max_stars_repo_path
stringlengths
4
286
max_stars_repo_name
stringlengths
5
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.03M
content_cleaned
stringlengths
6
1.03M
language
stringclasses
111 values
language_score
float64
0.03
1
comments
stringlengths
0
556k
edu_score
float64
0.32
5.03
edu_int_score
int64
0
5
aries_cloudagent/protocols/out_of_band/v1_0/manager.py
Luis-GA/aries-cloudagent-python
0
6629951
<reponame>Luis-GA/aries-cloudagent-python """Classes to manage connections.""" import asyncio import json import logging from typing import Mapping, Sequence, Optional from ....connections.base_manager import BaseConnectionManager from ....connections.models.conn_record import ConnRecord from ....connections.util import mediation_record_if_id from ....core.error import BaseError from ....core.profile import ProfileSession from ....indy.holder import IndyHolder from ....indy.sdk.models.xform import indy_proof_req_preview2indy_requested_creds from ....messaging.responder import BaseResponder from ....messaging.decorators.attach_decorator import AttachDecorator from ....multitenant.manager import MultitenantManager from ....storage.error import StorageNotFoundError from ....transport.inbound.receipt import MessageReceipt from ....wallet.base import BaseWallet from ....wallet.util import b64_to_bytes from ....wallet.key_type import KeyType from ....did.did_key import DIDKey from ...coordinate_mediation.v1_0.manager import MediationManager from ...connections.v1_0.manager import ConnectionManager from ...connections.v1_0.messages.connection_invitation import ConnectionInvitation from ...didcomm_prefix import DIDCommPrefix from ...didexchange.v1_0.manager import DIDXManager from ...issue_credential.v1_0.models.credential_exchange import V10CredentialExchange from ...issue_credential.v2_0.models.cred_ex_record import V20CredExRecord from ...present_proof.v1_0.manager import PresentationManager from ...present_proof.v1_0.message_types import PRESENTATION_REQUEST from ...present_proof.v1_0.models.presentation_exchange import V10PresentationExchange from ...present_proof.v2_0.manager import V20PresManager from ...present_proof.v2_0.message_types import PRES_20_REQUEST from ...present_proof.v2_0.messages.pres_format import V20PresFormat from ...present_proof.v2_0.messages.pres_request import V20PresRequest from ...present_proof.v2_0.models.pres_exchange import V20PresExRecord from .messages.invitation import HSProto, InvitationMessage from .messages.problem_report import OOBProblemReport from .messages.reuse import HandshakeReuse from .messages.reuse_accept import HandshakeReuseAccept from .messages.service import Service as ServiceMessage from .models.invitation import InvitationRecord class OutOfBandManagerError(BaseError): """Out of band error.""" class OutOfBandManagerNotImplementedError(BaseError): """Out of band error for unimplemented functionality.""" class OutOfBandManager(BaseConnectionManager): """Class for managing out of band messages.""" def __init__(self, session: ProfileSession): """ Initialize a OutOfBandManager. Args: session: The profile session for this out of band manager """ self._session = session self._logger = logging.getLogger(__name__) super().__init__(self._session) @property def session(self) -> ProfileSession: """ Accessor for the current profile session. Returns: The profile session for this connection manager """ return self._session async def create_invitation( self, my_label: str = None, my_endpoint: str = None, auto_accept: bool = None, public: bool = False, hs_protos: Sequence[HSProto] = None, multi_use: bool = False, alias: str = None, attachments: Sequence[Mapping] = None, metadata: dict = None, mediation_id: str = None, ) -> InvitationRecord: """ Generate new connection invitation. This interaction represents an out-of-band communication channel. In the future and in practice, these sort of invitations will be received over any number of channels such as SMS, Email, QR Code, NFC, etc. Args: my_label: label for this connection my_endpoint: endpoint where other party can reach me auto_accept: auto-accept a corresponding connection request (None to use config) public: set to create an invitation from the public DID hs_protos: list of handshake protocols to include multi_use: set to True to create an invitation for multiple-use connection alias: optional alias to apply to connection for later use attachments: list of dicts in form of {"id": ..., "type": ...} Returns: Invitation record """ mediation_mgr = MediationManager(self._session.profile) mediation_record = await mediation_record_if_id( self._session, mediation_id, or_default=True, ) keylist_updates = None if not (hs_protos or attachments): raise OutOfBandManagerError( "Invitation must include handshake protocols, " "request attachments, or both" ) wallet = self._session.inject(BaseWallet) # Multitenancy setup multitenant_mgr = self._session.inject(MultitenantManager, required=False) wallet_id = self._session.settings.get("wallet.id") accept = bool( auto_accept or ( auto_accept is None and self._session.settings.get("debug.auto_accept_requests") ) ) if public: if multi_use: raise OutOfBandManagerError( "Cannot create public invitation with multi_use" ) if metadata: raise OutOfBandManagerError( "Cannot store metadata on public invitations" ) message_attachments = [] for atch in attachments or []: a_type = atch.get("type") a_id = atch.get("id") if a_type == "credential-offer": try: cred_ex_rec = await V10CredentialExchange.retrieve_by_id( self._session, a_id, ) message_attachments.append( InvitationMessage.wrap_message( cred_ex_rec.credential_offer_dict ) ) except StorageNotFoundError: cred_ex_rec = await V20CredExRecord.retrieve_by_id( self._session, a_id, ) message_attachments.append( InvitationMessage.wrap_message(cred_ex_rec.cred_offer.offer()) ) elif a_type == "present-proof": try: pres_ex_rec = await V10PresentationExchange.retrieve_by_id( self._session, a_id, ) message_attachments.append( InvitationMessage.wrap_message( pres_ex_rec.presentation_request_dict ) ) except StorageNotFoundError: pres_ex_rec = await V20PresExRecord.retrieve_by_id( self._session, a_id, ) message_attachments.append( InvitationMessage.wrap_message( pres_ex_rec.pres_request.attachment() ) ) else: raise OutOfBandManagerError(f"Unknown attachment type: {a_type}") handshake_protocols = [ DIDCommPrefix.qualify_current(hsp.name) for hsp in hs_protos or [] ] or None if public: if not self._session.settings.get("public_invites"): raise OutOfBandManagerError("Public invitations are not enabled") public_did = await wallet.get_public_did() if not public_did: raise OutOfBandManagerError( "Cannot create public invitation with no public DID" ) invi_msg = InvitationMessage( # create invitation message label=my_label or self._session.settings.get("default_label"), handshake_protocols=handshake_protocols, requests_attach=message_attachments, services=[f"did:sov:{public_did.did}"], ) keylist_updates = await mediation_mgr.add_key( public_did.verkey, keylist_updates ) endpoint, *_ = await self.resolve_invitation(public_did.did) invi_url = invi_msg.to_url(endpoint) conn_rec = ConnRecord( # create connection record invitation_key=public_did.verkey, invitation_msg_id=invi_msg._id, their_role=ConnRecord.Role.REQUESTER.rfc23, state=ConnRecord.State.INVITATION.rfc23, accept=ConnRecord.ACCEPT_AUTO if accept else ConnRecord.ACCEPT_MANUAL, alias=alias, ) await conn_rec.save(self._session, reason="Created new invitation") await conn_rec.attach_invitation(self._session, invi_msg) if multitenant_mgr and wallet_id: # add mapping for multitenant relay await multitenant_mgr.add_key( wallet_id, public_did.verkey, skip_if_exists=True ) else: invitation_mode = ( ConnRecord.INVITATION_MODE_MULTI if multi_use else ConnRecord.INVITATION_MODE_ONCE ) if not my_endpoint: my_endpoint = self._session.settings.get("default_endpoint") # Create and store new invitation key connection_key = await wallet.create_signing_key(KeyType.ED25519) keylist_updates = await mediation_mgr.add_key( connection_key.verkey, keylist_updates ) # Add mapping for multitenant relay if multitenant_mgr and wallet_id: await multitenant_mgr.add_key(wallet_id, connection_key.verkey) # Create connection record conn_rec = ConnRecord( invitation_key=connection_key.verkey, their_role=ConnRecord.Role.REQUESTER.rfc23, state=ConnRecord.State.INVITATION.rfc23, accept=ConnRecord.ACCEPT_AUTO if accept else ConnRecord.ACCEPT_MANUAL, invitation_mode=invitation_mode, alias=alias, ) await conn_rec.save(self._session, reason="Created new connection") routing_keys = [] # The base wallet can act as a mediator for all tenants if multitenant_mgr and wallet_id: base_mediation_record = await multitenant_mgr.get_default_mediator() if base_mediation_record: routing_keys = base_mediation_record.routing_keys my_endpoint = base_mediation_record.endpoint # If we use a mediator for the base wallet we don't # need to register the key at the subwallet mediator # because it only needs to know the key of the base mediator # sub wallet mediator -> base wallet mediator -> agent keylist_updates = None if mediation_record: routing_keys = [*routing_keys, *mediation_record.routing_keys] my_endpoint = mediation_record.endpoint # Save that this invitation was created with mediation await conn_rec.metadata_set( self._session, "mediation", {"id": mediation_id} ) if keylist_updates: responder = self._session.inject(BaseResponder, required=False) await responder.send( keylist_updates, connection_id=mediation_record.connection_id ) routing_keys = [ key if len(key.split(":")) == 3 else DIDKey.from_public_key_b58(key, KeyType.ED25519).did for key in routing_keys ] # Create connection invitation message # Note: Need to split this into two stages to support inbound routing # of invitations # Would want to reuse create_did_document and convert the result invi_msg = InvitationMessage( label=my_label or self._session.settings.get("default_label"), handshake_protocols=handshake_protocols, requests_attach=message_attachments, services=[ ServiceMessage( _id="#inline", _type="did-communication", recipient_keys=[ DIDKey.from_public_key_b58( connection_key.verkey, KeyType.ED25519 ).did ], service_endpoint=my_endpoint, routing_keys=routing_keys, ) ], ) invi_url = invi_msg.to_url() # Update connection record conn_rec.invitation_msg_id = invi_msg._id await conn_rec.save(self._session, reason="Added Invitation") await conn_rec.attach_invitation(self._session, invi_msg) if metadata: for key, value in metadata.items(): await conn_rec.metadata_set(self._session, key, value) return InvitationRecord( # for return via admin API, not storage state=InvitationRecord.STATE_INITIAL, invi_msg_id=invi_msg._id, invitation=invi_msg, invitation_url=invi_url, ) async def receive_invitation( self, invi_msg: InvitationMessage, use_existing_connection: bool = True, auto_accept: bool = None, alias: str = None, mediation_id: str = None, ) -> dict: """ Receive an out of band invitation message. Args: invi_msg: invitation message use_existing_connection: whether to use existing connection if possible auto_accept: whether to accept the invitation automatically alias: Alias for connection record mediation_id: mediation identifier Returns: ConnRecord, serialized """ if mediation_id: try: await mediation_record_if_id(self._session, mediation_id) except StorageNotFoundError: mediation_id = None # There must be exactly 1 service entry if len(invi_msg.services) != 1: raise OutOfBandManagerError("service array must have exactly one element") if not (invi_msg.requests_attach or invi_msg.handshake_protocols): raise OutOfBandManagerError( "Invitation must specify handshake_protocols, requests_attach, or both" ) # Get the single service item oob_service_item = invi_msg.services[0] if isinstance(oob_service_item, ServiceMessage): service = oob_service_item public_did = None else: # If it's in the did format, we need to convert to a full service block # An existing connection can only be reused based on a public DID # in an out-of-band message (RFC 0434). service_did = oob_service_item # TODO: resolve_invitation should resolve key_info objects # or something else that includes the key type. We now assume # ED25519 keys endpoint, recipient_keys, routing_keys = await self.resolve_invitation( service_did ) public_did = service_did.split(":")[-1] service = ServiceMessage.deserialize( { "id": "#inline", "type": "did-communication", "recipientKeys": [ DIDKey.from_public_key_b58(key, KeyType.ED25519).did for key in recipient_keys ], "routingKeys": [ DIDKey.from_public_key_b58(key, KeyType.ED25519).did for key in routing_keys ], "serviceEndpoint": endpoint, } ) unq_handshake_protos = [ HSProto.get(hsp) for hsp in dict.fromkeys( [ DIDCommPrefix.unqualify(proto) for proto in invi_msg.handshake_protocols ] ) ] # Reuse Connection - only if started by an invitation with Public DID conn_rec = None if public_did is not None: # invite has public DID: seek existing connection tag_filter = {} post_filter = {} # post_filter["state"] = ConnRecord.State.COMPLETED.rfc160 post_filter["their_public_did"] = public_did conn_rec = await self.find_existing_connection( tag_filter=tag_filter, post_filter=post_filter ) if conn_rec is not None: num_included_protocols = len(unq_handshake_protos) num_included_req_attachments = len(invi_msg.requests_attach) # With handshake protocol, request attachment; use existing connection if ( num_included_protocols >= 1 and num_included_req_attachments == 0 and use_existing_connection ): await self.create_handshake_reuse_message( invi_msg=invi_msg, conn_record=conn_rec, ) try: await asyncio.wait_for( self.check_reuse_msg_state( conn_rec=conn_rec, ), 15, ) await conn_rec.metadata_delete( session=self._session, key="reuse_msg_id" ) if ( await conn_rec.metadata_get(self._session, "reuse_msg_state") == "not_accepted" ): conn_rec = None else: await conn_rec.metadata_delete( session=self._session, key="reuse_msg_state" ) except asyncio.TimeoutError: # If no reuse_accepted or problem_report message was received within # the 15s timeout then a new connection to be created await conn_rec.metadata_delete( session=self._session, key="reuse_msg_id" ) await conn_rec.metadata_delete( session=self._session, key="reuse_msg_state" ) conn_rec.state = ConnRecord.State.ABANDONED.rfc160 await conn_rec.save(self._session, reason="Sent connection request") conn_rec = None # Inverse of the following cases # Handshake_Protocol not included # Request_Attachment included # Use_Existing_Connection Yes # Handshake_Protocol included # Request_Attachment included # Use_Existing_Connection Yes elif not ( ( num_included_protocols == 0 and num_included_req_attachments >= 1 and use_existing_connection ) or ( num_included_protocols >= 1 and num_included_req_attachments >= 1 and use_existing_connection ) ): conn_rec = None if conn_rec is None: if not unq_handshake_protos: raise OutOfBandManagerError( "No existing connection exists and handshake_protocol is missing" ) # Create a new connection for proto in unq_handshake_protos: if proto is HSProto.RFC23: didx_mgr = DIDXManager(self._session) conn_rec = await didx_mgr.receive_invitation( invitation=invi_msg, their_public_did=public_did, auto_accept=auto_accept, alias=alias, mediation_id=mediation_id, ) elif proto is HSProto.RFC160: service.recipient_keys = [ DIDKey.from_did(key).public_key_b58 for key in service.recipient_keys or [] ] service.routing_keys = [ DIDKey.from_did(key).public_key_b58 for key in service.routing_keys ] or [] connection_invitation = ConnectionInvitation.deserialize( { "@id": invi_msg._id, "@type": DIDCommPrefix.qualify_current(proto.name), "label": invi_msg.label, "recipientKeys": service.recipient_keys, "serviceEndpoint": service.service_endpoint, "routingKeys": service.routing_keys, } ) conn_mgr = ConnectionManager(self._session) conn_rec = await conn_mgr.receive_invitation( invitation=connection_invitation, their_public_did=public_did, auto_accept=auto_accept, alias=alias, mediation_id=mediation_id, ) if conn_rec is not None: break # Request Attach if len(invi_msg.requests_attach) >= 1 and conn_rec is not None: req_attach = invi_msg.requests_attach[0] if isinstance(req_attach, AttachDecorator): if req_attach.data is not None: unq_req_attach_type = DIDCommPrefix.unqualify( req_attach.content["@type"] ) if unq_req_attach_type == PRESENTATION_REQUEST: await self._process_pres_request_v1( req_attach=req_attach, service=service, conn_rec=conn_rec, trace=(invi_msg._trace is not None), ) elif unq_req_attach_type == PRES_20_REQUEST: await self._process_pres_request_v2( req_attach=req_attach, service=service, conn_rec=conn_rec, trace=(invi_msg._trace is not None), ) else: raise OutOfBandManagerError( ( "Unsupported requests~attach type " f"{req_attach.content['@type']}: must unqualify to" f"{PRESENTATION_REQUEST} or {PRES_20_REQUEST}" ) ) else: raise OutOfBandManagerError("requests~attach is not properly formatted") return conn_rec.serialize() async def _process_pres_request_v1( self, req_attach: AttachDecorator, service: ServiceMessage, conn_rec: ConnRecord, trace: bool, ): """ Create exchange for v1 pres request attachment, auto-present if configured. Args: req_attach: request attachment on invitation service: service message from invitation conn_rec: connection record trace: trace setting for presentation exchange record """ pres_mgr = PresentationManager(self._session.profile) pres_request_msg = req_attach.content indy_proof_request = json.loads( b64_to_bytes( pres_request_msg["request_presentations~attach"][0]["data"]["base64"] ) ) oob_invi_service = service.serialize() pres_request_msg["~service"] = { "recipientKeys": oob_invi_service.get("recipientKeys"), "routingKeys": oob_invi_service.get("routingKeys"), "serviceEndpoint": oob_invi_service.get("serviceEndpoint"), } pres_ex_record = V10PresentationExchange( connection_id=conn_rec.connection_id, thread_id=pres_request_msg["@id"], initiator=V10PresentationExchange.INITIATOR_EXTERNAL, role=V10PresentationExchange.ROLE_PROVER, presentation_request=indy_proof_request, presentation_request_dict=pres_request_msg, auto_present=self._session.context.settings.get( "debug.auto_respond_presentation_request" ), trace=trace, ) pres_ex_record = await pres_mgr.receive_request(pres_ex_record) if pres_ex_record.auto_present: try: req_creds = await indy_proof_req_preview2indy_requested_creds( indy_proof_req=indy_proof_request, preview=None, holder=self._session.inject(IndyHolder), ) except ValueError as err: self._logger.warning(f"{err}") raise OutOfBandManagerError( f"Cannot auto-respond to presentation request attachment: {err}" ) (pres_ex_record, presentation_message) = await pres_mgr.create_presentation( presentation_exchange_record=pres_ex_record, requested_credentials=req_creds, comment=( "auto-presented for proof request nonce={}".format( indy_proof_request["nonce"] ) ), ) responder = self._session.inject(BaseResponder, required=False) if responder: await responder.send( message=presentation_message, target_list=await self.fetch_connection_targets( connection=conn_rec ), ) else: raise OutOfBandManagerError( ( "Configuration sets auto_present false: cannot " "respond automatically to presentation requests" ) ) async def _process_pres_request_v2( self, req_attach: AttachDecorator, service: ServiceMessage, conn_rec: ConnRecord, trace: bool, ): """ Create exchange for v2 pres request attachment, auto-present if configured. Args: req_attach: request attachment on invitation service: service message from invitation conn_rec: connection record trace: trace setting for presentation exchange record """ pres_mgr = V20PresManager(self._session.profile) pres_request_msg = req_attach.content oob_invi_service = service.serialize() pres_request_msg["~service"] = { "recipientKeys": oob_invi_service.get("recipientKeys"), "routingKeys": oob_invi_service.get("routingKeys"), "serviceEndpoint": oob_invi_service.get("serviceEndpoint"), } pres_ex_record = V20PresExRecord( connection_id=conn_rec.connection_id, thread_id=pres_request_msg["@id"], initiator=V20PresExRecord.INITIATOR_EXTERNAL, role=V20PresExRecord.ROLE_PROVER, pres_request=pres_request_msg, auto_present=self._session.context.settings.get( "debug.auto_respond_presentation_request" ), trace=trace, ) pres_ex_record = await pres_mgr.receive_pres_request(pres_ex_record) if pres_ex_record.auto_present: indy_proof_request = V20PresRequest.deserialize( pres_request_msg ).attachment( V20PresFormat.Format.INDY ) # assumption will change for DIF try: req_creds = await indy_proof_req_preview2indy_requested_creds( indy_proof_req=indy_proof_request, preview=None, holder=self._session.inject(IndyHolder), ) except ValueError as err: self._logger.warning(f"{err}") raise OutOfBandManagerError( f"Cannot auto-respond to presentation request attachment: {err}" ) (pres_ex_record, pres_msg) = await pres_mgr.create_pres( pres_ex_record=pres_ex_record, requested_credentials=req_creds, comment=( "auto-presented for proof request nonce={}".format( indy_proof_request["nonce"] ) ), ) responder = self._session.inject(BaseResponder, required=False) if responder: await responder.send( message=pres_msg, target_list=await self.fetch_connection_targets( connection=conn_rec ), ) else: raise OutOfBandManagerError( ( "Configuration sets auto_present false: cannot " "respond automatically to presentation requests" ) ) async def find_existing_connection( self, tag_filter: dict, post_filter: dict, ) -> Optional[ConnRecord]: """ Find existing ConnRecord. Args: tag_filter: The filter dictionary to apply post_filter: Additional value filters to apply matching positively, with sequence values specifying alternatives to match (hit any) Returns: ConnRecord or None """ conn_records = await ConnRecord.query( self._session, tag_filter=tag_filter, post_filter_positive=post_filter, alt=True, ) if not conn_records: return None else: for conn_rec in conn_records: if conn_rec.state == "active": return conn_rec return None async def check_reuse_msg_state( self, conn_rec: ConnRecord, ): """ Check reuse message state from the ConnRecord Metadata. Args: conn_rec: The required ConnRecord with updated metadata Returns: """ received = False while not received: if ( not await conn_rec.metadata_get(self._session, "reuse_msg_state") == "initial" ): received = True return async def create_handshake_reuse_message( self, invi_msg: InvitationMessage, conn_record: ConnRecord, ) -> None: """ Create and Send a Handshake Reuse message under RFC 0434. Args: invi_msg: OOB Invitation Message service: Service block extracted from the OOB invitation Returns: Raises: OutOfBandManagerError: If there is an issue creating or sending the OOB invitation """ try: # ID of Out-of-Band invitation to use as a pthid # pthid = invi_msg._id pthid = conn_record.invitation_msg_id reuse_msg = HandshakeReuse() thid = reuse_msg._id reuse_msg.assign_thread_id(thid=thid, pthid=pthid) connection_targets = await self.fetch_connection_targets( connection=conn_record ) responder = self._session.inject(BaseResponder, required=False) if responder: await responder.send( message=reuse_msg, target_list=connection_targets, ) await conn_record.metadata_set( session=self._session, key="reuse_msg_id", value=reuse_msg._id ) await conn_record.metadata_set( session=self._session, key="reuse_msg_state", value="initial" ) except Exception as err: raise OutOfBandManagerError( f"Error on creating and sending a handshake reuse message: {err}" ) async def receive_reuse_message( self, reuse_msg: HandshakeReuse, receipt: MessageReceipt, ) -> None: """ Receive and process a HandshakeReuse message under RFC 0434. Process a `HandshakeReuse` message by looking up the connection records using the MessageReceipt sender DID. Args: reuse_msg: The `HandshakeReuse` to process receipt: The message receipt Returns: Raises: OutOfBandManagerError: If the existing connection is not active or the connection does not exists """ try: invi_msg_id = reuse_msg._thread.pthid reuse_msg_id = reuse_msg._thread.thid tag_filter = {} post_filter = {} # post_filter["state"] = "active" # tag_filter["their_did"] = receipt.sender_did post_filter["invitation_msg_id"] = invi_msg_id conn_record = await self.find_existing_connection( tag_filter=tag_filter, post_filter=post_filter ) responder = self._session.inject(BaseResponder, required=False) if conn_record is not None: # For ConnRecords created using did-exchange reuse_accept_msg = HandshakeReuseAccept() reuse_accept_msg.assign_thread_id(thid=reuse_msg_id, pthid=invi_msg_id) connection_targets = await self.fetch_connection_targets( connection=conn_record ) if responder: await responder.send( message=reuse_accept_msg, target_list=connection_targets, ) # This is not required as now we attaching the invitation_msg_id # using original invitation [from existing connection] # # Delete the ConnRecord created; re-use existing connection # invi_id_post_filter = {} # invi_id_post_filter["invitation_msg_id"] = invi_msg_id # conn_rec_to_delete = await self.find_existing_connection( # tag_filter={}, # post_filter=invi_id_post_filter, # ) # if conn_rec_to_delete is not None: # if conn_record.connection_id != conn_rec_to_delete.connection_id: # await conn_rec_to_delete.delete_record(session=self._session) else: conn_record = await self.find_existing_connection( tag_filter={"their_did": receipt.sender_did}, post_filter={} ) # Problem Report is redundant in this case as with no active # connection, it cannot reach the invitee any way if conn_record is not None: # For ConnRecords created using RFC 0160 connections reuse_accept_msg = HandshakeReuseAccept() reuse_accept_msg.assign_thread_id( thid=reuse_msg_id, pthid=invi_msg_id ) connection_targets = await self.fetch_connection_targets( connection=conn_record ) if responder: await responder.send( message=reuse_accept_msg, target_list=connection_targets, ) except StorageNotFoundError: raise OutOfBandManagerError( (f"No existing ConnRecord found for OOB Invitee, {receipt.sender_did}"), ) async def receive_reuse_accepted_message( self, reuse_accepted_msg: HandshakeReuseAccept, receipt: MessageReceipt, conn_record: ConnRecord, ) -> None: """ Receive and process a HandshakeReuseAccept message under RFC 0434. Process a `HandshakeReuseAccept` message by updating the ConnRecord metadata state to `accepted`. Args: reuse_accepted_msg: The `HandshakeReuseAccept` to process receipt: The message receipt Returns: Raises: OutOfBandManagerError: if there is an error in processing the HandshakeReuseAccept message """ try: invi_msg_id = reuse_accepted_msg._thread.pthid thread_reuse_msg_id = reuse_accepted_msg._thread.thid conn_reuse_msg_id = await conn_record.metadata_get( session=self._session, key="reuse_msg_id" ) assert thread_reuse_msg_id == conn_reuse_msg_id await conn_record.metadata_set( session=self._session, key="reuse_msg_state", value="accepted" ) except Exception as e: raise OutOfBandManagerError( ( ( "Error processing reuse accepted message " f"for OOB invitation {invi_msg_id}, {e}" ) ) ) async def receive_problem_report( self, problem_report: OOBProblemReport, receipt: MessageReceipt, conn_record: ConnRecord, ) -> None: """ Receive and process a ProblemReport message from the inviter to invitee. Process a `ProblemReport` message by updating the ConnRecord metadata state to `not_accepted`. Args: problem_report: The `OOBProblemReport` to process receipt: The message receipt Returns: Raises: OutOfBandManagerError: if there is an error in processing the HandshakeReuseAccept message """ try: invi_msg_id = problem_report._thread.pthid thread_reuse_msg_id = problem_report._thread.thid conn_reuse_msg_id = await conn_record.metadata_get( session=self._session, key="reuse_msg_id" ) assert thread_reuse_msg_id == conn_reuse_msg_id await conn_record.metadata_set( session=self._session, key="reuse_msg_state", value="not_accepted" ) except Exception as e: raise OutOfBandManagerError( ( ( "Error processing problem report message " f"for OOB invitation {invi_msg_id}, {e}" ) ) )
"""Classes to manage connections.""" import asyncio import json import logging from typing import Mapping, Sequence, Optional from ....connections.base_manager import BaseConnectionManager from ....connections.models.conn_record import ConnRecord from ....connections.util import mediation_record_if_id from ....core.error import BaseError from ....core.profile import ProfileSession from ....indy.holder import IndyHolder from ....indy.sdk.models.xform import indy_proof_req_preview2indy_requested_creds from ....messaging.responder import BaseResponder from ....messaging.decorators.attach_decorator import AttachDecorator from ....multitenant.manager import MultitenantManager from ....storage.error import StorageNotFoundError from ....transport.inbound.receipt import MessageReceipt from ....wallet.base import BaseWallet from ....wallet.util import b64_to_bytes from ....wallet.key_type import KeyType from ....did.did_key import DIDKey from ...coordinate_mediation.v1_0.manager import MediationManager from ...connections.v1_0.manager import ConnectionManager from ...connections.v1_0.messages.connection_invitation import ConnectionInvitation from ...didcomm_prefix import DIDCommPrefix from ...didexchange.v1_0.manager import DIDXManager from ...issue_credential.v1_0.models.credential_exchange import V10CredentialExchange from ...issue_credential.v2_0.models.cred_ex_record import V20CredExRecord from ...present_proof.v1_0.manager import PresentationManager from ...present_proof.v1_0.message_types import PRESENTATION_REQUEST from ...present_proof.v1_0.models.presentation_exchange import V10PresentationExchange from ...present_proof.v2_0.manager import V20PresManager from ...present_proof.v2_0.message_types import PRES_20_REQUEST from ...present_proof.v2_0.messages.pres_format import V20PresFormat from ...present_proof.v2_0.messages.pres_request import V20PresRequest from ...present_proof.v2_0.models.pres_exchange import V20PresExRecord from .messages.invitation import HSProto, InvitationMessage from .messages.problem_report import OOBProblemReport from .messages.reuse import HandshakeReuse from .messages.reuse_accept import HandshakeReuseAccept from .messages.service import Service as ServiceMessage from .models.invitation import InvitationRecord class OutOfBandManagerError(BaseError): """Out of band error.""" class OutOfBandManagerNotImplementedError(BaseError): """Out of band error for unimplemented functionality.""" class OutOfBandManager(BaseConnectionManager): """Class for managing out of band messages.""" def __init__(self, session: ProfileSession): """ Initialize a OutOfBandManager. Args: session: The profile session for this out of band manager """ self._session = session self._logger = logging.getLogger(__name__) super().__init__(self._session) @property def session(self) -> ProfileSession: """ Accessor for the current profile session. Returns: The profile session for this connection manager """ return self._session async def create_invitation( self, my_label: str = None, my_endpoint: str = None, auto_accept: bool = None, public: bool = False, hs_protos: Sequence[HSProto] = None, multi_use: bool = False, alias: str = None, attachments: Sequence[Mapping] = None, metadata: dict = None, mediation_id: str = None, ) -> InvitationRecord: """ Generate new connection invitation. This interaction represents an out-of-band communication channel. In the future and in practice, these sort of invitations will be received over any number of channels such as SMS, Email, QR Code, NFC, etc. Args: my_label: label for this connection my_endpoint: endpoint where other party can reach me auto_accept: auto-accept a corresponding connection request (None to use config) public: set to create an invitation from the public DID hs_protos: list of handshake protocols to include multi_use: set to True to create an invitation for multiple-use connection alias: optional alias to apply to connection for later use attachments: list of dicts in form of {"id": ..., "type": ...} Returns: Invitation record """ mediation_mgr = MediationManager(self._session.profile) mediation_record = await mediation_record_if_id( self._session, mediation_id, or_default=True, ) keylist_updates = None if not (hs_protos or attachments): raise OutOfBandManagerError( "Invitation must include handshake protocols, " "request attachments, or both" ) wallet = self._session.inject(BaseWallet) # Multitenancy setup multitenant_mgr = self._session.inject(MultitenantManager, required=False) wallet_id = self._session.settings.get("wallet.id") accept = bool( auto_accept or ( auto_accept is None and self._session.settings.get("debug.auto_accept_requests") ) ) if public: if multi_use: raise OutOfBandManagerError( "Cannot create public invitation with multi_use" ) if metadata: raise OutOfBandManagerError( "Cannot store metadata on public invitations" ) message_attachments = [] for atch in attachments or []: a_type = atch.get("type") a_id = atch.get("id") if a_type == "credential-offer": try: cred_ex_rec = await V10CredentialExchange.retrieve_by_id( self._session, a_id, ) message_attachments.append( InvitationMessage.wrap_message( cred_ex_rec.credential_offer_dict ) ) except StorageNotFoundError: cred_ex_rec = await V20CredExRecord.retrieve_by_id( self._session, a_id, ) message_attachments.append( InvitationMessage.wrap_message(cred_ex_rec.cred_offer.offer()) ) elif a_type == "present-proof": try: pres_ex_rec = await V10PresentationExchange.retrieve_by_id( self._session, a_id, ) message_attachments.append( InvitationMessage.wrap_message( pres_ex_rec.presentation_request_dict ) ) except StorageNotFoundError: pres_ex_rec = await V20PresExRecord.retrieve_by_id( self._session, a_id, ) message_attachments.append( InvitationMessage.wrap_message( pres_ex_rec.pres_request.attachment() ) ) else: raise OutOfBandManagerError(f"Unknown attachment type: {a_type}") handshake_protocols = [ DIDCommPrefix.qualify_current(hsp.name) for hsp in hs_protos or [] ] or None if public: if not self._session.settings.get("public_invites"): raise OutOfBandManagerError("Public invitations are not enabled") public_did = await wallet.get_public_did() if not public_did: raise OutOfBandManagerError( "Cannot create public invitation with no public DID" ) invi_msg = InvitationMessage( # create invitation message label=my_label or self._session.settings.get("default_label"), handshake_protocols=handshake_protocols, requests_attach=message_attachments, services=[f"did:sov:{public_did.did}"], ) keylist_updates = await mediation_mgr.add_key( public_did.verkey, keylist_updates ) endpoint, *_ = await self.resolve_invitation(public_did.did) invi_url = invi_msg.to_url(endpoint) conn_rec = ConnRecord( # create connection record invitation_key=public_did.verkey, invitation_msg_id=invi_msg._id, their_role=ConnRecord.Role.REQUESTER.rfc23, state=ConnRecord.State.INVITATION.rfc23, accept=ConnRecord.ACCEPT_AUTO if accept else ConnRecord.ACCEPT_MANUAL, alias=alias, ) await conn_rec.save(self._session, reason="Created new invitation") await conn_rec.attach_invitation(self._session, invi_msg) if multitenant_mgr and wallet_id: # add mapping for multitenant relay await multitenant_mgr.add_key( wallet_id, public_did.verkey, skip_if_exists=True ) else: invitation_mode = ( ConnRecord.INVITATION_MODE_MULTI if multi_use else ConnRecord.INVITATION_MODE_ONCE ) if not my_endpoint: my_endpoint = self._session.settings.get("default_endpoint") # Create and store new invitation key connection_key = await wallet.create_signing_key(KeyType.ED25519) keylist_updates = await mediation_mgr.add_key( connection_key.verkey, keylist_updates ) # Add mapping for multitenant relay if multitenant_mgr and wallet_id: await multitenant_mgr.add_key(wallet_id, connection_key.verkey) # Create connection record conn_rec = ConnRecord( invitation_key=connection_key.verkey, their_role=ConnRecord.Role.REQUESTER.rfc23, state=ConnRecord.State.INVITATION.rfc23, accept=ConnRecord.ACCEPT_AUTO if accept else ConnRecord.ACCEPT_MANUAL, invitation_mode=invitation_mode, alias=alias, ) await conn_rec.save(self._session, reason="Created new connection") routing_keys = [] # The base wallet can act as a mediator for all tenants if multitenant_mgr and wallet_id: base_mediation_record = await multitenant_mgr.get_default_mediator() if base_mediation_record: routing_keys = base_mediation_record.routing_keys my_endpoint = base_mediation_record.endpoint # If we use a mediator for the base wallet we don't # need to register the key at the subwallet mediator # because it only needs to know the key of the base mediator # sub wallet mediator -> base wallet mediator -> agent keylist_updates = None if mediation_record: routing_keys = [*routing_keys, *mediation_record.routing_keys] my_endpoint = mediation_record.endpoint # Save that this invitation was created with mediation await conn_rec.metadata_set( self._session, "mediation", {"id": mediation_id} ) if keylist_updates: responder = self._session.inject(BaseResponder, required=False) await responder.send( keylist_updates, connection_id=mediation_record.connection_id ) routing_keys = [ key if len(key.split(":")) == 3 else DIDKey.from_public_key_b58(key, KeyType.ED25519).did for key in routing_keys ] # Create connection invitation message # Note: Need to split this into two stages to support inbound routing # of invitations # Would want to reuse create_did_document and convert the result invi_msg = InvitationMessage( label=my_label or self._session.settings.get("default_label"), handshake_protocols=handshake_protocols, requests_attach=message_attachments, services=[ ServiceMessage( _id="#inline", _type="did-communication", recipient_keys=[ DIDKey.from_public_key_b58( connection_key.verkey, KeyType.ED25519 ).did ], service_endpoint=my_endpoint, routing_keys=routing_keys, ) ], ) invi_url = invi_msg.to_url() # Update connection record conn_rec.invitation_msg_id = invi_msg._id await conn_rec.save(self._session, reason="Added Invitation") await conn_rec.attach_invitation(self._session, invi_msg) if metadata: for key, value in metadata.items(): await conn_rec.metadata_set(self._session, key, value) return InvitationRecord( # for return via admin API, not storage state=InvitationRecord.STATE_INITIAL, invi_msg_id=invi_msg._id, invitation=invi_msg, invitation_url=invi_url, ) async def receive_invitation( self, invi_msg: InvitationMessage, use_existing_connection: bool = True, auto_accept: bool = None, alias: str = None, mediation_id: str = None, ) -> dict: """ Receive an out of band invitation message. Args: invi_msg: invitation message use_existing_connection: whether to use existing connection if possible auto_accept: whether to accept the invitation automatically alias: Alias for connection record mediation_id: mediation identifier Returns: ConnRecord, serialized """ if mediation_id: try: await mediation_record_if_id(self._session, mediation_id) except StorageNotFoundError: mediation_id = None # There must be exactly 1 service entry if len(invi_msg.services) != 1: raise OutOfBandManagerError("service array must have exactly one element") if not (invi_msg.requests_attach or invi_msg.handshake_protocols): raise OutOfBandManagerError( "Invitation must specify handshake_protocols, requests_attach, or both" ) # Get the single service item oob_service_item = invi_msg.services[0] if isinstance(oob_service_item, ServiceMessage): service = oob_service_item public_did = None else: # If it's in the did format, we need to convert to a full service block # An existing connection can only be reused based on a public DID # in an out-of-band message (RFC 0434). service_did = oob_service_item # TODO: resolve_invitation should resolve key_info objects # or something else that includes the key type. We now assume # ED25519 keys endpoint, recipient_keys, routing_keys = await self.resolve_invitation( service_did ) public_did = service_did.split(":")[-1] service = ServiceMessage.deserialize( { "id": "#inline", "type": "did-communication", "recipientKeys": [ DIDKey.from_public_key_b58(key, KeyType.ED25519).did for key in recipient_keys ], "routingKeys": [ DIDKey.from_public_key_b58(key, KeyType.ED25519).did for key in routing_keys ], "serviceEndpoint": endpoint, } ) unq_handshake_protos = [ HSProto.get(hsp) for hsp in dict.fromkeys( [ DIDCommPrefix.unqualify(proto) for proto in invi_msg.handshake_protocols ] ) ] # Reuse Connection - only if started by an invitation with Public DID conn_rec = None if public_did is not None: # invite has public DID: seek existing connection tag_filter = {} post_filter = {} # post_filter["state"] = ConnRecord.State.COMPLETED.rfc160 post_filter["their_public_did"] = public_did conn_rec = await self.find_existing_connection( tag_filter=tag_filter, post_filter=post_filter ) if conn_rec is not None: num_included_protocols = len(unq_handshake_protos) num_included_req_attachments = len(invi_msg.requests_attach) # With handshake protocol, request attachment; use existing connection if ( num_included_protocols >= 1 and num_included_req_attachments == 0 and use_existing_connection ): await self.create_handshake_reuse_message( invi_msg=invi_msg, conn_record=conn_rec, ) try: await asyncio.wait_for( self.check_reuse_msg_state( conn_rec=conn_rec, ), 15, ) await conn_rec.metadata_delete( session=self._session, key="reuse_msg_id" ) if ( await conn_rec.metadata_get(self._session, "reuse_msg_state") == "not_accepted" ): conn_rec = None else: await conn_rec.metadata_delete( session=self._session, key="reuse_msg_state" ) except asyncio.TimeoutError: # If no reuse_accepted or problem_report message was received within # the 15s timeout then a new connection to be created await conn_rec.metadata_delete( session=self._session, key="reuse_msg_id" ) await conn_rec.metadata_delete( session=self._session, key="reuse_msg_state" ) conn_rec.state = ConnRecord.State.ABANDONED.rfc160 await conn_rec.save(self._session, reason="Sent connection request") conn_rec = None # Inverse of the following cases # Handshake_Protocol not included # Request_Attachment included # Use_Existing_Connection Yes # Handshake_Protocol included # Request_Attachment included # Use_Existing_Connection Yes elif not ( ( num_included_protocols == 0 and num_included_req_attachments >= 1 and use_existing_connection ) or ( num_included_protocols >= 1 and num_included_req_attachments >= 1 and use_existing_connection ) ): conn_rec = None if conn_rec is None: if not unq_handshake_protos: raise OutOfBandManagerError( "No existing connection exists and handshake_protocol is missing" ) # Create a new connection for proto in unq_handshake_protos: if proto is HSProto.RFC23: didx_mgr = DIDXManager(self._session) conn_rec = await didx_mgr.receive_invitation( invitation=invi_msg, their_public_did=public_did, auto_accept=auto_accept, alias=alias, mediation_id=mediation_id, ) elif proto is HSProto.RFC160: service.recipient_keys = [ DIDKey.from_did(key).public_key_b58 for key in service.recipient_keys or [] ] service.routing_keys = [ DIDKey.from_did(key).public_key_b58 for key in service.routing_keys ] or [] connection_invitation = ConnectionInvitation.deserialize( { "@id": invi_msg._id, "@type": DIDCommPrefix.qualify_current(proto.name), "label": invi_msg.label, "recipientKeys": service.recipient_keys, "serviceEndpoint": service.service_endpoint, "routingKeys": service.routing_keys, } ) conn_mgr = ConnectionManager(self._session) conn_rec = await conn_mgr.receive_invitation( invitation=connection_invitation, their_public_did=public_did, auto_accept=auto_accept, alias=alias, mediation_id=mediation_id, ) if conn_rec is not None: break # Request Attach if len(invi_msg.requests_attach) >= 1 and conn_rec is not None: req_attach = invi_msg.requests_attach[0] if isinstance(req_attach, AttachDecorator): if req_attach.data is not None: unq_req_attach_type = DIDCommPrefix.unqualify( req_attach.content["@type"] ) if unq_req_attach_type == PRESENTATION_REQUEST: await self._process_pres_request_v1( req_attach=req_attach, service=service, conn_rec=conn_rec, trace=(invi_msg._trace is not None), ) elif unq_req_attach_type == PRES_20_REQUEST: await self._process_pres_request_v2( req_attach=req_attach, service=service, conn_rec=conn_rec, trace=(invi_msg._trace is not None), ) else: raise OutOfBandManagerError( ( "Unsupported requests~attach type " f"{req_attach.content['@type']}: must unqualify to" f"{PRESENTATION_REQUEST} or {PRES_20_REQUEST}" ) ) else: raise OutOfBandManagerError("requests~attach is not properly formatted") return conn_rec.serialize() async def _process_pres_request_v1( self, req_attach: AttachDecorator, service: ServiceMessage, conn_rec: ConnRecord, trace: bool, ): """ Create exchange for v1 pres request attachment, auto-present if configured. Args: req_attach: request attachment on invitation service: service message from invitation conn_rec: connection record trace: trace setting for presentation exchange record """ pres_mgr = PresentationManager(self._session.profile) pres_request_msg = req_attach.content indy_proof_request = json.loads( b64_to_bytes( pres_request_msg["request_presentations~attach"][0]["data"]["base64"] ) ) oob_invi_service = service.serialize() pres_request_msg["~service"] = { "recipientKeys": oob_invi_service.get("recipientKeys"), "routingKeys": oob_invi_service.get("routingKeys"), "serviceEndpoint": oob_invi_service.get("serviceEndpoint"), } pres_ex_record = V10PresentationExchange( connection_id=conn_rec.connection_id, thread_id=pres_request_msg["@id"], initiator=V10PresentationExchange.INITIATOR_EXTERNAL, role=V10PresentationExchange.ROLE_PROVER, presentation_request=indy_proof_request, presentation_request_dict=pres_request_msg, auto_present=self._session.context.settings.get( "debug.auto_respond_presentation_request" ), trace=trace, ) pres_ex_record = await pres_mgr.receive_request(pres_ex_record) if pres_ex_record.auto_present: try: req_creds = await indy_proof_req_preview2indy_requested_creds( indy_proof_req=indy_proof_request, preview=None, holder=self._session.inject(IndyHolder), ) except ValueError as err: self._logger.warning(f"{err}") raise OutOfBandManagerError( f"Cannot auto-respond to presentation request attachment: {err}" ) (pres_ex_record, presentation_message) = await pres_mgr.create_presentation( presentation_exchange_record=pres_ex_record, requested_credentials=req_creds, comment=( "auto-presented for proof request nonce={}".format( indy_proof_request["nonce"] ) ), ) responder = self._session.inject(BaseResponder, required=False) if responder: await responder.send( message=presentation_message, target_list=await self.fetch_connection_targets( connection=conn_rec ), ) else: raise OutOfBandManagerError( ( "Configuration sets auto_present false: cannot " "respond automatically to presentation requests" ) ) async def _process_pres_request_v2( self, req_attach: AttachDecorator, service: ServiceMessage, conn_rec: ConnRecord, trace: bool, ): """ Create exchange for v2 pres request attachment, auto-present if configured. Args: req_attach: request attachment on invitation service: service message from invitation conn_rec: connection record trace: trace setting for presentation exchange record """ pres_mgr = V20PresManager(self._session.profile) pres_request_msg = req_attach.content oob_invi_service = service.serialize() pres_request_msg["~service"] = { "recipientKeys": oob_invi_service.get("recipientKeys"), "routingKeys": oob_invi_service.get("routingKeys"), "serviceEndpoint": oob_invi_service.get("serviceEndpoint"), } pres_ex_record = V20PresExRecord( connection_id=conn_rec.connection_id, thread_id=pres_request_msg["@id"], initiator=V20PresExRecord.INITIATOR_EXTERNAL, role=V20PresExRecord.ROLE_PROVER, pres_request=pres_request_msg, auto_present=self._session.context.settings.get( "debug.auto_respond_presentation_request" ), trace=trace, ) pres_ex_record = await pres_mgr.receive_pres_request(pres_ex_record) if pres_ex_record.auto_present: indy_proof_request = V20PresRequest.deserialize( pres_request_msg ).attachment( V20PresFormat.Format.INDY ) # assumption will change for DIF try: req_creds = await indy_proof_req_preview2indy_requested_creds( indy_proof_req=indy_proof_request, preview=None, holder=self._session.inject(IndyHolder), ) except ValueError as err: self._logger.warning(f"{err}") raise OutOfBandManagerError( f"Cannot auto-respond to presentation request attachment: {err}" ) (pres_ex_record, pres_msg) = await pres_mgr.create_pres( pres_ex_record=pres_ex_record, requested_credentials=req_creds, comment=( "auto-presented for proof request nonce={}".format( indy_proof_request["nonce"] ) ), ) responder = self._session.inject(BaseResponder, required=False) if responder: await responder.send( message=pres_msg, target_list=await self.fetch_connection_targets( connection=conn_rec ), ) else: raise OutOfBandManagerError( ( "Configuration sets auto_present false: cannot " "respond automatically to presentation requests" ) ) async def find_existing_connection( self, tag_filter: dict, post_filter: dict, ) -> Optional[ConnRecord]: """ Find existing ConnRecord. Args: tag_filter: The filter dictionary to apply post_filter: Additional value filters to apply matching positively, with sequence values specifying alternatives to match (hit any) Returns: ConnRecord or None """ conn_records = await ConnRecord.query( self._session, tag_filter=tag_filter, post_filter_positive=post_filter, alt=True, ) if not conn_records: return None else: for conn_rec in conn_records: if conn_rec.state == "active": return conn_rec return None async def check_reuse_msg_state( self, conn_rec: ConnRecord, ): """ Check reuse message state from the ConnRecord Metadata. Args: conn_rec: The required ConnRecord with updated metadata Returns: """ received = False while not received: if ( not await conn_rec.metadata_get(self._session, "reuse_msg_state") == "initial" ): received = True return async def create_handshake_reuse_message( self, invi_msg: InvitationMessage, conn_record: ConnRecord, ) -> None: """ Create and Send a Handshake Reuse message under RFC 0434. Args: invi_msg: OOB Invitation Message service: Service block extracted from the OOB invitation Returns: Raises: OutOfBandManagerError: If there is an issue creating or sending the OOB invitation """ try: # ID of Out-of-Band invitation to use as a pthid # pthid = invi_msg._id pthid = conn_record.invitation_msg_id reuse_msg = HandshakeReuse() thid = reuse_msg._id reuse_msg.assign_thread_id(thid=thid, pthid=pthid) connection_targets = await self.fetch_connection_targets( connection=conn_record ) responder = self._session.inject(BaseResponder, required=False) if responder: await responder.send( message=reuse_msg, target_list=connection_targets, ) await conn_record.metadata_set( session=self._session, key="reuse_msg_id", value=reuse_msg._id ) await conn_record.metadata_set( session=self._session, key="reuse_msg_state", value="initial" ) except Exception as err: raise OutOfBandManagerError( f"Error on creating and sending a handshake reuse message: {err}" ) async def receive_reuse_message( self, reuse_msg: HandshakeReuse, receipt: MessageReceipt, ) -> None: """ Receive and process a HandshakeReuse message under RFC 0434. Process a `HandshakeReuse` message by looking up the connection records using the MessageReceipt sender DID. Args: reuse_msg: The `HandshakeReuse` to process receipt: The message receipt Returns: Raises: OutOfBandManagerError: If the existing connection is not active or the connection does not exists """ try: invi_msg_id = reuse_msg._thread.pthid reuse_msg_id = reuse_msg._thread.thid tag_filter = {} post_filter = {} # post_filter["state"] = "active" # tag_filter["their_did"] = receipt.sender_did post_filter["invitation_msg_id"] = invi_msg_id conn_record = await self.find_existing_connection( tag_filter=tag_filter, post_filter=post_filter ) responder = self._session.inject(BaseResponder, required=False) if conn_record is not None: # For ConnRecords created using did-exchange reuse_accept_msg = HandshakeReuseAccept() reuse_accept_msg.assign_thread_id(thid=reuse_msg_id, pthid=invi_msg_id) connection_targets = await self.fetch_connection_targets( connection=conn_record ) if responder: await responder.send( message=reuse_accept_msg, target_list=connection_targets, ) # This is not required as now we attaching the invitation_msg_id # using original invitation [from existing connection] # # Delete the ConnRecord created; re-use existing connection # invi_id_post_filter = {} # invi_id_post_filter["invitation_msg_id"] = invi_msg_id # conn_rec_to_delete = await self.find_existing_connection( # tag_filter={}, # post_filter=invi_id_post_filter, # ) # if conn_rec_to_delete is not None: # if conn_record.connection_id != conn_rec_to_delete.connection_id: # await conn_rec_to_delete.delete_record(session=self._session) else: conn_record = await self.find_existing_connection( tag_filter={"their_did": receipt.sender_did}, post_filter={} ) # Problem Report is redundant in this case as with no active # connection, it cannot reach the invitee any way if conn_record is not None: # For ConnRecords created using RFC 0160 connections reuse_accept_msg = HandshakeReuseAccept() reuse_accept_msg.assign_thread_id( thid=reuse_msg_id, pthid=invi_msg_id ) connection_targets = await self.fetch_connection_targets( connection=conn_record ) if responder: await responder.send( message=reuse_accept_msg, target_list=connection_targets, ) except StorageNotFoundError: raise OutOfBandManagerError( (f"No existing ConnRecord found for OOB Invitee, {receipt.sender_did}"), ) async def receive_reuse_accepted_message( self, reuse_accepted_msg: HandshakeReuseAccept, receipt: MessageReceipt, conn_record: ConnRecord, ) -> None: """ Receive and process a HandshakeReuseAccept message under RFC 0434. Process a `HandshakeReuseAccept` message by updating the ConnRecord metadata state to `accepted`. Args: reuse_accepted_msg: The `HandshakeReuseAccept` to process receipt: The message receipt Returns: Raises: OutOfBandManagerError: if there is an error in processing the HandshakeReuseAccept message """ try: invi_msg_id = reuse_accepted_msg._thread.pthid thread_reuse_msg_id = reuse_accepted_msg._thread.thid conn_reuse_msg_id = await conn_record.metadata_get( session=self._session, key="reuse_msg_id" ) assert thread_reuse_msg_id == conn_reuse_msg_id await conn_record.metadata_set( session=self._session, key="reuse_msg_state", value="accepted" ) except Exception as e: raise OutOfBandManagerError( ( ( "Error processing reuse accepted message " f"for OOB invitation {invi_msg_id}, {e}" ) ) ) async def receive_problem_report( self, problem_report: OOBProblemReport, receipt: MessageReceipt, conn_record: ConnRecord, ) -> None: """ Receive and process a ProblemReport message from the inviter to invitee. Process a `ProblemReport` message by updating the ConnRecord metadata state to `not_accepted`. Args: problem_report: The `OOBProblemReport` to process receipt: The message receipt Returns: Raises: OutOfBandManagerError: if there is an error in processing the HandshakeReuseAccept message """ try: invi_msg_id = problem_report._thread.pthid thread_reuse_msg_id = problem_report._thread.thid conn_reuse_msg_id = await conn_record.metadata_get( session=self._session, key="reuse_msg_id" ) assert thread_reuse_msg_id == conn_reuse_msg_id await conn_record.metadata_set( session=self._session, key="reuse_msg_state", value="not_accepted" ) except Exception as e: raise OutOfBandManagerError( ( ( "Error processing problem report message " f"for OOB invitation {invi_msg_id}, {e}" ) ) )
en
0.735382
Classes to manage connections. Out of band error. Out of band error for unimplemented functionality. Class for managing out of band messages. Initialize a OutOfBandManager. Args: session: The profile session for this out of band manager Accessor for the current profile session. Returns: The profile session for this connection manager Generate new connection invitation. This interaction represents an out-of-band communication channel. In the future and in practice, these sort of invitations will be received over any number of channels such as SMS, Email, QR Code, NFC, etc. Args: my_label: label for this connection my_endpoint: endpoint where other party can reach me auto_accept: auto-accept a corresponding connection request (None to use config) public: set to create an invitation from the public DID hs_protos: list of handshake protocols to include multi_use: set to True to create an invitation for multiple-use connection alias: optional alias to apply to connection for later use attachments: list of dicts in form of {"id": ..., "type": ...} Returns: Invitation record # Multitenancy setup # create invitation message # create connection record # add mapping for multitenant relay # Create and store new invitation key # Add mapping for multitenant relay # Create connection record # The base wallet can act as a mediator for all tenants # If we use a mediator for the base wallet we don't # need to register the key at the subwallet mediator # because it only needs to know the key of the base mediator # sub wallet mediator -> base wallet mediator -> agent # Save that this invitation was created with mediation # Create connection invitation message # Note: Need to split this into two stages to support inbound routing # of invitations # Would want to reuse create_did_document and convert the result # Update connection record # for return via admin API, not storage Receive an out of band invitation message. Args: invi_msg: invitation message use_existing_connection: whether to use existing connection if possible auto_accept: whether to accept the invitation automatically alias: Alias for connection record mediation_id: mediation identifier Returns: ConnRecord, serialized # There must be exactly 1 service entry # Get the single service item # If it's in the did format, we need to convert to a full service block # An existing connection can only be reused based on a public DID # in an out-of-band message (RFC 0434). # TODO: resolve_invitation should resolve key_info objects # or something else that includes the key type. We now assume # ED25519 keys # Reuse Connection - only if started by an invitation with Public DID # invite has public DID: seek existing connection # post_filter["state"] = ConnRecord.State.COMPLETED.rfc160 # With handshake protocol, request attachment; use existing connection # If no reuse_accepted or problem_report message was received within # the 15s timeout then a new connection to be created # Inverse of the following cases # Handshake_Protocol not included # Request_Attachment included # Use_Existing_Connection Yes # Handshake_Protocol included # Request_Attachment included # Use_Existing_Connection Yes # Create a new connection # Request Attach Create exchange for v1 pres request attachment, auto-present if configured. Args: req_attach: request attachment on invitation service: service message from invitation conn_rec: connection record trace: trace setting for presentation exchange record Create exchange for v2 pres request attachment, auto-present if configured. Args: req_attach: request attachment on invitation service: service message from invitation conn_rec: connection record trace: trace setting for presentation exchange record # assumption will change for DIF Find existing ConnRecord. Args: tag_filter: The filter dictionary to apply post_filter: Additional value filters to apply matching positively, with sequence values specifying alternatives to match (hit any) Returns: ConnRecord or None Check reuse message state from the ConnRecord Metadata. Args: conn_rec: The required ConnRecord with updated metadata Returns: Create and Send a Handshake Reuse message under RFC 0434. Args: invi_msg: OOB Invitation Message service: Service block extracted from the OOB invitation Returns: Raises: OutOfBandManagerError: If there is an issue creating or sending the OOB invitation # ID of Out-of-Band invitation to use as a pthid # pthid = invi_msg._id Receive and process a HandshakeReuse message under RFC 0434. Process a `HandshakeReuse` message by looking up the connection records using the MessageReceipt sender DID. Args: reuse_msg: The `HandshakeReuse` to process receipt: The message receipt Returns: Raises: OutOfBandManagerError: If the existing connection is not active or the connection does not exists # post_filter["state"] = "active" # tag_filter["their_did"] = receipt.sender_did # For ConnRecords created using did-exchange # This is not required as now we attaching the invitation_msg_id # using original invitation [from existing connection] # # Delete the ConnRecord created; re-use existing connection # invi_id_post_filter = {} # invi_id_post_filter["invitation_msg_id"] = invi_msg_id # conn_rec_to_delete = await self.find_existing_connection( # tag_filter={}, # post_filter=invi_id_post_filter, # ) # if conn_rec_to_delete is not None: # if conn_record.connection_id != conn_rec_to_delete.connection_id: # await conn_rec_to_delete.delete_record(session=self._session) # Problem Report is redundant in this case as with no active # connection, it cannot reach the invitee any way # For ConnRecords created using RFC 0160 connections Receive and process a HandshakeReuseAccept message under RFC 0434. Process a `HandshakeReuseAccept` message by updating the ConnRecord metadata state to `accepted`. Args: reuse_accepted_msg: The `HandshakeReuseAccept` to process receipt: The message receipt Returns: Raises: OutOfBandManagerError: if there is an error in processing the HandshakeReuseAccept message Receive and process a ProblemReport message from the inviter to invitee. Process a `ProblemReport` message by updating the ConnRecord metadata state to `not_accepted`. Args: problem_report: The `OOBProblemReport` to process receipt: The message receipt Returns: Raises: OutOfBandManagerError: if there is an error in processing the HandshakeReuseAccept message
1.477814
1
app/core/tests/test_admin.py
PythonDjangoJavascript/advanced_django_rest_api_with_tdd
0
6629952
from django.test import TestCase, Client from django.contrib.auth import get_user_model from django.urls import reverse class AdminSiteTest(TestCase): """Test admin side methods working""" def setUp(self): """Setup method will be available to every method""" self.client = Client() self.admin_user = get_user_model().objects.create_superuser( email="<EMAIL>", password="<PASSWORD>" ) self.client.force_login(self.admin_user) self.user = get_user_model().objects.create_user( email="<EMAIL>", name="user", password="<PASSWORD>" ) def test_user_listed(self): """test created user listed in user list""" url = reverse("admin:core_user_changelist") res = self.client.get(url) self.assertContains(res, self.user.email) self.assertContains(res, self.user.name) def test_user_edit_page(self): """Test user edit page available""" # Thsi args value retuns the value and add it at the end of the url # ie. /admin/core/user/user_id url = reverse("admin:core_user_change", args=[self.user.id]) res = self.client.get(url) self.assertEqual(res.status_code, 200) def test_user_create_page(self): """test user creae page available""" url = reverse("admin:core_user_add") res = self.client.get(url) self.assertEqual(res.status_code, 200)
from django.test import TestCase, Client from django.contrib.auth import get_user_model from django.urls import reverse class AdminSiteTest(TestCase): """Test admin side methods working""" def setUp(self): """Setup method will be available to every method""" self.client = Client() self.admin_user = get_user_model().objects.create_superuser( email="<EMAIL>", password="<PASSWORD>" ) self.client.force_login(self.admin_user) self.user = get_user_model().objects.create_user( email="<EMAIL>", name="user", password="<PASSWORD>" ) def test_user_listed(self): """test created user listed in user list""" url = reverse("admin:core_user_changelist") res = self.client.get(url) self.assertContains(res, self.user.email) self.assertContains(res, self.user.name) def test_user_edit_page(self): """Test user edit page available""" # Thsi args value retuns the value and add it at the end of the url # ie. /admin/core/user/user_id url = reverse("admin:core_user_change", args=[self.user.id]) res = self.client.get(url) self.assertEqual(res.status_code, 200) def test_user_create_page(self): """test user creae page available""" url = reverse("admin:core_user_add") res = self.client.get(url) self.assertEqual(res.status_code, 200)
en
0.733805
Test admin side methods working Setup method will be available to every method test created user listed in user list Test user edit page available # Thsi args value retuns the value and add it at the end of the url # ie. /admin/core/user/user_id test user creae page available
2.620917
3
assesments/urls.py
gotoiot/service-django-rest-api
0
6629953
<filename>assesments/urls.py from django.urls import path from rest_framework.urlpatterns import format_suffix_patterns from assesments import views app_name = 'assesments' urlpatterns = [ path('', views.api_root, name='assesments-home'), path('assesments/', views.AssesmentList.as_view(), name='assesment-list'), path('assesments/<int:pk>/', views.AssesmentDetail.as_view(), name='assesment-detail'), path('assesments/<int:pk>/status', views.AssesmentStatus.as_view(), name='assesment-status'), path('assesments/<int:pk>/create', views.InstanceCreate.as_view(), name='instance-creation'), path('instances/', views.InstanceList.as_view(), name='instance-list'), path('instances/<uuid:pk>/', views.InstanceDetail.as_view(), name="instance-detail"), path('instances/<uuid:pk>/test', views.InstanceTest.as_view(), name="instance-test"), path('instances/<uuid:pk>/start', views.InstanceStart.as_view(), name="instance-start"), path('instances/<uuid:pk>/questions/<int:q_id>', views.InstanceQuestionDetail.as_view(), name="instance-question-detail"), path('instances/<uuid:pk>/answer', views.InstanceAnswer.as_view(), name="instance-answer"), path('instances/<uuid:pk>/end', views.InstanceEnd.as_view(), name="instance-end"), path('instances/<uuid:pk>/result', views.InstanceResult.as_view(), name="instance-result"), path('instances/restore', views.InstanceRestore.as_view(), name="instance-restore"), path('takers/', views.TakerList.as_view(), name='taker-list'), path('takers/<int:pk>/', views.TakerDetail.as_view(), name="taker-detail"), path('takers/me', views.TakerDetailMeAnswer.as_view(), name='taker-detail-me'), path('questions/', views.QuestionList.as_view(), name='question-list'), path('questions/<int:pk>/', views.QuestionDetail.as_view(), name='question-detail'), path('options/', views.OptionList.as_view(), name='option-list'), path('options/<int:pk>/', views.OptionDetail.as_view(), name='option-detail'), ] urlpatterns = format_suffix_patterns(urlpatterns)
<filename>assesments/urls.py from django.urls import path from rest_framework.urlpatterns import format_suffix_patterns from assesments import views app_name = 'assesments' urlpatterns = [ path('', views.api_root, name='assesments-home'), path('assesments/', views.AssesmentList.as_view(), name='assesment-list'), path('assesments/<int:pk>/', views.AssesmentDetail.as_view(), name='assesment-detail'), path('assesments/<int:pk>/status', views.AssesmentStatus.as_view(), name='assesment-status'), path('assesments/<int:pk>/create', views.InstanceCreate.as_view(), name='instance-creation'), path('instances/', views.InstanceList.as_view(), name='instance-list'), path('instances/<uuid:pk>/', views.InstanceDetail.as_view(), name="instance-detail"), path('instances/<uuid:pk>/test', views.InstanceTest.as_view(), name="instance-test"), path('instances/<uuid:pk>/start', views.InstanceStart.as_view(), name="instance-start"), path('instances/<uuid:pk>/questions/<int:q_id>', views.InstanceQuestionDetail.as_view(), name="instance-question-detail"), path('instances/<uuid:pk>/answer', views.InstanceAnswer.as_view(), name="instance-answer"), path('instances/<uuid:pk>/end', views.InstanceEnd.as_view(), name="instance-end"), path('instances/<uuid:pk>/result', views.InstanceResult.as_view(), name="instance-result"), path('instances/restore', views.InstanceRestore.as_view(), name="instance-restore"), path('takers/', views.TakerList.as_view(), name='taker-list'), path('takers/<int:pk>/', views.TakerDetail.as_view(), name="taker-detail"), path('takers/me', views.TakerDetailMeAnswer.as_view(), name='taker-detail-me'), path('questions/', views.QuestionList.as_view(), name='question-list'), path('questions/<int:pk>/', views.QuestionDetail.as_view(), name='question-detail'), path('options/', views.OptionList.as_view(), name='option-list'), path('options/<int:pk>/', views.OptionDetail.as_view(), name='option-detail'), ] urlpatterns = format_suffix_patterns(urlpatterns)
none
1
2.24528
2
runNomadDocker.py
csawyerYumaed/nomad-docker
11
6629954
<filename>runNomadDocker.py #!/usr/bin/python -u """ nomad docker doesn't allow us to do volumes, which hurts. This is a work-around. I hope they get their act together soon. all META keys are capitalized by NOMAD, so be sure to define your _LABELS as uppercase. required keys: IMAGE -- name of the docker image to pull. optional: REGISTRY_URL = the URL for the regitry to pull from. REGISTRY_USER = username for registry, defaults None REGISTRY_PASSWORD = password for registry, defaults None NETWORK_MODE = "bridge" network mode for docker: ('bridge': creates a new network stack for the container on the Docker bridge, 'none': no networking for this container, 'container:[name|id]': reuses another container network stack, 'host': use the host network stack inside the container or any name that identifies an existing Docker network). defaults "bridge" nomad do HOST export networking at all, so you have to specify it special in the env {} config. NETWORK_LABELS = "" space seperated list of network labels. NOMAD_PORT_<label> = '' IP port to expose inside the container. NOMAD_IP_<label> = '' IP ADDRESS to expose. NOMAD_HOST_PORT_<label> = '' IP port to expose on the host. nomad doesn't do volumes at all. currently only bind mounts are supported. here is how to do them: VOLUME_LABELS="" is a space seperated list of volume labels (just like network labels) SRC_<LABEL>="" the source of the volume. DST_<LABEL>="" the destination of the volume. MODE_<LABEL>="" the mode (rw/ro) of the volume. if missing defaults to rw. """ from __future__ import print_function import os import signal import sys try: from docker import Client except ImportError: print("You must install docker-py module, try running: pip install docker-py") #used for signal, yes globals suck, get over it. RUNNINGID = 0 DEBUG = True def getKey(name, default=None): """get key or set default from os.environ, which is "" """ if os.environ.has_key(name): ret = os.environ[name] else: ret = default return ret def main(buildNumber): """main code""" global RUNNINGID cli = Client(base_url='unix://var/run/docker.sock') # specify the network mode, port bindings, and volume mounts. # this is how the docker python client wants these parameters networkMode = getKey('NOMAD_META_NETWORK_MODE', "bridge") networkLabels = getKey('NOMAD_META_NETWORK_LABELS', "") portBindings = {} for label in networkLabels.split(): port = getKey('NOMAD_PORT_{}'.format(label)) ip = getKey('NOMAD_IP_{}'.format(label)) hostPort = getKey('NOMAD_HOST_PORT_{}'.format(label)) portBindings[port] = (ip, hostPort) print("exposing container port {} to external ip:port {}:{}".format( port, ip, hostPort)) volumeLabels = getKey('NOMAD_META_VOLUME_LABELS', "") volumes = {} for label in volumeLabels.split(): src = os.environ['NOMAD_META_SRC_{}'.format(label)] dst = os.environ['NOMAD_META_DST_{}'.format(label)] mode = getKey('NOMAD_META_MODE_{}'.format(label), "rw") volumes[src] = {'bind': dst, 'mode': mode} print("binding volume {} src:dst:mode {}:{}:{}".format(label, src, dst, mode)) labels = {} # just move all the nomad stuff into docker labels... why not! for k in os.environ.keys(): #redefine them all without the NOMAD_META prefix. if 'NOMAD' in k: newk = k.replace('NOMAD_META_', '') labels[newk] = os.environ[k] hostConfig = cli.create_host_config( port_bindings=portBindings, binds=volumes, network_mode=networkMode) serviceName = os.environ['NOMAD_META_IMAGE'] dockerName = "{}-{}".format(serviceName, os.environ['NOMAD_ALLOC_ID']) registryURL = getKey('NOMAD_META_REGISTRY_URL', "") registryAuthConfig = { 'username': getKey('NOMAD_META_REGISTRY_USER'), 'password': getKey('NOMAD_META_REGISTRY_PASSWORD') } imageTag = buildNumber registry = '%s%s' % (registryURL, serviceName) image = "{}:{}".format(registry, imageTag) print("will download image {}:{}".format(registry, imageTag)) cli.pull( repository=registry, tag=imageTag, stream=False, auth_config=registryAuthConfig) containers = cli.containers(all=True, filters={'name': image}) # if container name or image is already around, stop and remove it, since we are about to run it again. for i in containers: if i['Image'] == image: # currently running, we should stop it. if i['State'] == 'running': print("stoppping container {} with ID {}".format(i['Image'], i['Id'])) cli.stop(i['Id']) cli.remove_container(i['Id']) else: print('container {} exists, but is not running, removing id {}'.format(i[ 'Image'], i['Id'])) cli.remove_container(i['Id']) if dockerName in i['Names']: if i['State'] == 'running': print("stoppping container {} with ID {}".format(i['Image'], i['Id'])) cli.stop(i['Id']) cli.remove_container(i['Id']) else: print('container {} exists, but is not running, removing id {}'.format(i[ 'Image'], i['Id'])) cli.remove_container(i['Id']) container = cli.create_container( image=image, detach=True, name=dockerName, environment=labels, labels=labels, ports=portBindings.keys(), host_config=hostConfig) print("created container: {}".format(container)) id = container.get('Id') RUNNINGID = id cli.start(container=id) print('container started..: retrieve and print stdout/err...') for msg in cli.logs(container=id, stream=True, stdout=True, stderr=True): print(msg, end="") def cleanupDocker(signal, frame): """stop container""" cli = Client(base_url='unix://var/run/docker.sock') if RUNNINGID: print("stopping container: {}".format(RUNNINGID)) cli.stop(RUNNINGID) sys.exit(0) signal.signal(signal.SIGINT, cleanupDocker) def printEnv(d): """for printing os.environ, pprint doesn't do it well *sad face* """ for k in d.keys(): print("{}: {}".format(k, d[k])) if __name__ == '__main__': try: buildNumber = sys.argv[1] except IndexError: buildNumber = 'latest' try: print("nomad-rundocker v0.1") if DEBUG: printEnv(os.environ) main(buildNumber) except KeyError: print("UNABLE to find key, current environment is:") printEnv(os.environ) raise
<filename>runNomadDocker.py #!/usr/bin/python -u """ nomad docker doesn't allow us to do volumes, which hurts. This is a work-around. I hope they get their act together soon. all META keys are capitalized by NOMAD, so be sure to define your _LABELS as uppercase. required keys: IMAGE -- name of the docker image to pull. optional: REGISTRY_URL = the URL for the regitry to pull from. REGISTRY_USER = username for registry, defaults None REGISTRY_PASSWORD = password for registry, defaults None NETWORK_MODE = "bridge" network mode for docker: ('bridge': creates a new network stack for the container on the Docker bridge, 'none': no networking for this container, 'container:[name|id]': reuses another container network stack, 'host': use the host network stack inside the container or any name that identifies an existing Docker network). defaults "bridge" nomad do HOST export networking at all, so you have to specify it special in the env {} config. NETWORK_LABELS = "" space seperated list of network labels. NOMAD_PORT_<label> = '' IP port to expose inside the container. NOMAD_IP_<label> = '' IP ADDRESS to expose. NOMAD_HOST_PORT_<label> = '' IP port to expose on the host. nomad doesn't do volumes at all. currently only bind mounts are supported. here is how to do them: VOLUME_LABELS="" is a space seperated list of volume labels (just like network labels) SRC_<LABEL>="" the source of the volume. DST_<LABEL>="" the destination of the volume. MODE_<LABEL>="" the mode (rw/ro) of the volume. if missing defaults to rw. """ from __future__ import print_function import os import signal import sys try: from docker import Client except ImportError: print("You must install docker-py module, try running: pip install docker-py") #used for signal, yes globals suck, get over it. RUNNINGID = 0 DEBUG = True def getKey(name, default=None): """get key or set default from os.environ, which is "" """ if os.environ.has_key(name): ret = os.environ[name] else: ret = default return ret def main(buildNumber): """main code""" global RUNNINGID cli = Client(base_url='unix://var/run/docker.sock') # specify the network mode, port bindings, and volume mounts. # this is how the docker python client wants these parameters networkMode = getKey('NOMAD_META_NETWORK_MODE', "bridge") networkLabels = getKey('NOMAD_META_NETWORK_LABELS', "") portBindings = {} for label in networkLabels.split(): port = getKey('NOMAD_PORT_{}'.format(label)) ip = getKey('NOMAD_IP_{}'.format(label)) hostPort = getKey('NOMAD_HOST_PORT_{}'.format(label)) portBindings[port] = (ip, hostPort) print("exposing container port {} to external ip:port {}:{}".format( port, ip, hostPort)) volumeLabels = getKey('NOMAD_META_VOLUME_LABELS', "") volumes = {} for label in volumeLabels.split(): src = os.environ['NOMAD_META_SRC_{}'.format(label)] dst = os.environ['NOMAD_META_DST_{}'.format(label)] mode = getKey('NOMAD_META_MODE_{}'.format(label), "rw") volumes[src] = {'bind': dst, 'mode': mode} print("binding volume {} src:dst:mode {}:{}:{}".format(label, src, dst, mode)) labels = {} # just move all the nomad stuff into docker labels... why not! for k in os.environ.keys(): #redefine them all without the NOMAD_META prefix. if 'NOMAD' in k: newk = k.replace('NOMAD_META_', '') labels[newk] = os.environ[k] hostConfig = cli.create_host_config( port_bindings=portBindings, binds=volumes, network_mode=networkMode) serviceName = os.environ['NOMAD_META_IMAGE'] dockerName = "{}-{}".format(serviceName, os.environ['NOMAD_ALLOC_ID']) registryURL = getKey('NOMAD_META_REGISTRY_URL', "") registryAuthConfig = { 'username': getKey('NOMAD_META_REGISTRY_USER'), 'password': getKey('NOMAD_META_REGISTRY_PASSWORD') } imageTag = buildNumber registry = '%s%s' % (registryURL, serviceName) image = "{}:{}".format(registry, imageTag) print("will download image {}:{}".format(registry, imageTag)) cli.pull( repository=registry, tag=imageTag, stream=False, auth_config=registryAuthConfig) containers = cli.containers(all=True, filters={'name': image}) # if container name or image is already around, stop and remove it, since we are about to run it again. for i in containers: if i['Image'] == image: # currently running, we should stop it. if i['State'] == 'running': print("stoppping container {} with ID {}".format(i['Image'], i['Id'])) cli.stop(i['Id']) cli.remove_container(i['Id']) else: print('container {} exists, but is not running, removing id {}'.format(i[ 'Image'], i['Id'])) cli.remove_container(i['Id']) if dockerName in i['Names']: if i['State'] == 'running': print("stoppping container {} with ID {}".format(i['Image'], i['Id'])) cli.stop(i['Id']) cli.remove_container(i['Id']) else: print('container {} exists, but is not running, removing id {}'.format(i[ 'Image'], i['Id'])) cli.remove_container(i['Id']) container = cli.create_container( image=image, detach=True, name=dockerName, environment=labels, labels=labels, ports=portBindings.keys(), host_config=hostConfig) print("created container: {}".format(container)) id = container.get('Id') RUNNINGID = id cli.start(container=id) print('container started..: retrieve and print stdout/err...') for msg in cli.logs(container=id, stream=True, stdout=True, stderr=True): print(msg, end="") def cleanupDocker(signal, frame): """stop container""" cli = Client(base_url='unix://var/run/docker.sock') if RUNNINGID: print("stopping container: {}".format(RUNNINGID)) cli.stop(RUNNINGID) sys.exit(0) signal.signal(signal.SIGINT, cleanupDocker) def printEnv(d): """for printing os.environ, pprint doesn't do it well *sad face* """ for k in d.keys(): print("{}: {}".format(k, d[k])) if __name__ == '__main__': try: buildNumber = sys.argv[1] except IndexError: buildNumber = 'latest' try: print("nomad-rundocker v0.1") if DEBUG: printEnv(os.environ) main(buildNumber) except KeyError: print("UNABLE to find key, current environment is:") printEnv(os.environ) raise
en
0.783632
#!/usr/bin/python -u nomad docker doesn't allow us to do volumes, which hurts. This is a work-around. I hope they get their act together soon. all META keys are capitalized by NOMAD, so be sure to define your _LABELS as uppercase. required keys: IMAGE -- name of the docker image to pull. optional: REGISTRY_URL = the URL for the regitry to pull from. REGISTRY_USER = username for registry, defaults None REGISTRY_PASSWORD = password for registry, defaults None NETWORK_MODE = "bridge" network mode for docker: ('bridge': creates a new network stack for the container on the Docker bridge, 'none': no networking for this container, 'container:[name|id]': reuses another container network stack, 'host': use the host network stack inside the container or any name that identifies an existing Docker network). defaults "bridge" nomad do HOST export networking at all, so you have to specify it special in the env {} config. NETWORK_LABELS = "" space seperated list of network labels. NOMAD_PORT_<label> = '' IP port to expose inside the container. NOMAD_IP_<label> = '' IP ADDRESS to expose. NOMAD_HOST_PORT_<label> = '' IP port to expose on the host. nomad doesn't do volumes at all. currently only bind mounts are supported. here is how to do them: VOLUME_LABELS="" is a space seperated list of volume labels (just like network labels) SRC_<LABEL>="" the source of the volume. DST_<LABEL>="" the destination of the volume. MODE_<LABEL>="" the mode (rw/ro) of the volume. if missing defaults to rw. #used for signal, yes globals suck, get over it. get key or set default from os.environ, which is "" main code # specify the network mode, port bindings, and volume mounts. # this is how the docker python client wants these parameters # just move all the nomad stuff into docker labels... why not! #redefine them all without the NOMAD_META prefix. # if container name or image is already around, stop and remove it, since we are about to run it again. # currently running, we should stop it. stop container for printing os.environ, pprint doesn't do it well *sad face*
2.327519
2
.venv/lib/python3.10/site-packages/lunr/pipeline.py
plocandido/docinfrati
128
6629955
<reponame>plocandido/docinfrati<gh_stars>100-1000 import logging from typing import Callable, Dict from lunr.exceptions import BaseLunrException from lunr.token import Token log = logging.getLogger(__name__) class Pipeline: """lunr.Pipelines maintain a list of functions to be applied to all tokens in documents entering the search index and queries ran agains the index. """ registered_functions: Dict[str, Callable] = {} def __init__(self): self._stack = [] def __len__(self): return len(self._stack) def __repr__(self): return '<Pipeline stack="{}">'.format(",".join(fn.label for fn in self._stack)) # TODO: add iterator methods? @classmethod def register_function(cls, fn, label=None): """Register a function with the pipeline.""" label = label or fn.__name__ if label in cls.registered_functions: log.warning("Overwriting existing registered function %s", label) fn.label = label cls.registered_functions[fn.label] = fn @classmethod def load(cls, serialised): """Loads a previously serialised pipeline.""" pipeline = cls() for fn_name in serialised: try: fn = cls.registered_functions[fn_name] except KeyError: raise BaseLunrException( "Cannot load unregistered function {}".format(fn_name) ) else: pipeline.add(fn) return pipeline def add(self, *args): """Adds new functions to the end of the pipeline. Functions must accept three arguments: - Token: A lunr.Token object which will be updated - i: The index of the token in the set - tokens: A list of tokens representing the set """ for fn in args: self.warn_if_function_not_registered(fn) self._stack.append(fn) def warn_if_function_not_registered(self, fn): try: return fn.label in self.registered_functions except AttributeError: log.warning( 'Function "{}" is not registered with pipeline. ' "This may cause problems when serialising the index.".format( getattr(fn, "label", fn) ) ) def after(self, existing_fn, new_fn): """Adds a single function after a function that already exists in the pipeline.""" self.warn_if_function_not_registered(new_fn) try: index = self._stack.index(existing_fn) self._stack.insert(index + 1, new_fn) except ValueError as e: raise BaseLunrException("Cannot find existing_fn") from e def before(self, existing_fn, new_fn): """Adds a single function before a function that already exists in the pipeline. """ self.warn_if_function_not_registered(new_fn) try: index = self._stack.index(existing_fn) self._stack.insert(index, new_fn) except ValueError as e: raise BaseLunrException("Cannot find existing_fn") from e def remove(self, fn): """Removes a function from the pipeline.""" try: self._stack.remove(fn) except ValueError: pass def run(self, tokens): """Runs the current list of functions that make up the pipeline against the passed tokens.""" for fn in self._stack: results = [] for i, token in enumerate(tokens): # JS ignores additional arguments to the functions but we # force pipeline functions to declare (token, i, tokens) # or *args result = fn(token, i, tokens) if not result: continue if isinstance(result, (list, tuple)): # simulate Array.concat results.extend(result) else: results.append(result) tokens = results return tokens def run_string(self, string, metadata=None): """Convenience method for passing a string through a pipeline and getting strings out. This method takes care of wrapping the passed string in a token and mapping the resulting tokens back to strings.""" token = Token(string, metadata) return [str(tkn) for tkn in self.run([token])] def reset(self): self._stack = [] def serialize(self): return [fn.label for fn in self._stack]
import logging from typing import Callable, Dict from lunr.exceptions import BaseLunrException from lunr.token import Token log = logging.getLogger(__name__) class Pipeline: """lunr.Pipelines maintain a list of functions to be applied to all tokens in documents entering the search index and queries ran agains the index. """ registered_functions: Dict[str, Callable] = {} def __init__(self): self._stack = [] def __len__(self): return len(self._stack) def __repr__(self): return '<Pipeline stack="{}">'.format(",".join(fn.label for fn in self._stack)) # TODO: add iterator methods? @classmethod def register_function(cls, fn, label=None): """Register a function with the pipeline.""" label = label or fn.__name__ if label in cls.registered_functions: log.warning("Overwriting existing registered function %s", label) fn.label = label cls.registered_functions[fn.label] = fn @classmethod def load(cls, serialised): """Loads a previously serialised pipeline.""" pipeline = cls() for fn_name in serialised: try: fn = cls.registered_functions[fn_name] except KeyError: raise BaseLunrException( "Cannot load unregistered function {}".format(fn_name) ) else: pipeline.add(fn) return pipeline def add(self, *args): """Adds new functions to the end of the pipeline. Functions must accept three arguments: - Token: A lunr.Token object which will be updated - i: The index of the token in the set - tokens: A list of tokens representing the set """ for fn in args: self.warn_if_function_not_registered(fn) self._stack.append(fn) def warn_if_function_not_registered(self, fn): try: return fn.label in self.registered_functions except AttributeError: log.warning( 'Function "{}" is not registered with pipeline. ' "This may cause problems when serialising the index.".format( getattr(fn, "label", fn) ) ) def after(self, existing_fn, new_fn): """Adds a single function after a function that already exists in the pipeline.""" self.warn_if_function_not_registered(new_fn) try: index = self._stack.index(existing_fn) self._stack.insert(index + 1, new_fn) except ValueError as e: raise BaseLunrException("Cannot find existing_fn") from e def before(self, existing_fn, new_fn): """Adds a single function before a function that already exists in the pipeline. """ self.warn_if_function_not_registered(new_fn) try: index = self._stack.index(existing_fn) self._stack.insert(index, new_fn) except ValueError as e: raise BaseLunrException("Cannot find existing_fn") from e def remove(self, fn): """Removes a function from the pipeline.""" try: self._stack.remove(fn) except ValueError: pass def run(self, tokens): """Runs the current list of functions that make up the pipeline against the passed tokens.""" for fn in self._stack: results = [] for i, token in enumerate(tokens): # JS ignores additional arguments to the functions but we # force pipeline functions to declare (token, i, tokens) # or *args result = fn(token, i, tokens) if not result: continue if isinstance(result, (list, tuple)): # simulate Array.concat results.extend(result) else: results.append(result) tokens = results return tokens def run_string(self, string, metadata=None): """Convenience method for passing a string through a pipeline and getting strings out. This method takes care of wrapping the passed string in a token and mapping the resulting tokens back to strings.""" token = Token(string, metadata) return [str(tkn) for tkn in self.run([token])] def reset(self): self._stack = [] def serialize(self): return [fn.label for fn in self._stack]
en
0.767862
lunr.Pipelines maintain a list of functions to be applied to all tokens in documents entering the search index and queries ran agains the index. # TODO: add iterator methods? Register a function with the pipeline. Loads a previously serialised pipeline. Adds new functions to the end of the pipeline. Functions must accept three arguments: - Token: A lunr.Token object which will be updated - i: The index of the token in the set - tokens: A list of tokens representing the set Adds a single function after a function that already exists in the pipeline. Adds a single function before a function that already exists in the pipeline. Removes a function from the pipeline. Runs the current list of functions that make up the pipeline against the passed tokens. # JS ignores additional arguments to the functions but we # force pipeline functions to declare (token, i, tokens) # or *args # simulate Array.concat Convenience method for passing a string through a pipeline and getting strings out. This method takes care of wrapping the passed string in a token and mapping the resulting tokens back to strings.
