) #@UndefinedVariable if not os.path.exists(path): path = os.path.join(env.config.getBaseDir(), 'templates', theme, template) if not os.path.exists(path): path = pkg_resources.resource_filename('clacks.agent', os.path.join('data', 'templates', "default", template)) #@UndefinedVariable if not os.path.exists(path): path = os.path.join(env.config.getBaseDir(), 'templates', "default", template) if not os.path.exists(path): return None with open(path, "r") as f: _ui = f.read() # Build new merged resource element root = etree.fromstring(_ui) new_resources = [] resources = root.find("resources") for include in resources.findall("include"): rc = include.get("location") location = os.path.join(os.path.dirname(path), rc) if not os.path.exists(location): raise IOError(C.make_error("NO_SUCH_RESOURCE", resource=location)) res = "" with open(location, "r") as f: res = f.read() for resource in etree.fromstring(res).findall("qresource"): files = [] prefix = resource.get("prefix") for f in resource.findall("file"): files.append(E.file(os.path.join(prefix, unicode(f.text)))) new_resources.append(E.resource(*files, location=rc)) root.replace(root.find("resources"), E.resources(*new_resources)) ui.append(etree.tostring(root)) return ui def getAttrType(self, name): """ Return the type of a given object attribute. """ if name in self.myProperties: return self.myProperties[name]['type'] raise AttributeError(C.make_error('ATTRIBUTE_NOT_FOUND', name)) def check(self, propsFromOtherExtensions=None): """ Checks whether everything is fine with the extension and its given values or not. """ if not propsFromOtherExtensions: propsFromOtherExtensions = {} # Create a copy to avoid touching the original values props = copy.deepcopy(self.myProperties) # Check if _mode matches with the current object type #pylint: disable=E1101 if self._base_object and not self._mode in ['create', 'remove', 'update']: raise ObjectException(C.make_error('OBJECT_MODE_NOT_AVAILABLE', mode=self._mode)) if not self._base_object and self._mode in ['create', 'remove']: raise ObjectException(C.make_error('OBJECT_MODE_BASE_AVAILABLE', mode=self._mode)) # Check if we are allowed to create this base object on the given base if self._base_object and self._mode == "create": base_type = self.get_object_type_by_dn(self.dn) if not base_type: raise ObjectException(C.make_error('OBJECT_MODE_BASE_AVAILABLE', mode=self._mode)) if self.__class__.__name__ not in self._objectFactory.getAllowedSubElementsForObject(base_type): raise ObjectException(C.make_error('OBJECT_NOT_SUB_FOR', ext=self.__class__.__name__, base=base_type)) # Transfer values form other commit processes into ourselfes for key in self.attributesInSaveOrder: if props[key]['foreign'] and key in propsFromOtherExtensions: props[key]['value'] = propsFromOtherExtensions[key]['value'] # Transfer status into commit status props[key]['commit_status'] = props[key]['status'] # Collect values by store and process the property filters for key in self.attributesInSaveOrder: # Skip foreign properties if props[key]['foreign']: continue # Check if this attribute is blocked by another attribute and its value. is_blocked = False for bb in props[key]['blocked_by']: if bb['value'] in props[bb['name']]['value']: is_blocked = True break # Check if all required attributes are set. (Skip blocked once, they cannot be set!) if not is_blocked and props[key]['mandatory'] and not len(props[key]['value']): raise ObjectException(C.make_error('ATTRIBUTE_MANDATORY', key)) # Process each and every out-filter with a clean set of input values, # to avoid that return-values overwrite themselves. if len(props[key]['out_filter']): self.log.debug(" found %s out-filter for %s" % (str(len(props[key]['out_filter'])), key,)) for out_f in props[key]['out_filter']: self.__processFilter(out_f, key, props) # Collect properties by backend for prop_key in self.attributesInSaveOrder: # Skip foreign properties if props[prop_key]['foreign']: continue # Ensure that mandatory values are set if props[prop_key]['mandatory'] and not len(props[prop_key]['value']): raise ObjectException(C.make_error('ATTRIBUTE_MANDATORY', prop_key)) # Do not save untouched values if not props[prop_key]['commit_status'] & STATUS_CHANGED: continue return props def commit(self, propsFromOtherExtensions=None): """ Commits changes of an object to the corresponding backends. """ if not propsFromOtherExtensions: propsFromOtherExtensions = {} self.check(propsFromOtherExtensions) self.log.debug("saving object modifications for [%s|%s]" % (type(self).__name__, self.uuid)) # Create a copy to avoid touching the original values props = copy.deepcopy(self.myProperties) # Transfer status into commit status for key in self.attributesInSaveOrder: props[key]['commit_status'] = props[key]['status'] # Transfer values form other commit processes into ourselfes if props[key]['foreign'] and key in propsFromOtherExtensions: props[key]['value'] = propsFromOtherExtensions[key]['value'] # Adapt property states # Run this once - If any state was adapted, then run again to ensure # that all dependencies are processed. first = True _max = 5 required = False while (first or required) and _max: first = False required = False _max -= 1 for key in self.attributesInSaveOrder: # Adapt status from dependent properties. for propname in props[key]['depends_on']: old = props[key]['commit_status'] props[key]['commit_status'] |= props[propname]['status'] & STATUS_CHANGED props[key]['commit_status'] |= props[propname]['commit_status'] & STATUS_CHANGED if props[key]['commit_status'] != old: required = True # Collect values by store and process the property filters collectedAttrs = {} for key in self.attributesInSaveOrder: # Skip foreign properties if props[key]['foreign']: continue # Do not save untouched values if not props[key]['commit_status'] & STATUS_CHANGED: continue # Get the new value for the property and execute the out-filter self.log.debug("changed: %s" % (key,)) # Process each and every out-filter with a clean set of input values, # to avoid that return-values overwrite themselves. if len(props[key]['out_filter']): self.log.debug(" found %s out-filter for %s" % (str(len(props[key]['out_filter'])), key,)) for out_f in props[key]['out_filter']: self.__processFilter(out_f, key, props) # Collect properties by backend for prop_key in self.attributesInSaveOrder: # Skip foreign properties if props[prop_key]['foreign']: continue # Do not save untouched values if not props[prop_key]['commit_status'] & STATUS_CHANGED: continue collectedAttrs[prop_key] = props[prop_key] # Create a backend compatible list of all changed attributes. toStore = {} for prop_key in collectedAttrs: # Collect properties by backend for be in props[prop_key]['backend']: if not be in toStore: toStore[be] = {} # Convert the properities type to the required format - if its not of the expected type. be_type = collectedAttrs[prop_key]['backend_type'] s_type = collectedAttrs[prop_key]['type'] if not self._objectFactory.getAttributeTypes()[be_type].is_valid_value(collectedAttrs[prop_key]['value']): collectedAttrs[prop_key]['value'] = self._objectFactory.getAttributeTypes()[s_type].convert_to( be_type, collectedAttrs[prop_key]['value']) # Append entry to the to-be-stored list toStore[be][prop_key] = {'foreign': collectedAttrs[prop_key]['foreign'], 'orig': collectedAttrs[prop_key]['in_value'], 'value': collectedAttrs[prop_key]['value'], 'type': collectedAttrs[prop_key]['backend_type']} # We may have a plugin without any attributes, like the group asterisk extension, in # this case we've to update the object despite of the lack of properties. if not len(toStore) and self._backend: toStore[self._backend] = {} # Leave the show if there's nothing to do tmp = {} for key, value in toStore.items(): # Skip NULL backend. Nothing to save, anyway. if key == "NULL": continue tmp[key] = value toStore = tmp # Skip the whole process if there's no change at all if not toStore: return {} # Update references using the toStore information changes = {} for be in toStore: changes.update(toStore[be]) self.update_refs(changes) # Handle by backend p_backend = getattr(self, '_backend') obj = self zope.event.notify(ObjectChanged("pre %s" % self._mode, obj)) # Call pre-hooks now if self._mode in ["extend", "create"]: self.__execute_hook("PreCreate") if self._mode in ["update"]: self.__execute_hook("PreModify") # First, take care about the primary backend... if p_backend in toStore: beAttrs = self._backendAttrs[p_backend] if p_backend in self._backendAttrs else {} be = ObjectBackendRegistry.getBackend(p_backend) if self._mode == "create": obj.uuid = be.create(self.dn, toStore[p_backend], self._backendAttrs[p_backend]) elif self._mode == "extend": be.extend(self.uuid, toStore[p_backend], self._backendAttrs[p_backend], self.getForeignProperties()) else: be.update(self.uuid, toStore[p_backend], beAttrs) # Eventually the DN has changed if self._base_object: dn = be.uuid2dn(self.uuid) # Take DN for newly created objects if self._mode == "create": if self._base_object: obj.dn = dn elif dn != obj.dn: self.update_dn_refs(dn) obj.dn = dn if self._base_object: zope.event.notify(ObjectChanged("post move", obj)) obj.orig_dn = dn # ... then walk thru the remaining ones for backend, data in toStore.items(): # Skip primary backend - already done if backend == p_backend: continue be = ObjectBackendRegistry.getBackend(backend) beAttrs = self._backendAttrs[backend] if backend in self._backendAttrs else {} if self._mode == "create": be.create(self.dn, data, beAttrs) elif self._mode == "extend": be.extend(self.uuid, data, beAttrs, self.getForeignProperties()) else: be.update(self.uuid, data, beAttrs) zope.event.notify(ObjectChanged("post %s" % self._mode, obj)) # Call post-hooks now if self._mode in ["extend", "create"]: self.__execute_hook("PostCreate") if self._mode in ["update"] and "PostModify": self.__execute_hook("PostModify") return props def revert(self): """ Reverts all changes made to this object since it was loaded. """ for key in self.myProperties: self.myProperties[key]['value'] = self.myProperties[key]['last_value'] self.log.debug("reverted object modifications for [%s|%s]" % (type(self).__name__, self.uuid)) def getExclusiveProperties(self): return [x for x, y in self.myProperties.items() if not y['foreign']] def getForeignProperties(self): return [x for x, y in self.myProperties.items() if y['foreign']] def __processValidator(self, fltr, key, value, props_copy): """ This method processes a given process-list (fltr) for a given property (prop). And return TRUE if the value matches the validator set and FALSE if not. """ # This is our process-line pointer it points to the process-list line # we're executing at the moment lptr = 0 # Our filter result stack stack = list() self.log.debug(" validator started (%s)" % key) self.log.debug(" value: %s" % (value, )) # Process the list till we reach the end.. lasterrmsg = "" errormsgs = [] while (lptr + 1) in fltr: # Get the current line and increase the process list pointer. lptr += 1 curline = fltr[lptr] # A condition matches for something and returns a boolean value. # We'll put this value on the stack for later use. if 'condition' in curline: # Build up argument list args = [props_copy, key, value] + curline['params'] # Process condition and keep results fname = type(curline['condition']).__name__ v, errors = (curline['condition']).process(*args) # Log what happend! self.log.debug(" %s: [Filter] %s(%s) called and returned: %s" % ( lptr, fname, ", ".join(["\"" + x + "\"" for x in curline['params']]), v)) # Append the result to the stack. stack.append(v) if not v: if len(errors): lasterrmsg = errors.pop() # A comparator compares two values from the stack and then returns a single # boolean value. elif 'operator' in curline: v1 = stack.pop() v2 = stack.pop() fname = type(curline['operator']).__name__ res = (curline['operator']).process(v1, v2) stack.append(res) # Add last error message if not res: errormsgs.append(lasterrmsg) lasterrmsg = "" # Log what happend! self.log.debug(" %s: [OPERATOR] %s(%s, %s) called and returned: %s" % ( lptr, fname, v1, v2, res)) # Attach last error message res = stack.pop() if not res and lasterrmsg != "": errormsgs.append(lasterrmsg) self.log.debug(" <- VALIDATOR ENDED (%s)" % key) return res, errormsgs def __processFilter(self, fltr, key, prop): """ This method processes a given process-list (fltr) for a given property (prop). For example: When a property has to be stored in the backend, it will run through the out-filter-process-list and thus will be transformed into a storable key, value pair. """ # Search for replaceable patterns in the process-list. fltr = self.__fillInPlaceholders(fltr, prop) # This is our process-line pointer it points to the process-list line # we're executing at the moment lptr = 0 # Our filter result stack stack = list() # Log values self.log.debug(" -> FILTER STARTED (%s)" % key) # Process the list till we reach the end.. while (lptr + 1) in fltr: # Get the current line and increase the process list pointer. lptr += 1 curline = fltr[lptr] # A filter is used to manipulate the 'value' or the 'key' or maybe both. if 'filter' in curline: # Build up argument list args = [self, key, prop] fname = type(curline['filter']).__name__ for entry in curline['params']: args.append(entry) # Process filter and keep results key, prop = (curline['filter']).process(*args) # Ensure that the processed data is still valid. # Filter may mess things up and then the next cannot process correctly. if key not in prop: raise ObjectException(C.make_error('FILTER_INVALID_KEY', key=key, filter=fname)) # Check if the filter returned all expected property values. for pk in prop: if not all(k in prop[pk] for k in ('backend', 'value', 'type')): missing = ", ".join({'backend', 'value', 'type'} - set(prop[pk].keys())) raise ObjectException(C.make_error('FILTER_MISSING_KEY', key=missing, filter=fname)) # Check if the returned value-type is list or None. if type(prop[pk]['value']) not in [list, type(None)]: raise ObjectException(C.make_error('FILTER_NO_LIST', key=pk, filter=fname, type=type(prop[pk]['value']))) self.log.debug(" %s: [Filter] %s(%s) called " % (lptr, fname, ", ".join(["\"" + x + "\"" for x in curline['params']]))) # A condition matches for something and returns a boolean value. # We'll put this value on the stack for later use. elif 'condition' in curline: # Build up argument list args = [key] + curline['params'] # Process condition and keep results stack.append((curline['condition']).process(*args)) fname = type(curline['condition']).__name__ self.log.debug(" %s: [Condition] %s(%s) called " % (lptr, fname, ", ".join(curline['params']))) # Handle jump, for example if a condition has failed, jump over its filter-chain. elif 'jump' in curline: # Jump to <line> -1 because we will increase the line ptr later. olptr = lptr if curline['jump'] == 'conditional': if stack.pop(): lptr = curline['onTrue'] - 1 else: lptr = curline['onFalse'] - 1 else: lptr = curline['to'] - 1 self.log.debug(" %s: [Goto] %s ()" % (olptr, lptr)) # A comparator compares two values from the stack and then returns a single # boolean value. elif 'operator' in curline: a = stack.pop() b = stack.pop() stack.append((curline['operator']).process(a, b)) fname = type(curline['operator']).__name__ self.log.debug(" %s: [Condition] %s(%s, %s) called " % (lptr, fname, a, b)) # Log current values #self.log.debug(" result") #for pkey in prop: # self.log.debug(" %s: %s" % (pkey, prop[pkey]['value'])) self.log.debug(" <- FILTER ENDED") return prop def __fillInPlaceholders(self, fltr, props): """ This method fill in placeholder into in- and out-filters. """ # Collect all property values propList = {} for key in props: if props[key]['multivalue']: propList[key] = props[key]['value'] else: if props[key]['value'] and len(props[key]['value']): propList[key] = props[key]['value'][0] else: propList[key] = None # An inline function which replaces format string tokens def _placeHolder(x): try: x = x % propList except KeyError: pass return x # Walk trough each line of the process list an replace placeholders. for line in fltr: if 'params' in fltr[line]: fltr[line]['params'] = map(_placeHolder, fltr[line]['params']) return fltr def get_object_type_by_dn(self, dn): """ Returns the objectType for a given DN """ index = PluginRegistry.getInstance("ObjectIndex") res = index.search({'dn': dn}, {'_type': 1}) return res[0]['_type'] if res.count() == 1 else None def get_references(self, override=None): res = [] index = PluginRegistry.getInstance("ObjectIndex") for ref, info in self._objectFactory.getReferences(override or self.__class__.__name__).items(): for ref_attribute, dsc in info.items(): for idsc in dsc: if self.myProperties[idsc[1]]['orig_value'] and len(self.myProperties[idsc[1]]['orig_value']): oval = self.myProperties[idsc[1]]['orig_value'][0] else: oval = None dns = index.search({'_type': ref, ref_attribute: oval}, {'dn': 1}) if dns.count(): dns = [x['dn'] for x in dns] res.append(( ref_attribute, idsc[1], getattr(self, idsc[1]), dns or [], self.myProperties[idsc[1]]['multivalue'])) return res def update_refs(self, data): for ref_attr, self_attr, value, refs, multivalue in self.get_references(): #@UnusedVariable for ref in refs: # Next iterration if there's no change for the relevant # attribute if not self_attr in data: continue # Load object and change value to the new one c_obj = ObjectProxy(ref) c_value = getattr(c_obj, ref_attr) o_value = data[self_attr]['orig'] if type(c_value) == list: if type(o_value) == list: c_value = filter(lambda x: x not in o_value, c_value) else: c_value = filter(lambda x: x != o_value, c_value) if multivalue: c_value.append(data[self_attr]['value']) else: c_value.append(data[self_attr]['value'][0]) setattr(c_obj, ref_attr, list(set(c_value))) else: setattr(c_obj, ref_attr, data[self_attr]['value'][0]) c_obj.commit() def remove_refs(self): for ref_attr, self_attr, value, refs, multivalue in self.get_references(): #@UnusedVariable for ref in refs: c_obj = ObjectProxy(ref) c_value = getattr(c_obj, ref_attr) if type(c_value) == list: if type(value) == list: c_value = filter(lambda x: x not in value, c_value) else: c_value = filter(lambda x: x != value, c_value) setattr(c_obj, ref_attr, c_value) else: setattr(c_obj, ref_attr, None) c_obj.commit() def get_dn_references(self): res = [] index = PluginRegistry.getInstance("ObjectIndex") for info in self._objectFactory.getReferences("*", "dn").values(): for ref_attribute in info.keys(): dns = index.search({ref_attribute: self.dn}, {'dn': 1}) if dns.count(): dns = [x['dn'] for x in dns] res.append(( ref_attribute, map(lambda s: s.decode('utf-8'), dns if dns else []) )) return res def update_dn_refs(self, new_dn): for ref_attr, refs in self.get_dn_references(): for ref in refs: c_obj = ObjectProxy(ref) c_value = getattr(c_obj, ref_attr) if type(c_value) == list: c_value = filter(lambda x: x != self.dn, c_value) c_value.append(new_dn) setattr(c_obj, ref_attr, list(set(c_value))) else: setattr(c_obj, ref_attr, new_dn) c_obj.commit() def remove_dn_refs(self): for ref_attr, refs in self.get_dn_references(): for ref in refs: c_obj = ObjectProxy(ref) c_value = getattr(c_obj, ref_attr) if type(c_value) == list: c_value = filter(lambda x: x != self.dn, c_value) setattr(c_obj, ref_attr, list(set(c_value))) else: setattr(c_obj, ref_attr, None) c_obj.commit() def remove(self): """ Removes this object - and eventually it's containements. """ #pylint: disable=E1101 if not self._base_object: raise ObjectException(C.make_error('OBJECT_REMOVE_NON_BASE_OBJECT')) # Remove all references to ourselves self.remove_refs() # Collect backends backends = [getattr(self, '_backend')] be_attrs = {getattr(self, '_backend'): {}} for prop, info in self.myProperties.items(): for backend in info['backend']: if not backend in backends: backends.append(backend) if not backend in be_attrs: be_attrs[backend] = {} if self.is_attr_set(prop): be_attrs[backend][prop] = {'foreign': info['foreign'], 'orig': info['in_value'], 'value': info['value'], 'type': info['backend_type']} # Remove for all backends, removing the primary one as the last one backends.reverse() obj = self zope.event.notify(ObjectChanged("pre remove", obj)) # Call pre-remove now self.__execute_hook("PreRemove") for backend in backends: be = ObjectBackendRegistry.getBackend(backend) r_attrs = self.getExclusiveProperties() # Remove all non exclusive properties remove_attrs = {} for attr in be_attrs[backend]: if attr in r_attrs: remove_attrs[attr] = be_attrs[backend][attr] self.remove_refs() self.remove_dn_refs() #pylint: disable=E1101 be.remove(self.uuid, remove_attrs, self._backendAttrs[backend] \ if backend in self._backendAttrs else None) zope.event.notify(ObjectChanged("post remove", obj)) # Call post-remove now self.__execute_hook("PostRemove") def simulate_move(self, orig_dn): """ Simulate a moves for this object """ #pylint: disable=E1101 if not self._base_object: raise ObjectException(C.make_error('OBJECT_MOVE_NON_BASE_OBJECT')) obj = self zope.event.notify(ObjectChanged("pre move", obj, dn=self.dn, orig_dn=orig_dn)) # Update the DN refs which have most probably changed self.update_dn_refs(self.dn) zope.event.notify(ObjectChanged("post move", obj, dn=self.dn, orig_dn=orig_dn)) def move(self, new_base): """ Moves this object - and eventually it's containements. """ #pylint: disable=E1101 if not self._base_object: raise ObjectException(C.make_error('OBJECT_MOVE_NON_BASE_OBJECT')) # Collect backends backends = [getattr(self, '_backend')] # Collect all other backends for info in self.myProperties.values(): for be in info['backend']: if not be in backends: backends.append(be) obj = self zope.event.notify(ObjectChanged("pre move", obj)) # Move for primary backend be = ObjectBackendRegistry.getBackend(backends[0]) be.move(self.uuid, new_base) # Update the DN refs which have most probably changed p_backend = getattr(self, '_backend') be = ObjectBackendRegistry.getBackend(p_backend) dn = be.uuid2dn(self.uuid) self.update_dn_refs(dn) zope.event.notify(ObjectChanged("post move", obj, dn=dn)) def retract(self): """ Removes this object extension """ #pylint: disable=E1101 if self._base_object: raise ObjectException(C.make_error('OBJECT_BASE_NO_RETRACT')) # Call pre-remove now self.__execute_hook("PreRemove") # Remove all references to ourselves self.remove_refs() # Collect backends backends = [getattr(self, '_backend')] be_attrs = {getattr(self, '_backend'): {}} for prop, info in self.myProperties.items(): for backend in info['backend']: if not backend in backends: backends.append(backend) if not backend in be_attrs: be_attrs[backend] = {} if self.is_attr_set(prop): be_attrs[backend][prop] = {'foreign': info['foreign'], 'orig': info['in_value'], 'value': info['value'], 'type': info['backend_type']} # Retract for all backends, removing the primary one as the last one backends.reverse() obj = self zope.event.notify(ObjectChanged("pre retract", obj)) for backend in backends: be = ObjectBackendRegistry.getBackend(backend) r_attrs = self.getExclusiveProperties() # Remove all non exclusive properties remove_attrs = {} for attr in be_attrs[backend]: if attr in r_attrs: remove_attrs[attr] = be_attrs[backend][attr] self.remove_refs() self.remove_dn_refs() #pylint: disable=E1101 be.retract(self.uuid, remove_attrs, self._backendAttrs[backend] \ if backend in self._backendAttrs else None) zope.event.notify(ObjectChanged("post retract", obj)) # Call post-remove now self.__execute_hook("PostRemove") def is_attr_set(self, name): return len(self.myProperties[name]['in_value']) def is_attr_using_default(self, name): return not self.is_attr_set(name) and self.myProperties[name]['default'] def __execute_hook(self, hook_type): # Call post-remove now hooks = getattr(self, '__hooks') if hook_type in hooks: for hook in hooks[hook_type]: hook["ref"](self) class IObjectChanged(Interface): def __init__(self, obj): pass class IAttributeChanged(Interface): def __init__(self, attr, value): pass class ObjectChanged(object): implements(IObjectChanged) def __init__(self, reason, obj=None, dn=None, uuid=None, orig_dn=None, o_type=None): self.reason = reason self.uuid = uuid or obj.uuid self.dn = dn or obj.dn self.orig_dn = orig_dn or obj.orig_dn self.o_type = o_type or obj.__class__.__name__ class AttributeChanged(object): implements(IAttributeChanged) def __init__(self, reason, obj, target): self.reason = reason self.target = target self.uuid = obj.uuid from clacks.agent.objects.proxy import ObjectProxy