2.466331
2
funpackager/loader/jsonLoader.py
raojinlin/funpackager
0
6629956
import json from funpackager.loader.abstractLoader import AbstractLoader class JSONLoader(AbstractLoader): def __init__(self, conf_file): AbstractLoader.__init__(self, conf_file) self._data = None def get_data(self): if not self._data: self._data = json.load(open(self._config_file, 'rt')) return self._data
import json from funpackager.loader.abstractLoader import AbstractLoader class JSONLoader(AbstractLoader): def __init__(self, conf_file): AbstractLoader.__init__(self, conf_file) self._data = None def get_data(self): if not self._data: self._data = json.load(open(self._config_file, 'rt')) return self._data
none
1
2.687084
3
pages/extensions/internal_links/pod_internal_link_rewriter_test.py
psimyn/amp.dev
1
6629957
"""Tests for the source code exporter.""" import unittest import sys import os from grow.common.urls import Url from grow.cache.object_cache import ObjectCache sys.path.extend([os.path.join(os.path.dirname(__file__), '.')]) from pod_internal_link_rewriter import PodInternalLinkRewriter class PodInternalLinkRewriterTestCase(unittest.TestCase): def test_a_href_relative(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', '/content/test/folder2/page2.md': '/test/folder_2/page2.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') content = '<a href="../folder2/page2.md">test</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/test/folder_2/page2.html">test</a>', result) def test_a_href_pod_path(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', '/content/test/folder2/page2.md': '/test/folder_2/page2.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') content = '<a href="/content/test/folder2/page2.md">test</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/test/folder_2/page2.html">test</a>', result) def test_a_href_none_existing(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') content = '<a href="../folder2/page2.md">test</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals(content, result) def test_multiple_href_none_existing_with_anchors(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') # two times the same url and different anchor to test possible cache problems content = '<a href="../folder2/page2.md#test">test</a><br>' \ '<a href="../folder2/page2.md#other">test2</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals(content, result) def test_a_href_with_protocol(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') content = '<a href="http://amp.dev/test/folder2/page2.md">test</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals(content, result) def test_a_href_relative_with_anchor(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', '/content/test/folder2/page2.md': '/test/folder_2/page2.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') # two times the same url and different anchor to test possible cache problems content = '<a href="../folder2/page2.md#test">test</a><br>' \ '<a href="../folder2/page2.md#other">test2</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/test/folder_2/page2.html#test">test</a><br>' \ '<a href="/test/folder_2/page2.html#other">test2</a>', result) def test_a_href_relative_with_params(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', '/content/test/folder2/page2.md': '/test/folder_2/page2.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') content = '<a href="../folder2/page2.md?format=ads">test</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/test/folder_2/page2.html?format=ads">test</a>', result) def test_a_href_relative_with_params_and_anchor(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', '/content/test/folder2/page2.md': '/test/folder_2/page2.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') content = '<a href="../folder2/page2.md?format=ads#test">test</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/test/folder_2/page2.html?format=ads#test">test</a>', result) def test_multiple_relative_href(self): link_map = { '/content/test/test.md': '/test/test.html', '/content/test/folder1/page.md': '/test/folder_1/page1.html', '/content/test/folder2/page2.md': '/test/folder_2/page2.html', '/content/test/page3.md': '/test/page3.html', '/content/page4.md': '/page4.html', } doc = MockPod(link_map).get_doc('/content/test/test.md') content = '<p><a class="link" href="folder2/page2.md">test</a><br>' \ '<a href="./page3.md" class="link">page3</a><br>' \ '<a href="../page4.md">page4</a><br>' \ '<a href = "./folder1/page.md">page</a></p>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<p><a class="link" href="/test/folder_2/page2.html">test</a><br>' \ '<a href="/test/page3.html" class="link">page3</a><br>' \ '<a href="/page4.html">page4</a><br>' \ '<a href = "/test/folder_1/page1.html">page</a></p>', result) def test_cache_should_not_(self): # Ensure the cache does not cache = ObjectCache() content = '<a href="./page.md">page</a><br>' link_map = { '/content/test/test.md': '/en/test/test.html', '/content/test/page.md': '/en/test/page.html', } doc = MockPod(link_map).get_doc('/content/test/test.md', 'en') link_rewriter = PodInternalLinkRewriter(doc, cache, None); result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/en/test/page.html">page</a><br>', result) link_map = { '/content/test/test.md': '/de/test/test.html', '/content/test/page.md': '/de/test/page.html', } doc = MockPod(link_map).get_doc('/content/test/test.md', 'de') link_rewriter = PodInternalLinkRewriter(doc, cache, None); result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/de/test/page.html">page</a><br>', result) class MockPod: def __init__(self, link_map): self.link_map = link_map def get_doc(self, path, locale='en'): site_path = self.link_map.get(path) return MockDoc(self, path, site_path, locale) class MockDoc: def __init__(self, pod, pod_path, site_path, locale): self.pod = pod self.pod_path = pod_path self.url = None if site_path: self.url = Url(site_path) self.locale = locale @property def exists(self): if self.url: return True return False
"""Tests for the source code exporter.""" import unittest import sys import os from grow.common.urls import Url from grow.cache.object_cache import ObjectCache sys.path.extend([os.path.join(os.path.dirname(__file__), '.')]) from pod_internal_link_rewriter import PodInternalLinkRewriter class PodInternalLinkRewriterTestCase(unittest.TestCase): def test_a_href_relative(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', '/content/test/folder2/page2.md': '/test/folder_2/page2.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') content = '<a href="../folder2/page2.md">test</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/test/folder_2/page2.html">test</a>', result) def test_a_href_pod_path(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', '/content/test/folder2/page2.md': '/test/folder_2/page2.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') content = '<a href="/content/test/folder2/page2.md">test</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/test/folder_2/page2.html">test</a>', result) def test_a_href_none_existing(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') content = '<a href="../folder2/page2.md">test</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals(content, result) def test_multiple_href_none_existing_with_anchors(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') # two times the same url and different anchor to test possible cache problems content = '<a href="../folder2/page2.md#test">test</a><br>' \ '<a href="../folder2/page2.md#other">test2</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals(content, result) def test_a_href_with_protocol(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') content = '<a href="http://amp.dev/test/folder2/page2.md">test</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals(content, result) def test_a_href_relative_with_anchor(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', '/content/test/folder2/page2.md': '/test/folder_2/page2.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') # two times the same url and different anchor to test possible cache problems content = '<a href="../folder2/page2.md#test">test</a><br>' \ '<a href="../folder2/page2.md#other">test2</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/test/folder_2/page2.html#test">test</a><br>' \ '<a href="/test/folder_2/page2.html#other">test2</a>', result) def test_a_href_relative_with_params(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', '/content/test/folder2/page2.md': '/test/folder_2/page2.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') content = '<a href="../folder2/page2.md?format=ads">test</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/test/folder_2/page2.html?format=ads">test</a>', result) def test_a_href_relative_with_params_and_anchor(self): link_map = { '/content/test/folder1/page.md': '/test/folder_1/page1.html', '/content/test/folder2/page2.md': '/test/folder_2/page2.html', } doc = MockPod(link_map).get_doc('/content/test/folder1/page.md') content = '<a href="../folder2/page2.md?format=ads#test">test</a>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/test/folder_2/page2.html?format=ads#test">test</a>', result) def test_multiple_relative_href(self): link_map = { '/content/test/test.md': '/test/test.html', '/content/test/folder1/page.md': '/test/folder_1/page1.html', '/content/test/folder2/page2.md': '/test/folder_2/page2.html', '/content/test/page3.md': '/test/page3.html', '/content/page4.md': '/page4.html', } doc = MockPod(link_map).get_doc('/content/test/test.md') content = '<p><a class="link" href="folder2/page2.md">test</a><br>' \ '<a href="./page3.md" class="link">page3</a><br>' \ '<a href="../page4.md">page4</a><br>' \ '<a href = "./folder1/page.md">page</a></p>' link_rewriter = PodInternalLinkRewriter(doc, ObjectCache(), None) result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<p><a class="link" href="/test/folder_2/page2.html">test</a><br>' \ '<a href="/test/page3.html" class="link">page3</a><br>' \ '<a href="/page4.html">page4</a><br>' \ '<a href = "/test/folder_1/page1.html">page</a></p>', result) def test_cache_should_not_(self): # Ensure the cache does not cache = ObjectCache() content = '<a href="./page.md">page</a><br>' link_map = { '/content/test/test.md': '/en/test/test.html', '/content/test/page.md': '/en/test/page.html', } doc = MockPod(link_map).get_doc('/content/test/test.md', 'en') link_rewriter = PodInternalLinkRewriter(doc, cache, None); result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/en/test/page.html">page</a><br>', result) link_map = { '/content/test/test.md': '/de/test/test.html', '/content/test/page.md': '/de/test/page.html', } doc = MockPod(link_map).get_doc('/content/test/test.md', 'de') link_rewriter = PodInternalLinkRewriter(doc, cache, None); result = link_rewriter.rewrite_pod_internal_links(content) self.assertEquals('<a href="/de/test/page.html">page</a><br>', result) class MockPod: def __init__(self, link_map): self.link_map = link_map def get_doc(self, path, locale='en'): site_path = self.link_map.get(path) return MockDoc(self, path, site_path, locale) class MockDoc: def __init__(self, pod, pod_path, site_path, locale): self.pod = pod self.pod_path = pod_path self.url = None if site_path: self.url = Url(site_path) self.locale = locale @property def exists(self): if self.url: return True return False
en
0.3907
Tests for the source code exporter. # two times the same url and different anchor to test possible cache problems #test">test</a><br>' \ #other">test2</a>' # two times the same url and different anchor to test possible cache problems #test">test</a><br>' \ #other">test2</a>' #test">test</a><br>' \ #other">test2</a>', result) #test">test</a>' #test">test</a>', result) # Ensure the cache does not
2.435373
2
examples/11-camera/Camera.py
henkjannl/py-animate
0
6629958
from Animate import Animate Animate.Model('Camera.xlsx', 'Main')
from Animate import Animate Animate.Model('Camera.xlsx', 'Main')
none
1
1.181914
1
src/assistants/telegram.py
SmBe19/Todoistant
0
6629959
from datetime import datetime, timedelta from utils import parse_task_config, run_every, run_next_in, local_to_utc INIT_CONFIG = { 'chatid': 0, 'username': '', 'plain_labels': [], 'link_labels': [], 'forward_labels': [], } CONFIG_VERSION = 1 CONFIG_WHITELIST = [ 'plain_project', 'plain_labels', 'link_project', 'link_labels', 'forward_project', 'forward_labels', ] CONFIG_LIST = [ 'plain_labels', 'link_labels', 'forward_labels', ] CONFIG_INT = [ 'plain_project', 'plain_labels', 'link_project', 'link_labels', 'forward_project', 'forward_labels', ] def migrate_config(cfg, old_version): pass should_run = run_every(timedelta(minutes=15)) handle_update = run_next_in(timedelta(seconds=1), {'item:added', 'item:updated'}) def run(api, timezone, telegram, cfg, tmp): telegram_label = None for label in api.state['labels']: if label['name'] == 'telegram': telegram_label = label break if not telegram_label: return now = datetime.utcnow() last = cfg.get('last_run', now - timedelta(days=2)) next_run = None for item in api.state['items']: if item['date_completed']: continue if telegram_label['id'] not in item['labels']: continue due = local_to_utc(datetime.fromisoformat(item['due']['date']).replace(tzinfo=timezone)) if item['due'] else None content, config = parse_task_config(item['content']) if 'telegram-due' in config: new_due = config['telegram-due'] try: if 'T' in new_due: new_due = datetime.fromisoformat(new_due) if not new_due.tzinfo: new_due = new_due.replace(tzinfo=timezone) due = new_due elif ':' in new_due: parts = new_due.split(':') if not due: due = datetime.now(timezone) due = due.replace(hour=int(parts[0]), minute=int(parts[1]), second=0, microsecond=0) due = local_to_utc(due) except ValueError as e: telegram('Error with {}: {}.'.format(content, e)) continue if not due: continue if due > now and (not next_run or due < next_run): next_run = due if last <= due <= now: telegram(content) cfg['next_run'] = next_run
from datetime import datetime, timedelta from utils import parse_task_config, run_every, run_next_in, local_to_utc INIT_CONFIG = { 'chatid': 0, 'username': '', 'plain_labels': [], 'link_labels': [], 'forward_labels': [], } CONFIG_VERSION = 1 CONFIG_WHITELIST = [ 'plain_project', 'plain_labels', 'link_project', 'link_labels', 'forward_project', 'forward_labels', ] CONFIG_LIST = [ 'plain_labels', 'link_labels', 'forward_labels', ] CONFIG_INT = [ 'plain_project', 'plain_labels', 'link_project', 'link_labels', 'forward_project', 'forward_labels', ] def migrate_config(cfg, old_version): pass should_run = run_every(timedelta(minutes=15)) handle_update = run_next_in(timedelta(seconds=1), {'item:added', 'item:updated'}) def run(api, timezone, telegram, cfg, tmp): telegram_label = None for label in api.state['labels']: if label['name'] == 'telegram': telegram_label = label break if not telegram_label: return now = datetime.utcnow() last = cfg.get('last_run', now - timedelta(days=2)) next_run = None for item in api.state['items']: if item['date_completed']: continue if telegram_label['id'] not in item['labels']: continue due = local_to_utc(datetime.fromisoformat(item['due']['date']).replace(tzinfo=timezone)) if item['due'] else None content, config = parse_task_config(item['content']) if 'telegram-due' in config: new_due = config['telegram-due'] try: if 'T' in new_due: new_due = datetime.fromisoformat(new_due) if not new_due.tzinfo: new_due = new_due.replace(tzinfo=timezone) due = new_due elif ':' in new_due: parts = new_due.split(':') if not due: due = datetime.now(timezone) due = due.replace(hour=int(parts[0]), minute=int(parts[1]), second=0, microsecond=0) due = local_to_utc(due) except ValueError as e: telegram('Error with {}: {}.'.format(content, e)) continue if not due: continue if due > now and (not next_run or due < next_run): next_run = due if last <= due <= now: telegram(content) cfg['next_run'] = next_run
none
1
2.420144
2
docs/generate.py
EgorDm/notionsci
13
6629960
<gh_stars>10-100 """Generate virtual files for mkdocs.""" import mkdocs_gen_files def docs_stub(module_name): return f"::: notionsci.{module_name}\ \n\trendering:\n\t\tshow_root_heading: true\n\t\tshow_source: true" virtual_files = { "index.md": "--8<-- 'README.md'", # "reference/config.md": docs_stub("config"), "contributing.md": "--8<-- '.github/CONTRIBUTING.md'", "license.md": "```text\n--8<-- 'LICENSE'\n```", "reference/sync.md": docs_stub("sync"), "reference/connections/notion.md": docs_stub("connections.notion"), "reference/connections/notion_unofficial.md": docs_stub( "connections.notion_unofficial" ), "reference/connections/zotero.md": docs_stub("connections.zotero"), } for file_name, content in virtual_files.items(): with mkdocs_gen_files.open(file_name, "w") as file: print(content, file=file)
"""Generate virtual files for mkdocs.""" import mkdocs_gen_files def docs_stub(module_name): return f"::: notionsci.{module_name}\ \n\trendering:\n\t\tshow_root_heading: true\n\t\tshow_source: true" virtual_files = { "index.md": "--8<-- 'README.md'", # "reference/config.md": docs_stub("config"), "contributing.md": "--8<-- '.github/CONTRIBUTING.md'", "license.md": "```text\n--8<-- 'LICENSE'\n```", "reference/sync.md": docs_stub("sync"), "reference/connections/notion.md": docs_stub("connections.notion"), "reference/connections/notion_unofficial.md": docs_stub( "connections.notion_unofficial" ), "reference/connections/zotero.md": docs_stub("connections.zotero"), } for file_name, content in virtual_files.items(): with mkdocs_gen_files.open(file_name, "w") as file: print(content, file=file)
en
0.354047
Generate virtual files for mkdocs. # "reference/config.md": docs_stub("config"),
2.459982
2
warehouse_cloud/cloud/warehouse.py
2021-SE-Lab-Mindstorm-Project/Smart-Warehouse-Cloud
0
6629961
from . import rl from .models import Inventory, Order class Warehouse: def __init__(self, anomaly_aware): # config self.cap_conveyor = 5 self.cap_wait = 5 self.reward_order = 30 self.reward_trash = 70 self.reward_wait = 1 self.order_total = 20 self.order_delay = 0 self.anomaly_mtbf = 5 self.anomaly_duration = 10 self.anomaly_wait = 3 self.item_buy = 5 # Warehouse self.tick = 0 self.anomaly_aware = anomaly_aware try: self.rl_model = rl.DQN(path='../model/rl.pth') self.a_rl_models = [rl.DQN(path='../model/a_rl_0.pth'), None, rl.DQN(path='../model/a_rl_2.pth')] except: pass self.c = [0] * 4 self.recent_c = 0 self.recent_s = 0 self.c_waiting = 0 self.c_allow = 3 self.r_allow = [False] * 3 self.s_allow = 3 self.r_wait = [0] * 3 self.s_wait = 0 self.stuck = [False] * 3 self.count = [0] * 3 self.current_anomaly = [-1] * 3 self.reward = 0 self.old_state = None self.old_decision = None self.old_reward = 0 def need_decision(self): if sum(self.c) == 0: return False num_true = 0 for ans in self.available(): if ans: num_true += 1 return num_true > 1 def available(self, i=None): if i is not None: inventory_objects = Inventory.objects.filter(stored=i) ans = len(inventory_objects) < self.cap_conveyor if not self.anomaly_aware: return ans return ans and self.current_anomaly[i] == -1 ans = [] for i in range(3): inventory_objects = Inventory.objects.filter(stored=i) single_ans = len(inventory_objects) < self.cap_conveyor if not self.anomaly_aware: ans.append(single_ans) else: ans.append(single_ans and self.current_anomaly[i] == -1) return ans def get_available(self): available = self.available() ans = [] for i, avail in enumerate(available): if avail: ans.append(i) return ans def get_inventory(self, item): return self.c[item - 1] + len(Inventory.objects.filter(item_type=item, stored__lt=4)) def get_order(self, is_sum=True): if is_sum: return len(Order.objects.all()) orders = [] for i in range(4): orders.append(len(Order.objects.filter(item_type=i + 1))) return orders def get_state(self): def repr_list(conveyor): ans = 0 for i, item in enumerate(conveyor): ans += item.item_type * (5 ** (5 - i - 1)) return ans ans = [self.tick, self.recent_c] for i in range(4): ans.append(repr_list(Inventory.objects.filter(stored=i))) ans.extend(self.get_order(False)) return ans def anomaly_state(self): anomaly_number = 0 for i, anomaly in enumerate(self.current_anomaly): if anomaly != -1: anomaly_number += (2 ** i) return anomaly_number
from . import rl from .models import Inventory, Order class Warehouse: def __init__(self, anomaly_aware): # config self.cap_conveyor = 5 self.cap_wait = 5 self.reward_order = 30 self.reward_trash = 70 self.reward_wait = 1 self.order_total = 20 self.order_delay = 0 self.anomaly_mtbf = 5 self.anomaly_duration = 10 self.anomaly_wait = 3 self.item_buy = 5 # Warehouse self.tick = 0 self.anomaly_aware = anomaly_aware try: self.rl_model = rl.DQN(path='../model/rl.pth') self.a_rl_models = [rl.DQN(path='../model/a_rl_0.pth'), None, rl.DQN(path='../model/a_rl_2.pth')] except: pass self.c = [0] * 4 self.recent_c = 0 self.recent_s = 0 self.c_waiting = 0 self.c_allow = 3 self.r_allow = [False] * 3 self.s_allow = 3 self.r_wait = [0] * 3 self.s_wait = 0 self.stuck = [False] * 3 self.count = [0] * 3 self.current_anomaly = [-1] * 3 self.reward = 0 self.old_state = None self.old_decision = None self.old_reward = 0 def need_decision(self): if sum(self.c) == 0: return False num_true = 0 for ans in self.available(): if ans: num_true += 1 return num_true > 1 def available(self, i=None): if i is not None: inventory_objects = Inventory.objects.filter(stored=i) ans = len(inventory_objects) < self.cap_conveyor if not self.anomaly_aware: return ans return ans and self.current_anomaly[i] == -1 ans = [] for i in range(3): inventory_objects = Inventory.objects.filter(stored=i) single_ans = len(inventory_objects) < self.cap_conveyor if not self.anomaly_aware: ans.append(single_ans) else: ans.append(single_ans and self.current_anomaly[i] == -1) return ans def get_available(self): available = self.available() ans = [] for i, avail in enumerate(available): if avail: ans.append(i) return ans def get_inventory(self, item): return self.c[item - 1] + len(Inventory.objects.filter(item_type=item, stored__lt=4)) def get_order(self, is_sum=True): if is_sum: return len(Order.objects.all()) orders = [] for i in range(4): orders.append(len(Order.objects.filter(item_type=i + 1))) return orders def get_state(self): def repr_list(conveyor): ans = 0 for i, item in enumerate(conveyor): ans += item.item_type * (5 ** (5 - i - 1)) return ans ans = [self.tick, self.recent_c] for i in range(4): ans.append(repr_list(Inventory.objects.filter(stored=i))) ans.extend(self.get_order(False)) return ans def anomaly_state(self): anomaly_number = 0 for i, anomaly in enumerate(self.current_anomaly): if anomaly != -1: anomaly_number += (2 ** i) return anomaly_number
en
0.453361
# config # Warehouse
2.542484
3
run.py
zjlbzf/MNIST-test
0
6629962
<gh_stars>0 import threading import os def process(): os.sys('conda activate py3.7') os.sys('G:\code\Projects\AI\Competation\Kaggle\003_MNIST> & D:/ProgramData/Anaconda3/envs/py3.7/python.exe g:/code/Projects/AI/Competation/Kaggle/003_MNIST/tf_MNIST.py') for i in range(3): t1 = threading.Thread(target=process, args=[]) tt.start()
import threading import os def process(): os.sys('conda activate py3.7') os.sys('G:\code\Projects\AI\Competation\Kaggle\003_MNIST> & D:/ProgramData/Anaconda3/envs/py3.7/python.exe g:/code/Projects/AI/Competation/Kaggle/003_MNIST/tf_MNIST.py') for i in range(3): t1 = threading.Thread(target=process, args=[]) tt.start()
none
1
2.196281
2
helixswarm/adapters/aio.py
pbelskiy/helix-swarm
2
6629963
<filename>helixswarm/adapters/aio.py import asyncio from typing import Any, Callable, Optional, Union from aiohttp import ( BasicAuth, ClientError, ClientResponse, ClientSession, ClientTimeout, ) from helixswarm.swarm import Response, Swarm, SwarmError class RetryClientSession: def __init__(self, loop: Optional[asyncio.AbstractEventLoop], options: dict): self.total = options['total'] self.factor = options.get('factor', 1) self.statuses = options.get('statuses', []) self.session = ClientSession(loop=loop) async def request(self, *args: Any, **kwargs: Any) -> ClientResponse: for total in range(self.total): try: response = await self.session.request(*args, **kwargs) except (ClientError, asyncio.TimeoutError) as e: if total + 1 == self.total: raise SwarmError from e else: if response.status not in self.statuses: break await asyncio.sleep(self.factor * (2 ** (total - 1))) return response async def close(self) -> None: await self.session.close() class SwarmAsyncClient(Swarm): session = None # type: Union[ClientSession, RetryClientSession] timeout = None def __init__(self, url: str, user: str, password: str, *, loop: Optional[asyncio.AbstractEventLoop] = None, verify: bool = True, timeout: Optional[float] = None, retry: Optional[dict] = None ): """ Swarm async client class. * url: ``str`` Url of Swarm server, must include API version. * user: ``str`` User name, login. * password: ``str`` Password for user. * loop: ``AbstractEventLoop`` (optional) Asyncio current event loop. * verify: ``bool`` (optional) Verify SSL (default: true). * timeout: ``int``, (optional) HTTP request timeout. * retry: ``dict`` (optional) Retry options to prevent failures if server restarting or temporary network problem. Disabled by default use total > 0 to enable. - total: ``int`` Total retries count. - factor: ``int`` Sleep factor between retries (default 1) {factor} * (2 ** ({number of total retries} - 1)) - statuses: ``List[int]`` HTTP statues retries on. (default []) Example: .. code-block:: python retry = dict( total=10, factor=1, statuses=[500] ) :returns: ``SwarmClient instance`` :raises: ``SwarmError`` """ super().__init__() self.loop = loop or asyncio.get_event_loop() self.host, self.version = self._get_host_and_api_version(url) self.auth = BasicAuth(user, password) if retry: self._validate_retry_argument(retry) self.session = RetryClientSession(loop, retry) else: self.session = ClientSession(loop=self.loop) self.verify = verify if timeout: self.timeout = ClientTimeout(total=timeout) async def close(self) -> None: # type: ignore await self.session.close() async def request(self, # type: ignore callback: Callable, method: str, path: str, fcb: Optional[Callable] = None, **kwargs: Any ) -> dict: if self.timeout and 'timeout' not in kwargs: kwargs['timeout'] = self.timeout response = await self.session.request( method, '{host}/api/v{version}/{path}'.format( host=self.host, version=self.version, path=path, ), auth=self.auth, ssl=self.verify, **kwargs ) body = await response.text() return callback(Response(response.status, body), fcb)
<filename>helixswarm/adapters/aio.py import asyncio from typing import Any, Callable, Optional, Union from aiohttp import ( BasicAuth, ClientError, ClientResponse, ClientSession, ClientTimeout, ) from helixswarm.swarm import Response, Swarm, SwarmError class RetryClientSession: def __init__(self, loop: Optional[asyncio.AbstractEventLoop], options: dict): self.total = options['total'] self.factor = options.get('factor', 1) self.statuses = options.get('statuses', []) self.session = ClientSession(loop=loop) async def request(self, *args: Any, **kwargs: Any) -> ClientResponse: for total in range(self.total): try: response = await self.session.request(*args, **kwargs) except (ClientError, asyncio.TimeoutError) as e: if total + 1 == self.total: raise SwarmError from e else: if response.status not in self.statuses: break await asyncio.sleep(self.factor * (2 ** (total - 1))) return response async def close(self) -> None: await self.session.close() class SwarmAsyncClient(Swarm): session = None # type: Union[ClientSession, RetryClientSession] timeout = None def __init__(self, url: str, user: str, password: str, *, loop: Optional[asyncio.AbstractEventLoop] = None, verify: bool = True, timeout: Optional[float] = None, retry: Optional[dict] = None ): """ Swarm async client class. * url: ``str`` Url of Swarm server, must include API version. * user: ``str`` User name, login. * password: ``str`` Password for user. * loop: ``AbstractEventLoop`` (optional) Asyncio current event loop. * verify: ``bool`` (optional) Verify SSL (default: true). * timeout: ``int``, (optional) HTTP request timeout. * retry: ``dict`` (optional) Retry options to prevent failures if server restarting or temporary network problem. Disabled by default use total > 0 to enable. - total: ``int`` Total retries count. - factor: ``int`` Sleep factor between retries (default 1) {factor} * (2 ** ({number of total retries} - 1)) - statuses: ``List[int]`` HTTP statues retries on. (default []) Example: .. code-block:: python retry = dict( total=10, factor=1, statuses=[500] ) :returns: ``SwarmClient instance`` :raises: ``SwarmError`` """ super().__init__() self.loop = loop or asyncio.get_event_loop() self.host, self.version = self._get_host_and_api_version(url) self.auth = BasicAuth(user, password) if retry: self._validate_retry_argument(retry) self.session = RetryClientSession(loop, retry) else: self.session = ClientSession(loop=self.loop) self.verify = verify if timeout: self.timeout = ClientTimeout(total=timeout) async def close(self) -> None: # type: ignore await self.session.close() async def request(self, # type: ignore callback: Callable, method: str, path: str, fcb: Optional[Callable] = None, **kwargs: Any ) -> dict: if self.timeout and 'timeout' not in kwargs: kwargs['timeout'] = self.timeout response = await self.session.request( method, '{host}/api/v{version}/{path}'.format( host=self.host, version=self.version, path=path, ), auth=self.auth, ssl=self.verify, **kwargs ) body = await response.text() return callback(Response(response.status, body), fcb)
en
0.499065
# type: Union[ClientSession, RetryClientSession] Swarm async client class. * url: ``str`` Url of Swarm server, must include API version. * user: ``str`` User name, login. * password: ``str`` Password for user. * loop: ``AbstractEventLoop`` (optional) Asyncio current event loop. * verify: ``bool`` (optional) Verify SSL (default: true). * timeout: ``int``, (optional) HTTP request timeout. * retry: ``dict`` (optional) Retry options to prevent failures if server restarting or temporary network problem. Disabled by default use total > 0 to enable. - total: ``int`` Total retries count. - factor: ``int`` Sleep factor between retries (default 1) {factor} * (2 ** ({number of total retries} - 1)) - statuses: ``List[int]`` HTTP statues retries on. (default []) Example: .. code-block:: python retry = dict( total=10, factor=1, statuses=[500] ) :returns: ``SwarmClient instance`` :raises: ``SwarmError`` # type: ignore # type: ignore
2.420816
2
setup.py
jd-boyd/HowLong
17
6629964
from setuptools import setup, find_packages setup(author='<NAME>', description='A simple timing utility for long running processes', name='howlong', py_modules=[ 'HowLong.HowLong', ], packages=find_packages(), entry_points={ 'console_scripts': [ 'howlong = HowLong.HowLong:howlong' ] }, install_requires=[ 'psutil>=5.0.1', 'termcolor>=1.1.0', 'colorama>=0.3.9' ], url='https://github.com/mattjegan/howlong', version='0.0.2' )
from setuptools import setup, find_packages setup(author='<NAME>', description='A simple timing utility for long running processes', name='howlong', py_modules=[ 'HowLong.HowLong', ], packages=find_packages(), entry_points={ 'console_scripts': [ 'howlong = HowLong.HowLong:howlong' ] }, install_requires=[ 'psutil>=5.0.1', 'termcolor>=1.1.0', 'colorama>=0.3.9' ], url='https://github.com/mattjegan/howlong', version='0.0.2' )
none
1
1.296488
1
api/src/tests/application/functional_tests/housing_units/test_endpoints.py
iliaskaras/housing-units
0
6629965
<gh_stars>0 import pytest from fastapi.testclient import TestClient from tests.application.functional_tests.housing_units.utils import get_cleaned_housing_units_response from application.main import app client = TestClient(app) @pytest.mark.asyncio async def test_filter_housing_units_get_request( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token ): response = client.get("/housing-units", headers={"Authorization": "Bearer {}".format(admin_jwt_token)}) assert response.status_code == 200 response_json = response.json() total: int = response_json.get('total') assert total == len(stub_housing_units) housing_units = get_cleaned_housing_units_response(response_json.get('housing_units')) assert housing_units == [ { 'project_id': 'project id 1', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 2 }, { 'project_id': 'project id 2', 'street_name': 'street name test 2', 'borough': 'Brooklyn', 'postcode': 2, 'reporting_construction_type': 'construction type test 2', 'total_units': 4 }, { 'project_id': 'project id 3', 'street_name': 'street name test 3', 'borough': 'Staten Island', 'postcode': 3, 'reporting_construction_type': 'construction type test 3', 'total_units': 6 }, { 'project_id': 'project id 4', 'street_name': 'street name test 4', 'borough': 'Manhattan', 'postcode': 4, 'reporting_construction_type': 'construction type test 4', 'total_units': 8 }, { 'project_id': 'project id 5', 'street_name': 'street name test 5', 'borough': 'Bronx', 'postcode': 5, 'reporting_construction_type': 'construction type test 5', 'total_units': 10 }, { 'project_id': 'project id 6', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 12 }, { 'project_id': 'project id 7', 'street_name': 'street name test 2', 'borough': 'Brooklyn', 'postcode': 2, 'reporting_construction_type': 'construction type test 2', 'total_units': 14 }, { 'project_id': 'project id 11', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 16 }, { 'project_id': 'project id 8', 'street_name': 'street name test 3', 'borough': 'Staten Island', 'postcode': 3, 'reporting_construction_type': 'construction type test 3', 'total_units': 16 }, { 'project_id': 'project id 9', 'street_name': 'street name test 4', 'borough': 'Manhattan', 'postcode': 4, 'reporting_construction_type': 'construction type test 4', 'total_units': 18 }, { 'project_id': 'project id 10', 'street_name': 'street name test 5', 'borough': 'Bronx', 'postcode': 5, 'reporting_construction_type': 'construction type test 5', 'total_units': 20 }, { 'project_id': 'project id 12', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 25 }, { 'project_id': 'project id 12', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 25 } ] @pytest.mark.asyncio async def test_filter_housing_units_get_request_called_by_customer( populate_users, populate_housing_units, stub_housing_units, customer_jwt_token ): response = client.get( "/housing-units?street_name=street name test 5&num_units_min=15", headers={"Authorization": "Bearer {}".format(customer_jwt_token)}, ) assert response.status_code == 200 response_json = response.json() total: int = response_json.get('total') assert total == 1 housing_units = get_cleaned_housing_units_response(response_json.get('housing_units')) assert housing_units == [ { 'project_id': 'project id 10', 'street_name': 'street name test 5', 'borough': 'Bronx', 'postcode': 5, 'reporting_construction_type': 'construction type test 5', 'total_units': 20 } ] @pytest.mark.asyncio async def test_filter_housing_units_get_request_called_by_admin( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token ): response = client.get( "/housing-units?street_name=street name test 5&num_units_min=15", headers={"Authorization": "Bearer {}".format(admin_jwt_token)}, ) assert response.status_code == 200 response_json = response.json() total: int = response_json.get('total') assert total == 1 housing_units = get_cleaned_housing_units_response(response_json.get('housing_units')) assert housing_units == [ { 'project_id': 'project id 10', 'street_name': 'street name test 5', 'borough': 'Bronx', 'postcode': 5, 'reporting_construction_type': 'construction type test 5', 'total_units': 20 } ] @pytest.mark.asyncio async def test_filter_housing_units_get_request_raise_authorization_error_when_jwt_not_provided( populate_users, populate_housing_units, stub_housing_units ): response = client.get( "/housing-units?street_name=street name test 5&num_units_min=15" ) assert response.status_code == 403 assert response.json() == {'detail': 'Not authenticated'} @pytest.mark.asyncio async def test_filter_housing_units_get_request_raise_error_when_num_units_min_is_greater_than_max( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token ): response = client.get( "/housing-units?street_name=street name test 5&num_units_min=15&num_units_max=10", headers={"Authorization": "Bearer {}".format(admin_jwt_token)}, ) assert response.status_code == 400 assert response.json() == { "Detail": "The provided number of maximum units can't be smaller than the number of minimum units", "Type": "ValidationError" } @pytest.mark.asyncio async def test_retrieve_housing_unit_get_request_called_by_customer( populate_users, populate_housing_units, stub_housing_units, customer_jwt_token ): response = client.get( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(customer_jwt_token)} ) assert response.status_code == 200 response_json = response.json() assert response_json == { 'uuid': stub_housing_units[0].uuid, 'project_id': 'project id 1', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 2, 'project_name': 'project name 1', 'project_start_date': '2018-12-25T11:27:53', 'project_completion_date': None, 'building_id': None, 'house_number': None, 'bbl': None, 'bin': None, 'community_board': 'community board 1', 'council_district': None, 'census_tract': None, 'neighborhood_tabulation_area': None, 'latitude': None, 'longitude': None, 'latitude_internal': None, 'longitude_internal': None, 'building_completion_date': None, 'extended_affordability_status': 'extended affordability status 1', 'prevailing_wage_status': 'prevailing wage status 1', 'extremely_low_income_units': 0, 'very_low_income_units': 0, 'low_income_units': 0, 'moderate_income_units': 0, 'middle_income_units': 2, 'other_income_units': 0, 'studio_units': 0, 'one_br_units': 1, 'two_br_units': 0, 'three_br_units': 1, 'four_br_units': 0, 'five_br_units': 0, 'six_br_units': 0, 'unknown_br_units': 0, 'counted_rental_units': 1, 'counted_homeownership_units': 1, 'all_counted_units': 2 } @pytest.mark.asyncio async def test_retrieve_housing_unit_get_request_called_by_admin( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token ): response = client.get( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(admin_jwt_token)} ) assert response.status_code == 200 response_json = response.json() assert response_json == { 'uuid': stub_housing_units[0].uuid, 'project_id': 'project id 1', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 2, 'project_name': 'project name 1', 'project_start_date': '2018-12-25T11:27:53', 'project_completion_date': None, 'building_id': None, 'house_number': None, 'bbl': None, 'bin': None, 'community_board': 'community board 1', 'council_district': None, 'census_tract': None, 'neighborhood_tabulation_area': None, 'latitude': None, 'longitude': None, 'latitude_internal': None, 'longitude_internal': None, 'building_completion_date': None, 'extended_affordability_status': 'extended affordability status 1', 'prevailing_wage_status': 'prevailing wage status 1', 'extremely_low_income_units': 0, 'very_low_income_units': 0, 'low_income_units': 0, 'moderate_income_units': 0, 'middle_income_units': 2, 'other_income_units': 0, 'studio_units': 0, 'one_br_units': 1, 'two_br_units': 0, 'three_br_units': 1, 'four_br_units': 0, 'five_br_units': 0, 'six_br_units': 0, 'unknown_br_units': 0, 'counted_rental_units': 1, 'counted_homeownership_units': 1, 'all_counted_units': 2 } @pytest.mark.asyncio async def test_retrieve_housing_unit_get_request_raise_authorization_error_when_jwt_not_provided( populate_users, populate_housing_units, stub_housing_units ): response = client.get( "/housing-units/{}".format(stub_housing_units[0].uuid), ) assert response.status_code == 403 assert response.json() == {'detail': 'Not authenticated'} @pytest.mark.asyncio async def test_post_housing_unit_request_called_by_admin( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token, full_housing_unit_request_body ): response = client.post( "/housing-units/", headers={"Authorization": "Bearer {}".format(admin_jwt_token)}, json=full_housing_unit_request_body ) assert response.status_code == 200 response_json = response.json() assert response_json.get('uuid', None) response_json.pop('uuid') assert response_json == full_housing_unit_request_body @pytest.mark.asyncio async def test_post_housing_unit_request_called_by_customer( populate_users, populate_housing_units, stub_housing_units, customer_jwt_token, full_housing_unit_request_body ): response = client.post( "/housing-units/", headers={"Authorization": "Bearer {}".format(customer_jwt_token)}, json=full_housing_unit_request_body ) assert response.status_code == 200 response_json = response.json() assert response_json.get('uuid', None) response_json.pop('uuid') assert response_json == full_housing_unit_request_body @pytest.mark.asyncio async def test_post_housing_unit_request_raise_authorization_error_when_jwt_not_provided( populate_users, populate_housing_units, stub_housing_units ): response = client.post( "/housing-units/", ) assert response.status_code == 403 assert response.json() == {'detail': 'Not authenticated'} @pytest.mark.asyncio async def test_post_housing_unit_request_raise_unprocessable_entity_errors( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token, full_housing_unit_request_body ): # Remove project_id which is required. full_housing_unit_request_body.pop('project_id') # Add a wrong formatted date to date fields. full_housing_unit_request_body['project_completion_date'] = 'not_correct_date' full_housing_unit_request_body['building_completion_date'] = 'not_correct_date' full_housing_unit_request_body['project_start_date'] = 'not_correct_date' # Add string to integer and float fields. full_housing_unit_request_body['postcode'] = 'not_correct_integer_or_float' full_housing_unit_request_body['total_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['building_id'] = 'not_correct_integer_or_float' full_housing_unit_request_body['bbl'] = 'not_correct_integer_or_float' full_housing_unit_request_body['bin'] = 'not_correct_integer_or_float' full_housing_unit_request_body['council_district'] = 'not_correct_integer_or_float' full_housing_unit_request_body['latitude'] = 'not_correct_integer_or_float' full_housing_unit_request_body['longitude'] = 'not_correct_integer_or_float' full_housing_unit_request_body['latitude_internal'] = 'not_correct_integer_or_float' full_housing_unit_request_body['longitude_internal'] = 'not_correct_integer_or_float' full_housing_unit_request_body['extremely_low_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['very_low_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['low_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['moderate_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['middle_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['other_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['studio_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['one_br_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['unknown_br_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['counted_rental_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['counted_homeownership_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['all_counted_units'] = 'not_correct_integer_or_float' response = client.post( "/housing-units/", headers={"Authorization": "Bearer {}".format(admin_jwt_token)}, json=full_housing_unit_request_body ) assert response.status_code == 422 assert response.json() == { 'detail': [ {'loc': ['body', 'one_br_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'project_id'], 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ['body', 'building_id'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'bbl'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'bin'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'council_district'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'latitude'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'longitude'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'latitude_internal'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'longitude_internal'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'extremely_low_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'very_low_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'low_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'moderate_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'middle_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'other_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'studio_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'unknown_br_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'counted_rental_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'counted_homeownership_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'all_counted_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'postcode'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'total_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'project_start_date'], 'msg': 'invalid datetime format', 'type': 'value_error.datetime'}, {'loc': ['body', 'project_completion_date'], 'msg': 'invalid datetime format', 'type': 'value_error.datetime'}, {'loc': ['body', 'building_completion_date'], 'msg': 'invalid datetime format', 'type': 'value_error.datetime'} ] } @pytest.mark.asyncio async def test_put_housing_unit_request_called_by_admin( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token ): put_request_body = { "project_id": "44223", "street_name": "RALPH AVENUE TEST", "borough": "Brooklyn", "postcode": None, "reporting_construction_type": "New Construction TEST", "total_units": 10, "project_name": "ROCHESTER SUYDAM PHASE 1", "project_start_date": "2021-06-30T00:00:00", "project_completion_date": None, "building_id": 977564, "house_number": "329/331", "bbl": None, "bin": None, "community_board": "BK-03", "council_district": 977564, "census_tract": None, "neighborhood_tabulation_area": None, "latitude": None, "longitude": None, "latitude_internal": None, "longitude_internal": None, "building_completion_date": None, "extended_affordability_status": "No", "prevailing_wage_status": "Non Prevailing Wage", "extremely_low_income_units": 0, "very_low_income_units": 0, "low_income_units": 0, "moderate_income_units": 10, "middle_income_units": 0, "other_income_units": 0, "studio_units": 0, "one_br_units": 3, "two_br_units": 7, "three_br_units": 0, "four_br_units": 0, "five_br_units": 0, "six_br_units": 0, "unknown_br_units": 0, "counted_rental_units": 0, "counted_homeownership_units": 10, "all_counted_units": 10 } response = client.put( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(admin_jwt_token)}, json=put_request_body ) assert response.status_code == 200 response_json = response.json() assert response_json.get('uuid', None) response_json.pop('uuid') assert response_json == { 'project_id': '44223', 'street_name': 'RALPH AVENUE TEST', 'borough': 'Brooklyn', 'postcode': None, 'reporting_construction_type': 'New Construction TEST', 'total_units': 10, 'project_name': 'ROCHESTER SUYDAM PHASE 1', 'project_start_date': '2021-06-30T00:00:00', 'project_completion_date': None, 'building_id': 977564, 'house_number': '329/331', 'bbl': None, 'bin': None, 'community_board': 'BK-03', 'council_district': 977564, 'census_tract': None, 'neighborhood_tabulation_area': None, 'latitude': None, 'longitude': None, 'latitude_internal': None, 'longitude_internal': None, 'building_completion_date': None, 'extended_affordability_status': 'No', 'prevailing_wage_status': 'Non Prevailing Wage', 'extremely_low_income_units': 0, 'very_low_income_units': 0, 'low_income_units': 0, 'moderate_income_units': 10, 'middle_income_units': 0, 'other_income_units': 0, 'studio_units': 0, 'one_br_units': 3, 'two_br_units': 7, 'three_br_units': 0, 'four_br_units': 0, 'five_br_units': 0, 'six_br_units': 0, 'unknown_br_units': 0, 'counted_rental_units': 0, 'counted_homeownership_units': 10, 'all_counted_units': 10 } @pytest.mark.asyncio async def test_put_housing_unit_request_called_by_customer( populate_users, populate_housing_units, stub_housing_units, customer_jwt_token ): put_request_body = { "project_id": "44223", "street_name": "RALPH AVENUE TEST", "borough": "Brooklyn", "postcode": None, "reporting_construction_type": "New Construction TEST", "total_units": 10, "project_name": "ROCHESTER SUYDAM PHASE 1", "project_start_date": "2021-06-30T00:00:00", "project_completion_date": None, "building_id": 977564, "house_number": "329/331", "bbl": None, "bin": None, "community_board": "BK-03", "council_district": 977564, "census_tract": None, "neighborhood_tabulation_area": None, "latitude": None, "longitude": None, "latitude_internal": None, "longitude_internal": None, "building_completion_date": None, "extended_affordability_status": "No", "prevailing_wage_status": "Non Prevailing Wage", "extremely_low_income_units": 0, "very_low_income_units": 0, "low_income_units": 0, "moderate_income_units": 10, "middle_income_units": 0, "other_income_units": 0, "studio_units": 0, "one_br_units": 3, "two_br_units": 7, "three_br_units": 0, "four_br_units": 0, "five_br_units": 0, "six_br_units": 0, "unknown_br_units": 0, "counted_rental_units": 0, "counted_homeownership_units": 10, "all_counted_units": 10 } response = client.put( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(customer_jwt_token)}, json=put_request_body ) assert response.status_code == 200 response_json = response.json() assert response_json.get('uuid', None) response_json.pop('uuid') assert response_json == { 'project_id': '44223', 'street_name': 'RALPH AVENUE TEST', 'borough': 'Brooklyn', 'postcode': None, 'reporting_construction_type': 'New Construction TEST', 'total_units': 10, 'project_name': 'ROCHESTER SUYDAM PHASE 1', 'project_start_date': '2021-06-30T00:00:00', 'project_completion_date': None, 'building_id': 977564, 'house_number': '329/331', 'bbl': None, 'bin': None, 'community_board': 'BK-03', 'council_district': 977564, 'census_tract': None, 'neighborhood_tabulation_area': None, 'latitude': None, 'longitude': None, 'latitude_internal': None, 'longitude_internal': None, 'building_completion_date': None, 'extended_affordability_status': 'No', 'prevailing_wage_status': 'Non Prevailing Wage', 'extremely_low_income_units': 0, 'very_low_income_units': 0, 'low_income_units': 0, 'moderate_income_units': 10, 'middle_income_units': 0, 'other_income_units': 0, 'studio_units': 0, 'one_br_units': 3, 'two_br_units': 7, 'three_br_units': 0, 'four_br_units': 0, 'five_br_units': 0, 'six_br_units': 0, 'unknown_br_units': 0, 'counted_rental_units': 0, 'counted_homeownership_units': 10, 'all_counted_units': 10 } @pytest.mark.asyncio async def test_put_housing_unit_request_raise_authorization_error_when_jwt_not_provided( populate_users, populate_housing_units, stub_housing_units ): response = client.put( "/housing-units/{}".format(stub_housing_units[0].uuid), ) assert response.status_code == 403 assert response.json() == {'detail': 'Not authenticated'} @pytest.mark.asyncio async def test_put_housing_unit_request_raise_unprocessable_entity_errors( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token, full_housing_unit_request_body ): # Remove project_id which is required. full_housing_unit_request_body.pop('project_id') # Add a wrong formatted date to date fields. full_housing_unit_request_body['project_completion_date'] = 'not_correct_date' full_housing_unit_request_body['building_completion_date'] = 'not_correct_date' full_housing_unit_request_body['project_start_date'] = 'not_correct_date' # Add string to integer and float fields. full_housing_unit_request_body['postcode'] = 'not_correct_integer_or_float' full_housing_unit_request_body['total_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['building_id'] = 'not_correct_integer_or_float' full_housing_unit_request_body['bbl'] = 'not_correct_integer_or_float' full_housing_unit_request_body['bin'] = 'not_correct_integer_or_float' full_housing_unit_request_body['council_district'] = 'not_correct_integer_or_float' full_housing_unit_request_body['latitude'] = 'not_correct_integer_or_float' full_housing_unit_request_body['longitude'] = 'not_correct_integer_or_float' full_housing_unit_request_body['latitude_internal'] = 'not_correct_integer_or_float' full_housing_unit_request_body['longitude_internal'] = 'not_correct_integer_or_float' full_housing_unit_request_body['extremely_low_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['very_low_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['low_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['moderate_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['middle_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['other_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['studio_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['one_br_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['unknown_br_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['counted_rental_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['counted_homeownership_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['all_counted_units'] = 'not_correct_integer_or_float' response = client.put( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(admin_jwt_token)}, json=full_housing_unit_request_body ) assert response.status_code == 422 assert response.json() == { 'detail': [ {'loc': ['body', 'one_br_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'project_id'], 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ['body', 'building_id'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'bbl'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'bin'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'council_district'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'latitude'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'longitude'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'latitude_internal'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'longitude_internal'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'extremely_low_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'very_low_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'low_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'moderate_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'middle_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'other_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'studio_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'unknown_br_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'counted_rental_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'counted_homeownership_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'all_counted_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'postcode'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'total_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'project_start_date'], 'msg': 'invalid datetime format', 'type': 'value_error.datetime'}, {'loc': ['body', 'project_completion_date'], 'msg': 'invalid datetime format', 'type': 'value_error.datetime'}, {'loc': ['body', 'building_completion_date'], 'msg': 'invalid datetime format', 'type': 'value_error.datetime'} ] } @pytest.mark.asyncio async def test_delete_housing_unit_get_request_called_by_customer( populate_users, populate_housing_units, stub_housing_units, customer_jwt_token ): response = client.delete( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(customer_jwt_token)} ) assert response.status_code == 200 response_json = response.json() assert response_json == {'status': 'deleted', 'uuid': stub_housing_units[0].uuid} @pytest.mark.asyncio async def test_delete_housing_unit_get_request_called_by_admin( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token ): response = client.delete( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(admin_jwt_token)} ) assert response.status_code == 200 response_json = response.json() assert response_json == {'status': 'deleted', 'uuid': stub_housing_units[0].uuid} @pytest.mark.asyncio async def test_delete_housing_unit_get_request_raise_authorization_error_when_jwt_not_provided( populate_users, populate_housing_units, stub_housing_units ): response = client.get( "/housing-units/{}".format(stub_housing_units[0].uuid), ) assert response.status_code == 403 assert response.json() == {'detail': 'Not authenticated'}
import pytest from fastapi.testclient import TestClient from tests.application.functional_tests.housing_units.utils import get_cleaned_housing_units_response from application.main import app client = TestClient(app) @pytest.mark.asyncio async def test_filter_housing_units_get_request( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token ): response = client.get("/housing-units", headers={"Authorization": "Bearer {}".format(admin_jwt_token)}) assert response.status_code == 200 response_json = response.json() total: int = response_json.get('total') assert total == len(stub_housing_units) housing_units = get_cleaned_housing_units_response(response_json.get('housing_units')) assert housing_units == [ { 'project_id': 'project id 1', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 2 }, { 'project_id': 'project id 2', 'street_name': 'street name test 2', 'borough': 'Brooklyn', 'postcode': 2, 'reporting_construction_type': 'construction type test 2', 'total_units': 4 }, { 'project_id': 'project id 3', 'street_name': 'street name test 3', 'borough': 'Staten Island', 'postcode': 3, 'reporting_construction_type': 'construction type test 3', 'total_units': 6 }, { 'project_id': 'project id 4', 'street_name': 'street name test 4', 'borough': 'Manhattan', 'postcode': 4, 'reporting_construction_type': 'construction type test 4', 'total_units': 8 }, { 'project_id': 'project id 5', 'street_name': 'street name test 5', 'borough': 'Bronx', 'postcode': 5, 'reporting_construction_type': 'construction type test 5', 'total_units': 10 }, { 'project_id': 'project id 6', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 12 }, { 'project_id': 'project id 7', 'street_name': 'street name test 2', 'borough': 'Brooklyn', 'postcode': 2, 'reporting_construction_type': 'construction type test 2', 'total_units': 14 }, { 'project_id': 'project id 11', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 16 }, { 'project_id': 'project id 8', 'street_name': 'street name test 3', 'borough': 'Staten Island', 'postcode': 3, 'reporting_construction_type': 'construction type test 3', 'total_units': 16 }, { 'project_id': 'project id 9', 'street_name': 'street name test 4', 'borough': 'Manhattan', 'postcode': 4, 'reporting_construction_type': 'construction type test 4', 'total_units': 18 }, { 'project_id': 'project id 10', 'street_name': 'street name test 5', 'borough': 'Bronx', 'postcode': 5, 'reporting_construction_type': 'construction type test 5', 'total_units': 20 }, { 'project_id': 'project id 12', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 25 }, { 'project_id': 'project id 12', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 25 } ] @pytest.mark.asyncio async def test_filter_housing_units_get_request_called_by_customer( populate_users, populate_housing_units, stub_housing_units, customer_jwt_token ): response = client.get( "/housing-units?street_name=street name test 5&num_units_min=15", headers={"Authorization": "Bearer {}".format(customer_jwt_token)}, ) assert response.status_code == 200 response_json = response.json() total: int = response_json.get('total') assert total == 1 housing_units = get_cleaned_housing_units_response(response_json.get('housing_units')) assert housing_units == [ { 'project_id': 'project id 10', 'street_name': 'street name test 5', 'borough': 'Bronx', 'postcode': 5, 'reporting_construction_type': 'construction type test 5', 'total_units': 20 } ] @pytest.mark.asyncio async def test_filter_housing_units_get_request_called_by_admin( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token ): response = client.get( "/housing-units?street_name=street name test 5&num_units_min=15", headers={"Authorization": "Bearer {}".format(admin_jwt_token)}, ) assert response.status_code == 200 response_json = response.json() total: int = response_json.get('total') assert total == 1 housing_units = get_cleaned_housing_units_response(response_json.get('housing_units')) assert housing_units == [ { 'project_id': 'project id 10', 'street_name': 'street name test 5', 'borough': 'Bronx', 'postcode': 5, 'reporting_construction_type': 'construction type test 5', 'total_units': 20 } ] @pytest.mark.asyncio async def test_filter_housing_units_get_request_raise_authorization_error_when_jwt_not_provided( populate_users, populate_housing_units, stub_housing_units ): response = client.get( "/housing-units?street_name=street name test 5&num_units_min=15" ) assert response.status_code == 403 assert response.json() == {'detail': 'Not authenticated'} @pytest.mark.asyncio async def test_filter_housing_units_get_request_raise_error_when_num_units_min_is_greater_than_max( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token ): response = client.get( "/housing-units?street_name=street name test 5&num_units_min=15&num_units_max=10", headers={"Authorization": "Bearer {}".format(admin_jwt_token)}, ) assert response.status_code == 400 assert response.json() == { "Detail": "The provided number of maximum units can't be smaller than the number of minimum units", "Type": "ValidationError" } @pytest.mark.asyncio async def test_retrieve_housing_unit_get_request_called_by_customer( populate_users, populate_housing_units, stub_housing_units, customer_jwt_token ): response = client.get( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(customer_jwt_token)} ) assert response.status_code == 200 response_json = response.json() assert response_json == { 'uuid': stub_housing_units[0].uuid, 'project_id': 'project id 1', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 2, 'project_name': 'project name 1', 'project_start_date': '2018-12-25T11:27:53', 'project_completion_date': None, 'building_id': None, 'house_number': None, 'bbl': None, 'bin': None, 'community_board': 'community board 1', 'council_district': None, 'census_tract': None, 'neighborhood_tabulation_area': None, 'latitude': None, 'longitude': None, 'latitude_internal': None, 'longitude_internal': None, 'building_completion_date': None, 'extended_affordability_status': 'extended affordability status 1', 'prevailing_wage_status': 'prevailing wage status 1', 'extremely_low_income_units': 0, 'very_low_income_units': 0, 'low_income_units': 0, 'moderate_income_units': 0, 'middle_income_units': 2, 'other_income_units': 0, 'studio_units': 0, 'one_br_units': 1, 'two_br_units': 0, 'three_br_units': 1, 'four_br_units': 0, 'five_br_units': 0, 'six_br_units': 0, 'unknown_br_units': 0, 'counted_rental_units': 1, 'counted_homeownership_units': 1, 'all_counted_units': 2 } @pytest.mark.asyncio async def test_retrieve_housing_unit_get_request_called_by_admin( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token ): response = client.get( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(admin_jwt_token)} ) assert response.status_code == 200 response_json = response.json() assert response_json == { 'uuid': stub_housing_units[0].uuid, 'project_id': 'project id 1', 'street_name': 'street name test 1', 'borough': 'Queens', 'postcode': 1, 'reporting_construction_type': 'construction type test 1', 'total_units': 2, 'project_name': 'project name 1', 'project_start_date': '2018-12-25T11:27:53', 'project_completion_date': None, 'building_id': None, 'house_number': None, 'bbl': None, 'bin': None, 'community_board': 'community board 1', 'council_district': None, 'census_tract': None, 'neighborhood_tabulation_area': None, 'latitude': None, 'longitude': None, 'latitude_internal': None, 'longitude_internal': None, 'building_completion_date': None, 'extended_affordability_status': 'extended affordability status 1', 'prevailing_wage_status': 'prevailing wage status 1', 'extremely_low_income_units': 0, 'very_low_income_units': 0, 'low_income_units': 0, 'moderate_income_units': 0, 'middle_income_units': 2, 'other_income_units': 0, 'studio_units': 0, 'one_br_units': 1, 'two_br_units': 0, 'three_br_units': 1, 'four_br_units': 0, 'five_br_units': 0, 'six_br_units': 0, 'unknown_br_units': 0, 'counted_rental_units': 1, 'counted_homeownership_units': 1, 'all_counted_units': 2 } @pytest.mark.asyncio async def test_retrieve_housing_unit_get_request_raise_authorization_error_when_jwt_not_provided( populate_users, populate_housing_units, stub_housing_units ): response = client.get( "/housing-units/{}".format(stub_housing_units[0].uuid), ) assert response.status_code == 403 assert response.json() == {'detail': 'Not authenticated'} @pytest.mark.asyncio async def test_post_housing_unit_request_called_by_admin( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token, full_housing_unit_request_body ): response = client.post( "/housing-units/", headers={"Authorization": "Bearer {}".format(admin_jwt_token)}, json=full_housing_unit_request_body ) assert response.status_code == 200 response_json = response.json() assert response_json.get('uuid', None) response_json.pop('uuid') assert response_json == full_housing_unit_request_body @pytest.mark.asyncio async def test_post_housing_unit_request_called_by_customer( populate_users, populate_housing_units, stub_housing_units, customer_jwt_token, full_housing_unit_request_body ): response = client.post( "/housing-units/", headers={"Authorization": "Bearer {}".format(customer_jwt_token)}, json=full_housing_unit_request_body ) assert response.status_code == 200 response_json = response.json() assert response_json.get('uuid', None) response_json.pop('uuid') assert response_json == full_housing_unit_request_body @pytest.mark.asyncio async def test_post_housing_unit_request_raise_authorization_error_when_jwt_not_provided( populate_users, populate_housing_units, stub_housing_units ): response = client.post( "/housing-units/", ) assert response.status_code == 403 assert response.json() == {'detail': 'Not authenticated'} @pytest.mark.asyncio async def test_post_housing_unit_request_raise_unprocessable_entity_errors( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token, full_housing_unit_request_body ): # Remove project_id which is required. full_housing_unit_request_body.pop('project_id') # Add a wrong formatted date to date fields. full_housing_unit_request_body['project_completion_date'] = 'not_correct_date' full_housing_unit_request_body['building_completion_date'] = 'not_correct_date' full_housing_unit_request_body['project_start_date'] = 'not_correct_date' # Add string to integer and float fields. full_housing_unit_request_body['postcode'] = 'not_correct_integer_or_float' full_housing_unit_request_body['total_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['building_id'] = 'not_correct_integer_or_float' full_housing_unit_request_body['bbl'] = 'not_correct_integer_or_float' full_housing_unit_request_body['bin'] = 'not_correct_integer_or_float' full_housing_unit_request_body['council_district'] = 'not_correct_integer_or_float' full_housing_unit_request_body['latitude'] = 'not_correct_integer_or_float' full_housing_unit_request_body['longitude'] = 'not_correct_integer_or_float' full_housing_unit_request_body['latitude_internal'] = 'not_correct_integer_or_float' full_housing_unit_request_body['longitude_internal'] = 'not_correct_integer_or_float' full_housing_unit_request_body['extremely_low_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['very_low_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['low_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['moderate_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['middle_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['other_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['studio_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['one_br_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['unknown_br_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['counted_rental_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['counted_homeownership_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['all_counted_units'] = 'not_correct_integer_or_float' response = client.post( "/housing-units/", headers={"Authorization": "Bearer {}".format(admin_jwt_token)}, json=full_housing_unit_request_body ) assert response.status_code == 422 assert response.json() == { 'detail': [ {'loc': ['body', 'one_br_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'project_id'], 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ['body', 'building_id'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'bbl'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'bin'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'council_district'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'latitude'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'longitude'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'latitude_internal'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'longitude_internal'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'extremely_low_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'very_low_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'low_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'moderate_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'middle_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'other_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'studio_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'unknown_br_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'counted_rental_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'counted_homeownership_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'all_counted_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'postcode'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'total_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'project_start_date'], 'msg': 'invalid datetime format', 'type': 'value_error.datetime'}, {'loc': ['body', 'project_completion_date'], 'msg': 'invalid datetime format', 'type': 'value_error.datetime'}, {'loc': ['body', 'building_completion_date'], 'msg': 'invalid datetime format', 'type': 'value_error.datetime'} ] } @pytest.mark.asyncio async def test_put_housing_unit_request_called_by_admin( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token ): put_request_body = { "project_id": "44223", "street_name": "RALPH AVENUE TEST", "borough": "Brooklyn", "postcode": None, "reporting_construction_type": "New Construction TEST", "total_units": 10, "project_name": "ROCHESTER SUYDAM PHASE 1", "project_start_date": "2021-06-30T00:00:00", "project_completion_date": None, "building_id": 977564, "house_number": "329/331", "bbl": None, "bin": None, "community_board": "BK-03", "council_district": 977564, "census_tract": None, "neighborhood_tabulation_area": None, "latitude": None, "longitude": None, "latitude_internal": None, "longitude_internal": None, "building_completion_date": None, "extended_affordability_status": "No", "prevailing_wage_status": "Non Prevailing Wage", "extremely_low_income_units": 0, "very_low_income_units": 0, "low_income_units": 0, "moderate_income_units": 10, "middle_income_units": 0, "other_income_units": 0, "studio_units": 0, "one_br_units": 3, "two_br_units": 7, "three_br_units": 0, "four_br_units": 0, "five_br_units": 0, "six_br_units": 0, "unknown_br_units": 0, "counted_rental_units": 0, "counted_homeownership_units": 10, "all_counted_units": 10 } response = client.put( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(admin_jwt_token)}, json=put_request_body ) assert response.status_code == 200 response_json = response.json() assert response_json.get('uuid', None) response_json.pop('uuid') assert response_json == { 'project_id': '44223', 'street_name': 'RALPH AVENUE TEST', 'borough': 'Brooklyn', 'postcode': None, 'reporting_construction_type': 'New Construction TEST', 'total_units': 10, 'project_name': 'ROCHESTER SUYDAM PHASE 1', 'project_start_date': '2021-06-30T00:00:00', 'project_completion_date': None, 'building_id': 977564, 'house_number': '329/331', 'bbl': None, 'bin': None, 'community_board': 'BK-03', 'council_district': 977564, 'census_tract': None, 'neighborhood_tabulation_area': None, 'latitude': None, 'longitude': None, 'latitude_internal': None, 'longitude_internal': None, 'building_completion_date': None, 'extended_affordability_status': 'No', 'prevailing_wage_status': 'Non Prevailing Wage', 'extremely_low_income_units': 0, 'very_low_income_units': 0, 'low_income_units': 0, 'moderate_income_units': 10, 'middle_income_units': 0, 'other_income_units': 0, 'studio_units': 0, 'one_br_units': 3, 'two_br_units': 7, 'three_br_units': 0, 'four_br_units': 0, 'five_br_units': 0, 'six_br_units': 0, 'unknown_br_units': 0, 'counted_rental_units': 0, 'counted_homeownership_units': 10, 'all_counted_units': 10 } @pytest.mark.asyncio async def test_put_housing_unit_request_called_by_customer( populate_users, populate_housing_units, stub_housing_units, customer_jwt_token ): put_request_body = { "project_id": "44223", "street_name": "RALPH AVENUE TEST", "borough": "Brooklyn", "postcode": None, "reporting_construction_type": "New Construction TEST", "total_units": 10, "project_name": "ROCHESTER SUYDAM PHASE 1", "project_start_date": "2021-06-30T00:00:00", "project_completion_date": None, "building_id": 977564, "house_number": "329/331", "bbl": None, "bin": None, "community_board": "BK-03", "council_district": 977564, "census_tract": None, "neighborhood_tabulation_area": None, "latitude": None, "longitude": None, "latitude_internal": None, "longitude_internal": None, "building_completion_date": None, "extended_affordability_status": "No", "prevailing_wage_status": "Non Prevailing Wage", "extremely_low_income_units": 0, "very_low_income_units": 0, "low_income_units": 0, "moderate_income_units": 10, "middle_income_units": 0, "other_income_units": 0, "studio_units": 0, "one_br_units": 3, "two_br_units": 7, "three_br_units": 0, "four_br_units": 0, "five_br_units": 0, "six_br_units": 0, "unknown_br_units": 0, "counted_rental_units": 0, "counted_homeownership_units": 10, "all_counted_units": 10 } response = client.put( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(customer_jwt_token)}, json=put_request_body ) assert response.status_code == 200 response_json = response.json() assert response_json.get('uuid', None) response_json.pop('uuid') assert response_json == { 'project_id': '44223', 'street_name': 'RALPH AVENUE TEST', 'borough': 'Brooklyn', 'postcode': None, 'reporting_construction_type': 'New Construction TEST', 'total_units': 10, 'project_name': 'ROCHESTER SUYDAM PHASE 1', 'project_start_date': '2021-06-30T00:00:00', 'project_completion_date': None, 'building_id': 977564, 'house_number': '329/331', 'bbl': None, 'bin': None, 'community_board': 'BK-03', 'council_district': 977564, 'census_tract': None, 'neighborhood_tabulation_area': None, 'latitude': None, 'longitude': None, 'latitude_internal': None, 'longitude_internal': None, 'building_completion_date': None, 'extended_affordability_status': 'No', 'prevailing_wage_status': 'Non Prevailing Wage', 'extremely_low_income_units': 0, 'very_low_income_units': 0, 'low_income_units': 0, 'moderate_income_units': 10, 'middle_income_units': 0, 'other_income_units': 0, 'studio_units': 0, 'one_br_units': 3, 'two_br_units': 7, 'three_br_units': 0, 'four_br_units': 0, 'five_br_units': 0, 'six_br_units': 0, 'unknown_br_units': 0, 'counted_rental_units': 0, 'counted_homeownership_units': 10, 'all_counted_units': 10 } @pytest.mark.asyncio async def test_put_housing_unit_request_raise_authorization_error_when_jwt_not_provided( populate_users, populate_housing_units, stub_housing_units ): response = client.put( "/housing-units/{}".format(stub_housing_units[0].uuid), ) assert response.status_code == 403 assert response.json() == {'detail': 'Not authenticated'} @pytest.mark.asyncio async def test_put_housing_unit_request_raise_unprocessable_entity_errors( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token, full_housing_unit_request_body ): # Remove project_id which is required. full_housing_unit_request_body.pop('project_id') # Add a wrong formatted date to date fields. full_housing_unit_request_body['project_completion_date'] = 'not_correct_date' full_housing_unit_request_body['building_completion_date'] = 'not_correct_date' full_housing_unit_request_body['project_start_date'] = 'not_correct_date' # Add string to integer and float fields. full_housing_unit_request_body['postcode'] = 'not_correct_integer_or_float' full_housing_unit_request_body['total_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['building_id'] = 'not_correct_integer_or_float' full_housing_unit_request_body['bbl'] = 'not_correct_integer_or_float' full_housing_unit_request_body['bin'] = 'not_correct_integer_or_float' full_housing_unit_request_body['council_district'] = 'not_correct_integer_or_float' full_housing_unit_request_body['latitude'] = 'not_correct_integer_or_float' full_housing_unit_request_body['longitude'] = 'not_correct_integer_or_float' full_housing_unit_request_body['latitude_internal'] = 'not_correct_integer_or_float' full_housing_unit_request_body['longitude_internal'] = 'not_correct_integer_or_float' full_housing_unit_request_body['extremely_low_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['very_low_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['low_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['moderate_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['middle_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['other_income_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['studio_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['one_br_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['unknown_br_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['counted_rental_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['counted_homeownership_units'] = 'not_correct_integer_or_float' full_housing_unit_request_body['all_counted_units'] = 'not_correct_integer_or_float' response = client.put( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(admin_jwt_token)}, json=full_housing_unit_request_body ) assert response.status_code == 422 assert response.json() == { 'detail': [ {'loc': ['body', 'one_br_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'project_id'], 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ['body', 'building_id'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'bbl'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'bin'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'council_district'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'latitude'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'longitude'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'latitude_internal'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'longitude_internal'], 'msg': 'value is not a valid float', 'type': 'type_error.float'}, {'loc': ['body', 'extremely_low_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'very_low_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'low_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'moderate_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'middle_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'other_income_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'studio_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'unknown_br_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'counted_rental_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'counted_homeownership_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'all_counted_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'postcode'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'total_units'], 'msg': 'value is not a valid integer', 'type': 'type_error.integer'}, {'loc': ['body', 'project_start_date'], 'msg': 'invalid datetime format', 'type': 'value_error.datetime'}, {'loc': ['body', 'project_completion_date'], 'msg': 'invalid datetime format', 'type': 'value_error.datetime'}, {'loc': ['body', 'building_completion_date'], 'msg': 'invalid datetime format', 'type': 'value_error.datetime'} ] } @pytest.mark.asyncio async def test_delete_housing_unit_get_request_called_by_customer( populate_users, populate_housing_units, stub_housing_units, customer_jwt_token ): response = client.delete( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(customer_jwt_token)} ) assert response.status_code == 200 response_json = response.json() assert response_json == {'status': 'deleted', 'uuid': stub_housing_units[0].uuid} @pytest.mark.asyncio async def test_delete_housing_unit_get_request_called_by_admin( populate_users, populate_housing_units, stub_housing_units, admin_jwt_token ): response = client.delete( "/housing-units/{}".format(stub_housing_units[0].uuid), headers={"Authorization": "Bearer {}".format(admin_jwt_token)} ) assert response.status_code == 200 response_json = response.json() assert response_json == {'status': 'deleted', 'uuid': stub_housing_units[0].uuid} @pytest.mark.asyncio async def test_delete_housing_unit_get_request_raise_authorization_error_when_jwt_not_provided( populate_users, populate_housing_units, stub_housing_units ): response = client.get( "/housing-units/{}".format(stub_housing_units[0].uuid), ) assert response.status_code == 403 assert response.json() == {'detail': 'Not authenticated'}
en
0.914375
# Remove project_id which is required. # Add a wrong formatted date to date fields. # Add string to integer and float fields. # Remove project_id which is required. # Add a wrong formatted date to date fields. # Add string to integer and float fields.
2.445397
2
Source/PW2_main.py
xaviercucurull/sel-forests
0
6629966
""" Supervised and Experiential Learning (SEL) Master in Artificial Intelligence (UPC) PW2 - Implementation of a Decision Forest and Random Forest Author: <NAME> <<EMAIL>> Course: 2020/2021 """ import sys import os sys.path.append(os.path.abspath(r'..')) import pandas as pd import time import math from sklearn.metrics import classification_report, f1_score, accuracy_score from sklearn.model_selection import train_test_split from Data import datasets from cart import CART from forest import DecisionForest, RandomForest def test_small(): # Load Heart Disease database from CSV # https://www.kaggle.com/ronitf/heart-disease-uci print('###########################################################') print('################## Test Small Dataset ####################') print('################## Heart Disease ####################') print('###########################################################\n') x, y = datasets.load_csv(os.path.join('..','DATA', 'heart.csv')) cart_acc = test_CART(x, y) results_rf = test_random_forest(x, y) results_df = test_decision_forest(x, y) return results_rf, results_df, cart_acc def test_medium(): # Load Mammographic Mass dataset print('###########################################################') print('################## Test Medium Dataset ####################') print('################## Mammographic Mass ####################') print('###########################################################\n') x, y = datasets.load_mammographic_mass() cart_acc = test_CART(x, y) results_rf = test_random_forest(x, y) results_df = test_decision_forest(x, y) return results_rf, results_df, cart_acc def test_large(): # Load Rice dataset print('###########################################################') print('#################### Test Large Dataset ###################') print('######################### Rice #########################') print('###########################################################\n') x, y = datasets.load_rice() cart_acc = test_CART(x, y) results_rf, results_df = None, None results_rf = test_random_forest(x, y) results_df = test_decision_forest(x, y) return results_rf, results_df, cart_acc def split_dataset(x, y): """ Split data into 75% train and 25% test Args: x (DataFrame): data features y (array-like): data labels """ X_train, X_test, y_train, y_test = train_test_split(x, y, stratify=y, test_size=0.25, random_state=42) X_train.reset_index(drop=True, inplace=True) X_test.reset_index(drop=True, inplace=True) y_train.reset_index(drop=True, inplace=True) y_test.reset_index(drop=True, inplace=True) return X_train, X_test, y_train, y_test def test_CART(x, y): """ Test CART Args: x ([type]): [description] y ([type]): [description] """ print(' -----------------------') print('| Test CART |') print(' -----------------------\n') # Split data into 75% train and 25% test X_train, X_test, y_train, y_test = split_dataset(x, y) print('Data attributes: {}'.format(len(X_train.keys()))) print('Training size: {}'.format(len(y_train))) print('Test size: {}\n'.format(len(y_test))) cart = CART(verbose=0) f1, acc, fit_t, pred_t = evaluate_model(cart, X_train, y_train, X_test, y_test, return_scores=True) return acc def test_forest(x, y, NT_values, F_values, forest_classifier): # Split data into 75% train and 25% test X_train, X_test, y_train, y_test = split_dataset(x, y) print('Training size: {}'.format(len(y_train))) print('Test size: {}\n'.format(len(y_test))) nt_vals = [] f_vals = [] accuracies = [] fit_times = [] pred_times = [] importances = [] for nt in NT_values: for f in F_values: # Instantiate Random Forest and evaluate it model = forest_classifier(NT=nt, F=f) model.fit(X_train, y_train) f1, acc, fit_t, pred_t = evaluate_model(model, X_train, y_train, X_test, y_test, print_classificiation_report=False, return_scores=True) # Save parameters used and results nt_vals.append(nt) f_vals.append(f) accuracies.append(acc) fit_times.append(fit_t) pred_times.append(pred_t) importances.append(model.feature_importances.to_dict()) # Print results print('NT={} F={} -> Accuracy: {:.2f}%'.format(nt, f, acc*100)) print('Feature importance:\n{}\n'.format(model.feature_importances)) # Save results in a table results_table = pd.DataFrame({'NT': nt_vals, 'F': f_vals, 'Accuracy': accuracies, 'Fit time': fit_times, 'Prediction times': pred_times, 'Feature importance': importances}) return results_table def test_random_forest(x, y): """ Test random forest with proposed hyperparameters """ print(' -----------------------') print('| Test Random Forest |') print(' -----------------------\n') M = len(x.columns) print('Data attributes: {}'.format(M)) # Hyperparameters to test NT_values = [1, 10, 25, 50, 75, 100] F_values = [1, 3, int(math.log2(M) + 1), int(math.sqrt(M))] # Remove duplicates F_values = set(F_values) # Evaluate model with all hyperparameter combinations results_table = test_forest(x, y, NT_values, F_values, RandomForest) return results_table def test_decision_forest(x, y): """ Test decision forest with proposed hyperparameters """ print(' -----------------------') print('| Test Decision Forest |') print(' -----------------------\n') M = len(x.columns) print('Data attributes: {}'.format(M)) # Hyperparameters to test NT_values = [1, 10, 25, 50, 75, 100] F_values = [int(M/4), int(M/2), int(3*M/4), 'Runif(1/M)'] # Remove duplicates F_values = set(F_values) # Evaluate model with all hyperparameter combinations results_table = test_forest(x, y, NT_values, F_values, DecisionForest) return results_table def evaluate_model(model, x_train, y_train, x_test, y_test, print_classificiation_report=True, return_scores=False): # Train classifier print('Training model...') time0 = time.time() model.fit(x_train, y_train.to_list()) time_fit = time.time() - time0 print('Model trained in {:.1f}s'.format(time_fit)) # Predict test data time0 = time.time() y_pred = model.predict(x_test) time_predict = time.time() - time0 print('Prediction made in {:.1f}s'.format(time_predict)) if print_classificiation_report: print('Classification report:') print(classification_report(y_test, y_pred)) f1 = f1_score(y_test, y_pred, average='weighted') acc = accuracy_score(y_test, y_pred) print('F1-Score: {:.2f}%'.format(f1*100)) print('Accuracy: {:.2f}%\n'.format(acc*100)) if return_scores: return f1, acc, time_fit, time_predict if __name__ == '__main__': small_results_rf, small_results_df, small_cart_acc = test_small() small_results_rf.to_csv(os.path.join('out', 'small_results_rf.csv'), sep=';') small_results_df.to_csv(os.path.join('out', 'small_results_df.csv'), sep=';') medium_results_rf, medium_results_df, medium_cart_acc = test_medium() medium_results_rf.to_csv(os.path.join('out', 'medium_results_rf.csv'), sep=';') medium_results_df.to_csv(os.path.join('out', 'medium_results_df.csv'), sep=';') large_results_rf, large_results_df, large_cart_acc = test_large() large_results_rf.to_csv(os.path.join('out', 'large_results_rf.csv'), sep=';') large_results_df.to_csv(os.path.join('out', 'large_results_df.csv'), sep=';')
""" Supervised and Experiential Learning (SEL) Master in Artificial Intelligence (UPC) PW2 - Implementation of a Decision Forest and Random Forest Author: <NAME> <<EMAIL>> Course: 2020/2021 """ import sys import os sys.path.append(os.path.abspath(r'..')) import pandas as pd import time import math from sklearn.metrics import classification_report, f1_score, accuracy_score from sklearn.model_selection import train_test_split from Data import datasets from cart import CART from forest import DecisionForest, RandomForest def test_small(): # Load Heart Disease database from CSV # https://www.kaggle.com/ronitf/heart-disease-uci print('###########################################################') print('################## Test Small Dataset ####################') print('################## Heart Disease ####################') print('###########################################################\n') x, y = datasets.load_csv(os.path.join('..','DATA', 'heart.csv')) cart_acc = test_CART(x, y) results_rf = test_random_forest(x, y) results_df = test_decision_forest(x, y) return results_rf, results_df, cart_acc def test_medium(): # Load Mammographic Mass dataset print('###########################################################') print('################## Test Medium Dataset ####################') print('################## Mammographic Mass ####################') print('###########################################################\n') x, y = datasets.load_mammographic_mass() cart_acc = test_CART(x, y) results_rf = test_random_forest(x, y) results_df = test_decision_forest(x, y) return results_rf, results_df, cart_acc def test_large(): # Load Rice dataset print('###########################################################') print('#################### Test Large Dataset ###################') print('######################### Rice #########################') print('###########################################################\n') x, y = datasets.load_rice() cart_acc = test_CART(x, y) results_rf, results_df = None, None results_rf = test_random_forest(x, y) results_df = test_decision_forest(x, y) return results_rf, results_df, cart_acc def split_dataset(x, y): """ Split data into 75% train and 25% test Args: x (DataFrame): data features y (array-like): data labels """ X_train, X_test, y_train, y_test = train_test_split(x, y, stratify=y, test_size=0.25, random_state=42) X_train.reset_index(drop=True, inplace=True) X_test.reset_index(drop=True, inplace=True) y_train.reset_index(drop=True, inplace=True) y_test.reset_index(drop=True, inplace=True) return X_train, X_test, y_train, y_test def test_CART(x, y): """ Test CART Args: x ([type]): [description] y ([type]): [description] """ print(' -----------------------') print('| Test CART |') print(' -----------------------\n') # Split data into 75% train and 25% test X_train, X_test, y_train, y_test = split_dataset(x, y) print('Data attributes: {}'.format(len(X_train.keys()))) print('Training size: {}'.format(len(y_train))) print('Test size: {}\n'.format(len(y_test))) cart = CART(verbose=0) f1, acc, fit_t, pred_t = evaluate_model(cart, X_train, y_train, X_test, y_test, return_scores=True) return acc def test_forest(x, y, NT_values, F_values, forest_classifier): # Split data into 75% train and 25% test X_train, X_test, y_train, y_test = split_dataset(x, y) print('Training size: {}'.format(len(y_train))) print('Test size: {}\n'.format(len(y_test))) nt_vals = [] f_vals = [] accuracies = [] fit_times = [] pred_times = [] importances = [] for nt in NT_values: for f in F_values: # Instantiate Random Forest and evaluate it model = forest_classifier(NT=nt, F=f) model.fit(X_train, y_train) f1, acc, fit_t, pred_t = evaluate_model(model, X_train, y_train, X_test, y_test, print_classificiation_report=False, return_scores=True) # Save parameters used and results nt_vals.append(nt) f_vals.append(f) accuracies.append(acc) fit_times.append(fit_t) pred_times.append(pred_t) importances.append(model.feature_importances.to_dict()) # Print results print('NT={} F={} -> Accuracy: {:.2f}%'.format(nt, f, acc*100)) print('Feature importance:\n{}\n'.format(model.feature_importances)) # Save results in a table results_table = pd.DataFrame({'NT': nt_vals, 'F': f_vals, 'Accuracy': accuracies, 'Fit time': fit_times, 'Prediction times': pred_times, 'Feature importance': importances}) return results_table def test_random_forest(x, y): """ Test random forest with proposed hyperparameters """ print(' -----------------------') print('| Test Random Forest |') print(' -----------------------\n') M = len(x.columns) print('Data attributes: {}'.format(M)) # Hyperparameters to test NT_values = [1, 10, 25, 50, 75, 100] F_values = [1, 3, int(math.log2(M) + 1), int(math.sqrt(M))] # Remove duplicates F_values = set(F_values) # Evaluate model with all hyperparameter combinations results_table = test_forest(x, y, NT_values, F_values, RandomForest) return results_table def test_decision_forest(x, y): """ Test decision forest with proposed hyperparameters """ print(' -----------------------') print('| Test Decision Forest |') print(' -----------------------\n') M = len(x.columns) print('Data attributes: {}'.format(M)) # Hyperparameters to test NT_values = [1, 10, 25, 50, 75, 100] F_values = [int(M/4), int(M/2), int(3*M/4), 'Runif(1/M)'] # Remove duplicates F_values = set(F_values) # Evaluate model with all hyperparameter combinations results_table = test_forest(x, y, NT_values, F_values, DecisionForest) return results_table def evaluate_model(model, x_train, y_train, x_test, y_test, print_classificiation_report=True, return_scores=False): # Train classifier print('Training model...') time0 = time.time() model.fit(x_train, y_train.to_list()) time_fit = time.time() - time0 print('Model trained in {:.1f}s'.format(time_fit)) # Predict test data time0 = time.time() y_pred = model.predict(x_test) time_predict = time.time() - time0 print('Prediction made in {:.1f}s'.format(time_predict)) if print_classificiation_report: print('Classification report:') print(classification_report(y_test, y_pred)) f1 = f1_score(y_test, y_pred, average='weighted') acc = accuracy_score(y_test, y_pred) print('F1-Score: {:.2f}%'.format(f1*100)) print('Accuracy: {:.2f}%\n'.format(acc*100)) if return_scores: return f1, acc, time_fit, time_predict if __name__ == '__main__': small_results_rf, small_results_df, small_cart_acc = test_small() small_results_rf.to_csv(os.path.join('out', 'small_results_rf.csv'), sep=';') small_results_df.to_csv(os.path.join('out', 'small_results_df.csv'), sep=';') medium_results_rf, medium_results_df, medium_cart_acc = test_medium() medium_results_rf.to_csv(os.path.join('out', 'medium_results_rf.csv'), sep=';') medium_results_df.to_csv(os.path.join('out', 'medium_results_df.csv'), sep=';') large_results_rf, large_results_df, large_cart_acc = test_large() large_results_rf.to_csv(os.path.join('out', 'large_results_rf.csv'), sep=';') large_results_df.to_csv(os.path.join('out', 'large_results_df.csv'), sep=';')
de
0.357528
Supervised and Experiential Learning (SEL) Master in Artificial Intelligence (UPC) PW2 - Implementation of a Decision Forest and Random Forest Author: <NAME> <<EMAIL>> Course: 2020/2021 # Load Heart Disease database from CSV # https://www.kaggle.com/ronitf/heart-disease-uci ##########################################################') ################# Test Small Dataset ####################') ################# Heart Disease ####################') ##########################################################\n') # Load Mammographic Mass dataset ##########################################################') ################# Test Medium Dataset ####################') ################# Mammographic Mass ####################') ##########################################################\n') # Load Rice dataset ##########################################################') ################### Test Large Dataset ###################') ######################## Rice #########################') ##########################################################\n') Split data into 75% train and 25% test Args: x (DataFrame): data features y (array-like): data labels Test CART Args: x ([type]): [description] y ([type]): [description] # Split data into 75% train and 25% test # Split data into 75% train and 25% test # Instantiate Random Forest and evaluate it # Save parameters used and results # Print results # Save results in a table Test random forest with proposed hyperparameters # Hyperparameters to test # Remove duplicates # Evaluate model with all hyperparameter combinations Test decision forest with proposed hyperparameters # Hyperparameters to test # Remove duplicates # Evaluate model with all hyperparameter combinations # Train classifier # Predict test data
3.318381
3
maskrcnn_benchmark/structures/image_list.py
pwllr/IDA-3D
78
6629967
<gh_stars>10-100 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from __future__ import division import torch class ImageList(object): """ Structure that holds a list of images (of possibly varying sizes) as a single tensor. This works by padding the images to the same size, and storing in a field the original sizes of each image """ def __init__(self, tensors, image_sizes): """ Arguments: tensors (tensor) image_sizes (list[tuple[int, int]]) """ self.tensors = tensors self.image_sizes = image_sizes def to(self, *args, **kwargs): cast_tensor = self.tensors.to(*args, **kwargs) return ImageList(cast_tensor, self.image_sizes) def to_image_list(tensors, size_divisible=0): if isinstance(tensors, torch.Tensor) and size_divisible > 0: tensors = [tensors] if isinstance(tensors, ImageList): return tensors elif isinstance(tensors, torch.Tensor): # single tensor shape can be inferred if tensors.dim() == 3: tensors = tensors[None] assert tensors.dim() == 4 image_sizes = [tensor.shape[-2:] for tensor in tensors] return ImageList(tensors, image_sizes) elif isinstance(tensors, (tuple, list)): max_size = tuple(max(s) for s in zip(*[img.shape for img in tensors])) # TODO Ideally, just remove this and let me model handle arbitrary # input sizs if size_divisible > 0: import math stride = size_divisible max_size = list(max_size) max_size[1] = int(math.ceil(max_size[1] / stride) * stride) max_size[2] = int(math.ceil(max_size[2] / stride) * stride) max_size = tuple(max_size) batch_shape = (len(tensors),) + max_size batched_imgs = tensors[0].new(*batch_shape).zero_() for img, pad_img in zip(tensors, batched_imgs): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) image_sizes = [im.shape[-2:] for im in tensors] return ImageList(batched_imgs, image_sizes) else: raise TypeError("Unsupported type for to_image_list: {}".format(type(tensors)))
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. from __future__ import division import torch class ImageList(object): """ Structure that holds a list of images (of possibly varying sizes) as a single tensor. This works by padding the images to the same size, and storing in a field the original sizes of each image """ def __init__(self, tensors, image_sizes): """ Arguments: tensors (tensor) image_sizes (list[tuple[int, int]]) """ self.tensors = tensors self.image_sizes = image_sizes def to(self, *args, **kwargs): cast_tensor = self.tensors.to(*args, **kwargs) return ImageList(cast_tensor, self.image_sizes) def to_image_list(tensors, size_divisible=0): if isinstance(tensors, torch.Tensor) and size_divisible > 0: tensors = [tensors] if isinstance(tensors, ImageList): return tensors elif isinstance(tensors, torch.Tensor): # single tensor shape can be inferred if tensors.dim() == 3: tensors = tensors[None] assert tensors.dim() == 4 image_sizes = [tensor.shape[-2:] for tensor in tensors] return ImageList(tensors, image_sizes) elif isinstance(tensors, (tuple, list)): max_size = tuple(max(s) for s in zip(*[img.shape for img in tensors])) # TODO Ideally, just remove this and let me model handle arbitrary # input sizs if size_divisible > 0: import math stride = size_divisible max_size = list(max_size) max_size[1] = int(math.ceil(max_size[1] / stride) * stride) max_size[2] = int(math.ceil(max_size[2] / stride) * stride) max_size = tuple(max_size) batch_shape = (len(tensors),) + max_size batched_imgs = tensors[0].new(*batch_shape).zero_() for img, pad_img in zip(tensors, batched_imgs): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) image_sizes = [im.shape[-2:] for im in tensors] return ImageList(batched_imgs, image_sizes) else: raise TypeError("Unsupported type for to_image_list: {}".format(type(tensors)))
en
0.870339
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. Structure that holds a list of images (of possibly varying sizes) as a single tensor. This works by padding the images to the same size, and storing in a field the original sizes of each image Arguments: tensors (tensor) image_sizes (list[tuple[int, int]]) # single tensor shape can be inferred # TODO Ideally, just remove this and let me model handle arbitrary # input sizs
2.91487
3
motor_bundle/__init__.py
applauncher-team/motor-bundle
0
6629968
<reponame>applauncher-team/motor-bundle from .bundle import MotorBundle
from .bundle import MotorBundle
none
1
1.184517
1
apple/jwt_apple_signin.py
ranadeepmitra21/WeVoteServer_Ranadeep
44
6629969
<reponame>ranadeepmitra21/WeVoteServer_Ranadeep import jwt from jwt.algorithms import RSAAlgorithm import requests from time import time import json # import os from config.base import get_environment_variable APPLE_PUBLIC_KEY_URL = "https://appleid.apple.com/auth/keys" APPLE_PUBLIC_KEY = None APPLE_KEY_CACHE_EXP = 60 * 60 * 24 APPLE_LAST_KEY_FETCH = 0 # https://gist.github.com/davidhariri/b053787aabc9a8a9cc0893244e1549fe # TODO: Question - could we change the name of this class so it doesn't conflict with the AppleUser in models.py? class AppleUser(object): def __init__(self, apple_id, email=None): self.id = apple_id self.email = email self.full_user = False if email is not None: self.full_user = True def __repr__(self): return "<AppleUser {}>".format(self.id) def _fetch_apple_public_key(): # Check to see if the public key is unset or is stale before returning global APPLE_LAST_KEY_FETCH global APPLE_PUBLIC_KEY if (APPLE_LAST_KEY_FETCH + APPLE_KEY_CACHE_EXP) < int(time()) or APPLE_PUBLIC_KEY is None: key_payload = requests.get(APPLE_PUBLIC_KEY_URL).json() APPLE_PUBLIC_KEY = RSAAlgorithm.from_jwk(json.dumps(key_payload["keys"][0])) APPLE_LAST_KEY_FETCH = int(time()) return APPLE_PUBLIC_KEY def _decode_apple_user_token(apple_user_token): public_key = _fetch_apple_public_key() try: # token = jwt.decode(apple_user_token, public_key, audience=os.getenv("APPLE_APP_ID"), algorithm="RS256") token = jwt.decode(apple_user_token, public_key, audience=get_environment_variable("SOCIAL_AUTH_APPLE_KEY_ID"), algorithms=["RS256"]) except jwt.exceptions.ExpiredSignatureError as e: raise Exception("That token has expired") except jwt.exceptions.InvalidAudienceError as e: raise Exception("That token's audience did not match") except Exception as e: print(e) raise Exception("An unexpected error occurred") return token def retrieve_user(user_token): token = _decode_apple_user_token(user_token) apple_user = AppleUser(token["sub"], token.get("email", None)) return apple_user
import jwt from jwt.algorithms import RSAAlgorithm import requests from time import time import json # import os from config.base import get_environment_variable APPLE_PUBLIC_KEY_URL = "https://appleid.apple.com/auth/keys" APPLE_PUBLIC_KEY = None APPLE_KEY_CACHE_EXP = 60 * 60 * 24 APPLE_LAST_KEY_FETCH = 0 # https://gist.github.com/davidhariri/b053787aabc9a8a9cc0893244e1549fe # TODO: Question - could we change the name of this class so it doesn't conflict with the AppleUser in models.py? class AppleUser(object): def __init__(self, apple_id, email=None): self.id = apple_id self.email = email self.full_user = False if email is not None: self.full_user = True def __repr__(self): return "<AppleUser {}>".format(self.id) def _fetch_apple_public_key(): # Check to see if the public key is unset or is stale before returning global APPLE_LAST_KEY_FETCH global APPLE_PUBLIC_KEY if (APPLE_LAST_KEY_FETCH + APPLE_KEY_CACHE_EXP) < int(time()) or APPLE_PUBLIC_KEY is None: key_payload = requests.get(APPLE_PUBLIC_KEY_URL).json() APPLE_PUBLIC_KEY = RSAAlgorithm.from_jwk(json.dumps(key_payload["keys"][0])) APPLE_LAST_KEY_FETCH = int(time()) return APPLE_PUBLIC_KEY def _decode_apple_user_token(apple_user_token): public_key = _fetch_apple_public_key() try: # token = jwt.decode(apple_user_token, public_key, audience=os.getenv("APPLE_APP_ID"), algorithm="RS256") token = jwt.decode(apple_user_token, public_key, audience=get_environment_variable("SOCIAL_AUTH_APPLE_KEY_ID"), algorithms=["RS256"]) except jwt.exceptions.ExpiredSignatureError as e: raise Exception("That token has expired") except jwt.exceptions.InvalidAudienceError as e: raise Exception("That token's audience did not match") except Exception as e: print(e) raise Exception("An unexpected error occurred") return token def retrieve_user(user_token): token = _decode_apple_user_token(user_token) apple_user = AppleUser(token["sub"], token.get("email", None)) return apple_user
en
0.778512
# import os # https://gist.github.com/davidhariri/b053787aabc9a8a9cc0893244e1549fe # TODO: Question - could we change the name of this class so it doesn't conflict with the AppleUser in models.py? # Check to see if the public key is unset or is stale before returning # token = jwt.decode(apple_user_token, public_key, audience=os.getenv("APPLE_APP_ID"), algorithm="RS256")
2.71324
3
tests/conftest.py
n-wbrown/pytpy
0
6629970
import logging import pathlib import pytest import pytmc from pytmc import linter, parser logger = logging.getLogger(__name__) TEST_PATH = pathlib.Path(__file__).parent DBD_FILE = TEST_PATH / 'ads.dbd' TMC_ROOT = TEST_PATH / 'tmc_files' TMC_FILES = list(TMC_ROOT.glob('*.tmc')) INVALID_TMC_FILES = list((TMC_ROOT / 'invalid').glob('*.tmc')) PROJ_ROOT = TEST_PATH / 'projects' TSPROJ_PROJECTS = list(str(fn) for fn in TEST_PATH.glob('**/*.tsproj')) @pytest.fixture(scope='module') def dbd_file(): return pytmc.linter.DbdFile(DBD_FILE) @pytest.fixture(params=TMC_FILES, ids=[f.name for f in TMC_FILES]) def tmc_filename(request): return request.param @pytest.fixture(scope='module') def tmc_xtes_sxr_plc(): """ generic .tmc file """ return TMC_ROOT / "xtes_sxr_plc.tmc" @pytest.fixture(scope='module') def tmc_arbiter_plc(): """ generic .tmc file """ return TMC_ROOT / "ArbiterPLC.tmc" @pytest.fixture(scope='module') def tmc_pmps_dev_arbiter(): """ .tmc file containing pinned global variables """ path = PROJ_ROOT / "pmps-dev-arbiter/Arbiter/ArbiterPLC/ArbiterPLC.tmc" return path @pytest.fixture(params=TSPROJ_PROJECTS) def project_filename(request): return request.param def _generate_project_and_plcs(): for project_filename in TSPROJ_PROJECTS: project = parser.parse(project_filename) for plc_name in project.plcs_by_name: yield project_filename, plc_name @pytest.fixture( params=[ pytest.param((project_filename, plc_name), id=f'{project_filename} {plc_name}') for project_filename, plc_name in _generate_project_and_plcs() ] ) def project_and_plc(request): class Item: project = request.param[0] plc_name = request.param[1] return Item @pytest.fixture(scope='function') def project(project_filename): return parser.parse(project_filename) def lint_record(dbd_file, record): assert record.valid linted = linter.lint_db(dbd=dbd_file, db=record.render()) assert not len(linted.errors)
import logging import pathlib import pytest import pytmc from pytmc import linter, parser logger = logging.getLogger(__name__) TEST_PATH = pathlib.Path(__file__).parent DBD_FILE = TEST_PATH / 'ads.dbd' TMC_ROOT = TEST_PATH / 'tmc_files' TMC_FILES = list(TMC_ROOT.glob('*.tmc')) INVALID_TMC_FILES = list((TMC_ROOT / 'invalid').glob('*.tmc')) PROJ_ROOT = TEST_PATH / 'projects' TSPROJ_PROJECTS = list(str(fn) for fn in TEST_PATH.glob('**/*.tsproj')) @pytest.fixture(scope='module') def dbd_file(): return pytmc.linter.DbdFile(DBD_FILE) @pytest.fixture(params=TMC_FILES, ids=[f.name for f in TMC_FILES]) def tmc_filename(request): return request.param @pytest.fixture(scope='module') def tmc_xtes_sxr_plc(): """ generic .tmc file """ return TMC_ROOT / "xtes_sxr_plc.tmc" @pytest.fixture(scope='module') def tmc_arbiter_plc(): """ generic .tmc file """ return TMC_ROOT / "ArbiterPLC.tmc" @pytest.fixture(scope='module') def tmc_pmps_dev_arbiter(): """ .tmc file containing pinned global variables """ path = PROJ_ROOT / "pmps-dev-arbiter/Arbiter/ArbiterPLC/ArbiterPLC.tmc" return path @pytest.fixture(params=TSPROJ_PROJECTS) def project_filename(request): return request.param def _generate_project_and_plcs(): for project_filename in TSPROJ_PROJECTS: project = parser.parse(project_filename) for plc_name in project.plcs_by_name: yield project_filename, plc_name @pytest.fixture( params=[ pytest.param((project_filename, plc_name), id=f'{project_filename} {plc_name}') for project_filename, plc_name in _generate_project_and_plcs() ] ) def project_and_plc(request): class Item: project = request.param[0] plc_name = request.param[1] return Item @pytest.fixture(scope='function') def project(project_filename): return parser.parse(project_filename) def lint_record(dbd_file, record): assert record.valid linted = linter.lint_db(dbd=dbd_file, db=record.render()) assert not len(linted.errors)
en
0.725882
generic .tmc file generic .tmc file .tmc file containing pinned global variables
2.18342
2
tests/test_reference.py
Nightfurex/build-magic
10
6629971
"""This module hosts unit tests for the reference module.""" import math import pytest from build_magic.exc import ValidationError from build_magic.reference import EnumExt, Parameter def test_parameter(): """Verify the Parameter class works correctly.""" class Test(Parameter): KEY = 'test' DEFAULT = 3. OTHER = 'bogus' param = Test(math.pi) assert param.KEY == 'test' assert param.key == 'test' assert param.value == math.pi assert str(param) == '<Test: test, 3.141592653589793>' assert param.as_dict() == {'test': math.pi} assert param.as_tuple() == ('test', math.pi) assert not param.alias assert not param.ALIAS assert not param.ENUM assert not param.enum assert not param.pattern assert not param.PATTERN assert param.default == 3. assert param.DEFAULT == 3. # Make sure that changing KEY doesn't affect the internal key of a Parameter object. with pytest.raises(AttributeError): param.KEY = 'other' def test_parameter_alias(): """Verify the Parameter class with an alias works correctly.""" class Test(Parameter): KEY = 'test' ALIAS = 'pi' param = Test(math.pi) assert param.KEY == 'test' assert param.key == 'test' assert param.value == math.pi assert str(param) == '<Test: test, pi, 3.141592653589793>' assert param.as_dict() == {'test': math.pi} assert param.as_tuple() == ('test', math.pi) assert param.alias == 'pi' assert param.ALIAS == 'pi' assert not param.default assert not param.DEFAULT assert not param.ENUM assert not param.enum assert not param.pattern assert not param.PATTERN with pytest.raises(AttributeError): param.ALIAS = 'other' def test_parameter_default(): """Verify the Parameter class with a default works correctly.""" class Test(Parameter): KEY = 'test' DEFAULT = 3. param = Test() assert param.KEY == 'test' assert param.key == 'test' assert param.value == 3. assert str(param) == '<Test: test, 3.0>' assert param.as_dict() == {'test': 3.} assert param.as_tuple() == ('test', 3.) assert not param.ALIAS assert not param.alias assert not param.ENUM assert not param.enum assert not param.pattern assert not param.PATTERN assert param.default == 3. assert param.DEFAULT == 3. with pytest.raises(AttributeError): param.DEFAULT = 'other' def test_parameter_enum_value(): """Verify the Parameter class with an enum value works correctly.""" class TestEnum(EnumExt): ONE = 1 TWO = 2 THREE = 3 FOUR = 4 class Test(Parameter): KEY = 'test' ENUM = TestEnum param = Test(3) assert param.key == 'test' assert param.KEY == 'test' assert param.ENUM == TestEnum assert param.enum == TestEnum assert param.value == 3 assert param.as_dict() == {'test': 3} assert param.as_tuple() == ('test', 3) assert not param.ALIAS assert not param.alias assert not param.pattern assert not param.PATTERN def test_parameter_enum_key(): """Verify the Parameter class with an enum key works correctly.""" class TestEnum(EnumExt): ONE = 1 TWO = 2 THREE = 3 FOUR = 4 class Test(Parameter): KEY = 'test' ENUM = TestEnum param = Test('THREE') assert param.key == 'test' assert param.KEY == 'test' assert param.ENUM == TestEnum assert param.enum == TestEnum assert param.value == 3 assert param.as_dict() == {'test': 3} assert param.as_tuple() == ('test', 3) assert not param.ALIAS assert not param.alias assert not param.pattern assert not param.PATTERN def test_parameter_enum_validation_fail(): """Test the case where the Parameter enum validation fails.""" class TestEnum(EnumExt): ONE = 1 TWO = 2 THREE = 3 FOUR = 4 class Test(Parameter): KEY = 'test' ENUM = TestEnum with pytest.raises(ValidationError, match='Validation failed: Value 7 is not one of'): Test(7) def test_parameter_enum_invalid_type(): """Test the case where the enum attribute is not an Enum.""" class Test(Parameter): ENUM = 'dummy' with pytest.raises(TypeError): Test(3) def test_parameter_pattern(): """Verify the Parameter class with a pattern works correctly.""" class Test(Parameter): KEY = 'Test' PATTERN = r'solid|liquid|gas' param = Test('liquid') assert param.value == 'liquid' assert not param.default assert not param.DEFAULT assert not param.ENUM assert not param.enum assert not param.alias assert not param.ALIAS assert param.pattern == r'solid|liquid|gas' assert param.PATTERN == r'solid|liquid|gas' def test_parameter_pattern_fail(): """Test the case where value doesn't match PATTERN.""" class Test(Parameter): KEY = 'Test' PATTERN = r'solid|liquid|gas' with pytest.raises(ValidationError, match='Validation failed: Value plasma does not match solid|liquid|gas.'): Test('plasma') def test_parameter_pattern_invalid_type(): """Test the case where PATTERN isn't a string.""" class Test(Parameter): KEY = 'Test' PATTERN = 42 with pytest.raises(TypeError): Test('plasma') def test_enum_ext(): """Verify the EnumExt class works correctly.""" class Test(EnumExt): ONE = 1 TWO = 2 THREE = 3 FOUR = 4 assert Test.names() == ('ONE', 'TWO', 'THREE', 'FOUR') assert Test.values() == (1, 2, 3, 4) assert Test.available() == (1, 2, 3, 4) assert Test['THREE'] == Test.THREE assert Test.THREE.name == 'THREE' assert Test.THREE.value == 3
"""This module hosts unit tests for the reference module.""" import math import pytest from build_magic.exc import ValidationError from build_magic.reference import EnumExt, Parameter def test_parameter(): """Verify the Parameter class works correctly.""" class Test(Parameter): KEY = 'test' DEFAULT = 3. OTHER = 'bogus' param = Test(math.pi) assert param.KEY == 'test' assert param.key == 'test' assert param.value == math.pi assert str(param) == '<Test: test, 3.141592653589793>' assert param.as_dict() == {'test': math.pi} assert param.as_tuple() == ('test', math.pi) assert not param.alias assert not param.ALIAS assert not param.ENUM assert not param.enum assert not param.pattern assert not param.PATTERN assert param.default == 3. assert param.DEFAULT == 3. # Make sure that changing KEY doesn't affect the internal key of a Parameter object. with pytest.raises(AttributeError): param.KEY = 'other' def test_parameter_alias(): """Verify the Parameter class with an alias works correctly.""" class Test(Parameter): KEY = 'test' ALIAS = 'pi' param = Test(math.pi) assert param.KEY == 'test' assert param.key == 'test' assert param.value == math.pi assert str(param) == '<Test: test, pi, 3.141592653589793>' assert param.as_dict() == {'test': math.pi} assert param.as_tuple() == ('test', math.pi) assert param.alias == 'pi' assert param.ALIAS == 'pi' assert not param.default assert not param.DEFAULT assert not param.ENUM assert not param.enum assert not param.pattern assert not param.PATTERN with pytest.raises(AttributeError): param.ALIAS = 'other' def test_parameter_default(): """Verify the Parameter class with a default works correctly.""" class Test(Parameter): KEY = 'test' DEFAULT = 3. param = Test() assert param.KEY == 'test' assert param.key == 'test' assert param.value == 3. assert str(param) == '<Test: test, 3.0>' assert param.as_dict() == {'test': 3.} assert param.as_tuple() == ('test', 3.) assert not param.ALIAS assert not param.alias assert not param.ENUM assert not param.enum assert not param.pattern assert not param.PATTERN assert param.default == 3. assert param.DEFAULT == 3. with pytest.raises(AttributeError): param.DEFAULT = 'other' def test_parameter_enum_value(): """Verify the Parameter class with an enum value works correctly.""" class TestEnum(EnumExt): ONE = 1 TWO = 2 THREE = 3 FOUR = 4 class Test(Parameter): KEY = 'test' ENUM = TestEnum param = Test(3) assert param.key == 'test' assert param.KEY == 'test' assert param.ENUM == TestEnum assert param.enum == TestEnum assert param.value == 3 assert param.as_dict() == {'test': 3} assert param.as_tuple() == ('test', 3) assert not param.ALIAS assert not param.alias assert not param.pattern assert not param.PATTERN def test_parameter_enum_key(): """Verify the Parameter class with an enum key works correctly.""" class TestEnum(EnumExt): ONE = 1 TWO = 2 THREE = 3 FOUR = 4 class Test(Parameter): KEY = 'test' ENUM = TestEnum param = Test('THREE') assert param.key == 'test' assert param.KEY == 'test' assert param.ENUM == TestEnum assert param.enum == TestEnum assert param.value == 3 assert param.as_dict() == {'test': 3} assert param.as_tuple() == ('test', 3) assert not param.ALIAS assert not param.alias assert not param.pattern assert not param.PATTERN def test_parameter_enum_validation_fail(): """Test the case where the Parameter enum validation fails.""" class TestEnum(EnumExt): ONE = 1 TWO = 2 THREE = 3 FOUR = 4 class Test(Parameter): KEY = 'test' ENUM = TestEnum with pytest.raises(ValidationError, match='Validation failed: Value 7 is not one of'): Test(7) def test_parameter_enum_invalid_type(): """Test the case where the enum attribute is not an Enum.""" class Test(Parameter): ENUM = 'dummy' with pytest.raises(TypeError): Test(3) def test_parameter_pattern(): """Verify the Parameter class with a pattern works correctly.""" class Test(Parameter): KEY = 'Test' PATTERN = r'solid|liquid|gas' param = Test('liquid') assert param.value == 'liquid' assert not param.default assert not param.DEFAULT assert not param.ENUM assert not param.enum assert not param.alias assert not param.ALIAS assert param.pattern == r'solid|liquid|gas' assert param.PATTERN == r'solid|liquid|gas' def test_parameter_pattern_fail(): """Test the case where value doesn't match PATTERN.""" class Test(Parameter): KEY = 'Test' PATTERN = r'solid|liquid|gas' with pytest.raises(ValidationError, match='Validation failed: Value plasma does not match solid|liquid|gas.'): Test('plasma') def test_parameter_pattern_invalid_type(): """Test the case where PATTERN isn't a string.""" class Test(Parameter): KEY = 'Test' PATTERN = 42 with pytest.raises(TypeError): Test('plasma') def test_enum_ext(): """Verify the EnumExt class works correctly.""" class Test(EnumExt): ONE = 1 TWO = 2 THREE = 3 FOUR = 4 assert Test.names() == ('ONE', 'TWO', 'THREE', 'FOUR') assert Test.values() == (1, 2, 3, 4) assert Test.available() == (1, 2, 3, 4) assert Test['THREE'] == Test.THREE assert Test.THREE.name == 'THREE' assert Test.THREE.value == 3
en
0.707071
This module hosts unit tests for the reference module. Verify the Parameter class works correctly. # Make sure that changing KEY doesn't affect the internal key of a Parameter object. Verify the Parameter class with an alias works correctly. Verify the Parameter class with a default works correctly. Verify the Parameter class with an enum value works correctly. Verify the Parameter class with an enum key works correctly. Test the case where the Parameter enum validation fails. Test the case where the enum attribute is not an Enum. Verify the Parameter class with a pattern works correctly. Test the case where value doesn't match PATTERN. Test the case where PATTERN isn't a string. Verify the EnumExt class works correctly.
2.804728
3
pyro/distributions/unit.py
ludkinm/pyro
0
6629972
<gh_stars>0 # Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import torch from torch.distributions import constraints from pyro.distributions.torch_distribution import TorchDistribution from pyro.distributions.util import broadcast_shape class Unit(TorchDistribution): """ Trivial nonnormalized distribution representing the unit type. The unit type has a single value with no data, i.e. ``value.numel() == 0``. This is used for :func:`pyro.factor` statements. """ arg_constraints = {'log_factor': constraints.real} support = constraints.real def __init__(self, log_factor, validate_args=None): log_factor = torch.as_tensor(log_factor) batch_shape = log_factor.shape event_shape = torch.Size((0,)) # This satisfies .numel() == 0. self.log_factor = log_factor super(Unit, self).__init__(batch_shape, event_shape, validate_args=validate_args) def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Unit, _instance) new.log_factor = self.log_factor.expand(batch_shape) super(Unit, new).__init__(batch_shape, self.event_shape, validate_args=False) new._validate_args = self._validate_args return new def sample(self, sample_shape=torch.Size()): return self.log_factor.new_empty(sample_shape + self.shape()) def log_prob(self, value): shape = broadcast_shape(self.batch_shape, value.shape[:-1]) return self.log_factor.expand(shape)
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import torch from torch.distributions import constraints from pyro.distributions.torch_distribution import TorchDistribution from pyro.distributions.util import broadcast_shape class Unit(TorchDistribution): """ Trivial nonnormalized distribution representing the unit type. The unit type has a single value with no data, i.e. ``value.numel() == 0``. This is used for :func:`pyro.factor` statements. """ arg_constraints = {'log_factor': constraints.real} support = constraints.real def __init__(self, log_factor, validate_args=None): log_factor = torch.as_tensor(log_factor) batch_shape = log_factor.shape event_shape = torch.Size((0,)) # This satisfies .numel() == 0. self.log_factor = log_factor super(Unit, self).__init__(batch_shape, event_shape, validate_args=validate_args) def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Unit, _instance) new.log_factor = self.log_factor.expand(batch_shape) super(Unit, new).__init__(batch_shape, self.event_shape, validate_args=False) new._validate_args = self._validate_args return new def sample(self, sample_shape=torch.Size()): return self.log_factor.new_empty(sample_shape + self.shape()) def log_prob(self, value): shape = broadcast_shape(self.batch_shape, value.shape[:-1]) return self.log_factor.expand(shape)
en
0.6316
# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 Trivial nonnormalized distribution representing the unit type. The unit type has a single value with no data, i.e. ``value.numel() == 0``. This is used for :func:`pyro.factor` statements. # This satisfies .numel() == 0.
2.389423
2
cogs/help.py
GamerGG1/Roblox-Discord-Bot
1
6629973
<gh_stars>1-10 import discord from discord.ext import commands from datetime import datetime def setup(bot): bot.add_cog(Help(bot)) class Help(commands.Cog): def __init__(self,bot): self.bot = bot def get_commands(self): helptext = [] for command in self.bot.commands: if command.hidden == True: pass else: helptext.append(command) embed = discord.Embed(colour=self.bot.defaultcolour, title="Help", description="All the commands") embed.add_field(name="Support",value="For more help, join the official bot support server: https://discord.gg/CTuUKJJ",inline=False) embed.add_field(name="Commands",value=", ".join([command.name for command in helptext]),inline=False) return embed @commands.command(name="help", description="Shows all the bot's command", aliases=["h","commands"],usage="`[command]`") async def help_command(self, ctx, cmd = None): if cmd is None: base_embed = self.get_commands() await ctx.send(embed=base_embed) elif cmd != None: command = self.bot.get_command(cmd) if command: aliases = [] for alias in command.aliases: aliases.append(alias) command.description = command.description or "No description provided." embed = discord.Embed(colour=self.bot.defaultcolour,title="Help",description=f"`{command.name}`: {command.description}", timestamp=datetime.utcnow()) embed.add_field(name="Aliases",value=" ,".join(aliases) if len(aliases) >= 1 else "No aliases",inline=False) embed.add_field(name="Usage", value=command.usage if command.usage != None else f"`{command.name}`", inline=False) embed.set_footer(text="<> - Required | [] - Optional") await ctx.send(embed=embed) else: inv_embed = self.get_commands() await ctx.send("Invalid Command Usage. Activiating Help...") await ctx.send(embed=inv_embed)
import discord from discord.ext import commands from datetime import datetime def setup(bot): bot.add_cog(Help(bot)) class Help(commands.Cog): def __init__(self,bot): self.bot = bot def get_commands(self): helptext = [] for command in self.bot.commands: if command.hidden == True: pass else: helptext.append(command) embed = discord.Embed(colour=self.bot.defaultcolour, title="Help", description="All the commands") embed.add_field(name="Support",value="For more help, join the official bot support server: https://discord.gg/CTuUKJJ",inline=False) embed.add_field(name="Commands",value=", ".join([command.name for command in helptext]),inline=False) return embed @commands.command(name="help", description="Shows all the bot's command", aliases=["h","commands"],usage="`[command]`") async def help_command(self, ctx, cmd = None): if cmd is None: base_embed = self.get_commands() await ctx.send(embed=base_embed) elif cmd != None: command = self.bot.get_command(cmd) if command: aliases = [] for alias in command.aliases: aliases.append(alias) command.description = command.description or "No description provided." embed = discord.Embed(colour=self.bot.defaultcolour,title="Help",description=f"`{command.name}`: {command.description}", timestamp=datetime.utcnow()) embed.add_field(name="Aliases",value=" ,".join(aliases) if len(aliases) >= 1 else "No aliases",inline=False) embed.add_field(name="Usage", value=command.usage if command.usage != None else f"`{command.name}`", inline=False) embed.set_footer(text="<> - Required | [] - Optional") await ctx.send(embed=embed) else: inv_embed = self.get_commands() await ctx.send("Invalid Command Usage. Activiating Help...") await ctx.send(embed=inv_embed)
none
1
2.796157
3
process/helpers/__init__.py
ml-boringtao/mlp
0
6629974
from .csvhdf5dataset import CSVDatasetWriter, CSVDatasetReader
from .csvhdf5dataset import CSVDatasetWriter, CSVDatasetReader
none
1
1.106368
1
masar_optimal/custom/sales_invoice/sales_invoice.py
karamakcsc/masar_optimal
0
6629975
<filename>masar_optimal/custom/sales_invoice/sales_invoice.py from __future__ import unicode_literals import frappe, erpnext import json from frappe.utils import flt, cstr, nowdate, comma_and from frappe import throw, msgprint, _ from frappe.custom.doctype.custom_field.custom_field import create_custom_field from six import iteritems, string_types @frappe.whitelist() def get_last_price(item_code): last_price = frappe.db.sql(""" Select tpii.rate as rate from `tabSales Invoice Item` tpii Inner Join `tabSales Invoice` tpi On tpii.parent = tpi.name where tpii.item_code = '%s' and tpi.docstatus = 1 order By tpii.creation DESC LIMIT 1""" %(item_code), as_dict=True ) if last_price: return last_price[0].rate else: return @frappe.whitelist() def get_default_location(item_code): dloc = frappe.db.sql(""" Select item_location From `tabItem Location` til Where is_default = 1 and parent = '%s' LIMIT 1""" %(item_code), as_dict=True) if dloc: return dloc[0].item_location else: return
<filename>masar_optimal/custom/sales_invoice/sales_invoice.py from __future__ import unicode_literals import frappe, erpnext import json from frappe.utils import flt, cstr, nowdate, comma_and from frappe import throw, msgprint, _ from frappe.custom.doctype.custom_field.custom_field import create_custom_field from six import iteritems, string_types @frappe.whitelist() def get_last_price(item_code): last_price = frappe.db.sql(""" Select tpii.rate as rate from `tabSales Invoice Item` tpii Inner Join `tabSales Invoice` tpi On tpii.parent = tpi.name where tpii.item_code = '%s' and tpi.docstatus = 1 order By tpii.creation DESC LIMIT 1""" %(item_code), as_dict=True ) if last_price: return last_price[0].rate else: return @frappe.whitelist() def get_default_location(item_code): dloc = frappe.db.sql(""" Select item_location From `tabItem Location` til Where is_default = 1 and parent = '%s' LIMIT 1""" %(item_code), as_dict=True) if dloc: return dloc[0].item_location else: return
en
0.572892
Select tpii.rate as rate from `tabSales Invoice Item` tpii Inner Join `tabSales Invoice` tpi On tpii.parent = tpi.name where tpii.item_code = '%s' and tpi.docstatus = 1 order By tpii.creation DESC LIMIT 1 Select item_location From `tabItem Location` til Where is_default = 1 and parent = '%s' LIMIT 1
1.829443
2
plugins/wazuh_ossec/komand_wazuh_ossec/actions/agent_restart/action.py
lukaszlaszuk/insightconnect-plugins
46
6629976
<reponame>lukaszlaszuk/insightconnect-plugins<gh_stars>10-100 import komand from .schema import AgentRestartInput, AgentRestartOutput # Custom imports below import json import requests class AgentRestart(komand.Action): def __init__(self): super(self.__class__, self).__init__( name="agent_restart", description="Restarts all agents, or a specified agent", input=AgentRestartInput(), output=AgentRestartOutput(), ) def run(self, params={}): if params.get("agent_id"): api = "/agents/{}/restart".format(params.get("agent_id")) self.logger.info("Agent %s specified for restart", params.get("agent_id")) else: api = "/agents/restart" self.logger.info("No agent specified, restart for all agents") url = "{url}{api}".format(url=self.connection.url, api=api) self.logger.info("Request: %s", url) try: resp = requests.put(url, auth=self.connection.creds) r = resp.json() self.logger.info("Raw Response: %s", resp.json()) # Rename key to meet spec if "data" in r: r["message"] = r.pop("data") except requests.exceptions.HTTPError: self.logger.error("Requests: HTTPError: status code %s for %s" % (str(resp.status_code), url)) raise Exception("Requests: Connect: Failed response from server {}".format(url)) self.logger.info("Normalized Response: %s", r) return r def test(self): url = self.connection.url try: resp = requests.get(url, auth=self.connection.creds) r = resp.json() self.logger.info("Raw Response: %s", r) except requests.exceptions.HTTPError: self.logger.error("Requests: HTTPError: status code %s for %s" % (str(resp.status_code), url)) raise Exception("Requests: Connect: Failed response from server {}".format(url)) if r["error"] == 0: # Example must match spec to succeed due to required's return {"message": "Restarting all agents", "error": 0} else: self.logger.error(r) raise Exception("Requests: Connect: Failed response from server {}".format(url))
import komand from .schema import AgentRestartInput, AgentRestartOutput # Custom imports below import json import requests class AgentRestart(komand.Action): def __init__(self): super(self.__class__, self).__init__( name="agent_restart", description="Restarts all agents, or a specified agent", input=AgentRestartInput(), output=AgentRestartOutput(), ) def run(self, params={}): if params.get("agent_id"): api = "/agents/{}/restart".format(params.get("agent_id")) self.logger.info("Agent %s specified for restart", params.get("agent_id")) else: api = "/agents/restart" self.logger.info("No agent specified, restart for all agents") url = "{url}{api}".format(url=self.connection.url, api=api) self.logger.info("Request: %s", url) try: resp = requests.put(url, auth=self.connection.creds) r = resp.json() self.logger.info("Raw Response: %s", resp.json()) # Rename key to meet spec if "data" in r: r["message"] = r.pop("data") except requests.exceptions.HTTPError: self.logger.error("Requests: HTTPError: status code %s for %s" % (str(resp.status_code), url)) raise Exception("Requests: Connect: Failed response from server {}".format(url)) self.logger.info("Normalized Response: %s", r) return r def test(self): url = self.connection.url try: resp = requests.get(url, auth=self.connection.creds) r = resp.json() self.logger.info("Raw Response: %s", r) except requests.exceptions.HTTPError: self.logger.error("Requests: HTTPError: status code %s for %s" % (str(resp.status_code), url)) raise Exception("Requests: Connect: Failed response from server {}".format(url)) if r["error"] == 0: # Example must match spec to succeed due to required's return {"message": "Restarting all agents", "error": 0} else: self.logger.error(r) raise Exception("Requests: Connect: Failed response from server {}".format(url))
en
0.854742
# Custom imports below # Rename key to meet spec # Example must match spec to succeed due to required's
2.114073
2
tests/nft20/conftest.py
Amirh24/cross-asset-swap
1
6629977
<reponame>Amirh24/cross-asset-swap<filename>tests/nft20/conftest.py import pytest from brownie import * @pytest.fixture(scope="module", autouse=True) def user(deployer): return TestSwap.deploy(deployer) @pytest.fixture(scope="module", autouse=True) def deployer(): return {'from': accounts[1]} @pytest.fixture(scope="module", autouse=True) def blockartNft(): return Contract("0xb80fbf6cdb49c33dc6ae4ca11af8ac47b0b4c0f3") @pytest.fixture(scope="module", autouse=True) def decentralandNft(): return Contract("0xF87E31492Faf9A91B02Ee0dEAAd50d51d56D5d4d") @pytest.fixture(scope="module", autouse=True) def nodeRunnerNft(): return Contract("0x89eE76cC25Fcbf1714ed575FAa6A10202B71c26A") @pytest.fixture(scope="module", autouse=True) def hashmaskNft(): return Contract("0xC2C747E0F7004F9E8817Db2ca4997657a7746928") @pytest.fixture(scope="module", autouse=True) def dokiNft(): return Contract("0x7CdC0421469398e0F3aA8890693d86c840Ac8931") @pytest.fixture(scope="module", autouse=True) def chonkerNft(): return Contract("0xC805658931f959abc01133aa13fF173769133512") @pytest.fixture(scope="module", autouse=True) def memeNft(): return Contract("0xe4605d46Fd0B3f8329d936a8b258D69276cBa264") @pytest.fixture(scope="module", autouse=True) def dai(): return Contract("0x6B175474E89094C44Da98b954EedeAC495271d0F") @pytest.fixture(scope="module", autouse=True) def usdc(): return Contract("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48") @pytest.fixture(scope="module", autouse=True) def usdt(): return Contract("0xdAC17F958D2ee523a2206206994597C13D831ec7") @pytest.fixture(scope="module", autouse=True) def tusd(): return Contract("0x0000000000085d4780B73119b644AE5ecd22b376") @pytest.fixture(scope="module", autouse=True) def eth_bag(accounts): return accounts.at("0x829BD824B016326A401d083B33D092293333A830", force=True) @pytest.fixture(scope="module", autouse=True) def EBA20(): return "0x57c31c042cb2f6a50f3da70ade4fee20c86b7493" @pytest.fixture(scope="module", autouse=True) def LAND20(): return "0x1E0CD9506d465937E9d6754e76Cd389A8bD90FBf" @pytest.fixture(scope="module", autouse=True) def NDR20(): return "0x303Af77Cf2774AABff12462C110A0CCf971D7DbE" @pytest.fixture(scope="module", autouse=True) def DOKI20(): return "0x22C4AD011Cce6a398B15503e0aB64286568933Ed" @pytest.fixture(scope="module", autouse=True) def MASK20(): return "0xc2BdE1A2fA26890c8E6AcB10C91CC6D9c11F4a73" @pytest.fixture(scope="module", autouse=True) def CHONK20(): return "0xaDBEBbd65a041E3AEb474FE9fe6939577eB2544F" @pytest.fixture(scope="module", autouse=True) def MEME20(): return "0x60ACD58d00b2BcC9a8924fdaa54A2F7C0793B3b2" @pytest.fixture(scope="module", autouse=True) def ZERO_ADDRESS(): return "0x0000000000000000000000000000000000000000" @pytest.fixture(scope="module", autouse=True) def ETH_ADDRESS(): return "0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE" @pytest.fixture(scope="module", autouse=True) def hashmaskIds(): return [3790,3791,3792,3793,3794,3795,3796,3797,3798,3799,3800] @pytest.fixture(scope="module", autouse=True) def blockartIds(): return [227, 228] @pytest.fixture(scope="module", autouse=True) def swapper(deployer): return NFT20Swapper.deploy(deployer)
import pytest from brownie import * @pytest.fixture(scope="module", autouse=True) def user(deployer): return TestSwap.deploy(deployer) @pytest.fixture(scope="module", autouse=True) def deployer(): return {'from': accounts[1]} @pytest.fixture(scope="module", autouse=True) def blockartNft(): return Contract("0xb80fbf6cdb49c33dc6ae4ca11af8ac47b0b4c0f3") @pytest.fixture(scope="module", autouse=True) def decentralandNft(): return Contract("0xF87E31492Faf9A91B02Ee0dEAAd50d51d56D5d4d") @pytest.fixture(scope="module", autouse=True) def nodeRunnerNft(): return Contract("0x89eE76cC25Fcbf1714ed575FAa6A10202B71c26A") @pytest.fixture(scope="module", autouse=True) def hashmaskNft(): return Contract("0xC2C747E0F7004F9E8817Db2ca4997657a7746928") @pytest.fixture(scope="module", autouse=True) def dokiNft(): return Contract("0x7CdC0421469398e0F3aA8890693d86c840Ac8931") @pytest.fixture(scope="module", autouse=True) def chonkerNft(): return Contract("0xC805658931f959abc01133aa13fF173769133512") @pytest.fixture(scope="module", autouse=True) def memeNft(): return Contract("0xe4605d46Fd0B3f8329d936a8b258D69276cBa264") @pytest.fixture(scope="module", autouse=True) def dai(): return Contract("0x6B175474E89094C44Da98b954EedeAC495271d0F") @pytest.fixture(scope="module", autouse=True) def usdc(): return Contract("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48") @pytest.fixture(scope="module", autouse=True) def usdt(): return Contract("0xdAC17F958D2ee523a2206206994597C13D831ec7") @pytest.fixture(scope="module", autouse=True) def tusd(): return Contract("0x0000000000085d4780B73119b644AE5ecd22b376") @pytest.fixture(scope="module", autouse=True) def eth_bag(accounts): return accounts.at("0x829BD824B016326A401d083B33D092293333A830", force=True) @pytest.fixture(scope="module", autouse=True) def EBA20(): return "0x57c31c042cb2f6a50f3da70ade4fee20c86b7493" @pytest.fixture(scope="module", autouse=True) def LAND20(): return "0x1E0CD9506d465937E9d6754e76Cd389A8bD90FBf" @pytest.fixture(scope="module", autouse=True) def NDR20(): return "0x303Af77Cf2774AABff12462C110A0CCf971D7DbE" @pytest.fixture(scope="module", autouse=True) def DOKI20(): return "0x22C4AD011Cce6a398B15503e0aB64286568933Ed" @pytest.fixture(scope="module", autouse=True) def MASK20(): return "0xc2BdE1A2fA26890c8E6AcB10C91CC6D9c11F4a73" @pytest.fixture(scope="module", autouse=True) def CHONK20(): return "0xaDBEBbd65a041E3AEb474FE9fe6939577eB2544F" @pytest.fixture(scope="module", autouse=True) def MEME20(): return "0x60ACD58d00b2BcC9a8924fdaa54A2F7C0793B3b2" @pytest.fixture(scope="module", autouse=True) def ZERO_ADDRESS(): return "0x0000000000000000000000000000000000000000" @pytest.fixture(scope="module", autouse=True) def ETH_ADDRESS(): return "0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE" @pytest.fixture(scope="module", autouse=True) def hashmaskIds(): return [3790,3791,3792,3793,3794,3795,3796,3797,3798,3799,3800] @pytest.fixture(scope="module", autouse=True) def blockartIds(): return [227, 228] @pytest.fixture(scope="module", autouse=True) def swapper(deployer): return NFT20Swapper.deploy(deployer)
none
1
1.905525
2
src/samples/test.py
DanEdens/azure-devops-python-samples
65
6629978
<reponame>DanEdens/azure-devops-python-samples<gh_stars>10-100 """ TEST samples """ import datetime import logging from samples import resource from utils import emit logger = logging.getLogger(__name__) def get_project_names(context): core_client = context.connection.clients.get_core_client() return (project.name for project in core_client.get_projects()) @resource("test_plans") def get_plans(context): test_client = context.connection.clients.get_test_client() for project in get_project_names(context): try: for plan in test_client.get_plans(project): emit("Test Plan {}: {} ({})".format(plan.id, plan.name, plan.area.name)) except Exception as e: emit("Project '{}' raised error: {}".format(project, e)) @resource("test_suites") def get_test_suites_for_plan(context): test_client = context.connection.clients.get_test_client() for project in get_project_names(context): try: for plan in test_client.get_plans(project): for suite in test_client.get_test_suites_for_plan(project, plan.id): emit( "Test Suite {}: {} ({}.{})".format( suite.id, suite.name, plan.id, plan.name ) ) except Exception as e: emit("Project '{}' raised error: {}".format(project, e)) @resource("test_runs") def get_test_runs(context): test_client = context.connection.clients.get_test_client() for project in get_project_names(context): try: for run in test_client.get_test_runs(project, top=16): emit( "Test Run {}: {} => {} ({})".format( run.id, run.name, run.state, project ) ) except Exception as e: emit("Project '{}' raised error: {}".format(project, e)) @resource("test_results") def get_test_results(context): test_client = context.connection.clients.get_test_client() for project in get_project_names(context): try: for run in test_client.get_test_runs(project, top=10): # Limiting Test Results is not something one shall do! for res in test_client.get_test_results(project, run.id, top=3): tc = res.test_case tester = res.run_by.display_name emit( "Test Result {}: {} => {} by {} ({})".format( run.id, tc.name, res.outcome, tester, project ) ) except Exception as e: emit("Project '{}' raised error: {}".format(project, e))
""" TEST samples """ import datetime import logging from samples import resource from utils import emit logger = logging.getLogger(__name__) def get_project_names(context): core_client = context.connection.clients.get_core_client() return (project.name for project in core_client.get_projects()) @resource("test_plans") def get_plans(context): test_client = context.connection.clients.get_test_client() for project in get_project_names(context): try: for plan in test_client.get_plans(project): emit("Test Plan {}: {} ({})".format(plan.id, plan.name, plan.area.name)) except Exception as e: emit("Project '{}' raised error: {}".format(project, e)) @resource("test_suites") def get_test_suites_for_plan(context): test_client = context.connection.clients.get_test_client() for project in get_project_names(context): try: for plan in test_client.get_plans(project): for suite in test_client.get_test_suites_for_plan(project, plan.id): emit( "Test Suite {}: {} ({}.{})".format( suite.id, suite.name, plan.id, plan.name ) ) except Exception as e: emit("Project '{}' raised error: {}".format(project, e)) @resource("test_runs") def get_test_runs(context): test_client = context.connection.clients.get_test_client() for project in get_project_names(context): try: for run in test_client.get_test_runs(project, top=16): emit( "Test Run {}: {} => {} ({})".format( run.id, run.name, run.state, project ) ) except Exception as e: emit("Project '{}' raised error: {}".format(project, e)) @resource("test_results") def get_test_results(context): test_client = context.connection.clients.get_test_client() for project in get_project_names(context): try: for run in test_client.get_test_runs(project, top=10): # Limiting Test Results is not something one shall do! for res in test_client.get_test_results(project, run.id, top=3): tc = res.test_case tester = res.run_by.display_name emit( "Test Result {}: {} => {} by {} ({})".format( run.id, tc.name, res.outcome, tester, project ) ) except Exception as e: emit("Project '{}' raised error: {}".format(project, e))
en
0.825337
TEST samples # Limiting Test Results is not something one shall do!