<filename>agent/src/clacks/agent/objects/object.py # This file is part of the clacks framework. # # http://clacks-project.org # # Copyright: # (C) 2010-2012 GONICUS GmbH, Germany, http://www.gonicus.de # # License: # GPL-2: http://www.gnu.org/licenses/gpl-2.0.html # # See the LICENSE file in the project's top-level directory for details. """ The object base class. """ import copy import zope.event import pkg_resources import os from lxml import etree from lxml.builder import E from logging import getLogger from zope.interface import Interface, implements from clacks.common import Environment from clacks.common.utils import N_, is_uuid from clacks.common.components import PluginRegistry from clacks.common.error import ClacksErrorHandler as C from clacks.agent.objects.backend.registry import ObjectBackendRegistry from clacks.agent.exceptions import ObjectException # Status STATUS_OK = 0 STATUS_CHANGED = 1 # Register the errors handled by us C.register_codes(dict( CREATE_NEEDS_BASE=N_("Creation of '%(location)s' lacks a base DN"), READ_BACKEND_PROPERTIES=N_("Error reading properties for backend '%(backend)s'"), ATTRIBUTE_BLOCKED_BY=N_("Attribute is blocked by %(source)s==%(value)s"), ATTRIBUTE_READ_ONLY=N_("Attribute is read only"), ATTRIBUTE_MANDATORY=N_("Attribute is mandatory"), ATTRIBUTE_INVALID_CONSTANT=N_("Value is invalid - expected one of %(elements)s"), ATTRIBUTE_INVALID_LIST=N_("Value is invalid - expected a list"), ATTRIBUTE_INVALID=N_("Value is invalid - expected value of type '%(type)s'"), ATTRIBUTE_CHECK_FAILED=N_("Value is invalid"), ATTRIBUTE_NOT_UNIQUE=N_("Value is not unique (%(value)s)"), ATTRIBUTE_NOT_FOUND=N_("Attribute not found"), OBJECT_MODE_NOT_AVAILABLE=N_("Mode '%(mode)s' is not available for base objects"), OBJECT_MODE_BASE_AVAILABLE=N_("Mode '%(mode)s' is only available for base objects"), OBJECT_NOT_SUB_FOR=N_("Object of type '%(ext)s' cannot be added as to the '%(base)s' container"), OBJECT_REMOVE_NON_BASE_OBJECT=N_("Cannot remove non base object"), OBJECT_MOVE_NON_BASE_OBJECT=N_("Cannot move non base object"), OBJECT_BASE_NO_RETRACT=N_("Base object cannot be retracted"), FILTER_INVALID_KEY=N_("Invalid key '%(key)s' for filter '%(filter)s'"), FILTER_MISSING_KEY=N_("Missing key '%(key)s' after processing filter '%(filter)s'"), FILTER_NO_LIST=N_("Filter '%(filter)s' did not return a %(type)s value - a list was expected"), ATTRIBUTE_DEPEND_LOOP=N_("Potential loop in attribute dependencies") )) class Object(object): """ This class is the base class for all objects. It contains getter and setter methods for the object attributes and it is able to initialize itself by reading data from backends. It also contains the ability to execute the in- and out-filters for the object properties. All meta-classes for objects, created by the XML defintions, will inherit this class. """ _reg = None _backend = None _mode = False _propsByBackend = {} uuid = None dn = None orig_dn = None log = None createTimestamp = None modifyTimestamp = None myProperties = None env = None parent = None owner = None attributesInSaveOrder = None def __saveOrder(self): """ Returns a list containing all attributes in the correct save-order. Due to the fact that some attributes depend on another, we have to save some attributes first and then the others. """ data = self.__saveOrderHelper() attrs = [] for level in sorted(data.keys(), reverse=True): for attr in data[level]: if attr not in attrs: attrs.append(attr) return attrs def __saveOrderHelper(self, res=None, item=None, level=0): """ Helper method for '__saveOrder' to detect the dependency depth (level) for an attribute """ if not res: res = {} if not level in res: res[level] = [] if level == 10: raise ValueError(C.make_error('ATTRIBUTE_DEPEND_LOOP')) if not item: for key in self.myProperties: self.__saveOrderHelper(res, key, level + 1) else: if len(self.myProperties[item]['depends_on']): for key in self.myProperties[item]['depends_on']: self.__saveOrderHelper(res, key, level + 1) res[level].append(item) return res def __init__(self, where=None, mode="update"): self.env = Environment.getInstance() # Instantiate Backend-Registry self._reg = ObjectBackendRegistry.getInstance() self.log = getLogger(__name__) self.log.debug("new object instantiated '%s'" % type(self).__name__) # Group attributes by Backend propsByBackend = {} props = getattr(self, '__properties') self.myProperties = copy.deepcopy(props) self.attributesInSaveOrder = self.__saveOrder() atypes = self._objectFactory.getAttributeTypes() for key in self.myProperties: # Load dynamic dropdown-values if self.myProperties[key]['values_populate']: cr = PluginRegistry.getInstance('CommandRegistry') values = cr.call(self.myProperties[key]['values_populate']) if type(values).__name__ == "dict": self.myProperties[key]['values'] = values else: self.myProperties[key]['values'] = atypes['String'].convert_to(self.myProperties[key]['type'], values) # Initialize an empty array for each backend for be in self.myProperties[key]['backend']: if be not in propsByBackend: propsByBackend[be] = [] # Append property propsByBackend[be].append(key) self._propsByBackend = propsByBackend self._mode = mode # Initialize object using a DN if where: if mode == "create": if is_uuid(where): raise ValueError(C.make_error('CREATE_NEEDS_BASE', "base", location=where)) self.orig_dn = self.dn = where else: self._read(where) # Set status to modified for attributes that do not have a value but are # mandatory and have a default. # This ensures that default values are passed to the out_filters and get saved # afterwards. # (Defaults will be passed to in-filters too, if they are not overwritten by _read()) for key in self.myProperties: if not(self.myProperties[key]['value']) and self.myProperties[key]['default'] is not None and \ len(self.myProperties[key]['default']): self.myProperties[key]['value'] = copy.deepcopy(self.myProperties[key]['default']) if self.myProperties[key]['mandatory']: self.myProperties[key]['status'] = STATUS_CHANGED def set_foreign_value(self, attr, original): self.myProperties[attr]['value'] = original['value'] self.myProperties[attr]['in_value'] = original['in_value'] self.myProperties[attr]['orig_value'] = original['orig_value'] def listProperties(self): return self.myProperties.keys() def getProperties(self): return copy.deepcopy(self.myProperties) def listMethods(self): methods = getattr(self, '__methods') return methods.keys() def hasattr(self, attr): return attr in self.myProperties def _read(self, where): """ This method tries to initialize a object instance by reading data from the defined backend. Attributes will be grouped by their backend to ensure that only one request per backend will be performed. """ # Generate missing values if is_uuid(where): #pylint: disable=E1101 if self._base_object: self.dn = self._reg.uuid2dn(self._backend, where) else: self.dn = None self.uuid = where else: self.dn = where self.uuid = self._reg.dn2uuid(self._backend, where) # Get last change timestamp self.orig_dn = self.dn if self.dn: self.createTimestamp, self.modifyTimestamp = self._reg.get_timestamps(self._backend, self.dn) # Load attributes for each backend. # And then assign the values to the properties. self.log.debug("object uuid: %s" % self.uuid) for backend in self._propsByBackend: try: # Create a dictionary with all attributes we want to fetch # {attribute_name: type, name: type} info = dict([(k, self.myProperties[k]['backend_type']) for k in self._propsByBackend[backend]]) self.log.debug("loading attributes for backend '%s': %s" % (backend, str(info))) be = ObjectBackendRegistry.getBackend(backend) be_attrs = self._backendAttrs[backend] if backend in self._backendAttrs else None attrs = be.load(self.uuid, info, be_attrs) except ValueError as e: raise ObjectException(C.make_error('READ_BACKEND_PROPERTIES', backend=backend)) # Assign fetched value to the properties. for key in self._propsByBackend[backend]: if key not in attrs: self.log.debug("attribute '%s' was not returned by load" % key) continue # Keep original values, they may be overwritten in the in-filters. self.myProperties[key]['in_value'] = self.myProperties[key]['value'] = attrs[key] self.log.debug("%s: %s" % (key, self.myProperties[key]['value'])) # Once we've loaded all properties from the backend, execute the # in-filters. for key in self.myProperties: # Skip loading in-filters for None values if self.myProperties[key]['value'] is None: self.myProperties[key]['in_value'] = self.myProperties[key]['value'] = [] continue # Execute defined in-filters. if len(self.myProperties[key]['in_filter']): self.log.debug("found %s in-filter(s) for attribute '%s'" % (str(len(self.myProperties[key]['in_filter'])), key)) # Execute each in-filter for in_f in self.myProperties[key]['in_filter']: self.__processFilter(in_f, key, self.myProperties) # Convert the received type into the target type if not done already #pylint: disable=E1101 atypes = self._objectFactory.getAttributeTypes() for key in self.myProperties: # Convert values from incoming backend-type to required type if self.myProperties[key]['value']: a_type = self.myProperties[key]['type'] be_type = self.myProperties[key]['backend_type'] # Convert all values to required type if not atypes[a_type].is_valid_value(self.myProperties[key]['value']): try: self.myProperties[key]['value'] = atypes[a_type].convert_from(be_type, self.myProperties[key]['value']) except Exception as e: self.log.error("conversion of '%s' from '%s' to type '%s' failed: %s" % (key, be_type, a_type, str(e))) else: self.log.debug("converted '%s' from type '%s' to type '%s'!" % (key, be_type, a_type)) # Keep the initial value self.myProperties[key]['last_value'] = self.myProperties[key]['orig_value'] = copy.deepcopy(self.myProperties[key]['value']) def _delattr_(self, name): """ Deleter method for properties. """ if name in self.attributesInSaveOrder: # Check if this attribute is blocked by another attribute and its value. for bb in self.myProperties[name]['blocked_by']: if bb['value'] in self.myProperties[bb['name']]['value']: raise AttributeError(C.make_error( 'ATTRIBUTE_BLOCKED_BY', name, source=bb['name'], value=bb['value'])) # Do not allow to write to read-only attributes. if self.myProperties[name]['readonly']: raise AttributeError(C.make_error('ATTRIBUTE_READ_ONLY', name)) # Do not allow remove mandatory attributes if self.myProperties[name]['mandatory']: raise AttributeError(C.make_error('ATTRIBUTE_MANDATORY', name)) # If not already in removed state if len(self.myProperties[name]['value']) != 0: self.myProperties[name]['status'] = STATUS_CHANGED self.myProperties[name]['last_value'] = copy.deepcopy(self.myProperties[name]['value']) self.myProperties[name]['value'] = [] else: raise AttributeError(C.make_error('ATTRIBUTE_NOT_FOUND', name)) def _setattr_(self, name, value): """ This is the setter method for object attributes. Each given attribute value is validated with the given set of validators. """ # Store non property values try: object.__getattribute__(self, name) self.__dict__[name] = value return except AttributeError: pass # A none value was passed to clear the value if value is None: self._delattr_(name) return # Try to save as property value if name in self.myProperties: # Check if this attribute is blocked by another attribute and its value. for bb in self.myProperties[name]['blocked_by']: if bb['value'] in self.myProperties[bb['name']]['value']: raise AttributeError(C.make_error( 'ATTRIBUTE_BLOCKED_BY', name, source=bb['name'], value=bb['value'])) # Do not allow to write to read-only attributes. if self.myProperties[name]['readonly']: raise AttributeError(C.make_error('ATTRIBUTE_READ_ONLY', name)) # Check if the given value has to match one out of a given list. if len(self.myProperties[name]['values']) and value not in self.myProperties[name]['values']: raise TypeError(C.make_error( 'ATTRIBUTE_INVALID_CONSTANT', name, elements=", ".join(self.myProperties[name]['values']))) # Set the new value if self.myProperties[name]['multivalue']: # Check if the new value is s list. if type(value) != list: raise TypeError(C.make_error('ATTRIBUTE_INVALID_LIST', name)) new_value = value else: new_value = [value] # Eventually fixup value from incoming JSON string s_type = self.myProperties[name]['type'] try: new_value = self._objectFactory.getAttributeTypes()[s_type].fixup(new_value) except Exception: raise TypeError(C.make_error('ATTRIBUTE_INVALID', name, type=s_type)) # Check if the new value is valid #pylint: disable=E1101 if not self._objectFactory.getAttributeTypes()[s_type].is_valid_value(new_value): raise TypeError(C.make_error('ATTRIBUTE_INVALID', name, type=s_type)) # Validate value if self.myProperties[name]['validator']: props_copy = copy.deepcopy(self.myProperties) res, error = self.__processValidator(self.myProperties[name]['validator'], name, new_value, props_copy) if not res: if len(error): raise ValueError(C.make_error('ATTRIBUTE_CHECK_FAILED', name, details=error)) else: raise ValueError(C.make_error('ATTRIBUTE_CHECK_FAILED', name)) # Ensure that unique values stay unique. Let the backend test this. #if self.myProperties[name]['unique']: # backendI = ObjectBackendRegistry.getBackend(self.myProperties[name]['backend']) # if not backendI.is_uniq(name, new_value): # raise ObjectException(C.make_error('ATTRIBUTE_NOT_UNIQUE', name, value=value)) # Assign the properties new value. self.myProperties[name]['value'] = new_value self.log.debug("updated property value of [%s|%s] %s:%s" % (type(self).__name__, self.uuid, name, new_value)) # Update status if there's a change t = self.myProperties[name]['type'] current = copy.deepcopy(self.myProperties[name]['value']) #pylint: disable=E1101 if not self._objectFactory.getAttributeTypes()[t].values_match(self.myProperties[name]['value'], self.myProperties[name]['orig_value']): self.myProperties[name]['status'] = STATUS_CHANGED self.myProperties[name]['last_value'] = current else: raise AttributeError(C.make_error('ATTRIBUTE_NOT_FOUND', name)) def _getattr_(self, name): """ The getter method object attributes. (It differentiates between object attributes and class-members) """ methods = getattr(self, '__methods') # If the requested property exists in the object-attributes, then return it. if name in self.myProperties: # We can have single and multivalues, return the correct type here. value = None if self.myProperties[name]['multivalue']: value = self.myProperties[name]['value'] else: if len(self.myProperties[name]['value']): value = self.myProperties[name]['value'][0] return value # The requested property-name seems to be a method, return the method reference. elif name in methods: def m_call(*args, **kwargs): return methods[name]['ref'](self, *args, **kwargs) return m_call else: raise AttributeError(C.make_error('ATTRIBUTE_NOT_FOUND', name)) def getTemplate(self, theme="default"): """ Return the template data - if any. Else None. """ return Object.getNamedTemplate(self.env, self._templates, theme) @staticmethod def getNamedTemplate(env, templates, theme="default"): """ Return the template data - if any. Else None. """ ui = [] # If there's a template file, try to find it if templates: for template in templates: path = None # Absolute path if template.startswith(os.path.sep): path = template # Relative path else: # Find path path = pkg_resources.resource_filename('clacks.agent', os.path.join('data', 'templates', theme, template)) #@UndefinedVariable if not os.path.exists(path): path = os.path.join(env.config.getBaseDir(), 'templates', theme, template) if not os.path.exists(path): path = pkg_resources.resource_filename('clacks.agent', os.path.join('data', 'templates', "default", template)) #@UndefinedVariable if not os.path.exists(path): path = os.path.join(env.config.getBaseDir(), 'templates', "default", template) if not os.path.exists(path): return None with open(path, "r") as f: _ui = f.read() # Build new merged resource element root = etree.fromstring(_ui) new_resources = [] resources = root.find("resources") for include in resources.findall("include"): rc = include.get("location") location = os.path.join(os.path.dirname(path), rc) if not os.path.exists(location): raise IOError(C.make_error("NO_SUCH_RESOURCE", resource=location)) res = "" with open(location, "r") as f: res = f.read() for resource in etree.fromstring(res).findall("qresource"): files = [] prefix = resource.get("prefix") for f in resource.findall("file"): files.append(E.file(os.path.join(prefix, unicode(f.text)))) new_resources.append(E.resource(*files, location=rc)) root.replace(root.find("resources"), E.resources(*new_resources)) ui.append(etree.tostring(root)) return ui def getAttrType(self, name): """ Return the type of a given object attribute. """ if name in self.myProperties: return self.myProperties[name]['type'] raise AttributeError(C.make_error('ATTRIBUTE_NOT_FOUND', name)) def check(self, propsFromOtherExtensions=None): """ Checks whether everything is fine with the extension and its given values or not. """ if not propsFromOtherExtensions: propsFromOtherExtensions = {} # Create a copy to avoid touching the original values props = copy.deepcopy(self.myProperties) # Check if _mode matches with the current object type #pylint: disable=E1101 if self._base_object and not self._mode in ['create', 'remove', 'update']: raise ObjectException(C.make_error('OBJECT_MODE_NOT_AVAILABLE', mode=self._mode)) if not self._base_object and self._mode in ['create', 'remove']: raise ObjectException(C.make_error('OBJECT_MODE_BASE_AVAILABLE', mode=self._mode)) # Check if we are allowed to create this base object on the given base if self._base_object and self._mode == "create": base_type = self.get_object_type_by_dn(self.dn) if not base_type: raise ObjectException(C.make_error('OBJECT_MODE_BASE_AVAILABLE', mode=self._mode)) if self.__class__.__name__ not in self._objectFactory.getAllowedSubElementsForObject(base_type): raise ObjectException(C.make_error('OBJECT_NOT_SUB_FOR', ext=self.__class__.__name__, base=base_type)) # Transfer values form other commit processes into ourselfes for key in self.attributesInSaveOrder: if props[key]['foreign'] and key in propsFromOtherExtensions: props[key]['value'] = propsFromOtherExtensions[key]['value'] # Transfer status into commit status props[key]['commit_status'] = props[key]['status'] # Collect values by store and process the property filters for key in self.attributesInSaveOrder: # Skip foreign properties if props[key]['foreign']: continue # Check if this attribute is blocked by another attribute and its value. is_blocked = False for bb in props[key]['blocked_by']: if bb['value'] in props[bb['name']]['value']: is_blocked = True break # Check if all required attributes are set. (Skip blocked once, they cannot be set!) if not is_blocked and props[key]['mandatory'] and not len(props[key]['value']): raise ObjectException(C.make_error('ATTRIBUTE_MANDATORY', key)) # Process each and every out-filter with a clean set of input values, # to avoid that return-values overwrite themselves. if len(props[key]['out_filter']): self.log.debug(" found %s out-filter for %s" % (str(len(props[key]['out_filter'])), key,)) for out_f in props[key]['out_filter']: self.__processFilter(out_f, key, props) # Collect properties by backend for prop_key in self.attributesInSaveOrder: # Skip foreign properties if props[prop_key]['foreign']: continue # Ensure that mandatory values are set if props[prop_key]['mandatory'] and not len(props[prop_key]['value']): raise ObjectException(C.make_error('ATTRIBUTE_MANDATORY', prop_key)) # Do not save untouched values if not props[prop_key]['commit_status'] & STATUS_CHANGED: continue return props def commit(self, propsFromOtherExtensions=None): """ Commits changes of an object to the corresponding backends. """ if not propsFromOtherExtensions: propsFromOtherExtensions = {} self.check(propsFromOtherExtensions) self.log.debug("saving object modifications for [%s|%s]" % (type(self).__name__, self.uuid)) # Create a copy to avoid touching the original values props = copy.deepcopy(self.myProperties) # Transfer status into commit status for key in self.attributesInSaveOrder: props[key]['commit_status'] = props[key]['status'] # Transfer values form other commit processes into ourselfes if props[key]['foreign'] and key in propsFromOtherExtensions: props[key]['value'] = propsFromOtherExtensions[key]['value'] # Adapt property states # Run this once - If any state was adapted, then run again to ensure # that all dependencies are processed. first = True _max = 5 required = False while (first or required) and _max: first = False required = False _max -= 1 for key in self.attributesInSaveOrder: # Adapt status from dependent properties. for propname in props[key]['depends_on']: old = props[key]['commit_status'] props[key]['commit_status'] |= props[propname]['status'] & STATUS_CHANGED props[key]['commit_status'] |= props[propname]['commit_status'] & STATUS_CHANGED if props[key]['commit_status'] != old: required = True # Collect values by store and process the property filters collectedAttrs = {} for key in self.attributesInSaveOrder: # Skip foreign properties if props[key]['foreign']: continue # Do not save untouched values if not props[key]['commit_status'] & STATUS_CHANGED: continue # Get the new value for the property and execute the out-filter self.log.debug("changed: %s" % (key,)) # Process each and every out-filter with a clean set of input values, # to avoid that return-values overwrite themselves. if len(props[key]['out_filter']): self.log.debug(" found %s out-filter for %s" % (str(len(props[key]['out_filter'])), key,)) for out_f in props[key]['out_filter']: self.