2.328908
2
tests/test_distribution.py
josephsnyder/CastXML-python-distributions
0
6629979
<reponame>josephsnyder/CastXML-python-distributions import os import pytest from path import Path DIST_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '../dist')) def _check_castxml_install(virtualenv, tmpdir): expected_version = "0.3.4" for executable_name in ["castxml"]: output = virtualenv.run( "%s --version" % executable_name, capture=True).splitlines()[0] assert output == "%s version %s" % (executable_name, expected_version) @pytest.mark.skipif(not Path(DIST_DIR).exists(), reason="dist directory does not exist") def test_wheel(virtualenv, tmpdir): wheels = Path(DIST_DIR).files(match="*.whl") if not wheels: pytest.skip("no wheel available") assert len(wheels) == 1 print(wheels) virtualenv.run("pip install %s" % wheels[0]) _check_castxml_install(virtualenv, tmpdir)
import os import pytest from path import Path DIST_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '../dist')) def _check_castxml_install(virtualenv, tmpdir): expected_version = "0.3.4" for executable_name in ["castxml"]: output = virtualenv.run( "%s --version" % executable_name, capture=True).splitlines()[0] assert output == "%s version %s" % (executable_name, expected_version) @pytest.mark.skipif(not Path(DIST_DIR).exists(), reason="dist directory does not exist") def test_wheel(virtualenv, tmpdir): wheels = Path(DIST_DIR).files(match="*.whl") if not wheels: pytest.skip("no wheel available") assert len(wheels) == 1 print(wheels) virtualenv.run("pip install %s" % wheels[0]) _check_castxml_install(virtualenv, tmpdir)
none
1
2.324274
2
static_count/run.py
JiangYee/key_phrase_extract
1
6629980
#!/usr/bin/env python # -*- coding: utf-8 -*- import datetime import numpy as np import pandas as pd import time from pandas.core.frame import DataFrame from nltk import ngrams from nltk.text import TextCollection from static_count import preprocess, count, tf_idf, draw json_file = '../data/test_json' # json_file = '../data/all_title_abstract_keyword_clean.json' json_obj = preprocess.load_json(json_file) abstract_list, keyword_list, _ = preprocess.get_info(json_obj) # print(keyword_list[144]) # print(len(keyword_list[144])) # print(len(keyword_list)) # # ็ปŸ่ฎกๅ…ณ้”ฎ่ฏin or not in # count_results = count.count_in_all(abstract_list, keyword_list, isPart=False,isStem=False, isAnd=False) # in_num_list, out_num_list, avg_in, avg_out = count.cal_in_out_avg(count_results) # count_dict = {'in':in_num_list,'out':out_num_list} # print(count_results) # print(in_num_list) # print(out_num_list) # print(avg_in,avg_out) # data=DataFrame(count_dict) #ๅฐ†ๅญ—ๅ…ธ่ฝฌๆขๆˆไธบๆ•ฐๆฎๆก† # DataFrame(data).to_excel('count_ff1.xlsx') # print('count_ff1 over!') # # count_results = count.count_in_all(abstract_list, keyword_list, isPart=False,isStem=True) # in_num_list, out_num_list, avg_in, avg_out = count.cal_in_out_avg(count_results) # count_dict = {'in':in_num_list,'out':out_num_list} # print(count_results) # print(avg_in,avg_out) # data=DataFrame(count_dict) #ๅฐ†ๅญ—ๅ…ธ่ฝฌๆขๆˆไธบๆ•ฐๆฎๆก† # DataFrame(data).to_excel('count_ft1.xlsx') # print('count_ft1 over!') # # count_results = count.count_in_all(abstract_list, keyword_list, isPart=True,isStem=False) # in_num_list, out_num_list, avg_in, avg_out = count.cal_in_out_avg(count_results) # count_dict = {'in':in_num_list,'out':out_num_list} # print(count_results) # print(avg_in,avg_out) # data=DataFrame(count_dict) #ๅฐ†ๅญ—ๅ…ธ่ฝฌๆขๆˆไธบๆ•ฐๆฎๆก† # DataFrame(data).to_excel('count_tff1.xlsx') # print('count_tf1 over!') # # count_results = count.count_in_all(abstract_list, keyword_list, isPart=True,isStem=True) # in_num_list, out_num_list, avg_in, avg_out = count.cal_in_out_avg(count_results) # count_dict = {'in':in_num_list,'out':out_num_list} # print(count_results) # print(avg_in,avg_out) # data=DataFrame(count_dict) #ๅฐ†ๅญ—ๅ…ธ่ฝฌๆขๆˆไธบๆ•ฐๆฎๆก† # DataFrame(data).to_excel('count_ttf1.xlsx') # print('count_tt1 over!') # ็ปŸ่ฎกๆฏ็ฏ‡ๆ–‡็ซ ็š„count_in_out็™พๅˆ†ๆฏ” # in_out_persent = count.in_out_persents('./4_25/count_ff1.xlsx') # in_persent = in_out_persent[0] # out_persent = in_out_persent[1] # print(in_persent[:10]) # print(out_persent[:10]) # in_persent_persent = count.get_percentage(in_persent[0:10]) # print(in_persent_persent) # # ็ปŸ่ฎกๅ…ณ้”ฎ่ฏ้•ฟๅบฆ # # kw_len= count.count_kw_len(keyword_list[4]) # # print(keyword_list[4]) # # print(np.average(kw_len)) # # # # print('็ปŸ่ฎกๅ…ณ้”ฎ่ฏ้•ฟๅบฆ......') # n_kw_len = count.count_n_kw_len(keyword_list) # # print('exp_num', exp_num) # flatten =count.flatten_len(n_kw_len) # # print(len(flatten)) # preprocess.save(flatten,'flatten_len_tokenize_new') # # data=DataFrame(flatten) # # DataFrame(data).to_excel('flatten_len.xlsx') # ็ปŸ่ฎก็™พๅˆ†ๆฏ” # print('็ปŸ่ฎก็™พๅˆ†ๆฏ”...') # flatten_len_tokenize = preprocess.read('flatten_len_tokenize').tolist() # persents_dict = count.get_percentage(flatten_len_tokenize) # print(persents_dict) # preprocess.save(persents_dict, 'persents_len_tokenize') # data=DataFrame({'length':list(persents_dict.keys()), 'percent':list(persents_dict.values())}) # DataFrame(data).to_excel('persents_len_tokenize.xlsx') # preprocess.save(n_kw_len,'len') # data=DataFrame({'keyword': keyword_list, 'len':n_kw_len}) # data=DataFrame(n_kw_len) # DataFrame(data).to_excel('len0.xlsx') # print(n_kw_len) # avgs = [np.average(kw_len) for kw_len in n_kw_len] # print(avgs) # print(np.average(avgs)) # len_data = DataFrame(n_kw_len) # DataFrame(len_data).to_excel('len.xlsx') # n_grams = count.n_gram(abstract_list[0],2) # for gram in n_grams: # if 'application' in gram: # keywordไธญ็š„wordๅญ˜ๅœจไบŽn_gramไธญ # print(gram) # ่ฎก็ฎ—tf-idf # wordไธบๅ•ไฝ๏ผš print("็ปŸ่ฎกtf-idf") keyword_list = preprocess.stemming_all_keyword_list(keyword_list) abstract_list = [preprocess.stemming_list(abs) for abs in abstract_list] start_time = time.time() corpus1 = TextCollection(abstract_list) preprocess.save(corpus1,'corpus1') end_time1 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time1 - start_time))) print('corpus1ๆž„ๅปบๅฎŒๆˆ๏ผ่€—ๆ—ถ๏ผš',str(time_used)) kw_tfidf_dict_list = [tf_idf.tf_idf_kw(kw_list_stem,corpus1) for kw_list_stem in keyword_list] preprocess.save(kw_tfidf_dict_list,'all_kw_tfidf1') end_time2 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time2 - end_time1))) print('1ๅ…ณ้”ฎ่ฏtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) tf_idf_abs_list = tf_idf.tf_idf_abs_all(abstract_list, corpus1) preprocess.save(tf_idf_abs_list, 'all_abs_tfidf1') end_time3 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time3 - end_time2))) print('1ๆ‘˜่ฆtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) # print('kw_tfidf_dict_list: ', kw_tfidf_dict_list) # print('tf_idf_abs_list[1]: ',tf_idf_abs_list[1]) rank_list1 = tf_idf.get_kw_rank_all(kw_tfidf_dict_list,tf_idf_abs_list) preprocess.save(rank_list1,'tfidf_rank1') print('rank_list1: ',rank_list1) end_time4 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time4 - end_time3))) print('1ๅ…ณ้”ฎ่ฏrank่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) print('1 over======================================') start_time = time.time() n_gram_lists = tf_idf.get_n_gram_list(abstract_list,2) corpus2 = TextCollection(n_gram_lists) preprocess.save(corpus2,'corpus2') end_time1 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time1 - start_time))) print('corpus2ๆž„ๅปบๅฎŒๆˆ๏ผ่€—ๆ—ถ๏ผš',str(time_used)) kw_tfidf_dict_list = [tf_idf.tf_idf_kw_n_gram(kw_list_stem,corpus2) for kw_list_stem in keyword_list] preprocess.save(kw_tfidf_dict_list,'all_kw_tfidf2') end_time2 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time2 - end_time1))) print('2ๅ…ณ้”ฎ่ฏtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) tf_idf_abs_list = tf_idf.tf_idf_abs_all_n_gram(n_gram_lists, corpus2) preprocess.save(tf_idf_abs_list, 'all_abs_tfidf2') end_time3 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time3 - end_time2))) print('2ๆ‘˜่ฆtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) # print('kw_tfidf_dict_list[1]: ', kw_tfidf_dict_list[1]) # print('tf_idf_abs_list[1]: ',tf_idf_abs_list[1]) rank_list2 = tf_idf.get_kw_rank_all(kw_tfidf_dict_list,tf_idf_abs_list) # # abstractไธญ่ฏ็š„tf - idfๅŽป้‡ # tf_idf_abs = list(set(tf_idf_abs_list[1])) # # abstractไธญ่ฏ็š„tf-idfๅ€ผ้™ๅบๆŽ’ๅบ # tf_idf_abs.sort(reverse=True) # print('tf_idf_abs_list[1]: ',tf_idf_abs) preprocess.save(rank_list2,'tfidf_rank2') print('rank_list2: ',rank_list2) end_time4 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time4 - end_time3))) print('2ๅ…ณ้”ฎ่ฏrank่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) print('2 over======================================') start_time = time.time() n_gram_lists = tf_idf.get_n_gram_list(abstract_list,3) corpus3 = TextCollection(n_gram_lists) preprocess.save(corpus3,'corpus3') end_time1 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time1 - start_time))) print('corpus3ๆž„ๅปบๅฎŒๆˆ๏ผ่€—ๆ—ถ๏ผš',str(time_used)) kw_tfidf_dict_list = [tf_idf.tf_idf_kw_n_gram(kw_list_stem,corpus3) for kw_list_stem in keyword_list] preprocess.save(kw_tfidf_dict_list,'all_kw_tfidf3') end_time2 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time2 - end_time1))) print('3ๅ…ณ้”ฎ่ฏtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) tf_idf_abs_list = tf_idf.tf_idf_abs_all_n_gram(n_gram_lists, corpus3) preprocess.save(tf_idf_abs_list, 'all_abs_tfidf3') end_time3 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time3 - end_time2))) print('3ๆ‘˜่ฆtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) rank_list3 = tf_idf.get_kw_rank_all(kw_tfidf_dict_list,tf_idf_abs_list) preprocess.save(rank_list3,'tfidf_rank3') print('rank_list3: ',rank_list3) end_time4 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time4 - end_time3))) print('3ๅ…ณ้”ฎ่ฏrank่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) print('3 over======================================') start_time = time.time() n_gram_lists = tf_idf.get_n_gram_list(abstract_list,4) corpus4 = TextCollection(n_gram_lists) preprocess.save(corpus4,'corpus4') end_time1 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time1 - start_time))) print('corpus4ๆž„ๅปบๅฎŒๆˆ๏ผ่€—ๆ—ถ๏ผš',str(time_used)) kw_tfidf_dict_list = [tf_idf.tf_idf_kw_n_gram(kw_list_stem,corpus4) for kw_list_stem in keyword_list] preprocess.save(kw_tfidf_dict_list,'all_kw_tfidf4') end_time2 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time2 - end_time1))) print('4ๅ…ณ้”ฎ่ฏtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) tf_idf_abs_list = tf_idf.tf_idf_abs_all_n_gram(n_gram_lists, corpus4) preprocess.save(tf_idf_abs_list, 'all_abs_tfidf4') end_time3 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time3 - end_time2))) print('4ๆ‘˜่ฆtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) rank_list4 = tf_idf.get_kw_rank_all(kw_tfidf_dict_list,tf_idf_abs_list) preprocess.save(rank_list4,'tfidf_rank4') print('rank_list4: ',rank_list4) end_time4 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time4 - end_time3))) print('3ๅ…ณ้”ฎ่ฏrank่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) print('4 over======================================') n_gram_lists = tf_idf.get_n_gram_list(abstract_list,5) corpus5 = TextCollection(n_gram_lists) preprocess.save(corpus5,'corpus5') end_time1 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time1 - start_time))) print('corpus5ๆž„ๅปบๅฎŒๆˆ๏ผ่€—ๆ—ถ๏ผš',str(time_used)) kw_tfidf_dict_list = [tf_idf.tf_idf_kw_n_gram(kw_list_stem,corpus5) for kw_list_stem in keyword_list] preprocess.save(kw_tfidf_dict_list,'all_kw_tfidf5s') end_time2 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time2 - end_time1))) print('5ๅ…ณ้”ฎ่ฏtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) tf_idf_abs_list = tf_idf.tf_idf_abs_all_n_gram(n_gram_lists, corpus5) preprocess.save(tf_idf_abs_list, 'all_abs_tfidf5') end_time3 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time3 - end_time2))) print('5ๆ‘˜่ฆtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) rank_list5 = tf_idf.get_kw_rank_all(kw_tfidf_dict_list,tf_idf_abs_list) preprocess.save(rank_list5,'tfidf_rank5') print('rank_list5: ',rank_list5) end_time4 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time4 - end_time3))) print('5ๅ…ณ้”ฎ่ฏrank่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) print('5 over======================================') # tf_idf1 = tf_idf.tf_idf_abs(abstract_list[0], corpus1) # print('abstract็š„tf-ifd่ฎก็ฎ—ๅฎŒๆฏ•') # keyword_list1 = [preprocess.stemming_str(keyword) for keyword in keyword_list[0]] #keyword_listๅทฒ็ปstemming # print(keyword_list1) # print(abstract_list[0]) # kw_tf_idf1 = tf_idf.tf_idf_kw(keyword_list1,corpus1) # tf_idf1.sort(reverse=True) # # print(tf_idf1) # print(kw_tf_idf1) # for keyword in kw_tf_idf1: # print(keyword, tf_idf1.index(kw_tf_idf1.get(keyword))) # corpus1 = tf_idf.get_corpus_word(abstract_list) # all_tf_idf1 = tf_idf.tf_idf_abs_all(abstract_list,corpus1) # data_tf_idf = DataFrame(all_tf_idf) # data_tf_idf = DataFrame(np.array(all_tf_idf)[:,1]) # DataFrame(data_tf_idf).to_excel('tf-idf_test.xlsx') # ๅ…ณ้”ฎ่ฏ็š„tf-idf # tf_idf_kw = count.tf_idf_kw(keyword_list[0], corpus0) # print(tf_idf_kw) # ไปฅn_gramไธบๅ•ไฝ๏ผš # n_grams = tf_idf.n_gram(abstract_list[0],2) # abs_n_gram_lsit = tf_idf.get_n_gram_list(abstract_list,2) # tfidf1 = tf_idf.tf_idf_abs_n_gram(n_grams,abs_n_gram_lsit) # data_tf_idf = DataFrame({'2-gram': n_grams, 'tf-idf':tfidf1}) # DataFrame(data_tf_idf).to_excel('tf-idf_2gram.xlsx') # print(tfidf1)
#!/usr/bin/env python # -*- coding: utf-8 -*- import datetime import numpy as np import pandas as pd import time from pandas.core.frame import DataFrame from nltk import ngrams from nltk.text import TextCollection from static_count import preprocess, count, tf_idf, draw json_file = '../data/test_json' # json_file = '../data/all_title_abstract_keyword_clean.json' json_obj = preprocess.load_json(json_file) abstract_list, keyword_list, _ = preprocess.get_info(json_obj) # print(keyword_list[144]) # print(len(keyword_list[144])) # print(len(keyword_list)) # # ็ปŸ่ฎกๅ…ณ้”ฎ่ฏin or not in # count_results = count.count_in_all(abstract_list, keyword_list, isPart=False,isStem=False, isAnd=False) # in_num_list, out_num_list, avg_in, avg_out = count.cal_in_out_avg(count_results) # count_dict = {'in':in_num_list,'out':out_num_list} # print(count_results) # print(in_num_list) # print(out_num_list) # print(avg_in,avg_out) # data=DataFrame(count_dict) #ๅฐ†ๅญ—ๅ…ธ่ฝฌๆขๆˆไธบๆ•ฐๆฎๆก† # DataFrame(data).to_excel('count_ff1.xlsx') # print('count_ff1 over!') # # count_results = count.count_in_all(abstract_list, keyword_list, isPart=False,isStem=True) # in_num_list, out_num_list, avg_in, avg_out = count.cal_in_out_avg(count_results) # count_dict = {'in':in_num_list,'out':out_num_list} # print(count_results) # print(avg_in,avg_out) # data=DataFrame(count_dict) #ๅฐ†ๅญ—ๅ…ธ่ฝฌๆขๆˆไธบๆ•ฐๆฎๆก† # DataFrame(data).to_excel('count_ft1.xlsx') # print('count_ft1 over!') # # count_results = count.count_in_all(abstract_list, keyword_list, isPart=True,isStem=False) # in_num_list, out_num_list, avg_in, avg_out = count.cal_in_out_avg(count_results) # count_dict = {'in':in_num_list,'out':out_num_list} # print(count_results) # print(avg_in,avg_out) # data=DataFrame(count_dict) #ๅฐ†ๅญ—ๅ…ธ่ฝฌๆขๆˆไธบๆ•ฐๆฎๆก† # DataFrame(data).to_excel('count_tff1.xlsx') # print('count_tf1 over!') # # count_results = count.count_in_all(abstract_list, keyword_list, isPart=True,isStem=True) # in_num_list, out_num_list, avg_in, avg_out = count.cal_in_out_avg(count_results) # count_dict = {'in':in_num_list,'out':out_num_list} # print(count_results) # print(avg_in,avg_out) # data=DataFrame(count_dict) #ๅฐ†ๅญ—ๅ…ธ่ฝฌๆขๆˆไธบๆ•ฐๆฎๆก† # DataFrame(data).to_excel('count_ttf1.xlsx') # print('count_tt1 over!') # ็ปŸ่ฎกๆฏ็ฏ‡ๆ–‡็ซ ็š„count_in_out็™พๅˆ†ๆฏ” # in_out_persent = count.in_out_persents('./4_25/count_ff1.xlsx') # in_persent = in_out_persent[0] # out_persent = in_out_persent[1] # print(in_persent[:10]) # print(out_persent[:10]) # in_persent_persent = count.get_percentage(in_persent[0:10]) # print(in_persent_persent) # # ็ปŸ่ฎกๅ…ณ้”ฎ่ฏ้•ฟๅบฆ # # kw_len= count.count_kw_len(keyword_list[4]) # # print(keyword_list[4]) # # print(np.average(kw_len)) # # # # print('็ปŸ่ฎกๅ…ณ้”ฎ่ฏ้•ฟๅบฆ......') # n_kw_len = count.count_n_kw_len(keyword_list) # # print('exp_num', exp_num) # flatten =count.flatten_len(n_kw_len) # # print(len(flatten)) # preprocess.save(flatten,'flatten_len_tokenize_new') # # data=DataFrame(flatten) # # DataFrame(data).to_excel('flatten_len.xlsx') # ็ปŸ่ฎก็™พๅˆ†ๆฏ” # print('็ปŸ่ฎก็™พๅˆ†ๆฏ”...') # flatten_len_tokenize = preprocess.read('flatten_len_tokenize').tolist() # persents_dict = count.get_percentage(flatten_len_tokenize) # print(persents_dict) # preprocess.save(persents_dict, 'persents_len_tokenize') # data=DataFrame({'length':list(persents_dict.keys()), 'percent':list(persents_dict.values())}) # DataFrame(data).to_excel('persents_len_tokenize.xlsx') # preprocess.save(n_kw_len,'len') # data=DataFrame({'keyword': keyword_list, 'len':n_kw_len}) # data=DataFrame(n_kw_len) # DataFrame(data).to_excel('len0.xlsx') # print(n_kw_len) # avgs = [np.average(kw_len) for kw_len in n_kw_len] # print(avgs) # print(np.average(avgs)) # len_data = DataFrame(n_kw_len) # DataFrame(len_data).to_excel('len.xlsx') # n_grams = count.n_gram(abstract_list[0],2) # for gram in n_grams: # if 'application' in gram: # keywordไธญ็š„wordๅญ˜ๅœจไบŽn_gramไธญ # print(gram) # ่ฎก็ฎ—tf-idf # wordไธบๅ•ไฝ๏ผš print("็ปŸ่ฎกtf-idf") keyword_list = preprocess.stemming_all_keyword_list(keyword_list) abstract_list = [preprocess.stemming_list(abs) for abs in abstract_list] start_time = time.time() corpus1 = TextCollection(abstract_list) preprocess.save(corpus1,'corpus1') end_time1 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time1 - start_time))) print('corpus1ๆž„ๅปบๅฎŒๆˆ๏ผ่€—ๆ—ถ๏ผš',str(time_used)) kw_tfidf_dict_list = [tf_idf.tf_idf_kw(kw_list_stem,corpus1) for kw_list_stem in keyword_list] preprocess.save(kw_tfidf_dict_list,'all_kw_tfidf1') end_time2 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time2 - end_time1))) print('1ๅ…ณ้”ฎ่ฏtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) tf_idf_abs_list = tf_idf.tf_idf_abs_all(abstract_list, corpus1) preprocess.save(tf_idf_abs_list, 'all_abs_tfidf1') end_time3 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time3 - end_time2))) print('1ๆ‘˜่ฆtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) # print('kw_tfidf_dict_list: ', kw_tfidf_dict_list) # print('tf_idf_abs_list[1]: ',tf_idf_abs_list[1]) rank_list1 = tf_idf.get_kw_rank_all(kw_tfidf_dict_list,tf_idf_abs_list) preprocess.save(rank_list1,'tfidf_rank1') print('rank_list1: ',rank_list1) end_time4 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time4 - end_time3))) print('1ๅ…ณ้”ฎ่ฏrank่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) print('1 over======================================') start_time = time.time() n_gram_lists = tf_idf.get_n_gram_list(abstract_list,2) corpus2 = TextCollection(n_gram_lists) preprocess.save(corpus2,'corpus2') end_time1 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time1 - start_time))) print('corpus2ๆž„ๅปบๅฎŒๆˆ๏ผ่€—ๆ—ถ๏ผš',str(time_used)) kw_tfidf_dict_list = [tf_idf.tf_idf_kw_n_gram(kw_list_stem,corpus2) for kw_list_stem in keyword_list] preprocess.save(kw_tfidf_dict_list,'all_kw_tfidf2') end_time2 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time2 - end_time1))) print('2ๅ…ณ้”ฎ่ฏtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) tf_idf_abs_list = tf_idf.tf_idf_abs_all_n_gram(n_gram_lists, corpus2) preprocess.save(tf_idf_abs_list, 'all_abs_tfidf2') end_time3 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time3 - end_time2))) print('2ๆ‘˜่ฆtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) # print('kw_tfidf_dict_list[1]: ', kw_tfidf_dict_list[1]) # print('tf_idf_abs_list[1]: ',tf_idf_abs_list[1]) rank_list2 = tf_idf.get_kw_rank_all(kw_tfidf_dict_list,tf_idf_abs_list) # # abstractไธญ่ฏ็š„tf - idfๅŽป้‡ # tf_idf_abs = list(set(tf_idf_abs_list[1])) # # abstractไธญ่ฏ็š„tf-idfๅ€ผ้™ๅบๆŽ’ๅบ # tf_idf_abs.sort(reverse=True) # print('tf_idf_abs_list[1]: ',tf_idf_abs) preprocess.save(rank_list2,'tfidf_rank2') print('rank_list2: ',rank_list2) end_time4 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time4 - end_time3))) print('2ๅ…ณ้”ฎ่ฏrank่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) print('2 over======================================') start_time = time.time() n_gram_lists = tf_idf.get_n_gram_list(abstract_list,3) corpus3 = TextCollection(n_gram_lists) preprocess.save(corpus3,'corpus3') end_time1 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time1 - start_time))) print('corpus3ๆž„ๅปบๅฎŒๆˆ๏ผ่€—ๆ—ถ๏ผš',str(time_used)) kw_tfidf_dict_list = [tf_idf.tf_idf_kw_n_gram(kw_list_stem,corpus3) for kw_list_stem in keyword_list] preprocess.save(kw_tfidf_dict_list,'all_kw_tfidf3') end_time2 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time2 - end_time1))) print('3ๅ…ณ้”ฎ่ฏtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) tf_idf_abs_list = tf_idf.tf_idf_abs_all_n_gram(n_gram_lists, corpus3) preprocess.save(tf_idf_abs_list, 'all_abs_tfidf3') end_time3 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time3 - end_time2))) print('3ๆ‘˜่ฆtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) rank_list3 = tf_idf.get_kw_rank_all(kw_tfidf_dict_list,tf_idf_abs_list) preprocess.save(rank_list3,'tfidf_rank3') print('rank_list3: ',rank_list3) end_time4 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time4 - end_time3))) print('3ๅ…ณ้”ฎ่ฏrank่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) print('3 over======================================') start_time = time.time() n_gram_lists = tf_idf.get_n_gram_list(abstract_list,4) corpus4 = TextCollection(n_gram_lists) preprocess.save(corpus4,'corpus4') end_time1 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time1 - start_time))) print('corpus4ๆž„ๅปบๅฎŒๆˆ๏ผ่€—ๆ—ถ๏ผš',str(time_used)) kw_tfidf_dict_list = [tf_idf.tf_idf_kw_n_gram(kw_list_stem,corpus4) for kw_list_stem in keyword_list] preprocess.save(kw_tfidf_dict_list,'all_kw_tfidf4') end_time2 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time2 - end_time1))) print('4ๅ…ณ้”ฎ่ฏtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) tf_idf_abs_list = tf_idf.tf_idf_abs_all_n_gram(n_gram_lists, corpus4) preprocess.save(tf_idf_abs_list, 'all_abs_tfidf4') end_time3 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time3 - end_time2))) print('4ๆ‘˜่ฆtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) rank_list4 = tf_idf.get_kw_rank_all(kw_tfidf_dict_list,tf_idf_abs_list) preprocess.save(rank_list4,'tfidf_rank4') print('rank_list4: ',rank_list4) end_time4 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time4 - end_time3))) print('3ๅ…ณ้”ฎ่ฏrank่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) print('4 over======================================') n_gram_lists = tf_idf.get_n_gram_list(abstract_list,5) corpus5 = TextCollection(n_gram_lists) preprocess.save(corpus5,'corpus5') end_time1 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time1 - start_time))) print('corpus5ๆž„ๅปบๅฎŒๆˆ๏ผ่€—ๆ—ถ๏ผš',str(time_used)) kw_tfidf_dict_list = [tf_idf.tf_idf_kw_n_gram(kw_list_stem,corpus5) for kw_list_stem in keyword_list] preprocess.save(kw_tfidf_dict_list,'all_kw_tfidf5s') end_time2 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time2 - end_time1))) print('5ๅ…ณ้”ฎ่ฏtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) tf_idf_abs_list = tf_idf.tf_idf_abs_all_n_gram(n_gram_lists, corpus5) preprocess.save(tf_idf_abs_list, 'all_abs_tfidf5') end_time3 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time3 - end_time2))) print('5ๆ‘˜่ฆtfidf่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) rank_list5 = tf_idf.get_kw_rank_all(kw_tfidf_dict_list,tf_idf_abs_list) preprocess.save(rank_list5,'tfidf_rank5') print('rank_list5: ',rank_list5) end_time4 = time.time() time_used = datetime.timedelta(seconds=int(round(end_time4 - end_time3))) print('5ๅ…ณ้”ฎ่ฏrank่ฎก็ฎ—ๅฎŒๆฏ•๏ผ่€—ๆ—ถ๏ผš',str(time_used)) print('5 over======================================') # tf_idf1 = tf_idf.tf_idf_abs(abstract_list[0], corpus1) # print('abstract็š„tf-ifd่ฎก็ฎ—ๅฎŒๆฏ•') # keyword_list1 = [preprocess.stemming_str(keyword) for keyword in keyword_list[0]] #keyword_listๅทฒ็ปstemming # print(keyword_list1) # print(abstract_list[0]) # kw_tf_idf1 = tf_idf.tf_idf_kw(keyword_list1,corpus1) # tf_idf1.sort(reverse=True) # # print(tf_idf1) # print(kw_tf_idf1) # for keyword in kw_tf_idf1: # print(keyword, tf_idf1.index(kw_tf_idf1.get(keyword))) # corpus1 = tf_idf.get_corpus_word(abstract_list) # all_tf_idf1 = tf_idf.tf_idf_abs_all(abstract_list,corpus1) # data_tf_idf = DataFrame(all_tf_idf) # data_tf_idf = DataFrame(np.array(all_tf_idf)[:,1]) # DataFrame(data_tf_idf).to_excel('tf-idf_test.xlsx') # ๅ…ณ้”ฎ่ฏ็š„tf-idf # tf_idf_kw = count.tf_idf_kw(keyword_list[0], corpus0) # print(tf_idf_kw) # ไปฅn_gramไธบๅ•ไฝ๏ผš # n_grams = tf_idf.n_gram(abstract_list[0],2) # abs_n_gram_lsit = tf_idf.get_n_gram_list(abstract_list,2) # tfidf1 = tf_idf.tf_idf_abs_n_gram(n_grams,abs_n_gram_lsit) # data_tf_idf = DataFrame({'2-gram': n_grams, 'tf-idf':tfidf1}) # DataFrame(data_tf_idf).to_excel('tf-idf_2gram.xlsx') # print(tfidf1)
en
0.230682
#!/usr/bin/env python # -*- coding: utf-8 -*- # json_file = '../data/all_title_abstract_keyword_clean.json' # print(keyword_list[144]) # print(len(keyword_list[144])) # print(len(keyword_list)) # # ็ปŸ่ฎกๅ…ณ้”ฎ่ฏin or not in # count_results = count.count_in_all(abstract_list, keyword_list, isPart=False,isStem=False, isAnd=False) # in_num_list, out_num_list, avg_in, avg_out = count.cal_in_out_avg(count_results) # count_dict = {'in':in_num_list,'out':out_num_list} # print(count_results) # print(in_num_list) # print(out_num_list) # print(avg_in,avg_out) # data=DataFrame(count_dict) #ๅฐ†ๅญ—ๅ…ธ่ฝฌๆขๆˆไธบๆ•ฐๆฎๆก† # DataFrame(data).to_excel('count_ff1.xlsx') # print('count_ff1 over!') # # count_results = count.count_in_all(abstract_list, keyword_list, isPart=False,isStem=True) # in_num_list, out_num_list, avg_in, avg_out = count.cal_in_out_avg(count_results) # count_dict = {'in':in_num_list,'out':out_num_list} # print(count_results) # print(avg_in,avg_out) # data=DataFrame(count_dict) #ๅฐ†ๅญ—ๅ…ธ่ฝฌๆขๆˆไธบๆ•ฐๆฎๆก† # DataFrame(data).to_excel('count_ft1.xlsx') # print('count_ft1 over!') # # count_results = count.count_in_all(abstract_list, keyword_list, isPart=True,isStem=False) # in_num_list, out_num_list, avg_in, avg_out = count.cal_in_out_avg(count_results) # count_dict = {'in':in_num_list,'out':out_num_list} # print(count_results) # print(avg_in,avg_out) # data=DataFrame(count_dict) #ๅฐ†ๅญ—ๅ…ธ่ฝฌๆขๆˆไธบๆ•ฐๆฎๆก† # DataFrame(data).to_excel('count_tff1.xlsx') # print('count_tf1 over!') # # count_results = count.count_in_all(abstract_list, keyword_list, isPart=True,isStem=True) # in_num_list, out_num_list, avg_in, avg_out = count.cal_in_out_avg(count_results) # count_dict = {'in':in_num_list,'out':out_num_list} # print(count_results) # print(avg_in,avg_out) # data=DataFrame(count_dict) #ๅฐ†ๅญ—ๅ…ธ่ฝฌๆขๆˆไธบๆ•ฐๆฎๆก† # DataFrame(data).to_excel('count_ttf1.xlsx') # print('count_tt1 over!') # ็ปŸ่ฎกๆฏ็ฏ‡ๆ–‡็ซ ็š„count_in_out็™พๅˆ†ๆฏ” # in_out_persent = count.in_out_persents('./4_25/count_ff1.xlsx') # in_persent = in_out_persent[0] # out_persent = in_out_persent[1] # print(in_persent[:10]) # print(out_persent[:10]) # in_persent_persent = count.get_percentage(in_persent[0:10]) # print(in_persent_persent) # # ็ปŸ่ฎกๅ…ณ้”ฎ่ฏ้•ฟๅบฆ # # kw_len= count.count_kw_len(keyword_list[4]) # # print(keyword_list[4]) # # print(np.average(kw_len)) # # # # print('็ปŸ่ฎกๅ…ณ้”ฎ่ฏ้•ฟๅบฆ......') # n_kw_len = count.count_n_kw_len(keyword_list) # # print('exp_num', exp_num) # flatten =count.flatten_len(n_kw_len) # # print(len(flatten)) # preprocess.save(flatten,'flatten_len_tokenize_new') # # data=DataFrame(flatten) # # DataFrame(data).to_excel('flatten_len.xlsx') # ็ปŸ่ฎก็™พๅˆ†ๆฏ” # print('็ปŸ่ฎก็™พๅˆ†ๆฏ”...') # flatten_len_tokenize = preprocess.read('flatten_len_tokenize').tolist() # persents_dict = count.get_percentage(flatten_len_tokenize) # print(persents_dict) # preprocess.save(persents_dict, 'persents_len_tokenize') # data=DataFrame({'length':list(persents_dict.keys()), 'percent':list(persents_dict.values())}) # DataFrame(data).to_excel('persents_len_tokenize.xlsx') # preprocess.save(n_kw_len,'len') # data=DataFrame({'keyword': keyword_list, 'len':n_kw_len}) # data=DataFrame(n_kw_len) # DataFrame(data).to_excel('len0.xlsx') # print(n_kw_len) # avgs = [np.average(kw_len) for kw_len in n_kw_len] # print(avgs) # print(np.average(avgs)) # len_data = DataFrame(n_kw_len) # DataFrame(len_data).to_excel('len.xlsx') # n_grams = count.n_gram(abstract_list[0],2) # for gram in n_grams: # if 'application' in gram: # keywordไธญ็š„wordๅญ˜ๅœจไบŽn_gramไธญ # print(gram) # ่ฎก็ฎ—tf-idf # wordไธบๅ•ไฝ๏ผš # print('kw_tfidf_dict_list: ', kw_tfidf_dict_list) # print('tf_idf_abs_list[1]: ',tf_idf_abs_list[1]) # print('kw_tfidf_dict_list[1]: ', kw_tfidf_dict_list[1]) # print('tf_idf_abs_list[1]: ',tf_idf_abs_list[1]) # # abstractไธญ่ฏ็š„tf - idfๅŽป้‡ # tf_idf_abs = list(set(tf_idf_abs_list[1])) # # abstractไธญ่ฏ็š„tf-idfๅ€ผ้™ๅบๆŽ’ๅบ # tf_idf_abs.sort(reverse=True) # print('tf_idf_abs_list[1]: ',tf_idf_abs) # tf_idf1 = tf_idf.tf_idf_abs(abstract_list[0], corpus1) # print('abstract็š„tf-ifd่ฎก็ฎ—ๅฎŒๆฏ•') # keyword_list1 = [preprocess.stemming_str(keyword) for keyword in keyword_list[0]] #keyword_listๅทฒ็ปstemming # print(keyword_list1) # print(abstract_list[0]) # kw_tf_idf1 = tf_idf.tf_idf_kw(keyword_list1,corpus1) # tf_idf1.sort(reverse=True) # # print(tf_idf1) # print(kw_tf_idf1) # for keyword in kw_tf_idf1: # print(keyword, tf_idf1.index(kw_tf_idf1.get(keyword))) # corpus1 = tf_idf.get_corpus_word(abstract_list) # all_tf_idf1 = tf_idf.tf_idf_abs_all(abstract_list,corpus1) # data_tf_idf = DataFrame(all_tf_idf) # data_tf_idf = DataFrame(np.array(all_tf_idf)[:,1]) # DataFrame(data_tf_idf).to_excel('tf-idf_test.xlsx') # ๅ…ณ้”ฎ่ฏ็š„tf-idf # tf_idf_kw = count.tf_idf_kw(keyword_list[0], corpus0) # print(tf_idf_kw) # ไปฅn_gramไธบๅ•ไฝ๏ผš # n_grams = tf_idf.n_gram(abstract_list[0],2) # abs_n_gram_lsit = tf_idf.get_n_gram_list(abstract_list,2) # tfidf1 = tf_idf.tf_idf_abs_n_gram(n_grams,abs_n_gram_lsit) # data_tf_idf = DataFrame({'2-gram': n_grams, 'tf-idf':tfidf1}) # DataFrame(data_tf_idf).to_excel('tf-idf_2gram.xlsx') # print(tfidf1)
2.557335
3
Hapi/calibration.py
juancotrino/Hapi
0
6629981
<gh_stars>0 # -*- coding: utf-8 -*- """ Calibration calibration contains functions to to connect the parameter spatial distribution function with the with both component of the spatial representation of the hydrological process (conceptual model & spatial routing) to calculate the performance of predicted runoff at known locations based on given performance function @author: Mostafa """ #%links #%library import os import numpy as np import gdal from Oasis.optimization import Optimization from Oasis.hsapi import HSapi # from Oasis.optimizer import Optimizer # functions import Hapi.raster as raster #import DistParameters as Dp #import PerformanceCriteria as PC import Hapi.wrapper as wrapper def RunCalibration(ConceptualModel, Paths, Basic_inputs, SpatialVarFun, SpatialVarArgs, OF, OF_args, Q_obs, OptimizationArgs, printError=None): """ ======================================================================= RunCalibration(ConceptualModel, Paths, p2, Q_obs, UB, LB, SpatialVarFun, lumpedParNo, lumpedParPos, objective_function, printError=None, *args): ======================================================================= this function runs the calibration algorithm for the conceptual distributed hydrological model Inputs: ---------- 1-ConceptualModel: [function] conceptual model and it should contain a function called simulate 1-Paths: 1-PrecPath: [String] path to the Folder contains precipitation rasters 2-Evap_Path: [String] path to the Folder contains Evapotranspiration rasters 3-TempPath: [String] path to the Folder contains Temperature rasters 4-FlowAccPath: [String] path to the Flow Accumulation raster of the catchment (it should include the raster name and extension) 5-FlowDPath: [String] path to the Flow Direction raster of the catchment (it should include the raster name and extension) 2-Basic_inputs: 1-p2: [List] list of unoptimized parameters p2[0] = tfac, 1 for hourly, 0.25 for 15 min time step and 24 for daily time step p2[1] = catchment area in km2 2-init_st: [list] initial values for the state variables [sp,sm,uz,lz,wc] in mm 3-UB: [Numeric] upper bound of the values of the parameters 4-LB: [Numeric] Lower bound of the values of the parameters 3-Q_obs: [Numeric] Observed values of discharge 6-lumpedParNo: [int] nomber of lumped parameters, you have to enter the value of the lumped parameter at the end of the list, default is 0 (no lumped parameters) 7-lumpedParPos: [List] list of order or position of the lumped parameter among all the parameters of the lumped model (order starts from 0 to the length of the model parameters), default is [] (empty), the following order of parameters is used for the lumped HBV model used [ltt, utt, rfcf, sfcf, ttm, cfmax, cwh, cfr, fc, beta, e_corr, etf, lp, c_flux, k, k1, alpha, perc, pcorr, Kmuskingum, Xmuskingum] 8-objective_function: [function] objective function to calculate the performance of the model and to be used in the calibration 9-*args: other arguments needed on the objective function Outputs: ---------- 1- st: [4D array] state variables 2- q_out: [1D array] calculated Discharge at the outlet of the catchment 3- q_uz: [3D array] Distributed discharge for each cell Example: ---------- PrecPath = prec_path="meteodata/4000/calib/prec" Evap_Path = evap_path="meteodata/4000/calib/evap" TempPath = temp_path="meteodata/4000/calib/temp" FlowAccPath = "GIS/4000/acc4000.tif" FlowDPath = "GIS/4000/fd4000.tif" ParPath = "meteodata/4000/"+"parameters.txt" p2=[1, 227.31] st, q_out, q_uz_routed = RunModel(PrecPath,Evap_Path,TempPath,DemPath, FlowAccPath,FlowDPath,ParPath,p2) """ ### inputs validation # data type assert len(Paths) == 5, "Paths should include 5 folder pathes " +str(len(Paths))+" paths are only provided" PrecPath=Paths[0] Evap_Path=Paths[1] TempPath=Paths[2] # DemPath=Paths[3] FlowAccPath=Paths[3] FlowDPath=Paths[4] assert type(PrecPath)== str, "PrecPath input should be string type" assert type(Evap_Path)== str, "Evap_Path input should be string type" assert type(TempPath)== str, "TempPath input should be string type" # assert type(DemPath)== str, "DemPath input should be string type" assert type(FlowAccPath)== str, "FlowAccPath input should be string type" assert type(FlowDPath)== str, "FlowDPath input should be string type" # input values # dem_ext=DemPath[-4:] # assert dem_ext == ".tif", "please add the extension at the end of the DEM raster path input" acc_ext=FlowAccPath[-4:] assert acc_ext == ".tif", "please add the extension at the end of the Flow accumulation raster path input" fd_ext=FlowDPath[-4:] assert fd_ext == ".tif", "please add the extension at the end of the Flow Direction path input" # check wether the path exists or not assert os.path.exists(PrecPath), PrecPath + " you have provided does not exist" assert os.path.exists(Evap_Path), Evap_Path+" path you have provided does not exist" assert os.path.exists(TempPath), TempPath+" path you have provided does not exist" # assert os.path.exists(DemPath), DemPath+ " you have provided does not exist" assert os.path.exists(FlowAccPath), FlowAccPath + " you have provided does not exist" assert os.path.exists(FlowDPath), FlowDPath+ " you have provided does not exist" # check wether the folder has the rasters or not assert len(os.listdir(PrecPath)) > 0, PrecPath+" folder you have provided is empty" assert len(os.listdir(Evap_Path)) > 0, Evap_Path+" folder you have provided is empty" assert len(os.listdir(TempPath)) > 0, TempPath+" folder you have provided is empty" # basic inputs # check if all inputs are included assert all(["p2","init_st","UB","LB","snow "][i] in Basic_inputs.keys() for i in range(4)), "Basic_inputs should contain ['p2','init_st','UB','LB'] " p2 = Basic_inputs['p2'] init_st = Basic_inputs["init_st"] UB = Basic_inputs['UB'] LB = Basic_inputs['LB'] snow = Basic_inputs['snow'] assert len(UB)==len(LB), "length of UB should be the same like LB" # check objective_function assert callable(OF) , "second argument should be a function" if OF_args== None : OF_args=[] # read data ### meteorological data prec=raster.ReadRastersFolder(PrecPath) evap=raster.ReadRastersFolder(Evap_Path) temp=raster.ReadRastersFolder(TempPath) print("meteorological data are read successfully") #### GIS data # dem= gdal.Open(DemPath) acc=gdal.Open(FlowAccPath) fd=gdal.Open(FlowDPath) print("GIS data are read successfully") ### optimization # get arguments ApiObjArgs = OptimizationArgs[0] pll_type = OptimizationArgs[1] ApiSolveArgs = OptimizationArgs[2] # check optimization arguement assert type(ApiObjArgs) == dict, "store_history should be 0 or 1" assert type(ApiSolveArgs) == dict, "history_fname should be of type string " print('Calibration starts') ### calculate the objective function def opt_fun(par): try: # parameters klb=float(par[-2]) kub=float(par[-1]) par=par[:-2] par_dist=SpatialVarFun(par,*SpatialVarArgs,kub=kub,klb=klb) #run the model _, q_out, q_uz_routed, q_lz_trans = wrapper.HapiModel(ConceptualModel, acc, fd, prec, evap, temp, par_dist, p2, snow , init_st) # calculate performance of the model try: error=OF(Q_obs,q_out,q_uz_routed,q_lz_trans,*OF_args) except TypeError: # if no of inputs less than what the function needs assert 1==5, "the objective function you have entered needs more inputs please enter then in a list as *args" # print error if printError != 0: print(error) print(par) fail = 0 except: error = np.nan fail = 1 return error, [], fail ### define the optimization components opt_prob = Optimization('HBV Calibration', opt_fun) for i in range(len(LB)): opt_prob.addVar('x{0}'.format(i), type='c', lower=LB[i], upper=UB[i]) print(opt_prob) opt_engine = HSapi(pll_type=pll_type , options=ApiObjArgs) store_sol = ApiSolveArgs['store_sol'] display_opts = ApiSolveArgs['display_opts'] store_hst = ApiSolveArgs['store_hst'] hot_start = ApiSolveArgs['hot_start'] res = opt_engine(opt_prob, store_sol=store_sol, display_opts=display_opts, store_hst=store_hst, hot_start=hot_start) return res def LumpedCalibration(ConceptualModel, data, Basic_inputs, OF, OF_args, Q_obs, OptimizationArgs, printError=None): """ ======================================================================= RunCalibration(ConceptualModel, data,parameters, p2, init_st, snow, Routing=0, RoutingFn=[], objective_function, printError=None, *args): ======================================================================= this function runs the calibration algorithm for the Lumped conceptual hydrological model Inputs: ---------- 1-ConceptualModel: [function] conceptual model and it should contain a function called simulate 2-data: [numpy array] meteorological data as array with the first column as precipitation second as evapotranspiration, third as temperature and forth column as long term average temperature 2-Basic_inputs: 1-p2: [List] list of unoptimized parameters p2[0] = tfac, 1 for hourly, 0.25 for 15 min time step and 24 for daily time step p2[1] = catchment area in km2 2-init_st: [list] initial values for the state variables [sp,sm,uz,lz,wc] in mm 3-UB: [Numeric] upper bound of the values of the parameters 4-LB: [Numeric] Lower bound of the values of the parameters 3-Q_obs: [Numeric] Observed values of discharge 6-lumpedParNo: [int] nomber of lumped parameters, you have to enter the value of the lumped parameter at the end of the list, default is 0 (no lumped parameters) 7-lumpedParPos: [List] list of order or position of the lumped parameter among all the parameters of the lumped model (order starts from 0 to the length of the model parameters), default is [] (empty), the following order of parameters is used for the lumped HBV model used [ltt, utt, rfcf, sfcf, ttm, cfmax, cwh, cfr, fc, beta, e_corr, etf, lp, c_flux, k, k1, alpha, perc, pcorr, Kmuskingum, Xmuskingum] 8-objective_function: [function] objective function to calculate the performance of the model and to be used in the calibration 9-*args: other arguments needed on the objective function Outputs: ---------- 1- st: [4D array] state variables 2- q_out: [1D array] calculated Discharge at the outlet of the catchment 3- q_uz: [3D array] Distributed discharge for each cell Example: ---------- PrecPath = prec_path="meteodata/4000/calib/prec" Evap_Path = evap_path="meteodata/4000/calib/evap" TempPath = temp_path="meteodata/4000/calib/temp" FlowAccPath = "GIS/4000/acc4000.tif" FlowDPath = "GIS/4000/fd4000.tif" ParPath = "meteodata/4000/"+"parameters.txt" p2=[1, 227.31] st, q_out, q_uz_routed = RunModel(PrecPath,Evap_Path,TempPath,DemPath, FlowAccPath,FlowDPath,ParPath,p2) """ ### inputs validation # data type # input values # basic inputs # check if all inputs are included assert all(["p2","init_st","UB","LB","snow","Routing","RoutingFn"][i] in Basic_inputs.keys() for i in range(4)), "Basic_inputs should contain ['p2','init_st','UB','LB'] " p2 = Basic_inputs['p2'] init_st = Basic_inputs["init_st"] UB = Basic_inputs['UB'] LB = Basic_inputs['LB'] snow = Basic_inputs['snow'] Routing = Basic_inputs["Routing"] RoutingFn = Basic_inputs["RoutingFn"] if 'InitialValues' in Basic_inputs.keys(): InitialValues = Basic_inputs['InitialValues'] assert len(UB)==len(LB), "length of UB should be the same like LB" # check objective_function assert callable(OF) , "second argument should be a function" if OF_args== None : OF_args=[] ### optimization # get arguments ApiObjArgs = OptimizationArgs[0] pll_type = OptimizationArgs[1] ApiSolveArgs = OptimizationArgs[2] # check optimization arguement assert type(ApiObjArgs) == dict, "store_history should be 0 or 1" assert type(ApiSolveArgs) == dict, "history_fname should be of type string " # assert history_fname[-4:] == ".txt", "history_fname should be txt file please change extension or add .txt ad the end of the history_fname" print('Calibration starts') ### calculate the objective function def opt_fun(par): try: # parameters #run the model _, q_out = wrapper.Lumped(ConceptualModel,data,par,p2,init_st, snow,Routing, RoutingFn) # calculate performance of the model try: error=OF(Q_obs,q_out,*OF_args) except TypeError: # if no of inputs less than what the function needs assert 1==5, "the objective function you have entered needs more inputs please enter then in a list as *args" # print error if printError != 0: print(error) # print(par) fail = 0 except: error = np.nan fail = 1 return error, [], fail ### define the optimization components opt_prob = Optimization('HBV Calibration', opt_fun) for i in range(len(LB)): opt_prob.addVar('x{0}'.format(i), type='c', lower=LB[i], upper=UB[i], value=InitialValues[i]) print(opt_prob) opt_engine = HSapi(pll_type=pll_type , options=ApiObjArgs) # parse the ApiSolveArgs inputs # availablekeys = ['store_sol',"display_opts","store_hst","hot_start"] store_sol = ApiSolveArgs['store_sol'] display_opts = ApiSolveArgs['display_opts'] store_hst = ApiSolveArgs['store_hst'] hot_start = ApiSolveArgs['hot_start'] # for i in range(len(availablekeys)): # if availablekeys[i] in ApiSolveArgs.keys(): # exec(availablekeys[i] + "=" + str(ApiSolveArgs[availablekeys[i]])) # print(availablekeys[i] + " = " + str(ApiSolveArgs[availablekeys[i]])) res = opt_engine(opt_prob, store_sol=store_sol, display_opts=display_opts, store_hst=store_hst, hot_start=hot_start) return res
# -*- coding: utf-8 -*- """ Calibration calibration contains functions to to connect the parameter spatial distribution function with the with both component of the spatial representation of the hydrological process (conceptual model & spatial routing) to calculate the performance of predicted runoff at known locations based on given performance function @author: Mostafa """ #%links #%library import os import numpy as np import gdal from Oasis.optimization import Optimization from Oasis.hsapi import HSapi # from Oasis.optimizer import Optimizer # functions import Hapi.raster as raster #import DistParameters as Dp #import PerformanceCriteria as PC import Hapi.wrapper as wrapper def RunCalibration(ConceptualModel, Paths, Basic_inputs, SpatialVarFun, SpatialVarArgs, OF, OF_args, Q_obs, OptimizationArgs, printError=None): """ ======================================================================= RunCalibration(ConceptualModel, Paths, p2, Q_obs, UB, LB, SpatialVarFun, lumpedParNo, lumpedParPos, objective_function, printError=None, *args): ======================================================================= this function runs the calibration algorithm for the conceptual distributed hydrological model Inputs: ---------- 1-ConceptualModel: [function] conceptual model and it should contain a function called simulate 1-Paths: 1-PrecPath: [String] path to the Folder contains precipitation rasters 2-Evap_Path: [String] path to the Folder contains Evapotranspiration rasters 3-TempPath: [String] path to the Folder contains Temperature rasters 4-FlowAccPath: [String] path to the Flow Accumulation raster of the catchment (it should include the raster name and extension) 5-FlowDPath: [String] path to the Flow Direction raster of the catchment (it should include the raster name and extension) 2-Basic_inputs: 1-p2: [List] list of unoptimized parameters p2[0] = tfac, 1 for hourly, 0.25 for 15 min time step and 24 for daily time step p2[1] = catchment area in km2 2-init_st: [list] initial values for the state variables [sp,sm,uz,lz,wc] in mm 3-UB: [Numeric] upper bound of the values of the parameters 4-LB: [Numeric] Lower bound of the values of the parameters 3-Q_obs: [Numeric] Observed values of discharge 6-lumpedParNo: [int] nomber of lumped parameters, you have to enter the value of the lumped parameter at the end of the list, default is 0 (no lumped parameters) 7-lumpedParPos: [List] list of order or position of the lumped parameter among all the parameters of the lumped model (order starts from 0 to the length of the model parameters), default is [] (empty), the following order of parameters is used for the lumped HBV model used [ltt, utt, rfcf, sfcf, ttm, cfmax, cwh, cfr, fc, beta, e_corr, etf, lp, c_flux, k, k1, alpha, perc, pcorr, Kmuskingum, Xmuskingum] 8-objective_function: [function] objective function to calculate the performance of the model and to be used in the calibration 9-*args: other arguments needed on the objective function Outputs: ---------- 1- st: [4D array] state variables 2- q_out: [1D array] calculated Discharge at the outlet of the catchment 3- q_uz: [3D array] Distributed discharge for each cell Example: ---------- PrecPath = prec_path="meteodata/4000/calib/prec" Evap_Path = evap_path="meteodata/4000/calib/evap" TempPath = temp_path="meteodata/4000/calib/temp" FlowAccPath = "GIS/4000/acc4000.tif" FlowDPath = "GIS/4000/fd4000.tif" ParPath = "meteodata/4000/"+"parameters.txt" p2=[1, 227.31] st, q_out, q_uz_routed = RunModel(PrecPath,Evap_Path,TempPath,DemPath, FlowAccPath,FlowDPath,ParPath,p2) """ ### inputs validation # data type assert len(Paths) == 5, "Paths should include 5 folder pathes " +str(len(Paths))+" paths are only provided" PrecPath=Paths[0] Evap_Path=Paths[1] TempPath=Paths[2] # DemPath=Paths[3] FlowAccPath=Paths[3] FlowDPath=Paths[4] assert type(PrecPath)== str, "PrecPath input should be string type" assert type(Evap_Path)== str, "Evap_Path input should be string type" assert type(TempPath)== str, "TempPath input should be string type" # assert type(DemPath)== str, "DemPath input should be string type" assert type(FlowAccPath)== str, "FlowAccPath input should be string type" assert type(FlowDPath)== str, "FlowDPath input should be string type" # input values # dem_ext=DemPath[-4:] # assert dem_ext == ".tif", "please add the extension at the end of the DEM raster path input" acc_ext=FlowAccPath[-4:] assert acc_ext == ".tif", "please add the extension at the end of the Flow accumulation raster path input" fd_ext=FlowDPath[-4:] assert fd_ext == ".tif", "please add the extension at the end of the Flow Direction path input" # check wether the path exists or not assert os.path.exists(PrecPath), PrecPath + " you have provided does not exist" assert os.path.exists(Evap_Path), Evap_Path+" path you have provided does not exist" assert os.path.exists(TempPath), TempPath+" path you have provided does not exist" # assert os.path.exists(DemPath), DemPath+ " you have provided does not exist" assert os.path.exists(FlowAccPath), FlowAccPath + " you have provided does not exist" assert os.path.exists(FlowDPath), FlowDPath+ " you have provided does not exist" # check wether the folder has the rasters or not assert len(os.listdir(PrecPath)) > 0, PrecPath+" folder you have provided is empty" assert len(os.listdir(Evap_Path)) > 0, Evap_Path+" folder you have provided is empty" assert len(os.listdir(TempPath)) > 0, TempPath+" folder you have provided is empty" # basic inputs # check if all inputs are included assert all(["p2","init_st","UB","LB","snow "][i] in Basic_inputs.keys() for i in range(4)), "Basic_inputs should contain ['p2','init_st','UB','LB'] " p2 = Basic_inputs['p2'] init_st = Basic_inputs["init_st"] UB = Basic_inputs['UB'] LB = Basic_inputs['LB'] snow = Basic_inputs['snow'] assert len(UB)==len(LB), "length of UB should be the same like LB" # check objective_function assert callable(OF) , "second argument should be a function" if OF_args== None : OF_args=[] # read data ### meteorological data prec=raster.ReadRastersFolder(PrecPath) evap=raster.ReadRastersFolder(Evap_Path) temp=raster.ReadRastersFolder(TempPath) print("meteorological data are read successfully") #### GIS data # dem= gdal.Open(DemPath) acc=gdal.Open(FlowAccPath) fd=gdal.Open(FlowDPath) print("GIS data are read successfully") ### optimization # get arguments ApiObjArgs = OptimizationArgs[0] pll_type = OptimizationArgs[1] ApiSolveArgs = OptimizationArgs[2] # check optimization arguement assert type(ApiObjArgs) == dict, "store_history should be 0 or 1" assert type(ApiSolveArgs) == dict, "history_fname should be of type string " print('Calibration starts') ### calculate the objective function def opt_fun(par): try: # parameters klb=float(par[-2]) kub=float(par[-1]) par=par[:-2] par_dist=SpatialVarFun(par,*SpatialVarArgs,kub=kub,klb=klb) #run the model _, q_out, q_uz_routed, q_lz_trans = wrapper.HapiModel(ConceptualModel, acc, fd, prec, evap, temp, par_dist, p2, snow , init_st) # calculate performance of the model try: error=OF(Q_obs,q_out,q_uz_routed,q_lz_trans,*OF_args) except TypeError: # if no of inputs less than what the function needs assert 1==5, "the objective function you have entered needs more inputs please enter then in a list as *args" # print error if printError != 0: print(error) print(par) fail = 0 except: error = np.nan fail = 1 return error, [], fail ### define the optimization components opt_prob = Optimization('HBV Calibration', opt_fun) for i in range(len(LB)): opt_prob.addVar('x{0}'.format(i), type='c', lower=LB[i], upper=UB[i]) print(opt_prob) opt_engine = HSapi(pll_type=pll_type , options=ApiObjArgs) store_sol = ApiSolveArgs['store_sol'] display_opts = ApiSolveArgs['display_opts'] store_hst = ApiSolveArgs['store_hst'] hot_start = ApiSolveArgs['hot_start'] res = opt_engine(opt_prob, store_sol=store_sol, display_opts=display_opts, store_hst=store_hst, hot_start=hot_start) return res def LumpedCalibration(ConceptualModel, data, Basic_inputs, OF, OF_args, Q_obs, OptimizationArgs, printError=None): """ ======================================================================= RunCalibration(ConceptualModel, data,parameters, p2, init_st, snow, Routing=0, RoutingFn=[], objective_function, printError=None, *args): ======================================================================= this function runs the calibration algorithm for the Lumped conceptual hydrological model Inputs: ---------- 1-ConceptualModel: [function] conceptual model and it should contain a function called simulate 2-data: [numpy array] meteorological data as array with the first column as precipitation second as evapotranspiration, third as temperature and forth column as long term average temperature 2-Basic_inputs: 1-p2: [List] list of unoptimized parameters p2[0] = tfac, 1 for hourly, 0.25 for 15 min time step and 24 for daily time step p2[1] = catchment area in km2 2-init_st: [list] initial values for the state variables [sp,sm,uz,lz,wc] in mm 3-UB: [Numeric] upper bound of the values of the parameters 4-LB: [Numeric] Lower bound of the values of the parameters 3-Q_obs: [Numeric] Observed values of discharge 6-lumpedParNo: [int] nomber of lumped parameters, you have to enter the value of the lumped parameter at the end of the list, default is 0 (no lumped parameters) 7-lumpedParPos: [List] list of order or position of the lumped parameter among all the parameters of the lumped model (order starts from 0 to the length of the model parameters), default is [] (empty), the following order of parameters is used for the lumped HBV model used [ltt, utt, rfcf, sfcf, ttm, cfmax, cwh, cfr, fc, beta, e_corr, etf, lp, c_flux, k, k1, alpha, perc, pcorr, Kmuskingum, Xmuskingum] 8-objective_function: [function] objective function to calculate the performance of the model and to be used in the calibration 9-*args: other arguments needed on the objective function Outputs: ---------- 1- st: [4D array] state variables 2- q_out: [1D array] calculated Discharge at the outlet of the catchment 3- q_uz: [3D array] Distributed discharge for each cell Example: ---------- PrecPath = prec_path="meteodata/4000/calib/prec" Evap_Path = evap_path="meteodata/4000/calib/evap" TempPath = temp_path="meteodata/4000/calib/temp" FlowAccPath = "GIS/4000/acc4000.tif" FlowDPath = "GIS/4000/fd4000.tif" ParPath = "meteodata/4000/"+"parameters.txt" p2=[1, 227.31] st, q_out, q_uz_routed = RunModel(PrecPath,Evap_Path,TempPath,DemPath, FlowAccPath,FlowDPath,ParPath,p2) """ ### inputs validation # data type # input values # basic inputs # check if all inputs are included assert all(["p2","init_st","UB","LB","snow","Routing","RoutingFn"][i] in Basic_inputs.keys() for i in range(4)), "Basic_inputs should contain ['p2','init_st','UB','LB'] " p2 = Basic_inputs['p2'] init_st = Basic_inputs["init_st"] UB = Basic_inputs['UB'] LB = Basic_inputs['LB'] snow = Basic_inputs['snow'] Routing = Basic_inputs["Routing"] RoutingFn = Basic_inputs["RoutingFn"] if 'InitialValues' in Basic_inputs.keys(): InitialValues = Basic_inputs['InitialValues'] assert len(UB)==len(LB), "length of UB should be the same like LB" # check objective_function assert callable(OF) , "second argument should be a function" if OF_args== None : OF_args=[] ### optimization # get arguments ApiObjArgs = OptimizationArgs[0] pll_type = OptimizationArgs[1] ApiSolveArgs = OptimizationArgs[2] # check optimization arguement assert type(ApiObjArgs) == dict, "store_history should be 0 or 1" assert type(ApiSolveArgs) == dict, "history_fname should be of type string " # assert history_fname[-4:] == ".txt", "history_fname should be txt file please change extension or add .txt ad the end of the history_fname" print('Calibration starts') ### calculate the objective function def opt_fun(par): try: # parameters #run the model _, q_out = wrapper.Lumped(ConceptualModel,data,par,p2,init_st, snow,Routing, RoutingFn) # calculate performance of the model try: error=OF(Q_obs,q_out,*OF_args) except TypeError: # if no of inputs less than what the function needs assert 1==5, "the objective function you have entered needs more inputs please enter then in a list as *args" # print error if printError != 0: print(error) # print(par) fail = 0 except: error = np.nan fail = 1 return error, [], fail ### define the optimization components opt_prob = Optimization('HBV Calibration', opt_fun) for i in range(len(LB)): opt_prob.addVar('x{0}'.format(i), type='c', lower=LB[i], upper=UB[i], value=InitialValues[i]) print(opt_prob) opt_engine = HSapi(pll_type=pll_type , options=ApiObjArgs) # parse the ApiSolveArgs inputs # availablekeys = ['store_sol',"display_opts","store_hst","hot_start"] store_sol = ApiSolveArgs['store_sol'] display_opts = ApiSolveArgs['display_opts'] store_hst = ApiSolveArgs['store_hst'] hot_start = ApiSolveArgs['hot_start'] # for i in range(len(availablekeys)): # if availablekeys[i] in ApiSolveArgs.keys(): # exec(availablekeys[i] + "=" + str(ApiSolveArgs[availablekeys[i]])) # print(availablekeys[i] + " = " + str(ApiSolveArgs[availablekeys[i]])) res = opt_engine(opt_prob, store_sol=store_sol, display_opts=display_opts, store_hst=store_hst, hot_start=hot_start) return res
en
0.60746
# -*- coding: utf-8 -*- Calibration calibration contains functions to to connect the parameter spatial distribution function with the with both component of the spatial representation of the hydrological process (conceptual model & spatial routing) to calculate the performance of predicted runoff at known locations based on given performance function @author: Mostafa #%links #%library # from Oasis.optimizer import Optimizer # functions #import DistParameters as Dp #import PerformanceCriteria as PC ======================================================================= RunCalibration(ConceptualModel, Paths, p2, Q_obs, UB, LB, SpatialVarFun, lumpedParNo, lumpedParPos, objective_function, printError=None, *args): ======================================================================= this function runs the calibration algorithm for the conceptual distributed hydrological model Inputs: ---------- 1-ConceptualModel: [function] conceptual model and it should contain a function called simulate 1-Paths: 1-PrecPath: [String] path to the Folder contains precipitation rasters 2-Evap_Path: [String] path to the Folder contains Evapotranspiration rasters 3-TempPath: [String] path to the Folder contains Temperature rasters 4-FlowAccPath: [String] path to the Flow Accumulation raster of the catchment (it should include the raster name and extension) 5-FlowDPath: [String] path to the Flow Direction raster of the catchment (it should include the raster name and extension) 2-Basic_inputs: 1-p2: [List] list of unoptimized parameters p2[0] = tfac, 1 for hourly, 0.25 for 15 min time step and 24 for daily time step p2[1] = catchment area in km2 2-init_st: [list] initial values for the state variables [sp,sm,uz,lz,wc] in mm 3-UB: [Numeric] upper bound of the values of the parameters 4-LB: [Numeric] Lower bound of the values of the parameters 3-Q_obs: [Numeric] Observed values of discharge 6-lumpedParNo: [int] nomber of lumped parameters, you have to enter the value of the lumped parameter at the end of the list, default is 0 (no lumped parameters) 7-lumpedParPos: [List] list of order or position of the lumped parameter among all the parameters of the lumped model (order starts from 0 to the length of the model parameters), default is [] (empty), the following order of parameters is used for the lumped HBV model used [ltt, utt, rfcf, sfcf, ttm, cfmax, cwh, cfr, fc, beta, e_corr, etf, lp, c_flux, k, k1, alpha, perc, pcorr, Kmuskingum, Xmuskingum] 8-objective_function: [function] objective function to calculate the performance of the model and to be used in the calibration 9-*args: other arguments needed on the objective function Outputs: ---------- 1- st: [4D array] state variables 2- q_out: [1D array] calculated Discharge at the outlet of the catchment 3- q_uz: [3D array] Distributed discharge for each cell Example: ---------- PrecPath = prec_path="meteodata/4000/calib/prec" Evap_Path = evap_path="meteodata/4000/calib/evap" TempPath = temp_path="meteodata/4000/calib/temp" FlowAccPath = "GIS/4000/acc4000.tif" FlowDPath = "GIS/4000/fd4000.tif" ParPath = "meteodata/4000/"+"parameters.txt" p2=[1, 227.31] st, q_out, q_uz_routed = RunModel(PrecPath,Evap_Path,TempPath,DemPath, FlowAccPath,FlowDPath,ParPath,p2) ### inputs validation # data type # DemPath=Paths[3] # assert type(DemPath)== str, "DemPath input should be string type" # input values # dem_ext=DemPath[-4:] # assert dem_ext == ".tif", "please add the extension at the end of the DEM raster path input" # check wether the path exists or not # assert os.path.exists(DemPath), DemPath+ " you have provided does not exist" # check wether the folder has the rasters or not # basic inputs # check if all inputs are included # check objective_function # read data ### meteorological data #### GIS data # dem= gdal.Open(DemPath) ### optimization # get arguments # check optimization arguement ### calculate the objective function # parameters #run the model # calculate performance of the model # if no of inputs less than what the function needs # print error ### define the optimization components ======================================================================= RunCalibration(ConceptualModel, data,parameters, p2, init_st, snow, Routing=0, RoutingFn=[], objective_function, printError=None, *args): ======================================================================= this function runs the calibration algorithm for the Lumped conceptual hydrological model Inputs: ---------- 1-ConceptualModel: [function] conceptual model and it should contain a function called simulate 2-data: [numpy array] meteorological data as array with the first column as precipitation second as evapotranspiration, third as temperature and forth column as long term average temperature 2-Basic_inputs: 1-p2: [List] list of unoptimized parameters p2[0] = tfac, 1 for hourly, 0.25 for 15 min time step and 24 for daily time step p2[1] = catchment area in km2 2-init_st: [list] initial values for the state variables [sp,sm,uz,lz,wc] in mm 3-UB: [Numeric] upper bound of the values of the parameters 4-LB: [Numeric] Lower bound of the values of the parameters 3-Q_obs: [Numeric] Observed values of discharge 6-lumpedParNo: [int] nomber of lumped parameters, you have to enter the value of the lumped parameter at the end of the list, default is 0 (no lumped parameters) 7-lumpedParPos: [List] list of order or position of the lumped parameter among all the parameters of the lumped model (order starts from 0 to the length of the model parameters), default is [] (empty), the following order of parameters is used for the lumped HBV model used [ltt, utt, rfcf, sfcf, ttm, cfmax, cwh, cfr, fc, beta, e_corr, etf, lp, c_flux, k, k1, alpha, perc, pcorr, Kmuskingum, Xmuskingum] 8-objective_function: [function] objective function to calculate the performance of the model and to be used in the calibration 9-*args: other arguments needed on the objective function Outputs: ---------- 1- st: [4D array] state variables 2- q_out: [1D array] calculated Discharge at the outlet of the catchment 3- q_uz: [3D array] Distributed discharge for each cell Example: ---------- PrecPath = prec_path="meteodata/4000/calib/prec" Evap_Path = evap_path="meteodata/4000/calib/evap" TempPath = temp_path="meteodata/4000/calib/temp" FlowAccPath = "GIS/4000/acc4000.tif" FlowDPath = "GIS/4000/fd4000.tif" ParPath = "meteodata/4000/"+"parameters.txt" p2=[1, 227.31] st, q_out, q_uz_routed = RunModel(PrecPath,Evap_Path,TempPath,DemPath, FlowAccPath,FlowDPath,ParPath,p2) ### inputs validation # data type # input values # basic inputs # check if all inputs are included # check objective_function ### optimization # get arguments # check optimization arguement # assert history_fname[-4:] == ".txt", "history_fname should be txt file please change extension or add .txt ad the end of the history_fname" ### calculate the objective function # parameters #run the model # calculate performance of the model # if no of inputs less than what the function needs # print error # print(par) ### define the optimization components # parse the ApiSolveArgs inputs # availablekeys = ['store_sol',"display_opts","store_hst","hot_start"] # for i in range(len(availablekeys)): # if availablekeys[i] in ApiSolveArgs.keys(): # exec(availablekeys[i] + "=" + str(ApiSolveArgs[availablekeys[i]])) # print(availablekeys[i] + " = " + str(ApiSolveArgs[availablekeys[i]]))
2.80424
3
python/blazingdb/protocol/io/__init__.py
HubBucket-Team/blazingdb-protocol
1
6629982
import flatbuffers import copy import numpy import blazingdb.protocol.transport as transport from blazingdb.messages.blazingdb.protocol.io \ import FileSystemRegisterRequest, FileSystemDeregisterRequest, HDFS, S3, POSIX, CsvFile, ParquetFile from blazingdb.messages.blazingdb.protocol.io import DriverType, EncryptionType, FileSystemConnection, FileSchemaType from blazingdb.messages.blazingdb.protocol.io import FileSystemDMLRequest, FileSystemTableGroup, FileSystemBlazingTable from blazingdb.messages.blazingdb.protocol \ import BlazingTable from blazingdb.protocol.gdf import gdf_columnSchema DriverType = DriverType.DriverType EncryptionType = EncryptionType.EncryptionType FileSystemType = FileSystemConnection.FileSystemConnection FileSchemaType = FileSchemaType.FileSchemaType #todo, crear mappers para unions, see union_segment class FileSystemRegisterRequestSchema: def __init__(self, authority, root, type, params): self.authority = authority self.root = root self.params = params self.type = type #todo, crear mappers para unions def ToBuffer(self): builder = flatbuffers.Builder(1024) authority = builder.CreateString(self.authority) root = builder.CreateString(self.root) if self.type == FileSystemType.HDFS: fileSystemConnection, fileSystemConnectionType = MakeHdfsFileSystemConnection(builder, self.params) elif self.type == FileSystemType.S3: fileSystemConnection, fileSystemConnectionType = MakeS3FileSystemRegisterRequest(builder, self.params) else: fileSystemConnection, fileSystemConnectionType = MakePosixFileSystemConnection(builder, self.params) FileSystemRegisterRequest.FileSystemRegisterRequestStart(builder) FileSystemRegisterRequest.FileSystemRegisterRequestAddAuthority(builder, authority) FileSystemRegisterRequest.FileSystemRegisterRequestAddRoot(builder, root) FileSystemRegisterRequest.FileSystemRegisterRequestAddFileSystemConnectionType(builder, fileSystemConnectionType) FileSystemRegisterRequest.FileSystemRegisterRequestAddFileSystemConnection(builder, fileSystemConnection) fs = FileSystemRegisterRequest.FileSystemRegisterRequestEnd(builder) builder.Finish(fs) return builder.Output() #todo, crear mappers para unions, see union_segment class FileSystemDeregisterRequestSchema: def __init__(self, authority): self.authority = authority def ToBuffer(self): builder = flatbuffers.Builder(1024) authority = builder.CreateString(self.authority) FileSystemDeregisterRequest.FileSystemDeregisterRequestStart(builder) FileSystemDeregisterRequest.FileSystemDeregisterRequestAddAuthority(builder, authority) fs = FileSystemDeregisterRequest.FileSystemDeregisterRequestEnd(builder) builder.Finish(fs) return builder.Output() def MakePosixFileSystemConnection(builder, params): return 0, FileSystemType.POSIX def MakeHdfsFileSystemConnection(builder, params): host = builder.CreateString(params.host) user = builder.CreateString(params.user) ticket = builder.CreateString(params.kerberosTicket) HDFS.HDFSStart(builder) HDFS.HDFSAddHost(builder, host) HDFS.HDFSAddPort(builder, params.port) HDFS.HDFSAddUser(builder, user) HDFS.HDFSAddDriverType(builder, params.driverType) # check if it is enum HDFS.HDFSAddKerberosTicket(builder, ticket) paramObj = HDFS.HDFSEnd(builder) return paramObj, FileSystemType.HDFS def MakeS3FileSystemRegisterRequest(builder, params): bucketName = builder.CreateString(params.bucketName) kmsKeyAmazonResourceName = builder.CreateString(params.kmsKeyAmazonResourceName) accessKeyId = builder.CreateString(params.accessKeyId) secretKey = builder.CreateString(params.secretKey) sessionToken = builder.CreateString(params.sessionToken) S3.S3Start(builder) S3.S3AddBucketName(builder, bucketName) S3.S3AddEncryptionType(builder, params.encryptionType) # check if it is enum S3.S3AddKmsKeyAmazonResourceName(builder, kmsKeyAmazonResourceName) S3.S3AddAccessKeyId(builder, accessKeyId) S3.S3AddSecretKey(builder, secretKey) S3.S3AddSessionToken(builder, sessionToken) paramObj = S3.S3End(builder) return paramObj, FileSystemType.S3 class CsvFileSchema(transport.schema(CsvFile)): path = transport.StringSegment() delimiter = transport.StringSegment() lineTerminator = transport.StringSegment() skipRows = transport.NumberSegment() names = transport.VectorStringSegment(transport.StringSegment) dtypes = transport.VectorSegment(transport.NumberSegment) class ParquetFileSchema(transport.schema(ParquetFile)): path = transport.StringSegment() rowGroupIndices = transport.VectorSegment(transport.NumberSegment) columnIndices = transport.VectorSegment(transport.NumberSegment) class GdfSchema(transport.schema(BlazingTable)): columns = transport.VectorSchemaSegment(gdf_columnSchema) columnTokens = transport.VectorSegment(transport.NumberSegment) resultToken = transport.NumberSegment() class FileSystemBlazingTableSchema(transport.schema(FileSystemBlazingTable)): name = transport.StringSegment() schemaType = transport.NumberSegment() csv = transport.SchemaSegment(CsvFileSchema) parquet = transport.SchemaSegment(ParquetFileSchema) gdf = transport.SchemaSegment(GdfSchema) files = transport.VectorStringSegment(transport.StringSegment) columnNames = transport.VectorStringSegment(transport.StringSegment) class FileSystemTableGroupSchema(transport.schema(FileSystemTableGroup)): tables = transport.VectorSchemaSegment(FileSystemBlazingTableSchema) name = transport.StringSegment() class FileSystemDMLRequestSchema(transport.schema(FileSystemDMLRequest)): statement = transport.StringSegment() tableGroup = transport.SchemaSegment(FileSystemTableGroupSchema) def _GetParquetSchema(kwargs): path = kwargs.get('path', '') rowGroupIndices = kwargs.get('rowGroupIndices', []) columnIndices = kwargs.get('columnIndices', []) return ParquetFileSchema(path=path, rowGroupIndices=rowGroupIndices, columnIndices=columnIndices) def _GetCsvSchema(kwargs): path = kwargs.get('path', '') delimiter = kwargs.get('delimiter', '') lineTerminator = kwargs.get('lineTerminator', '') skipRows = kwargs.get('skipRows', 0) names = kwargs.get('names', []) dtypes = kwargs.get('dtypes', []) return CsvFileSchema(path=path, delimiter=delimiter, lineTerminator=lineTerminator, skipRows=skipRows, names=names, dtypes=dtypes) def _GetGdfSchema(kwargs): columns = kwargs.get('columns', []) columnTokens = kwargs.get('columnTokens', []) resultToken = kwargs.get('resultToken', 0) return GdfSchema(columns=columns, columnTokens=columnTokens, resultToken=resultToken) def BuildFileSystemDMLRequestSchema(statement, tableGroupDto): tableGroupName = tableGroupDto['name'] tables = [] for index, t in enumerate(tableGroupDto['tables']): tableName = t['name'] columnNames = t['columnNames'] files = t['files'] schemaType = t['schemaType'] if schemaType == FileSchemaType.PARQUET: parquet = _GetParquetSchema(t['parquet']) csv = _GetCsvSchema({}) gdf = _GetGdfSchema({}) elif schemaType == FileSchemaType.CSV: csv = _GetCsvSchema(t['csv']) parquet = _GetParquetSchema({}) gdf = _GetGdfSchema({}) else: csv = _GetCsvSchema({}) parquet = _GetParquetSchema({}) gdf = _GetGdfSchema(t['gdf']) table = FileSystemBlazingTableSchema(name=tableName, schemaType=schemaType, parquet=parquet, csv=csv, gdf=gdf, files=files, columnNames=columnNames) tables.append(table) tableGroup = FileSystemTableGroupSchema(tables=tables, name=tableGroupName) return FileSystemDMLRequestSchema(statement=statement, tableGroup=tableGroup)
import flatbuffers import copy import numpy import blazingdb.protocol.transport as transport from blazingdb.messages.blazingdb.protocol.io \ import FileSystemRegisterRequest, FileSystemDeregisterRequest, HDFS, S3, POSIX, CsvFile, ParquetFile from blazingdb.messages.blazingdb.protocol.io import DriverType, EncryptionType, FileSystemConnection, FileSchemaType from blazingdb.messages.blazingdb.protocol.io import FileSystemDMLRequest, FileSystemTableGroup, FileSystemBlazingTable from blazingdb.messages.blazingdb.protocol \ import BlazingTable from blazingdb.protocol.gdf import gdf_columnSchema DriverType = DriverType.DriverType EncryptionType = EncryptionType.EncryptionType FileSystemType = FileSystemConnection.FileSystemConnection FileSchemaType = FileSchemaType.FileSchemaType #todo, crear mappers para unions, see union_segment class FileSystemRegisterRequestSchema: def __init__(self, authority, root, type, params): self.authority = authority self.root = root self.params = params self.type = type #todo, crear mappers para unions def ToBuffer(self): builder = flatbuffers.Builder(1024) authority = builder.CreateString(self.authority) root = builder.CreateString(self.root) if self.type == FileSystemType.HDFS: fileSystemConnection, fileSystemConnectionType = MakeHdfsFileSystemConnection(builder, self.params) elif self.type == FileSystemType.S3: fileSystemConnection, fileSystemConnectionType = MakeS3FileSystemRegisterRequest(builder, self.params) else: fileSystemConnection, fileSystemConnectionType = MakePosixFileSystemConnection(builder, self.params) FileSystemRegisterRequest.FileSystemRegisterRequestStart(builder) FileSystemRegisterRequest.FileSystemRegisterRequestAddAuthority(builder, authority) FileSystemRegisterRequest.FileSystemRegisterRequestAddRoot(builder, root) FileSystemRegisterRequest.FileSystemRegisterRequestAddFileSystemConnectionType(builder, fileSystemConnectionType) FileSystemRegisterRequest.FileSystemRegisterRequestAddFileSystemConnection(builder, fileSystemConnection) fs = FileSystemRegisterRequest.FileSystemRegisterRequestEnd(builder) builder.Finish(fs) return builder.Output() #todo, crear mappers para unions, see union_segment class FileSystemDeregisterRequestSchema: def __init__(self, authority): self.authority = authority def ToBuffer(self): builder = flatbuffers.Builder(1024) authority = builder.CreateString(self.authority) FileSystemDeregisterRequest.FileSystemDeregisterRequestStart(builder) FileSystemDeregisterRequest.FileSystemDeregisterRequestAddAuthority(builder, authority) fs = FileSystemDeregisterRequest.FileSystemDeregisterRequestEnd(builder) builder.Finish(fs) return builder.Output() def MakePosixFileSystemConnection(builder, params): return 0, FileSystemType.POSIX def MakeHdfsFileSystemConnection(builder, params): host = builder.CreateString(params.host) user = builder.CreateString(params.user) ticket = builder.CreateString(params.kerberosTicket) HDFS.HDFSStart(builder) HDFS.HDFSAddHost(builder, host) HDFS.HDFSAddPort(builder, params.port) HDFS.HDFSAddUser(builder, user) HDFS.HDFSAddDriverType(builder, params.driverType) # check if it is enum HDFS.HDFSAddKerberosTicket(builder, ticket) paramObj = HDFS.HDFSEnd(builder) return paramObj, FileSystemType.HDFS def MakeS3FileSystemRegisterRequest(builder, params): bucketName = builder.CreateString(params.bucketName) kmsKeyAmazonResourceName = builder.CreateString(params.kmsKeyAmazonResourceName) accessKeyId = builder.CreateString(params.accessKeyId) secretKey = builder.CreateString(params.secretKey) sessionToken = builder.CreateString(params.sessionToken) S3.S3Start(builder) S3.S3AddBucketName(builder, bucketName) S3.S3AddEncryptionType(builder, params.encryptionType) # check if it is enum S3.S3AddKmsKeyAmazonResourceName(builder, kmsKeyAmazonResourceName) S3.S3AddAccessKeyId(builder, accessKeyId) S3.S3AddSecretKey(builder, secretKey) S3.S3AddSessionToken(builder, sessionToken) paramObj = S3.S3End(builder) return paramObj, FileSystemType.S3 class CsvFileSchema(transport.schema(CsvFile)): path = transport.StringSegment() delimiter = transport.StringSegment() lineTerminator = transport.StringSegment() skipRows = transport.NumberSegment() names = transport.VectorStringSegment(transport.StringSegment) dtypes = transport.VectorSegment(transport.NumberSegment) class ParquetFileSchema(transport.schema(ParquetFile)): path = transport.StringSegment() rowGroupIndices = transport.VectorSegment(transport.NumberSegment) columnIndices = transport.VectorSegment(transport.NumberSegment) class GdfSchema(transport.schema(BlazingTable)): columns = transport.VectorSchemaSegment(gdf_columnSchema) columnTokens = transport.VectorSegment(transport.NumberSegment) resultToken = transport.NumberSegment() class FileSystemBlazingTableSchema(transport.schema(FileSystemBlazingTable)): name = transport.StringSegment() schemaType = transport.NumberSegment() csv = transport.SchemaSegment(CsvFileSchema) parquet = transport.SchemaSegment(ParquetFileSchema) gdf = transport.SchemaSegment(GdfSchema) files = transport.VectorStringSegment(transport.StringSegment) columnNames = transport.VectorStringSegment(transport.StringSegment) class FileSystemTableGroupSchema(transport.schema(FileSystemTableGroup)): tables = transport.VectorSchemaSegment(FileSystemBlazingTableSchema) name = transport.StringSegment() class FileSystemDMLRequestSchema(transport.schema(FileSystemDMLRequest)): statement = transport.StringSegment() tableGroup = transport.SchemaSegment(FileSystemTableGroupSchema) def _GetParquetSchema(kwargs): path = kwargs.get('path', '') rowGroupIndices = kwargs.get('rowGroupIndices', []) columnIndices = kwargs.get('columnIndices', []) return ParquetFileSchema(path=path, rowGroupIndices=rowGroupIndices, columnIndices=columnIndices) def _GetCsvSchema(kwargs): path = kwargs.get('path', '') delimiter = kwargs.get('delimiter', '') lineTerminator = kwargs.get('lineTerminator', '') skipRows = kwargs.get('skipRows', 0) names = kwargs.get('names', []) dtypes = kwargs.get('dtypes', []) return CsvFileSchema(path=path, delimiter=delimiter, lineTerminator=lineTerminator, skipRows=skipRows, names=names, dtypes=dtypes) def _GetGdfSchema(kwargs): columns = kwargs.get('columns', []) columnTokens = kwargs.get('columnTokens', []) resultToken = kwargs.get('resultToken', 0) return GdfSchema(columns=columns, columnTokens=columnTokens, resultToken=resultToken) def BuildFileSystemDMLRequestSchema(statement, tableGroupDto): tableGroupName = tableGroupDto['name'] tables = [] for index, t in enumerate(tableGroupDto['tables']): tableName = t['name'] columnNames = t['columnNames'] files = t['files'] schemaType = t['schemaType'] if schemaType == FileSchemaType.PARQUET: parquet = _GetParquetSchema(t['parquet']) csv = _GetCsvSchema({}) gdf = _GetGdfSchema({}) elif schemaType == FileSchemaType.CSV: csv = _GetCsvSchema(t['csv']) parquet = _GetParquetSchema({}) gdf = _GetGdfSchema({}) else: csv = _GetCsvSchema({}) parquet = _GetParquetSchema({}) gdf = _GetGdfSchema(t['gdf']) table = FileSystemBlazingTableSchema(name=tableName, schemaType=schemaType, parquet=parquet, csv=csv, gdf=gdf, files=files, columnNames=columnNames) tables.append(table) tableGroup = FileSystemTableGroupSchema(tables=tables, name=tableGroupName) return FileSystemDMLRequestSchema(statement=statement, tableGroup=tableGroup)
en
0.464304
#todo, crear mappers para unions, see union_segment #todo, crear mappers para unions #todo, crear mappers para unions, see union_segment # check if it is enum # check if it is enum
2.317106
2
test/rules/provider_test.bzl
liuliu/rules_swift
215
6629983
# Copyright 2019 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Rules for testing the providers of a target under test.""" load("@build_bazel_rules_swift//swift:swift.bzl", "SwiftInfo") load("@bazel_skylib//lib:types.bzl", "types") load( "@bazel_skylib//lib:unittest.bzl", "analysistest", "asserts", "unittest", ) _EVALUATE_FIELD_FAILED = provider( doc = """ A sentinel value returned by `_evaluate_field` when a `None` value is encountered during the evaluation of a dotted path on any component other than the last component. This allows the caller to distinguish between a legitimate `None` value being returned by the entire path vs. an unexpected `None` in an earlier component. A `provider` is used here because it is a simple way of getting a known unique object from Bazel that cannot be equal to any other object. """, fields = [], ) def _evaluate_field(env, source, field): """Evaluates a field or field path on an object and returns its value. This function projects across collections. That is, if the result of evaluating a field along the path is a depset or a list, then the result will be normalized into a list and remaining fields in the path will be evaluated on every item in that list, not on the list itself. If a field path component in a projected collection is followed by an exclamation point, then this indicates that any `None` values produced at that stage of evaluation should be removed from the list before continuing. If evaluating the path fails because a `None` value is encountered anywhere before the last component and they are not filtered out, then an assertion failure is logged and the special value `EVALUATE_FIELD_FAILED` is returned. This value lets the caller short-circuit additional test logic that may not be relevant if evaluation is known to have failed. Args: env: The analysis test environment. source: The source object on which to evaluate the field or field path. field: The field or field path to evaluate. This can be a simple field name or a dotted path. Returns: The result of evaluating the field or field path on the source object. If a `None` value was encountered during evaluation of a field path component that was not the final component, then the special value `_EVALUATE_FIELD_FAILED` is returned. """ components = field.split(".") for component in components: source = _normalize_collection(source) filter_nones = component.endswith("!") if filter_nones: component = component[:-1] if types.is_list(source): if any([item == None for item in source]): unittest.fail( env, "Got 'None' evaluating '{}' on an element in '{}'.".format( component, field, ), ) return _EVALUATE_FIELD_FAILED # If the elements are lists or depsets, flatten the whole thing into # a single list. flattened = [] for item in source: item = _normalize_collection(item) if types.is_list(item): flattened.extend(item) else: flattened.append(item) source = [getattr(item, component, None) for item in flattened] if filter_nones: source = [item for item in source if item != None] else: if source == None: unittest.fail( env, "Got 'None' evaluating '{}' in '{}'.".format( component, field, ), ) return _EVALUATE_FIELD_FAILED source = getattr(source, component, None) if filter_nones: source = _normalize_collection(source) if types.is_list(source): source = [item for item in source if item != None] else: unittest.fail( env, ("Expected to filter 'None' values evaluating '{}' " + "on an element in '{}', but the result was not a " + "collection.").format(component, field), ) return _EVALUATE_FIELD_FAILED return source def _lookup_provider_by_name(env, target, provider_name): """Returns a provider on a target, given its name. The `provider_test` rule needs to be able to specify which provider a field should be looked up on, but it can't take provider objects directly as attribute values, so we have to use strings and a fixed lookup table to find them. If the provider is not recognized or is not propagated by the target, then an assertion failure is logged and `None` is returned. This lets the caller short-circuit additional test logic that may not be relevant if the provider is not present. Args: env: The analysis test environment. target: The target whose provider should be looked up. provider_name: The name of the provider to return. Returns: The provider value, or `None` if it was not propagated by the target. """ provider = None if provider_name == "CcInfo": provider = CcInfo elif provider_name == "DefaultInfo": provider = DefaultInfo elif provider_name == "OutputGroupInfo": provider = OutputGroupInfo elif provider_name == "SwiftInfo": provider = SwiftInfo elif provider_name == "apple_common.Objc": provider = apple_common.Objc if not provider: unittest.fail( env, "Provider '{}' is not supported.".format(provider_name), ) return None if provider in target: return target[provider] unittest.fail( env, "Target '{}' did not provide '{}'.".format(target.label, provider_name), ) return None def _field_access_description(target, provider, field): """Returns a string denoting field access to a provider on a target. This function is used to generate a pretty string that can be used in assertion failure messages, of the form `<//package:target>[ProviderInfo].some.field.path`. Args: target: The target whose provider is being accessed. provider: The name of the provider being accessed. field: The field name or dotted field path being accessed. Returns: A string describing the field access that can be used in assertion failure messages. """ return "<{}>[{}].{}".format(target.label, provider, field) def _prettify(object): """Returns a prettified version of the given value for failure messages. If the object is a list, it will be formatted as a multiline string; otherwise, it will simply be the `repr` of the value. Args: object: The object to prettify. Returns: A string that can be used to display the value in a failure message. """ object = _normalize_collection(object) if types.is_list(object): return ("[\n " + ",\n ".join([repr(item) for item in object]) + "\n]") else: return repr(object) def _normalize_collection(object): """Returns object as a list if it is a collection, otherwise returns itself. Args: object: The object to normalize. If it is a list or a depset, it will be returned as a list. Otherwise, it will be returned unchanged. Returns: A list containing the same items in `object` if it is a collection, otherwise the original object is returned. """ if types.is_depset(object): return object.to_list() else: return object def _compare_expected_files(env, access_description, expected, actual): """Implements the `expected_files` comparison. This compares a set of files retrieved from a provider field against a list of expected strings that are equal to or suffixes of the paths to those files, as well as excluded files and a wildcard. See the documentation of the `expected_files` attribute on the rule definition below for specifics. Args: env: The analysis test environment. access_description: A target/provider/field access description string printed in assertion failure messages. expected: The list of expected file path inclusions/exclusions. actual: The collection of files obtained from the provider. """ actual = _normalize_collection(actual) if ( not types.is_list(actual) or any([type(item) != "File" for item in actual]) ): unittest.fail( env, ("Expected '{}' to be a collection of files, " + "but got a {}: {}.").format( access_description, type(actual), _prettify(actual), ), ) return remaining = list(actual) expected_is_subset = "*" in expected expected_include = [ s for s in expected if not s.startswith("-") and s != "*" ] expected_exclude = [s[1:] for s in expected if s.startswith("-")] # For every expected file, pick off the first actual that we find that has # the expected string as a suffix. failed = False for suffix in expected_include: if not remaining: # It's a failure if we are still expecting files but there are no # more actual files. failed = True break found_expected_file = False for i in range(len(remaining)): actual_path = remaining[i].path if actual_path.endswith(suffix): found_expected_file = True remaining.pop(i) break # It's a failure if we never found a file we expected. if not found_expected_file: failed = True break # For every file expected to *not* be present, check the list of remaining # files and fail if we find a match. for suffix in expected_exclude: for f in remaining: if f.path.endswith(suffix): failed = True break # If we found all the expected files, the remaining list should be empty. # Fail if the list is not empty and we're not looking for a subset. if not expected_is_subset and remaining: failed = True asserts.false( env, failed, "Expected '{}' to match {}, but got {}.".format( access_description, _prettify(expected), _prettify([ f.path if type(f) == "File" else repr(f) for f in actual ]), ), ) def _provider_test_impl(ctx): env = analysistest.begin(ctx) target_under_test = ctx.attr.target_under_test # If configuration settings were provided, then we have a transition and # target_under_test will be a list. In that case, get the actual target by # pulling the first one out. if types.is_list(target_under_test): target_under_test = target_under_test[0] provider_name = ctx.attr.provider provider = _lookup_provider_by_name(env, target_under_test, provider_name) if not provider: return analysistest.end(env) field = ctx.attr.field actual = _evaluate_field(env, provider, field) if actual == _EVALUATE_FIELD_FAILED: return analysistest.end(env) access_description = _field_access_description( target_under_test, provider_name, field, ) # TODO(allevato): Support other comparisons as they become needed. if ctx.attr.expected_files: _compare_expected_files( env, access_description, ctx.attr.expected_files, actual, ) return analysistest.end(env) def make_provider_test_rule(config_settings = {}): """Returns a new `provider_test`-like rule with custom config settings. Args: config_settings: A dictionary of configuration settings and their values that should be applied during tests. Returns: A rule returned by `analysistest.make` that has the `provider_test` interface and the given config settings. """ return analysistest.make( _provider_test_impl, attrs = { "expected_files": attr.string_list( mandatory = False, doc = """\ The expected list of files when evaluating the given provider's field. This list can contain three types of strings: * A path suffix (`foo/bar/baz.ext`), denoting that a file whose path has the given suffix must be present. * A negated path suffix (`-foo/bar/baz.ext`), denoting that a file whose path has the given suffix must *not* be present. * A wildcard (`*`), denoting that the expected list of files can be a *subset* of the actual list. If the wildcard is omitted, the expected list of files must match the actual list completely; unmatched files will result in a test failure. The use of path suffixes allows the test to be unconcerned about specific configuration details, such as output directories for generated files. """, ), "field": attr.string( mandatory = True, doc = """\ The field name or dotted field path of the provider that should be tested. Evaluation of field path components is projected across collections. That is, if the result of evaluating a field along the path is a depset or a list, then the result will be normalized into a list and remaining fields in the path will be evaluated on every item in that list, not on the list itself. Likewise, if such a field path component is followed by `!`, then any `None` elements that may have resulted during evaluation will be removed from the list before evaluating the next component. """, ), "provider": attr.string( mandatory = True, doc = """\ The name of the provider expected to be propagated by the target under test, and on which the field will be checked. Currently, only the following providers are recognized: * `CcInfo` * `DefaultInfo` * `OutputGroupInfo` * `SwiftInfo` * `apple_common.Objc` """, ), }, config_settings = config_settings, ) # A default instantiation of the rule when no custom config settings are needed. provider_test = make_provider_test_rule()
# Copyright 2019 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Rules for testing the providers of a target under test.""" load("@build_bazel_rules_swift//swift:swift.bzl", "SwiftInfo") load("@bazel_skylib//lib:types.bzl", "types") load( "@bazel_skylib//lib:unittest.bzl", "analysistest", "asserts", "unittest", ) _EVALUATE_FIELD_FAILED = provider( doc = """ A sentinel value returned by `_evaluate_field` when a `None` value is encountered during the evaluation of a dotted path on any component other than the last component. This allows the caller to distinguish between a legitimate `None` value being returned by the entire path vs. an unexpected `None` in an earlier component. A `provider` is used here because it is a simple way of getting a known unique object from Bazel that cannot be equal to any other object. """, fields = [], ) def _evaluate_field(env, source, field): """Evaluates a field or field path on an object and returns its value. This function projects across collections. That is, if the result of evaluating a field along the path is a depset or a list, then the result will be normalized into a list and remaining fields in the path will be evaluated on every item in that list, not on the list itself. If a field path component in a projected collection is followed by an exclamation point, then this indicates that any `None` values produced at that stage of evaluation should be removed from the list before continuing. If evaluating the path fails because a `None` value is encountered anywhere before the last component and they are not filtered out, then an assertion failure is logged and the special value `EVALUATE_FIELD_FAILED` is returned. This value lets the caller short-circuit additional test logic that may not be relevant if evaluation is known to have failed. Args: env: The analysis test environment. source: The source object on which to evaluate the field or field path. field: The field or field path to evaluate. This can be a simple field name or a dotted path. Returns: The result of evaluating the field or field path on the source object. If a `None` value was encountered during evaluation of a field path component that was not the final component, then the special value `_EVALUATE_FIELD_FAILED` is returned. """ components = field.split(".") for component in components: source = _normalize_collection(source) filter_nones = component.endswith("!") if filter_nones: component = component[:-1] if types.is_list(source): if any([item == None for item in source]): unittest.fail( env, "Got 'None' evaluating '{}' on an element in '{}'.".format( component, field, ), ) return _EVALUATE_FIELD_FAILED # If the elements are lists or depsets, flatten the whole thing into # a single list. flattened = [] for item in source: item = _normalize_collection(item) if types.is_list(item): flattened.extend(item) else: flattened.append(item) source = [getattr(item, component, None) for item in flattened] if filter_nones: source = [item for item in source if item != None] else: if source == None: unittest.fail( env, "Got 'None' evaluating '{}' in '{}'.".format( component, field, ), ) return _EVALUATE_FIELD_FAILED source = getattr(source, component, None) if filter_nones: source = _normalize_collection(source) if types.is_list(source): source = [item for item in source if item != None] else: unittest.fail( env, ("Expected to filter 'None' values evaluating '{}' " + "on an element in '{}', but the result was not a " + "collection.").format(component, field), ) return _EVALUATE_FIELD_FAILED return source def _lookup_provider_by_name(env, target, provider_name): """Returns a provider on a target, given its name. The `provider_test` rule needs to be able to specify which provider a field should be looked up on, but it can't take provider objects directly as attribute values, so we have to use strings and a fixed lookup table to find them. If the provider is not recognized or is not propagated by the target, then an assertion failure is logged and `None` is returned. This lets the caller short-circuit additional test logic that may not be relevant if the provider is not present. Args: env: The analysis test environment. target: The target whose provider should be looked up. provider_name: The name of the provider to return. Returns: The provider value, or `None` if it was not propagated by the target. """ provider = None if provider_name == "CcInfo": provider = CcInfo elif provider_name == "DefaultInfo": provider = DefaultInfo elif provider_name == "OutputGroupInfo": provider = OutputGroupInfo elif provider_name == "SwiftInfo": provider = SwiftInfo elif provider_name == "apple_common.Objc": provider = apple_common.Objc if not provider: unittest.fail( env, "Provider '{}' is not supported.".format(provider_name), ) return None if provider in target: return target[provider] unittest.fail( env, "Target '{}' did not provide '{}'.".format(target.label, provider_name), ) return None def _field_access_description(target, provider, field): """Returns a string denoting field access to a provider on a target. This function is used to generate a pretty string that can be used in assertion failure messages, of the form `<//package:target>[ProviderInfo].some.field.path`. Args: target: The target whose provider is being accessed. provider: The name of the provider being accessed. field: The field name or dotted field path being accessed. Returns: A string describing the field access that can be used in assertion failure messages. """ return "<{}>[{}].{}".format(target.label, provider, field) def _prettify(object): """Returns a prettified version of the given value for failure messages. If the object is a list, it will be formatted as a multiline string; otherwise, it will simply be the `repr` of the value. Args: object: The object to prettify. Returns: A string that can be used to display the value in a failure message. """ object = _normalize_collection(object) if types.is_list(object): return ("[\n " + ",\n ".join([repr(item) for item in object]) + "\n]") else: return repr(object) def _normalize_collection(object): """Returns object as a list if it is a collection, otherwise returns itself. Args: object: The object to normalize. If it is a list or a depset, it will be returned as a list. Otherwise, it will be returned unchanged. Returns: A list containing the same items in `object` if it is a collection, otherwise the original object is returned. """ if types.is_depset(object): return object.to_list() else: return object def _compare_expected_files(env, access_description, expected, actual): """Implements the `expected_files` comparison. This compares a set of files retrieved from a provider field against a list of expected strings that are equal to or suffixes of the paths to those files, as well as excluded files and a wildcard. See the documentation of the `expected_files` attribute on the rule definition below for specifics. Args: env: The analysis test environment. access_description: A target/provider/field access description string printed in assertion failure messages. expected: The list of expected file path inclusions/exclusions. actual: The collection of files obtained from the provider. """ actual = _normalize_collection(actual) if ( not types.is_list(actual) or any([type(item) != "File" for item in actual]) ): unittest.fail( env, ("Expected '{}' to be a collection of files, " + "but got a {}: {}.").format( access_description, type(actual), _prettify(actual), ), ) return remaining = list(actual) expected_is_subset = "*" in expected expected_include = [ s for s in expected if not s.startswith("-") and s != "*" ] expected_exclude = [s[1:] for s in expected if s.startswith("-")] # For every expected file, pick off the first actual that we find that has # the expected string as a suffix. failed = False for suffix in expected_include: if not remaining: # It's a failure if we are still expecting files but there are no # more actual files. failed = True break found_expected_file = False for i in range(len(remaining)): actual_path = remaining[i].path if actual_path.endswith(suffix): found_expected_file = True remaining.pop(i) break # It's a failure if we never found a file we expected. if not found_expected_file: failed = True break # For every file expected to *not* be present, check the list of remaining # files and fail if we find a match. for suffix in expected_exclude: for f in remaining: if f.path.endswith(suffix): failed = True break # If we found all the expected files, the remaining list should be empty. # Fail if the list is not empty and we're not looking for a subset. if not expected_is_subset and remaining: failed = True asserts.false( env, failed, "Expected '{}' to match {}, but got {}.".format( access_description, _prettify(expected), _prettify([ f.path if type(f) == "File" else repr(f) for f in actual ]), ), ) def _provider_test_impl(ctx): env = analysistest.begin(ctx) target_under_test = ctx.attr.target_under_test # If configuration settings were provided, then we have a transition and # target_under_test will be a list. In that case, get the actual target by # pulling the first one out. if types.is_list(target_under_test): target_under_test = target_under_test[0] provider_name = ctx.attr.provider provider = _lookup_provider_by_name(env, target_under_test, provider_name) if not provider: return analysistest.end(env) field = ctx.attr.field actual = _evaluate_field(env, provider, field) if actual == _EVALUATE_FIELD_FAILED: return analysistest.end(env) access_description = _field_access_description( target_under_test, provider_name, field, ) # TODO(allevato): Support other comparisons as they become needed. if ctx.attr.expected_files: _compare_expected_files( env, access_description, ctx.attr.expected_files, actual, ) return analysistest.end(env) def make_provider_test_rule(config_settings = {}): """Returns a new `provider_test`-like rule with custom config settings. Args: config_settings: A dictionary of configuration settings and their values that should be applied during tests. Returns: A rule returned by `analysistest.make` that has the `provider_test` interface and the given config settings. """ return analysistest.make( _provider_test_impl, attrs = { "expected_files": attr.string_list( mandatory = False, doc = """\ The expected list of files when evaluating the given provider's field. This list can contain three types of strings: * A path suffix (`foo/bar/baz.ext`), denoting that a file whose path has the given suffix must be present. * A negated path suffix (`-foo/bar/baz.ext`), denoting that a file whose path has the given suffix must *not* be present. * A wildcard (`*`), denoting that the expected list of files can be a *subset* of the actual list. If the wildcard is omitted, the expected list of files must match the actual list completely; unmatched files will result in a test failure. The use of path suffixes allows the test to be unconcerned about specific configuration details, such as output directories for generated files. """, ), "field": attr.string( mandatory = True, doc = """\ The field name or dotted field path of the provider that should be tested. Evaluation of field path components is projected across collections. That is, if the result of evaluating a field along the path is a depset or a list, then the result will be normalized into a list and remaining fields in the path will be evaluated on every item in that list, not on the list itself. Likewise, if such a field path component is followed by `!`, then any `None` elements that may have resulted during evaluation will be removed from the list before evaluating the next component. """, ), "provider": attr.string( mandatory = True, doc = """\ The name of the provider expected to be propagated by the target under test, and on which the field will be checked. Currently, only the following providers are recognized: * `CcInfo` * `DefaultInfo` * `OutputGroupInfo` * `SwiftInfo` * `apple_common.Objc` """, ), }, config_settings = config_settings, ) # A default instantiation of the rule when no custom config settings are needed. provider_test = make_provider_test_rule()
en
0.882727
# Copyright 2019 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Rules for testing the providers of a target under test. A sentinel value returned by `_evaluate_field` when a `None` value is encountered during the evaluation of a dotted path on any component other than the last component. This allows the caller to distinguish between a legitimate `None` value being returned by the entire path vs. an unexpected `None` in an earlier component. A `provider` is used here because it is a simple way of getting a known unique object from Bazel that cannot be equal to any other object. Evaluates a field or field path on an object and returns its value. This function projects across collections. That is, if the result of evaluating a field along the path is a depset or a list, then the result will be normalized into a list and remaining fields in the path will be evaluated on every item in that list, not on the list itself. If a field path component in a projected collection is followed by an exclamation point, then this indicates that any `None` values produced at that stage of evaluation should be removed from the list before continuing. If evaluating the path fails because a `None` value is encountered anywhere before the last component and they are not filtered out, then an assertion failure is logged and the special value `EVALUATE_FIELD_FAILED` is returned. This value lets the caller short-circuit additional test logic that may not be relevant if evaluation is known to have failed. Args: env: The analysis test environment. source: The source object on which to evaluate the field or field path. field: The field or field path to evaluate. This can be a simple field name or a dotted path. Returns: The result of evaluating the field or field path on the source object. If a `None` value was encountered during evaluation of a field path component that was not the final component, then the special value `_EVALUATE_FIELD_FAILED` is returned. # If the elements are lists or depsets, flatten the whole thing into # a single list. Returns a provider on a target, given its name. The `provider_test` rule needs to be able to specify which provider a field should be looked up on, but it can't take provider objects directly as attribute values, so we have to use strings and a fixed lookup table to find them. If the provider is not recognized or is not propagated by the target, then an assertion failure is logged and `None` is returned. This lets the caller short-circuit additional test logic that may not be relevant if the provider is not present. Args: env: The analysis test environment. target: The target whose provider should be looked up. provider_name: The name of the provider to return. Returns: The provider value, or `None` if it was not propagated by the target. Returns a string denoting field access to a provider on a target. This function is used to generate a pretty string that can be used in assertion failure messages, of the form `<//package:target>[ProviderInfo].some.field.path`. Args: target: The target whose provider is being accessed. provider: The name of the provider being accessed. field: The field name or dotted field path being accessed. Returns: A string describing the field access that can be used in assertion failure messages. Returns a prettified version of the given value for failure messages. If the object is a list, it will be formatted as a multiline string; otherwise, it will simply be the `repr` of the value. Args: object: The object to prettify. Returns: A string that can be used to display the value in a failure message. Returns object as a list if it is a collection, otherwise returns itself. Args: object: The object to normalize. If it is a list or a depset, it will be returned as a list. Otherwise, it will be returned unchanged. Returns: A list containing the same items in `object` if it is a collection, otherwise the original object is returned. Implements the `expected_files` comparison. This compares a set of files retrieved from a provider field against a list of expected strings that are equal to or suffixes of the paths to those files, as well as excluded files and a wildcard. See the documentation of the `expected_files` attribute on the rule definition below for specifics. Args: env: The analysis test environment. access_description: A target/provider/field access description string printed in assertion failure messages. expected: The list of expected file path inclusions/exclusions. actual: The collection of files obtained from the provider. # For every expected file, pick off the first actual that we find that has # the expected string as a suffix. # It's a failure if we are still expecting files but there are no # more actual files. # It's a failure if we never found a file we expected. # For every file expected to *not* be present, check the list of remaining # files and fail if we find a match. # If we found all the expected files, the remaining list should be empty. # Fail if the list is not empty and we're not looking for a subset. # If configuration settings were provided, then we have a transition and # target_under_test will be a list. In that case, get the actual target by # pulling the first one out. # TODO(allevato): Support other comparisons as they become needed. Returns a new `provider_test`-like rule with custom config settings. Args: config_settings: A dictionary of configuration settings and their values that should be applied during tests. Returns: A rule returned by `analysistest.make` that has the `provider_test` interface and the given config settings. \ The expected list of files when evaluating the given provider's field. This list can contain three types of strings: * A path suffix (`foo/bar/baz.ext`), denoting that a file whose path has the given suffix must be present. * A negated path suffix (`-foo/bar/baz.ext`), denoting that a file whose path has the given suffix must *not* be present. * A wildcard (`*`), denoting that the expected list of files can be a *subset* of the actual list. If the wildcard is omitted, the expected list of files must match the actual list completely; unmatched files will result in a test failure. The use of path suffixes allows the test to be unconcerned about specific configuration details, such as output directories for generated files. \ The field name or dotted field path of the provider that should be tested. Evaluation of field path components is projected across collections. That is, if the result of evaluating a field along the path is a depset or a list, then the result will be normalized into a list and remaining fields in the path will be evaluated on every item in that list, not on the list itself. Likewise, if such a field path component is followed by `!`, then any `None` elements that may have resulted during evaluation will be removed from the list before evaluating the next component. \ The name of the provider expected to be propagated by the target under test, and on which the field will be checked. Currently, only the following providers are recognized: * `CcInfo` * `DefaultInfo` * `OutputGroupInfo` * `SwiftInfo` * `apple_common.Objc` # A default instantiation of the rule when no custom config settings are needed.
1.861793
2
DataPrev/joinAll.py
TRBaldim/Spark
0
6629984
#Version 0.0.0 def getEvents (a, b): try: return a.append(b[0]) except: return a def filterByEvent (line): try: if str(line[2]).strip() != '': return (str(line[1]).strip(), str(line[2]).strip() + ";" +str(line[0]).strip()) elif str(line[3]).strip() != '': return (str(line[1]).strip(), str(line[3]).strip() + ";" +str(line[0]).strip()) else: return (str(line[1]).strip(), "Inc." + ";" + str(line[0]).strip()) except: return (str(line[1]).strip(), "ERRO") def filterDates(x): splitedInfo = x[1].split("|") incVal = 0 dateBase = '1800-01-01' newestId = 'Inc.' for i in splitedInfo: if 'Inc.' in i: incVal = 1 newestId = i.split(";")[1] dateBase = 0 else: DateInfo = i.split(";") if DateInfo[0] > dateBase: newestId = DateInfo[1] dateBase = DateInfo[0] incVal = 0 else: newestId = 'Inc.' incVal = 1 dateBase = 0 return (newestId, (x[0], dateBase, incVal)) def filterDivorceDates(x): dateBase = '2999-01-01' result = '' for i in x[1][1]: if i == '' and result == '': result = 'NC' else: if i < dateBase and i != '' and i != 'NC': result = i dateBase = result return (x[0], result) def getNotInc (x): if x[1][0] == 'Inc.': return 'NONE' else: return (x[1][0], 1) def finalFiltering (x): #ID_PF, Data_Alteracao, Data_Divorcio, Inconcistencia return (x[1][1][0], (x[1][1][1], x[1][0], x[1][1][2])) def getNewstEnd(x): lEnderecos = x[1].split('|') baseDate = '1800-01-01' incon = 0 for i in lEnderecos: endElement = i.split(';') while(len(endElement[3]) < 8): endElement[3] = endElement[3] + '0' if endElement == '': incon = 1 idEnd = endElement[0] idMuni = endElement[2] CEP = endElement[3] elif endElement[1] > baseDate: baseDate = endElement[1] idMuni = endElement[2] CEP = endElement[3] else: incon = 1 idMuni = 'NaN' CEP = 'NaN' return (x[0], (idMuni, CEP, CEP[:4], incon)) def finalFormat(x): try: return (x[0], (x[1][0], x[1][1][0], x[1][1][1])) except: return None def finalAggFormat(x): try: retorno = (x[0], (x[1][0], x[1][1][0], x[1][1][1], x[1][1][2])) if retorno[1][0] == None: return None elif retorno[1][2] == None: return None elif retorno[1][2][1] == '00000000': return None return retorno except: return None def calculateRelacoes(x): relations = x[1] active = False inc = 0 contribDays = 0 baseDate = '2999-01-01' remTotal = 0 rem13Total = 0 remFGTSTotal = 0 for i in relations: if i[1] == '': active = True elif int(i[1]) < 0: inc = 1 else: contribDays = contribDays + int(i[1]) baseDate = i[0] if i[0] < baseDate and i[0] != '' else baseDate try: remTotal = remTotal + float(i[2]) except: remTotal = remTotal + 0 try: rem13Total = rem13Total + float(i[3]) except: rem13Total = rem13Total + 0 try: remFGTSTotal = remFGTSTotal + int(float(i[4])) except: remFGTSTotal = remFGTSTotal + 0 return (x[0], (contribDays, baseDate if active else 0, '%.2f'%remTotal, '%.2f'%rem13Total, '%.2f'%remFGTSTotal, inc)) def filtering(x): try: return x[1][2][1] except: return 0 fEnd = sc.textFile("/u01/data/base/ENDERECOS") fPF = sc.textFile("/u01/data/base/PESSOAS_FISICAS") fCert = sc.textFile("/u01/data/base/CERTIDOES_CIVIS") fRes = sc.textFile("/u01/data/base/RESUMO_RELACOES_TRABALHISTAS") ''' CERTIDOES_CIVIS_PART ''' #Retorno da Linha: [[id_certidao_civil, id_pessoa_fisica, dt_evento, dt_emissao, dt_separacao, dt_divorcio]] rddCertidoes = fCert.map(lambda line: line.split("|")) #Retorno [('1027040844', 'Inc.'), ('1665214649', '1976-12-08;155259490')] -> (PF_ID, 'data mais recente entre dt_evento e dt_emissรฃo; id_certidao_civil') rddDates = rddCertidoes.map(filterByEvent).reduceByKey(lambda a, b: a + ("|" + b)) #Retorno [('113927770', ('1229477534', '2006-07-15', 0))] -> (CERT_ID, (PF_ID, Data_Mais_Recente, Check_Inconsistencia (0-OK, 1-Inc))) rddInfo = rddDates.map(filterDates) #Retorno [('13047457', ('', ''))] -> (CERT_ID, (dt_separacao, dt_divorcio)) rddCertIds = rddCertidoes.map(lambda x: (str(x[0]).strip(), (str(x[4]).strip(), str(x[5]).strip()))) #Retorno [('14733170', 'NC')] -> (CERT_ID, Data Mais Antiga separacao e divorcio (Caso nรฃo conste data retorna NC)) rddDivorcio = rddInfo.map(lambda x: (x[0], 1)).join(rddCertIds).map(filterDivorceDates) #Retorno [('1116310950', 0, 'NC', 1)] -> (PF_ID, dt_atualizaรงรฃo mais nova, data de divorcio ou separacao mais antiga, check_inconsistencia) fullJoined = rddDivorcio.join(rddInfo).map(finalFiltering) ''' ENDERECOS PART ''' rddEnderecos = fEnd.map(lambda line: line.split('|')) #('2090398103', '310267648;2015-05-29|310267648;2015-05-29') rddEndByPF = rddEnderecos.map(lambda x: (str(x[1]).strip(), (str(x[0]).strip() + ";" + str(x[4]).strip() + ";" + str(x[2]).strip() + ";" + str(x[3]).strip()))).reduceByKey(lambda a, b: a + ("|" + b)) #(ID_PF, (ID_MUNICIPIO, CEP, CEP[:4], 0)) rddPFbyRecentEnd = rddEndByPF.map(getNewstEnd) partialResult = rddPFbyRecentEnd.fullOuterJoin(fullJoined) ''' PESSOAS FISICAS ''' rddPF = fPF.map(lambda line: line.split('|')).map(lambda x: (str(x[0]).strip(), (str(x[1]).strip(), str(x[2]).strip(), str(x[3]).strip(), str(x[4]).strip(), str(x[5]).strip(), str(x[6]).strip(), str(x[7]).strip(), str(x[8]).strip()))) rddResult = rddPF.fullOuterJoin(partialResult).map(finalFormat).filter(lambda line: line != None) ''' RELACOES TRABALHISTAS ''' rddRelacoes = fRes.map(lambda line: line.split("|")).map(lambda x: (str(x[1]).strip(), ((str(x[3]).strip(), str(x[4]).strip(), str(x[5]).strip(), str(x[6]).strip(), str(x[7]).strip()),))) rddAgg = rddRelacoes.reduceByKey(lambda a, b: a + b).map(calculateRelacoes) #('1238510985', ((58, 0, '6762958.48', '772990.68', '0.00', 0), (None, None, ('1999-06-14', 'NC', 0)))) finalResult = rddAgg.fullOuterJoin(rddResult).map(finalAggFormat).filter(lambda line: line != None) #id_pessoa_fisica|id_pessoa_fisica_dv|dt_nascimento|dt_obito|cs_etnia|cs_estado_civil|cs_grau_instrucao|cs_nacionalidade|cs_sexo #(id_pessoa_fisica,((id_pessoa_fisica_dv,dt_nascimento,dt_obito,cs_etnia,cs_estado_civil,cs_grau_instrucao,cs_nacionalidade,cs_sexo),(dt_atualizaรงรฃo mais nova, data de divorcio ou separacao mais antiga, check_inconsistencia),(ID_MUNICIPIO, CEP, distrito, id_inconcistencia))) finalResult.sortBy(filtering).saveAsTextFile("/u01/data/Resultados/") (id_pessoa_fisica: '1283983077', arr_objetos: ( vida_trabalhista: (15, 0, '128.51', '0.00', '0.00', 0), dados_PF: ('0', '2067-06-13', '', '', '', '7', '10', '3'), dados_endereco: ('354850', '11020150', '1102', 0), dados_relacao_civil (0, 'NC', 1) ) ) ('1281289112', ((486, 0, '3133.34', '260.00', '0.00', 0), ('4', '1980-08-21', '', '', '', '', '10', '3'), ('Jesus', '11020130', '1102', 0), ('1996-04-29', 'NC', 0))) a = { 'ID_PF':x[0], 'OBJETOS':{ 'VIDA_TRABALHISTA':{ 'DIAS_CONTR':x[1][0][0], 'DATA_FIRST_TRAB':x[1][0][1], } } } ('1214281582', ((647, 0, '463519.16', '8963.99', '0.00', 0), ('2', '2067-06-28', '', '', '4', '9', '10', '3'), ('354850', '11020080', '1102', 0), ('1991-09-06', '2005-12-21', 0)))
#Version 0.0.0 def getEvents (a, b): try: return a.append(b[0]) except: return a def filterByEvent (line): try: if str(line[2]).strip() != '': return (str(line[1]).strip(), str(line[2]).strip() + ";" +str(line[0]).strip()) elif str(line[3]).strip() != '': return (str(line[1]).strip(), str(line[3]).strip() + ";" +str(line[0]).strip()) else: return (str(line[1]).strip(), "Inc." + ";" + str(line[0]).strip()) except: return (str(line[1]).strip(), "ERRO") def filterDates(x): splitedInfo = x[1].split("|") incVal = 0 dateBase = '1800-01-01' newestId = 'Inc.' for i in splitedInfo: if 'Inc.' in i: incVal = 1 newestId = i.split(";")[1] dateBase = 0 else: DateInfo = i.split(";") if DateInfo[0] > dateBase: newestId = DateInfo[1] dateBase = DateInfo[0] incVal = 0 else: newestId = 'Inc.' incVal = 1 dateBase = 0 return (newestId, (x[0], dateBase, incVal)) def filterDivorceDates(x): dateBase = '2999-01-01' result = '' for i in x[1][1]: if i == '' and result == '': result = 'NC' else: if i < dateBase and i != '' and i != 'NC': result = i dateBase = result return (x[0], result) def getNotInc (x): if x[1][0] == 'Inc.': return 'NONE' else: return (x[1][0], 1) def finalFiltering (x): #ID_PF, Data_Alteracao, Data_Divorcio, Inconcistencia return (x[1][1][0], (x[1][1][1], x[1][0], x[1][1][2])) def getNewstEnd(x): lEnderecos = x[1].split('|') baseDate = '1800-01-01' incon = 0 for i in lEnderecos: endElement = i.split(';') while(len(endElement[3]) < 8): endElement[3] = endElement[3] + '0' if endElement == '': incon = 1 idEnd = endElement[0] idMuni = endElement[2] CEP = endElement[3] elif endElement[1] > baseDate: baseDate = endElement[1] idMuni = endElement[2] CEP = endElement[3] else: incon = 1 idMuni = 'NaN' CEP = 'NaN' return (x[0], (idMuni, CEP, CEP[:4], incon)) def finalFormat(x): try: return (x[0], (x[1][0], x[1][1][0], x[1][1][1])) except: return None def finalAggFormat(x): try: retorno = (x[0], (x[1][0], x[1][1][0], x[1][1][1], x[1][1][2])) if retorno[1][0] == None: return None elif retorno[1][2] == None: return None elif retorno[1][2][1] == '00000000': return None return retorno except: return None def calculateRelacoes(x): relations = x[1] active = False inc = 0 contribDays = 0 baseDate = '2999-01-01' remTotal = 0 rem13Total = 0 remFGTSTotal = 0 for i in relations: if i[1] == '': active = True elif int(i[1]) < 0: inc = 1 else: contribDays = contribDays + int(i[1]) baseDate = i[0] if i[0] < baseDate and i[0] != '' else baseDate try: remTotal = remTotal + float(i[2]) except: remTotal = remTotal + 0 try: rem13Total = rem13Total + float(i[3]) except: rem13Total = rem13Total + 0 try: remFGTSTotal = remFGTSTotal + int(float(i[4])) except: remFGTSTotal = remFGTSTotal + 0 return (x[0], (contribDays, baseDate if active else 0, '%.2f'%remTotal, '%.2f'%rem13Total, '%.2f'%remFGTSTotal, inc)) def filtering(x): try: return x[1][2][1] except: return 0 fEnd = sc.textFile("/u01/data/base/ENDERECOS") fPF = sc.textFile("/u01/data/base/PESSOAS_FISICAS") fCert = sc.textFile("/u01/data/base/CERTIDOES_CIVIS") fRes = sc.textFile("/u01/data/base/RESUMO_RELACOES_TRABALHISTAS") ''' CERTIDOES_CIVIS_PART ''' #Retorno da Linha: [[id_certidao_civil, id_pessoa_fisica, dt_evento, dt_emissao, dt_separacao, dt_divorcio]] rddCertidoes = fCert.map(lambda line: line.split("|")) #Retorno [('1027040844', 'Inc.'), ('1665214649', '1976-12-08;155259490')] -> (PF_ID, 'data mais recente entre dt_evento e dt_emissรฃo; id_certidao_civil') rddDates = rddCertidoes.map(filterByEvent).reduceByKey(lambda a, b: a + ("|" + b)) #Retorno [('113927770', ('1229477534', '2006-07-15', 0))] -> (CERT_ID, (PF_ID, Data_Mais_Recente, Check_Inconsistencia (0-OK, 1-Inc))) rddInfo = rddDates.map(filterDates) #Retorno [('13047457', ('', ''))] -> (CERT_ID, (dt_separacao, dt_divorcio)) rddCertIds = rddCertidoes.map(lambda x: (str(x[0]).strip(), (str(x[4]).strip(), str(x[5]).strip()))) #Retorno [('14733170', 'NC')] -> (CERT_ID, Data Mais Antiga separacao e divorcio (Caso nรฃo conste data retorna NC)) rddDivorcio = rddInfo.map(lambda x: (x[0], 1)).join(rddCertIds).map(filterDivorceDates) #Retorno [('1116310950', 0, 'NC', 1)] -> (PF_ID, dt_atualizaรงรฃo mais nova, data de divorcio ou separacao mais antiga, check_inconsistencia) fullJoined = rddDivorcio.join(rddInfo).map(finalFiltering) ''' ENDERECOS PART ''' rddEnderecos = fEnd.map(lambda line: line.split('|')) #('2090398103', '310267648;2015-05-29|310267648;2015-05-29') rddEndByPF = rddEnderecos.map(lambda x: (str(x[1]).strip(), (str(x[0]).strip() + ";" + str(x[4]).strip() + ";" + str(x[2]).strip() + ";" + str(x[3]).strip()))).reduceByKey(lambda a, b: a + ("|" + b)) #(ID_PF, (ID_MUNICIPIO, CEP, CEP[:4], 0)) rddPFbyRecentEnd = rddEndByPF.map(getNewstEnd) partialResult = rddPFbyRecentEnd.fullOuterJoin(fullJoined) ''' PESSOAS FISICAS ''' rddPF = fPF.map(lambda line: line.split('|')).map(lambda x: (str(x[0]).strip(), (str(x[1]).strip(), str(x[2]).strip(), str(x[3]).strip(), str(x[4]).strip(), str(x[5]).strip(), str(x[6]).strip(), str(x[7]).strip(), str(x[8]).strip()))) rddResult = rddPF.fullOuterJoin(partialResult).map(finalFormat).filter(lambda line: line != None) ''' RELACOES TRABALHISTAS ''' rddRelacoes = fRes.map(lambda line: line.split("|")).map(lambda x: (str(x[1]).strip(), ((str(x[3]).strip(), str(x[4]).strip(), str(x[5]).strip(), str(x[6]).strip(), str(x[7]).strip()),))) rddAgg = rddRelacoes.reduceByKey(lambda a, b: a + b).map(calculateRelacoes) #('1238510985', ((58, 0, '6762958.48', '772990.68', '0.00', 0), (None, None, ('1999-06-14', 'NC', 0)))) finalResult = rddAgg.fullOuterJoin(rddResult).map(finalAggFormat).filter(lambda line: line != None) #id_pessoa_fisica|id_pessoa_fisica_dv|dt_nascimento|dt_obito|cs_etnia|cs_estado_civil|cs_grau_instrucao|cs_nacionalidade|cs_sexo #(id_pessoa_fisica,((id_pessoa_fisica_dv,dt_nascimento,dt_obito,cs_etnia,cs_estado_civil,cs_grau_instrucao,cs_nacionalidade,cs_sexo),(dt_atualizaรงรฃo mais nova, data de divorcio ou separacao mais antiga, check_inconsistencia),(ID_MUNICIPIO, CEP, distrito, id_inconcistencia))) finalResult.sortBy(filtering).saveAsTextFile("/u01/data/Resultados/") (id_pessoa_fisica: '1283983077', arr_objetos: ( vida_trabalhista: (15, 0, '128.51', '0.00', '0.00', 0), dados_PF: ('0', '2067-06-13', '', '', '', '7', '10', '3'), dados_endereco: ('354850', '11020150', '1102', 0), dados_relacao_civil (0, 'NC', 1) ) ) ('1281289112', ((486, 0, '3133.34', '260.00', '0.00', 0), ('4', '1980-08-21', '', '', '', '', '10', '3'), ('Jesus', '11020130', '1102', 0), ('1996-04-29', 'NC', 0))) a = { 'ID_PF':x[0], 'OBJETOS':{ 'VIDA_TRABALHISTA':{ 'DIAS_CONTR':x[1][0][0], 'DATA_FIRST_TRAB':x[1][0][1], } } } ('1214281582', ((647, 0, '463519.16', '8963.99', '0.00', 0), ('2', '2067-06-28', '', '', '4', '9', '10', '3'), ('354850', '11020080', '1102', 0), ('1991-09-06', '2005-12-21', 0)))
pt
0.603539
#Version 0.0.0 #ID_PF, Data_Alteracao, Data_Divorcio, Inconcistencia CERTIDOES_CIVIS_PART #Retorno da Linha: [[id_certidao_civil, id_pessoa_fisica, dt_evento, dt_emissao, dt_separacao, dt_divorcio]] #Retorno [('1027040844', 'Inc.'), ('1665214649', '1976-12-08;155259490')] -> (PF_ID, 'data mais recente entre dt_evento e dt_emissรฃo; id_certidao_civil') #Retorno [('113927770', ('1229477534', '2006-07-15', 0))] -> (CERT_ID, (PF_ID, Data_Mais_Recente, Check_Inconsistencia (0-OK, 1-Inc))) #Retorno [('13047457', ('', ''))] -> (CERT_ID, (dt_separacao, dt_divorcio)) #Retorno [('14733170', 'NC')] -> (CERT_ID, Data Mais Antiga separacao e divorcio (Caso nรฃo conste data retorna NC)) #Retorno [('1116310950', 0, 'NC', 1)] -> (PF_ID, dt_atualizaรงรฃo mais nova, data de divorcio ou separacao mais antiga, check_inconsistencia) ENDERECOS PART #('2090398103', '310267648;2015-05-29|310267648;2015-05-29') #(ID_PF, (ID_MUNICIPIO, CEP, CEP[:4], 0)) PESSOAS FISICAS RELACOES TRABALHISTAS #('1238510985', ((58, 0, '6762958.48', '772990.68', '0.00', 0), (None, None, ('1999-06-14', 'NC', 0)))) #id_pessoa_fisica|id_pessoa_fisica_dv|dt_nascimento|dt_obito|cs_etnia|cs_estado_civil|cs_grau_instrucao|cs_nacionalidade|cs_sexo #(id_pessoa_fisica,((id_pessoa_fisica_dv,dt_nascimento,dt_obito,cs_etnia,cs_estado_civil,cs_grau_instrucao,cs_nacionalidade,cs_sexo),(dt_atualizaรงรฃo mais nova, data de divorcio ou separacao mais antiga, check_inconsistencia),(ID_MUNICIPIO, CEP, distrito, id_inconcistencia)))
2.796461
3
react/reactLexer.py
caos21/test-ode
1
6629985
# Generated from react.g4 by ANTLR 4.6 from antlr4 import * from io import StringIO def serializedATN(): with StringIO() as buf: buf.write("\3\u0430\ud6d1\u8206\uad2d\u4417\uaef1\u8d80\uaadd\2\16") buf.write("k\b\1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t\7") buf.write("\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r\t\r\4\16") buf.write("\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4\22\t\22\3\2\3\2") buf.write("\7\2(\n\2\f\2\16\2+\13\2\3\3\3\3\3\4\3\4\7\4\61\n\4\f") buf.write("\4\16\4\64\13\4\3\5\3\5\3\5\5\59\n\5\3\5\3\5\5\5=\n\5") buf.write("\3\6\3\6\3\6\5\6B\n\6\5\6D\n\6\3\6\3\6\3\6\5\6I\n\6\3") buf.write("\7\6\7L\n\7\r\7\16\7M\3\b\3\b\3\t\3\t\5\tT\n\t\3\n\3\n") buf.write("\3\13\3\13\3\f\3\f\3\r\3\r\3\r\3\16\3\16\3\17\3\17\3\17") buf.write("\3\20\3\20\3\21\3\21\3\22\3\22\3\22\3\22\2\2\23\3\3\5") buf.write("\4\7\5\t\6\13\2\r\2\17\2\21\2\23\2\25\7\27\b\31\t\33\n") buf.write("\35\13\37\f!\r#\16\3\2\7\4\2\f\f\17\17\4\2C\\c|\t\2%%") buf.write("((,-/;B\\aac|\4\2GGgg\5\2\13\f\17\17\"\"n\2\3\3\2\2\2") buf.write("\2\5\3\2\2\2\2\7\3\2\2\2\2\t\3\2\2\2\2\25\3\2\2\2\2\27") buf.write("\3\2\2\2\2\31\3\2\2\2\2\33\3\2\2\2\2\35\3\2\2\2\2\37\3") buf.write("\2\2\2\2!\3\2\2\2\2#\3\2\2\2\3%\3\2\2\2\5,\3\2\2\2\7.") buf.write("\3\2\2\2\t\65\3\2\2\2\13H\3\2\2\2\rK\3\2\2\2\17O\3\2\2") buf.write("\2\21S\3\2\2\2\23U\3\2\2\2\25W\3\2\2\2\27Y\3\2\2\2\31") buf.write("[\3\2\2\2\33^\3\2\2\2\35`\3\2\2\2\37c\3\2\2\2!e\3\2\2") buf.write("\2#g\3\2\2\2%)\7%\2\2&(\n\2\2\2\'&\3\2\2\2(+\3\2\2\2)") buf.write("\'\3\2\2\2)*\3\2\2\2*\4\3\2\2\2+)\3\2\2\2,-\7=\2\2-\6") buf.write("\3\2\2\2.\62\t\3\2\2/\61\t\4\2\2\60/\3\2\2\2\61\64\3\2") buf.write("\2\2\62\60\3\2\2\2\62\63\3\2\2\2\63\b\3\2\2\2\64\62\3") buf.write("\2\2\2\65<\5\13\6\2\668\5\17\b\2\679\5\21\t\28\67\3\2") buf.write("\2\289\3\2\2\29:\3\2\2\2:;\5\r\7\2;=\3\2\2\2<\66\3\2\2") buf.write("\2<=\3\2\2\2=\n\3\2\2\2>C\5\r\7\2?A\5!\21\2@B\5\r\7\2") buf.write("A@\3\2\2\2AB\3\2\2\2BD\3\2\2\2C?\3\2\2\2CD\3\2\2\2DI\3") buf.write("\2\2\2EF\5!\21\2FG\5\r\7\2GI\3\2\2\2H>\3\2\2\2HE\3\2\2") buf.write("\2I\f\3\2\2\2JL\5\23\n\2KJ\3\2\2\2LM\3\2\2\2MK\3\2\2\2") buf.write("MN\3\2\2\2N\16\3\2\2\2OP\t\5\2\2P\20\3\2\2\2QT\5\25\13") buf.write("\2RT\5\27\f\2SQ\3\2\2\2SR\3\2\2\2T\22\3\2\2\2UV\4\62;") buf.write("\2V\24\3\2\2\2WX\7-\2\2X\26\3\2\2\2YZ\7/\2\2Z\30\3\2\2") buf.write("\2[\\\7F\2\2\\]\7]\2\2]\32\3\2\2\2^_\7_\2\2_\34\3\2\2") buf.write("\2`a\7/\2\2ab\7@\2\2b\36\3\2\2\2cd\7?\2\2d \3\2\2\2ef") buf.write("\7\60\2\2f\"\3\2\2\2gh\t\6\2\2hi\3\2\2\2ij\b\22\2\2j$") buf.write("\3\2\2\2\f\2)\628<ACHMS\3\b\2\2") return buf.getvalue() class reactLexer(Lexer): atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] COMMENT = 1 SEMICOLON = 2 SYMBOL = 3 SCIENTIFIC_NUMBER = 4 PLUS = 5 MINUS = 6 LDIFFBRACKET = 7 RBRACKET = 8 PRODUCE = 9 EQUAL = 10 POINT = 11 WHITESPACE = 12 modeNames = [ "DEFAULT_MODE" ] literalNames = [ "<INVALID>", "';'", "'+'", "'-'", "'D['", "']'", "'->'", "'='", "'.'" ] symbolicNames = [ "<INVALID>", "COMMENT", "SEMICOLON", "SYMBOL", "SCIENTIFIC_NUMBER", "PLUS", "MINUS", "LDIFFBRACKET", "RBRACKET", "PRODUCE", "EQUAL", "POINT", "WHITESPACE" ] ruleNames = [ "COMMENT", "SEMICOLON", "SYMBOL", "SCIENTIFIC_NUMBER", "NUMBER", "INTEGER", "E", "SIGN", "DIGIT", "PLUS", "MINUS", "LDIFFBRACKET", "RBRACKET", "PRODUCE", "EQUAL", "POINT", "WHITESPACE" ] grammarFileName = "react.g4" def __init__(self, input=None): super().__init__(input) self.checkVersion("4.7") self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache()) self._actions = None self._predicates = None
# Generated from react.g4 by ANTLR 4.6 from antlr4 import * from io import StringIO def serializedATN(): with StringIO() as buf: buf.write("\3\u0430\ud6d1\u8206\uad2d\u4417\uaef1\u8d80\uaadd\2\16") buf.write("k\b\1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t\7") buf.write("\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r\t\r\4\16") buf.write("\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4\22\t\22\3\2\3\2") buf.write("\7\2(\n\2\f\2\16\2+\13\2\3\3\3\3\3\4\3\4\7\4\61\n\4\f") buf.write("\4\16\4\64\13\4\3\5\3\5\3\5\5\59\n\5\3\5\3\5\5\5=\n\5") buf.write("\3\6\3\6\3\6\5\6B\n\6\5\6D\n\6\3\6\3\6\3\6\5\6I\n\6\3") buf.write("\7\6\7L\n\7\r\7\16\7M\3\b\3\b\3\t\3\t\5\tT\n\t\3\n\3\n") buf.write("\3\13\3\13\3\f\3\f\3\r\3\r\3\r\3\16\3\16\3\17\3\17\3\17") buf.write("\3\20\3\20\3\21\3\21\3\22\3\22\3\22\3\22\2\2\23\3\3\5") buf.write("\4\7\5\t\6\13\2\r\2\17\2\21\2\23\2\25\7\27\b\31\t\33\n") buf.write("\35\13\37\f!\r#\16\3\2\7\4\2\f\f\17\17\4\2C\\c|\t\2%%") buf.write("((,-/;B\\aac|\4\2GGgg\5\2\13\f\17\17\"\"n\2\3\3\2\2\2") buf.write("\2\5\3\2\2\2\2\7\3\2\2\2\2\t\3\2\2\2\2\25\3\2\2\2\2\27") buf.write("\3\2\2\2\2\31\3\2\2\2\2\33\3\2\2\2\2\35\3\2\2\2\2\37\3") buf.write("\2\2\2\2!\3\2\2\2\2#\3\2\2\2\3%\3\2\2\2\5,\3\2\2\2\7.") buf.write("\3\2\2\2\t\65\3\2\2\2\13H\3\2\2\2\rK\3\2\2\2\17O\3\2\2") buf.write("\2\21S\3\2\2\2\23U\3\2\2\2\25W\3\2\2\2\27Y\3\2\2\2\31") buf.write("[\3\2\2\2\33^\3\2\2\2\35`\3\2\2\2\37c\3\2\2\2!e\3\2\2") buf.write("\2#g\3\2\2\2%)\7%\2\2&(\n\2\2\2\'&\3\2\2\2(+\3\2\2\2)") buf.write("\'\3\2\2\2)*\3\2\2\2*\4\3\2\2\2+)\3\2\2\2,-\7=\2\2-\6") buf.write("\3\2\2\2.\62\t\3\2\2/\61\t\4\2\2\60/\3\2\2\2\61\64\3\2") buf.write("\2\2\62\60\3\2\2\2\62\63\3\2\2\2\63\b\3\2\2\2\64\62\3") buf.write("\2\2\2\65<\5\13\6\2\668\5\17\b\2\679\5\21\t\28\67\3\2") buf.write("\2\289\3\2\2\29:\3\2\2\2:;\5\r\7\2;=\3\2\2\2<\66\3\2\2") buf.write("\2<=\3\2\2\2=\n\3\2\2\2>C\5\r\7\2?A\5!\21\2@B\5\r\7\2") buf.write("A@\3\2\2\2AB\3\2\2\2BD\3\2\2\2C?\3\2\2\2CD\3\2\2\2DI\3") buf.write("\2\2\2EF\5!\21\2FG\5\r\7\2GI\3\2\2\2H>\3\2\2\2HE\3\2\2") buf.write("\2I\f\3\2\2\2JL\5\23\n\2KJ\3\2\2\2LM\3\2\2\2MK\3\2\2\2") buf.write("MN\3\2\2\2N\16\3\2\2\2OP\t\5\2\2P\20\3\2\2\2QT\5\25\13") buf.write("\2RT\5\27\f\2SQ\3\2\2\2SR\3\2\2\2T\22\3\2\2\2UV\4\62;") buf.write("\2V\24\3\2\2\2WX\7-\2\2X\26\3\2\2\2YZ\7/\2\2Z\30\3\2\2") buf.write("\2[\\\7F\2\2\\]\7]\2\2]\32\3\2\2\2^_\7_\2\2_\34\3\2\2") buf.write("\2`a\7/\2\2ab\7@\2\2b\36\3\2\2\2cd\7?\2\2d \3\2\2\2ef") buf.write("\7\60\2\2f\"\3\2\2\2gh\t\6\2\2hi\3\2\2\2ij\b\22\2\2j$") buf.write("\3\2\2\2\f\2)\628<ACHMS\3\b\2\2") return buf.getvalue() class reactLexer(Lexer): atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] COMMENT = 1 SEMICOLON = 2 SYMBOL = 3 SCIENTIFIC_NUMBER = 4 PLUS = 5 MINUS = 6 LDIFFBRACKET = 7 RBRACKET = 8 PRODUCE = 9 EQUAL = 10 POINT = 11 WHITESPACE = 12 modeNames = [ "DEFAULT_MODE" ] literalNames = [ "<INVALID>", "';'", "'+'", "'-'", "'D['", "']'", "'->'", "'='", "'.'" ] symbolicNames = [ "<INVALID>", "COMMENT", "SEMICOLON", "SYMBOL", "SCIENTIFIC_NUMBER", "PLUS", "MINUS", "LDIFFBRACKET", "RBRACKET", "PRODUCE", "EQUAL", "POINT", "WHITESPACE" ] ruleNames = [ "COMMENT", "SEMICOLON", "SYMBOL", "SCIENTIFIC_NUMBER", "NUMBER", "INTEGER", "E", "SIGN", "DIGIT", "PLUS", "MINUS", "LDIFFBRACKET", "RBRACKET", "PRODUCE", "EQUAL", "POINT", "WHITESPACE" ] grammarFileName = "react.g4" def __init__(self, input=None): super().__init__(input) self.checkVersion("4.7") self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache()) self._actions = None self._predicates = None
es
0.246638
# Generated from react.g4 by ANTLR 4.6 #\16\3\2\7\4\2\f\f\17\17\4\2C\\c|\t\2%%") #\3\2\2\2\3%\3\2\2\2\5,\3\2\2\2\7.") #g\3\2\2\2%)\7%\2\2&(\n\2\2\2\'&\3\2\2\2(+\3\2\2\2)")
1.288764
1
corehq/motech/repeaters/views/repeaters.py
akyogi/commcare-hq
0
6629986
<filename>corehq/motech/repeaters/views/repeaters.py import json from collections import namedtuple from django.contrib import messages from django.http import Http404, HttpResponse, HttpResponseRedirect from django.urls import reverse from django.utils.decorators import method_decorator from django.utils.translation import ugettext as _ from django.utils.translation import ugettext_lazy from django.views.decorators.http import require_POST from memoized import memoized from requests.auth import HTTPBasicAuth, HTTPDigestAuth from corehq.apps.accounting.decorators import requires_privilege_with_fallback from dimagi.utils.post import simple_post from corehq import toggles, privileges from corehq.apps.domain.decorators import domain_admin_required from corehq.apps.domain.views.settings import ( BaseAdminProjectSettingsView, BaseProjectSettingsView, ) from corehq.apps.users.decorators import ( require_can_edit_web_users, require_permission, ) from corehq.apps.users.models import Permissions from corehq.motech.const import ALGO_AES, PASSWORD_PLACEHOLDER from corehq.motech.repeaters.forms import ( CaseRepeaterForm, FormRepeaterForm, GenericRepeaterForm, OpenmrsRepeaterForm, ) from corehq.motech.repeaters.models import ( BASIC_AUTH, DIGEST_AUTH, Repeater, RepeatRecord, ) from corehq.motech.repeaters.repeater_generators import RegisterGenerator from corehq.motech.repeaters.utils import get_all_repeater_types from corehq.motech.utils import b64_aes_encrypt RepeaterTypeInfo = namedtuple('RepeaterTypeInfo', 'class_name friendly_name has_config instances') class DomainForwardingOptionsView(BaseAdminProjectSettingsView): urlname = 'domain_forwarding' page_title = ugettext_lazy("Data Forwarding") template_name = 'repeaters/repeaters.html' @method_decorator(require_permission(Permissions.edit_motech)) @method_decorator(requires_privilege_with_fallback(privileges.DATA_FORWARDING)) def dispatch(self, request, *args, **kwargs): return super(BaseProjectSettingsView, self).dispatch(request, *args, **kwargs) @property def repeater_types_info(self): return [ RepeaterTypeInfo(r.__name__, r.friendly_name, r._has_config, r.by_domain(self.domain)) for r in get_all_repeater_types().values() if r.available_for_domain(self.domain) ] @property def page_context(self): return { 'repeater_types_info': self.repeater_types_info, 'pending_record_count': RepeatRecord.count(self.domain), 'user_can_configure': ( self.request.couch_user.is_superuser or self.request.couch_user.can_edit_motech() or toggles.IS_CONTRACTOR.enabled(self.request.couch_user.username) ) } class BaseRepeaterView(BaseAdminProjectSettingsView): page_title = ugettext_lazy("Forward Data") repeater_form_class = GenericRepeaterForm template_name = 'repeaters/add_form_repeater.html' @method_decorator(require_permission(Permissions.edit_motech)) @method_decorator(requires_privilege_with_fallback(privileges.DATA_FORWARDING)) def dispatch(self, request, *args, **kwargs): return super(BaseRepeaterView, self).dispatch(request, *args, **kwargs) @property def page_url(self): return reverse(self.urlname, args=[self.domain, self.repeater_type]) @property def parent_pages(self): return [{ 'title': DomainForwardingOptionsView.page_title, 'url': reverse(DomainForwardingOptionsView.urlname, args=[self.domain]), }] @property def repeater_type(self): return self.kwargs['repeater_type'] @property def page_name(self): return self.repeater_class.friendly_name @property @memoized def repeater_class(self): try: return get_all_repeater_types()[self.repeater_type] except KeyError: raise Http404( "No such repeater {}. Valid types: {}".format( self.repeater_type, list(get_all_repeater_types()) ) ) @property def add_repeater_form(self): return None @property def page_context(self): return { 'form': self.add_repeater_form, 'repeater_type': self.repeater_type, } def initialize_repeater(self): raise NotImplementedError def make_repeater(self): repeater = self.initialize_repeater() return self.set_repeater_attr(repeater, self.add_repeater_form.cleaned_data) def set_repeater_attr(self, repeater, cleaned_data): repeater.domain = self.domain repeater.url = cleaned_data['url'] repeater.auth_type = cleaned_data['auth_type'] or None repeater.username = cleaned_data['username'] if cleaned_data['password'] != PASSWORD_PLACEHOLDER: repeater.password = <PASSWORD>( algo=ALGO_AES, ciphertext=<PASSWORD>_<PASSWORD>_encrypt(cleaned_data['password']) ) repeater.format = cleaned_data['format'] repeater.notify_addresses_str = cleaned_data['notify_addresses_str'] repeater.skip_cert_verify = cleaned_data['skip_cert_verify'] return repeater def post_save(self, request, repeater): pass def post(self, request, *args, **kwargs): if self.add_repeater_form.is_valid(): repeater = self.make_repeater() repeater.save() return self.post_save(request, repeater) return self.get(request, *args, **kwargs) class AddRepeaterView(BaseRepeaterView): urlname = 'add_repeater' @property @memoized def add_repeater_form(self): if self.request.method == 'POST': return self.repeater_form_class( self.request.POST, domain=self.domain, repeater_class=self.repeater_class ) return self.repeater_form_class( domain=self.domain, repeater_class=self.repeater_class ) def initialize_repeater(self): return self.repeater_class() def post_save(self, request, repeater): messages.success(request, _("Forwarding set up to %s" % repeater.url)) return HttpResponseRedirect(reverse(DomainForwardingOptionsView.urlname, args=[self.domain])) class AddFormRepeaterView(AddRepeaterView): urlname = 'add_form_repeater' repeater_form_class = FormRepeaterForm @property def page_url(self): return reverse(self.urlname, args=[self.domain]) def set_repeater_attr(self, repeater, cleaned_data): repeater = super(AddFormRepeaterView, self).set_repeater_attr(repeater, cleaned_data) repeater.include_app_id_param = self.add_repeater_form.cleaned_data['include_app_id_param'] return repeater class AddCaseRepeaterView(AddRepeaterView): urlname = 'add_case_repeater' repeater_form_class = CaseRepeaterForm @property def page_url(self): return reverse(self.urlname, args=[self.domain]) def set_repeater_attr(self, repeater, cleaned_data): repeater = super(AddCaseRepeaterView, self).set_repeater_attr(repeater, cleaned_data) repeater.white_listed_case_types = self.add_repeater_form.cleaned_data['white_listed_case_types'] repeater.black_listed_users = self.add_repeater_form.cleaned_data['black_listed_users'] return repeater class AddOpenmrsRepeaterView(AddCaseRepeaterView): urlname = 'new_openmrs_repeater$' repeater_form_class = OpenmrsRepeaterForm page_title = ugettext_lazy("Forward to OpenMRS") page_name = ugettext_lazy("Forward to OpenMRS") def set_repeater_attr(self, repeater, cleaned_data): repeater = super(AddOpenmrsRepeaterView, self).set_repeater_attr(repeater, cleaned_data) repeater.location_id = self.add_repeater_form.cleaned_data['location_id'] repeater.atom_feed_enabled = self.add_repeater_form.cleaned_data['atom_feed_enabled'] return repeater class AddDhis2RepeaterView(AddRepeaterView): urlname = 'new_dhis2_repeater$' repeater_form_class = GenericRepeaterForm page_title = ugettext_lazy("Forward Forms to DHIS2 as Anonymous Events") page_name = ugettext_lazy("Forward Forms to DHIS2 as Anonymous Events") @property def page_url(self): return reverse(self.urlname, args=[self.domain]) class EditRepeaterView(BaseRepeaterView): urlname = 'edit_repeater' template_name = 'repeaters/add_form_repeater.html' @property def repeater_id(self): return self.kwargs['repeater_id'] @property def page_url(self): # The EditRepeaterView url routes to the correct edit form for its subclasses. It does this with # `repeater_type` in r'^forwarding/(?P<repeater_type>\w+)/edit/(?P<repeater_id>\w+)/$' # See corehq/apps/domain/urls.py for details. return reverse(EditRepeaterView.urlname, args=[self.domain, self.repeater_type, self.repeater_id]) @property @memoized def add_repeater_form(self): if self.request.method == 'POST': return self.repeater_form_class( self.request.POST, domain=self.domain, repeater_class=self.repeater_class ) else: repeater_id = self.kwargs['repeater_id'] repeater = Repeater.get(repeater_id) data = repeater.to_json() data['password'] = <PASSWORD> return self.repeater_form_class( domain=self.domain, repeater_class=self.repeater_class, data=data, submit_btn_text=_("Update Repeater"), ) @method_decorator(domain_admin_required) def dispatch(self, request, *args, **kwargs): if self.request.GET.get('repeater_type'): self.kwargs['repeater_type'] = self.request.GET['repeater_type'] return super(EditRepeaterView, self).dispatch(request, *args, **kwargs) def initialize_repeater(self): return Repeater.get(self.kwargs['repeater_id']) def post_save(self, request, repeater): messages.success(request, _("Repeater Successfully Updated")) if self.request.GET.get('repeater_type'): return HttpResponseRedirect( (reverse(self.urlname, args=[self.domain, repeater.get_id]) + '?repeater_type=' + self.kwargs['repeater_type']) ) else: return HttpResponseRedirect(reverse(self.urlname, args=[self.domain, repeater.get_id])) class EditCaseRepeaterView(EditRepeaterView, AddCaseRepeaterView): urlname = 'edit_case_repeater' page_title = ugettext_lazy("Edit Case Repeater") @property def page_url(self): return reverse(AddCaseRepeaterView.urlname, args=[self.domain]) class EditFormRepeaterView(EditRepeaterView, AddFormRepeaterView): urlname = 'edit_form_repeater' page_title = ugettext_lazy("Edit Form Repeater") @property def page_url(self): return reverse(AddFormRepeaterView.urlname, args=[self.domain]) class EditOpenmrsRepeaterView(EditRepeaterView, AddOpenmrsRepeaterView): urlname = 'edit_openmrs_repeater' page_title = ugettext_lazy("Edit OpenMRS Repeater") class EditDhis2RepeaterView(EditRepeaterView, AddDhis2RepeaterView): urlname = 'edit_dhis2_repeater' page_title = ugettext_lazy("Edit DHIS2 Anonymous Event Repeater") @require_POST @require_can_edit_web_users @requires_privilege_with_fallback(privileges.DATA_FORWARDING) def drop_repeater(request, domain, repeater_id): rep = Repeater.get(repeater_id) rep.retire() messages.success(request, "Forwarding stopped!") return HttpResponseRedirect(reverse(DomainForwardingOptionsView.urlname, args=[domain])) @require_POST @require_can_edit_web_users @requires_privilege_with_fallback(privileges.DATA_FORWARDING) def pause_repeater(request, domain, repeater_id): rep = Repeater.get(repeater_id) rep.pause() messages.success(request, "Forwarding paused!") return HttpResponseRedirect(reverse(DomainForwardingOptionsView.urlname, args=[domain])) @require_POST @require_can_edit_web_users @requires_privilege_with_fallback(privileges.DATA_FORWARDING) def resume_repeater(request, domain, repeater_id): rep = Repeater.get(repeater_id) rep.resume() messages.success(request, "Forwarding resumed!") return HttpResponseRedirect(reverse(DomainForwardingOptionsView.urlname, args=[domain])) @require_POST @require_can_edit_web_users @requires_privilege_with_fallback(privileges.DATA_FORWARDING) def test_repeater(request, domain): url = request.POST["url"] repeater_type = request.POST['repeater_type'] format = request.POST.get('format', None) repeater_class = get_all_repeater_types()[repeater_type] auth_type = request.POST.get('auth_type') form = GenericRepeaterForm( {"url": url, "format": format}, domain=domain, repeater_class=repeater_class ) if form.is_valid(): url = form.cleaned_data["url"] format = format or RegisterGenerator.default_format_by_repeater(repeater_class) generator_class = RegisterGenerator.generator_class_by_repeater_format(repeater_class, format) generator = generator_class(repeater_class()) fake_post = generator.get_test_payload(domain) headers = generator.get_headers() username = request.POST.get('username') password = request.POST.get('password') verify = not request.POST.get('skip_cert_verify') == 'true' if auth_type == BASIC_AUTH: auth = HTTPBasicAuth(username, password) elif auth_type == DIGEST_AUTH: auth = HTTPDigestAuth(username, password) else: auth = None try: resp = simple_post(fake_post, url, headers=headers, auth=auth, verify=verify) if 200 <= resp.status_code < 300: return HttpResponse(json.dumps({"success": True, "response": resp.text, "status": resp.status_code})) else: return HttpResponse(json.dumps({"success": False, "response": resp.text, "status": resp.status_code})) except Exception as e: errors = str(e) return HttpResponse(json.dumps({"success": False, "response": errors})) else: return HttpResponse(json.dumps({"success": False, "response": "Please enter a valid url."}))
<filename>corehq/motech/repeaters/views/repeaters.py import json from collections import namedtuple from django.contrib import messages from django.http import Http404, HttpResponse, HttpResponseRedirect from django.urls import reverse from django.utils.decorators import method_decorator from django.utils.translation import ugettext as _ from django.utils.translation import ugettext_lazy from django.views.decorators.http import require_POST from memoized import memoized from requests.auth import HTTPBasicAuth, HTTPDigestAuth from corehq.apps.accounting.decorators import requires_privilege_with_fallback from dimagi.utils.post import simple_post from corehq import toggles, privileges from corehq.apps.domain.decorators import domain_admin_required from corehq.apps.domain.views.settings import ( BaseAdminProjectSettingsView, BaseProjectSettingsView, ) from corehq.apps.users.decorators import ( require_can_edit_web_users, require_permission, ) from corehq.apps.users.models import Permissions from corehq.motech.const import ALGO_AES, PASSWORD_PLACEHOLDER from corehq.motech.repeaters.forms import ( CaseRepeaterForm, FormRepeaterForm, GenericRepeaterForm, OpenmrsRepeaterForm, ) from corehq.motech.repeaters.models import ( BASIC_AUTH, DIGEST_AUTH, Repeater, RepeatRecord, ) from corehq.motech.repeaters.repeater_generators import RegisterGenerator from corehq.motech.repeaters.utils import get_all_repeater_types from corehq.motech.utils import b64_aes_encrypt RepeaterTypeInfo = namedtuple('RepeaterTypeInfo', 'class_name friendly_name has_config instances') class DomainForwardingOptionsView(BaseAdminProjectSettingsView): urlname = 'domain_forwarding' page_title = ugettext_lazy("Data Forwarding") template_name = 'repeaters/repeaters.html' @method_decorator(require_permission(Permissions.edit_motech)) @method_decorator(requires_privilege_with_fallback(privileges.DATA_FORWARDING)) def dispatch(self, request, *args, **kwargs): return super(BaseProjectSettingsView, self).dispatch(request, *args, **kwargs) @property def repeater_types_info(self): return [ RepeaterTypeInfo(r.__name__, r.friendly_name, r._has_config, r.by_domain(self.domain)) for r in get_all_repeater_types().values() if r.available_for_domain(self.domain) ] @property def page_context(self): return { 'repeater_types_info': self.repeater_types_info, 'pending_record_count': RepeatRecord.count(self.domain), 'user_can_configure': ( self.request.couch_user.is_superuser or self.request.couch_user.can_edit_motech() or toggles.IS_CONTRACTOR.enabled(self.request.couch_user.username) ) } class BaseRepeaterView(BaseAdminProjectSettingsView): page_title = ugettext_lazy("Forward Data") repeater_form_class = GenericRepeaterForm template_name = 'repeaters/add_form_repeater.html' @method_decorator(require_permission(Permissions.edit_motech)) @method_decorator(requires_privilege_with_fallback(privileges.DATA_FORWARDING)) def dispatch(self, request, *args, **kwargs): return super(BaseRepeaterView, self).dispatch(request, *args, **kwargs) @property def page_url(self): return reverse(self.urlname, args=[self.domain, self.repeater_type]) @property def parent_pages(self): return [{ 'title': DomainForwardingOptionsView.page_title, 'url': reverse(DomainForwardingOptionsView.urlname, args=[self.domain]), }] @property def repeater_type(self): return self.kwargs['repeater_type'] @property def page_name(self): return self.repeater_class.friendly_name @property @memoized def repeater_class(self): try: return get_all_repeater_types()[self.repeater_type] except KeyError: raise Http404( "No such repeater {}. Valid types: {}".format( self.repeater_type, list(get_all_repeater_types()) ) ) @property def add_repeater_form(self): return None @property def page_context(self): return { 'form': self.add_repeater_form, 'repeater_type': self.repeater_type, } def initialize_repeater(self): raise NotImplementedError def make_repeater(self): repeater = self.initialize_repeater() return self.set_repeater_attr(repeater, self.add_repeater_form.cleaned_data) def set_repeater_attr(self, repeater, cleaned_data): repeater.domain = self.domain repeater.url = cleaned_data['url'] repeater.auth_type = cleaned_data['auth_type'] or None repeater.username = cleaned_data['username'] if cleaned_data['password'] != PASSWORD_PLACEHOLDER: repeater.password = <PASSWORD>( algo=ALGO_AES, ciphertext=<PASSWORD>_<PASSWORD>_encrypt(cleaned_data['password']) ) repeater.format = cleaned_data['format'] repeater.notify_addresses_str = cleaned_data['notify_addresses_str'] repeater.skip_cert_verify = cleaned_data['skip_cert_verify'] return repeater def post_save(self, request, repeater): pass def post(self, request, *args, **kwargs): if self.add_repeater_form.is_valid(): repeater = self.make_repeater() repeater.save() return self.post_save(request, repeater) return self.get(request, *args, **kwargs) class AddRepeaterView(BaseRepeaterView): urlname = 'add_repeater' @property @memoized def add_repeater_form(self): if self.request.method == 'POST': return self.repeater_form_class( self.request.POST, domain=self.domain, repeater_class=self.repeater_class ) return self.repeater_form_class( domain=self.domain, repeater_class=self.repeater_class ) def initialize_repeater(self): return self.repeater_class() def post_save(self, request, repeater): messages.success(request, _("Forwarding set up to %s" % repeater.url)) return HttpResponseRedirect(reverse(DomainForwardingOptionsView.urlname, args=[self.domain])) class AddFormRepeaterView(AddRepeaterView): urlname = 'add_form_repeater' repeater_form_class = FormRepeaterForm @property def page_url(self): return reverse(self.urlname, args=[self.domain]) def set_repeater_attr(self, repeater, cleaned_data): repeater = super(AddFormRepeaterView, self).set_repeater_attr(repeater, cleaned_data) repeater.include_app_id_param = self.add_repeater_form.cleaned_data['include_app_id_param'] return repeater class AddCaseRepeaterView(AddRepeaterView): urlname = 'add_case_repeater' repeater_form_class = CaseRepeaterForm @property def page_url(self): return reverse(self.urlname, args=[self.domain]) def set_repeater_attr(self, repeater, cleaned_data): repeater = super(AddCaseRepeaterView, self).set_repeater_attr(repeater, cleaned_data) repeater.white_listed_case_types = self.add_repeater_form.cleaned_data['white_listed_case_types'] repeater.black_listed_users = self.add_repeater_form.cleaned_data['black_listed_users'] return repeater class AddOpenmrsRepeaterView(AddCaseRepeaterView): urlname = 'new_openmrs_repeater$' repeater_form_class = OpenmrsRepeaterForm page_title = ugettext_lazy("Forward to OpenMRS") page_name = ugettext_lazy("Forward to OpenMRS") def set_repeater_attr(self, repeater, cleaned_data): repeater = super(AddOpenmrsRepeaterView, self).set_repeater_attr(repeater, cleaned_data) repeater.location_id = self.add_repeater_form.cleaned_data['location_id'] repeater.atom_feed_enabled = self.add_repeater_form.cleaned_data['atom_feed_enabled'] return repeater class AddDhis2RepeaterView(AddRepeaterView): urlname = 'new_dhis2_repeater$' repeater_form_class = GenericRepeaterForm page_title = ugettext_lazy("Forward Forms to DHIS2 as Anonymous Events") page_name = ugettext_lazy("Forward Forms to DHIS2 as Anonymous Events") @property def page_url(self): return reverse(self.urlname, args=[self.domain]) class EditRepeaterView(BaseRepeaterView): urlname = 'edit_repeater' template_name = 'repeaters/add_form_repeater.html' @property def repeater_id(self): return self.kwargs['repeater_id'] @property def page_url(self): # The EditRepeaterView url routes to the correct edit form for its subclasses. It does this with # `repeater_type` in r'^forwarding/(?P<repeater_type>\w+)/edit/(?P<repeater_id>\w+)/$' # See corehq/apps/domain/urls.py for details. return reverse(EditRepeaterView.urlname, args=[self.domain, self.repeater_type, self.repeater_id]) @property @memoized def add_repeater_form(self): if self.request.method == 'POST': return self.repeater_form_class( self.request.POST, domain=self.domain, repeater_class=self.repeater_class ) else: repeater_id = self.kwargs['repeater_id'] repeater = Repeater.get(repeater_id) data = repeater.to_json() data['password'] = <PASSWORD> return self.repeater_form_class( domain=self.domain, repeater_class=self.repeater_class, data=data, submit_btn_text=_("Update Repeater"), ) @method_decorator(domain_admin_required) def dispatch(self, request, *args, **kwargs): if self.request.GET.get('repeater_type'): self.kwargs['repeater_type'] = self.request.GET['repeater_type'] return super(EditRepeaterView, self).dispatch(request, *args, **kwargs) def initialize_repeater(self): return Repeater.get(self.kwargs['repeater_id']) def post_save(self, request, repeater): messages.success(request, _("Repeater Successfully Updated")) if self.request.GET.get('repeater_type'): return HttpResponseRedirect( (reverse(self.urlname, args=[self.domain, repeater.get_id]) + '?repeater_type=' + self.kwargs['repeater_type']) ) else: return HttpResponseRedirect(reverse(self.urlname, args=[self.domain, repeater.get_id])) class EditCaseRepeaterView(EditRepeaterView, AddCaseRepeaterView): urlname = 'edit_case_repeater' page_title = ugettext_lazy("Edit Case Repeater") @property def page_url(self): return reverse(AddCaseRepeaterView.urlname, args=[self.domain]) class EditFormRepeaterView(EditRepeaterView, AddFormRepeaterView): urlname = 'edit_form_repeater' page_title = ugettext_lazy("Edit Form Repeater") @property def page_url(self): return reverse(AddFormRepeaterView.urlname, args=[self.domain]) class EditOpenmrsRepeaterView(EditRepeaterView, AddOpenmrsRepeaterView): urlname = 'edit_openmrs_repeater' page_title = ugettext_lazy("Edit OpenMRS Repeater") class EditDhis2RepeaterView(EditRepeaterView, AddDhis2RepeaterView): urlname = 'edit_dhis2_repeater' page_title = ugettext_lazy("Edit DHIS2 Anonymous Event Repeater") @require_POST @require_can_edit_web_users @requires_privilege_with_fallback(privileges.DATA_FORWARDING) def drop_repeater(request, domain, repeater_id): rep = Repeater.get(repeater_id) rep.retire() messages.success(request, "Forwarding stopped!") return HttpResponseRedirect(reverse(DomainForwardingOptionsView.urlname, args=[domain])) @require_POST @require_can_edit_web_users @requires_privilege_with_fallback(privileges.DATA_FORWARDING) def pause_repeater(request, domain, repeater_id): rep = Repeater.get(repeater_id) rep.pause() messages.success(request, "Forwarding paused!") return HttpResponseRedirect(reverse(DomainForwardingOptionsView.urlname, args=[domain])) @require_POST @require_can_edit_web_users @requires_privilege_with_fallback(privileges.DATA_FORWARDING) def resume_repeater(request, domain, repeater_id): rep = Repeater.get(repeater_id) rep.resume() messages.success(request, "Forwarding resumed!") return HttpResponseRedirect(reverse(DomainForwardingOptionsView.urlname, args=[domain])) @require_POST @require_can_edit_web_users @requires_privilege_with_fallback(privileges.DATA_FORWARDING) def test_repeater(request, domain): url = request.POST["url"] repeater_type = request.POST['repeater_type'] format = request.POST.get('format', None) repeater_class = get_all_repeater_types()[repeater_type] auth_type = request.POST.get('auth_type') form = GenericRepeaterForm( {"url": url, "format": format}, domain=domain, repeater_class=repeater_class ) if form.is_valid(): url = form.cleaned_data["url"] format = format or RegisterGenerator.default_format_by_repeater(repeater_class) generator_class = RegisterGenerator.generator_class_by_repeater_format(repeater_class, format) generator = generator_class(repeater_class()) fake_post = generator.get_test_payload(domain) headers = generator.get_headers() username = request.POST.get('username') password = request.POST.get('password') verify = not request.POST.get('skip_cert_verify') == 'true' if auth_type == BASIC_AUTH: auth = HTTPBasicAuth(username, password) elif auth_type == DIGEST_AUTH: auth = HTTPDigestAuth(username, password) else: auth = None try: resp = simple_post(fake_post, url, headers=headers, auth=auth, verify=verify) if 200 <= resp.status_code < 300: return HttpResponse(json.dumps({"success": True, "response": resp.text, "status": resp.status_code})) else: return HttpResponse(json.dumps({"success": False, "response": resp.text, "status": resp.status_code})) except Exception as e: errors = str(e) return HttpResponse(json.dumps({"success": False, "response": errors})) else: return HttpResponse(json.dumps({"success": False, "response": "Please enter a valid url."}))
en
0.754077
# The EditRepeaterView url routes to the correct edit form for its subclasses. It does this with # `repeater_type` in r'^forwarding/(?P<repeater_type>\w+)/edit/(?P<repeater_id>\w+)/$' # See corehq/apps/domain/urls.py for details.