__processFilter(out_f, key, props) # Collect properties by backend for prop_key in self.attributesInSaveOrder: # Skip foreign properties if props[prop_key]['foreign']: continue # Do not save untouched values if not props[prop_key]['commit_status'] & STATUS_CHANGED: continue collectedAttrs[prop_key] = props[prop_key] # Create a backend compatible list of all changed attributes. toStore = {} for prop_key in collectedAttrs: # Collect properties by backend for be in props[prop_key]['backend']: if not be in toStore: toStore[be] = {} # Convert the properities type to the required format - if its not of the expected type. be_type = collectedAttrs[prop_key]['backend_type'] s_type = collectedAttrs[prop_key]['type'] if not self._objectFactory.getAttributeTypes()[be_type].is_valid_value(collectedAttrs[prop_key]['value']): collectedAttrs[prop_key]['value'] = self._objectFactory.getAttributeTypes()[s_type].convert_to( be_type, collectedAttrs[prop_key]['value']) # Append entry to the to-be-stored list toStore[be][prop_key] = {'foreign': collectedAttrs[prop_key]['foreign'], 'orig': collectedAttrs[prop_key]['in_value'], 'value': collectedAttrs[prop_key]['value'], 'type': collectedAttrs[prop_key]['backend_type']} # We may have a plugin without any attributes, like the group asterisk extension, in # this case we've to update the object despite of the lack of properties. if not len(toStore) and self._backend: toStore[self._backend] = {} # Leave the show if there's nothing to do tmp = {} for key, value in toStore.items(): # Skip NULL backend. Nothing to save, anyway. if key == "NULL": continue tmp[key] = value toStore = tmp # Skip the whole process if there's no change at all if not toStore: return {} # Update references using the toStore information changes = {} for be in toStore: changes.update(toStore[be]) self.update_refs(changes) # Handle by backend p_backend = getattr(self, '_backend') obj = self zope.event.notify(ObjectChanged("pre %s" % self._mode, obj)) # Call pre-hooks now if self._mode in ["extend", "create"]: self.__execute_hook("PreCreate") if self._mode in ["update"]: self.__execute_hook("PreModify") # First, take care about the primary backend... if p_backend in toStore: beAttrs = self._backendAttrs[p_backend] if p_backend in self._backendAttrs else {} be = ObjectBackendRegistry.getBackend(p_backend) if self._mode == "create": obj.uuid = be.create(self.dn, toStore[p_backend], self._backendAttrs[p_backend]) elif self._mode == "extend": be.extend(self.uuid, toStore[p_backend], self._backendAttrs[p_backend], self.getForeignProperties()) else: be.update(self.uuid, toStore[p_backend], beAttrs) # Eventually the DN has changed if self._base_object: dn = be.uuid2dn(self.uuid) # Take DN for newly created objects if self._mode == "create": if self._base_object: obj.dn = dn elif dn != obj.dn: self.update_dn_refs(dn) obj.dn = dn if self._base_object: zope.event.notify(ObjectChanged("post move", obj)) obj.orig_dn = dn # ... then walk thru the remaining ones for backend, data in toStore.items(): # Skip primary backend - already done if backend == p_backend: continue be = ObjectBackendRegistry.getBackend(backend) beAttrs = self._backendAttrs[backend] if backend in self._backendAttrs else {} if self._mode == "create": be.create(self.dn, data, beAttrs) elif self._mode == "extend": be.extend(self.uuid, data, beAttrs, self.getForeignProperties()) else: be.update(self.uuid, data, beAttrs) zope.event.notify(ObjectChanged("post %s" % self._mode, obj)) # Call post-hooks now if self._mode in ["extend", "create"]: self.__execute_hook("PostCreate") if self._mode in ["update"] and "PostModify": self.__execute_hook("PostModify") return props def revert(self): """ Reverts all changes made to this object since it was loaded. """ for key in self.myProperties: self.myProperties[key]['value'] = self.myProperties[key]['last_value'] self.log.debug("reverted object modifications for [%s|%s]" % (type(self).__name__, self.uuid)) def getExclusiveProperties(self): return [x for x, y in self.myProperties.items() if not y['foreign']] def getForeignProperties(self): return [x for x, y in self.myProperties.items() if y['foreign']] def __processValidator(self, fltr, key, value, props_copy): """ This method processes a given process-list (fltr) for a given property (prop). And return TRUE if the value matches the validator set and FALSE if not. """ # This is our process-line pointer it points to the process-list line # we're executing at the moment lptr = 0 # Our filter result stack stack = list() self.log.debug(" validator started (%s)" % key) self.log.debug(" value: %s" % (value, )) # Process the list till we reach the end.. lasterrmsg = "" errormsgs = [] while (lptr + 1) in fltr: # Get the current line and increase the process list pointer. lptr += 1 curline = fltr[lptr] # A condition matches for something and returns a boolean value. # We'll put this value on the stack for later use. if 'condition' in curline: # Build up argument list args = [props_copy, key, value] + curline['params'] # Process condition and keep results fname = type(curline['condition']).__name__ v, errors = (curline['condition']).process(*args) # Log what happend! self.log.debug(" %s: [Filter] %s(%s) called and returned: %s" % ( lptr, fname, ", ".join(["\"" + x + "\"" for x in curline['params']]), v)) # Append the result to the stack. stack.append(v) if not v: if len(errors): lasterrmsg = errors.pop() # A comparator compares two values from the stack and then returns a single # boolean value. elif 'operator' in curline: v1 = stack.pop() v2 = stack.pop() fname = type(curline['operator']).__name__ res = (curline['operator']).process(v1, v2) stack.append(res) # Add last error message if not res: errormsgs.append(lasterrmsg) lasterrmsg = "" # Log what happend! self.log.debug(" %s: [OPERATOR] %s(%s, %s) called and returned: %s" % ( lptr, fname, v1, v2, res)) # Attach last error message res = stack.pop() if not res and lasterrmsg != "": errormsgs.append(lasterrmsg) self.log.debug(" <- VALIDATOR ENDED (%s)" % key) return res, errormsgs def __processFilter(self, fltr, key, prop): """ This method processes a given process-list (fltr) for a given property (prop). For example: When a property has to be stored in the backend, it will run through the out-filter-process-list and thus will be transformed into a storable key, value pair. """ # Search for replaceable patterns in the process-list. fltr = self.__fillInPlaceholders(fltr, prop) # This is our process-line pointer it points to the process-list line # we're executing at the moment lptr = 0 # Our filter result stack stack = list() # Log values self.log.debug(" -> FILTER STARTED (%s)" % key) # Process the list till we reach the end.. while (lptr + 1) in fltr: # Get the current line and increase the process list pointer. lptr += 1 curline = fltr[lptr] # A filter is used to manipulate the 'value' or the 'key' or maybe both. if 'filter' in curline: # Build up argument list args = [self, key, prop] fname = type(curline['filter']).__name__ for entry in curline['params']: args.append(entry) # Process filter and keep results key, prop = (curline['filter']).process(*args) # Ensure that the processed data is still valid. # Filter may mess things up and then the next cannot process correctly. if key not in prop: raise ObjectException(C.make_error('FILTER_INVALID_KEY', key=key, filter=fname)) # Check if the filter returned all expected property values. for pk in prop: if not all(k in prop[pk] for k in ('backend', 'value', 'type')): missing = ", ".join({'backend', 'value', 'type'} - set(prop[pk].keys())) raise ObjectException(C.make_error('FILTER_MISSING_KEY', key=missing, filter=fname)) # Check if the returned value-type is list or None. if type(prop[pk]['value']) not in [list, type(None)]: raise ObjectException(C.make_error('FILTER_NO_LIST', key=pk, filter=fname, type=type(prop[pk]['value']))) self.log.debug(" %s: [Filter] %s(%s) called " % (lptr, fname, ", ".join(["\"" + x + "\"" for x in curline['params']]))) # A condition matches for something and returns a boolean value. # We'll put this value on the stack for later use. elif 'condition' in curline: # Build up argument list args = [key] + curline['params'] # Process condition and keep results stack.append((curline['condition']).process(*args)) fname = type(curline['condition']).__name__ self.log.debug(" %s: [Condition] %s(%s) called " % (lptr, fname, ", ".join(curline['params']))) # Handle jump, for example if a condition has failed, jump over its filter-chain. elif 'jump' in curline: # Jump to <line> -1 because we will increase the line ptr later. olptr = lptr if curline['jump'] == 'conditional': if stack.pop(): lptr = curline['onTrue'] - 1 else: lptr = curline['onFalse'] - 1 else: lptr = curline['to'] - 1 self.log.debug(" %s: [Goto] %s ()" % (olptr, lptr)) # A comparator compares two values from the stack and then returns a single # boolean value. elif 'operator' in curline: a = stack.pop() b = stack.pop() stack.append((curline['operator']).process(a, b)) fname = type(curline['operator']).__name__ self.log.debug(" %s: [Condition] %s(%s, %s) called " % (lptr, fname, a, b)) # Log current values #self.log.debug(" result") #for pkey in prop: # self.log.debug(" %s: %s" % (pkey, prop[pkey]['value'])) self.log.debug(" <- FILTER ENDED") return prop def __fillInPlaceholders(self, fltr, props): """ This method fill in placeholder into in- and out-filters. """ # Collect all property values propList = {} for key in props: if props[key]['multivalue']: propList[key] = props[key]['value'] else: if props[key]['value'] and len(props[key]['value']): propList[key] = props[key]['value'][0] else: propList[key] = None # An inline function which replaces format string tokens def _placeHolder(x): try: x = x % propList except KeyError: pass return x # Walk trough each line of the process list an replace placeholders. for line in fltr: if 'params' in fltr[line]: fltr[line]['params'] = map(_placeHolder, fltr[line]['params']) return fltr def get_object_type_by_dn(self, dn): """ Returns the objectType for a given DN """ index = PluginRegistry.getInstance("ObjectIndex") res = index.search({'dn': dn}, {'_type': 1}) return res[0]['_type'] if res.count() == 1 else None def get_references(self, override=None): res = [] index = PluginRegistry.getInstance("ObjectIndex") for ref, info in self._objectFactory.getReferences(override or self.__class__.__name__).items(): for ref_attribute, dsc in info.items(): for idsc in dsc: if self.myProperties[idsc[1]]['orig_value'] and len(self.myProperties[idsc[1]]['orig_value']): oval = self.myProperties[idsc[1]]['orig_value'][0] else: oval = None dns = index.search({'_type': ref, ref_attribute: oval}, {'dn': 1}) if dns.count(): dns = [x['dn'] for x in dns] res.append(( ref_attribute, idsc[1], getattr(self, idsc[1]), dns or [], self.myProperties[idsc[1]]['multivalue'])) return res def update_refs(self, data): for ref_attr, self_attr, value, refs, multivalue in self.get_references(): #@UnusedVariable for ref in refs: # Next iterration if there's no change for the relevant # attribute if not self_attr in data: continue # Load object and change value to the new one c_obj = ObjectProxy(ref) c_value = getattr(c_obj, ref_attr) o_value = data[self_attr]['orig'] if type(c_value) == list: if type(o_value) == list: c_value = filter(lambda x: x not in o_value, c_value) else: c_value = filter(lambda x: x != o_value, c_value) if multivalue: c_value.append(data[self_attr]['value']) else: c_value.append(data[self_attr]['value'][0]) setattr(c_obj, ref_attr, list(set(c_value))) else: setattr(c_obj, ref_attr, data[self_attr]['value'][0]) c_obj.commit() def remove_refs(self): for ref_attr, self_attr, value, refs, multivalue in self.get_references(): #@UnusedVariable for ref in refs: c_obj = ObjectProxy(ref) c_value = getattr(c_obj, ref_attr) if type(c_value) == list: if type(value) == list: c_value = filter(lambda x: x not in value, c_value) else: c_value = filter(lambda x: x != value, c_value) setattr(c_obj, ref_attr, c_value) else: setattr(c_obj, ref_attr, None) c_obj.commit() def get_dn_references(self): res = [] index = PluginRegistry.getInstance("ObjectIndex") for info in self._objectFactory.getReferences("*", "dn").values(): for ref_attribute in info.keys(): dns = index.search({ref_attribute: self.dn}, {'dn': 1}) if dns.count(): dns = [x['dn'] for x in dns] res.append(( ref_attribute, map(lambda s: s.decode('utf-8'), dns if dns else []) )) return res def update_dn_refs(self, new_dn): for ref_attr, refs in self.get_dn_references(): for ref in refs: c_obj = ObjectProxy(ref) c_value = getattr(c_obj, ref_attr) if type(c_value) == list: c_value = filter(lambda x: x != self.dn, c_value) c_value.append(new_dn) setattr(c_obj, ref_attr, list(set(c_value))) else: setattr(c_obj, ref_attr, new_dn) c_obj.commit() def remove_dn_refs(self): for ref_attr, refs in self.get_dn_references(): for ref in refs: c_obj = ObjectProxy(ref) c_value = getattr(c_obj, ref_attr) if type(c_value) == list: c_value = filter(lambda x: x != self.dn, c_value) setattr(c_obj, ref_attr, list(set(c_value))) else: setattr(c_obj, ref_attr, None) c_obj.commit() def remove(self): """ Removes this object - and eventually it's containements. """ #pylint: disable=E1101 if not self._base_object: raise ObjectException(C.make_error('OBJECT_REMOVE_NON_BASE_OBJECT')) # Remove all references to ourselves self.remove_refs() # Collect backends backends = [getattr(self, '_backend')] be_attrs = {getattr(self, '_backend'): {}} for prop, info in self.myProperties.items(): for backend in info['backend']: if not backend in backends: backends.append(backend) if not backend in be_attrs: be_attrs[backend] = {} if self.is_attr_set(prop): be_attrs[backend][prop] = {'foreign': info['foreign'], 'orig': info['in_value'], 'value': info['value'], 'type': info['backend_type']} # Remove for all backends, removing the primary one as the last one backends.reverse() obj = self zope.event.notify(ObjectChanged("pre remove", obj)) # Call pre-remove now self.__execute_hook("PreRemove") for backend in backends: be = ObjectBackendRegistry.getBackend(backend) r_attrs = self.getExclusiveProperties() # Remove all non exclusive properties remove_attrs = {} for attr in be_attrs[backend]: if attr in r_attrs: remove_attrs[attr] = be_attrs[backend][attr] self.remove_refs() self.remove_dn_refs() #pylint: disable=E1101 be.remove(self.uuid, remove_attrs, self._backendAttrs[backend] \ if backend in self._backendAttrs else None) zope.event.notify(ObjectChanged("post remove", obj)) # Call post-remove now self.__execute_hook("PostRemove") def simulate_move(self, orig_dn): """ Simulate a moves for this object """ #pylint: disable=E1101 if not self._base_object: raise ObjectException(C.make_error('OBJECT_MOVE_NON_BASE_OBJECT')) obj = self zope.event.notify(ObjectChanged("pre move", obj, dn=self.dn, orig_dn=orig_dn)) # Update the DN refs which have most probably changed self.update_dn_refs(self.dn) zope.event.notify(ObjectChanged("post move", obj, dn=self.dn, orig_dn=orig_dn)) def move(self, new_base): """ Moves this object - and eventually it's containements. """ #pylint: disable=E1101 if not self._base_object: raise ObjectException(C.make_error('OBJECT_MOVE_NON_BASE_OBJECT')) # Collect backends backends = [getattr(self, '_backend')] # Collect all other backends for info in self.myProperties.values(): for be in info['backend']: if not be in backends: backends.append(be) obj = self zope.event.notify(ObjectChanged("pre move", obj)) # Move for primary backend be = ObjectBackendRegistry.getBackend(backends[0]) be.move(self.uuid, new_base) # Update the DN refs which have most probably changed p_backend = getattr(self, '_backend') be = ObjectBackendRegistry.getBackend(p_backend) dn = be.uuid2dn(self.uuid) self.update_dn_refs(dn) zope.event.notify(ObjectChanged("post move", obj, dn=dn)) def retract(self): """ Removes this object extension """ #pylint: disable=E1101 if self._base_object: raise ObjectException(C.make_error('OBJECT_BASE_NO_RETRACT')) # Call pre-remove now self.__execute_hook("PreRemove") # Remove all references to ourselves self.remove_refs() # Collect backends backends = [getattr(self, '_backend')] be_attrs = {getattr(self, '_backend'): {}} for prop, info in self.myProperties.items(): for backend in info['backend']: if not backend in backends: backends.append(backend) if not backend in be_attrs: be_attrs[backend] = {} if self.is_attr_set(prop): be_attrs[backend][prop] = {'foreign': info['foreign'], 'orig': info['in_value'], 'value': info['value'], 'type': info['backend_type']} # Retract for all backends, removing the primary one as the last one backends.reverse() obj = self zope.event.notify(ObjectChanged("pre retract", obj)) for backend in backends: be = ObjectBackendRegistry.getBackend(backend) r_attrs = self.getExclusiveProperties() # Remove all non exclusive properties remove_attrs = {} for attr in be_attrs[backend]: if attr in r_attrs: remove_attrs[attr] = be_attrs[backend][attr] self.remove_refs() self.remove_dn_refs() #pylint: disable=E1101 be.retract(self.uuid, remove_attrs, self._backendAttrs[backend] \ if backend in self._backendAttrs else None) zope.event.notify(ObjectChanged("post retract", obj)) # Call post-remove now self.__execute_hook("PostRemove") def is_attr_set(self, name): return len(self.myProperties[name]['in_value']) def is_attr_using_default(self, name): return not self.is_attr_set(name) and self.myProperties[name]['default'] def __execute_hook(self, hook_type): # Call post-remove now hooks = getattr(self, '__hooks') if hook_type in hooks: for hook in hooks[hook_type]: hook["ref"](self) class IObjectChanged(Interface): def __init__(self, obj): pass class IAttributeChanged(Interface): def __init__(self, attr, value): pass class ObjectChanged(object): implements(IObjectChanged) def __init__(self, reason, obj=None, dn=None, uuid=None, orig_dn=None, o_type=None): self.reason = reason self.uuid = uuid or obj.uuid self.dn = dn or obj.dn self.orig_dn = orig_dn or obj.orig_dn self.o_type = o_type or obj.__class__.__name__ class AttributeChanged(object): implements(IAttributeChanged) def __init__(self, reason, obj, target): self.reason = reason self.target = target self.uuid = obj.uuid from clacks.agent.objects.proxy import ObjectProxy
en
0.7869
# This file is part of the clacks framework. # # http://clacks-project.org # # Copyright: # (C) 2010-2012 GONICUS GmbH, Germany, http://www.gonicus.de # # License: # GPL-2: http://www.gnu.org/licenses/gpl-2.0.html # # See the LICENSE file in the project's top-level directory for details. The object base class. # Status # Register the errors handled by us This class is the base class for all objects. It contains getter and setter methods for the object attributes and it is able to initialize itself by reading data from backends. It also contains the ability to execute the in- and out-filters for the object properties. All meta-classes for objects, created by the XML defintions, will inherit this class. Returns a list containing all attributes in the correct save-order. Due to the fact that some attributes depend on another, we have to save some attributes first and then the others. Helper method for '__saveOrder' to detect the dependency depth (level) for an attribute # Instantiate Backend-Registry # Group attributes by Backend # Load dynamic dropdown-values # Initialize an empty array for each backend # Append property # Initialize object using a DN # Set status to modified for attributes that do not have a value but are # mandatory and have a default. # This ensures that default values are passed to the out_filters and get saved # afterwards. # (Defaults will be passed to in-filters too, if they are not overwritten by _read()) This method tries to initialize a object instance by reading data from the defined backend. Attributes will be grouped by their backend to ensure that only one request per backend will be performed. # Generate missing values #pylint: disable=E1101 # Get last change timestamp # Load attributes for each backend. # And then assign the values to the properties. # Create a dictionary with all attributes we want to fetch # {attribute_name: type, name: type} # Assign fetched value to the properties. # Keep original values, they may be overwritten in the in-filters. # Once we've loaded all properties from the backend, execute the # in-filters. # Skip loading in-filters for None values # Execute defined in-filters. # Execute each in-filter # Convert the received type into the target type if not done already #pylint: disable=E1101 # Convert values from incoming backend-type to required type # Convert all values to required type # Keep the initial value Deleter method for properties. # Check if this attribute is blocked by another attribute and its value. # Do not allow to write to read-only attributes. # Do not allow remove mandatory attributes # If not already in removed state This is the setter method for object attributes. Each given attribute value is validated with the given set of validators. # Store non property values # A none value was passed to clear the value # Try to save as property value # Check if this attribute is blocked by another attribute and its value. # Do not allow to write to read-only attributes. # Check if the given value has to match one out of a given list. # Set the new value # Check if the new value is s list. # Eventually fixup value from incoming JSON string # Check if the new value is valid #pylint: disable=E1101 # Validate value # Ensure that unique values stay unique. Let the backend test this. #if self.myProperties[name]['unique']: # backendI = ObjectBackendRegistry.getBackend(self.myProperties[name]['backend']) # if not backendI.is_uniq(name, new_value): # raise ObjectException(C.make_error('ATTRIBUTE_NOT_UNIQUE', name, value=value)) # Assign the properties new value. # Update status if there's a change #pylint: disable=E1101 The getter method object attributes. (It differentiates between object attributes and class-members) # If the requested property exists in the object-attributes, then return it. # We can have single and multivalues, return the correct type here. # The requested property-name seems to be a method, return the method reference. Return the template data - if any. Else None. Return the template data - if any. Else None. # If there's a template file, try to find it # Absolute path # Relative path # Find path #@UndefinedVariable #@UndefinedVariable # Build new merged resource element Return the type of a given object attribute. Checks whether everything is fine with the extension and its given values or not. # Create a copy to avoid touching the original values # Check if _mode matches with the current object type #pylint: disable=E1101 # Check if we are allowed to create this base object on the given base # Transfer values form other commit processes into ourselfes # Transfer status into commit status # Collect values by store and process the property filters # Skip foreign properties # Check if this attribute is blocked by another attribute and its value. # Check if all required attributes are set. (Skip blocked once, they cannot be set!) # Process each and every out-filter with a clean set of input values, # to avoid that return-values overwrite themselves. # Collect properties by backend # Skip foreign properties # Ensure that mandatory values are set # Do not save untouched values Commits