1.668187
2
Code(2021)/20210116_Thor_NAMA.py
std-freejia/hymni.study
1
6629987
import sys import math import numpy as np light_x, light_y, initial_tx, initial_ty = [int(i) for i in input().split()] # ํ˜„์žฌ ์œ„์น˜๋ฅผ ๊ธฐ์ค€์œผ๋กœ light์˜ ์‚ฌ๋ถ„๋ฉด ํŒŒ์•…ํ•˜๊ธฐ remain_x = light_x - initial_tx remain_y = light_y - initial_ty dir_arr = ['N','S','E','W',''] val_arr = [[0,1], [0,-1], [1,0], [-1,0], [0,0]] # game loop while True: remaining_turns = int(input()) # The remaining amount of turns Thor can move. Do not remove this line. condition_arr = [(remain_y < 0), (remain_y > 0), \ (remain_x > 0), (remain_x < 0), \ (remain_x == 0 or remain_y == 0)] ch_dir = '' # True์ธ ๊ฐ’๋งŒ ์ฐพ์•„ index ๊ฐ€์ ธ์˜ค๊ธฐ for cond_idx in np.where(condition_arr)[0]: ch_dir += str(dir_arr[cond_idx]) remain_x += -1 * val_arr[cond_idx][0] remain_y += val_arr[cond_idx][1] print(ch_dir)
import sys import math import numpy as np light_x, light_y, initial_tx, initial_ty = [int(i) for i in input().split()] # ํ˜„์žฌ ์œ„์น˜๋ฅผ ๊ธฐ์ค€์œผ๋กœ light์˜ ์‚ฌ๋ถ„๋ฉด ํŒŒ์•…ํ•˜๊ธฐ remain_x = light_x - initial_tx remain_y = light_y - initial_ty dir_arr = ['N','S','E','W',''] val_arr = [[0,1], [0,-1], [1,0], [-1,0], [0,0]] # game loop while True: remaining_turns = int(input()) # The remaining amount of turns Thor can move. Do not remove this line. condition_arr = [(remain_y < 0), (remain_y > 0), \ (remain_x > 0), (remain_x < 0), \ (remain_x == 0 or remain_y == 0)] ch_dir = '' # True์ธ ๊ฐ’๋งŒ ์ฐพ์•„ index ๊ฐ€์ ธ์˜ค๊ธฐ for cond_idx in np.where(condition_arr)[0]: ch_dir += str(dir_arr[cond_idx]) remain_x += -1 * val_arr[cond_idx][0] remain_y += val_arr[cond_idx][1] print(ch_dir)
ko
0.949588
# ํ˜„์žฌ ์œ„์น˜๋ฅผ ๊ธฐ์ค€์œผ๋กœ light์˜ ์‚ฌ๋ถ„๋ฉด ํŒŒ์•…ํ•˜๊ธฐ # game loop # The remaining amount of turns Thor can move. Do not remove this line. # True์ธ ๊ฐ’๋งŒ ์ฐพ์•„ index ๊ฐ€์ ธ์˜ค๊ธฐ
2.951753
3
picmodels/migrations/0051_healthcareserviceexpertise.py
bbcawodu/careadvisors-backend
0
6629988
<filename>picmodels/migrations/0051_healthcareserviceexpertise.py # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('picmodels', '0050_auto_20180306_1502'), ] operations = [ migrations.CreateModel( name='HealthcareServiceExpertise', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, primary_key=True, auto_created=True)), ('name', models.CharField(unique=True, max_length=1000)), ], ), ]
<filename>picmodels/migrations/0051_healthcareserviceexpertise.py # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('picmodels', '0050_auto_20180306_1502'), ] operations = [ migrations.CreateModel( name='HealthcareServiceExpertise', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, primary_key=True, auto_created=True)), ('name', models.CharField(unique=True, max_length=1000)), ], ), ]
en
0.769321
# -*- coding: utf-8 -*-
1.625984
2
trying_curses.py
Adel-Charef/scripts
0
6629989
import curses import time screen = curses.initscr() screen.addstr(4, 10, "Hello from (4, 10)!") screen.refresh() time.sleep(2) curses.endwin()
import curses import time screen = curses.initscr() screen.addstr(4, 10, "Hello from (4, 10)!") screen.refresh() time.sleep(2) curses.endwin()
none
1
2.409385
2
login.py
nslm/Api-Portal-do-Aluno
0
6629990
import re import werkzeug werkzeug.cached_property = werkzeug.utils.cached_property from robobrowser import RoboBrowser def Login(matricula,senha): url = 'https://portalence.ibge.gov.br/gcad-aluno/' br = RoboBrowser() br.open(url) form = br.get_form() form['login-form:matricula-aluno'] = matricula form['login-form:j_idt22'] = senha br.submit_form(form) page = str(br.parsed()) loged = False name = '' if '<!-- L O G I N &amp; N O M E-->' in page: loged = True start = 'Nome: ' end = ' ' name = re.search('%s(.*)%s' % (start, end), page).group(1) name = name.lower() return { 'status':loged, 'name':name}
import re import werkzeug werkzeug.cached_property = werkzeug.utils.cached_property from robobrowser import RoboBrowser def Login(matricula,senha): url = 'https://portalence.ibge.gov.br/gcad-aluno/' br = RoboBrowser() br.open(url) form = br.get_form() form['login-form:matricula-aluno'] = matricula form['login-form:j_idt22'] = senha br.submit_form(form) page = str(br.parsed()) loged = False name = '' if '<!-- L O G I N &amp; N O M E-->' in page: loged = True start = 'Nome: ' end = ' ' name = re.search('%s(.*)%s' % (start, end), page).group(1) name = name.lower() return { 'status':loged, 'name':name}
none
1
2.423797
2
ansible/my_env/lib/python2.7/site-packages/ansible/plugins/callback/dense.py
otus-devops-2019-02/yyashkin_infra
1
6629991
<gh_stars>1-10 # (c) 2016, <NAME> <<EMAIL>> # (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = ''' callback: dense type: stdout short_description: minimal stdout output extends_documentation_fragment: - default_callback description: - When in verbose mode it will act the same as the default callback author: - <NAME> (@dagwieers) version_added: "2.3" requirements: - set as stdout in configuation ''' from collections import MutableMapping, MutableSequence HAS_OD = False try: from collections import OrderedDict HAS_OD = True except ImportError: pass from ansible.module_utils.six import binary_type, text_type from ansible.plugins.callback.default import CallbackModule as CallbackModule_default from ansible.utils.color import colorize, hostcolor try: from __main__ import display except ImportError: from ansible.utils.display import Display display = Display() import sys # Design goals: # # + On screen there should only be relevant stuff # - How far are we ? (during run, last line) # - What issues occurred # - What changes occurred # - Diff output (in diff-mode) # # + If verbosity increases, act as default output # So that users can easily switch to default for troubleshooting # # + Rewrite the output during processing # - We use the cursor to indicate where in the task we are. # Output after the prompt is the output of the previous task. # - If we would clear the line at the start of a task, there would often # be no information at all, so we leave it until it gets updated # # + Use the same color-conventions of Ansible # # + Ensure the verbose output (-v) is also dense. # Remove information that is not essential (eg. timestamps, status) # TODO: # # + Properly test for terminal capabilities, and fall back to default # + Modify Ansible mechanism so we don't need to use sys.stdout directly # + Find an elegant solution for progress bar line wrapping # FIXME: Importing constants as C simply does not work, beats me :-/ # from ansible import constants as C class C: COLOR_HIGHLIGHT = 'white' COLOR_VERBOSE = 'blue' COLOR_WARN = 'bright purple' COLOR_ERROR = 'red' COLOR_DEBUG = 'dark gray' COLOR_DEPRECATE = 'purple' COLOR_SKIP = 'cyan' COLOR_UNREACHABLE = 'bright red' COLOR_OK = 'green' COLOR_CHANGED = 'yellow' # Taken from Dstat class vt100: black = '\033[0;30m' darkred = '\033[0;31m' darkgreen = '\033[0;32m' darkyellow = '\033[0;33m' darkblue = '\033[0;34m' darkmagenta = '\033[0;35m' darkcyan = '\033[0;36m' gray = '\033[0;37m' darkgray = '\033[1;30m' red = '\033[1;31m' green = '\033[1;32m' yellow = '\033[1;33m' blue = '\033[1;34m' magenta = '\033[1;35m' cyan = '\033[1;36m' white = '\033[1;37m' blackbg = '\033[40m' redbg = '\033[41m' greenbg = '\033[42m' yellowbg = '\033[43m' bluebg = '\033[44m' magentabg = '\033[45m' cyanbg = '\033[46m' whitebg = '\033[47m' reset = '\033[0;0m' bold = '\033[1m' reverse = '\033[2m' underline = '\033[4m' clear = '\033[2J' # clearline = '\033[K' clearline = '\033[2K' save = '\033[s' restore = '\033[u' save_all = '\0337' restore_all = '\0338' linewrap = '\033[7h' nolinewrap = '\033[7l' up = '\033[1A' down = '\033[1B' right = '\033[1C' left = '\033[1D' colors = dict( ok=vt100.darkgreen, changed=vt100.darkyellow, skipped=vt100.darkcyan, ignored=vt100.cyanbg + vt100.red, failed=vt100.darkred, unreachable=vt100.red, ) states = ('skipped', 'ok', 'changed', 'failed', 'unreachable') class CallbackModule_dense(CallbackModule_default): ''' This is the dense callback interface, where screen estate is still valued. ''' CALLBACK_VERSION = 2.0 CALLBACK_TYPE = 'stdout' CALLBACK_NAME = 'dense' def __init__(self): # From CallbackModule self._display = display if HAS_OD: self.disabled = False self.super_ref = super(CallbackModule, self) self.super_ref.__init__() # Attributes to remove from results for more density self.removed_attributes = ( # 'changed', 'delta', # 'diff', 'end', 'failed', 'failed_when_result', 'invocation', 'start', 'stdout_lines', ) # Initiate data structures self.hosts = OrderedDict() self.keep = False self.shown_title = False self.count = dict(play=0, handler=0, task=0) self.type = 'foo' # Start immediately on the first line sys.stdout.write(vt100.reset + vt100.save + vt100.clearline) sys.stdout.flush() else: display.warning("The 'dense' callback plugin requires OrderedDict which is not available in this version of python, disabling.") self.disabled = True def __del__(self): sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) def _add_host(self, result, status): name = result._host.get_name() # Add a new status in case a failed task is ignored if status == 'failed' and result._task.ignore_errors: status = 'ignored' # Check if we have to update an existing state (when looping over items) if name not in self.hosts: self.hosts[name] = dict(state=status) elif states.index(self.hosts[name]['state']) < states.index(status): self.hosts[name]['state'] = status # Store delegated hostname, if needed delegated_vars = result._result.get('_ansible_delegated_vars', None) if delegated_vars: self.hosts[name]['delegate'] = delegated_vars['ansible_host'] # Print progress bar self._display_progress(result) # # Ensure that tasks with changes/failures stay on-screen, and during diff-mode # if status in ['changed', 'failed', 'unreachable'] or (result.get('_diff_mode', False) and result._resultget('diff', False)): # Ensure that tasks with changes/failures stay on-screen if status in ['changed', 'failed', 'unreachable']: self.keep = True if self._display.verbosity == 1: # Print task title, if needed self._display_task_banner() self._display_results(result, status) def _clean_results(self, result): # Remove non-essential atributes for attr in self.removed_attributes: if attr in result: del(result[attr]) # Remove empty attributes (list, dict, str) for attr in result.copy(): if isinstance(result[attr], (MutableSequence, MutableMapping, binary_type, text_type)): if not result[attr]: del(result[attr]) def _handle_exceptions(self, result): if 'exception' in result: # Remove the exception from the result so it's not shown every time del result['exception'] if self._display.verbosity == 1: return "An exception occurred during task execution. To see the full traceback, use -vvv." def _display_progress(self, result=None): # Always rewrite the complete line sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline + vt100.nolinewrap + vt100.underline) sys.stdout.write('%s %d:' % (self.type, self.count[self.type])) sys.stdout.write(vt100.reset) sys.stdout.flush() # Print out each host in its own status-color for name in self.hosts: sys.stdout.write(' ') if self.hosts[name].get('delegate', None): sys.stdout.write(self.hosts[name]['delegate'] + '>') sys.stdout.write(colors[self.hosts[name]['state']] + name + vt100.reset) sys.stdout.flush() # if result._result.get('diff', False): # sys.stdout.write('\n' + vt100.linewrap) sys.stdout.write(vt100.linewrap) # self.keep = True def _display_task_banner(self): if not self.shown_title: self.shown_title = True sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline + vt100.underline) sys.stdout.write('%s %d: %s' % (self.type, self.count[self.type], self.task.get_name().strip())) sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) sys.stdout.flush() else: sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline) self.keep = False def _display_results(self, result, status): # Leave the previous task on screen (as it has changes/errors) if self._display.verbosity == 0 and self.keep: sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) else: sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline) self.keep = False self._clean_results(result._result) dump = '' if result._task.action == 'include': return elif status == 'ok': return elif status == 'ignored': dump = self._handle_exceptions(result._result) elif status == 'failed': dump = self._handle_exceptions(result._result) elif status == 'unreachable': dump = result._result['msg'] if not dump: dump = self._dump_results(result._result) if result._task.loop and 'results' in result._result: self._process_items(result) else: sys.stdout.write(colors[status] + status + ': ') delegated_vars = result._result.get('_ansible_delegated_vars', None) if delegated_vars: sys.stdout.write(vt100.reset + result._host.get_name() + '>' + colors[status] + delegated_vars['ansible_host']) else: sys.stdout.write(result._host.get_name()) sys.stdout.write(': ' + dump + '\n') sys.stdout.write(vt100.reset + vt100.save + vt100.clearline) sys.stdout.flush() if status == 'changed': self._handle_warnings(result._result) def v2_playbook_on_play_start(self, play): # Leave the previous task on screen (as it has changes/errors) if self._display.verbosity == 0 and self.keep: sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline + vt100.bold) else: sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline + vt100.bold) # Reset at the start of each play self.keep = False self.count.update(dict(handler=0, task=0)) self.count['play'] += 1 self.play = play # Write the next play on screen IN UPPERCASE, and make it permanent name = play.get_name().strip() if not name: name = 'unnamed' sys.stdout.write('PLAY %d: %s' % (self.count['play'], name.upper())) sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) sys.stdout.flush() def v2_playbook_on_task_start(self, task, is_conditional): # Leave the previous task on screen (as it has changes/errors) if self._display.verbosity == 0 and self.keep: sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline + vt100.underline) else: # Do not clear line, since we want to retain the previous output sys.stdout.write(vt100.restore + vt100.reset + vt100.underline) # Reset at the start of each task self.keep = False self.shown_title = False self.hosts = OrderedDict() self.task = task self.type = 'task' # Enumerate task if not setup (task names are too long for dense output) if task.get_name() != 'setup': self.count['task'] += 1 # Write the next task on screen (behind the prompt is the previous output) sys.stdout.write('%s %d.' % (self.type, self.count[self.type])) sys.stdout.write(vt100.reset) sys.stdout.flush() def v2_playbook_on_handler_task_start(self, task): # Leave the previous task on screen (as it has changes/errors) if self._display.verbosity == 0 and self.keep: sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline + vt100.underline) else: sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline + vt100.underline) # Reset at the start of each handler self.keep = False self.shown_title = False self.hosts = OrderedDict() self.task = task self.type = 'handler' # Enumerate handler if not setup (handler names may be too long for dense output) if task.get_name() != 'setup': self.count[self.type] += 1 # Write the next task on screen (behind the prompt is the previous output) sys.stdout.write('%s %d.' % (self.type, self.count[self.type])) sys.stdout.write(vt100.reset) sys.stdout.flush() def v2_playbook_on_cleanup_task_start(self, task): # TBD sys.stdout.write('cleanup.') sys.stdout.flush() def v2_runner_on_failed(self, result, ignore_errors=False): self._add_host(result, 'failed') def v2_runner_on_ok(self, result): if result._result.get('changed', False): self._add_host(result, 'changed') else: self._add_host(result, 'ok') def v2_runner_on_skipped(self, result): self._add_host(result, 'skipped') def v2_runner_on_unreachable(self, result): self._add_host(result, 'unreachable') def v2_runner_on_include(self, included_file): pass def v2_runner_on_file_diff(self, result, diff): sys.stdout.write(vt100.bold) self.super_ref.v2_runner_on_file_diff(result, diff) sys.stdout.write(vt100.reset) def v2_on_file_diff(self, result): sys.stdout.write(vt100.bold) self.super_ref.v2_on_file_diff(result) sys.stdout.write(vt100.reset) # Old definition in v2.0 def v2_playbook_item_on_ok(self, result): self.v2_runner_item_on_ok(result) def v2_runner_item_on_ok(self, result): if result._result.get('changed', False): self._add_host(result, 'changed') else: self._add_host(result, 'ok') # Old definition in v2.0 def v2_playbook_item_on_failed(self, result): self.v2_runner_item_on_failed(result) def v2_runner_item_on_failed(self, result): self._add_host(result, 'failed') # Old definition in v2.0 def v2_playbook_item_on_skipped(self, result): self.v2_runner_item_on_skipped(result) def v2_runner_item_on_skipped(self, result): self._add_host(result, 'skipped') def v2_playbook_on_no_hosts_remaining(self): if self._display.verbosity == 0 and self.keep: sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) else: sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline) self.keep = False sys.stdout.write(vt100.white + vt100.redbg + 'NO MORE HOSTS LEFT') sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) sys.stdout.flush() def v2_playbook_on_include(self, included_file): pass def v2_playbook_on_stats(self, stats): if self._display.verbosity == 0 and self.keep: sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) else: sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline) # In normal mode screen output should be sufficient, summary is redundant if self._display.verbosity == 0: return sys.stdout.write(vt100.bold + vt100.underline) sys.stdout.write('SUMMARY') sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) sys.stdout.flush() hosts = sorted(stats.processed.keys()) for h in hosts: t = stats.summarize(h) self._display.display(u"%s : %s %s %s %s" % ( hostcolor(h, t), colorize(u'ok', t['ok'], C.COLOR_OK), colorize(u'changed', t['changed'], C.COLOR_CHANGED), colorize(u'unreachable', t['unreachable'], C.COLOR_UNREACHABLE), colorize(u'failed', t['failures'], C.COLOR_ERROR)), screen_only=True ) # When using -vv or higher, simply do the default action if display.verbosity >= 2 or not HAS_OD: CallbackModule = CallbackModule_default else: CallbackModule = CallbackModule_dense
# (c) 2016, <NAME> <<EMAIL>> # (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = ''' callback: dense type: stdout short_description: minimal stdout output extends_documentation_fragment: - default_callback description: - When in verbose mode it will act the same as the default callback author: - <NAME> (@dagwieers) version_added: "2.3" requirements: - set as stdout in configuation ''' from collections import MutableMapping, MutableSequence HAS_OD = False try: from collections import OrderedDict HAS_OD = True except ImportError: pass from ansible.module_utils.six import binary_type, text_type from ansible.plugins.callback.default import CallbackModule as CallbackModule_default from ansible.utils.color import colorize, hostcolor try: from __main__ import display except ImportError: from ansible.utils.display import Display display = Display() import sys # Design goals: # # + On screen there should only be relevant stuff # - How far are we ? (during run, last line) # - What issues occurred # - What changes occurred # - Diff output (in diff-mode) # # + If verbosity increases, act as default output # So that users can easily switch to default for troubleshooting # # + Rewrite the output during processing # - We use the cursor to indicate where in the task we are. # Output after the prompt is the output of the previous task. # - If we would clear the line at the start of a task, there would often # be no information at all, so we leave it until it gets updated # # + Use the same color-conventions of Ansible # # + Ensure the verbose output (-v) is also dense. # Remove information that is not essential (eg. timestamps, status) # TODO: # # + Properly test for terminal capabilities, and fall back to default # + Modify Ansible mechanism so we don't need to use sys.stdout directly # + Find an elegant solution for progress bar line wrapping # FIXME: Importing constants as C simply does not work, beats me :-/ # from ansible import constants as C class C: COLOR_HIGHLIGHT = 'white' COLOR_VERBOSE = 'blue' COLOR_WARN = 'bright purple' COLOR_ERROR = 'red' COLOR_DEBUG = 'dark gray' COLOR_DEPRECATE = 'purple' COLOR_SKIP = 'cyan' COLOR_UNREACHABLE = 'bright red' COLOR_OK = 'green' COLOR_CHANGED = 'yellow' # Taken from Dstat class vt100: black = '\033[0;30m' darkred = '\033[0;31m' darkgreen = '\033[0;32m' darkyellow = '\033[0;33m' darkblue = '\033[0;34m' darkmagenta = '\033[0;35m' darkcyan = '\033[0;36m' gray = '\033[0;37m' darkgray = '\033[1;30m' red = '\033[1;31m' green = '\033[1;32m' yellow = '\033[1;33m' blue = '\033[1;34m' magenta = '\033[1;35m' cyan = '\033[1;36m' white = '\033[1;37m' blackbg = '\033[40m' redbg = '\033[41m' greenbg = '\033[42m' yellowbg = '\033[43m' bluebg = '\033[44m' magentabg = '\033[45m' cyanbg = '\033[46m' whitebg = '\033[47m' reset = '\033[0;0m' bold = '\033[1m' reverse = '\033[2m' underline = '\033[4m' clear = '\033[2J' # clearline = '\033[K' clearline = '\033[2K' save = '\033[s' restore = '\033[u' save_all = '\0337' restore_all = '\0338' linewrap = '\033[7h' nolinewrap = '\033[7l' up = '\033[1A' down = '\033[1B' right = '\033[1C' left = '\033[1D' colors = dict( ok=vt100.darkgreen, changed=vt100.darkyellow, skipped=vt100.darkcyan, ignored=vt100.cyanbg + vt100.red, failed=vt100.darkred, unreachable=vt100.red, ) states = ('skipped', 'ok', 'changed', 'failed', 'unreachable') class CallbackModule_dense(CallbackModule_default): ''' This is the dense callback interface, where screen estate is still valued. ''' CALLBACK_VERSION = 2.0 CALLBACK_TYPE = 'stdout' CALLBACK_NAME = 'dense' def __init__(self): # From CallbackModule self._display = display if HAS_OD: self.disabled = False self.super_ref = super(CallbackModule, self) self.super_ref.__init__() # Attributes to remove from results for more density self.removed_attributes = ( # 'changed', 'delta', # 'diff', 'end', 'failed', 'failed_when_result', 'invocation', 'start', 'stdout_lines', ) # Initiate data structures self.hosts = OrderedDict() self.keep = False self.shown_title = False self.count = dict(play=0, handler=0, task=0) self.type = 'foo' # Start immediately on the first line sys.stdout.write(vt100.reset + vt100.save + vt100.clearline) sys.stdout.flush() else: display.warning("The 'dense' callback plugin requires OrderedDict which is not available in this version of python, disabling.") self.disabled = True def __del__(self): sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) def _add_host(self, result, status): name = result._host.get_name() # Add a new status in case a failed task is ignored if status == 'failed' and result._task.ignore_errors: status = 'ignored' # Check if we have to update an existing state (when looping over items) if name not in self.hosts: self.hosts[name] = dict(state=status) elif states.index(self.hosts[name]['state']) < states.index(status): self.hosts[name]['state'] = status # Store delegated hostname, if needed delegated_vars = result._result.get('_ansible_delegated_vars', None) if delegated_vars: self.hosts[name]['delegate'] = delegated_vars['ansible_host'] # Print progress bar self._display_progress(result) # # Ensure that tasks with changes/failures stay on-screen, and during diff-mode # if status in ['changed', 'failed', 'unreachable'] or (result.get('_diff_mode', False) and result._resultget('diff', False)): # Ensure that tasks with changes/failures stay on-screen if status in ['changed', 'failed', 'unreachable']: self.keep = True if self._display.verbosity == 1: # Print task title, if needed self._display_task_banner() self._display_results(result, status) def _clean_results(self, result): # Remove non-essential atributes for attr in self.removed_attributes: if attr in result: del(result[attr]) # Remove empty attributes (list, dict, str) for attr in result.copy(): if isinstance(result[attr], (MutableSequence, MutableMapping, binary_type, text_type)): if not result[attr]: del(result[attr]) def _handle_exceptions(self, result): if 'exception' in result: # Remove the exception from the result so it's not shown every time del result['exception'] if self._display.verbosity == 1: return "An exception occurred during task execution. To see the full traceback, use -vvv." def _display_progress(self, result=None): # Always rewrite the complete line sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline + vt100.nolinewrap + vt100.underline) sys.stdout.write('%s %d:' % (self.type, self.count[self.type])) sys.stdout.write(vt100.reset) sys.stdout.flush() # Print out each host in its own status-color for name in self.hosts: sys.stdout.write(' ') if self.hosts[name].get('delegate', None): sys.stdout.write(self.hosts[name]['delegate'] + '>') sys.stdout.write(colors[self.hosts[name]['state']] + name + vt100.reset) sys.stdout.flush() # if result._result.get('diff', False): # sys.stdout.write('\n' + vt100.linewrap) sys.stdout.write(vt100.linewrap) # self.keep = True def _display_task_banner(self): if not self.shown_title: self.shown_title = True sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline + vt100.underline) sys.stdout.write('%s %d: %s' % (self.type, self.count[self.type], self.task.get_name().strip())) sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) sys.stdout.flush() else: sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline) self.keep = False def _display_results(self, result, status): # Leave the previous task on screen (as it has changes/errors) if self._display.verbosity == 0 and self.keep: sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) else: sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline) self.keep = False self._clean_results(result._result) dump = '' if result._task.action == 'include': return elif status == 'ok': return elif status == 'ignored': dump = self._handle_exceptions(result._result) elif status == 'failed': dump = self._handle_exceptions(result._result) elif status == 'unreachable': dump = result._result['msg'] if not dump: dump = self._dump_results(result._result) if result._task.loop and 'results' in result._result: self._process_items(result) else: sys.stdout.write(colors[status] + status + ': ') delegated_vars = result._result.get('_ansible_delegated_vars', None) if delegated_vars: sys.stdout.write(vt100.reset + result._host.get_name() + '>' + colors[status] + delegated_vars['ansible_host']) else: sys.stdout.write(result._host.get_name()) sys.stdout.write(': ' + dump + '\n') sys.stdout.write(vt100.reset + vt100.save + vt100.clearline) sys.stdout.flush() if status == 'changed': self._handle_warnings(result._result) def v2_playbook_on_play_start(self, play): # Leave the previous task on screen (as it has changes/errors) if self._display.verbosity == 0 and self.keep: sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline + vt100.bold) else: sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline + vt100.bold) # Reset at the start of each play self.keep = False self.count.update(dict(handler=0, task=0)) self.count['play'] += 1 self.play = play # Write the next play on screen IN UPPERCASE, and make it permanent name = play.get_name().strip() if not name: name = 'unnamed' sys.stdout.write('PLAY %d: %s' % (self.count['play'], name.upper())) sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) sys.stdout.flush() def v2_playbook_on_task_start(self, task, is_conditional): # Leave the previous task on screen (as it has changes/errors) if self._display.verbosity == 0 and self.keep: sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline + vt100.underline) else: # Do not clear line, since we want to retain the previous output sys.stdout.write(vt100.restore + vt100.reset + vt100.underline) # Reset at the start of each task self.keep = False self.shown_title = False self.hosts = OrderedDict() self.task = task self.type = 'task' # Enumerate task if not setup (task names are too long for dense output) if task.get_name() != 'setup': self.count['task'] += 1 # Write the next task on screen (behind the prompt is the previous output) sys.stdout.write('%s %d.' % (self.type, self.count[self.type])) sys.stdout.write(vt100.reset) sys.stdout.flush() def v2_playbook_on_handler_task_start(self, task): # Leave the previous task on screen (as it has changes/errors) if self._display.verbosity == 0 and self.keep: sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline + vt100.underline) else: sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline + vt100.underline) # Reset at the start of each handler self.keep = False self.shown_title = False self.hosts = OrderedDict() self.task = task self.type = 'handler' # Enumerate handler if not setup (handler names may be too long for dense output) if task.get_name() != 'setup': self.count[self.type] += 1 # Write the next task on screen (behind the prompt is the previous output) sys.stdout.write('%s %d.' % (self.type, self.count[self.type])) sys.stdout.write(vt100.reset) sys.stdout.flush() def v2_playbook_on_cleanup_task_start(self, task): # TBD sys.stdout.write('cleanup.') sys.stdout.flush() def v2_runner_on_failed(self, result, ignore_errors=False): self._add_host(result, 'failed') def v2_runner_on_ok(self, result): if result._result.get('changed', False): self._add_host(result, 'changed') else: self._add_host(result, 'ok') def v2_runner_on_skipped(self, result): self._add_host(result, 'skipped') def v2_runner_on_unreachable(self, result): self._add_host(result, 'unreachable') def v2_runner_on_include(self, included_file): pass def v2_runner_on_file_diff(self, result, diff): sys.stdout.write(vt100.bold) self.super_ref.v2_runner_on_file_diff(result, diff) sys.stdout.write(vt100.reset) def v2_on_file_diff(self, result): sys.stdout.write(vt100.bold) self.super_ref.v2_on_file_diff(result) sys.stdout.write(vt100.reset) # Old definition in v2.0 def v2_playbook_item_on_ok(self, result): self.v2_runner_item_on_ok(result) def v2_runner_item_on_ok(self, result): if result._result.get('changed', False): self._add_host(result, 'changed') else: self._add_host(result, 'ok') # Old definition in v2.0 def v2_playbook_item_on_failed(self, result): self.v2_runner_item_on_failed(result) def v2_runner_item_on_failed(self, result): self._add_host(result, 'failed') # Old definition in v2.0 def v2_playbook_item_on_skipped(self, result): self.v2_runner_item_on_skipped(result) def v2_runner_item_on_skipped(self, result): self._add_host(result, 'skipped') def v2_playbook_on_no_hosts_remaining(self): if self._display.verbosity == 0 and self.keep: sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) else: sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline) self.keep = False sys.stdout.write(vt100.white + vt100.redbg + 'NO MORE HOSTS LEFT') sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) sys.stdout.flush() def v2_playbook_on_include(self, included_file): pass def v2_playbook_on_stats(self, stats): if self._display.verbosity == 0 and self.keep: sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) else: sys.stdout.write(vt100.restore + vt100.reset + vt100.clearline) # In normal mode screen output should be sufficient, summary is redundant if self._display.verbosity == 0: return sys.stdout.write(vt100.bold + vt100.underline) sys.stdout.write('SUMMARY') sys.stdout.write(vt100.restore + vt100.reset + '\n' + vt100.save + vt100.clearline) sys.stdout.flush() hosts = sorted(stats.processed.keys()) for h in hosts: t = stats.summarize(h) self._display.display(u"%s : %s %s %s %s" % ( hostcolor(h, t), colorize(u'ok', t['ok'], C.COLOR_OK), colorize(u'changed', t['changed'], C.COLOR_CHANGED), colorize(u'unreachable', t['unreachable'], C.COLOR_UNREACHABLE), colorize(u'failed', t['failures'], C.COLOR_ERROR)), screen_only=True ) # When using -vv or higher, simply do the default action if display.verbosity >= 2 or not HAS_OD: CallbackModule = CallbackModule_default else: CallbackModule = CallbackModule_dense
en
0.813758
# (c) 2016, <NAME> <<EMAIL>> # (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) callback: dense type: stdout short_description: minimal stdout output extends_documentation_fragment: - default_callback description: - When in verbose mode it will act the same as the default callback author: - <NAME> (@dagwieers) version_added: "2.3" requirements: - set as stdout in configuation # Design goals: # # + On screen there should only be relevant stuff # - How far are we ? (during run, last line) # - What issues occurred # - What changes occurred # - Diff output (in diff-mode) # # + If verbosity increases, act as default output # So that users can easily switch to default for troubleshooting # # + Rewrite the output during processing # - We use the cursor to indicate where in the task we are. # Output after the prompt is the output of the previous task. # - If we would clear the line at the start of a task, there would often # be no information at all, so we leave it until it gets updated # # + Use the same color-conventions of Ansible # # + Ensure the verbose output (-v) is also dense. # Remove information that is not essential (eg. timestamps, status) # TODO: # # + Properly test for terminal capabilities, and fall back to default # + Modify Ansible mechanism so we don't need to use sys.stdout directly # + Find an elegant solution for progress bar line wrapping # FIXME: Importing constants as C simply does not work, beats me :-/ # from ansible import constants as C # Taken from Dstat # clearline = '\033[K' This is the dense callback interface, where screen estate is still valued. # From CallbackModule # Attributes to remove from results for more density # 'changed', # 'diff', # Initiate data structures # Start immediately on the first line # Add a new status in case a failed task is ignored # Check if we have to update an existing state (when looping over items) # Store delegated hostname, if needed # Print progress bar # # Ensure that tasks with changes/failures stay on-screen, and during diff-mode # if status in ['changed', 'failed', 'unreachable'] or (result.get('_diff_mode', False) and result._resultget('diff', False)): # Ensure that tasks with changes/failures stay on-screen # Print task title, if needed # Remove non-essential atributes # Remove empty attributes (list, dict, str) # Remove the exception from the result so it's not shown every time # Always rewrite the complete line # Print out each host in its own status-color # if result._result.get('diff', False): # sys.stdout.write('\n' + vt100.linewrap) # self.keep = True # Leave the previous task on screen (as it has changes/errors) # Leave the previous task on screen (as it has changes/errors) # Reset at the start of each play # Write the next play on screen IN UPPERCASE, and make it permanent # Leave the previous task on screen (as it has changes/errors) # Do not clear line, since we want to retain the previous output # Reset at the start of each task # Enumerate task if not setup (task names are too long for dense output) # Write the next task on screen (behind the prompt is the previous output) # Leave the previous task on screen (as it has changes/errors) # Reset at the start of each handler # Enumerate handler if not setup (handler names may be too long for dense output) # Write the next task on screen (behind the prompt is the previous output) # TBD # Old definition in v2.0 # Old definition in v2.0 # Old definition in v2.0 # In normal mode screen output should be sufficient, summary is redundant # When using -vv or higher, simply do the default action
1.78408
2
kitsune/users/migrations/0019_auto_20190917_0422.py
AndrewDVXI/kitsune
929
6629992
<reponame>AndrewDVXI/kitsune # -*- coding: utf-8 -*- # Generated by Django 1.11.22 on 2019-09-17 04:22 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0004_product_codename'), ('users', '0018_change_bn_BD_and_bn_IN_to_bn'), ] operations = [ migrations.RemoveField( model_name='profile', name='has_subscriptions', ), migrations.AddField( model_name='profile', name='products', field=models.ManyToManyField(related_name='subscribed_users', to='products.Product'), ), ]
# -*- coding: utf-8 -*- # Generated by Django 1.11.22 on 2019-09-17 04:22 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0004_product_codename'), ('users', '0018_change_bn_BD_and_bn_IN_to_bn'), ] operations = [ migrations.RemoveField( model_name='profile', name='has_subscriptions', ), migrations.AddField( model_name='profile', name='products', field=models.ManyToManyField(related_name='subscribed_users', to='products.Product'), ), ]
en
0.689663
# -*- coding: utf-8 -*- # Generated by Django 1.11.22 on 2019-09-17 04:22
1.542094
2
src/generate_answer.py
EmmanuelMess/SNLI-NLP-ECI-2019
2
6629993
#!/usr/bin/env python import argparse import json import csv def generate(): "Junta el archivo con las oraciones de test (jsonl)" " y los resultados de la clasificaciรณn de tu algoritmo (en tu formato)" " en un archivo csv compatible con el formato de Kaggle" sentences_filename = ".data/snli_1.0_test_filtered.jsonl" labels_filename = ".data/test_cls.txt" output_filename = "result.csv" with open(output_filename, 'w') as fout: csv_writer = csv.writer(fout) csv_writer.writerow(['pairID', 'gold_label']) for pairID, label in it_ID_label_pairs(sentences_filename, labels_filename): formatted_label = format_label(label) csv_writer.writerow([pairID, formatted_label]) def format_label(label): return label[len("__label__"):] def it_ID_label_pairs(sentences_filename, labels_filename): sentence_data = open(sentences_filename, 'r') labels_data = open(labels_filename, 'r') for pairID, label in zip(it_ID(sentence_data), it_labels(labels_data)): yield pairID, label def it_ID(sentence_data): for line in sentence_data: example = json.loads(line) yield example['pairID'] def it_labels(label_data): for label in label_data: label = label.rstrip('\n') # sacamos el fin de linea yield label
#!/usr/bin/env python import argparse import json import csv def generate(): "Junta el archivo con las oraciones de test (jsonl)" " y los resultados de la clasificaciรณn de tu algoritmo (en tu formato)" " en un archivo csv compatible con el formato de Kaggle" sentences_filename = ".data/snli_1.0_test_filtered.jsonl" labels_filename = ".data/test_cls.txt" output_filename = "result.csv" with open(output_filename, 'w') as fout: csv_writer = csv.writer(fout) csv_writer.writerow(['pairID', 'gold_label']) for pairID, label in it_ID_label_pairs(sentences_filename, labels_filename): formatted_label = format_label(label) csv_writer.writerow([pairID, formatted_label]) def format_label(label): return label[len("__label__"):] def it_ID_label_pairs(sentences_filename, labels_filename): sentence_data = open(sentences_filename, 'r') labels_data = open(labels_filename, 'r') for pairID, label in zip(it_ID(sentence_data), it_labels(labels_data)): yield pairID, label def it_ID(sentence_data): for line in sentence_data: example = json.loads(line) yield example['pairID'] def it_labels(label_data): for label in label_data: label = label.rstrip('\n') # sacamos el fin de linea yield label
es
0.398079
#!/usr/bin/env python # sacamos el fin de linea
3.131674
3
src/orders/services/order_shipper.py
vaibhavantil2/education-backend
151
6629994
<gh_stars>100-1000 from django.conf import settings from django.utils import timezone from app.tasks import send_happiness_message, send_mail from orders.models import Order class OrderShipper: """Ship the order (actualy calls item ship() method)""" def __init__(self, order: Order, silent: bool = False): self.order = order self.silent = silent def __call__(self): if self.ship(): self.mark_order_as_shipped() if not self.order.notification_to_giver_is_sent: self.send_notification_to_giver() if not self.silent: self.send_happiness_message() def ship(self) -> bool: """Ship the order. Returns true if order is shipped""" desired_date = self.order.desired_shipment_date if desired_date is None or desired_date <= timezone.now(): self.order.item.ship(to=self.order.user, order=self.order) return True return False def mark_order_as_shipped(self): self.order.shipped = timezone.now() self.order.save() def send_happiness_message(self): if not settings.HAPPINESS_MESSAGES_CHAT_ID: return sum = str(self.order.price).replace('.00', '') reason = str(self.order.item) if self.order.giver is None else f'{self.order.item} (ะฟะพะดะฐั€ะพะบ)' send_happiness_message.delay(text=f'๐Ÿ’ฐ+{sum} โ‚ฝ, {self.order.user}, {reason}') def send_notification_to_giver(self): if self.order.giver is None: return if self.order.desired_shipment_date is None: return send_mail.delay( to=self.order.giver.email, template_id='gift-notification-for-giver', # postmark disable_antispam=True, ctx={ 'item_name': self.order.item.full_name, 'receiver_name': str(self.order.user), 'receiver_email': self.order.user.email, 'desired_shipment_date': self.order.desired_shipment_date.strftime('%d.%m.%Y'), }, ) self.order.notification_to_giver_is_sent = True self.order.save()
from django.conf import settings from django.utils import timezone from app.tasks import send_happiness_message, send_mail from orders.models import Order class OrderShipper: """Ship the order (actualy calls item ship() method)""" def __init__(self, order: Order, silent: bool = False): self.order = order self.silent = silent def __call__(self): if self.ship(): self.mark_order_as_shipped() if not self.order.notification_to_giver_is_sent: self.send_notification_to_giver() if not self.silent: self.send_happiness_message() def ship(self) -> bool: """Ship the order. Returns true if order is shipped""" desired_date = self.order.desired_shipment_date if desired_date is None or desired_date <= timezone.now(): self.order.item.ship(to=self.order.user, order=self.order) return True return False def mark_order_as_shipped(self): self.order.shipped = timezone.now() self.order.save() def send_happiness_message(self): if not settings.HAPPINESS_MESSAGES_CHAT_ID: return sum = str(self.order.price).replace('.00', '') reason = str(self.order.item) if self.order.giver is None else f'{self.order.item} (ะฟะพะดะฐั€ะพะบ)' send_happiness_message.delay(text=f'๐Ÿ’ฐ+{sum} โ‚ฝ, {self.order.user}, {reason}') def send_notification_to_giver(self): if self.order.giver is None: return if self.order.desired_shipment_date is None: return send_mail.delay( to=self.order.giver.email, template_id='gift-notification-for-giver', # postmark disable_antispam=True, ctx={ 'item_name': self.order.item.full_name, 'receiver_name': str(self.order.user), 'receiver_email': self.order.user.email, 'desired_shipment_date': self.order.desired_shipment_date.strftime('%d.%m.%Y'), }, ) self.order.notification_to_giver_is_sent = True self.order.save()
en
0.725985
Ship the order (actualy calls item ship() method) Ship the order. Returns true if order is shipped # postmark
2.45441
2
setup.py
okcashpro/okshop
3
6629995
<filename>setup.py<gh_stars>1-10 import os from setuptools import find_packages, setup from pip.req import parse_requirements # TODO: Fix nasty hack ;_; install_reqs = parse_requirements(os.path.join(os.path.dirname(__file__), 'requirements.txt'), session='hack') reqs = [str(ir.req) for ir in install_reqs] with open(os.path.join(os.path.dirname(__file__), 'README.md')) as readme: README = readme.read() os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='django-okshop', version='0.1', packages=find_packages(), install_requires=reqs, include_package_data=True, license='MIT License', description='An ebay-like marketplace for okcash', long_description=README, author='<NAME>', author_email='<EMAIL>', classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Framework :: Django :: 1.10', 'License :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ])
<filename>setup.py<gh_stars>1-10 import os from setuptools import find_packages, setup from pip.req import parse_requirements # TODO: Fix nasty hack ;_; install_reqs = parse_requirements(os.path.join(os.path.dirname(__file__), 'requirements.txt'), session='hack') reqs = [str(ir.req) for ir in install_reqs] with open(os.path.join(os.path.dirname(__file__), 'README.md')) as readme: README = readme.read() os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='django-okshop', version='0.1', packages=find_packages(), install_requires=reqs, include_package_data=True, license='MIT License', description='An ebay-like marketplace for okcash', long_description=README, author='<NAME>', author_email='<EMAIL>', classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Framework :: Django :: 1.10', 'License :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ])
es
0.238519
# TODO: Fix nasty hack ;_;
1.803246
2
verif/metric_type.py
yma042/verif
77
6629996
import sys import inspect class MetricType(object): def __eq__(self, other): return self.__class__ == other.__class__ def __ne__(self, other): return not self.__eq__(other) @classmethod def name(cls): name = cls.__name__ return name class Deterministic(MetricType): description = "Deterministic" pass class Probabilistic(MetricType): description = "Probabilistic" pass class Threshold(MetricType): description = "Threshold" pass class Diagram(MetricType): description = "Special diagrams" pass
import sys import inspect class MetricType(object): def __eq__(self, other): return self.__class__ == other.__class__ def __ne__(self, other): return not self.__eq__(other) @classmethod def name(cls): name = cls.__name__ return name class Deterministic(MetricType): description = "Deterministic" pass class Probabilistic(MetricType): description = "Probabilistic" pass class Threshold(MetricType): description = "Threshold" pass class Diagram(MetricType): description = "Special diagrams" pass
none
1
2.931132
3
setup.py
jaketreacher/host_open
0
6629997
from setuptools import setup, Command from codecs import open from os import path here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.rst'), encoding='utf-8') as file: long_description = file.read() setup( name='hostopen', version='0.1.1', description='Open files/directories in a vagrant synced folder on the host', long_description=long_description, url='https://github.com/jaketreacher/hostopen', author='<NAME>', author_email='<EMAIL>', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3 :: Only', 'Topic :: Utilities' ], python_requires='>=3', packages=['hostopen', ], entry_points={ 'console_scripts': [ 'hostopen = hostopen.client:main', 'hostopen-server = hostopen.server:main' ], }, )
from setuptools import setup, Command from codecs import open from os import path here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.rst'), encoding='utf-8') as file: long_description = file.read() setup( name='hostopen', version='0.1.1', description='Open files/directories in a vagrant synced folder on the host', long_description=long_description, url='https://github.com/jaketreacher/hostopen', author='<NAME>', author_email='<EMAIL>', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3 :: Only', 'Topic :: Utilities' ], python_requires='>=3', packages=['hostopen', ], entry_points={ 'console_scripts': [ 'hostopen = hostopen.client:main', 'hostopen-server = hostopen.server:main' ], }, )
none
1
1.584973
2
util/chplenv/chpl_wide_pointers.py
TomsyPaul/tomsychapel
1
6629998
<reponame>TomsyPaul/tomsychapel #!/usr/bin/env python import optparse import os import re import sys chplenv_dir = os.path.dirname(__file__) sys.path.insert(0, os.path.abspath(chplenv_dir)) import overrides from utils import memoize @memoize def get(flag='wide'): wide_val = overrides.get('CHPL_WIDE_POINTERS', 'struct') define = '' if wide_val == 'struct': define = '-DCHPL_WIDE_POINTER_STRUCT' else: match = re.match(r'node(\d+)', wide_val) if match: node_bits = int(match.group(1)) if node_bits < 2 or node_bits > 60: sys.stderr.write("Error: Bad wide pointer node bit width: {0}\n".format(node_bits)) else: define = "-DCHPL_WIDE_POINTER_PACKED " \ "-DCHPL_WIDE_POINTER_NODE_BITS={0}".format(node_bits) else: sys.stderr.write("Error: Unknown wide pointer format: {0}\n".format(wide_val)) if flag == 'wide': return wide_val elif flag == 'define': return define else: raise ValueError("Invalid flag: '{0}'".format(flag)) def _main(): parser = optparse.OptionParser(usage='usage: %prog [--wide|define])') parser.add_option('--wide', dest='flag', action='store_const', const='wide', default='wide') parser.add_option('--define', dest='flag', action='store_const', const='define') (options, args) = parser.parse_args() wide_val = get(options.flag) sys.stdout.write("{0}\n".format(wide_val)) if __name__ == '__main__': _main()
#!/usr/bin/env python import optparse import os import re import sys chplenv_dir = os.path.dirname(__file__) sys.path.insert(0, os.path.abspath(chplenv_dir)) import overrides from utils import memoize @memoize def get(flag='wide'): wide_val = overrides.get('CHPL_WIDE_POINTERS', 'struct') define = '' if wide_val == 'struct': define = '-DCHPL_WIDE_POINTER_STRUCT' else: match = re.match(r'node(\d+)', wide_val) if match: node_bits = int(match.group(1)) if node_bits < 2 or node_bits > 60: sys.stderr.write("Error: Bad wide pointer node bit width: {0}\n".format(node_bits)) else: define = "-DCHPL_WIDE_POINTER_PACKED " \ "-DCHPL_WIDE_POINTER_NODE_BITS={0}".format(node_bits) else: sys.stderr.write("Error: Unknown wide pointer format: {0}\n".format(wide_val)) if flag == 'wide': return wide_val elif flag == 'define': return define else: raise ValueError("Invalid flag: '{0}'".format(flag)) def _main(): parser = optparse.OptionParser(usage='usage: %prog [--wide|define])') parser.add_option('--wide', dest='flag', action='store_const', const='wide', default='wide') parser.add_option('--define', dest='flag', action='store_const', const='define') (options, args) = parser.parse_args() wide_val = get(options.flag) sys.stdout.write("{0}\n".format(wide_val)) if __name__ == '__main__': _main()
ru
0.26433
#!/usr/bin/env python
2.302363
2
setup.py
nwtti/rainbowstream
1
6629999
from setuptools import setup, find_packages import os import os.path # Bumped version version = '1.2.3' # Require install_requires = [ "python-dateutil", "arrow", "requests", "pyfiglet", "twitter", "Pillow", "PySocks" ] # Copy default config if not exists default = os.path.expanduser("~") + os.sep + '.rainbow_config.json' if not os.path.isfile(default): cmd = 'cp rainbowstream/colorset/config ' + default os.system(cmd) cmd = 'chmod 777 ' + default os.system(cmd) # Setup setup(name='rainbowstream', version=version, description="A smart and nice Twitter client on terminal.", long_description=open("./README.rst", "r").read(), classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Intended Audience :: End Users/Desktop", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.2", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Topic :: Internet :: WWW/HTTP :: Dynamic Content :: CGI Tools/Libraries", "Topic :: Utilities", "License :: OSI Approved :: MIT License", ], keywords='twitter, command-line tools, stream API', author='<NAME>', author_email='<EMAIL>', url='http://www.rainbowstream.org/', license='MIT License', packages=find_packages(exclude=['ez_setup', 'examples', 'tests']), include_package_data=True, zip_safe=True, install_requires=install_requires, entry_points=""" # -*- Entry points: -*- [console_scripts] rainbowstream=rainbowstream.rainbow:fly """, )
from setuptools import setup, find_packages import os import os.path # Bumped version version = '1.2.3' # Require install_requires = [ "python-dateutil", "arrow", "requests", "pyfiglet", "twitter", "Pillow", "PySocks" ] # Copy default config if not exists default = os.path.expanduser("~") + os.sep + '.rainbow_config.json' if not os.path.isfile(default): cmd = 'cp rainbowstream/colorset/config ' + default os.system(cmd) cmd = 'chmod 777 ' + default os.system(cmd) # Setup setup(name='rainbowstream', version=version, description="A smart and nice Twitter client on terminal.", long_description=open("./README.rst", "r").read(), classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Console", "Intended Audience :: End Users/Desktop", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.2", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Topic :: Internet :: WWW/HTTP :: Dynamic Content :: CGI Tools/Libraries", "Topic :: Utilities", "License :: OSI Approved :: MIT License", ], keywords='twitter, command-line tools, stream API', author='<NAME>', author_email='<EMAIL>', url='http://www.rainbowstream.org/', license='MIT License', packages=find_packages(exclude=['ez_setup', 'examples', 'tests']), include_package_data=True, zip_safe=True, install_requires=install_requires, entry_points=""" # -*- Entry points: -*- [console_scripts] rainbowstream=rainbowstream.rainbow:fly """, )
en
0.413156
# Bumped version # Require # Copy default config if not exists # Setup # -*- Entry points: -*- [console_scripts] rainbowstream=rainbowstream.rainbow:fly
1.817553
2
plantcv/plantcv/hyperspectral/extract_index.py
JamesChooWK/plantcv
0
6630000
<filename>plantcv/plantcv/hyperspectral/extract_index.py # Extract one of the predefined indices from a hyperspectral datacube import os import numpy as np from plantcv.plantcv import params from plantcv.plantcv import plot_image from plantcv.plantcv import print_image from plantcv.plantcv import fatal_error from plantcv.plantcv import Spectral_data from plantcv.plantcv.hyperspectral import _find_closest def extract_index(array, index="NDVI", distance=20): """Pull out indices of interest from a hyperspectral datacube. Inputs: array = hyperspectral data instance index = index of interest, either "ndvi", "gdvi", or "savi" distance = how lenient to be if the required wavelengths are not available Returns: index_array = Index data as a Spectral_data instance :param array: __main__.Spectral_data :param index: str :param distance: int :return index_array: __main__.Spectral_data """ params.device += 1 # Min and max available wavelength will be used to determine if an index can be extracted max_wavelength = float(array.max_wavelength) min_wavelength = float(array.min_wavelength) # Dictionary of wavelength and it's index in the list wavelength_dict = array.wavelength_dict.copy() array_data = array.array_data.copy() if index.upper() == "NDVI": if (max_wavelength + distance) >= 800 and (min_wavelength - distance) <= 670: # Obtain index that best represents NIR and red bands nir_index = _find_closest(np.array([float(i) for i in wavelength_dict.keys()]), 800) red_index = _find_closest(np.array([float(i) for i in wavelength_dict.keys()]), 670) nir = (array_data[:, :, [nir_index]]) red = (array_data[:, :, [red_index]]) index_array_raw = (nir - red) / (nir + red) else: fatal_error("Available wavelengths are not suitable for calculating NDVI. Try increasing fudge factor.") elif index.upper() == "GDVI": # Green Difference Vegetation Index [Sripada et al. (2006)] if (max_wavelength + distance) >= 800 and (min_wavelength - distance) <= 680: nir_index = _find_closest(np.array([float(i) for i in wavelength_dict.keys()]), 800) red_index = _find_closest(np.array([float(i) for i in wavelength_dict.keys()]), 680) nir = (array_data[:, :, [nir_index]]) red = (array_data[:, :, [red_index]]) index_array_raw = nir - red else: fatal_error("Available wavelengths are not suitable for calculating GDVI. Try increasing fudge factor.") elif index.upper() == "SAVI": # Soil Adjusted Vegetation Index [Huete et al. (1988)] if (max_wavelength + distance) >= 800 and (min_wavelength - distance) <= 680: nir_index = _find_closest(np.array([float(i) for i in wavelength_dict.keys()]), 800) red_index = _find_closest(np.array([float(i) for i in wavelength_dict.keys()]), 680) nir = (array_data[:, :, [nir_index]]) red = (array_data[:, :, [red_index]]) index_array_raw = (1.5 * (nir - red)) / (red + nir + 0.5) else: fatal_error("Available wavelengths are not suitable for calculating SAVI. Try increasing fudge factor.") else: fatal_error(index + " is not one of the currently available indices for this function.") # Reshape array into hyperspectral datacube shape index_array_raw = np.transpose(np.transpose(index_array_raw)[0]) # Resulting array is float 32 from -1 to 1, transform into uint8 for plotting all_positive = np.add(index_array_raw, np.ones(np.shape(index_array_raw))) data = all_positive.astype(np.float64) / 2 # normalize the data to 0 - 1 index_array = (255 * data).astype(np.uint8) # scale to 255 index_array = Spectral_data(array_data=index_array, max_wavelength=0, min_wavelength=0, d_type=np.uint8, wavelength_dict={}, samples=array.samples, lines=array.lines, interleave=array.interleave, wavelength_units=array.wavelength_units, array_type="index_" + index.lower(), pseudo_rgb=None, filename=array.filename, default_bands=None) if params.debug == "plot": plot_image(index_array.array_data) elif params.debug == "print": print_image(index_array.array_data, os.path.join(params.debug_outdir, str(params.device) + index + "_index.png")) return index_array
<filename>plantcv/plantcv/hyperspectral/extract_index.py # Extract one of the predefined indices from a hyperspectral datacube import os import numpy as np from plantcv.plantcv import params from plantcv.plantcv import plot_image from plantcv.plantcv import print_image from plantcv.plantcv import fatal_error from plantcv.plantcv import Spectral_data from plantcv.plantcv.hyperspectral import _find_closest def extract_index(array, index="NDVI", distance=20): """Pull out indices of interest from a hyperspectral datacube. Inputs: array = hyperspectral data instance index = index of interest, either "ndvi", "gdvi", or "savi" distance = how lenient to be if the required wavelengths are not available Returns: index_array = Index data as a Spectral_data instance :param array: __main__.Spectral_data :param index: str :param distance: int :return index_array: __main__.Spectral_data """ params.device += 1 # Min and max available wavelength will be used to determine if an index can be extracted max_wavelength = float(array.max_wavelength) min_wavelength = float(array.min_wavelength) # Dictionary of wavelength and it's index in the list wavelength_dict = array.wavelength_dict.copy() array_data = array.array_data.copy() if index.upper() == "NDVI": if (max_wavelength + distance) >= 800 and (min_wavelength - distance) <= 670: # Obtain index that best represents NIR and red bands nir_index = _find_closest(np.array([float(i) for i in wavelength_dict.keys()]), 800) red_index = _find_closest(np.array([float(i) for i in wavelength_dict.keys()]), 670) nir = (array_data[:, :, [nir_index]]) red = (array_data[:, :, [red_index]]) index_array_raw = (nir - red) / (nir + red) else: fatal_error("Available wavelengths are not suitable for calculating NDVI. Try increasing fudge factor.") elif index.upper() == "GDVI": # Green Difference Vegetation Index [Sripada et al. (2006)] if (max_wavelength + distance) >= 800 and (min_wavelength - distance) <= 680: nir_index = _find_closest(np.array([float(i) for i in wavelength_dict.keys()]), 800) red_index = _find_closest(np.array([float(i) for i in wavelength_dict.keys()]), 680) nir = (array_data[:, :, [nir_index]]) red = (array_data[:, :, [red_index]]) index_array_raw = nir - red else: fatal_error("Available wavelengths are not suitable for calculating GDVI. Try increasing fudge factor.") elif index.upper() == "SAVI": # Soil Adjusted Vegetation Index [Huete et al. (1988)] if (max_wavelength + distance) >= 800 and (min_wavelength - distance) <= 680: nir_index = _find_closest(np.array([float(i) for i in wavelength_dict.keys()]), 800) red_index = _find_closest(np.array([float(i) for i in wavelength_dict.keys()]), 680) nir = (array_data[:, :, [nir_index]]) red = (array_data[:, :, [red_index]]) index_array_raw = (1.5 * (nir - red)) / (red + nir + 0.5) else: fatal_error("Available wavelengths are not suitable for calculating SAVI. Try increasing fudge factor.") else: fatal_error(index + " is not one of the currently available indices for this function.") # Reshape array into hyperspectral datacube shape index_array_raw = np.transpose(np.transpose(index_array_raw)[0]) # Resulting array is float 32 from -1 to 1, transform into uint8 for plotting all_positive = np.add(index_array_raw, np.ones(np.shape(index_array_raw))) data = all_positive.astype(np.float64) / 2 # normalize the data to 0 - 1 index_array = (255 * data).astype(np.uint8) # scale to 255 index_array = Spectral_data(array_data=index_array, max_wavelength=0, min_wavelength=0, d_type=np.uint8, wavelength_dict={}, samples=array.samples, lines=array.lines, interleave=array.interleave, wavelength_units=array.wavelength_units, array_type="index_" + index.lower(), pseudo_rgb=None, filename=array.filename, default_bands=None) if params.debug == "plot": plot_image(index_array.array_data) elif params.debug == "print": print_image(index_array.array_data, os.path.join(params.debug_outdir, str(params.device) + index + "_index.png")) return index_array
en
0.709746
# Extract one of the predefined indices from a hyperspectral datacube Pull out indices of interest from a hyperspectral datacube. Inputs: array = hyperspectral data instance index = index of interest, either "ndvi", "gdvi", or "savi" distance = how lenient to be if the required wavelengths are not available Returns: index_array = Index data as a Spectral_data instance :param array: __main__.Spectral_data :param index: str :param distance: int :return index_array: __main__.Spectral_data # Min and max available wavelength will be used to determine if an index can be extracted # Dictionary of wavelength and it's index in the list # Obtain index that best represents NIR and red bands # Green Difference Vegetation Index [Sripada et al. (2006)] # Soil Adjusted Vegetation Index [Huete et al. (1988)] # Reshape array into hyperspectral datacube shape # Resulting array is float 32 from -1 to 1, transform into uint8 for plotting # normalize the data to 0 - 1 # scale to 255
2.998292
3
modality/util/ClustData.py
tompollard/modality
16
6630001
<reponame>tompollard/modality<filename>modality/util/ClustData.py from __future__ import unicode_literals from collections import Counter import matplotlib.colors as colors import matplotlib.pyplot as plt import numpy as np from scipy.stats import gaussian_kde from . import MC_error_check class ClustData(object): ''' Object for handling clusters in data. Can find closest clusters in data set using Bhattacharyya distance. ''' def __init__(self, data, labels, excludelab=None): if excludelab is None: excludelab = [] self.label_names = [lab for lab in np.unique(labels) if not lab in excludelab] self.labels = labels self.K = len(self.label_names) self.data = data self.n, self.d = data.shape self._clusters = {} self.bhattacharyya_measure = bhattacharyya_coefficient def __iter__(self): return iter(self.label_names) def add_consensus_labelings(self, labels): consensus_labels = self.labels*0 for k in range(self.K): cc = ConsensusCluster(self.labels, k) for lab in labels: cc.add_labeling(lab) consensus_labels[cc.in_cluster] = k self.labels = consensus_labels def cluster(self, k): try: return self._clusters[k] except KeyError: self._clusters[k] = self.data[self.labels == k, :] return self._clusters[k] def in_cluster(self, ks): incl = np.zeros((self.n, len(ks)), dtype='bool') for i, k in enumerate(ks): incl[self.labels == k] = 1 return np.any(incl, axis=1) def get_closest(self, n): ind_1d = np.argpartition(-self.bhattacharyya_coefficient_toother, n, axis=None)[:n] ind_1d = ind_1d[self.bhattacharyya_coefficient_toother.ravel()[ind_1d] > 0] ind = np.unravel_index(ind_1d, (self.K, self.K)) return zip([self.label_names[i] for i in ind[0]], [self.label_names[i] for i in ind[1]])[:n] def most_discriminating_dim(self, k1, k2): bhd_1d = np.zeros(self.d) for dd in range(self.d): bhd_1d[dd] = self.bhattacharyya_measure( self.cluster(k1)[:, dd], self.cluster(k2)[:, dd]) return np.argmin(bhd_1d) def split_in_other_labelings(self, k1, k2, labelings): ''' Check if most common label in k1 (by other labelings) is different from most common label in k2. ''' diffs = 0 for label in labelings: most_common_k1 = Counter(label[self.labels == k1]).most_common()[0][0] most_common_k2 = Counter(label[self.labels == k2]).most_common()[0][0] if most_common_k1 != most_common_k2: diffs += 1 return diffs def scatterplot_most_discriminating_dim(self, k1, k2, axs): dim = self.most_discriminating_dim(k1, k2) for d, ax in enumerate(axs): self.scatterplot([k1, k2], [d, dim], ax) def hist2d_most_discriminating_dim(self, k1, k2, axs, **figargs): dim = self.most_discriminating_dim(k1, k2) for d, ax in enumerate(axs): self.hist2d([k1, k2], [d, dim], ax, **figargs) def scatterplot(self, ks, dim, ax): cmap = plt.get_cmap('gist_rainbow') K = len(ks) colors = [cmap((0.2+k)*1./(K-1)) for k in range(K)] for k, color in zip(ks, colors): ax.scatter(self.cluster(k)[:, dim[0]], self.cluster(k)[:, dim[1]], color=color, marker='+') def hist2d(self, ks, dim, ax, **figargs): data = np.vstack([self.cluster(k) for k in ks]) ax.hist2d(data[:, dim[0]], data[:, dim[1]], **figargs) def boxplot_closest(self, n): closest = self.get_closest(n) n = len(closest) fig, axs = plt.subplots(n, squeeze=False, figsize=(4, (n-1)*1.3+1)) for ax, ind in zip(axs.ravel(), closest): for k in ind: ax.boxplot(np.hsplit(self.cluster(k), self.d)) ax.set_title('Cluster {} and {}'.format(*ind)) def hist_closest(self, n): closest = self.get_closest(n) n = len(closest) fig, axs = plt.subplots(n, self.d, squeeze=False, figsize=(4+(self.d-1)*2, (n-1)*1.3+1)) for ax_c, ind in zip(axs, closest): ranges = zip(np.minimum(np.min(self.cluster(ind[0]), axis=0), np.min(self.cluster(ind[1]), axis=0)), np.maximum(np.max(self.cluster(ind[0]), axis=0), np.max(self.cluster(ind[1]), axis=0))) for dd, (ax, range_) in enumerate(zip(ax_c, ranges)): for color, k in zip(['blue', 'red'], ind): ax.hist(self.cluster(k)[:, dd], bins=20, range=range_, color=color, alpha=0.6) #ax.set_ylim(0, 200) ax.set_title('Cluster {} and {}'.format(*ind)) @property def bhattacharyya_coefficient_toother(self): try: return self._bhattacharyya_coefficient_toother except AttributeError: bdb = np.zeros((self.K, self.K)) for i, k in enumerate(self): for j, kk in enumerate(self): if j <= i: continue bdb[i, j] = self.bhattacharyya_measure( self.cluster(k), self.cluster(kk)) self._bhattacharyya_coefficient_toother = bdb return bdb @property def bhattacharyya_coefficient_toself(self): try: return self._bhattacharyya_coefficient_toself except AttributeError: bdw = np.zeros(self.K) for i, k in enumerate(self): bdw[i] = self.bhattacharyya_measure( self.cluster(k), self.cluster(k)) self._bhattacharyya_coefficient_toself = bdw return bdw @property def bhattacharyya_distances(self): bhattacharyya_coefficients = ( self.bhattacharyya_coefficient_toother + self.bhattacharyya_coefficient_toother.T + np.diag(self.bhattacharyya_coefficient_toself)) return -np.log(bhattacharyya_coefficients) def plot_bhattacharrya(self): plt.matshow(self.bhattacharyya_distances) class ConsensusCluster(object): ''' For finding a cluster that is common across a number of labelings. ''' def __init__(self, labels, k): self.in_cluster = labels == k @property def size(self): return np.sum(self.in_cluster) def add_labeling(self, labels): k = Counter(labels[self.in_cluster]).most_common(1)[0][0] self.in_cluster *= labels == k return k def select_data(self, data): return data[self.in_cluster, :] def hist(self, data, bounds=(-np.inf, np.inf), fig=None): d = data.shape[1] data_cc = self.select_data(data) if fig is None: fig = plt.figure() for dd in range(d): ax = fig.add_subplot(1, d, dd+1) data_cc_d = data_cc[:, dd] ax.hist(data_cc_d[(data_cc_d > bounds[0])*(data_cc_d < bounds[1])], bins=100) for ax in fig.axes: ax.xaxis.set_major_locator(plt.MaxNLocator(3)) def hist2d(self, data, fig=None): d = data.shape[1] data_cc = self.select_data(data) if fig is None: fig = plt.figure() for dd in range(d): for ddd in range(dd+1, d): ax = fig.add_subplot(d, d, dd*d+ddd+1) ax.hist2d(data_cc[:, dd], data_cc[:, ddd], bins=30, norm=colors.LogNorm(), vmin=1) ax.set_xlim(np.min(data[:, dd]), np.max(data[:, dd])) ax.set_ylim(np.min(data[:, ddd]), np.max(data[:, ddd])) def scatter_data(self, data): d = data.shape[1] data_cc = self.select_data(data) fig = plt.figure() for dd in range(d): for ddd in range(dd+1, d): ax = fig.add_subplot(d, d, dd*d+ddd+1) ax.scatter(data_cc[:, dd], data_cc[:, ddd], marker='+') ax.set_xlim(np.min(data[:, dd]), np.max(data[:, dd])) ax.set_ylim(np.min(data[:, ddd]), np.max(data[:, ddd])) def bhattacharyya_coefficient_discrete(data1, data2, bins=10): ''' Computing Bhattacharyya coefficient using (multidimensional) histograms. ''' hist_range = zip(np.minimum(np.min(data1, axis=0), np.min(data2, axis=0)), np.maximum(np.max(data1, axis=0), np.max(data2, axis=0))) bins_total_volume = np.prod([ma-mi for mi, ma in hist_range]) hist1, _ = np.histogramdd(data1, bins=bins, range=hist_range, normed=True) hist2, _ = np.histogramdd(data2, bins=bins, range=hist_range, normed=True) return np.mean(np.sqrt(hist1*hist2))*bins_total_volume @MC_error_check def bhattacharyya_coefficient(data1, data2, N=1000): ''' Computing Bhattacharyya coefficient (using MC sampling) between kernel density estimates of data with bandwith selection by Scott's rule. ''' try: d = data1.shape[1] except IndexError: d = 1 if data1.shape[0] < d or data2.shape[0] < d: return 0 try: kde1 = gaussian_kde(data1.T) kde2 = gaussian_kde(data2.T) except np.linalg.linalg.LinAlgError: return 0 samp1 = kde1.resample(N/2) samp2 = kde2.resample(N/2) return (np.mean(np.sqrt(kde2(samp1)/kde1(samp1))) + np.mean(np.sqrt(kde1(samp2)/kde2(samp2))))/2
from __future__ import unicode_literals from collections import Counter import matplotlib.colors as colors import matplotlib.pyplot as plt import numpy as np from scipy.stats import gaussian_kde from . import MC_error_check class ClustData(object): ''' Object for handling clusters in data. Can find closest clusters in data set using Bhattacharyya distance. ''' def __init__(self, data, labels, excludelab=None): if excludelab is None: excludelab = [] self.label_names = [lab for lab in np.unique(labels) if not lab in excludelab] self.labels = labels self.K = len(self.label_names) self.data = data self.n, self.d = data.shape self._clusters = {} self.bhattacharyya_measure = bhattacharyya_coefficient def __iter__(self): return iter(self.label_names) def add_consensus_labelings(self, labels): consensus_labels = self.labels*0 for k in range(self.K): cc = ConsensusCluster(self.labels, k) for lab in labels: cc.add_labeling(lab) consensus_labels[cc.in_cluster] = k self.labels = consensus_labels def cluster(self, k): try: return self._clusters[k] except KeyError: self._clusters[k] = self.data[self.labels == k, :] return self._clusters[k] def in_cluster(self, ks): incl = np.zeros((self.n, len(ks)), dtype='bool') for i, k in enumerate(ks): incl[self.labels == k] = 1 return np.any(incl, axis=1) def get_closest(self, n): ind_1d = np.argpartition(-self.bhattacharyya_coefficient_toother, n, axis=None)[:n] ind_1d = ind_1d[self.bhattacharyya_coefficient_toother.ravel()[ind_1d] > 0] ind = np.unravel_index(ind_1d, (self.K, self.K)) return zip([self.label_names[i] for i in ind[0]], [self.label_names[i] for i in ind[1]])[:n] def most_discriminating_dim(self, k1, k2): bhd_1d = np.zeros(self.d) for dd in range(self.d): bhd_1d[dd] = self.bhattacharyya_measure( self.cluster(k1)[:, dd], self.cluster(k2)[:, dd]) return np.argmin(bhd_1d) def split_in_other_labelings(self, k1, k2, labelings): ''' Check if most common label in k1 (by other labelings) is different from most common label in k2. ''' diffs = 0 for label in labelings: most_common_k1 = Counter(label[self.labels == k1]).most_common()[0][0] most_common_k2 = Counter(label[self.labels == k2]).most_common()[0][0] if most_common_k1 != most_common_k2: diffs += 1 return diffs def scatterplot_most_discriminating_dim(self, k1, k2, axs): dim = self.most_discriminating_dim(k1, k2) for d, ax in enumerate(axs): self.scatterplot([k1, k2], [d, dim], ax) def hist2d_most_discriminating_dim(self, k1, k2, axs, **figargs): dim = self.most_discriminating_dim(k1, k2) for d, ax in enumerate(axs): self.hist2d([k1, k2], [d, dim], ax, **figargs) def scatterplot(self, ks, dim, ax): cmap = plt.get_cmap('gist_rainbow') K = len(ks) colors = [cmap((0.2+k)*1./(K-1)) for k in range(K)] for k, color in zip(ks, colors): ax.scatter(self.cluster(k)[:, dim[0]], self.cluster(k)[:, dim[1]], color=color, marker='+') def hist2d(self, ks, dim, ax, **figargs): data = np.vstack([self.cluster(k) for k in ks]) ax.hist2d(data[:, dim[0]], data[:, dim[1]], **figargs) def boxplot_closest(self, n): closest = self.get_closest(n) n = len(closest) fig, axs = plt.subplots(n, squeeze=False, figsize=(4, (n-1)*1.3+1)) for ax, ind in zip(axs.ravel(), closest): for k in ind: ax.boxplot(np.hsplit(self.cluster(k), self.d)) ax.set_title('Cluster {} and {}'.format(*ind)) def hist_closest(self, n): closest = self.get_closest(n) n = len(closest) fig, axs = plt.subplots(n, self.d, squeeze=False, figsize=(4+(self.d-1)*2, (n-1)*1.3+1)) for ax_c, ind in zip(axs, closest): ranges = zip(np.minimum(np.min(self.cluster(ind[0]), axis=0), np.min(self.cluster(ind[1]), axis=0)), np.maximum(np.max(self.cluster(ind[0]), axis=0), np.max(self.cluster(ind[1]), axis=0))) for dd, (ax, range_) in enumerate(zip(ax_c, ranges)): for color, k in zip(['blue', 'red'], ind): ax.hist(self.cluster(k)[:, dd], bins=20, range=range_, color=color, alpha=0.6) #ax.set_ylim(0, 200) ax.set_title('Cluster {} and {}'.format(*ind)) @property def bhattacharyya_coefficient_toother(self): try: return self._bhattacharyya_coefficient_toother except AttributeError: bdb = np.zeros((self.K, self.K)) for i, k in enumerate(self): for j, kk in enumerate(self): if j <= i: continue bdb[i, j] = self.bhattacharyya_measure( self.cluster(k), self.cluster(kk)) self._bhattacharyya_coefficient_toother = bdb return bdb @property def bhattacharyya_coefficient_toself(self): try: return self._bhattacharyya_coefficient_toself except AttributeError: bdw = np.zeros(self.K) for i, k in enumerate(self): bdw[i] = self.bhattacharyya_measure( self.cluster(k), self.cluster(k)) self._bhattacharyya_coefficient_toself = bdw return bdw @property def bhattacharyya_distances(self): bhattacharyya_coefficients = ( self.bhattacharyya_coefficient_toother + self.bhattacharyya_coefficient_toother.T + np.diag(self.bhattacharyya_coefficient_toself)) return -np.log(bhattacharyya_coefficients) def plot_bhattacharrya(self): plt.matshow(self.bhattacharyya_distances) class ConsensusCluster(object): ''' For finding a cluster that is common across a number of labelings. ''' def __init__(self, labels, k): self.in_cluster = labels == k @property def size(self): return np.sum(self.in_cluster) def add_labeling(self, labels): k = Counter(labels[self.in_cluster]).most_common(1)[0][0] self.in_cluster *= labels == k return k def select_data(self, data): return data[self.in_cluster, :] def hist(self, data, bounds=(-np.inf, np.inf), fig=None): d = data.shape[1] data_cc = self.select_data(data) if fig is None: fig = plt.figure() for dd in range(d): ax = fig.add_subplot(1, d, dd+1) data_cc_d = data_cc[:, dd] ax.hist(data_cc_d[(data_cc_d > bounds[0])*(data_cc_d < bounds[1])], bins=100) for ax in fig.axes: ax.xaxis.set_major_locator(plt.MaxNLocator(3)) def hist2d(self, data, fig=None): d = data.shape[1] data_cc = self.select_data(data) if fig is None: fig = plt.figure() for dd in range(d): for ddd in range(dd+1, d): ax = fig.add_subplot(d, d, dd*d+ddd+1) ax.hist2d(data_cc[:, dd], data_cc[:, ddd], bins=30, norm=colors.LogNorm(), vmin=1) ax.set_xlim(np.min(data[:, dd]), np.max(data[:, dd])) ax.set_ylim(np.min(data[:, ddd]), np.max(data[:, ddd])) def scatter_data(self, data): d = data.shape[1] data_cc = self.select_data(data) fig = plt.figure() for dd in range(d): for ddd in range(dd+1, d): ax = fig.add_subplot(d, d, dd*d+ddd+1) ax.scatter(data_cc[:, dd], data_cc[:, ddd], marker='+') ax.set_xlim(np.min(data[:, dd]), np.max(data[:, dd])) ax.set_ylim(np.min(data[:, ddd]), np.max(data[:, ddd])) def bhattacharyya_coefficient_discrete(data1, data2, bins=10): ''' Computing Bhattacharyya coefficient using (multidimensional) histograms. ''' hist_range = zip(np.minimum(np.min(data1, axis=0), np.min(data2, axis=0)), np.maximum(np.max(data1, axis=0), np.max(data2, axis=0))) bins_total_volume = np.prod([ma-mi for mi, ma in hist_range]) hist1, _ = np.histogramdd(data1, bins=bins, range=hist_range, normed=True) hist2, _ = np.histogramdd(data2, bins=bins, range=hist_range, normed=True) return np.mean(np.sqrt(hist1*hist2))*bins_total_volume @MC_error_check def bhattacharyya_coefficient(data1, data2, N=1000): ''' Computing Bhattacharyya coefficient (using MC sampling) between kernel density estimates of data with bandwith selection by Scott's rule. ''' try: d = data1.shape[1] except IndexError: d = 1 if data1.shape[0] < d or data2.shape[0] < d: return 0 try: kde1 = gaussian_kde(data1.T) kde2 = gaussian_kde(data2.T) except np.linalg.linalg.LinAlgError: return 0 samp1 = kde1.resample(N/2) samp2 = kde2.resample(N/2) return (np.mean(np.sqrt(kde2(samp1)/kde1(samp1))) + np.mean(np.sqrt(kde1(samp2)/kde2(samp2))))/2
en
0.853537
Object for handling clusters in data. Can find closest clusters in data set using Bhattacharyya distance. Check if most common label in k1 (by other labelings) is different from most common label in k2. #ax.set_ylim(0, 200) For finding a cluster that is common across a number of labelings. Computing Bhattacharyya coefficient using (multidimensional) histograms. Computing Bhattacharyya coefficient (using MC sampling) between kernel density estimates of data with bandwith selection by Scott's rule.