changes of an object to the corresponding backends. # Create a copy to avoid touching the original values # Transfer status into commit status # Transfer values form other commit processes into ourselfes # Adapt property states # Run this once - If any state was adapted, then run again to ensure # that all dependencies are processed. # Adapt status from dependent properties. # Collect values by store and process the property filters # Skip foreign properties # Do not save untouched values # Get the new value for the property and execute the out-filter # Process each and every out-filter with a clean set of input values, # to avoid that return-values overwrite themselves. # Collect properties by backend # Skip foreign properties # Do not save untouched values # Create a backend compatible list of all changed attributes. # Collect properties by backend # Convert the properities type to the required format - if its not of the expected type. # Append entry to the to-be-stored list # We may have a plugin without any attributes, like the group asterisk extension, in # this case we've to update the object despite of the lack of properties. # Leave the show if there's nothing to do # Skip NULL backend. Nothing to save, anyway. # Skip the whole process if there's no change at all # Update references using the toStore information # Handle by backend # Call pre-hooks now # First, take care about the primary backend... # Eventually the DN has changed # Take DN for newly created objects # ... then walk thru the remaining ones # Skip primary backend - already done # Call post-hooks now Reverts all changes made to this object since it was loaded. This method processes a given process-list (fltr) for a given property (prop). And return TRUE if the value matches the validator set and FALSE if not. # This is our process-line pointer it points to the process-list line # we're executing at the moment # Our filter result stack # Process the list till we reach the end.. # Get the current line and increase the process list pointer. # A condition matches for something and returns a boolean value. # We'll put this value on the stack for later use. # Build up argument list # Process condition and keep results # Log what happend! # Append the result to the stack. # A comparator compares two values from the stack and then returns a single # boolean value. # Add last error message # Log what happend! # Attach last error message This method processes a given process-list (fltr) for a given property (prop). For example: When a property has to be stored in the backend, it will run through the out-filter-process-list and thus will be transformed into a storable key, value pair. # Search for replaceable patterns in the process-list. # This is our process-line pointer it points to the process-list line # we're executing at the moment # Our filter result stack # Log values # Process the list till we reach the end.. # Get the current line and increase the process list pointer. # A filter is used to manipulate the 'value' or the 'key' or maybe both. # Build up argument list # Process filter and keep results # Ensure that the processed data is still valid. # Filter may mess things up and then the next cannot process correctly. # Check if the filter returned all expected property values. # Check if the returned value-type is list or None. # A condition matches for something and returns a boolean value. # We'll put this value on the stack for later use. # Build up argument list # Process condition and keep results # Handle jump, for example if a condition has failed, jump over its filter-chain. # Jump to <line> -1 because we will increase the line ptr later. # A comparator compares two values from the stack and then returns a single # boolean value. # Log current values #self.log.debug(" result") #for pkey in prop: # self.log.debug(" %s: %s" % (pkey, prop[pkey]['value'])) This method fill in placeholder into in- and out-filters. # Collect all property values # An inline function which replaces format string tokens # Walk trough each line of the process list an replace placeholders. Returns the objectType for a given DN #@UnusedVariable # Next iterration if there's no change for the relevant # attribute # Load object and change value to the new one #@UnusedVariable Removes this object - and eventually it's containements. #pylint: disable=E1101 # Remove all references to ourselves # Collect backends # Remove for all backends, removing the primary one as the last one # Call pre-remove now # Remove all non exclusive properties #pylint: disable=E1101 # Call post-remove now Simulate a moves for this object #pylint: disable=E1101 # Update the DN refs which have most probably changed Moves this object - and eventually it's containements. #pylint: disable=E1101 # Collect backends # Collect all other backends # Move for primary backend # Update the DN refs which have most probably changed Removes this object extension #pylint: disable=E1101 # Call pre-remove now # Remove all references to ourselves # Collect backends # Retract for all backends, removing the primary one as the last one # Remove all non exclusive properties #pylint: disable=E1101 # Call post-remove now # Call post-remove now
1.866216
2
tests/test_benchmark.py
fossabot/BIRL
0
10485
<gh_stars>0 """ Testing default benchmarks in single thred and parallel configuration Check whether it generates correct outputs and resulting values Copyright (C) 2017-2019 <NAME> <<EMAIL>> """ import argparse import logging import os import shutil import sys import unittest try: # python 3 from unittest.mock import patch except ImportError: # python 2 from mock import patch import numpy as np import pandas as pd from numpy.testing import assert_raises, assert_array_almost_equal sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root from birl.utilities.data_io import update_path, save_config_yaml from birl.utilities.dataset import args_expand_parse_images from birl.utilities.experiments import parse_arg_params, try_decorator from birl.benchmark import ImRegBenchmark from birl.bm_template import BmTemplate PATH_ROOT = os.path.dirname(update_path('birl')) PATH_DATA = update_path('data-images') PATH_CSV_COVER_MIX = os.path.join(PATH_DATA, 'pairs-imgs-lnds_mix.csv') PATH_CSV_COVER_ANHIR = os.path.join(PATH_DATA, 'pairs-imgs-lnds_histol.csv') # logging.basicConfig(level=logging.INFO) class TestBmRegistration(unittest.TestCase): @classmethod def setUpClass(cls): logging.basicConfig(level=logging.INFO) cls.path_out = os.path.join(PATH_ROOT, 'output-testing') shutil.rmtree(cls.path_out, ignore_errors=True) os.mkdir(cls.path_out) def _remove_default_experiment(self, bm_name): path_expt = os.path.join(self.path_out, bm_name) shutil.rmtree(path_expt, ignore_errors=True) @classmethod def test_benchmark_invalid_inputs(self): # test missing some parameters params = { 'path_table': 'x', 'path_out': 'x', 'nb_workers': 0, 'unique': False, } # try a missing params for miss in ['path_table', 'path_out', 'unique']: params_miss = params.copy() del params_miss[miss] assert_raises(AssertionError, ImRegBenchmark, params_miss) # not defined output folder assert_raises(Exception, ImRegBenchmark, params) def test_benchmark_failing(self): """ test run in parallel with failing experiment """ params = { 'path_table': PATH_CSV_COVER_MIX, 'path_dataset': PATH_DATA, 'path_out': self.path_out, 'preprocessing': 'nothing', 'nb_workers': 4, 'visual': True, 'unique': True, } benchmark = ImRegBenchmark(params) benchmark.run() # no landmarks was copy and also no experiment results was produced list_csv = [ len([csv for csv in files if os.path.splitext(csv)[-1] == '.csv']) for _, _, files in os.walk(benchmark.params['path_exp']) ] self.assertEqual(sum(list_csv), 0) del benchmark def test_benchmark_parallel(self): """ test run in parallel (2 threads) """ self._remove_default_experiment(ImRegBenchmark.__name__) params = { 'path_table': PATH_CSV_COVER_MIX, 'path_out': self.path_out, 'preprocessing': ['gray', 'matching-rgb'], 'nb_workers': 2, 'visual': True, 'unique': False, } benchmark = ImRegBenchmark(params) # run it for the first time, complete experiment benchmark.run() # rerun experiment simulated repeating unfinished benchmarks benchmark.run() self.check_benchmark_results(benchmark, final_means=[0., 0., 0., 0., 0.], final_stds=[0., 0., 0., 0., 0.]) del benchmark def test_benchmark_simple(self): """ test run in sequence (1 thread) """ self._remove_default_experiment(ImRegBenchmark.__name__) params = { 'path_table': PATH_CSV_COVER_ANHIR, 'path_dataset': PATH_DATA, 'path_out': self.path_out, 'preprocessing': ['matching-hsv', 'gray'], 'nb_workers': 1, 'visual': True, 'unique': False, } benchmark = ImRegBenchmark(params) benchmark.run() self.check_benchmark_results(benchmark, final_means=[0., 0.], final_stds=[0., 0.]) del benchmark def test_benchmark_template(self): """ test run in single thread """ path_config = os.path.join(self.path_out, 'sample_config.yaml') save_config_yaml(path_config, {}) params = { 'path_table': PATH_CSV_COVER_MIX, 'path_out': self.path_out, 'path_config': path_config, 'nb_workers': 2, 'unique': False, 'visual': True, } benchmark = BmTemplate(params) benchmark.run() self.check_benchmark_results( benchmark, final_means=[28., 68., 73., 76., 95.], final_stds=[1., 13., 28., 28., 34.] ) os.remove(path_config) del benchmark def check_benchmark_results(self, benchmark, final_means, final_stds): """ check whether the benchmark folder contains all required files and compute statistic correctly """ bm_name = benchmark.__class__.__name__ path_bm = os.path.join(self.path_out, bm_name) self.assertTrue(os.path.exists(path_bm), msg='Missing benchmark: %s' % bm_name) # required output files for file_name in [ benchmark.NAME_CSV_REGISTRATION_PAIRS, benchmark.NAME_RESULTS_CSV, benchmark.NAME_RESULTS_TXT ]: self.assertTrue( os.path.isfile(os.path.join(path_bm, file_name)), msg='Missing "%s" file in the BM experiment' % file_name ) # load registration file path_csv = os.path.join(path_bm, benchmark.NAME_CSV_REGISTRATION_PAIRS) df_regist = pd.read_csv(path_csv, index_col=0) # only two items in the benchmark self.assertEqual( len(df_regist), len(benchmark._df_overview), msg='Found only %i records instead of %i' % (len(df_regist), len(benchmark._df_overview)) ) # test presence of particular columns for col in list(benchmark.COVER_COLUMNS) + [benchmark.COL_IMAGE_MOVE_WARP]: self.assertIn(col, df_regist.columns, msg='Missing column "%s" in result table' % col) cols_lnds_warp = [ col in df_regist.columns for col in [benchmark.COL_POINTS_REF_WARP, benchmark.COL_POINTS_MOVE_WARP] ] self.assertTrue(any(cols_lnds_warp), msg='Missing any column of warped landmarks') col_lnds_warp = benchmark.COL_POINTS_REF_WARP if cols_lnds_warp[0] \ else benchmark.COL_POINTS_MOVE_WARP # check existence of all mentioned files for _, row in df_regist.iterrows(): self.assertTrue( os.path.isfile(os.path.join(path_bm, row[benchmark.COL_IMAGE_MOVE_WARP])), msg='Missing image "%s"' % row[benchmark.COL_IMAGE_MOVE_WARP] ) self.assertTrue( os.path.isfile(os.path.join(path_bm, row[col_lnds_warp])), msg='Missing landmarks "%s"' % row[col_lnds_warp] ) # check existence of statistical results for stat_name in ['Mean', 'STD', 'Median', 'Min', 'Max']: self.assertTrue( any(stat_name in col for col in df_regist.columns), msg='Missing statistics "%s"' % stat_name ) # test specific results assert_array_almost_equal(sorted(df_regist['TRE Mean'].values), np.array(final_means), decimal=0) assert_array_almost_equal(sorted(df_regist['TRE STD'].values), np.array(final_stds), decimal=0) def test_try_wrap(self): self.assertIsNone(try_wrap()) def test_argparse(self): with patch('argparse._sys.argv', ['script.py']): args = parse_arg_params(argparse.ArgumentParser()) self.assertIsInstance(args, dict) def test_argparse_images(self): with patch('argparse._sys.argv', ['script.py', '-i', 'an_image.png']): args = args_expand_parse_images(argparse.ArgumentParser()) self.assertIsInstance(args, dict) def test_fail_visual(self): fig = ImRegBenchmark._visual_image_move_warp_lnds_move_warp({ImRegBenchmark.COL_POINTS_MOVE_WARP: 'abc'}) self.assertIsNone(fig) fig = ImRegBenchmark._visual_image_move_warp_lnds_ref_warp({ImRegBenchmark.COL_POINTS_REF_WARP: 'abc'}) self.assertIsNone(fig) fig = ImRegBenchmark.visualise_registration((0, {})) self.assertIsNone(fig) @try_decorator def try_wrap(): return '%i' % '42'
""" Testing default benchmarks in single thred and parallel configuration Check whether it generates correct outputs and resulting values Copyright (C) 2017-2019 <NAME> <<EMAIL>> """ import argparse import logging import os import shutil import sys import unittest try: # python 3 from unittest.mock import patch except ImportError: # python 2 from mock import patch import numpy as np import pandas as pd from numpy.testing import assert_raises, assert_array_almost_equal sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root from birl.utilities.data_io import update_path, save_config_yaml from birl.utilities.dataset import args_expand_parse_images from birl.utilities.experiments import parse_arg_params, try_decorator from birl.benchmark import ImRegBenchmark from birl.bm_template import BmTemplate PATH_ROOT = os.path.dirname(update_path('birl')) PATH_DATA = update_path('data-images') PATH_CSV_COVER_MIX = os.path.join(PATH_DATA, 'pairs-imgs-lnds_mix.csv') PATH_CSV_COVER_ANHIR = os.path.join(PATH_DATA, 'pairs-imgs-lnds_histol.csv') # logging.basicConfig(level=logging.INFO) class TestBmRegistration(unittest.TestCase): @classmethod def setUpClass(cls): logging.basicConfig(level=logging.INFO) cls.path_out = os.path.join(PATH_ROOT, 'output-testing') shutil.rmtree(cls.path_out, ignore_errors=True) os.mkdir(cls.path_out) def _remove_default_experiment(self, bm_name): path_expt = os.path.join(self.path_out, bm_name) shutil.rmtree(path_expt, ignore_errors=True) @classmethod def test_benchmark_invalid_inputs(self): # test missing some parameters params = { 'path_table': 'x', 'path_out': 'x', 'nb_workers': 0, 'unique': False, } # try a missing params for miss in ['path_table', 'path_out', 'unique']: params_miss = params.copy() del params_miss[miss] assert_raises(AssertionError, ImRegBenchmark, params_miss) # not defined output folder assert_raises(Exception, ImRegBenchmark, params) def test_benchmark_failing(self): """ test run in parallel with failing experiment """ params = { 'path_table': PATH_CSV_COVER_MIX, 'path_dataset': PATH_DATA, 'path_out': self.path_out, 'preprocessing': 'nothing', 'nb_workers': 4, 'visual': True, 'unique': True, } benchmark = ImRegBenchmark(params) benchmark.run() # no landmarks was copy and also no experiment results was produced list_csv = [ len([csv for csv in files if os.path.splitext(csv)[-1] == '.csv']) for _, _, files in os.walk(benchmark.params['path_exp']) ] self.assertEqual(sum(list_csv), 0) del benchmark def test_benchmark_parallel(self): """ test run in parallel (2 threads) """ self._remove_default_experiment(ImRegBenchmark.__name__) params = { 'path_table': PATH_CSV_COVER_MIX, 'path_out': self.path_out, 'preprocessing': ['gray', 'matching-rgb'], 'nb_workers': 2, 'visual': True, 'unique': False, } benchmark = ImRegBenchmark(params) # run it for the first time, complete experiment benchmark.run() # rerun experiment simulated repeating unfinished benchmarks benchmark.run() self.check_benchmark_results(benchmark, final_means=[0., 0., 0., 0., 0.], final_stds=[0., 0., 0., 0., 0.]) del benchmark def test_benchmark_simple(self): """ test run in sequence (1 thread) """ self._remove_default_experiment(ImRegBenchmark.__name__) params = { 'path_table': PATH_CSV_COVER_ANHIR, 'path_dataset': PATH_DATA, 'path_out': self.path_out, 'preprocessing': ['matching-hsv', 'gray'], 'nb_workers': 1, 'visual': True, 'unique': False, } benchmark = ImRegBenchmark(params) benchmark.run() self.check_benchmark_results(benchmark, final_means=[0., 0.], final_stds=[0., 0.]) del benchmark def test_benchmark_template(self): """ test run in single thread """ path_config = os.path.join(self.path_out, 'sample_config.yaml') save_config_yaml(path_config, {}) params = { 'path_table': PATH_CSV_COVER_MIX, 'path_out': self.path_out, 'path_config': path_config, 'nb_workers': 2, 'unique': False, 'visual': True, } benchmark = BmTemplate(params) benchmark.run() self.check_benchmark_results( benchmark, final_means=[28., 68., 73., 76., 95.], final_stds=[1., 13., 28., 28., 34.] ) os.remove(path_config) del benchmark def check_benchmark_results(self, benchmark, final_means, final_stds): """ check whether the benchmark folder contains all required files and compute statistic correctly """ bm_name = benchmark.__class__.__name__ path_bm = os.path.join(self.path_out, bm_name) self.assertTrue(os.path.exists(path_bm), msg='Missing benchmark: %s' % bm_name) # required output files for file_name in [ benchmark.NAME_CSV_REGISTRATION_PAIRS, benchmark.NAME_RESULTS_CSV, benchmark.NAME_RESULTS_TXT ]: self.assertTrue( os.path.isfile(os.path.join(path_bm, file_name)), msg='Missing "%s" file in the BM experiment' % file_name ) # load registration file path_csv = os.path.join(path_bm, benchmark.NAME_CSV_REGISTRATION_PAIRS) df_regist = pd.read_csv(path_csv, index_col=0) # only two items in the benchmark self.assertEqual( len(df_regist), len(benchmark._df_overview), msg='Found only %i records instead of %i' % (len(df_regist), len(benchmark._df_overview)) ) # test presence of particular columns for col in list(benchmark.COVER_COLUMNS) + [benchmark.COL_IMAGE_MOVE_WARP]: self.assertIn(col, df_regist.columns, msg='Missing column "%s" in result table' % col) cols_lnds_warp = [ col in df_regist.columns for col in [benchmark.COL_POINTS_REF_WARP, benchmark.COL_POINTS_MOVE_WARP] ] self.assertTrue(any(cols_lnds_warp), msg='Missing any column of warped landmarks') col_lnds_warp = benchmark.COL_POINTS_REF_WARP if cols_lnds_warp[0] \ else benchmark.COL_POINTS_MOVE_WARP # check existence of all mentioned files for _, row in df_regist.iterrows(): self.assertTrue( os.path.isfile(os.path.join(path_bm, row[benchmark.COL_IMAGE_MOVE_WARP])), msg='Missing image "%s"' % row[benchmark.COL_IMAGE_MOVE_WARP] ) self.assertTrue( os.path.isfile(os.path.join(path_bm, row[col_lnds_warp])), msg='Missing landmarks "%s"' % row[col_lnds_warp] ) # check existence of statistical results for stat_name in ['Mean', 'STD', 'Median', 'Min', 'Max']: self.assertTrue( any(stat_name in col for col in df_regist.columns), msg='Missing statistics "%s"' % stat_name ) # test specific results assert_array_almost_equal(sorted(df_regist['TRE Mean'].values), np.array(final_means), decimal=0) assert_array_almost_equal(sorted(df_regist['TRE STD'].values), np.array(final_stds), decimal=0) def test_try_wrap(self): self.assertIsNone(try_wrap()) def test_argparse(self): with patch('argparse._sys.argv', ['script.py']): args = parse_arg_params(argparse.ArgumentParser()) self.assertIsInstance(args, dict) def test_argparse_images(self): with patch('argparse._sys.argv', ['script.py', '-i', 'an_image.png']): args = args_expand_parse_images(argparse.ArgumentParser()) self.assertIsInstance(args, dict) def test_fail_visual(self): fig = ImRegBenchmark._visual_image_move_warp_lnds_move_warp({ImRegBenchmark.COL_POINTS_MOVE_WARP: 'abc'}) self.assertIsNone(fig) fig = ImRegBenchmark._visual_image_move_warp_lnds_ref_warp({ImRegBenchmark.COL_POINTS_REF_WARP: 'abc'}) self.assertIsNone(fig) fig = ImRegBenchmark.visualise_registration((0, {})) self.assertIsNone(fig) @try_decorator def try_wrap(): return '%i' % '42'
en
0.754166
Testing default benchmarks in single thred and parallel configuration Check whether it generates correct outputs and resulting values Copyright (C) 2017-2019 <NAME> <<EMAIL>> # python 3 # python 2 # Add path to root # logging.basicConfig(level=logging.INFO) # test missing some parameters # try a missing params # not defined output folder test run in parallel with failing experiment # no landmarks was copy and also no experiment results was produced test run in parallel (2 threads) # run it for the first time, complete experiment # rerun experiment simulated repeating unfinished benchmarks test run in sequence (1 thread) test run in single thread check whether the benchmark folder contains all required files and compute statistic correctly # required output files # load registration file # only two items in the benchmark # test presence of particular columns # check existence of all mentioned files # check existence of statistical results # test specific results
2.148984
2
python/UdemyCourse/2022_Python_Bootcamp/basics/errors_exception_handling/__init__.py
pradyotprksh/development_learning
9
10486
from .errors_exception_handling import errors_exception_handling
from .errors_exception_handling import errors_exception_handling
none
1
1.097259
1
mtstub.py
shimniok/rockblock
1
10487
<reponame>shimniok/rockblock<gh_stars>1-10 #!/usr/bin/env python ################################################################################################## ## mtstub.py ## ## emulates rockblock api so I don't have to burn credits testing... ################################################################################################## import cgi #import cgitb; cgitb.enable() # for troubleshooting import config print "Content-type: plain/text" print form = cgi.FieldStorage() print "OK,12345"
#!/usr/bin/env python ################################################################################################## ## mtstub.py ## ## emulates rockblock api so I don't have to burn credits testing... ################################################################################################## import cgi #import cgitb; cgitb.enable() # for troubleshooting import config print "Content-type: plain/text" print form = cgi.FieldStorage() print "OK,12345"
de
0.634188
#!/usr/bin/env python ################################################################################################## ## mtstub.py ## ## emulates rockblock api so I don't have to burn credits testing... ################################################################################################## #import cgitb; cgitb.enable() # for troubleshooting
1.870813
2
sum.py
PraghadeshManivannan/Built-in-Functions-Python
0
10488
<filename>sum.py #sum(iterable, start=0, /) #Return the sum of a 'start' value (default: 0) plus an iterable of numbers #When the iterable is empty, return the start value. '''This function is intended specifically for use with numeric values and may reject non-numeric types.''' a = [1,3,5,7,9,4,6,2,8] print(sum(a)) print(sum(a,start = 4))
<filename>sum.py #sum(iterable, start=0, /) #Return the sum of a 'start' value (default: 0) plus an iterable of numbers #When the iterable is empty, return the start value. '''This function is intended specifically for use with numeric values and may reject non-numeric types.''' a = [1,3,5,7,9,4,6,2,8] print(sum(a)) print(sum(a,start = 4))
en
0.487904
#sum(iterable, start=0, /) #Return the sum of a 'start' value (default: 0) plus an iterable of numbers #When the iterable is empty, return the start value. This function is intended specifically for use with numeric values and may reject non-numeric types.