2.586525
3
django_drf_filepond/uploaders.py
MarketingCannon/django-drf-filepond
0
6630002
import logging import os from django.core.files.uploadedfile import UploadedFile, InMemoryUploadedFile from rest_framework import status from rest_framework.exceptions import ParseError, MethodNotAllowed from rest_framework.response import Response from django_drf_filepond.models import TemporaryUpload, storage,\ TemporaryUploadChunked from io import BytesIO, StringIO from django_drf_filepond.utils import _get_user from six import text_type, binary_type # There's no built in FileNotFoundError in Python 2 try: FileNotFoundError except NameError: FileNotFoundError = IOError LOG = logging.getLogger(__name__) class FilepondFileUploader(object): @classmethod def get_uploader(cls, request): # Process the request to identify if it's a standard upload request # or a request that is related to a chunked upload. Return the right # kind of uploader to handle this. if request.method == 'PATCH': return FilepondChunkedFileUploader() if request.method == 'HEAD': return FilepondChunkedFileUploader() elif request.method == 'POST': file_obj = cls._get_file_obj(request) if (file_obj == '{}' and request.META.get('HTTP_UPLOAD_LENGTH', None)): LOG.debug('Returning CHUNKED uploader to handle ' 'upload request... ') return FilepondChunkedFileUploader() else: raise MethodNotAllowed('%s is an invalid method type' % (request.method)) # If we didn't identify the need for a chunked uploader in any of the # above tests, treat this as a standard upload LOG.debug('Returning STANDARD uploader to handle upload request... ') return FilepondStandardFileUploader() @classmethod def _get_file_obj(cls, request): # By default the upload element name is expected to be "filepond" # As raised in issue #4, there are cases where there may be more # than one filepond instance on a page, or the developer has opted # not to use the name "filepond" for the filepond instance. # Using the example from #4, this provides support these cases. upload_field_name = 'filepond' if 'fp_upload_field' in request.data: upload_field_name = request.data['fp_upload_field'] if upload_field_name not in request.data: raise ParseError('Invalid request data has been provided.') # The content of the upload field is a django.http.QueryDict. # The dict may have multiple values for a given field name. # When accessing the QueryDict by field name, e.g. # request.data['filepond'], if there is more than one value provided # for the requested field name, the last one is returned, to get all # values we use getlist(). For the file upload being handled here, we # expect the file field to contain two values, the first is the file # metadata, the second is the file object. upload_fields = request.data.getlist(upload_field_name) if len(upload_fields) == 1: file_obj = upload_fields[0] elif len(upload_fields) == 2: # file_metadata = upload_fields[0] file_obj = upload_fields[1] else: raise ParseError('Invalid number of fields in request data.') return file_obj # The file ID and upload ID are generated by _get_file_id in # django_drf_filepond.views. The TemporaryUpload model should validate # that the values provided are within spec but in some cases, e.g. when # using SQLite, that doesn't happen. We therefore provide these two # methods for doing local validation of these values since they are # passed in as parameters to handle_upload. @classmethod def _file_id_valid(cls, file_id): if isinstance(file_id, text_type) and (len(file_id) == 22): return True return False @classmethod def _upload_id_valid(cls, upload_id): if isinstance(upload_id, text_type) and (len(upload_id) == 22): return True return False class FilepondStandardFileUploader(FilepondFileUploader): def handle_upload(self, request, upload_id, file_id): # Since the upload_id and file_id are being provided here as # parameters, we check that they are valid. This should be done by # the DB and an error would be generated in the tu.save() call below # however SQLite doesn't handle field length validation so this won't # be picked up when using SQLite. if ((not self._file_id_valid(file_id)) or (not self._upload_id_valid(upload_id))): return Response('Invalid ID for handling upload.', content_type='text/plain', status=status.HTTP_500_INTERNAL_SERVER_ERROR) file_obj = self._get_file_obj(request) # The type of parsed data should be a descendant of an UploadedFile # type. if not isinstance(file_obj, UploadedFile): raise ParseError('Invalid data type has been parsed.') # Save original file name and set name of saved file to the unique ID upload_filename = file_obj.name file_obj.name = file_id # Before we attempt to save the file, make sure that the upload # directory we're going to save to exists. # *** It's not necessary to explicitly create the directory since # *** the FileSystemStorage object creates the directory on save # if not os.path.exists(storage.location): # LOG.debug('Filepond app: Creating file upload directory ' # '<%s>...' % storage.location) # os.makedirs(storage.location, mode=0o700) LOG.debug('About to store uploaded temp file with filename: %s' % (upload_filename)) # We now need to create the temporary upload object and store the # file and metadata. tu = TemporaryUpload(upload_id=upload_id, file_id=file_id, file=file_obj, upload_name=upload_filename, upload_type=TemporaryUpload.FILE_DATA, uploaded_by=_get_user(request)) tu.save() response = Response(upload_id, status=status.HTTP_200_OK, content_type='text/plain') return response # Handles chunked file uploads as per the approach described in filepond's # docs at https://pqina.nl/filepond/docs/patterns/api/server/#process-chunks class FilepondChunkedFileUploader(FilepondFileUploader): def handle_upload(self, request, upload_id, file_id=None): # Since the upload_id is being provided here as a paramter, we check # it is valid. This should be done by the DB but for some DBs, e.g. # SQLite field length validation isn't handled. The same check is # done for file_id in the case of POST requests. if not self._upload_id_valid(upload_id): return Response('Invalid ID for handling upload.', status=status.HTTP_500_INTERNAL_SERVER_ERROR) if request.method == 'PATCH': return self._handle_chunk_upload(request, upload_id) elif request.method == 'HEAD': return self._handle_chunk_restart(request, upload_id) elif request.method == 'POST': if not self._file_id_valid(file_id): return Response('Invalid ID for handling upload.', status=status.HTTP_500_INTERNAL_SERVER_ERROR) return self._handle_new_chunk_upload(request, upload_id, file_id) def _handle_new_chunk_upload(self, request, upload_id, file_id): LOG.debug('Processing a new chunked upload request...') file_obj = self._get_file_obj(request) if file_obj != '{}': return Response('An invalid file object has been received ' 'for a new chunked upload request.', status=status.HTTP_400_BAD_REQUEST) ulen = request.META.get('HTTP_UPLOAD_LENGTH', None) if not ulen: return Response('No length for new chunked upload request.', status=status.HTTP_400_BAD_REQUEST) LOG.debug('Handling a new chunked upload request for an upload ' 'with total length %s bytes' % (ulen)) # Do some general checks to make sure that the storage location # exists and that we're not being made to try and store something # outside the base storage location. Then create the new # temporary directory into which chunks will be stored base_loc = storage.base_location chunk_dir = os.path.abspath(os.path.join(base_loc, upload_id)) if not chunk_dir.startswith(base_loc): return Response('Unable to create storage for upload data.', status=status.HTTP_500_INTERNAL_SERVER_ERROR) if os.path.exists(base_loc): try: os.makedirs(chunk_dir, exist_ok=False) except OSError as e: LOG.debug('Unable to create chunk storage dir: %s' % (str(e))) return Response( 'Unable to prepare storage for upload data.', status=status.HTTP_500_INTERNAL_SERVER_ERROR) else: LOG.debug('The base data store location <%s> doesn\'t exist.' ' Unable to create chunk dir.' % (base_loc)) return Response('Data storage error occurred.', status=status.HTTP_500_INTERNAL_SERVER_ERROR) # We now create the temporary chunked upload object # this will be updated as we receive the chunks. tuc = TemporaryUploadChunked(upload_id=upload_id, file_id=file_id, upload_dir=upload_id, total_size=ulen, uploaded_by=_get_user(request)) tuc.save() return Response(upload_id, status=status.HTTP_200_OK, content_type='text/plain') def _handle_chunk_upload(self, request, chunk_id): # Check that the incoming data can be accessed. If the request # content type was invalid then we want to raise an error here # Trying to access request data should result in a 415 response if # the data couldn't be handled by the configured parser. file_data = request.data if (not chunk_id) or (chunk_id == ''): return Response('A required chunk parameter is missing.', status=status.HTTP_400_BAD_REQUEST) if isinstance(file_data, binary_type): fd = BytesIO(file_data) elif isinstance(file_data, text_type): fd = StringIO(file_data) else: return Response('Upload data type not recognised.', status=status.HTTP_400_BAD_REQUEST) # Try to load a temporary chunked upload object for the provided id try: tuc = TemporaryUploadChunked.objects.get(upload_id=chunk_id) except TemporaryUploadChunked.DoesNotExist: return Response('Invalid chunk upload request data', status=status.HTTP_400_BAD_REQUEST) # Get the required header information to handle the new data uoffset = request.META.get('HTTP_UPLOAD_OFFSET', None) ulength = request.META.get('HTTP_UPLOAD_LENGTH', None) uname = request.META.get('HTTP_UPLOAD_NAME', None) if (uoffset is None) or (ulength is None) or (uname is None): return Response('Chunk upload is missing required metadata', status=status.HTTP_400_BAD_REQUEST) if int(ulength) != tuc.total_size: return Response('ERROR: Upload metadata is invalid - size changed', status=status.HTTP_400_BAD_REQUEST) # if this is the first chunk, store the filename if tuc.last_chunk == 0: tuc.upload_name = uname else: if tuc.upload_name != uname: return Response('Chunk upload file metadata is invalid', status=status.HTTP_400_BAD_REQUEST) LOG.debug('Handling chunk <%s> for upload id <%s> with name <%s> ' 'size <%s> and offset <%s>...' % (tuc.last_chunk+1, chunk_id, uname, ulength, uoffset)) LOG.debug('Current length and offset in the record is: length <%s> ' ' offset <%s>' % (tuc.total_size, tuc.offset)) # Check that our recorded offset matches the offset provided by the # client...if not, there's an error. if not (int(uoffset) == tuc.offset): LOG.error('Offset provided by client <%s> doesn\'t match the ' 'stored offset <%s> for chunked upload id <%s>' % (uoffset, tuc.offset, chunk_id)) return Response('ERROR: Chunked upload metadata is invalid.', status=status.HTTP_400_BAD_REQUEST) file_data_len = len(file_data) LOG.debug('Got data from request with length %s bytes' % (file_data_len)) # Store the chunk and check if we've now completed the upload upload_dir = os.path.join(storage.base_location, tuc.upload_dir) upload_file = os.path.join(tuc.upload_dir, '%s_%s' % (tuc.file_id, tuc.last_chunk+1)) if not os.path.exists(upload_dir): return Response('Chunk storage location error', status=status.HTTP_500_INTERNAL_SERVER_ERROR) storage.save(upload_file, fd) # Set the updated chunk number and the new offset tuc.last_chunk = tuc.last_chunk + 1 tuc.offset = tuc.offset + file_data_len if tuc.offset == tuc.total_size: tuc.upload_complete = True tuc.save() # At this point, if the upload is complete, we can rebuild the chunks # into the complete file and store it with a TemporaryUpload object. if tuc.upload_complete: try: self._store_upload(tuc) except (ValueError, FileNotFoundError) as e: LOG.error('Error storing upload: %s' % (str(e))) return Response('Error storing uploaded file.', status=status.HTTP_500_INTERNAL_SERVER_ERROR) return Response(chunk_id, status=status.HTTP_200_OK, content_type='text/plain') def _store_upload(self, tuc): if not tuc.upload_complete: LOG.error('Attempt to store an incomplete upload with ID <%s>' % (tuc.upload_id)) raise ValueError('Attempt to store an incomplete upload with ID ' '<%s>' % (tuc.upload_id)) # Load each of the file parts into a BytesIO object and store them # via a TemporaryUpload object. chunk_dir = os.path.join(storage.base_location, tuc.upload_dir) file_data = BytesIO() for i in range(1, tuc.last_chunk+1): chunk_file = os.path.join(chunk_dir, '%s_%s' % (tuc.file_id, i)) if not os.path.exists(chunk_file): raise FileNotFoundError('Chunk file not found for chunk <%s>' % (i)) with open(chunk_file, 'rb') as cf: file_data.write(cf.read()) # Prepare an InMemoryUploadedFile object so that the data can be # successfully saved via the FileField in the TemporaryUpload object memfile = InMemoryUploadedFile(file_data, None, tuc.file_id, 'application/octet-stream', tuc.total_size, None) tu = TemporaryUpload(upload_id=tuc.upload_id, file_id=tuc.file_id, file=memfile, upload_name=tuc.upload_name, upload_type=TemporaryUpload.FILE_DATA, uploaded_by=tuc.uploaded_by) tu.save() # Check that the final file is stored and of the correct size stored_file_path = os.path.join(chunk_dir, tuc.file_id) if ((not os.path.exists(stored_file_path)) or (not os.path.getsize(stored_file_path) == tuc.total_size)): raise ValueError('Stored file size wrong or file not found.') LOG.debug('Full file built from chunks and saved. Deleting chunks ' 'and TemporaryUploadChunked object.') for i in range(1, tuc.last_chunk+1): chunk_file = os.path.join(chunk_dir, '%s_%s' % (tuc.file_id, i)) os.remove(chunk_file) tuc.delete() def _handle_chunk_restart(self, request, upload_id): try: tuc = TemporaryUploadChunked.objects.get(upload_id=upload_id) except TemporaryUploadChunked.DoesNotExist: return Response('Invalid upload ID specified.', status=status.HTTP_404_NOT_FOUND, content_type='text/plain') if tuc.upload_complete is True: return Response('Invalid upload ID specified.', status=status.HTTP_400_BAD_REQUEST, content_type='text/plain') # Check that the directory for the chunks exists if not os.path.exists(os.path.join(storage.base_location, tuc.upload_dir)): return Response('Invalid upload location, can\'t continue upload.', status=status.HTTP_500_INTERNAL_SERVER_ERROR, content_type='text/plain') # TODO: Is it necessary to check for the existence of all previous # chunk files here? LOG.debug('Returning offset to continue chunked upload. We have <%s> ' 'chunks so far and are at offest <%s>.' % (tuc.last_chunk, tuc.offset)) return Response(upload_id, status=status.HTTP_200_OK, headers={'Upload-Offset': str(tuc.offset)}, content_type='text/plain')
import logging import os from django.core.files.uploadedfile import UploadedFile, InMemoryUploadedFile from rest_framework import status from rest_framework.exceptions import ParseError, MethodNotAllowed from rest_framework.response import Response from django_drf_filepond.models import TemporaryUpload, storage,\ TemporaryUploadChunked from io import BytesIO, StringIO from django_drf_filepond.utils import _get_user from six import text_type, binary_type # There's no built in FileNotFoundError in Python 2 try: FileNotFoundError except NameError: FileNotFoundError = IOError LOG = logging.getLogger(__name__) class FilepondFileUploader(object): @classmethod def get_uploader(cls, request): # Process the request to identify if it's a standard upload request # or a request that is related to a chunked upload. Return the right # kind of uploader to handle this. if request.method == 'PATCH': return FilepondChunkedFileUploader() if request.method == 'HEAD': return FilepondChunkedFileUploader() elif request.method == 'POST': file_obj = cls._get_file_obj(request) if (file_obj == '{}' and request.META.get('HTTP_UPLOAD_LENGTH', None)): LOG.debug('Returning CHUNKED uploader to handle ' 'upload request... ') return FilepondChunkedFileUploader() else: raise MethodNotAllowed('%s is an invalid method type' % (request.method)) # If we didn't identify the need for a chunked uploader in any of the # above tests, treat this as a standard upload LOG.debug('Returning STANDARD uploader to handle upload request... ') return FilepondStandardFileUploader() @classmethod def _get_file_obj(cls, request): # By default the upload element name is expected to be "filepond" # As raised in issue #4, there are cases where there may be more # than one filepond instance on a page, or the developer has opted # not to use the name "filepond" for the filepond instance. # Using the example from #4, this provides support these cases. upload_field_name = 'filepond' if 'fp_upload_field' in request.data: upload_field_name = request.data['fp_upload_field'] if upload_field_name not in request.data: raise ParseError('Invalid request data has been provided.') # The content of the upload field is a django.http.QueryDict. # The dict may have multiple values for a given field name. # When accessing the QueryDict by field name, e.g. # request.data['filepond'], if there is more than one value provided # for the requested field name, the last one is returned, to get all # values we use getlist(). For the file upload being handled here, we # expect the file field to contain two values, the first is the file # metadata, the second is the file object. upload_fields = request.data.getlist(upload_field_name) if len(upload_fields) == 1: file_obj = upload_fields[0] elif len(upload_fields) == 2: # file_metadata = upload_fields[0] file_obj = upload_fields[1] else: raise ParseError('Invalid number of fields in request data.') return file_obj # The file ID and upload ID are generated by _get_file_id in # django_drf_filepond.views. The TemporaryUpload model should validate # that the values provided are within spec but in some cases, e.g. when # using SQLite, that doesn't happen. We therefore provide these two # methods for doing local validation of these values since they are # passed in as parameters to handle_upload. @classmethod def _file_id_valid(cls, file_id): if isinstance(file_id, text_type) and (len(file_id) == 22): return True return False @classmethod def _upload_id_valid(cls, upload_id): if isinstance(upload_id, text_type) and (len(upload_id) == 22): return True return False class FilepondStandardFileUploader(FilepondFileUploader): def handle_upload(self, request, upload_id, file_id): # Since the upload_id and file_id are being provided here as # parameters, we check that they are valid. This should be done by # the DB and an error would be generated in the tu.save() call below # however SQLite doesn't handle field length validation so this won't # be picked up when using SQLite. if ((not self._file_id_valid(file_id)) or (not self._upload_id_valid(upload_id))): return Response('Invalid ID for handling upload.', content_type='text/plain', status=status.HTTP_500_INTERNAL_SERVER_ERROR) file_obj = self._get_file_obj(request) # The type of parsed data should be a descendant of an UploadedFile # type. if not isinstance(file_obj, UploadedFile): raise ParseError('Invalid data type has been parsed.') # Save original file name and set name of saved file to the unique ID upload_filename = file_obj.name file_obj.name = file_id # Before we attempt to save the file, make sure that the upload # directory we're going to save to exists. # *** It's not necessary to explicitly create the directory since # *** the FileSystemStorage object creates the directory on save # if not os.path.exists(storage.location): # LOG.debug('Filepond app: Creating file upload directory ' # '<%s>...' % storage.location) # os.makedirs(storage.location, mode=0o700) LOG.debug('About to store uploaded temp file with filename: %s' % (upload_filename)) # We now need to create the temporary upload object and store the # file and metadata. tu = TemporaryUpload(upload_id=upload_id, file_id=file_id, file=file_obj, upload_name=upload_filename, upload_type=TemporaryUpload.FILE_DATA, uploaded_by=_get_user(request)) tu.save() response = Response(upload_id, status=status.HTTP_200_OK, content_type='text/plain') return response # Handles chunked file uploads as per the approach described in filepond's # docs at https://pqina.nl/filepond/docs/patterns/api/server/#process-chunks class FilepondChunkedFileUploader(FilepondFileUploader): def handle_upload(self, request, upload_id, file_id=None): # Since the upload_id is being provided here as a paramter, we check # it is valid. This should be done by the DB but for some DBs, e.g. # SQLite field length validation isn't handled. The same check is # done for file_id in the case of POST requests. if not self._upload_id_valid(upload_id): return Response('Invalid ID for handling upload.', status=status.HTTP_500_INTERNAL_SERVER_ERROR) if request.method == 'PATCH': return self._handle_chunk_upload(request, upload_id) elif request.method == 'HEAD': return self._handle_chunk_restart(request, upload_id) elif request.method == 'POST': if not self._file_id_valid(file_id): return Response('Invalid ID for handling upload.', status=status.HTTP_500_INTERNAL_SERVER_ERROR) return self._handle_new_chunk_upload(request, upload_id, file_id) def _handle_new_chunk_upload(self, request, upload_id, file_id): LOG.debug('Processing a new chunked upload request...') file_obj = self._get_file_obj(request) if file_obj != '{}': return Response('An invalid file object has been received ' 'for a new chunked upload request.', status=status.HTTP_400_BAD_REQUEST) ulen = request.META.get('HTTP_UPLOAD_LENGTH', None) if not ulen: return Response('No length for new chunked upload request.', status=status.HTTP_400_BAD_REQUEST) LOG.debug('Handling a new chunked upload request for an upload ' 'with total length %s bytes' % (ulen)) # Do some general checks to make sure that the storage location # exists and that we're not being made to try and store something # outside the base storage location. Then create the new # temporary directory into which chunks will be stored base_loc = storage.base_location chunk_dir = os.path.abspath(os.path.join(base_loc, upload_id)) if not chunk_dir.startswith(base_loc): return Response('Unable to create storage for upload data.', status=status.HTTP_500_INTERNAL_SERVER_ERROR) if os.path.exists(base_loc): try: os.makedirs(chunk_dir, exist_ok=False) except OSError as e: LOG.debug('Unable to create chunk storage dir: %s' % (str(e))) return Response( 'Unable to prepare storage for upload data.', status=status.HTTP_500_INTERNAL_SERVER_ERROR) else: LOG.debug('The base data store location <%s> doesn\'t exist.' ' Unable to create chunk dir.' % (base_loc)) return Response('Data storage error occurred.', status=status.HTTP_500_INTERNAL_SERVER_ERROR) # We now create the temporary chunked upload object # this will be updated as we receive the chunks. tuc = TemporaryUploadChunked(upload_id=upload_id, file_id=file_id, upload_dir=upload_id, total_size=ulen, uploaded_by=_get_user(request)) tuc.save() return Response(upload_id, status=status.HTTP_200_OK, content_type='text/plain') def _handle_chunk_upload(self, request, chunk_id): # Check that the incoming data can be accessed. If the request # content type was invalid then we want to raise an error here # Trying to access request data should result in a 415 response if # the data couldn't be handled by the configured parser. file_data = request.data if (not chunk_id) or (chunk_id == ''): return Response('A required chunk parameter is missing.', status=status.HTTP_400_BAD_REQUEST) if isinstance(file_data, binary_type): fd = BytesIO(file_data) elif isinstance(file_data, text_type): fd = StringIO(file_data) else: return Response('Upload data type not recognised.', status=status.HTTP_400_BAD_REQUEST) # Try to load a temporary chunked upload object for the provided id try: tuc = TemporaryUploadChunked.objects.get(upload_id=chunk_id) except TemporaryUploadChunked.DoesNotExist: return Response('Invalid chunk upload request data', status=status.HTTP_400_BAD_REQUEST) # Get the required header information to handle the new data uoffset = request.META.get('HTTP_UPLOAD_OFFSET', None) ulength = request.META.get('HTTP_UPLOAD_LENGTH', None) uname = request.META.get('HTTP_UPLOAD_NAME', None) if (uoffset is None) or (ulength is None) or (uname is None): return Response('Chunk upload is missing required metadata', status=status.HTTP_400_BAD_REQUEST) if int(ulength) != tuc.total_size: return Response('ERROR: Upload metadata is invalid - size changed', status=status.HTTP_400_BAD_REQUEST) # if this is the first chunk, store the filename if tuc.last_chunk == 0: tuc.upload_name = uname else: if tuc.upload_name != uname: return Response('Chunk upload file metadata is invalid', status=status.HTTP_400_BAD_REQUEST) LOG.debug('Handling chunk <%s> for upload id <%s> with name <%s> ' 'size <%s> and offset <%s>...' % (tuc.last_chunk+1, chunk_id, uname, ulength, uoffset)) LOG.debug('Current length and offset in the record is: length <%s> ' ' offset <%s>' % (tuc.total_size, tuc.offset)) # Check that our recorded offset matches the offset provided by the # client...if not, there's an error. if not (int(uoffset) == tuc.offset): LOG.error('Offset provided by client <%s> doesn\'t match the ' 'stored offset <%s> for chunked upload id <%s>' % (uoffset, tuc.offset, chunk_id)) return Response('ERROR: Chunked upload metadata is invalid.', status=status.HTTP_400_BAD_REQUEST) file_data_len = len(file_data) LOG.debug('Got data from request with length %s bytes' % (file_data_len)) # Store the chunk and check if we've now completed the upload upload_dir = os.path.join(storage.base_location, tuc.upload_dir) upload_file = os.path.join(tuc.upload_dir, '%s_%s' % (tuc.file_id, tuc.last_chunk+1)) if not os.path.exists(upload_dir): return Response('Chunk storage location error', status=status.HTTP_500_INTERNAL_SERVER_ERROR) storage.save(upload_file, fd) # Set the updated chunk number and the new offset tuc.last_chunk = tuc.last_chunk + 1 tuc.offset = tuc.offset + file_data_len if tuc.offset == tuc.total_size: tuc.upload_complete = True tuc.save() # At this point, if the upload is complete, we can rebuild the chunks # into the complete file and store it with a TemporaryUpload object. if tuc.upload_complete: try: self._store_upload(tuc) except (ValueError, FileNotFoundError) as e: LOG.error('Error storing upload: %s' % (str(e))) return Response('Error storing uploaded file.', status=status.HTTP_500_INTERNAL_SERVER_ERROR) return Response(chunk_id, status=status.HTTP_200_OK, content_type='text/plain') def _store_upload(self, tuc): if not tuc.upload_complete: LOG.error('Attempt to store an incomplete upload with ID <%s>' % (tuc.upload_id)) raise ValueError('Attempt to store an incomplete upload with ID ' '<%s>' % (tuc.upload_id)) # Load each of the file parts into a BytesIO object and store them # via a TemporaryUpload object. chunk_dir = os.path.join(storage.base_location, tuc.upload_dir) file_data = BytesIO() for i in range(1, tuc.last_chunk+1): chunk_file = os.path.join(chunk_dir, '%s_%s' % (tuc.file_id, i)) if not os.path.exists(chunk_file): raise FileNotFoundError('Chunk file not found for chunk <%s>' % (i)) with open(chunk_file, 'rb') as cf: file_data.write(cf.read()) # Prepare an InMemoryUploadedFile object so that the data can be # successfully saved via the FileField in the TemporaryUpload object memfile = InMemoryUploadedFile(file_data, None, tuc.file_id, 'application/octet-stream', tuc.total_size, None) tu = TemporaryUpload(upload_id=tuc.upload_id, file_id=tuc.file_id, file=memfile, upload_name=tuc.upload_name, upload_type=TemporaryUpload.FILE_DATA, uploaded_by=tuc.uploaded_by) tu.save() # Check that the final file is stored and of the correct size stored_file_path = os.path.join(chunk_dir, tuc.file_id) if ((not os.path.exists(stored_file_path)) or (not os.path.getsize(stored_file_path) == tuc.total_size)): raise ValueError('Stored file size wrong or file not found.') LOG.debug('Full file built from chunks and saved. Deleting chunks ' 'and TemporaryUploadChunked object.') for i in range(1, tuc.last_chunk+1): chunk_file = os.path.join(chunk_dir, '%s_%s' % (tuc.file_id, i)) os.remove(chunk_file) tuc.delete() def _handle_chunk_restart(self, request, upload_id): try: tuc = TemporaryUploadChunked.objects.get(upload_id=upload_id) except TemporaryUploadChunked.DoesNotExist: return Response('Invalid upload ID specified.', status=status.HTTP_404_NOT_FOUND, content_type='text/plain') if tuc.upload_complete is True: return Response('Invalid upload ID specified.', status=status.HTTP_400_BAD_REQUEST, content_type='text/plain') # Check that the directory for the chunks exists if not os.path.exists(os.path.join(storage.base_location, tuc.upload_dir)): return Response('Invalid upload location, can\'t continue upload.', status=status.HTTP_500_INTERNAL_SERVER_ERROR, content_type='text/plain') # TODO: Is it necessary to check for the existence of all previous # chunk files here? LOG.debug('Returning offset to continue chunked upload. We have <%s> ' 'chunks so far and are at offest <%s>.' % (tuc.last_chunk, tuc.offset)) return Response(upload_id, status=status.HTTP_200_OK, headers={'Upload-Offset': str(tuc.offset)}, content_type='text/plain')
en
0.888115
# There's no built in FileNotFoundError in Python 2 # Process the request to identify if it's a standard upload request # or a request that is related to a chunked upload. Return the right # kind of uploader to handle this. # If we didn't identify the need for a chunked uploader in any of the # above tests, treat this as a standard upload # By default the upload element name is expected to be "filepond" # As raised in issue #4, there are cases where there may be more # than one filepond instance on a page, or the developer has opted # not to use the name "filepond" for the filepond instance. # Using the example from #4, this provides support these cases. # The content of the upload field is a django.http.QueryDict. # The dict may have multiple values for a given field name. # When accessing the QueryDict by field name, e.g. # request.data['filepond'], if there is more than one value provided # for the requested field name, the last one is returned, to get all # values we use getlist(). For the file upload being handled here, we # expect the file field to contain two values, the first is the file # metadata, the second is the file object. # file_metadata = upload_fields[0] # The file ID and upload ID are generated by _get_file_id in # django_drf_filepond.views. The TemporaryUpload model should validate # that the values provided are within spec but in some cases, e.g. when # using SQLite, that doesn't happen. We therefore provide these two # methods for doing local validation of these values since they are # passed in as parameters to handle_upload. # Since the upload_id and file_id are being provided here as # parameters, we check that they are valid. This should be done by # the DB and an error would be generated in the tu.save() call below # however SQLite doesn't handle field length validation so this won't # be picked up when using SQLite. # The type of parsed data should be a descendant of an UploadedFile # type. # Save original file name and set name of saved file to the unique ID # Before we attempt to save the file, make sure that the upload # directory we're going to save to exists. # *** It's not necessary to explicitly create the directory since # *** the FileSystemStorage object creates the directory on save # if not os.path.exists(storage.location): # LOG.debug('Filepond app: Creating file upload directory ' # '<%s>...' % storage.location) # os.makedirs(storage.location, mode=0o700) # We now need to create the temporary upload object and store the # file and metadata. # Handles chunked file uploads as per the approach described in filepond's # docs at https://pqina.nl/filepond/docs/patterns/api/server/#process-chunks # Since the upload_id is being provided here as a paramter, we check # it is valid. This should be done by the DB but for some DBs, e.g. # SQLite field length validation isn't handled. The same check is # done for file_id in the case of POST requests. # Do some general checks to make sure that the storage location # exists and that we're not being made to try and store something # outside the base storage location. Then create the new # temporary directory into which chunks will be stored # We now create the temporary chunked upload object # this will be updated as we receive the chunks. # Check that the incoming data can be accessed. If the request # content type was invalid then we want to raise an error here # Trying to access request data should result in a 415 response if # the data couldn't be handled by the configured parser. # Try to load a temporary chunked upload object for the provided id # Get the required header information to handle the new data # if this is the first chunk, store the filename # Check that our recorded offset matches the offset provided by the # client...if not, there's an error. # Store the chunk and check if we've now completed the upload # Set the updated chunk number and the new offset # At this point, if the upload is complete, we can rebuild the chunks # into the complete file and store it with a TemporaryUpload object. # Load each of the file parts into a BytesIO object and store them # via a TemporaryUpload object. # Prepare an InMemoryUploadedFile object so that the data can be # successfully saved via the FileField in the TemporaryUpload object # Check that the final file is stored and of the correct size # Check that the directory for the chunks exists # TODO: Is it necessary to check for the existence of all previous # chunk files here?
2.11818
2
guests/migrations/0020_alter_guest_meal.py
MarinaMcGrath/django-wedding-website
0
6630003
<filename>guests/migrations/0020_alter_guest_meal.py<gh_stars>0 # Generated by Django 4.0.1 on 2022-01-29 04:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('guests', '0019_party_display_name'), ] operations = [ migrations.AlterField( model_name='guest', name='meal', field=models.CharField(blank=True, choices=[('vegetarian', 'vegetarian'), ('vegan', 'vegan'), ('none', 'none')], max_length=20, null=True), ), ]
<filename>guests/migrations/0020_alter_guest_meal.py<gh_stars>0 # Generated by Django 4.0.1 on 2022-01-29 04:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('guests', '0019_party_display_name'), ] operations = [ migrations.AlterField( model_name='guest', name='meal', field=models.CharField(blank=True, choices=[('vegetarian', 'vegetarian'), ('vegan', 'vegan'), ('none', 'none')], max_length=20, null=True), ), ]
en
0.857644
# Generated by Django 4.0.1 on 2022-01-29 04:56
1.619657
2
src/api/v1/__init__.py
BuildForSDG/Team-115-Product
0
6630004
import os from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from dotenv import load_dotenv application = Flask(__name__) basedir = os.path.abspath(os.path.dirname(__file__)) # set db base directory project_dir = os.path.expanduser('~/team-115-product') load_dotenv(os.path.join(project_dir, '.env')) class Config(object): SECRET_KEY = os.getenv('SECRET_KEY') # secret keys for forms & sessions # set the database uri SQLALCHEMY_DATABASE_URI = process.env.DATABASE_URL #os.environ['DATABASE_URL'] # enable automatic commit of database changes at the end of each request SQLALCHEMY_COMMIT_ON_TEARDOWN = True # disable signaling the app anytime a database change is made SQLALCHEMY_TRACK_MODIFICATIONS = False application.config.from_object(Config) # Bootstrap(app) db = SQLAlchemy(application) db.init_app(application) migrate = Migrate(application, db) # Resgister blueprints from .users import users as users_blueprint from .solutions import solutions as solutions_blueprint application.register_blueprint(users_blueprint) application.register_blueprint(solutions_blueprint)
import os from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from dotenv import load_dotenv application = Flask(__name__) basedir = os.path.abspath(os.path.dirname(__file__)) # set db base directory project_dir = os.path.expanduser('~/team-115-product') load_dotenv(os.path.join(project_dir, '.env')) class Config(object): SECRET_KEY = os.getenv('SECRET_KEY') # secret keys for forms & sessions # set the database uri SQLALCHEMY_DATABASE_URI = process.env.DATABASE_URL #os.environ['DATABASE_URL'] # enable automatic commit of database changes at the end of each request SQLALCHEMY_COMMIT_ON_TEARDOWN = True # disable signaling the app anytime a database change is made SQLALCHEMY_TRACK_MODIFICATIONS = False application.config.from_object(Config) # Bootstrap(app) db = SQLAlchemy(application) db.init_app(application) migrate = Migrate(application, db) # Resgister blueprints from .users import users as users_blueprint from .solutions import solutions as solutions_blueprint application.register_blueprint(users_blueprint) application.register_blueprint(solutions_blueprint)
en
0.678602
# set db base directory # secret keys for forms & sessions # set the database uri #os.environ['DATABASE_URL'] # enable automatic commit of database changes at the end of each request # disable signaling the app anytime a database change is made # Bootstrap(app) # Resgister blueprints
2.299396
2
pyteal/compiler/sort.py
CiottiGiorgio/pyteal
0
6630005
<reponame>CiottiGiorgio/pyteal<filename>pyteal/compiler/sort.py from typing import List from pyteal.ir import TealBlock from pyteal.errors import TealInternalError def sortBlocks(start: TealBlock, end: TealBlock) -> List[TealBlock]: """Topologically sort the graph which starts with the input TealBlock. Args: start: The starting point of the graph to sort. Returns: An ordered list of TealBlocks that is sorted such that every block is guaranteed to appear in the list before all of its outgoing blocks. """ S = [start] order = [] visited = set() # I changed visited to a set to be more efficient while len(S) != 0: n = S.pop() if id(n) in visited: continue S += n.getOutgoing() order.append(n) visited.add(id(n)) endIndex = -1 for i, block in enumerate(order): if block is end: endIndex = i break if endIndex == -1: raise TealInternalError("End block not present") order.pop(endIndex) order.append(end) return order
from typing import List from pyteal.ir import TealBlock from pyteal.errors import TealInternalError def sortBlocks(start: TealBlock, end: TealBlock) -> List[TealBlock]: """Topologically sort the graph which starts with the input TealBlock. Args: start: The starting point of the graph to sort. Returns: An ordered list of TealBlocks that is sorted such that every block is guaranteed to appear in the list before all of its outgoing blocks. """ S = [start] order = [] visited = set() # I changed visited to a set to be more efficient while len(S) != 0: n = S.pop() if id(n) in visited: continue S += n.getOutgoing() order.append(n) visited.add(id(n)) endIndex = -1 for i, block in enumerate(order): if block is end: endIndex = i break if endIndex == -1: raise TealInternalError("End block not present") order.pop(endIndex) order.append(end) return order
en
0.943845
Topologically sort the graph which starts with the input TealBlock. Args: start: The starting point of the graph to sort. Returns: An ordered list of TealBlocks that is sorted such that every block is guaranteed to appear in the list before all of its outgoing blocks. # I changed visited to a set to be more efficient
2.87246
3
app/pages/choices/unm.py
zferic/harmonization-website
1
6630006
CAT_UNM_ANALYTES = [('Analytes', ( ('BCD', 'Cadmium - Blood'), ('BHGE', 'Ethyl Mercury - Blood'), ('BHGM', 'Methyl Mercury - Blood'), ('BMN', 'Manganese - Blood'), ('BPB', 'Lead - Blood'), ('BSE', 'Selenium - Blood'), ('IHG', 'Inorganic Mercury - Blood'), ('THG', 'Mercury Total - Blood'), ('SCU', 'Copper - Serum'), ('SSE', 'Selenium - Serum'), ('SZN', 'Zinc - Serum'), ('UAS3', 'Arsenous (III) acid - Urine'), ('UAS5', 'Arsenic (V) acid - Urine'), ('UASB', 'Arsenobetaine - Urine'), ('UASC', 'Arsenocholine - Urine'), ('UBA', 'Barium - Urine'), ('UBE', 'Beryllium - Urine'), ('UCD', 'Cadmium - Urine'), ('UCO', 'Cobalt - Urine'), ('UCS', 'Cesium - Urine'), ('UDMA', 'Dimethylarsinic Acid - Urine'), ('UHG', 'Mercury - Urine'), ('UIO', 'Iodine - Urine'), ('UMMA', 'Monomethylarsinic Acid - Urine'), ('UMN', 'Manganese - Urine'), ('UMO', 'Molybdenum - Urine'), ('UPB', 'Lead - Urine'), ('UPT', 'Platinum - Urine'), ('USB', 'Antimony - Urine'), ('USN', 'Tin - Urine'), ('USR', 'Strontium - Urine'), ('UTAS', 'Arsenic Total - Urine'), ('UTL', 'Thallium - Urine'), ('UTMO', 'Trimethylarsine - Urine'), ('UTU', 'Tungsten - Urine'), ('UUR', 'Uranium - Urine'), ))] CAT_UNM_MEMBER_C = ( ('1', 'mother'), ('2', 'father'), ('3', 'child'), ) CAT_UNM_TIME_PERIOD = ( ('9', 'any'), # all time periods ploted together ('1', 'enrollment'), ('3', 'week 36/delivery'), ) ADDITIONAL_FEATURES = [('Categorical', ( ('Outcome', 'Outcome'), ('Member_c', 'Family Member'), ('TimePeriod', 'Collection Time'), ('CohortType', 'Cohort Type'), )), ('Outcomes', ( ('SGA', 'SGA'), ('LGA', 'LGA'), ('birthWt', 'Birth Weight'), ('headCirc', 'headCirc'), ('birthLen','birthLen'), ('Outcome_weeks', 'Outcome Weeks'), ('Outcome', 'Outcome'), ) )] UNM_FEATURE_CHOICES = CAT_UNM_ANALYTES + ADDITIONAL_FEATURES #UNM_FEATURE_CHOICES = CAT_UNM_ANALYTES UNM_CATEGORICAL_CHOICES = ADDITIONAL_FEATURES
CAT_UNM_ANALYTES = [('Analytes', ( ('BCD', 'Cadmium - Blood'), ('BHGE', 'Ethyl Mercury - Blood'), ('BHGM', 'Methyl Mercury - Blood'), ('BMN', 'Manganese - Blood'), ('BPB', 'Lead - Blood'), ('BSE', 'Selenium - Blood'), ('IHG', 'Inorganic Mercury - Blood'), ('THG', 'Mercury Total - Blood'), ('SCU', 'Copper - Serum'), ('SSE', 'Selenium - Serum'), ('SZN', 'Zinc - Serum'), ('UAS3', 'Arsenous (III) acid - Urine'), ('UAS5', 'Arsenic (V) acid - Urine'), ('UASB', 'Arsenobetaine - Urine'), ('UASC', 'Arsenocholine - Urine'), ('UBA', 'Barium - Urine'), ('UBE', 'Beryllium - Urine'), ('UCD', 'Cadmium - Urine'), ('UCO', 'Cobalt - Urine'), ('UCS', 'Cesium - Urine'), ('UDMA', 'Dimethylarsinic Acid - Urine'), ('UHG', 'Mercury - Urine'), ('UIO', 'Iodine - Urine'), ('UMMA', 'Monomethylarsinic Acid - Urine'), ('UMN', 'Manganese - Urine'), ('UMO', 'Molybdenum - Urine'), ('UPB', 'Lead - Urine'), ('UPT', 'Platinum - Urine'), ('USB', 'Antimony - Urine'), ('USN', 'Tin - Urine'), ('USR', 'Strontium - Urine'), ('UTAS', 'Arsenic Total - Urine'), ('UTL', 'Thallium - Urine'), ('UTMO', 'Trimethylarsine - Urine'), ('UTU', 'Tungsten - Urine'), ('UUR', 'Uranium - Urine'), ))] CAT_UNM_MEMBER_C = ( ('1', 'mother'), ('2', 'father'), ('3', 'child'), ) CAT_UNM_TIME_PERIOD = ( ('9', 'any'), # all time periods ploted together ('1', 'enrollment'), ('3', 'week 36/delivery'), ) ADDITIONAL_FEATURES = [('Categorical', ( ('Outcome', 'Outcome'), ('Member_c', 'Family Member'), ('TimePeriod', 'Collection Time'), ('CohortType', 'Cohort Type'), )), ('Outcomes', ( ('SGA', 'SGA'), ('LGA', 'LGA'), ('birthWt', 'Birth Weight'), ('headCirc', 'headCirc'), ('birthLen','birthLen'), ('Outcome_weeks', 'Outcome Weeks'), ('Outcome', 'Outcome'), ) )] UNM_FEATURE_CHOICES = CAT_UNM_ANALYTES + ADDITIONAL_FEATURES #UNM_FEATURE_CHOICES = CAT_UNM_ANALYTES UNM_CATEGORICAL_CHOICES = ADDITIONAL_FEATURES
en
0.619707
# all time periods ploted together #UNM_FEATURE_CHOICES = CAT_UNM_ANALYTES
1.267251
1
scripts/_dparser.py
WinstonLHS/tofu
56
6630007
import sys import os import getpass import argparse # tofu # test if in a tofu git repo _HERE = os.path.abspath(os.path.dirname(__file__)) _TOFUPATH = os.path.dirname(_HERE) def get_mods(): istofugit = False if '.git' in os.listdir(_TOFUPATH) and 'tofu' in _TOFUPATH: istofugit = True if istofugit: # Make sure we load the corresponding tofu sys.path.insert(1, _TOFUPATH) import tofu as tf from tofu.imas2tofu import MultiIDSLoader _ = sys.path.pop(1) else: import tofu as tf from tofu.imas2tofu import MultiIDSLoader # default parameters pfe = os.path.join(os.path.expanduser('~'), '.tofu', '_scripts_def.py') if os.path.isfile(pfe): # Make sure we load the user-specific file # sys.path method # sys.path.insert(1, os.path.join(os.path.expanduser('~'), '.tofu')) # import _scripts_def as _defscripts # _ = sys.path.pop(1) # importlib method import importlib.util spec = importlib.util.spec_from_file_location("_defscripts", pfe) _defscripts = importlib.util.module_from_spec(spec) spec.loader.exec_module(_defscripts) else: try: import tofu.entrypoints._def as _defscripts except Exception as err: from . import _def as _defscripts return tf, MultiIDSLoader, _defscripts # ############################################################################# # utility functions # ############################################################################# def _str2bool(v): if isinstance(v, bool): return v elif v.lower() in ['yes', 'true', 'y', 't', '1']: return True elif v.lower() in ['no', 'false', 'n', 'f', '0']: return False else: raise argparse.ArgumentTypeError('Boolean value expected!') def _str2boolstr(v): if isinstance(v, bool): return v elif isinstance(v, str): if v.lower() in ['yes', 'true', 'y', 't', '1']: return True elif v.lower() in ['no', 'false', 'n', 'f', '0']: return False elif v.lower() == 'none': return None else: return v else: raise argparse.ArgumentTypeError('Boolean, None or str expected!') def _str2tlim(v): c0 = (v.isdigit() or ('.' in v and len(v.split('.')) == 2 and all([vv.isdigit() for vv in v.split('.')]))) if c0 is True: v = float(v) elif v.lower() == 'none': v = None return v # ############################################################################# # Parser for tofu version # ############################################################################# def parser_version(): msg = """ Get tofu version from bash optionally set an enviroment variable If run from a git repo containing tofu, simply returns git describe Otherwise reads the tofu version stored in tofu/version.py """ ddef = { 'path': os.path.join(_TOFUPATH, 'tofu'), 'envvar': False, 'verb': True, 'warn': True, 'force': False, 'name': 'TOFU_VERSION', } # Instanciate parser parser = argparse.ArgumentParser(description=msg) # Define input arguments parser.add_argument('-p', '--path', type=str, help='tofu source directory where version.py is found', required=False, default=ddef['path']) parser.add_argument('-v', '--verb', type=_str2bool, help='flag indicating whether to print the version', required=False, default=ddef['verb']) parser.add_argument('-ev', '--envvar', type=_str2boolstr, help='name of the environment variable to set, if any', required=False, default=ddef['envvar']) parser.add_argument('-w', '--warn', type=_str2bool, help=('flag indicatin whether to print a warning when' + 'the desired environment variable (envvar)' + 'already exists'), required=False, default=ddef['warn']) parser.add_argument('-f', '--force', type=_str2bool, help=('flag indicating whether to force the update of ' + 'the desired environment variable (envvar)' + ' even if it already exists'), required=False, default=ddef['force']) return ddef, parser # ############################################################################# # Parser for tofu custom # ############################################################################# def parser_custom(): msg = """ Create a local copy of tofu default parameters This creates a local copy, in your home, of tofu default parameters A directory .tofu is created in your home directory In this directory, modules containing default parameters are copied You can then customize them without impacting other users """ _USER = getpass.getuser() _USER_HOME = os.path.expanduser('~') ddef = { 'target': os.path.join(_USER_HOME, '.tofu'), 'source': os.path.join(_TOFUPATH, 'tofu'), 'files': [ '_imas2tofu_def.py', '_entrypoints_def.py', ], 'directories': [ 'openadas2tofu', 'nist2tofu', os.path.join('nist2tofu', 'ASD'), ], } # Instanciate parser parser = argparse.ArgumentParser(description=msg) # Define input arguments parser.add_argument('-s', '--source', type=str, help='tofu source directory', required=False, default=ddef['source']) parser.add_argument('-t', '--target', type=str, help=('directory where .tofu/ should be created' + ' (default: {})'.format(ddef['target'])), required=False, default=ddef['target']) parser.add_argument('-f', '--files', type=str, help='list of files to be copied', required=False, nargs='+', default=ddef['files'], choices=ddef['files']) return ddef, parser # ############################################################################# # Parser for tofu plot # ############################################################################# def parser_plot(): tf, MultiIDSLoader, _defscripts = get_mods() _LIDS_CONFIG = MultiIDSLoader._lidsconfig _LIDS_DIAG = MultiIDSLoader._lidsdiag _LIDS_PLASMA = tf.imas2tofu.MultiIDSLoader._lidsplasma _LIDS = _LIDS_CONFIG + _LIDS_DIAG + _LIDS_PLASMA + tf.utils._LIDS_CUSTOM msg = """Fast interactive visualization tool for diagnostics data in imas This is merely a wrapper around the function tofu.load_from_imas() It loads (from imas) and displays diagnostics data from the following ids: {} """.format(_LIDS) ddef = { # User-customizable 'run': _defscripts._TFPLOT_RUN, 'user': _defscripts._TFPLOT_USER, 'database': _defscripts._TFPLOT_DATABASE, 'version': _defscripts._TFPLOT_VERSION, 't0': _defscripts._TFPLOT_T0, 'tlim': None, 'sharex': _defscripts._TFPLOT_SHAREX, 'bck': _defscripts._TFPLOT_BCK, 'extra': _defscripts._TFPLOT_EXTRA, 'indch_auto': _defscripts._TFPLOT_INDCH_AUTO, 'config': _defscripts._TFPLOT_CONFIG, 'tosoledge3x': _defscripts._TFPLOT_TOSOLEDGE3X, 'mag_sep_nbpts': _defscripts._TFPLOT_MAG_SEP_NBPTS, 'mag_sep_dR': _defscripts._TFPLOT_MAG_SEP_DR, 'mag_init_pts': _defscripts._TFPLOT_MAG_INIT_PTS, # Non user-customizable 'lids_plasma': _LIDS_PLASMA, 'lids_diag': _LIDS_DIAG, 'lids': _LIDS, } parser = argparse.ArgumentParser(description=msg) msg = 'config name to be loaded' parser.add_argument('-c', '--config', help=msg, required=False, type=str, default=ddef['config']) msg = 'path in which to save the tofu config in SOLEDGE3X format' parser.add_argument('-tse3x', '--tosoledge3x', help=msg, required=False, type=str, default=ddef['tosoledge3x']) parser.add_argument('-s', '--shot', type=int, help='shot number', required=False, nargs='+') msg = 'username of the DB where the datafile is located' parser.add_argument('-u', '--user', help=msg, required=False, default=ddef['user']) msg = 'database name where the datafile is located' parser.add_argument('-db', '--database', help=msg, required=False, default=ddef['database']) parser.add_argument('-r', '--run', help='run number', required=False, type=int, default=ddef['run']) parser.add_argument('-v', '--version', help='version number', required=False, type=str, default=ddef['version']) msg = ("ids from which to load diagnostics data," + " can be:\n{}".format(ddef['lids'])) parser.add_argument('-i', '--ids', type=str, required=True, help=msg, nargs='+', choices=ddef['lids']) parser.add_argument('-q', '--quantity', type=str, required=False, help='Desired quantity from the plasma ids', nargs='+', default=None) parser.add_argument('-X', '--X', type=str, required=False, help='Quantity from the plasma ids for abscissa', nargs='+', default=None) parser.add_argument('-t0', '--t0', type=_str2boolstr, required=False, help='Reference time event setting t = 0', default=ddef['t0']) parser.add_argument('-t', '--t', type=float, required=False, help='Input time when needed') parser.add_argument('-tl', '--tlim', type=_str2tlim, required=False, help='limits of the time interval', nargs='+', default=ddef['tlim']) parser.add_argument('-ich', '--indch', type=int, required=False, help='indices of channels to be loaded', nargs='+', default=None) parser.add_argument('-ichauto', '--indch_auto', type=_str2bool, required=False, help='automatically determine indices of' + ' channels to be loaded', default=ddef['indch_auto']) parser.add_argument('-e', '--extra', type=_str2bool, required=False, help='If True loads separatrix and heating power', default=ddef['extra']) parser.add_argument('-sx', '--sharex', type=_str2bool, required=False, help='Should X axis be shared between diag ids ?', default=ddef['sharex'], const=True, nargs='?') parser.add_argument('-bck', '--background', type=_str2bool, required=False, help='Plot data enveloppe as grey background ?', default=ddef['bck'], const=True, nargs='?') parser.add_argument('-mag_sep_dR', '--mag_sep_dR', type=float, required=False, default=ddef['mag_sep_dR'], help='Distance to separatrix from r_ext to plot' + ' magnetic field lines') parser.add_argument('-mag_sep_nbpts', '--mag_sep_nbpts', type=int, required=False, default=ddef['mag_sep_nbpts'], help=('Number of mag. field lines to plot ' + 'from separatrix')) parser.add_argument('-mag_init_pts', '--mag_init_pts', type=float, required=False, nargs=3, default=ddef['mag_init_pts'], help='Manual coordinates of point that a RED magnetic' + ' field line will cross on graphics,' + ' give coordinates as: R [m], Phi [rad], Z [m]') return ddef, parser # ############################################################################# # Parser for tofu calc # ############################################################################# def parser_calc(): tf, MultiIDSLoader, _defscripts = get_mods() _LIDS_DIAG = MultiIDSLoader._lidsdiag _LIDS_PLASMA = tf.imas2tofu.MultiIDSLoader._lidsplasma _LIDS = _LIDS_DIAG + _LIDS_PLASMA + tf.utils._LIDS_CUSTOM # Parse input arguments msg = """Fast interactive visualization tool for diagnostics data in imas This is merely a wrapper around the function tofu.calc_from_imas() It calculates and dsplays synthetic signal (from imas) from the following ids: {} """.format(_LIDS) ddef = { # User-customizable 'run': _defscripts._TFCALC_RUN, 'user': _defscripts._TFCALC_USER, 'database': _defscripts._TFCALC_DATABASE, 'version': _defscripts._TFCALC_VERSION, 't0': _defscripts._TFCALC_T0, 'tlim': None, 'sharex': _defscripts._TFCALC_SHAREX, 'bck': _defscripts._TFCALC_BCK, 'extra': _defscripts._TFCALC_EXTRA, 'indch_auto': _defscripts._TFCALC_INDCH_AUTO, 'coefs': None, # Non user-customizable 'lids_plasma': _LIDS_PLASMA, 'lids_diag': _LIDS_DIAG, 'lids': _LIDS, } parser = argparse.ArgumentParser(description=msg) # Main idd parameters parser.add_argument('-s', '--shot', type=int, help='shot number', required=True) msg = 'username of the DB where the datafile is located' parser.add_argument('-u', '--user', help=msg, required=False, default=ddef['user']) msg = 'database name where the datafile is located' parser.add_argument('-db', '--database', help=msg, required=False, default=ddef['database']) parser.add_argument('-r', '--run', help='run number', required=False, type=int, default=ddef['run']) parser.add_argument('-v', '--version', help='version number', required=False, type=str, default=ddef['version']) # Equilibrium idd parameters parser.add_argument('-s_eq', '--shot_eq', type=int, help='shot number for equilibrium, defaults to -s', required=False, default=None) msg = 'username for the equilibrium, defaults to -u' parser.add_argument('-u_eq', '--user_eq', help=msg, required=False, default=None) msg = 'database name for the equilibrium, defaults to -tok' parser.add_argument('-db_eq', '--database_eq', help=msg, required=False, default=None) parser.add_argument('-r_eq', '--run_eq', help='run number for the equilibrium, defaults to -r', required=False, type=int, default=None) # Profile idd parameters parser.add_argument('-s_prof', '--shot_prof', type=int, help='shot number for profiles, defaults to -s', required=False, default=None) msg = 'username for the profiles, defaults to -u' parser.add_argument('-u_prof', '--user_prof', help=msg, required=False, default=None) msg = 'database name for the profiles, defaults to -tok' parser.add_argument('-db_prof', '--database_prof', help=msg, required=False, default=None) parser.add_argument('-r_prof', '--run_prof', help='run number for the profiles, defaults to -r', required=False, type=int, default=None) msg = ("ids from which to load diagnostics data," + " can be:\n{}".format(ddef['lids'])) parser.add_argument('-i', '--ids', type=str, required=True, help=msg, nargs='+', choices=ddef['lids']) parser.add_argument('-B', '--Brightness', type=bool, required=False, help='Whether to express result as brightness', default=None) parser.add_argument('-res', '--res', type=float, required=False, help='Space resolution for the LOS-discretization', default=None) parser.add_argument('-t0', '--t0', type=_str2boolstr, required=False, help='Reference time event setting t = 0', default=ddef['t0']) parser.add_argument('-tl', '--tlim', type=_str2tlim, required=False, help='limits of the time interval', nargs='+', default=ddef['tlim']) parser.add_argument('-c', '--coefs', type=float, required=False, help='Corrective coefficient, if any', default=ddef['coefs']) parser.add_argument('-ich', '--indch', type=int, required=False, help='indices of channels to be loaded', nargs='+', default=None) parser.add_argument('-ichauto', '--indch_auto', type=bool, required=False, help=('automatically determine indices ' + 'of channels to be loaded'), default=ddef['indch_auto']) parser.add_argument('-e', '--extra', type=_str2bool, required=False, help='If True loads separatrix and heating power', default=ddef['extra']) parser.add_argument('-sx', '--sharex', type=_str2bool, required=False, help='Should X axis be shared between diag ids?', default=ddef['sharex'], const=True, nargs='?') parser.add_argument('-if', '--input_file', type=str, required=False, help='mat file from which to load core_profiles', default=None) parser.add_argument('-of', '--output_file', type=str, required=False, help='mat file into which to save synthetic signal', default=None) parser.add_argument('-bck', '--background', type=_str2bool, required=False, help='Plot data enveloppe as grey background ?', default=ddef['bck'], const=True, nargs='?') return ddef, parser # ############################################################################# # Parser dict # ############################################################################# _DPARSER = { 'version': parser_version, 'custom': parser_custom, 'plot': parser_plot, 'calc': parser_calc, }
import sys import os import getpass import argparse # tofu # test if in a tofu git repo _HERE = os.path.abspath(os.path.dirname(__file__)) _TOFUPATH = os.path.dirname(_HERE) def get_mods(): istofugit = False if '.git' in os.listdir(_TOFUPATH) and 'tofu' in _TOFUPATH: istofugit = True if istofugit: # Make sure we load the corresponding tofu sys.path.insert(1, _TOFUPATH) import tofu as tf from tofu.imas2tofu import MultiIDSLoader _ = sys.path.pop(1) else: import tofu as tf from tofu.imas2tofu import MultiIDSLoader # default parameters pfe = os.path.join(os.path.expanduser('~'), '.tofu', '_scripts_def.py') if os.path.isfile(pfe): # Make sure we load the user-specific file # sys.path method # sys.path.insert(1, os.path.join(os.path.expanduser('~'), '.tofu')) # import _scripts_def as _defscripts # _ = sys.path.pop(1) # importlib method import importlib.util spec = importlib.util.spec_from_file_location("_defscripts", pfe) _defscripts = importlib.util.module_from_spec(spec) spec.loader.exec_module(_defscripts) else: try: import tofu.entrypoints._def as _defscripts except Exception as err: from . import _def as _defscripts return tf, MultiIDSLoader, _defscripts # ############################################################################# # utility functions # ############################################################################# def _str2bool(v): if isinstance(v, bool): return v elif v.lower() in ['yes', 'true', 'y', 't', '1']: return True elif v.lower() in ['no', 'false', 'n', 'f', '0']: return False else: raise argparse.ArgumentTypeError('Boolean value expected!') def _str2boolstr(v): if isinstance(v, bool): return v elif isinstance(v, str): if v.lower() in ['yes', 'true', 'y', 't', '1']: return True elif v.lower() in ['no', 'false', 'n', 'f', '0']: return False elif v.lower() == 'none': return None else: return v else: raise argparse.ArgumentTypeError('Boolean, None or str expected!') def _str2tlim(v): c0 = (v.isdigit() or ('.' in v and len(v.split('.')) == 2 and all([vv.isdigit() for vv in v.split('.')]))) if c0 is True: v = float(v) elif v.lower() == 'none': v = None return v # ############################################################################# # Parser for tofu version # ############################################################################# def parser_version(): msg = """ Get tofu version from bash optionally set an enviroment variable If run from a git repo containing tofu, simply returns git describe Otherwise reads the tofu version stored in tofu/version.py """ ddef = { 'path': os.path.join(_TOFUPATH, 'tofu'), 'envvar': False, 'verb': True, 'warn': True, 'force': False, 'name': 'TOFU_VERSION', } # Instanciate parser parser = argparse.ArgumentParser(description=msg) # Define input arguments parser.add_argument('-p', '--path', type=str, help='tofu source directory where version.py is found', required=False, default=ddef['path']) parser.add_argument('-v', '--verb', type=_str2bool, help='flag indicating whether to print the version', required=False, default=ddef['verb']) parser.add_argument('-ev', '--envvar', type=_str2boolstr, help='name of the environment variable to set, if any', required=False, default=ddef['envvar']) parser.add_argument('-w', '--warn', type=_str2bool, help=('flag indicatin whether to print a warning when' + 'the desired environment variable (envvar)' + 'already exists'), required=False, default=ddef['warn']) parser.add_argument('-f', '--force', type=_str2bool, help=('flag indicating whether to force the update of ' + 'the desired environment variable (envvar)' + ' even if it already exists'), required=False, default=ddef['force']) return ddef, parser # ############################################################################# # Parser for tofu custom # ############################################################################# def parser_custom(): msg = """ Create a local copy of tofu default parameters This creates a local copy, in your home, of tofu default parameters A directory .tofu is created in your home directory In this directory, modules containing default parameters are copied You can then customize them without impacting other users """ _USER = getpass.getuser() _USER_HOME = os.path.expanduser('~') ddef = { 'target': os.path.join(_USER_HOME, '.tofu'), 'source': os.path.join(_TOFUPATH, 'tofu'), 'files': [ '_imas2tofu_def.py', '_entrypoints_def.py', ], 'directories': [ 'openadas2tofu', 'nist2tofu', os.path.join('nist2tofu', 'ASD'), ], } # Instanciate parser parser = argparse.ArgumentParser(description=msg) # Define input arguments parser.add_argument('-s', '--source', type=str, help='tofu source directory', required=False, default=ddef['source']) parser.add_argument('-t', '--target', type=str, help=('directory where .tofu/ should be created' + ' (default: {})'.format(ddef['target'])), required=False, default=ddef['target']) parser.add_argument('-f', '--files', type=str, help='list of files to be copied', required=False, nargs='+', default=ddef['files'], choices=ddef['files']) return ddef, parser # ############################################################################# # Parser for tofu plot # ############################################################################# def parser_plot(): tf, MultiIDSLoader, _defscripts = get_mods() _LIDS_CONFIG = MultiIDSLoader._lidsconfig _LIDS_DIAG = MultiIDSLoader._lidsdiag _LIDS_PLASMA = tf.imas2tofu.MultiIDSLoader._lidsplasma _LIDS = _LIDS_CONFIG + _LIDS_DIAG + _LIDS_PLASMA + tf.utils._LIDS_CUSTOM msg = """Fast interactive visualization tool for diagnostics data in imas This is merely a wrapper around the function tofu.load_from_imas() It loads (from imas) and displays diagnostics data from the following ids: {} """.format(_LIDS) ddef = { # User-customizable 'run': _defscripts._TFPLOT_RUN, 'user': _defscripts._TFPLOT_USER, 'database': _defscripts._TFPLOT_DATABASE, 'version': _defscripts._TFPLOT_VERSION, 't0': _defscripts._TFPLOT_T0, 'tlim': None, 'sharex': _defscripts._TFPLOT_SHAREX, 'bck': _defscripts._TFPLOT_BCK, 'extra': _defscripts._TFPLOT_EXTRA, 'indch_auto': _defscripts._TFPLOT_INDCH_AUTO, 'config': _defscripts._TFPLOT_CONFIG, 'tosoledge3x': _defscripts._TFPLOT_TOSOLEDGE3X, 'mag_sep_nbpts': _defscripts._TFPLOT_MAG_SEP_NBPTS, 'mag_sep_dR': _defscripts._TFPLOT_MAG_SEP_DR, 'mag_init_pts': _defscripts._TFPLOT_MAG_INIT_PTS, # Non user-customizable 'lids_plasma': _LIDS_PLASMA, 'lids_diag': _LIDS_DIAG, 'lids': _LIDS, } parser = argparse.ArgumentParser(description=msg) msg = 'config name to be loaded' parser.add_argument('-c', '--config', help=msg, required=False, type=str, default=ddef['config']) msg = 'path in which to save the tofu config in SOLEDGE3X format' parser.add_argument('-tse3x', '--tosoledge3x', help=msg, required=False, type=str, default=ddef['tosoledge3x']) parser.add_argument('-s', '--shot', type=int, help='shot number', required=False, nargs='+') msg = 'username of the DB where the datafile is located' parser.add_argument('-u', '--user', help=msg, required=False, default=ddef['user']) msg = 'database name where the datafile is located' parser.add_argument('-db', '--database', help=msg, required=False, default=ddef['database']) parser.add_argument('-r', '--run', help='run number', required=False, type=int, default=ddef['run']) parser.add_argument('-v', '--version', help='version number', required=False, type=str, default=ddef['version']) msg = ("ids from which to load diagnostics data," + " can be:\n{}".format(ddef['lids'])) parser.add_argument('-i', '--ids', type=str, required=True, help=msg, nargs='+', choices=ddef['lids']) parser.add_argument('-q', '--quantity', type=str, required=False, help='Desired quantity from the plasma ids', nargs='+', default=None) parser.add_argument('-X', '--X', type=str, required=False, help='Quantity from the plasma ids for abscissa', nargs='+', default=None) parser.add_argument('-t0', '--t0', type=_str2boolstr, required=False, help='Reference time event setting t = 0', default=ddef['t0']) parser.add_argument('-t', '--t', type=float, required=False, help='Input time when needed') parser.add_argument('-tl', '--tlim', type=_str2tlim, required=False, help='limits of the time interval', nargs='+', default=ddef['tlim']) parser.add_argument('-ich', '--indch', type=int, required=False, help='indices of channels to be loaded', nargs='+', default=None) parser.add_argument('-ichauto', '--indch_auto', type=_str2bool, required=False, help='automatically determine indices of' + ' channels to be loaded', default=ddef['indch_auto']) parser.add_argument('-e', '--extra', type=_str2bool, required=False, help='If True loads separatrix and heating power', default=ddef['extra']) parser.add_argument('-sx', '--sharex', type=_str2bool, required=False, help='Should X axis be shared between diag ids ?', default=ddef['sharex'], const=True, nargs='?') parser.add_argument('-bck', '--background', type=_str2bool, required=False, help='Plot data enveloppe as grey background ?', default=ddef['bck'], const=True, nargs='?') parser.add_argument('-mag_sep_dR', '--mag_sep_dR', type=float, required=False, default=ddef['mag_sep_dR'], help='Distance to separatrix from r_ext to plot' + ' magnetic field lines') parser.add_argument('-mag_sep_nbpts', '--mag_sep_nbpts', type=int, required=False, default=ddef['mag_sep_nbpts'], help=('Number of mag. field lines to plot ' + 'from separatrix')) parser.add_argument('-mag_init_pts', '--mag_init_pts', type=float, required=False, nargs=3, default=ddef['mag_init_pts'], help='Manual coordinates of point that a RED magnetic' + ' field line will cross on graphics,' + ' give coordinates as: R [m], Phi [rad], Z [m]') return ddef, parser # ############################################################################# # Parser for tofu calc # ############################################################################# def parser_calc(): tf, MultiIDSLoader, _defscripts = get_mods() _LIDS_DIAG = MultiIDSLoader._lidsdiag _LIDS_PLASMA = tf.imas2tofu.MultiIDSLoader._lidsplasma _LIDS = _LIDS_DIAG + _LIDS_PLASMA + tf.utils._LIDS_CUSTOM # Parse input arguments msg = """Fast interactive visualization tool for diagnostics data in imas This is merely a wrapper around the function tofu.calc_from_imas() It calculates and dsplays synthetic signal (from imas) from the following ids: {} """.format(_LIDS) ddef = { # User-customizable 'run': _defscripts._TFCALC_RUN, 'user': _defscripts._TFCALC_USER, 'database': _defscripts._TFCALC_DATABASE, 'version': _defscripts._TFCALC_VERSION, 't0': _defscripts._TFCALC_T0, 'tlim': None, 'sharex': _defscripts._TFCALC_SHAREX, 'bck': _defscripts._TFCALC_BCK, 'extra': _defscripts._TFCALC_EXTRA, 'indch_auto': _defscripts._TFCALC_INDCH_AUTO, 'coefs': None, # Non user-customizable 'lids_plasma': _LIDS_PLASMA, 'lids_diag': _LIDS_DIAG, 'lids': _LIDS, } parser = argparse.ArgumentParser(description=msg) # Main idd parameters parser.add_argument('-s', '--shot', type=int, help='shot number', required=True) msg = 'username of the DB where the datafile is located' parser.add_argument('-u', '--user', help=msg, required=False, default=ddef['user']) msg = 'database name where the datafile is located' parser.add_argument('-db', '--database', help=msg, required=False, default=ddef['database']) parser.add_argument('-r', '--run', help='run number', required=False, type=int, default=ddef['run']) parser.add_argument('-v', '--version', help='version number', required=False, type=str, default=ddef['version']) # Equilibrium idd parameters parser.add_argument('-s_eq', '--shot_eq', type=int, help='shot number for equilibrium, defaults to -s', required=False, default=None) msg = 'username for the equilibrium, defaults to -u' parser.add_argument('-u_eq', '--user_eq', help=msg, required=False, default=None) msg = 'database name for the equilibrium, defaults to -tok' parser.add_argument('-db_eq', '--database_eq', help=msg, required=False, default=None) parser.add_argument('-r_eq', '--run_eq', help='run number for the equilibrium, defaults to -r', required=False, type=int, default=None) # Profile idd parameters parser.add_argument('-s_prof', '--shot_prof', type=int, help='shot number for profiles, defaults to -s', required=False, default=None) msg = 'username for the profiles, defaults to -u' parser.add_argument('-u_prof', '--user_prof', help=msg, required=False, default=None) msg = 'database name for the profiles, defaults to -tok' parser.add_argument('-db_prof', '--database_prof', help=msg, required=False, default=None) parser.add_argument('-r_prof', '--run_prof', help='run number for the profiles, defaults to -r', required=False, type=int, default=None) msg = ("ids from which to load diagnostics data," + " can be:\n{}".format(ddef['lids'])) parser.add_argument('-i', '--ids', type=str, required=True, help=msg, nargs='+', choices=ddef['lids']) parser.add_argument('-B', '--Brightness', type=bool, required=False, help='Whether to express result as brightness', default=None) parser.add_argument('-res', '--res', type=float, required=False, help='Space resolution for the LOS-discretization', default=None) parser.add_argument('-t0', '--t0', type=_str2boolstr, required=False, help='Reference time event setting t = 0', default=ddef['t0']) parser.add_argument('-tl', '--tlim', type=_str2tlim, required=False, help='limits of the time interval', nargs='+', default=ddef['tlim']) parser.add_argument('-c', '--coefs', type=float, required=False, help='Corrective coefficient, if any', default=ddef['coefs']) parser.add_argument('-ich', '--indch', type=int, required=False, help='indices of channels to be loaded', nargs='+', default=None) parser.add_argument('-ichauto', '--indch_auto', type=bool, required=False, help=('automatically determine indices ' + 'of channels to be loaded'), default=ddef['indch_auto']) parser.add_argument('-e', '--extra', type=_str2bool, required=False, help='If True loads separatrix and heating power', default=ddef['extra']) parser.add_argument('-sx', '--sharex', type=_str2bool, required=False, help='Should X axis be shared between diag ids?', default=ddef['sharex'], const=True, nargs='?') parser.add_argument('-if', '--input_file', type=str, required=False, help='mat file from which to load core_profiles', default=None) parser.add_argument('-of', '--output_file', type=str, required=False, help='mat file into which to save synthetic signal', default=None) parser.add_argument('-bck', '--background', type=_str2bool, required=False, help='Plot data enveloppe as grey background ?', default=ddef['bck'], const=True, nargs='?') return ddef, parser # ############################################################################# # Parser dict # ############################################################################# _DPARSER = { 'version': parser_version, 'custom': parser_custom, 'plot': parser_plot, 'calc': parser_calc, }
de
0.327291
# tofu # test if in a tofu git repo # Make sure we load the corresponding tofu # default parameters # Make sure we load the user-specific file # sys.path method # sys.path.insert(1, os.path.join(os.path.expanduser('~'), '.tofu')) # import _scripts_def as _defscripts # _ = sys.path.pop(1) # importlib method # ############################################################################# # utility functions # ############################################################################# # ############################################################################# # Parser for tofu version # ############################################################################# Get tofu version from bash optionally set an enviroment variable If run from a git repo containing tofu, simply returns git describe Otherwise reads the tofu version stored in tofu/version.py # Instanciate parser # Define input arguments # ############################################################################# # Parser for tofu custom # ############################################################################# Create a local copy of tofu default parameters This creates a local copy, in your home, of tofu default parameters A directory .tofu is created in your home directory In this directory, modules containing default parameters are copied You can then customize them without impacting other users # Instanciate parser # Define input arguments # ############################################################################# # Parser for tofu plot # ############################################################################# Fast interactive visualization tool for diagnostics data in imas This is merely a wrapper around the function tofu.load_from_imas() It loads (from imas) and displays diagnostics data from the following ids: {} # User-customizable # Non user-customizable # ############################################################################# # Parser for tofu calc # ############################################################################# # Parse input arguments Fast interactive visualization tool for diagnostics data in imas This is merely a wrapper around the function tofu.calc_from_imas() It calculates and dsplays synthetic signal (from imas) from the following ids: {} # User-customizable # Non user-customizable # Main idd parameters # Equilibrium idd parameters # Profile idd parameters # ############################################################################# # Parser dict # #############################################################################
2.268006
2
src/verify_ce_config.py
bbockelm/htcondor-ce
0
6630008
<filename>src/verify_ce_config.py #!/bin/env python """ Verify HTCondor-CE configuration before service startup """ import re import sys # Verify that the HTCondor Python bindings are in the PYTHONPATH try: import classad import htcondor except ImportError: sys.exit("ERROR: Could not load HTCondor Python bindings. " + \ "Please ensure that the 'htcondor' and 'classad' are in your PYTHONPATH") # Create dict whose values are lists of ads specified in the relevant JOB_ROUTER_* variables JOB_ROUTER_CONFIG = {} for attr in ['JOB_ROUTER_DEFAULTS', 'JOB_ROUTER_ENTRIES']: ads = classad.parseAds(htcondor.param[attr]) JOB_ROUTER_CONFIG[attr] = list(ads) # store the ads (iterating through ClassAdStringIterator consumes them) # Verify job routes. classad.parseAds() ignores malformed ads so we have to compare the unparsed string to the # parsed string, counting the number of ads by proxy: the number of opening square brackets, "[" for attr, ads in JOB_ROUTER_CONFIG.items(): if htcondor.param[attr].count('[') != len(ads): sys.exit("ERROR: Could not read %s in the HTCondor CE configuration. Please verify syntax correctness" % attr) # Find all eval_set_ attributes in the JOB_ROUTER_DEFAULTS EVAL_SET_DEFAULTS = set([x.lstrip('eval_') for x in JOB_ROUTER_CONFIG['JOB_ROUTER_DEFAULTS'][0].keys() if x.startswith('eval_set_')]) # Find all default_ attributes used in expressions in the JOB_ROUTER_DEFAULTS DEFAULT_ATTR = set([re.sub(r'.*(default_\w*).*', 'eval_set_\\1', str(x)) for x in JOB_ROUTER_CONFIG['JOB_ROUTER_DEFAULTS'][0].values() if isinstance(x, classad.ExprTree) and str(x).find('default_') != -1]) for entry in JOB_ROUTER_CONFIG['JOB_ROUTER_ENTRIES']: # Warn users if they've set_ attributes that would be overriden by eval_set in the JOB_ROUTER_DEFAULTS overriden_attr = EVAL_SET_DEFAULTS.intersection(set(entry.keys())) if overriden_attr: print "WARNING: %s in JOB_ROUTER_ENTRIES will be overriden by the JOB_ROUTER_DEFAULTS." \ % ', '.join(overriden_attr) \ + " Use the 'eval_set_' prefix instead." # Ensure that users don't set the job environment in the Job Router if any(x.endswith('environment') for x in entry.keys()): sys.exit("ERROR: Do not use the Job Router to set the environment. Place variables under " +\ "[Local Settings] in /etc/osg/config.d/40-localsettings.ini") # Warn users about eval_set_ default attributes in the ENTRIES since their # evaluation may occur after the eval_set_ expressions containg them in the # JOB_ROUTER_DEFAULTS no_effect_attr = DEFAULT_ATTR.intersection(set([x for x in entry.keys() if x.startswith('eval_set_')])) if no_effect_attr: print "WARNING: %s in JOB_ROUTER_ENTRIES " % ', '.join(no_effect_attr) + \ "may not have any effect. Use the 'set_' prefix instead." # Warn users if osg-configure has not been run try: htcondor.param['OSG_CONFIGURED'] except KeyError: print "WARNING: osg-configure has not been run, degrading the functionality " + \ "of the CE. Please run 'osg-configure -c' and restart condor-ce."