3.992311
4
idaes/apps/matopt/materials/lattices/diamond_lattice.py
carldlaird/idaes-pse
112
10489
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# from copy import deepcopy from math import sqrt import numpy as np from .unit_cell_lattice import UnitCell, UnitCellLattice from ..geometry import Cube from ..tiling import CubicTiling from ..transform_func import ScaleFunc, RotateFunc from ...util.util import ListHasPoint class DiamondLattice(UnitCellLattice): RefIAD = sqrt(3) / 4 # === STANDARD CONSTRUCTOR def __init__(self, IAD): RefUnitCellShape = Cube(1, BotBackLeftCorner=np.array([0, 0, 0], dtype=float)) RefUnitCellTiling = CubicTiling(RefUnitCellShape) RefFracPositions = [np.array([0.0, 0.0, 0.0]), np.array([0.5, 0.5, 0.0]), np.array([0.0, 0.5, 0.5]), np.array([0.5, 0.0, 0.5]), np.array([0.25, 0.25, 0.25]), np.array([0.25, 0.75, 0.75]), np.array([0.75, 0.25, 0.75]), np.array([0.75, 0.75, 0.25])] RefUnitCell = UnitCell(RefUnitCellTiling, RefFracPositions) UnitCellLattice.__init__(self, RefUnitCell) self._IAD = DiamondLattice.RefIAD # IAD is set correctly after calling applyTransF self.applyTransF(ScaleFunc(IAD / DiamondLattice.RefIAD)) self._NthNeighbors = [[[np.array([0.25, 0.25, 0.25]), np.array([-0.25, -0.25, 0.25]), np.array([-0.25, 0.25, -0.25]), np.array([0.25, -0.25, -0.25])], [np.array([-0.25, -0.25, -0.25]), np.array([0.25, 0.25, -0.25]), np.array([0.25, -0.25, 0.25]), np.array([-0.25, 0.25, 0.25])]], [[np.array([0.0, 0.5, 0.5]), np.array([0.0, 0.5, -0.5]), np.array([0.0, -0.5, 0.5]), np.array([0.0, -0.5, -0.5]), np.array([0.5, 0.5, 0.0]), np.array([0.5, 0.0, 0.5]), np.array([0.5, -0.5, 0.0]), np.array([0.5, 0.0, -0.5]), np.array([-0.5, 0.5, 0.0]), np.array([-0.5, 0.0, 0.5]), np.array([-0.5, -0.5, 0.0]), np.array([-0.5, 0.0, -0.5])], [np.array([0.0, 0.5, 0.5]), np.array([0.0, 0.5, -0.5]), np.array([0.0, -0.5, 0.5]), np.array([0.0, -0.5, -0.5]), np.array([0.5, 0.5, 0.0]), np.array([0.5, 0.0, 0.5]), np.array([0.5, -0.5, 0.0]), np.array([0.5, 0.0, -0.5]), np.array([-0.5, 0.5, 0.0]), np.array([-0.5, 0.0, 0.5]), np.array([-0.5, -0.5, 0.0]), np.array([-0.5, 0.0, -0.5])]]] self._typeDict = {0: 0, 3: 1} self._relativePositions = {0: np.array([0.0, 0.0, 0.0]), 3: np.array([0.25, 0.25, 0.25])} # === CONSTRUCTOR - Aligned with {100} @classmethod def alignedWith100(cls, IAD): return cls(IAD) # Default implementation # === CONSTRUCTOR - Aligned with {110} @classmethod def aligndWith110(cls, IAD): result = cls(IAD) thetaX = 0 thetaY = np.pi * 0.25 thetaZ = 0 result.applyTransF(RotateFunc.fromXYZAngles(thetaX, thetaY, thetaZ)) return result # === CONSTRUCTOR - Aligned with {111} @classmethod def alignedWith111(cls, IAD, blnTrianglesAlignedWithX=True): result = cls(IAD) thetaX = -np.pi * 0.25 thetaY = -np.arctan2(-sqrt(2), 2) thetaZ = (np.pi * 0.5 if blnTrianglesAlignedWithX else 0) result.applyTransF(RotateFunc.fromXYZAngles(thetaX, thetaY, thetaZ)) return result # === CONSTRUCTOR - Aligned with {xyz} @classmethod def alignedWith(cls, IAD, MI): if (type(MI) is str) and (len(MI) == 3) and all(x.isdigit() for x in MI): if MI in ['100', '010', '001']: return cls(IAD) elif MI in ['110', '101', '011']: return cls.aligndWith110(IAD) elif MI == '111': return cls.alignedWith111(IAD) else: result = cls(IAD) a = np.array([0.0, 0.0, 1.0]) b = np.array([float(MI[0]), float(MI[1]), float(MI[2])]) axis = np.cross(a, b) angle = np.arccos(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))) result.applyTransF(RotateFunc.fromAxisAngle(axis, angle)) return result return ValueError('DiamondLattice.alignedWith: Input direction is not correct.') # === MANIPULATION METHODS def applyTransF(self, TransF): if isinstance(TransF, ScaleFunc): if TransF.isIsometric: self._IAD *= TransF.Scale[0] else: raise ValueError('DiamondLattice.applyTransF: Can only scale isometrically') UnitCellLattice.applyTransF(self, TransF) # === AUXILIARY METHODS def _getPointType(self, P): return (int(round(P[0] * 4)) + int(round(P[1] * 4)) + int(round(P[2] * 4))) % 4 # === PROPERTY EVALUATION METHODS # NOTE: inherited from UnitCellLattice # def isOnLattice(self,P): def areNeighbors(self, P1, P2): return np.linalg.norm(P2 - P1) <= self.IAD def getNeighbors(self, P, layer=1): RefP = self._getConvertToReference(P) PType = self._getPointType(RefP) if PType not in self._typeDict.keys(): raise ValueError('DiamondLattice.getNeighbors Should never reach here!') if layer > len(self._NthNeighbors): self._calculateNeighbors(layer) NBs = deepcopy(self._NthNeighbors[layer - 1][self._typeDict[PType]]) for NeighP in NBs: NeighP += RefP self._convertFromReference(NeighP) return NBs def _calculateNeighbors(self, layer): NList = [] for k, v in self._typeDict.items(): tmp = [np.array([0, 0, 0], dtype=float)] for nb in self._NthNeighbors: tmp.extend(nb[v]) NList.append(tmp) for _ in range(layer - len(self._NthNeighbors)): tmp = [[] for _ in self._typeDict.keys()] for k, v in self._typeDict.items(): for P in self._NthNeighbors[len(self._NthNeighbors) - 1][v]: PType = self._getPointType(P + self._relativePositions[k]) for Q in self._NthNeighbors[0][self._typeDict[PType]]: N = P + Q if not ListHasPoint(NList[v], N, 0.001 * DiamondLattice.RefIAD): tmp[v].append(N) NList[v].append(N) self._NthNeighbors.append(tmp) def isASite(self, P): RefP = self._getConvertToReference(P) PType = self._getPointType(RefP) return PType == 0 def isBSite(self, P): RefP = self._getConvertToReference(P) PType = self._getPointType(RefP) return PType == 3 def setDesign(self, D, AType, BType): for i, P in enumerate(D.Canvas.Points): if self.isASite(P): D.setContent(i, AType) elif self.isBSite(P): D.setContent(i, BType) else: raise ValueError('setDesign can not set site not on lattice') # === BASIC QUERY METHODS @property def IAD(self): return self._IAD @property def Diamond100LayerSpacing(self): return self.IAD / sqrt(3) @property def Diamond110LayerSpacing(self): return self.IAD * sqrt(2) / sqrt(3) @property def Diamond111LayerSpacing(self): return self.IAD * 4 / 3 @property def Diamond112LayerSpacing(self): return self.IAD * sqrt(2) / 3 def getLayerSpacing(self, MI): if (type(MI) is str) and (len(MI) == 3) and all(x.isdigit() for x in MI): if MI in ['100', '010', '001']: return self.Diamond100LayerSpacing elif MI in ['110', '101', '011']: return self.Diamond110LayerSpacing elif MI == '111': return self.Diamond111LayerSpacing elif MI in ['112', '121', '211']: return self.Diamond112LayerSpacing else: raise NotImplementedError('DiamondLattice.getLayerSpacing: Input direction is not supported.') return ValueError('DiamondLattice.getLayerSpacing: Input direction is not correct.') def getShellSpacing(self, MI): if (type(MI) is str) and (len(MI) == 3) and all(x.isdigit() for x in MI): if MI in ['100', '010', '001', '110', '101', '011', '111']: return self.IAD * sqrt(8) / sqrt(3) elif MI in ['112', '121', '211']: return self.IAD * sqrt(2) / sqrt(3) else: raise NotImplementedError('DiamondLattice.getShellSpacing: Input direction is not supported.') return ValueError('The input direction is not correct.') def getUniqueLayerCount(self, MI): if (type(MI) is str) and (len(MI) == 3) and all(x.isdigit() for x in MI): if MI in ['100', '010', '001']: return 4 elif MI in ['110', '101', '011']: return 2 elif MI == '111': return 3 elif MI in ['112', '121', '211']: return 6 else: raise NotImplementedError('DiamondLattice.getUniqueLayerCount: Input direction is not supported.') return ValueError('The input direction is not correct.')
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# from copy import deepcopy from math import sqrt import numpy as np from .unit_cell_lattice import UnitCell, UnitCellLattice from ..geometry import Cube from ..tiling import CubicTiling from ..transform_func import ScaleFunc, RotateFunc from ...util.util import ListHasPoint class DiamondLattice(UnitCellLattice): RefIAD = sqrt(3) / 4 # === STANDARD CONSTRUCTOR def __init__(self, IAD): RefUnitCellShape = Cube(1, BotBackLeftCorner=np.array([0, 0, 0], dtype=float)) RefUnitCellTiling = CubicTiling(RefUnitCellShape) RefFracPositions = [np.array([0.0, 0.0, 0.0]), np.array([0.5, 0.5, 0.0]), np.array([0.0, 0.5, 0.5]), np.array([0.5, 0.0, 0.5]), np.array([0.25, 0.25, 0.25]), np.array([0.25, 0.75, 0.75]), np.array([0.75, 0.25, 0.75]), np.array([0.75, 0.75, 0.25])] RefUnitCell = UnitCell(RefUnitCellTiling, RefFracPositions) UnitCellLattice.__init__(self, RefUnitCell) self._IAD = DiamondLattice.RefIAD # IAD is set correctly after calling applyTransF self.applyTransF(ScaleFunc(IAD / DiamondLattice.RefIAD)) self._NthNeighbors = [[[np.array([0.25, 0.25, 0.25]), np.array([-0.25, -0.25, 0.25]), np.array([-0.25, 0.25, -0.25]), np.array([0.25, -0.25, -0.25])], [np.array([-0.25, -0.25, -0.25]), np.array([0.25, 0.25, -0.25]), np.array([0.25, -0.25, 0.25]), np.array([-0.25, 0.25, 0.25])]], [[np.array([0.0, 0.5, 0.5]), np.array([0.0, 0.5, -0.5]), np.array([0.0, -0.5, 0.5]), np.array([0.0, -0.5, -0.5]), np.array([0.5, 0.5, 0.0]), np.array([0.5, 0.0, 0.5]), np.array([0.5, -0.5, 0.0]), np.array([0.5, 0.0, -0.5]), np.array([-0.5, 0.5, 0.0]), np.array([-0.5, 0.0, 0.5]), np.array([-0.5, -0.5, 0.0]), np.array([-0.5, 0.0, -0.5])], [np.array([0.0, 0.5, 0.5]), np.array([0.0, 0.5, -0.5]), np.array([0.0, -0.5, 0.5]), np.array([0.0, -0.5, -0.5]), np.array([0.5, 0.5, 0.0]), np.array([0.5, 0.0, 0.5]), np.array([0.5, -0.5, 0.0]), np.array([0.5, 0.0, -0.5]), np.array([-0.5, 0.5, 0.0]), np.array([-0.5, 0.0, 0.5]), np.array([-0.5, -0.5, 0.0]), np.array([-0.5, 0.0, -0.5])]]] self._typeDict = {0: 0, 3: 1} self._relativePositions = {0: np.array([0.0, 0.0, 0.0]), 3: np.array([0.25, 0.25, 0.25])} # === CONSTRUCTOR - Aligned with {100} @classmethod def alignedWith100(cls, IAD): return cls(IAD) # Default implementation # === CONSTRUCTOR - Aligned with {110} @classmethod def aligndWith110(cls, IAD): result = cls(IAD) thetaX = 0 thetaY = np.pi * 0.25 thetaZ = 0 result.applyTransF(RotateFunc.fromXYZAngles(thetaX, thetaY, thetaZ)) return result # === CONSTRUCTOR - Aligned with {111} @classmethod def alignedWith111(cls, IAD, blnTrianglesAlignedWithX=True): result = cls(IAD) thetaX = -np.pi * 0.25 thetaY = -np.arctan2(-sqrt(2), 2) thetaZ = (np.pi * 0.5 if blnTrianglesAlignedWithX else 0) result.applyTransF(RotateFunc.fromXYZAngles(thetaX, thetaY, thetaZ)) return result # === CONSTRUCTOR - Aligned with {xyz} @classmethod def alignedWith(cls, IAD, MI): if (type(MI) is str) and (len(MI) == 3) and all(x.isdigit() for x in MI): if MI in ['100', '010', '001']: return cls(IAD) elif MI in ['110', '101', '011']: return cls.aligndWith110(IAD) elif MI == '111': return cls.alignedWith111(IAD) else: result = cls(IAD) a = np.array([0.0, 0.0, 1.0]) b = np.array([float(MI[0]), float(MI[1]), float(MI[2])]) axis = np.cross(a, b) angle = np.arccos(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))) result.applyTransF(RotateFunc.fromAxisAngle(axis, angle)) return result return ValueError('DiamondLattice.alignedWith: Input direction is not correct.') # === MANIPULATION METHODS def applyTransF(self, TransF): if isinstance(TransF, ScaleFunc): if TransF.isIsometric: self._IAD *= TransF.Scale[0] else: raise ValueError('DiamondLattice.applyTransF: Can only scale isometrically') UnitCellLattice.applyTransF(self, TransF) # === AUXILIARY METHODS def _getPointType(self, P): return (int(round(P[0] * 4)) + int(round(P[1] * 4)) + int(round(P[2] * 4))) % 4 # === PROPERTY EVALUATION METHODS # NOTE: inherited from UnitCellLattice # def isOnLattice(self,P): def areNeighbors(self, P1, P2): return np.linalg.norm(P2 - P1) <= self.IAD def getNeighbors(self, P, layer=1): RefP = self._getConvertToReference(P) PType = self._getPointType(RefP) if PType not in self._typeDict.keys(): raise ValueError('DiamondLattice.getNeighbors Should never reach here!') if layer > len(self._NthNeighbors): self._calculateNeighbors(layer) NBs = deepcopy(self._NthNeighbors[layer - 1][self._typeDict[PType]]) for NeighP in NBs: NeighP += RefP self._convertFromReference(NeighP) return NBs def _calculateNeighbors(self, layer): NList = [] for k, v in self._typeDict.items(): tmp = [np.array([0, 0, 0], dtype=float)] for nb in self._NthNeighbors: tmp.extend(nb[v]) NList.append(tmp) for _ in range(layer - len(self._NthNeighbors)): tmp = [[] for _ in self._typeDict.keys()] for k, v in self._typeDict.items(): for P in self._NthNeighbors[len(self._NthNeighbors) - 1][v]: PType = self._getPointType(P + self._relativePositions[k]) for Q in self._NthNeighbors[0][self._typeDict[PType]]: N = P + Q if not ListHasPoint(NList[v], N, 0.001 * DiamondLattice.RefIAD): tmp[v].append(N) NList[v].append(N) self._NthNeighbors.append(tmp) def isASite(self, P): RefP = self._getConvertToReference(P) PType = self._getPointType(RefP) return PType == 0 def isBSite(self, P): RefP = self._getConvertToReference(P) PType = self._getPointType(RefP) return PType == 3 def setDesign(self, D, AType, BType): for i, P in enumerate(D.Canvas.Points): if self.isASite(P): D.setContent(i, AType) elif self.isBSite(P): D.setContent(i, BType) else: raise ValueError('setDesign can not set site not on lattice') # === BASIC QUERY METHODS @property def IAD(self): return self._IAD @property def Diamond100LayerSpacing(self): return self.IAD / sqrt(3) @property def Diamond110LayerSpacing(self): return self.IAD * sqrt(2) / sqrt(3) @property def Diamond111LayerSpacing(self): return self.IAD * 4 / 3 @property def Diamond112LayerSpacing(self): return self.IAD * sqrt(2) / 3 def getLayerSpacing(self, MI): if (type(MI) is str) and (len(MI) == 3) and all(x.isdigit() for x in MI): if MI in ['100', '010', '001']: return self.Diamond100LayerSpacing elif MI in ['110', '101', '011']: return self.Diamond110LayerSpacing elif MI == '111': return self.Diamond111LayerSpacing elif MI in ['112', '121', '211']: return self.Diamond112LayerSpacing else: raise NotImplementedError('DiamondLattice.getLayerSpacing: Input direction is not supported.') return ValueError('DiamondLattice.getLayerSpacing: Input direction is not correct.') def getShellSpacing(self, MI): if (type(MI) is str) and (len(MI) == 3) and all(x.isdigit() for x in MI): if MI in ['100', '010', '001', '110', '101', '011', '111']: return self.IAD * sqrt(8) / sqrt(3) elif MI in ['112', '121', '211']: return self.IAD * sqrt(2) / sqrt(3) else: raise NotImplementedError('DiamondLattice.getShellSpacing: Input direction is not supported.') return ValueError('The input direction is not correct.') def getUniqueLayerCount(self, MI): if (type(MI) is str) and (len(MI) == 3) and all(x.isdigit() for x in MI): if MI in ['100', '010', '001']: return 4 elif MI in ['110', '101', '011']: return 2 elif MI == '111': return 3 elif MI in ['112', '121', '211']: return 6 else: raise NotImplementedError('DiamondLattice.getUniqueLayerCount: Input direction is not supported.') return ValueError('The input direction is not correct.')
en
0.689004
################################################################################# # The Institute for the Design of Advanced Energy Systems Integrated Platform # Framework (IDAES IP) was produced under the DOE Institute for the # Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 # by the software owners: The Regents of the University of California, through # Lawrence Berkeley National Laboratory, National Technology & Engineering # Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University # Research Corporation, et al. All rights reserved. # # Please see the files COPYRIGHT.md and LICENSE.md for full copyright and # license information. ################################################################################# # === STANDARD CONSTRUCTOR # IAD is set correctly after calling applyTransF # === CONSTRUCTOR - Aligned with {100} # Default implementation # === CONSTRUCTOR - Aligned with {110} # === CONSTRUCTOR - Aligned with {111} # === CONSTRUCTOR - Aligned with {xyz} # === MANIPULATION METHODS # === AUXILIARY METHODS # === PROPERTY EVALUATION METHODS # NOTE: inherited from UnitCellLattice # def isOnLattice(self,P): # === BASIC QUERY METHODS
2.023895
2
elateridae_baits.py
AAFC-BICoE/elateridae-ortholog-baitset
0
10490
<filename>elateridae_baits.py # coding: utf8 """ Ortholog Based Bait Design Script for creating Elateridae ortholog based baits suitable submission to myBaits Compares t_coffee AA alignment scores with nucleotide tranalignments to find conserved blocks Author <NAME> <EMAIL> License: MIT Copywright: Government of Canada """ import glob import os from Bio import AlignIO, SeqIO import time import argparse import random def main(): """ Main Function to run Staphylinidae Bait Designer :return: """ parser = argparse.ArgumentParser(description='Processes T_Coffee AA alignments to generate a ortholog bait set') parser.add_argument('-o', type=str, required=True, help='Output Directory') parser.add_argument('-i', type=str, required=True, help='T_Coffee Directory containing aa based .score_ascii files') parser.add_argument('-n', type=str, required=True, help='Directory containing tranalign nucleotide alignments') # parser.add_argument('-p', type=str, required=True, # help='Priorities File for Staphylinidae') args = parser.parse_args() print("Starting Staphylinidae Ortholog Bait Design".format(args.o)) print(args.o, args.i, args.n) dict_of_max_sums = longest_exon_length(args.i) sum_file = write_sums(args.o, dict_of_max_sums) blocks_dir = extract_conserved_blocks(sum_file, args.n, args.o) window_ranges = [600] for window in window_ranges: filtered_blocks_dir = filter_blocks(blocks_dir, args.o, window) processed_blocks_dir = filtered_blocks_dir # Original was going to stagger tile the baits, but bait manufacturer inherently does this # tiled_blocks_dir = tile_blocks(filtered_blocks_dir, args.o, window) # processed_blocks_dir = tiled_blocks_dir merge_baits(processed_blocks_dir, args.o, "Elateridae", window) def extract_conserved_blocks(sum_file, alignment_directory, results_directory): """ Takes an AA T_coffee alignment score_ascii file, the corresponding nt fasta tranalign file, and the sum file to Extract out a conserved block :param sum_file: :param alignment_directory: :param results_directory: :return: Output Directory of conserved blocks """ output_directory = os.path.join(results_directory, "conserved_blocks") if not os.path.exists(output_directory): os.makedirs(output_directory) with open(sum_file) as f: lines = f.readlines() lines.pop(0) for line in lines: list_of_seqs = [] split = line.rstrip().split(",") name = split[0].replace(".aa.summarized.score_ascii", "_tranaligned.fa") window_range = int(split[2])*3 index = int(split[3])*3 file_path = os.path.join(alignment_directory, name) if os.path.isfile(file_path): with open(file_path) as g: alignments = AlignIO.read(g, "fasta") for alignment in alignments: list_of_seqs.append(alignment[index:index + window_range]) orthogroup = split[0].split(".")[0] file_name = "{}_block.fasta".format(orthogroup) file_path = os.path.join(output_directory, file_name) with open(file_path, "w") as h: for seq in list_of_seqs: h.write(seq.format("fasta")) return output_directory def longest_exon_length(directory): """ Scans t_coffee alignments in score_ascii format for a region of between 75-2000 positions in length that is highly conserved, and sorts by the degree of conservation into an output file :param directory: Directory of T_coffee results (containing score_ascii and aln files) :return: Dictionary of Orthogroups with a 300bp region TCS scores above 2400 """ increments = [150, 200] increments_rev = increments[::-1] dict_of_max_sums = {} files = glob.glob(os.path.join(directory, "*.score_ascii")) count = 0 for file in files: count += 1 if count % 100 == 0: print(count) # Scans an alignment and converts the cons string of numbers into a continous list of numbers number_string = "" with open(file) as f: number_of_specimens = f.read().count(":") - 4 f.seek(0) if number_of_specimens < 5: print("Skipping {} Due to Low Specimen Count".format(file)) continue for line in f: if line.startswith("cons") and ":" not in line: number = line.rstrip().split(" ")[-1] number_string += number number_list = [int(i) for i in number_string] # Scans number list for sequence containing the highest window range of conserved bases within 95% of max # TCS score for said window range aka 9*Window Range # Sort the list so the highest score block within the window range is first. If the window range # has 95% quality or higher, add it to dictionary and move on to next file, otherwise decrease # window range and try again for window_range in increments_rev: list_of_sums = [] if len(number_list) > window_range: for i in range(0, len(number_list) - window_range): the_sum = sum(number_list[i:i + window_range]) list_of_sums.append((the_sum, window_range, i)) sorted_list = sorted(list_of_sums, reverse=True, key=lambda element: (element[0])) if float(sorted_list[0][0]) >= float(9 * window_range * .95): if os.path.basename(file) not in dict_of_max_sums: dict_of_max_sums[os.path.basename(file)] = sorted_list[0] break return dict_of_max_sums def write_sums(directory, dict_of_max_sums): """ Writes the dictionary of all ortholog T_coffee scores/sums to csv file :param directory: :param dict_of_max_sums: :return: """ if not os.path.exists(directory): os.makedirs(directory) timestr = time.strftime("%Y%m%d-%H%M%S") file_name = "Conserved_Exons_Sums_{}.csv".format(timestr) file_path = os.path.join(directory, file_name) # Sorts dictionary into a list by score sum and then window length sorted_x = sorted(dict_of_max_sums.items(), reverse=True, key=lambda x: (x[1][0], x[1][1])) print("Writing T_Coffee score analysis to {}".format(file_path)) with open(file_path, "w") as f: f.write("Orthogroup,Sum,Window,Index\n") for entry in sorted_x: f.write("{},{},{},{}\n".format(entry[0], entry[1][0], entry[1][1], entry[1][2])) return file_path def filter_blocks(directory, results_dir, window): """ Filters blocks generated by longest exon length and write sum functions based on various criteria :param directory: Directory of fasta blocks to filter :param results_dir: Parent Result Folder :param window: Minimum length of a conserved block in basepairs :return: Output Directory of filtered blocks """ fastas = glob.glob(os.path.join(directory, "*.fasta")) output_dir = os.path.join(results_dir, "filtered_blocks_{}".format(window)) if not os.path.exists(output_dir): os.mkdir(output_dir) total_seq_length = 0 total_after_gap_removal = 0 total_sequences = 0 gene_count = 0 # For each block/file extract out sequences that meet the following critiera: # Part of Priority List = 1 # Minimum Length of Window size in basepairs # Gaps represent less than 20% of sequence # Block contains atleast 5 sequences from priority list = 1 for fasta in fastas: seqs = [] with open(fasta) as f: file_name = os.path.basename(fasta).replace(".fasta", "_filtered.fasta") for seq in SeqIO.parse(f, 'fasta'): gaps = seq.seq.count("-") gap_percent = float(gaps / len(seq.seq)) if gap_percent > 0.20: pass else: if len(seq.seq) >= window: seqs.append(seq) if len(seqs) < 5: pass else: gene_count += 1 # Randomly take 3 contigs from the bait set to ensure even distribution of species across all orthologs random.shuffle(seqs) seqs = seqs[:3] total_sequences += len(seqs) for seq in seqs: total_seq_length += len(seq.seq) seq.seq = seq.seq.ungap(gap="-") total_after_gap_removal += len(seq.seq) new_file = os.path.join(output_dir, file_name) with open(new_file, "w") as g: SeqIO.write(seqs, g, "fasta") print("Total Genes: {}, " "Total Sequences: {}, " "Total Length in bp: {}, " "After Gap Removal: {}".format(gene_count, total_sequences, total_seq_length, total_after_gap_removal)) return output_dir def tile_blocks(directory, results_dir, window): """ Takes a prefiltered block generated by the filtered_blocks function and tiles each bait The first 0, 40 or 80 basepairs of each sequence are removed so the baits tile amongst each other :param directory: :param results_dir: :param window: :return: """ fastas = glob.glob(os.path.join(directory, "*.fasta")) output_dir = os.path.join(results_dir, "tiled_blocks_{}".format(window)) if not os.path.exists(output_dir): os.mkdir(output_dir) for fasta in fastas: seqs = [] with open(fasta) as f: count = 0 for seq in SeqIO.parse(f, 'fasta'): seq.description = "" # Remove the first 0, 40 or 80 basepairs of the sequence every 3rd time count += 1 if count == 1: pass if count == 2: seq.seq = seq.seq[40:] if count == 3: seq.seq = seq.seq[80:] count = 0 seqs.append(seq) file_name = os.path.basename(fasta).replace("_block_filtered", "_block_tiled") new_file = os.path.join(output_dir, file_name) with open(new_file, "w") as g: SeqIO.write(seqs, g, "fasta") return output_dir def merge_baits(directory, results_dir, prefix, window): """ Merges multifastas in the input directory into a single multi fasta file. Can be accomplished with bash cat, but using biopython ensures each fasta entry is formatted correctly :param directory: Input directory of fastas :param results_dir: Output Parent directory :param prefix: Name of the output file :param window: :return: """ output_dir = os.path.join(results_dir, "final_baits") if not os.path.exists(output_dir): os.mkdir(output_dir) fastas = glob.glob(os.path.join(directory, "*.fasta")) seqs = [] total_dna = 0 total_seqs = 0 total_orthologs = 0 for fasta in fastas: if total_dna > 3900000: break total_orthologs += 1 with open(fasta) as f: for seq in SeqIO.parse(f, 'fasta'): total_seqs += 1 total_dna += len(seq.seq) seq.description = "" seqs.append(seq) file_name = "{}-{}-final-baits.fasta".format(prefix, window) new_file = os.path.join(output_dir, file_name) print("Bait File {} " "with Total Orthologs {}, " "Total Seqs {}, Total_Dna {} bp".format(new_file, total_orthologs, total_seqs, total_dna)) with open(new_file, "w") as g: SeqIO.write(seqs, g, "fasta") return output_dir if __name__ == "__main__": main()
<filename>elateridae_baits.py # coding: utf8 """ Ortholog Based Bait Design Script for creating Elateridae ortholog based baits suitable submission to myBaits Compares t_coffee AA alignment scores with nucleotide tranalignments to find conserved blocks Author <NAME> <EMAIL> License: MIT Copywright: Government of Canada """ import glob import os from Bio import AlignIO, SeqIO import time import argparse import random def main(): """ Main Function to run Staphylinidae Bait Designer :return: """ parser = argparse.ArgumentParser(description='Processes T_Coffee AA alignments to generate a ortholog bait set') parser.add_argument('-o', type=str, required=True, help='Output Directory') parser.add_argument('-i', type=str, required=True, help='T_Coffee Directory containing aa based .score_ascii files') parser.add_argument('-n', type=str, required=True, help='Directory containing tranalign nucleotide alignments') # parser.add_argument('-p', type=str, required=True, # help='Priorities File for Staphylinidae') args = parser.parse_args() print("Starting Staphylinidae Ortholog Bait Design".format(args.o)) print(args.o, args.i, args.n) dict_of_max_sums = longest_exon_length(args.i) sum_file = write_sums(args.o, dict_of_max_sums) blocks_dir = extract_conserved_blocks(sum_file, args.n, args.o) window_ranges = [600] for window in window_ranges: filtered_blocks_dir = filter_blocks(blocks_dir, args.o, window) processed_blocks_dir = filtered_blocks_dir # Original was going to stagger tile the baits, but bait manufacturer inherently does this # tiled_blocks_dir = tile_blocks(filtered_blocks_dir, args.o, window) # processed_blocks_dir = tiled_blocks_dir merge_baits(processed_blocks_dir, args.o, "Elateridae", window) def extract_conserved_blocks(sum_file, alignment_directory, results_directory): """ Takes an AA T_coffee alignment score_ascii file, the corresponding nt fasta tranalign file, and the sum file to Extract out a conserved block :param sum_file: :param alignment_directory: :param results_directory: :return: Output Directory of conserved blocks """ output_directory = os.path.join(results_directory, "conserved_blocks") if not os.path.exists(output_directory): os.makedirs(output_directory) with open(sum_file) as f: lines = f.readlines() lines.pop(0) for line in lines: list_of_seqs = [] split = line.rstrip().split(",") name = split[0].replace(".aa.summarized.score_ascii", "_tranaligned.fa") window_range = int(split[2])*3 index = int(split[3])*3 file_path = os.path.join(alignment_directory, name) if os.path.isfile(file_path): with open(file_path) as g: alignments = AlignIO.read(g, "fasta") for alignment in alignments: list_of_seqs.append(alignment[index:index + window_range]) orthogroup = split[0].split(".")[0] file_name = "{}_block.fasta".format(orthogroup) file_path = os.path.join(output_directory, file_name) with open(file_path, "w") as h: for seq in list_of_seqs: h.write(seq.format("fasta")) return output_directory def longest_exon_length(directory): """ Scans t_coffee alignments in score_ascii format for a region of between 75-2000 positions in length that is highly conserved, and sorts by the degree of conservation into an output file :param directory: Directory of T_coffee results (containing score_ascii and aln files) :return: Dictionary of Orthogroups with a 300bp region TCS scores above 2400 """ increments = [150, 200] increments_rev = increments[::-1] dict_of_max_sums = {} files = glob.glob(os.path.join(directory, "*.score_ascii")) count = 0 for file in files: count += 1 if count % 100 == 0: print(count) # Scans an alignment and converts the cons string of numbers into a continous list of numbers number_string = "" with open(file) as f: number_of_specimens = f.read().count(":") - 4 f.seek(0) if number_of_specimens < 5: print("Skipping {} Due to Low Specimen Count".format(file)) continue for line in f: if line.startswith("cons") and ":" not in line: number = line.rstrip().split(" ")[-1] number_string += number number_list = [int(i) for i in number_string] # Scans number list for sequence containing the highest window range of conserved bases within 95% of max # TCS score for said window range aka 9*Window Range # Sort the list so the highest score block within the window range is first. If the window range # has 95% quality or higher, add it to dictionary and move on to next file, otherwise decrease # window range and try again for window_range in increments_rev: list_of_sums = [] if len(number_list) > window_range: for i in range(0, len(number_list) - window_range): the_sum = sum(number_list[i:i + window_range]) list_of_sums.append((the_sum, window_range, i)) sorted_list = sorted(list_of_sums, reverse=True, key=lambda element: (element[0])) if float(sorted_list[0][0]) >= float(9 * window_range * .95): if os.path.basename(file) not in dict_of_max_sums: dict_of_max_sums[os.path.basename(file)] = sorted_list[0] break return dict_of_max_sums def write_sums(directory, dict_of_max_sums): """ Writes the dictionary of all ortholog T_coffee scores/sums to csv file :param directory: :param dict_of_max_sums: :return: """ if not os.path.exists(directory): os.makedirs(directory) timestr = time.strftime("%Y%m%d-%H%M%S") file_name = "Conserved_Exons_Sums_{}.csv".format(timestr) file_path = os.path.join(directory, file_name) # Sorts dictionary into a list by score sum and then window length sorted_x = sorted(dict_of_max_sums.items(), reverse=True, key=lambda x: (x[1][0], x[1][1])) print("Writing T_Coffee score analysis to {}".format(file_path)) with open(file_path, "w") as f: f.write("Orthogroup,Sum,Window,Index\n") for entry in sorted_x: f.write("{},{},{},{}\n".format(entry[0], entry[1][0], entry[1][1], entry[1][2])) return file_path def filter_blocks(directory, results_dir, window): """ Filters blocks generated by longest exon length and write sum functions based on various criteria :param directory: Directory of fasta blocks to filter :param results_dir: Parent Result Folder :param window: Minimum length of a conserved block in basepairs :return: Output Directory of filtered blocks """ fastas = glob.glob(os.path.join(directory, "*.fasta")) output_dir = os.path.join(results_dir, "filtered_blocks_{}".format(window)) if not os.path.exists(output_dir): os.mkdir(output_dir) total_seq_length = 0 total_after_gap_removal = 0 total_sequences = 0 gene_count = 0 # For each block/file extract out sequences that meet the following critiera: # Part of Priority List = 1 # Minimum Length of Window size in basepairs # Gaps represent less than 20% of sequence # Block contains atleast 5 sequences from priority list = 1 for fasta in fastas: seqs = [] with open(fasta) as f: file_name = os.path.basename(fasta).replace(".fasta", "_filtered.fasta") for seq in SeqIO.parse(f, 'fasta'): gaps = seq.seq.count("-") gap_percent = float(gaps / len(seq.seq)) if gap_percent > 0.20: pass else: if len(seq.seq) >= window: seqs.append(seq) if len(seqs) < 5: pass else: gene_count += 1 # Randomly take 3 contigs from the bait set to ensure even distribution of species across all orthologs random.shuffle(seqs) seqs = seqs[:3] total_sequences += len(seqs) for seq in seqs: total_seq_length += len(seq.seq) seq.seq = seq.seq.ungap(gap="-") total_after_gap_removal += len(seq.seq) new_file = os.path.join(output_dir, file_name) with open(new_file, "w") as g: SeqIO.write(seqs, g, "fasta") print("Total Genes: {}, " "Total Sequences: {}, " "Total Length in bp: {}, " "After Gap Removal: {}".format(gene_count, total_sequences, total_seq_length, total_after_gap_removal)) return output_dir def tile_blocks(directory, results_dir, window): """ Takes a prefiltered block generated by the filtered_blocks function and tiles each bait The first 0, 40 or 80 basepairs of each sequence are removed so the baits tile amongst each other :param directory: :param results_dir: :param window: :return: """ fastas = glob.glob(os.path.join(directory, "*.fasta")) output_dir = os.path.join(results_dir, "tiled_blocks_{}".format(window)) if not os.path.exists(output_dir): os.mkdir(output_dir) for fasta in fastas: seqs = [] with open(fasta) as f: count = 0 for seq in SeqIO.parse(f, 'fasta'): seq.description = "" # Remove the first 0, 40 or 80 basepairs of the sequence every 3rd time count += 1 if count == 1: pass if count == 2: seq.seq = seq.seq[40:] if count == 3: seq.seq = seq.seq[80:] count = 0 seqs.append(seq) file_name = os.path.basename(fasta).replace("_block_filtered", "_block_tiled") new_file = os.path.join(output_dir, file_name) with open(new_file, "w") as g: SeqIO.write(seqs, g, "fasta") return output_dir def merge_baits(directory, results_dir, prefix, window): """ Merges multifastas in the input directory into a single multi fasta file. Can be accomplished with bash cat, but using biopython ensures each fasta entry is formatted correctly :param directory: Input directory of fastas :param results_dir: Output Parent directory :param prefix: Name of the output file :param window: :return: """ output_dir = os.path.join(results_dir, "final_baits") if not os.path.exists(output_dir): os.mkdir(output_dir) fastas = glob.glob(os.path.join(directory, "*.fasta")) seqs = [] total_dna = 0 total_seqs = 0 total_orthologs = 0 for fasta in fastas: if total_dna > 3900000: break total_orthologs += 1 with open(fasta) as f: for seq in SeqIO.parse(f, 'fasta'): total_seqs += 1 total_dna += len(seq.seq) seq.description = "" seqs.append(seq) file_name = "{}-{}-final-baits.fasta".format(prefix, window) new_file = os.path.join(output_dir, file_name) print("Bait File {} " "with Total Orthologs {}, " "Total Seqs {}, Total_Dna {} bp".format(new_file, total_orthologs, total_seqs, total_dna)) with open(new_file, "w") as g: SeqIO.write(seqs, g, "fasta") return output_dir if __name__ == "__main__": main()
en
0.816006
# coding: utf8 Ortholog Based Bait Design Script for creating Elateridae ortholog based baits suitable submission to myBaits Compares t_coffee AA alignment scores with nucleotide tranalignments to find conserved blocks Author <NAME> <EMAIL> License: MIT Copywright: Government of Canada Main Function to run Staphylinidae Bait Designer :return: # parser.add_argument('-p', type=str, required=True, # help='Priorities File for Staphylinidae') # Original was going to stagger tile the baits, but bait manufacturer inherently does this # tiled_blocks_dir = tile_blocks(filtered_blocks_dir, args.o, window) # processed_blocks_dir = tiled_blocks_dir Takes an AA T_coffee alignment score_ascii file, the corresponding nt fasta tranalign file, and the sum file to Extract out a conserved block :param sum_file: :param alignment_directory: :param results_directory: :return: Output Directory of conserved blocks Scans t_coffee alignments in score_ascii format for a region of between 75-2000 positions in length that is highly conserved, and sorts by the degree of conservation into an output file :param directory: Directory of T_coffee results (containing score_ascii and aln files) :return: Dictionary of Orthogroups with a 300bp region TCS scores above 2400 # Scans an alignment and converts the cons string of numbers into a continous list of numbers # Scans number list for sequence containing the highest window range of conserved bases within 95% of max # TCS score for said window range aka 9*Window Range # Sort the list so the highest score block within the window range is first. If the window range # has 95% quality or higher, add it to dictionary and move on to next file, otherwise decrease # window range and try again Writes the dictionary of all ortholog T_coffee scores/sums to csv file :param directory: :param dict_of_max_sums: :return: # Sorts dictionary into a list by score sum and then window length Filters blocks generated by longest exon length and write sum functions based on various criteria :param directory: Directory of fasta blocks to filter :param results_dir: Parent Result Folder :param window: Minimum length of a conserved block in basepairs :return: Output Directory of filtered blocks # For each block/file extract out sequences that meet the following critiera: # Part of Priority List = 1 # Minimum Length of Window size in basepairs # Gaps represent less than 20% of sequence # Block contains atleast 5 sequences from priority list = 1 # Randomly take 3 contigs from the bait set to ensure even distribution of species across all orthologs Takes a prefiltered block generated by the filtered_blocks function and tiles each bait The first 0, 40 or 80 basepairs of each sequence are removed so the baits tile amongst each other :param directory: :param results_dir: :param window: :return: # Remove the first 0, 40 or 80 basepairs of the sequence every 3rd time Merges multifastas in the input directory into a single multi fasta file. Can be accomplished with bash cat, but using biopython ensures each fasta entry is formatted correctly :param directory: Input directory of fastas :param results_dir: Output Parent directory :param prefix: Name of the output file :param window: :return:
2.793746
3
poilab.py
octeufer/Annotate_Optimize
0
10491
<filename>poilab.py import sys import numpy as np sys.path.append("d:/data/annooptimize") import triangle import time tinternal = list() def labstart(): points,tri = triangle.gentri("d:/data/annooptimize/Annodata/200600/poise.shp") plabels = triangle.dynamicSize(points) conflictg = triangle.conflictgraphdy(points,tri,plabels) acg = triangle.accesssubg(conflictg) len(acg) allsolve = np.zeros((len(points),4,2),np.float64) points2,tri2 = triangle.gentri("d:/data/annooptimize/Annodata/200600/POIhalf.shp") plabels2 = triangle.dynamicSize(points2) conflictg2 = triangle.conflictgraphdy(points2,tri2,plabels2) acg2 = triangle.accesssubg(conflictg2) points3,tri3 = triangle.gentri("d:/data/annooptimize/Annodata/200600/POIall.shp") plabels3 = triangle.dynamicSize(points3) conflictg3 = triangle.conflictgraphdy(points3,tri3,plabels3) acg3 = triangle.accesssubg(conflictg3) time.clock() costs,tabucs= triangle.globaltabuiter2dy(acg,points,1,plabels) tinternal.append(time.clock()) costs2,tabucs2= triangle.globaltabuiter2dy(acg2,points2,1,plabels2) tinternal.append(time.clock()) costs3,tabucs3= triangle.globaltabuiter2dy(acg3,points3,1,plabels3) tinternal.append(time.clock()) return tinternal,(costs,tabucs),(costs2,tabucs2),(costs3,tabucs3)
<filename>poilab.py import sys import numpy as np sys.path.append("d:/data/annooptimize") import triangle import time tinternal = list() def labstart(): points,tri = triangle.gentri("d:/data/annooptimize/Annodata/200600/poise.shp") plabels = triangle.dynamicSize(points) conflictg = triangle.conflictgraphdy(points,tri,plabels) acg = triangle.accesssubg(conflictg) len(acg) allsolve = np.zeros((len(points),4,2),np.float64) points2,tri2 = triangle.gentri("d:/data/annooptimize/Annodata/200600/POIhalf.shp") plabels2 = triangle.dynamicSize(points2) conflictg2 = triangle.conflictgraphdy(points2,tri2,plabels2) acg2 = triangle.accesssubg(conflictg2) points3,tri3 = triangle.gentri("d:/data/annooptimize/Annodata/200600/POIall.shp") plabels3 = triangle.dynamicSize(points3) conflictg3 = triangle.conflictgraphdy(points3,tri3,plabels3) acg3 = triangle.accesssubg(conflictg3) time.clock() costs,tabucs= triangle.globaltabuiter2dy(acg,points,1,plabels) tinternal.append(time.clock()) costs2,tabucs2= triangle.globaltabuiter2dy(acg2,points2,1,plabels2) tinternal.append(time.clock()) costs3,tabucs3= triangle.globaltabuiter2dy(acg3,points3,1,plabels3) tinternal.append(time.clock()) return tinternal,(costs,tabucs),(costs2,tabucs2),(costs3,tabucs3)
none
1
2.497932
2
t_core/tc_python/xrule.py
levilucio/SyVOLT
3
10492
from util.infinity import INFINITY from tc_python.arule import ARule from t_core.rollbacker import Rollbacker from t_core.resolver import Resolver class XRule(ARule): ''' Applies the transformation on one match with roll-back capability. ''' def __init__(self, LHS, RHS, max_iterations=INFINITY): ''' Applies the transformation on one match with roll-back capability. @param LHS: The pre-condition pattern (LHS + NACs). @param RHS: The post-condition pattern (RHS). ''' # external_matches_only=True because further matches of this rule are only processed after a roll-back super(XRule, self).__init__(LHS, RHS) self.M.max = max_iterations self.I.max_iterations = max_iterations self.B = Rollbacker(condition=LHS, max_iterations=max_iterations) def packet_in(self, packet): self.exception = None self.is_success = False # Checkpoint the original packet self.B.packet_in(packet) if not self.B.is_success: self.exception = self.B.exception return packet # Match packet = self.M.packet_in(packet) if not self.M.is_success: packet = self.B.restore(packet) if self.M.exception: self.exception = self.M.exception elif self.B.exception: self.exception = self.B.exception return packet # Choose one match packet = self.I.packet_in(packet) if not self.I.is_success: packet = self.B.restore(packet) if self.I.exception: self.exception = self.I.exception elif self.B.exception: self.exception = self.B.exception return packet # Rewrite packet = self.W.packet_in(packet) if not self.W.is_success: packet = self.B.restore(packet) if self.W.exception: self.exception = self.W.exception elif self.B.exception: self.exception = self.B.exception return packet self.is_success = True return packet def next_in(self, packet): self.exception = None self.is_success = False packet = self.B.next_in(packet) if not self.B.is_success: self.exception = self.B.exception return packet # Choose the next match packet = self.I.packet_in(packet) if not self.I.is_success: packet = self.B.next_in(packet) if self.I.exception: self.exception = self.I.exception elif self.B.exception: self.exception = self.B.exception return packet # Rewrite packet = self.W.packet_in(packet) if not self.W.is_success: packet = self.B.next_in(packet) if self.W.exception: self.exception = self.W.exception elif self.B.exception: self.exception = self.B.exception return packet # Output success packet self.is_success = True return packet class XRule_r(XRule): ''' Applies the transformation on one match with roll-back capability. ''' def __init__(self, LHS, RHS, external_matches_only=False, custom_resolution=lambda packet: False): ''' Applies the transformation on one match with roll-back capability. @param LHS: The pre-condition pattern (LHS + NACs). @param RHS: The post-condition pattern (RHS). @param external_matches_only: Resolve conflicts ignoring the matches found in this ARule. @param custom_resolution: Override the default resolution function. ''' super(XRule_r, self).__init__() self.R = Resolver(external_matches_only=external_matches_only, custom_resolution=custom_resolution) def packet_in(self, packet): packet = super(XRule_r, self).packet_in(packet) # is_success is True if self.exception is None: # Resolve any conflicts if necessary packet = self.R.packet_in(packet) if not self.R.is_success: self.exception = self.R.exception return packet # Output success packet else: self.is_success = False return packet def next_in(self, packet): packet = super(XRule_r, self).next_in(packet) # is_success is True if self.exception is None: # Resolve any conflicts if necessary packet = self.R.packet_in(packet) if not self.R.is_success: self.exception = self.R.exception return packet # Output success packet else: self.is_success = False return packet
from util.infinity import INFINITY from tc_python.arule import ARule from t_core.rollbacker import Rollbacker from t_core.resolver import Resolver class XRule(ARule): ''' Applies the transformation on one match with roll-back capability. ''' def __init__(self, LHS, RHS, max_iterations=INFINITY): ''' Applies the transformation on one match with roll-back capability. @param LHS: The pre-condition pattern (LHS + NACs). @param RHS: The post-condition pattern (RHS). ''' # external_matches_only=True because further matches of this rule are only processed after a roll-back super(XRule, self).__init__(LHS, RHS) self.M.max = max_iterations self.I.max_iterations = max_iterations self.B = Rollbacker(condition=LHS, max_iterations=max_iterations) def packet_in(self, packet): self.exception = None self.is_success = False # Checkpoint the original packet self.B.packet_in(packet) if not self.B.is_success: self.exception = self.B.exception return packet # Match packet = self.M.packet_in(packet) if not self.M.is_success: packet = self.B.restore(packet) if self.M.exception: self.exception = self.M.exception elif self.B.exception: self.exception = self.B.exception return packet # Choose one match packet = self.I.packet_in(packet) if not self.I.is_success: packet = self.B.restore(packet) if self.I.exception: self.exception = self.I.exception elif self.B.exception: self.exception = self.B.exception return packet # Rewrite packet = self.W.packet_in(packet) if not self.W.is_success: packet = self.B.restore(packet) if self.W.exception: self.exception = self.W.exception elif self.B.exception: self.exception = self.B.exception return packet self.is_success = True return packet def next_in(self, packet): self.exception = None self.is_success = False packet = self.B.next_in(packet) if not self.B.is_success: self.exception = self.B.exception return packet # Choose the next match packet = self.I.packet_in(packet) if not self.I.is_success: packet = self.B.next_in(packet) if self.I.exception: self.exception = self.I.exception elif self.B.exception: self.exception = self.B.exception return packet # Rewrite packet = self.W.packet_in(packet) if not self.W.is_success: packet = self.B.next_in(packet) if self.W.exception: self.exception = self.W.exception elif self.B.exception: self.exception = self.B.exception return packet # Output success packet self.is_success = True return packet class XRule_r(XRule): ''' Applies the transformation on one match with roll-back capability. ''' def __init__(self, LHS, RHS, external_matches_only=False, custom_resolution=lambda packet: False): ''' Applies the transformation on one match with roll-back capability. @param LHS: The pre-condition pattern (LHS + NACs). @param RHS: The post-condition pattern (RHS). @param external_matches_only: Resolve conflicts ignoring the matches found in this ARule. @param custom_resolution: Override the default resolution function. ''' super(XRule_r, self).__init__() self.R = Resolver(external_matches_only=external_matches_only, custom_resolution=custom_resolution) def packet_in(self, packet): packet = super(XRule_r, self).packet_in(packet) # is_success is True if self.exception is None: # Resolve any conflicts if necessary packet = self.R.packet_in(packet) if not self.R.is_success: self.exception = self.R.exception return packet # Output success packet else: self.is_success = False return packet def next_in(self, packet): packet = super(XRule_r, self).next_in(packet) # is_success is True if self.exception is None: # Resolve any conflicts if necessary packet = self.R.packet_in(packet) if not self.R.is_success: self.exception = self.R.exception return packet # Output success packet else: self.is_success = False return packet
en
0.726417
Applies the transformation on one match with roll-back capability. Applies the transformation on one match with roll-back capability. @param LHS: The pre-condition pattern (LHS + NACs). @param RHS: The post-condition pattern (RHS). # external_matches_only=True because further matches of this rule are only processed after a roll-back # Checkpoint the original packet # Match # Choose one match # Rewrite # Choose the next match # Rewrite # Output success packet Applies the transformation on one match with roll-back capability. Applies the transformation on one match with roll-back capability. @param LHS: The pre-condition pattern (LHS + NACs). @param RHS: The post-condition pattern (RHS). @param external_matches_only: Resolve conflicts ignoring the matches found in this ARule. @param custom_resolution: Override the default resolution function. # is_success is True # Resolve any conflicts if necessary # Output success packet # is_success is True # Resolve any conflicts if necessary # Output success packet
2.289623
2
tests/commonsense/semantic_lexicon_knowledge/ai2_lexicon_test.py
keisks/propara
84
10493
<reponame>keisks/propara<gh_stars>10-100 from unittest import TestCase from propara.commonsense.semantic_lexicon_knowledge.ai2_lexicon import AI2Lexicon, AI2LexiconPredicate, AI2LexiconArg, AI2LexiconIndications, \ AI2LexiconPattern class TestAI2Lexicon(TestCase): def setUp(self): self.lexicon_fp = "tests/fixtures/ie/TheSemanticLexicon-v3.0_withadj.tsv" def testLoads(self): self.lexicon = AI2Lexicon(self.lexicon_fp) # print(f"evaporate.subj: {self.lexicon.what_happens_to_subj('evaporate', has_agent=True, has_patient=False)}") # print(f"evaporate.obj: {self.lexicon.what_happens_to_obj('evaporate', has_agent=True, has_patient=False)}") # # print(f"evaporate.subj: {self.lexicon.what_happens_to_subj('evaporate')}") # print(f"evaporate.obj: {self.lexicon.what_happens_to_obj('evaporate')}") # v2 doesn't contain size, temperature, phase attributes # infile = "tests/fixtures/ie/ai2-lexicon-v2.tsv" # the following path is useful when debugging from browser. # self.lexicon = AI2Lexicon("tests/fixtures/ie/TheSemanticLexicon-v3.0_withadj.tsv") assert self.lexicon._after_subj(("blend in", AI2LexiconPattern.SO)) == { AI2LexiconPredicate.IS_AT: AI2LexiconArg.OBJECT, AI2LexiconPredicate.NOT_IS_AT: AI2LexiconArg.PREP_SRC, } assert self.lexicon._after_obj(("absorb", AI2LexiconPattern.SO))[ AI2LexiconPredicate.IS_AT] == AI2LexiconArg.SUBJECT # assert self.lexicon._after_obj(("absorbs", AI2LexiconPattern.SO)).get(AI2LexiconPredicate.IS_AT, "") == AI2LexiconArg.SUBJECT assert len(self.lexicon._after_obj(("blend in", AI2LexiconPattern.SO))) == 0 assert len(self.lexicon._after_obj(("blend blend2", AI2LexiconPattern.SO))) == 0 assert AI2LexiconIndications.MOVED not in self.lexicon.what_happens_to_subj("absorbs") assert AI2LexiconIndications.MOVED in self.lexicon.what_happens_to_obj("absorbs") assert AI2LexiconIndications.CREATED in self.lexicon.what_happens_to_obj("sprout") assert AI2LexiconIndications.CREATED in self.lexicon.what_happens_to_subj("sprout", has_agent=True, has_patient=False) assert AI2LexiconIndications.DESTROYED not in self.lexicon.what_happens_to_subj("sprout") assert AI2LexiconIndications.DESTROYED not in self.lexicon.what_happens_to_obj("sprout") assert AI2LexiconIndications.TEMPERATURE_INC not in self.lexicon.what_happens_to_obj("turn") assert AI2LexiconIndications.TEMPERATURE_INC in self.lexicon.what_happens_to_subj("gets hot") assert AI2LexiconIndications.SIZE_INC in self.lexicon.what_happens_to_subj("gets bigger") assert AI2LexiconIndications.SIZE_INC in self.lexicon.what_happens_to_subj("become bigger") assert AI2LexiconIndications.SIZE_INC in self.lexicon.what_happens_to_subj("turned bigger") assert AI2LexiconIndications.SIZE_INC not in self.lexicon.what_happens_to_obj("turns into bigger") assert AI2LexiconIndications.MOVED not in self.lexicon.what_happens_to_subj("turned") assert AI2LexiconIndications.PHASE_UNK_GAS in self.lexicon.what_happens_to_subj("turned gaseous") assert AI2LexiconIndications.PHASE_LIQUID_SOLID in self.lexicon.what_happens_to_subj("solidify", has_agent=True, has_patient=False) assert AI2LexiconIndications.PHASE_LIQUID_SOLID in self.lexicon.what_happens_to_obj("solidify", has_agent=True, has_patient=True) assert AI2LexiconIndications.PHASE_UNK_SOLID not in self.lexicon.what_happens_to_subj("solidifies") assert AI2LexiconIndications.PHASE_SOLID_GAS in self.lexicon.what_happens_to_subj("sublime", has_agent=True, has_patient=False) assert AI2LexiconIndications.PHASE_SOLID_GAS in self.lexicon.what_happens_to_obj("sublime", has_agent=True, has_patient=True) # if agent and patient both are present or only 1 # the difference is whether object is given or not # this happens for all verbs that can be both transitive/intransitive # they will have 2 entries. # # A big rock stops the stream of water from uphill => stream of water moved from uphill to rock # car stops at the intersection ==> car moved to intersection # we have removed lots of fine details in the patterns (VerbNet had much more info there) # if agent and patient both are present or only 1 def test_type_of_pattern(self): input = "SUBJECT VERB OBJECT PREP-SRC PREP-DEST" assert AI2Lexicon.type_of_pattern(input) == AI2LexiconPattern.SO input = "SUBJECT VERB OBJECT" assert AI2Lexicon.type_of_pattern(input) == AI2LexiconPattern.SO input = "SUBJECT VERB PREP-SRC PREP-DEST" assert AI2Lexicon.type_of_pattern(input) == AI2LexiconPattern.S
from unittest import TestCase from propara.commonsense.semantic_lexicon_knowledge.ai2_lexicon import AI2Lexicon, AI2LexiconPredicate, AI2LexiconArg, AI2LexiconIndications, \ AI2LexiconPattern class TestAI2Lexicon(TestCase): def setUp(self): self.lexicon_fp = "tests/fixtures/ie/TheSemanticLexicon-v3.0_withadj.tsv" def testLoads(self): self.lexicon = AI2Lexicon(self.lexicon_fp) # print(f"evaporate.subj: {self.lexicon.what_happens_to_subj('evaporate', has_agent=True, has_patient=False)}") # print(f"evaporate.obj: {self.lexicon.what_happens_to_obj('evaporate', has_agent=True, has_patient=False)}") # # print(f"evaporate.subj: {self.lexicon.what_happens_to_subj('evaporate')}") # print(f"evaporate.obj: {self.lexicon.what_happens_to_obj('evaporate')}") # v2 doesn't contain size, temperature, phase attributes # infile = "tests/fixtures/ie/ai2-lexicon-v2.tsv" # the following path is useful when debugging from browser. # self.lexicon = AI2Lexicon("tests/fixtures/ie/TheSemanticLexicon-v3.0_withadj.tsv") assert self.lexicon._after_subj(("blend in", AI2LexiconPattern.SO)) == { AI2LexiconPredicate.IS_AT: AI2LexiconArg.OBJECT, AI2LexiconPredicate.NOT_IS_AT: AI2LexiconArg.PREP_SRC, } assert self.lexicon._after_obj(("absorb", AI2LexiconPattern.SO))[ AI2LexiconPredicate.IS_AT] == AI2LexiconArg.SUBJECT # assert self.lexicon._after_obj(("absorbs", AI2LexiconPattern.SO)).get(AI2LexiconPredicate.IS_AT, "") == AI2LexiconArg.SUBJECT assert len(self.lexicon._after_obj(("blend in", AI2LexiconPattern.SO))) == 0 assert len(self.lexicon._after_obj(("blend blend2", AI2LexiconPattern.SO))) == 0 assert AI2LexiconIndications.MOVED not in self.lexicon.what_happens_to_subj("absorbs") assert AI2LexiconIndications.MOVED in self.lexicon.what_happens_to_obj("absorbs") assert AI2LexiconIndications.CREATED in self.lexicon.what_happens_to_obj("sprout") assert AI2LexiconIndications.CREATED in self.lexicon.what_happens_to_subj("sprout", has_agent=True, has_patient=False) assert AI2LexiconIndications.DESTROYED not in self.lexicon.what_happens_to_subj("sprout") assert AI2LexiconIndications.DESTROYED not in self.lexicon.what_happens_to_obj("sprout") assert AI2LexiconIndications.TEMPERATURE_INC not in self.lexicon.what_happens_to_obj("turn") assert AI2LexiconIndications.TEMPERATURE_INC in self.lexicon.what_happens_to_subj("gets hot") assert AI2LexiconIndications.SIZE_INC in self.lexicon.what_happens_to_subj("gets bigger") assert AI2LexiconIndications.SIZE_INC in self.lexicon.what_happens_to_subj("become bigger") assert AI2LexiconIndications.SIZE_INC in self.lexicon.what_happens_to_subj("turned bigger") assert AI2LexiconIndications.SIZE_INC not in self.lexicon.what_happens_to_obj("turns into bigger") assert AI2LexiconIndications.MOVED not in self.lexicon.what_happens_to_subj("turned") assert AI2LexiconIndications.PHASE_UNK_GAS in self.lexicon.what_happens_to_subj("turned gaseous") assert AI2LexiconIndications.PHASE_LIQUID_SOLID in self.lexicon.what_happens_to_subj("solidify", has_agent=True, has_patient=False) assert AI2LexiconIndications.PHASE_LIQUID_SOLID in self.lexicon.what_happens_to_obj("solidify", has_agent=True, has_patient=True) assert AI2LexiconIndications.PHASE_UNK_SOLID not in self.lexicon.what_happens_to_subj("solidifies") assert AI2LexiconIndications.PHASE_SOLID_GAS in self.lexicon.what_happens_to_subj("sublime", has_agent=True, has_patient=False) assert AI2LexiconIndications.PHASE_SOLID_GAS in self.lexicon.what_happens_to_obj("sublime", has_agent=True, has_patient=True) # if agent and patient both are present or only 1 # the difference is whether object is given or not # this happens for all verbs that can be both transitive/intransitive # they will have 2 entries. # # A big rock stops the stream of water from uphill => stream of water moved from uphill to rock # car stops at the intersection ==> car moved to intersection # we have removed lots of fine details in the patterns (VerbNet had much more info there) # if agent and patient both are present or only 1 def test_type_of_pattern(self): input = "SUBJECT VERB OBJECT PREP-SRC PREP-DEST" assert AI2Lexicon.type_of_pattern(input) == AI2LexiconPattern.SO input = "SUBJECT VERB OBJECT" assert AI2Lexicon.type_of_pattern(input) == AI2LexiconPattern.SO input = "SUBJECT VERB PREP-SRC PREP-DEST" assert AI2Lexicon.type_of_pattern(input) == AI2LexiconPattern.S
en
0.775765
# print(f"evaporate.subj: {self.lexicon.what_happens_to_subj('evaporate', has_agent=True, has_patient=False)}") # print(f"evaporate.obj: {self.lexicon.what_happens_to_obj('evaporate', has_agent=True, has_patient=False)}") # # print(f"evaporate.subj: {self.lexicon.what_happens_to_subj('evaporate')}") # print(f"evaporate.obj: {self.lexicon.what_happens_to_obj('evaporate')}") # v2 doesn't contain size, temperature, phase attributes # infile = "tests/fixtures/ie/ai2-lexicon-v2.tsv" # the following path is useful when debugging from browser. # self.lexicon = AI2Lexicon("tests/fixtures/ie/TheSemanticLexicon-v3.0_withadj.tsv") # assert self.lexicon._after_obj(("absorbs", AI2LexiconPattern.SO)).get(AI2LexiconPredicate.IS_AT, "") == AI2LexiconArg.SUBJECT # if agent and patient both are present or only 1 # the difference is whether object is given or not # this happens for all verbs that can be both transitive/intransitive # they will have 2 entries. # # A big rock stops the stream of water from uphill => stream of water moved from uphill to rock # car stops at the intersection ==> car moved to intersection # we have removed lots of fine details in the patterns (VerbNet had much more info there) # if agent and patient both are present or only 1
2.593966
3
fitbit/__init__.py
erichilarysmithsr/python-fitbit
0
10494
# -*- coding: utf-8 -*- """ Fitbit API Library ------------------ :copyright: 2012-2015 ORCAS. :license: BSD, see LICENSE for more details. """ from .api import Fitbit, FitbitOauthClient, FitbitOauth2Client # Meta. __title__ = 'fitbit' __author__ = '<NAME> and ORCAS' __author_email__ = '<EMAIL>' __copyright__ = 'Copyright 2012-2015 ORCAS' __license__ = 'Apache 2.0' __version__ = '0.1.3' __release__ = '0.1.3' # Module namespace. all_tests = []
# -*- coding: utf-8 -*- """ Fitbit API Library ------------------ :copyright: 2012-2015 ORCAS. :license: BSD, see LICENSE for more details. """ from .api import Fitbit, FitbitOauthClient, FitbitOauth2Client # Meta. __title__ = 'fitbit' __author__ = '<NAME> and ORCAS' __author_email__ = '<EMAIL>' __copyright__ = 'Copyright 2012-2015 ORCAS' __license__ = 'Apache 2.0' __version__ = '0.1.3' __release__ = '0.1.3' # Module namespace. all_tests = []
en
0.358271
# -*- coding: utf-8 -*- Fitbit API Library ------------------ :copyright: 2012-2015 ORCAS. :license: BSD, see LICENSE for more details. # Meta. # Module namespace.
1.103585
1
bitcoinExchange/exchange/api/urls.py
pogginicolo98/start2impact_exchange
1
10495
<reponame>pogginicolo98/start2impact_exchange from django.urls import include, path from exchange.api.views import LatestOrdersListAPIView, OrderViewSet, ProfileAPIView from rest_framework.routers import DefaultRouter router = DefaultRouter() router.register(r'orders', OrderViewSet, basename='orders') urlpatterns = [ path('profile/', ProfileAPIView.as_view(), name='profile-detail'), path('orders/latest/', LatestOrdersListAPIView.as_view(), name='orders-latest'), path('', include(router.urls)) ]
from django.urls import include, path from exchange.api.views import LatestOrdersListAPIView, OrderViewSet, ProfileAPIView from rest_framework.routers import DefaultRouter router = DefaultRouter() router.register(r'orders', OrderViewSet, basename='orders') urlpatterns = [ path('profile/', ProfileAPIView.as_view(), name='profile-detail'), path('orders/latest/', LatestOrdersListAPIView.as_view(), name='orders-latest'), path('', include(router.urls)) ]
none
1
1.979356
2
python/testData/formatter/indentInGenerator_after.py
jnthn/intellij-community
2
10496
def dbl(): return ( (a, a) for a in [])
def dbl(): return ( (a, a) for a in [])
none
1
1.655636
2
kevin/aggregate/process_html.py
toddoh/thisisallabout_backend
0
10497
from bs4 import BeautifulSoup import requests import re def retrieveText(): print("Parsing text from online target") url = "https://www.whitehouse.gov/the-press-office/2017/10/16/remarks-president-trump-and-senate-majority-leader-mitch-mcconnell-joint" response = requests.get(url) soup = BeautifulSoup(response.content, "lxml") textwrapper = soup.find("div", { "class" : "field-item" }) textel = textwrapper.find_all("p", { "class" : None }) textstripped = [] for element in textel: stripped = element.text.replace("\r", "\n").replace("\r", "").replace("\n", "").replace("Q ", "0002reporter: ").replace("THE PRESIDENT: ", "0001president: ").strip() if "P.M." not in stripped and "A.M." not in stripped: textstripped.append(stripped) # print(textstripped) return textstripped
from bs4 import BeautifulSoup import requests import re def retrieveText(): print("Parsing text from online target") url = "https://www.whitehouse.gov/the-press-office/2017/10/16/remarks-president-trump-and-senate-majority-leader-mitch-mcconnell-joint" response = requests.get(url) soup = BeautifulSoup(response.content, "lxml") textwrapper = soup.find("div", { "class" : "field-item" }) textel = textwrapper.find_all("p", { "class" : None }) textstripped = [] for element in textel: stripped = element.text.replace("\r", "\n").replace("\r", "").replace("\n", "").replace("Q ", "0002reporter: ").replace("THE PRESIDENT: ", "0001president: ").strip() if "P.M." not in stripped and "A.M." not in stripped: textstripped.append(stripped) # print(textstripped) return textstripped
en
0.396912
# print(textstripped)
3.478917
3
cfmacro/_resources/examples/lambda.py
gchiesa/cfmacro
0
10498
<reponame>gchiesa/cfmacro<filename>cfmacro/_resources/examples/lambda.py # -*- coding: utf-8 -*- from cfmacro.processors import SgProcessor from cfmacro.core.engine import ProcessorEngine from cfmacro.core.template import TemplateProcessor def lambda_handler(event, context): """ Implement a core handler for security groups ingress / egress :param event: :param context: :return: """ print(f'event received: {event}') processor_engine = ProcessorEngine() processor_engine.register_processor(SgProcessor) template_processor = TemplateProcessor(processor_engine) result = template_processor.process(fragment=event['fragment'], template_params=event['templateParameterValues']).to_dict() print(f'event processed. Result: \n{result}') return { "requestId": event['requestId'], "status": "success", "fragment": result }
# -*- coding: utf-8 -*- from cfmacro.processors import SgProcessor from cfmacro.core.engine import ProcessorEngine from cfmacro.core.template import TemplateProcessor def lambda_handler(event, context): """ Implement a core handler for security groups ingress / egress :param event: :param context: :return: """ print(f'event received: {event}') processor_engine = ProcessorEngine() processor_engine.register_processor(SgProcessor) template_processor = TemplateProcessor(processor_engine) result = template_processor.process(fragment=event['fragment'], template_params=event['templateParameterValues']).to_dict() print(f'event processed. Result: \n{result}') return { "requestId": event['requestId'], "status": "success", "fragment": result }
en
0.649537
# -*- coding: utf-8 -*- Implement a core handler for security groups ingress / egress :param event: :param context: :return:
1.929878
2
tf2qa/predict_long.py
mikelkl/TF2-QA
17
10499
<reponame>mikelkl/TF2-QA<gh_stars>10-100 import torch import argparse from roberta_modeling import RobertaJointForLong from transformers.modeling_roberta import RobertaConfig, RobertaModel from torch.utils.data import TensorDataset, SequentialSampler, DataLoader import utils from tqdm import tqdm import os import json import collections import pickle import pandas as pd from utils_nq import read_candidates_from_one_split, compute_long_pred from roberta_long_preprocess import InputLongFeatures RawResult = collections.namedtuple("RawResult", ["unique_id", "long_start_logits", "long_end_logits"]) def load_cached_data(feature_dir, output_features=False, evaluate=False): features = torch.load(feature_dir) # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) if evaluate: all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index) else: all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long) all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions) if output_features: return dataset, features return dataset def to_list(tensor): return tensor.detach().cpu().tolist() def make_submission(output_prediction_file, output_dir): print("***** Making submmision *****") test_answers_df = pd.read_json(output_prediction_file) def create_short_answer(entry): """ :param entry: dict :return: str """ if entry['answer_type'] == 0: return "" # if entry["short_answers_score"] < 1.5: # return "" if entry["yes_no_answer"] != "NONE": return entry["yes_no_answer"] answer = [] for short_answer in entry["short_answers"]: if short_answer["start_token"] > -1: answer.append(str(short_answer["start_token"]) + ":" + str(short_answer["end_token"])) return " ".join(answer) def create_long_answer(entry): if entry['answer_type'] == 0: return '' # if entry["long_answer_score"] < 1.5: # return "" answer = [] if entry["long_answer"]["start_token"] > -1: answer.append(str(entry["long_answer"]["start_token"]) + ":" + str(entry["long_answer"]["end_token"])) return " ".join(answer) for var_name in ['long_answer_score', 'short_answers_score', 'answer_type']: test_answers_df[var_name] = test_answers_df['predictions'].apply(lambda q: q[var_name]) test_answers_df["long_answer"] = test_answers_df["predictions"].apply(create_long_answer) test_answers_df["short_answer"] = test_answers_df["predictions"].apply(create_short_answer) test_answers_df["example_id"] = test_answers_df["predictions"].apply(lambda q: str(q["example_id"])) long_answers = dict(zip(test_answers_df["example_id"], test_answers_df["long_answer"])) short_answers = dict(zip(test_answers_df["example_id"], test_answers_df["short_answer"])) sample_submission = pd.read_csv("data/sample_submission.csv") long_prediction_strings = sample_submission[sample_submission["example_id"].str.contains("_long")].apply( lambda q: long_answers[q["example_id"].replace("_long", "")], axis=1) short_prediction_strings = sample_submission[sample_submission["example_id"].str.contains("_short")].apply( lambda q: short_answers[q["example_id"].replace("_short", "")], axis=1) sample_submission.loc[ sample_submission["example_id"].str.contains("_long"), "PredictionString"] = long_prediction_strings sample_submission.loc[ sample_submission["example_id"].str.contains("_short"), "PredictionString"] = short_prediction_strings sample_submission.to_csv(os.path.join(output_dir, "submission.csv"), index=False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--gpu_ids", default="0,1,2,3,4,5,6,7", type=str) parser.add_argument("--eval_batch_size", default=128, type=int) parser.add_argument("--n_best_size", default=20, type=int) parser.add_argument("--max_answer_length", default=30, type=int) parser.add_argument("--float16", default=True, type=bool) parser.add_argument("--bert_config_file", default='roberta_large/config.json', type=str) parser.add_argument("--init_restore_dir", default='check_points/roberta-large-long-V00/best_checkpoint.pth', type=str) parser.add_argument("--predict_file", default='data/simplified-nq-test.jsonl', type=str) parser.add_argument("--output_dir", default='check_points/roberta-large-long-V00', type=str) parser.add_argument("--predict_feat", default='dataset/test_data_maxlen512_roberta_tfidf_features.bin', type=str) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids device = torch.device("cuda") n_gpu = torch.cuda.device_count() print("device %s n_gpu %d" % (device, n_gpu)) print("device: {} n_gpu: {} 16-bits training: {}".format(device, n_gpu, args.float16)) bert_config = RobertaConfig.from_json_file(args.bert_config_file) model = RobertaJointForLong(RobertaModel(bert_config), bert_config) utils.torch_show_all_params(model) utils.torch_init_model(model, args.init_restore_dir) if args.float16: model.half() model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) dataset, features = load_cached_data(feature_dir=args.predict_feat, output_features=True, evaluate=True) eval_sampler = SequentialSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # Eval! print("***** Running evaluation *****") print(" Num examples =", len(dataset)) print(" Batch size =", args.eval_batch_size) all_results = [] for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(device) for t in batch) with torch.no_grad(): input_ids, input_mask, segment_ids, example_indices = batch inputs = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': segment_ids} start_logits, end_logits = model(**inputs) for i, example_index in enumerate(example_indices): eval_feature = features[example_index.item()] unique_id = str(eval_feature.unique_id) result = RawResult(unique_id=unique_id, long_start_logits=start_logits[i].cpu().numpy(), long_end_logits=end_logits[i].cpu().numpy()) all_results.append(result) pickle.dump(all_results, open(os.path.join(args.output_dir, 'RawResults_test.pkl'), 'wb')) # all_results = pickle.load(open(os.path.join(args.output_dir, 'RawResults_test.pkl'), 'rb')) print("Going to candidates file") candidates_dict = read_candidates_from_one_split(args.predict_file) print("Compute_pred_dict") nq_pred_dict = compute_long_pred(candidates_dict, features, all_results, args.n_best_size) output_prediction_file = os.path.join(args.output_dir, 'test_predictions.json') print("Saving predictions to", output_prediction_file) with open(output_prediction_file, 'w') as f: json.dump({'predictions': list(nq_pred_dict.values())}, f) # make_submission(output_prediction_file, args.output_dir)
import torch import argparse from roberta_modeling import RobertaJointForLong from transformers.modeling_roberta import RobertaConfig, RobertaModel from torch.utils.data import TensorDataset, SequentialSampler, DataLoader import utils from tqdm import tqdm import os import json import collections import pickle import pandas as pd from utils_nq import read_candidates_from_one_split, compute_long_pred from roberta_long_preprocess import InputLongFeatures RawResult = collections.namedtuple("RawResult", ["unique_id", "long_start_logits", "long_end_logits"]) def load_cached_data(feature_dir, output_features=False, evaluate=False): features = torch.load(feature_dir) # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) if evaluate: all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index) else: all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long) all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions) if output_features: return dataset, features return dataset def to_list(tensor): return tensor.detach().cpu().tolist() def make_submission(output_prediction_file, output_dir): print("***** Making submmision *****") test_answers_df = pd.read_json(output_prediction_file) def create_short_answer(entry): """ :param entry: dict :return: str """ if entry['answer_type'] == 0: return "" # if entry["short_answers_score"] < 1.5: # return "" if entry["yes_no_answer"] != "NONE": return entry["yes_no_answer"] answer = [] for short_answer in entry["short_answers"]: if short_answer["start_token"] > -1: answer.append(str(short_answer["start_token"]) + ":" + str(short_answer["end_token"])) return " ".join(answer) def create_long_answer(entry): if entry['answer_type'] == 0: return '' # if entry["long_answer_score"] < 1.5: # return "" answer = [] if entry["long_answer"]["start_token"] > -1: answer.append(str(entry["long_answer"]["start_token"]) + ":" + str(entry["long_answer"]["end_token"])) return " ".join(answer) for var_name in ['long_answer_score', 'short_answers_score', 'answer_type']: test_answers_df[var_name] = test_answers_df['predictions'].apply(lambda q: q[var_name]) test_answers_df["long_answer"] = test_answers_df["predictions"].apply(create_long_answer) test_answers_df["short_answer"] = test_answers_df["predictions"].apply(create_short_answer) test_answers_df["example_id"] = test_answers_df["predictions"].apply(lambda q: str(q["example_id"])) long_answers = dict(zip(test_answers_df["example_id"], test_answers_df["long_answer"])) short_answers = dict(zip(test_answers_df["example_id"], test_answers_df["short_answer"])) sample_submission = pd.read_csv("data/sample_submission.csv") long_prediction_strings = sample_submission[sample_submission["example_id"].str.contains("_long")].apply( lambda q: long_answers[q["example_id"].replace("_long", "")], axis=1) short_prediction_strings = sample_submission[sample_submission["example_id"].str.contains("_short")].apply( lambda q: short_answers[q["example_id"].replace("_short", "")], axis=1) sample_submission.loc[ sample_submission["example_id"].str.contains("_long"), "PredictionString"] = long_prediction_strings sample_submission.loc[ sample_submission["example_id"].str.contains("_short"), "PredictionString"] = short_prediction_strings sample_submission.to_csv(os.path.join(output_dir, "submission.csv"), index=False) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--gpu_ids", default="0,1,2,3,4,5,6,7", type=str) parser.add_argument("--eval_batch_size", default=128, type=int) parser.add_argument("--n_best_size", default=20, type=int) parser.add_argument("--max_answer_length", default=30, type=int) parser.add_argument("--float16", default=True, type=bool) parser.add_argument("--bert_config_file", default='roberta_large/config.json', type=str) parser.add_argument("--init_restore_dir", default='check_points/roberta-large-long-V00/best_checkpoint.pth', type=str) parser.add_argument("--predict_file", default='data/simplified-nq-test.jsonl', type=str) parser.add_argument("--output_dir", default='check_points/roberta-large-long-V00', type=str) parser.add_argument("--predict_feat", default='dataset/test_data_maxlen512_roberta_tfidf_features.bin', type=str) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids device = torch.device("cuda") n_gpu = torch.cuda.device_count() print("device %s n_gpu %d" % (device, n_gpu)) print("device: {} n_gpu: {} 16-bits training: {}".format(device, n_gpu, args.float16)) bert_config = RobertaConfig.from_json_file(args.bert_config_file) model = RobertaJointForLong(RobertaModel(bert_config), bert_config) utils.torch_show_all_params(model) utils.torch_init_model(model, args.init_restore_dir) if args.float16: model.half() model.to(device) if n_gpu > 1: model = torch.nn.DataParallel(model) dataset, features = load_cached_data(feature_dir=args.predict_feat, output_features=True, evaluate=True) eval_sampler = SequentialSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # Eval! print("***** Running evaluation *****") print(" Num examples =", len(dataset)) print(" Batch size =", args.eval_batch_size) all_results = [] for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(device) for t in batch) with torch.no_grad(): input_ids, input_mask, segment_ids, example_indices = batch inputs = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': segment_ids} start_logits, end_logits = model(**inputs) for i, example_index in enumerate(example_indices): eval_feature = features[example_index.item()] unique_id = str(eval_feature.unique_id) result = RawResult(unique_id=unique_id, long_start_logits=start_logits[i].cpu().numpy(), long_end_logits=end_logits[i].cpu().numpy()) all_results.append(result) pickle.dump(all_results, open(os.path.join(args.output_dir, 'RawResults_test.pkl'), 'wb')) # all_results = pickle.load(open(os.path.join(args.output_dir, 'RawResults_test.pkl'), 'rb')) print("Going to candidates file") candidates_dict = read_candidates_from_one_split(args.predict_file) print("Compute_pred_dict") nq_pred_dict = compute_long_pred(candidates_dict, features, all_results, args.n_best_size) output_prediction_file = os.path.join(args.output_dir, 'test_predictions.json') print("Saving predictions to", output_prediction_file) with open(output_prediction_file, 'w') as f: json.dump({'predictions': list(nq_pred_dict.values())}, f) # make_submission(output_prediction_file, args.output_dir)
en
0.302535
# Convert to Tensors and build dataset :param entry: dict :return: str # if entry["short_answers_score"] < 1.5: # return "" # if entry["long_answer_score"] < 1.5: # return "" # Eval! # all_results = pickle.load(open(os.path.join(args.output_dir, 'RawResults_test.pkl'), 'rb')) # make_submission(output_prediction_file, args.output_dir)
2.117392
2