<filename>src/verify_ce_config.py #!/bin/env python """ Verify HTCondor-CE configuration before service startup """ import re import sys # Verify that the HTCondor Python bindings are in the PYTHONPATH try: import classad import htcondor except ImportError: sys.exit("ERROR: Could not load HTCondor Python bindings. " + \ "Please ensure that the 'htcondor' and 'classad' are in your PYTHONPATH") # Create dict whose values are lists of ads specified in the relevant JOB_ROUTER_* variables JOB_ROUTER_CONFIG = {} for attr in ['JOB_ROUTER_DEFAULTS', 'JOB_ROUTER_ENTRIES']: ads = classad.parseAds(htcondor.param[attr]) JOB_ROUTER_CONFIG[attr] = list(ads) # store the ads (iterating through ClassAdStringIterator consumes them) # Verify job routes. classad.parseAds() ignores malformed ads so we have to compare the unparsed string to the # parsed string, counting the number of ads by proxy: the number of opening square brackets, "[" for attr, ads in JOB_ROUTER_CONFIG.items(): if htcondor.param[attr].count('[') != len(ads): sys.exit("ERROR: Could not read %s in the HTCondor CE configuration. Please verify syntax correctness" % attr) # Find all eval_set_ attributes in the JOB_ROUTER_DEFAULTS EVAL_SET_DEFAULTS = set([x.lstrip('eval_') for x in JOB_ROUTER_CONFIG['JOB_ROUTER_DEFAULTS'][0].keys() if x.startswith('eval_set_')]) # Find all default_ attributes used in expressions in the JOB_ROUTER_DEFAULTS DEFAULT_ATTR = set([re.sub(r'.*(default_\w*).*', 'eval_set_\\1', str(x)) for x in JOB_ROUTER_CONFIG['JOB_ROUTER_DEFAULTS'][0].values() if isinstance(x, classad.ExprTree) and str(x).find('default_') != -1]) for entry in JOB_ROUTER_CONFIG['JOB_ROUTER_ENTRIES']: # Warn users if they've set_ attributes that would be overriden by eval_set in the JOB_ROUTER_DEFAULTS overriden_attr = EVAL_SET_DEFAULTS.intersection(set(entry.keys())) if overriden_attr: print "WARNING: %s in JOB_ROUTER_ENTRIES will be overriden by the JOB_ROUTER_DEFAULTS." \ % ', '.join(overriden_attr) \ + " Use the 'eval_set_' prefix instead." # Ensure that users don't set the job environment in the Job Router if any(x.endswith('environment') for x in entry.keys()): sys.exit("ERROR: Do not use the Job Router to set the environment. Place variables under " +\ "[Local Settings] in /etc/osg/config.d/40-localsettings.ini") # Warn users about eval_set_ default attributes in the ENTRIES since their # evaluation may occur after the eval_set_ expressions containg them in the # JOB_ROUTER_DEFAULTS no_effect_attr = DEFAULT_ATTR.intersection(set([x for x in entry.keys() if x.startswith('eval_set_')])) if no_effect_attr: print "WARNING: %s in JOB_ROUTER_ENTRIES " % ', '.join(no_effect_attr) + \ "may not have any effect. Use the 'set_' prefix instead." # Warn users if osg-configure has not been run try: htcondor.param['OSG_CONFIGURED'] except KeyError: print "WARNING: osg-configure has not been run, degrading the functionality " + \ "of the CE. Please run 'osg-configure -c' and restart condor-ce."
en
0.761069
#!/bin/env python Verify HTCondor-CE configuration before service startup # Verify that the HTCondor Python bindings are in the PYTHONPATH # Create dict whose values are lists of ads specified in the relevant JOB_ROUTER_* variables # store the ads (iterating through ClassAdStringIterator consumes them) # Verify job routes. classad.parseAds() ignores malformed ads so we have to compare the unparsed string to the # parsed string, counting the number of ads by proxy: the number of opening square brackets, "[" # Find all eval_set_ attributes in the JOB_ROUTER_DEFAULTS # Find all default_ attributes used in expressions in the JOB_ROUTER_DEFAULTS # Warn users if they've set_ attributes that would be overriden by eval_set in the JOB_ROUTER_DEFAULTS # Ensure that users don't set the job environment in the Job Router # Warn users about eval_set_ default attributes in the ENTRIES since their # evaluation may occur after the eval_set_ expressions containg them in the # JOB_ROUTER_DEFAULTS # Warn users if osg-configure has not been run
2.420116
2
src/ocr/ocr_image.py
fgulan/PyOCR
0
6630009
import sys import cv2 import numpy as np from utils import hist import imutils from scipy.ndimage import interpolation as inter class OCRImage: MAX_ROTATE_ANGLE = 3 ANGLE_DELTA = 0.05 MAX_SCALED_DIMENSION = 800 def __init__(self, image, width, height, x_offset=0, y_offset=0): self._image = image self._x_offset = x_offset self._y_offset = y_offset self._width = width self._height = height def save(self, name): cv2.imwrite(name, self._image) def get_image(self): return self._image def set_image(self, image): self._image = image def get_x(self): return self._x_offset def get_y(self): return self._y_offset def get_height(self): return self._height def get_width(self): return self._width def get_bounding_box(self): return {'x': self.get_x(), 'y': self.get_y(), 'width': self.get_width(), 'height': self.get_height()} def get_segments(self): image = self.get_image() h_proj = hist.horizontal_projection(image) v_proj = hist.vertical_projection(image) min_x, max_x = hist.blob_range(v_proj) min_y, max_y = hist.blob_range(h_proj) width = max_x - min_x + 1 height = max_y - min_y + 1 roi_image = image[min_y:max_y + 1, min_x:max_x + 1] return roi_image, width, height, min_x, min_y def fix_skew(self): angle = self._calculate_skewed_angle_projection(self._image) if abs(angle) < self.MAX_ROTATE_ANGLE: self._image = self._rotate_image(self._image, angle) self._height, self._width = self._image.shape return angle def _calculate_skewed_angle_projection(self, input_image): height, width = input_image.shape new_image = input_image.copy() biggest_dimension = max(height, width) scale = self.MAX_SCALED_DIMENSION / biggest_dimension new_height, new_width = round(height * scale), round(width * scale) scaled_image = cv2.resize(new_image, (new_width, new_height)) angles = np.arange(-self.MAX_ROTATE_ANGLE, self.MAX_ROTATE_ANGLE + self.ANGLE_DELTA, self.ANGLE_DELTA) scores = [] for angle in angles: score = self._find_rotation_score(scaled_image, angle) scores.append(score) best_angle = angles[np.argmax(scores)] return best_angle def _find_rotation_score(self, image, angle): # Rotate image for given angle rotated_image = inter.rotate(image, angle, reshape=False, order=0) # Calculate horizontal projection h_proj = hist.horizontal_projection(rotated_image) # Calculate projection gradient score = np.sum((h_proj[1:] - h_proj[:-1]) ** 2) return score def _calculate_skewed_angle_bbox(self, image): coords = np.column_stack(np.where(image > 0)) angle = cv2.minAreaRect(coords)[-1] if angle < -45: return -(90 + angle) else: return -angle def _rotate_image(self, image, angle): # Add border so when image is rotated - black pixels will be filled image = cv2.copyMakeBorder( image, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=[0, 0, 0]) height, width = image.shape[:2] center = (width // 2, height // 2) rotation_matrix = cv2.getRotationMatrix2D(center, angle, 1.0) rotated_image = cv2.warpAffine(image, rotation_matrix, (width, height), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) output_image = cv2.threshold( rotated_image, 127, 255, cv2.THRESH_BINARY)[1] return output_image
import sys import cv2 import numpy as np from utils import hist import imutils from scipy.ndimage import interpolation as inter class OCRImage: MAX_ROTATE_ANGLE = 3 ANGLE_DELTA = 0.05 MAX_SCALED_DIMENSION = 800 def __init__(self, image, width, height, x_offset=0, y_offset=0): self._image = image self._x_offset = x_offset self._y_offset = y_offset self._width = width self._height = height def save(self, name): cv2.imwrite(name, self._image) def get_image(self): return self._image def set_image(self, image): self._image = image def get_x(self): return self._x_offset def get_y(self): return self._y_offset def get_height(self): return self._height def get_width(self): return self._width def get_bounding_box(self): return {'x': self.get_x(), 'y': self.get_y(), 'width': self.get_width(), 'height': self.get_height()} def get_segments(self): image = self.get_image() h_proj = hist.horizontal_projection(image) v_proj = hist.vertical_projection(image) min_x, max_x = hist.blob_range(v_proj) min_y, max_y = hist.blob_range(h_proj) width = max_x - min_x + 1 height = max_y - min_y + 1 roi_image = image[min_y:max_y + 1, min_x:max_x + 1] return roi_image, width, height, min_x, min_y def fix_skew(self): angle = self._calculate_skewed_angle_projection(self._image) if abs(angle) < self.MAX_ROTATE_ANGLE: self._image = self._rotate_image(self._image, angle) self._height, self._width = self._image.shape return angle def _calculate_skewed_angle_projection(self, input_image): height, width = input_image.shape new_image = input_image.copy() biggest_dimension = max(height, width) scale = self.MAX_SCALED_DIMENSION / biggest_dimension new_height, new_width = round(height * scale), round(width * scale) scaled_image = cv2.resize(new_image, (new_width, new_height)) angles = np.arange(-self.MAX_ROTATE_ANGLE, self.MAX_ROTATE_ANGLE + self.ANGLE_DELTA, self.ANGLE_DELTA) scores = [] for angle in angles: score = self._find_rotation_score(scaled_image, angle) scores.append(score) best_angle = angles[np.argmax(scores)] return best_angle def _find_rotation_score(self, image, angle): # Rotate image for given angle rotated_image = inter.rotate(image, angle, reshape=False, order=0) # Calculate horizontal projection h_proj = hist.horizontal_projection(rotated_image) # Calculate projection gradient score = np.sum((h_proj[1:] - h_proj[:-1]) ** 2) return score def _calculate_skewed_angle_bbox(self, image): coords = np.column_stack(np.where(image > 0)) angle = cv2.minAreaRect(coords)[-1] if angle < -45: return -(90 + angle) else: return -angle def _rotate_image(self, image, angle): # Add border so when image is rotated - black pixels will be filled image = cv2.copyMakeBorder( image, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=[0, 0, 0]) height, width = image.shape[:2] center = (width // 2, height // 2) rotation_matrix = cv2.getRotationMatrix2D(center, angle, 1.0) rotated_image = cv2.warpAffine(image, rotation_matrix, (width, height), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE) output_image = cv2.threshold( rotated_image, 127, 255, cv2.THRESH_BINARY)[1] return output_image
en
0.681967
# Rotate image for given angle # Calculate horizontal projection # Calculate projection gradient # Add border so when image is rotated - black pixels will be filled
2.46182
2
setup.py
aryamanarora/hindi
0
6630010
<reponame>aryamanarora/hindi from setuptools import setup, find_packages with open('README.md') as f: readme = f.read() with open('LICENSE') as f: license = f.read() setup( name='hindi', version='0.0.0', description='Useful tools for dealing with Hindi', long_description=readme, author='<NAME>', author_email='<EMAIL>', url='https://github.com/aryamanarora/hindi', license=license, packages=find_packages(exclude=('tests', 'docs')) )
from setuptools import setup, find_packages with open('README.md') as f: readme = f.read() with open('LICENSE') as f: license = f.read() setup( name='hindi', version='0.0.0', description='Useful tools for dealing with Hindi', long_description=readme, author='<NAME>', author_email='<EMAIL>', url='https://github.com/aryamanarora/hindi', license=license, packages=find_packages(exclude=('tests', 'docs')) )
none
1
1.228493
1
setup.py
thiviyanT/torch-rgcn
49
6630011
from setuptools import setup setup(name='torch-rgcn', version='1.0', description='A PyTorch library for Relational Graph Convolutional Networks', url='https://github.com/thiviyanT/torch-RGCN', author='<NAME>', author_email='<EMAIL>', license='MIT', packages=['torch_rgcn'], python_requires='>=3.7', zip_safe=False)
from setuptools import setup setup(name='torch-rgcn', version='1.0', description='A PyTorch library for Relational Graph Convolutional Networks', url='https://github.com/thiviyanT/torch-RGCN', author='<NAME>', author_email='<EMAIL>', license='MIT', packages=['torch_rgcn'], python_requires='>=3.7', zip_safe=False)
none
1
1.055237
1
atlas/foundations_contrib/src/foundations_contrib/helpers/redis_connector.py
DeepLearnI/atlas
296
6630012
class RedisConnector(object): """Acts as a callback for the LazyRedis class, allowing it to be called directly without knowledge of how configuring a Redis url works Arguments: config_manager {ConfigManager} -- A provider for the Redis connection string connection_callback {callable} -- Callback to provide the connection string to """ def __init__(self, config_manager, connection_callback, environment): self._config = config_manager.config() self._connection_callback = connection_callback self._environment = environment def __call__(self): """Returns the result of the callback, given a connection string Returns: object -- The return value of the evaluated callback """ connection_with_password = self._build_connection_string() connection = self._connection_callback(connection_with_password) self._validate_redis_connection(connection) return connection def _validate_redis_connection(self, connection): import redis try: connection.ping() except redis.connection.ConnectionError as error: if self._redis_is_possibly_encrypted_error(error): raise ConnectionError('Unable to connect to Redis, due to potential encryption error.') else: raise error def _redis_is_possibly_encrypted_error(self, error): import redis return error.args[0] == redis.connection.SERVER_CLOSED_CONNECTION_ERROR def _get_connection_string(self): return self._config.get('redis_url', 'redis://localhost:6379') def _build_connection_string(self): split_connection_string = self._get_connection_string().split('//') scheme = split_connection_string[0] host_with_port = split_connection_string[1] return scheme + '//:@' + host_with_port
class RedisConnector(object): """Acts as a callback for the LazyRedis class, allowing it to be called directly without knowledge of how configuring a Redis url works Arguments: config_manager {ConfigManager} -- A provider for the Redis connection string connection_callback {callable} -- Callback to provide the connection string to """ def __init__(self, config_manager, connection_callback, environment): self._config = config_manager.config() self._connection_callback = connection_callback self._environment = environment def __call__(self): """Returns the result of the callback, given a connection string Returns: object -- The return value of the evaluated callback """ connection_with_password = self._build_connection_string() connection = self._connection_callback(connection_with_password) self._validate_redis_connection(connection) return connection def _validate_redis_connection(self, connection): import redis try: connection.ping() except redis.connection.ConnectionError as error: if self._redis_is_possibly_encrypted_error(error): raise ConnectionError('Unable to connect to Redis, due to potential encryption error.') else: raise error def _redis_is_possibly_encrypted_error(self, error): import redis return error.args[0] == redis.connection.SERVER_CLOSED_CONNECTION_ERROR def _get_connection_string(self): return self._config.get('redis_url', 'redis://localhost:6379') def _build_connection_string(self): split_connection_string = self._get_connection_string().split('//') scheme = split_connection_string[0] host_with_port = split_connection_string[1] return scheme + '//:@' + host_with_port
en
0.660402
Acts as a callback for the LazyRedis class, allowing it to be called directly without knowledge of how configuring a Redis url works Arguments: config_manager {ConfigManager} -- A provider for the Redis connection string connection_callback {callable} -- Callback to provide the connection string to Returns the result of the callback, given a connection string Returns: object -- The return value of the evaluated callback
3.346551
3
qtpyvcp/plugins/gcode_properties.py
robertspark/qtpyvcp
0
6630013
<reponame>robertspark/qtpyvcp """ GCodeProperties -------- This plugin provides the information about sizes and times This plugin is not loaded by default, so to use it you will first need to add it to your VCPs YAML config file. YAML configuration: .. code-block:: yaml data_plugins: gcode_properties: provider: qtpyvcp.plugins.gcode_properties:GCodeProperties """ import os import pprint import shutil import gcode import linuxcnc from qtpyvcp.utilities.logger import getLogger from qtpyvcp.plugins import getPlugin from qtpyvcp.utilities.info import Info from qtpyvcp.plugins import DataPlugin, DataChannel from qtpyvcp.widgets.display_widgets.vtk_backplot.base_canon import BaseCanon LOG = getLogger(__name__) STATUS = getPlugin('status') INFO = Info() INIFILE = linuxcnc.ini(os.getenv("INI_FILE_NAME")) MAX_LINEAR_VELOCITY = bool(INIFILE.find("TRAJ", "MAX_LINEAR_VELOCITY")) MAX_ANGULAR_VELOCITY = bool(INIFILE.find("TRAJ", "MAX_ANGULAR_VELOCITY")) MACHINE_UNITS = 2 if INFO.getIsMachineMetric() else 1 class GCodeProperties(DataPlugin): """GCodeProperties Plugin""" def __init__(self): super(GCodeProperties, self).__init__() inifile = os.getenv("INI_FILE_NAME") self.stat = STATUS self.ini = linuxcnc.ini(os.getenv("INI_FILE_NAME")) self.config_dir = os.path.dirname(inifile) self.canon = None self.stat.file.notify(self._file_event) self.loaded_file = None temp = self.ini.find("RS274NGC", "PARAMETER_FILE") or "linuxcnc.var" self.parameter_file = os.path.join(self.config_dir, temp) self.temp_parameter_file = os.path.join(self.parameter_file + '.temp') @DataChannel def file_name(self, chan): """The current file name. Args: None Returns: The current open file name as a string. Channel syntax:: gcode_properties:file_name """ if not self.loaded_file: chan.value = "No file loaded" return chan.value @file_name.tostring def file_name(self, chan): return chan.value @DataChannel def tool_calls_num(self, chan): """The total tool calls number. Args: None Returns: The total tool calls number Channel syntax:: gcode_properties:tool_calls_num """ if not self.loaded_file: chan.value = 0 return chan.value @tool_calls_num.tostring def tool_calls_num(self, chan): return chan.value @DataChannel def file_size(self, chan): """The current file size. Args: None Returns: The current file size in bytes Channel syntax:: gcode_properties:size """ if not self.loaded_file: chan.value = 0 return chan.value @file_size.tostring def file_size(self, chan): return chan.value @DataChannel def file_rapids(self, chan): """The current file rapis distance. Args: None Returns: The current file rapis distance in machine units Channel syntax:: gcode_properties:rapids """ if not self.loaded_file: chan.value.float(0.0) if MACHINE_UNITS == 2: conv = 1 units = "mm" fmt = "%.3f" else: conv = 1/25.4 units = "in" fmt = "%.4f" return chan.value @file_rapids.tostring def file_rapids(self, chan): return chan.value @DataChannel def file_lines(self, chan): """The current number of lines. Args: None Returns: The current number of lines the file has Channel syntax:: gcode_properties:file_lines """ if not self.loaded_file: chan.value = 0 return chan.value @file_lines.tostring def file_lines(self, chan): return chan.value @DataChannel def file_time(self, chan): """The current file run time. Args: format (str) : Format spec. Defaults to ``%I:%M:%S %p``. See http://strftime.org for supported formats. Returns: The run time of the loaded file as a formatted string. Default HH:MM:SS AM Channel syntax:: gcode_properties:time gcode_properties:time?string gcode_properties:time?string&format=%S """ if not self.loaded_file: chan.value(0) return chan.value @file_time.tostring def file_time(self, chan, format="%I:%M:%S %p"): return chan.value.strftime(format) @DataChannel def file_rapid_distance(self, chan): """The full distance done in rapid of the path. Args: Returns: The full distance done in rapid of the path Channel syntax:: gcode_properties:file_rapid_distance """ if not self.loaded_file: chan.value = 0 return chan.value @file_rapid_distance.tostring def file_rapid_distance(self, chan): return chan.value @DataChannel def file_feed_distance(self, chan): """The full distance done in feed velocity of the path. Args: Returns: The full distance done in feed velocity of the path Channel syntax:: gcode_properties:file_feed_distance """ if not self.loaded_file: chan.value = 0 return chan.value @file_feed_distance.tostring def file_feed_distance(self, chan): return chan.value @DataChannel def file_work_planes(self, chan): """The current file plane. Args: None Returns: The file work planes Channel syntax:: gcode_properties:file_work_planes """ if not self.loaded_file: chan.value = [] return chan.value @file_work_planes.tostring def file_work_planes(self, chan): return chan.value @DataChannel def file_rigid_taps(self, chan): """The rigid taps found in file. Args: None Returns: The rigid taps found in file. Channel syntax:: gcode_properties:file_rigid_taps """ if not self.loaded_file: chan.value = [] return chan.value @file_rigid_taps.tostring def file_rigid_taps(self, chan): return chan.value @DataChannel def file_offsets(self, chan): """The offsets found in file. Args: None Returns: The offsets found in file. Channel syntax:: gcode_properties:file_offsets """ if not self.loaded_file: chan.value = dict() return chan.value @file_offsets.tostring def file_offsets(self, chan): return chan.value @DataChannel def file_feed(self, chan): """The current file run distance. Args: None Returns: The distance the machine will run with the loaded file Channel syntax:: gcode_properties:feed """ return chan.value @file_feed.tostring def file_feed(self, chan): return chan.value def initialise(self): pass def terminate(self): pass def _file_event(self, file_path): """" This function gets notified about files begin loaded """ self.loaded_file = file_path self.canon = PropertiesCanon() if os.path.exists(self.parameter_file): shutil.copy(self.parameter_file, self.temp_parameter_file) self.canon.parameter_file = self.temp_parameter_file # Some initialization g-code to set the units and optional user code unitcode = "G%d" % (20 + (self.stat.linear_units == 1)) initcode = self.ini.find("RS274NGC", "RS274NGC_STARTUP_CODE") or "" # THIS IS WHERE IT ALL HAPPENS: load_preview will execute the code, # call back to the canon with motion commands, and record a history # of all the movements. try: result, seq = gcode.parse(self.loaded_file, self.canon, unitcode, initcode) if result > gcode.MIN_ERROR: msg = gcode.strerror(result) LOG.debug(f"Error in {self.loaded_file} line {seq - 1}\n{msg}") except Exception as e: LOG.debug(f"Error {e}") # clean up temp var file and the backup os.unlink(self.temp_parameter_file) os.unlink(self.temp_parameter_file + '.bak') file_name = self.loaded_file file_size = os.stat(self.loaded_file).st_size file_lines = self.canon.num_lines tool_calls = self.canon.tool_calls g0 = sum(self.dist(l[0][:3], l[1][:3]) for l in self.canon.traverse) g1 = (sum(self.dist(l[0][:3], l[1][:3]) for l in self.canon.feed) + sum(self.dist(l[0][:3], l[1][:3]) for l in self.canon.arcfeed)) self.file_name.setValue(file_name) self.file_size.setValue(file_size) self.file_lines.setValue(file_lines) self.tool_calls_num.setValue(tool_calls) self.file_rapid_distance.setValue(g0) self.file_feed_distance.setValue(g1) self.file_work_planes.setValue(self.canon.work_planes) self.file_rigid_taps.setValue(self.canon.rigid_taps) self.file_offsets.setValue(self.canon.g5x_offset_dict) def calc_distance(self): mf = 100.0 g0 = sum(self.dist(l[0][:3], l[1][:3]) for l in self.canon.traverse) g1 = (sum(self.dist(l[0][:3], l[1][:3]) for l in self.canon.feed) + sum(self.dist(l[0][:3], l[1][:3]) for l in self.canon.arcfeed)) # gt = (sum(self.dist(l[0][:3], l[1][:3])/min(mf, l[1][0]) for l in self.canon.feed) + # sum(self.dist(l[0][:3], l[1][:3])/min(mf, l[1][0]) for l in self.canon.arcfeed) + # sum(self.dist(l[0][:3], l[1][:3])/mf for l in self.canon.traverse) + # self.canon.dwell_time # ) # # LOG.debug(f"path time {gt} secconds") # # min_extents = self.from_internal_units(self.canon.min_extents, conv) # max_extents = self.from_internal_units(self.canon.max_extents, conv) # # for (i, c) in enumerate("xyz"): # a = min_extents[i] # b = max_extents[i] # if a != b: # props[c] = ("%(a)f to %(b)f = %(diff)f %(units)s").replace("%f", fmt) % {'a': a, 'b': b, 'diff': b-a, 'units': units} # # properties(root_window, _("G-Code Properties"), property_names, props) # pprint.pprint(props) def dist(self, xxx, xxx_1): (x,y,z) = xxx # todo changeme (p,q,r) = xxx_1 # todo changeme return ((x-p)**2 + (y-q)**2 + (z-r)**2) ** .5 def from_internal_units(self, pos, unit=None): if unit is None: unit = s.linear_units lu = (unit or 1) * 25.4 lus = [lu, lu, lu, 1, 1, 1, lu, lu, lu] return [a*b for a, b in zip(pos, lus)] def from_internal_linear_unit(self, v, unit=None): if unit is None: unit = s.linear_units lu = (unit or 1) * 25.4 return v*lu class PropertiesCanon(BaseCanon): def __init__(self): self.num_lines = 0 self.tool_calls = 0 # traverse list - [line number, [start position], [end position], [tlo x, tlo y, tlo z]] self.traverse = [] # feed list - [line number, [start position], [end position], feedrate, [tlo x, tlo y, tlo z]] self.feed = [] # arcfeed list - [line number, [start position], [end position], feedrate, [tlo x, tlo y, tlo z]] self.arcfeed = [] # dwell list - [line number, color, pos x, pos y, pos z, plane] self.dwells = [] self.work_planes = [] self.rigid_taps = [] self.feedrate = 1 self.dwell_time = 0 self.seq_num = -1 self.last_pos = (0,) * 9 self.first_move = True self.in_arc = False self.suppress = 0 self.plane = 1 self.arcdivision = 64 # extents self.min_extents = [9e99, 9e99, 9e99] self.max_extents = [-9e99, -9e99, -9e99] self.min_extents_notool = [9e99, 9e99, 9e99] self.max_extents_notool = [-9e99, -9e99, -9e99] # tool length offsets self.tlo_x = 0.0 self.tlo_y = 0.0 self.tlo_z = 0.0 self.tlo_a = 0.0 self.tlo_b = 0.0 self.tlo_c = 0.0 self.tlo_u = 0.0 self.tlo_v = 0.0 self.tlo_w = 0.0 self.tool_offsets = (0.0,) * 9 # G92/G52 offsets self.g92_offset_x = 0.0 self.g92_offset_y = 0.0 self.g92_offset_z = 0.0 self.g92_offset_a = 0.0 self.g92_offset_b = 0.0 self.g92_offset_c = 0.0 self.g92_offset_u = 0.0 self.g92_offset_v = 0.0 self.g92_offset_w = 0.0 # g5x offsets self.g5x_offset_x = 0.0 self.g5x_offset_y = 0.0 self.g5x_offset_z = 0.0 self.g5x_offset_a = 0.0 self.g5x_offset_b = 0.0 self.g5x_offset_c = 0.0 self.g5x_offset_u = 0.0 self.g5x_offset_v = 0.0 self.g5x_offset_w = 0.0 self.g5x_offset_dict = dict() # XY rotation (degrees) self.rotation_xy = 0 self.rotation_cos = 1 self.rotation_sin = 0 def set_g5x_offset(self, offset, x, y, z, a, b, c, u, v, w): try: self.g5x_offset_dict[str(offset)] = (x, y, z, a, b, c, u, v, w) except Exception as e: LOG.debug(f"straight_traverse: {e}") def set_g92_offset(self, x, y, z, a, b, c, u, v, w): self.g92_offset_x = x self.g92_offset_y = y self.g92_offset_z = z self.g92_offset_a = z self.g92_offset_b = b self.g92_offset_c = c self.g92_offset_u = u self.g92_offset_v = v self.g92_offset_w = w def set_plane(self, plane): self.work_planes.append(plane) def set_feed_rate(self, arg): pass # print(("set feed rate", arg)) def comment(self, comment): pass # print(("#", comment)) def straight_traverse(self, x, y, z, a, b, c, u, v, w): try: if self.suppress > 0: return pos = self.rotate_and_translate(x, y, z, a, b, c, u, v, w) if not self.first_move: self.traverse.append([self.last_pos, pos]) self.last_pos = pos except Exception as e: LOG.debug(f"straight_traverse: {e}") def straight_feed(self, x, y, z, a, b, c, u, v, w): try: if self.suppress > 0: return self.first_move = False pos = self.rotate_and_translate(x, y, z, a, b, c, u, v, w) self.feed.append([self.last_pos, pos]) self.last_pos = pos except Exception as e: LOG.debug(f"straight_feed: {e}") def dwell(self, arg): if arg < .1: print(("dwell %f ms" % (1000 * arg))) else: print(("dwell %f seconds" % arg)) def arc_feed(self, end_x, end_y, center_x, center_y, rot, end_z, a, b, c, u, v, w): try: if self.suppress > 0: return self.first_move = False self.in_arc = True try: # this self.lo goes straight into the c code, cannot be changed self.lo = tuple(self.last_pos) segs = gcode.arc_to_segments(self, end_x, end_y, center_x, center_y, rot, end_z, a, b, c, u, v, w, self.arcdivision) self.straight_arcsegments(segs) finally: self.in_arc = False except Exception as e: LOG.debug(f"straight_feed: {e}") def get_axis_mask(self): return 7 # XYZ def rigid_tap(self, x, y, z): try: if self.suppress > 0: return self.rigid_taps.append((x, y, z)) self.first_move = False pos = self.rotate_and_translate(x, y, z, 0, 0, 0, 0, 0, 0)[:3] pos += self.last_pos[3:] self.feed.append([self.last_pos, pos]) except Exception as e: LOG.debug(f"straight_feed: {e}") def change_tool(self, pocket): if pocket != -1: self.tool_calls += 1 # print(("pocket", pocket)) def next_line(self, st): self.num_lines += 1 # state attributes # 'block', 'cutter_side', 'distance_mode', 'feed_mode', 'feed_rate', # 'flood', 'gcodes', 'mcodes', 'mist', 'motion_mode', 'origin', 'units', # 'overrides', 'path_mode', 'plane', 'retract_mode', 'sequence_number', # 'speed', 'spindle', 'stopping', 'tool_length_offset', 'toolchange', # print(("state", st)) # print(("seq", st.sequence_number)) # print(("MCODES", st.mcodes)) # print(("TOOLCHANGE", st.toolchange))
""" GCodeProperties -------- This plugin provides the information about sizes and times This plugin is not loaded by default, so to use it you will first need to add it to your VCPs YAML config file. YAML configuration: .. code-block:: yaml data_plugins: gcode_properties: provider: qtpyvcp.plugins.gcode_properties:GCodeProperties """ import os import pprint import shutil import gcode import linuxcnc from qtpyvcp.utilities.logger import getLogger from qtpyvcp.plugins import getPlugin from qtpyvcp.utilities.info import Info from qtpyvcp.plugins import DataPlugin, DataChannel from qtpyvcp.widgets.display_widgets.vtk_backplot.base_canon import BaseCanon LOG = getLogger(__name__) STATUS = getPlugin('status') INFO = Info() INIFILE = linuxcnc.ini(os.getenv("INI_FILE_NAME")) MAX_LINEAR_VELOCITY = bool(INIFILE.find("TRAJ", "MAX_LINEAR_VELOCITY")) MAX_ANGULAR_VELOCITY = bool(INIFILE.find("TRAJ", "MAX_ANGULAR_VELOCITY")) MACHINE_UNITS = 2 if INFO.getIsMachineMetric() else 1 class GCodeProperties(DataPlugin): """GCodeProperties Plugin""" def __init__(self): super(GCodeProperties, self).__init__() inifile = os.getenv("INI_FILE_NAME") self.stat = STATUS self.ini = linuxcnc.ini(os.getenv("INI_FILE_NAME")) self.config_dir = os.path.dirname(inifile) self.canon = None self.stat.file.notify(self._file_event) self.loaded_file = None temp = self.ini.find("RS274NGC", "PARAMETER_FILE") or "linuxcnc.var" self.parameter_file = os.path.join(self.config_dir, temp) self.temp_parameter_file = os.path.join(self.parameter_file + '.temp') @DataChannel def file_name(self, chan): """The current file name. Args: None Returns: The current open file name as a string. Channel syntax:: gcode_properties:file_name """ if not self.loaded_file: chan.value = "No file loaded" return chan.value @file_name.tostring def file_name(self, chan): return chan.value @DataChannel def tool_calls_num(self, chan): """The total tool calls number. Args: None Returns: The total tool calls number Channel syntax:: gcode_properties:tool_calls_num """ if not self.loaded_file: chan.value = 0 return chan.value @tool_calls_num.tostring def tool_calls_num(self, chan): return chan.value @DataChannel def file_size(self, chan): """The current file size. Args: None Returns: The current file size in bytes Channel syntax:: gcode_properties:size """ if not self.loaded_file: chan.value = 0 return chan.value @file_size.tostring def file_size(self, chan): return chan.value @DataChannel def file_rapids(self, chan): """The current file rapis distance. Args: None Returns: The current file rapis distance in machine units Channel syntax:: gcode_properties:rapids """ if not self.loaded_file: chan.value.float(0.0) if MACHINE_UNITS == 2: conv = 1 units = "mm" fmt = "%.3f" else: conv = 1/25.4 units = "in" fmt = "%.4f" return chan.value @file_rapids.tostring def file_rapids(self, chan): return chan.value @DataChannel def file_lines(self, chan): """The current number of lines. Args: None Returns: The current number of lines the file has Channel syntax:: gcode_properties:file_lines """ if not self.loaded_file: chan.value = 0 return chan.value @file_lines.tostring def file_lines(self, chan): return chan.value @DataChannel def file_time(self, chan): """The current file run time. Args: format (str) : Format spec. Defaults to ``%I:%M:%S %p``. See http://strftime.org for supported formats. Returns: The run time of the loaded file as a formatted string. Default HH:MM:SS AM Channel syntax:: gcode_properties:time gcode_properties:time?string gcode_properties:time?string&format=%S """ if not self.loaded_file: chan.value(0) return chan.value @file_time.tostring def file_time(self, chan, format="%I:%M:%S %p"): return chan.value.strftime(format) @DataChannel def file_rapid_distance(self, chan): """The full distance done in rapid of the path. Args: Returns: The full distance done in rapid of the path Channel syntax:: gcode_properties:file_rapid_distance """ if not self.loaded_file: chan.value = 0 return chan.value @file_rapid_distance.tostring def file_rapid_distance(self, chan): return chan.value @DataChannel def file_feed_distance(self, chan): """The full distance done in feed velocity of the path. Args: Returns: The full distance done in feed velocity of the path Channel syntax:: gcode_properties:file_feed_distance """ if not self.loaded_file: chan.value = 0 return chan.value @file_feed_distance.tostring def file_feed_distance(self, chan): return chan.value @DataChannel def file_work_planes(self, chan): """The current file plane. Args: None Returns: The file work planes Channel syntax:: gcode_properties:file_work_planes """ if not self.loaded_file: chan.value = [] return chan.value @file_work_planes.tostring def file_work_planes(self, chan): return chan.value @DataChannel def file_rigid_taps(self, chan): """The rigid taps found in file. Args: None Returns: The rigid taps found in file. Channel syntax:: gcode_properties:file_rigid_taps """ if not self.loaded_file: chan.value = [] return chan.value @file_rigid_taps.tostring def file_rigid_taps(self, chan): return chan.value @DataChannel def file_offsets(self, chan): """The offsets found in file. Args: None Returns: The offsets found in file. Channel syntax:: gcode_properties:file_offsets """ if not self.loaded_file: chan.value = dict() return chan.value @file_offsets.tostring def file_offsets(self, chan): return chan.value @DataChannel def file_feed(self, chan): """The current file run distance. Args: None Returns: The distance the machine will run with the loaded file Channel syntax:: gcode_properties:feed """ return chan.value @file_feed.tostring def file_feed(self, chan): return chan.value def initialise(self): pass def terminate(self): pass def _file_event(self, file_path): """" This function gets notified about files begin loaded """ self.loaded_file = file_path self.canon = PropertiesCanon() if os.path.exists(self.parameter_file): shutil.copy(self.parameter_file, self.temp_parameter_file) self.canon.parameter_file = self.temp_parameter_file # Some initialization g-code to set the units and optional user code unitcode = "G%d" % (20 + (self.stat.linear_units == 1)) initcode = self.ini.find("RS274NGC", "RS274NGC_STARTUP_CODE") or "" # THIS IS WHERE IT ALL HAPPENS: load_preview will execute the code, # call back to the canon with motion commands, and record a history # of all the movements. try: result, seq = gcode.parse(self.loaded_file, self.canon, unitcode, initcode) if result > gcode.MIN_ERROR: msg = gcode.strerror(result) LOG.debug(f"Error in {self.loaded_file} line {seq - 1}\n{msg}") except Exception as e: LOG.debug(f"Error {e}") # clean up temp var file and the backup os.unlink(self.temp_parameter_file) os.unlink(self.temp_parameter_file + '.bak') file_name = self.loaded_file file_size = os.stat(self.loaded_file).st_size file_lines = self.canon.num_lines tool_calls = self.canon.tool_calls g0 = sum(self.dist(l[0][:3], l[1][:3]) for l in self.canon.traverse) g1 = (sum(self.dist(l[0][:3], l[1][:3]) for l in self.canon.feed) + sum(self.dist(l[0][:3], l[1][:3]) for l in self.canon.arcfeed)) self.file_name.setValue(file_name) self.file_size.setValue(file_size) self.file_lines.setValue(file_lines) self.tool_calls_num.setValue(tool_calls) self.file_rapid_distance.setValue(g0) self.file_feed_distance.setValue(g1) self.file_work_planes.setValue(self.canon.work_planes) self.file_rigid_taps.setValue(self.canon.rigid_taps) self.file_offsets.setValue(self.canon.g5x_offset_dict) def calc_distance(self): mf = 100.0 g0 = sum(self.dist(l[0][:3], l[1][:3]) for l in self.canon.traverse) g1 = (sum(self.dist(l[0][:3], l[1][:3]) for l in self.canon.feed) + sum(self.dist(l[0][:3], l[1][:3]) for l in self.canon.arcfeed)) # gt = (sum(self.dist(l[0][:3], l[1][:3])/min(mf, l[1][0]) for l in self.canon.feed) + # sum(self.dist(l[0][:3], l[1][:3])/min(mf, l[1][0]) for l in self.canon.arcfeed) + # sum(self.dist(l[0][:3], l[1][:3])/mf for l in self.canon.traverse) + # self.canon.dwell_time # ) # # LOG.debug(f"path time {gt} secconds") # # min_extents = self.from_internal_units(self.canon.min_extents, conv) # max_extents = self.from_internal_units(self.canon.max_extents, conv) # # for (i, c) in enumerate("xyz"): # a = min_extents[i] # b = max_extents[i] # if a != b: # props[c] = ("%(a)f to %(b)f = %(diff)f %(units)s").replace("%f", fmt) % {'a': a, 'b': b, 'diff': b-a, 'units': units} # # properties(root_window, _("G-Code Properties"), property_names, props) # pprint.pprint(props) def dist(self, xxx, xxx_1): (x,y,z) = xxx # todo changeme (p,q,r) = xxx_1 # todo changeme return ((x-p)**2 + (y-q)**2 + (z-r)**2) ** .5 def from_internal_units(self, pos, unit=None): if unit is None: unit = s.linear_units lu = (unit or 1) * 25.4 lus = [lu, lu, lu, 1, 1, 1, lu, lu, lu] return [a*b for a, b in zip(pos, lus)] def from_internal_linear_unit(self, v, unit=None): if unit is None: unit = s.linear_units lu = (unit or 1) * 25.4 return v*lu class PropertiesCanon(BaseCanon): def __init__(self): self.num_lines = 0 self.tool_calls = 0 # traverse list - [line number, [start position], [end position], [tlo x, tlo y, tlo z]] self.traverse = [] # feed list - [line number, [start position], [end position], feedrate, [tlo x, tlo y, tlo z]] self.feed = [] # arcfeed list - [line number, [start position], [end position], feedrate, [tlo x, tlo y, tlo z]] self.arcfeed = [] # dwell list - [line number, color, pos x, pos y, pos z, plane] self.dwells = [] self.work_planes = [] self.rigid_taps = [] self.feedrate = 1 self.dwell_time = 0 self.seq_num = -1 self.last_pos = (0,) * 9 self.first_move = True self.in_arc = False self.suppress = 0 self.plane = 1 self.arcdivision = 64 # extents self.min_extents = [9e99, 9e99, 9e99] self.max_extents = [-9e99, -9e99, -9e99] self.min_extents_notool = [9e99, 9e99, 9e99] self.max_extents_notool = [-9e99, -9e99, -9e99] # tool length offsets self.tlo_x = 0.0 self.tlo_y = 0.0 self.tlo_z = 0.0 self.tlo_a = 0.0 self.tlo_b = 0.0 self.tlo_c = 0.0 self.tlo_u = 0.0 self.tlo_v = 0.0 self.tlo_w = 0.0 self.tool_offsets = (0.0,) * 9 # G92/G52 offsets self.g92_offset_x = 0.0 self.g92_offset_y = 0.0 self.g92_offset_z = 0.0 self.g92_offset_a = 0.0 self.g92_offset_b = 0.0 self.g92_offset_c = 0.0 self.g92_offset_u = 0.0 self.g92_offset_v = 0.0 self.g92_offset_w = 0.0 # g5x offsets self.g5x_offset_x = 0.0 self.g5x_offset_y = 0.0 self.g5x_offset_z = 0.0 self.g5x_offset_a = 0.0 self.g5x_offset_b = 0.0 self.g5x_offset_c = 0.0 self.g5x_offset_u = 0.0 self.g5x_offset_v = 0.0 self.g5x_offset_w = 0.0 self.g5x_offset_dict = dict() # XY rotation (degrees) self.rotation_xy = 0 self.rotation_cos = 1 self.rotation_sin = 0 def set_g5x_offset(self, offset, x, y, z, a, b, c, u, v, w): try: self.g5x_offset_dict[str(offset)] = (x, y, z, a, b, c, u, v, w) except Exception as e: LOG.debug(f"straight_traverse: {e}") def set_g92_offset(self, x, y, z, a, b, c, u, v, w): self.g92_offset_x = x self.g92_offset_y = y self.g92_offset_z = z self.g92_offset_a = z self.g92_offset_b = b self.g92_offset_c = c self.g92_offset_u = u self.g92_offset_v = v self.g92_offset_w = w def set_plane(self, plane): self.work_planes.append(plane) def set_feed_rate(self, arg): pass # print(("set feed rate", arg)) def comment(self, comment): pass # print(("#", comment)) def straight_traverse(self, x, y, z, a, b, c, u, v, w): try: if self.suppress > 0: return pos = self.rotate_and_translate(x, y, z, a, b, c, u, v, w) if not self.first_move: self.traverse.append([self.last_pos, pos]) self.last_pos = pos except Exception as e: LOG.debug(f"straight_traverse: {e}") def straight_feed(self, x, y, z, a, b, c, u, v, w): try: if self.suppress > 0: return self.first_move = False pos = self.rotate_and_translate(x, y, z, a, b, c, u, v, w) self.feed.append([self.last_pos, pos]) self.last_pos = pos except Exception as e: LOG.debug(f"straight_feed: {e}") def dwell(self, arg): if arg < .1: print(("dwell %f ms" % (1000 * arg))) else: print(("dwell %f seconds" % arg)) def arc_feed(self, end_x, end_y, center_x, center_y, rot, end_z, a, b, c, u, v, w): try: if self.suppress > 0: return self.first_move = False self.in_arc = True try: # this self.lo goes straight into the c code, cannot be changed self.lo = tuple(self.last_pos) segs = gcode.arc_to_segments(self, end_x, end_y, center_x, center_y, rot, end_z, a, b, c, u, v, w, self.arcdivision) self.straight_arcsegments(segs) finally: self.in_arc = False except Exception as e: LOG.debug(f"straight_feed: {e}") def get_axis_mask(self): return 7 # XYZ def rigid_tap(self, x, y, z): try: if self.suppress > 0: return self.rigid_taps.append((x, y, z)) self.first_move = False pos = self.rotate_and_translate(x, y, z, 0, 0, 0, 0, 0, 0)[:3] pos += self.last_pos[3:] self.feed.append([self.last_pos, pos]) except Exception as e: LOG.debug(f"straight_feed: {e}") def change_tool(self, pocket): if pocket != -1: self.tool_calls += 1 # print(("pocket", pocket)) def next_line(self, st): self.num_lines += 1 # state attributes # 'block', 'cutter_side', 'distance_mode', 'feed_mode', 'feed_rate', # 'flood', 'gcodes', 'mcodes', 'mist', 'motion_mode', 'origin', 'units', # 'overrides', 'path_mode', 'plane', 'retract_mode', 'sequence_number', # 'speed', 'spindle', 'stopping', 'tool_length_offset', 'toolchange', # print(("state", st)) # print(("seq", st.sequence_number)) # print(("MCODES", st.mcodes)) # print(("TOOLCHANGE", st.toolchange))
en
0.519702
GCodeProperties -------- This plugin provides the information about sizes and times This plugin is not loaded by default, so to use it you will first need to add it to your VCPs YAML config file. YAML configuration: .. code-block:: yaml data_plugins: gcode_properties: provider: qtpyvcp.plugins.gcode_properties:GCodeProperties GCodeProperties Plugin The current file name. Args: None Returns: The current open file name as a string. Channel syntax:: gcode_properties:file_name The total tool calls number. Args: None Returns: The total tool calls number Channel syntax:: gcode_properties:tool_calls_num The current file size. Args: None Returns: The current file size in bytes Channel syntax:: gcode_properties:size The current file rapis distance. Args: None Returns: The current file rapis distance in machine units Channel syntax:: gcode_properties:rapids The current number of lines. Args: None Returns: The current number of lines the file has Channel syntax:: gcode_properties:file_lines The current file run time. Args: format (str) : Format spec. Defaults to ``%I:%M:%S %p``. See http://strftime.org for supported formats. Returns: The run time of the loaded file as a formatted string. Default HH:MM:SS AM Channel syntax:: gcode_properties:time gcode_properties:time?string gcode_properties:time?string&format=%S The full distance done in rapid of the path. Args: Returns: The full distance done in rapid of the path Channel syntax:: gcode_properties:file_rapid_distance The full distance done in feed velocity of the path. Args: Returns: The full distance done in feed velocity of the path Channel syntax:: gcode_properties:file_feed_distance The current file plane. Args: None Returns: The file work planes Channel syntax:: gcode_properties:file_work_planes The rigid taps found in file. Args: None Returns: The rigid taps found in file. Channel syntax:: gcode_properties:file_rigid_taps The offsets found in file. Args: None Returns: The offsets found in file. Channel syntax:: gcode_properties:file_offsets The current file run distance. Args: None Returns: The distance the machine will run with the loaded file Channel syntax:: gcode_properties:feed " This function gets notified about files begin loaded # Some initialization g-code to set the units and optional user code # THIS IS WHERE IT ALL HAPPENS: load_preview will execute the code, # call back to the canon with motion commands, and record a history # of all the movements. # clean up temp var file and the backup # gt = (sum(self.dist(l[0][:3], l[1][:3])/min(mf, l[1][0]) for l in self.canon.feed) + # sum(self.dist(l[0][:3], l[1][:3])/min(mf, l[1][0]) for l in self.canon.arcfeed) + # sum(self.dist(l[0][:3], l[1][:3])/mf for l in self.canon.traverse) + # self.canon.dwell_time # ) # # LOG.debug(f"path time {gt} secconds") # # min_extents = self.from_internal_units(self.canon.min_extents, conv) # max_extents = self.from_internal_units(self.canon.max_extents, conv) # # for (i, c) in enumerate("xyz"): # a = min_extents[i] # b = max_extents[i] # if a != b: # props[c] = ("%(a)f to %(b)f = %(diff)f %(units)s").replace("%f", fmt) % {'a': a, 'b': b, 'diff': b-a, 'units': units} # # properties(root_window, _("G-Code Properties"), property_names, props) # pprint.pprint(props) # todo changeme # todo changeme # traverse list - [line number, [start position], [end position], [tlo x, tlo y, tlo z]] # feed list - [line number, [start position], [end position], feedrate, [tlo x, tlo y, tlo z]] # arcfeed list - [line number, [start position], [end position], feedrate, [tlo x, tlo y, tlo z]] # dwell list - [line number, color, pos x, pos y, pos z, plane] # extents # tool length offsets # G92/G52 offsets # g5x offsets # XY rotation (degrees) # print(("set feed rate", arg)) # print(("#", comment)) # this self.lo goes straight into the c code, cannot be changed # XYZ # print(("pocket", pocket)) # state attributes # 'block', 'cutter_side', 'distance_mode', 'feed_mode', 'feed_rate', # 'flood', 'gcodes', 'mcodes', 'mist', 'motion_mode', 'origin', 'units', # 'overrides', 'path_mode', 'plane', 'retract_mode', 'sequence_number', # 'speed', 'spindle', 'stopping', 'tool_length_offset', 'toolchange', # print(("state", st)) # print(("seq", st.sequence_number)) # print(("MCODES", st.mcodes)) # print(("TOOLCHANGE", st.toolchange))
2.308093
2
setup.py
deanle17/urlSigner
0
6630014
<gh_stars>0 from setuptools import setup setup( name='urlSigner', version='0.0.3', description='Library to sign a URL', license='MIT', packages=['urlSigner'], author='deanle17', author_email='<EMAIL>', keywords=['url', 'signer'], url='https://github.com/deanle17/fsecure-assignment', download_url='https://github.com/deanle17/urlSigner/archive/0.0.3.tar.gz' )
from setuptools import setup setup( name='urlSigner', version='0.0.3', description='Library to sign a URL', license='MIT', packages=['urlSigner'], author='deanle17', author_email='<EMAIL>', keywords=['url', 'signer'], url='https://github.com/deanle17/fsecure-assignment', download_url='https://github.com/deanle17/urlSigner/archive/0.0.3.tar.gz' )
none
1
1.27672
1
large_app/python/env.py
sahilGupta89/large_flask_app
0
6630015
import os database="devdb" user="devuser" host="localhost" password="password" VERSION = os.environ.get("VERSION", "n/a") DB_CONNECTION_STRING = os.environ.get( "DB_CONNECTION_STRING", "mysql+pymysql://localhost:3306/dev" ) PGDB_CONNECTION_STRING = os.environ.get( "PGDB_CONNECTION_STRING", "postgresql+psycopg2://user_db:password@localhost:5432/user_db" ) JSON_LOGGING = os.environ.get("JSON_LOGGING", "false") in ("1", "true", "True") # Auth0 settings AUTH0_DOMAIN = os.environ.get("AUTH0_DOMAIN", "trueenergy.eu.auth0.com") AUTH0_API_AUDIENCE = os.environ.get("AUTH0_API_AUDIENCE", "apiv2.auth0.do.trnrg.co") AUTH0_ZEAPI_AUDIENCE = os.environ.get("AUTH0_ZeAPI_AUDIENCE", "https://zeapi.trnrg.co") AUTH0_ALGORITHMS = os.environ.get("AUTH0_ALGORITHMS", "RS256").split(",") AUTH0_CLIENT_ID = os.environ.get("AUTH0_CLIENT_ID", "Z1myKXcwci61mGKFZhsWXoQ5Lz3WMErv") AUTH0_CLIENT_SECRET = os.environ.get( "AUTH0_CLIENT_SECRET", "<KEY>", ) AUTH0_UP_CONNECTION_NAME = os.environ.get( "AUTH0_UP_CONNECTION_NAME", "Username-Password-Authentication" ) # Sentry SENTRY_ADMIN_DSN = os.environ.get("SENTRY_ADMIN_DSN") SENTRY_API_DSN = os.environ.get("SENTRY_API_DSN") SENTRY_ZEAPI_DSN = os.environ.get("SENTRY_ZEAPI_DSN") SENTRY_ENVIRONMENT = os.environ.get("SENTRY_ENVIRONMENT") SENTRY_CHAMPAPI_DSN = os.environ.get("SENTRY_CHAMPAPI_DSN") SENTRY_BMWAPI_DSN = os.environ.get("SENTRY_BMWAPI_DSN") SENTRY_JAGAPI_DSN = os.environ.get("SENTRY_JAGAPI_DSN") SENTRY_SMARTMEAPI_DSN = os.environ.get("SENTRY_SMARTMEAPI_DSN") FLASK_SECRET_KEY = os.environ.get("FLASK_SECRET_KEY") # FREQ FREQ_DASHBOARD_URL = os.environ.get("FREQ_DASHBOARD_URL", "") FREQ_DK1_DASHBOARD_URL = os.environ.get("FREQ_DK1_DASHBOARD_URL", "") FCR_POOL_AREA = os.environ.get("FCR_POOL_AREA", "DK2") FCR_PLAN_BACKOFF_MINUTES = int(os.environ.get("FCR_PLAN_BACKOFF_MINUTES", 10)) # FOR CHAMP Service CHAMP_BASE = os.environ.get("CHAMP_BASE", "https://iapi.charge.space/v1/chargers/") # BMW Auth BMW_AUTH_BASE = os.environ.get( "BMW_AUTH_BASE", "https://customer.bmwgroup.com/gcdm/oauth/authenticate" ) # JAG Auth JAG_AUTH_BASE = os.environ.get( "JAG_AUTH_BASE", "https://jlp-ifas.wirelesscar.net/ifas/jlr/tokens" ) LOG_CARAPI_STATUS_RESPONSES = os.environ.get( "LOG_CARAPI_STATUS_RESPONSES", "false" ) not in ("false", "0", "False")
import os database="devdb" user="devuser" host="localhost" password="password" VERSION = os.environ.get("VERSION", "n/a") DB_CONNECTION_STRING = os.environ.get( "DB_CONNECTION_STRING", "mysql+pymysql://localhost:3306/dev" ) PGDB_CONNECTION_STRING = os.environ.get( "PGDB_CONNECTION_STRING", "postgresql+psycopg2://user_db:password@localhost:5432/user_db" ) JSON_LOGGING = os.environ.get("JSON_LOGGING", "false") in ("1", "true", "True") # Auth0 settings AUTH0_DOMAIN = os.environ.get("AUTH0_DOMAIN", "trueenergy.eu.auth0.com") AUTH0_API_AUDIENCE = os.environ.get("AUTH0_API_AUDIENCE", "apiv2.auth0.do.trnrg.co") AUTH0_ZEAPI_AUDIENCE = os.environ.get("AUTH0_ZeAPI_AUDIENCE", "https://zeapi.trnrg.co") AUTH0_ALGORITHMS = os.environ.get("AUTH0_ALGORITHMS", "RS256").split(",") AUTH0_CLIENT_ID = os.environ.get("AUTH0_CLIENT_ID", "Z1myKXcwci61mGKFZhsWXoQ5Lz3WMErv") AUTH0_CLIENT_SECRET = os.environ.get( "AUTH0_CLIENT_SECRET", "<KEY>", ) AUTH0_UP_CONNECTION_NAME = os.environ.get( "AUTH0_UP_CONNECTION_NAME", "Username-Password-Authentication" ) # Sentry SENTRY_ADMIN_DSN = os.environ.get("SENTRY_ADMIN_DSN") SENTRY_API_DSN = os.environ.get("SENTRY_API_DSN") SENTRY_ZEAPI_DSN = os.environ.get("SENTRY_ZEAPI_DSN") SENTRY_ENVIRONMENT = os.environ.get("SENTRY_ENVIRONMENT") SENTRY_CHAMPAPI_DSN = os.environ.get("SENTRY_CHAMPAPI_DSN") SENTRY_BMWAPI_DSN = os.environ.get("SENTRY_BMWAPI_DSN") SENTRY_JAGAPI_DSN = os.environ.get("SENTRY_JAGAPI_DSN") SENTRY_SMARTMEAPI_DSN = os.environ.get("SENTRY_SMARTMEAPI_DSN") FLASK_SECRET_KEY = os.environ.get("FLASK_SECRET_KEY") # FREQ FREQ_DASHBOARD_URL = os.environ.get("FREQ_DASHBOARD_URL", "") FREQ_DK1_DASHBOARD_URL = os.environ.get("FREQ_DK1_DASHBOARD_URL", "") FCR_POOL_AREA = os.environ.get("FCR_POOL_AREA", "DK2") FCR_PLAN_BACKOFF_MINUTES = int(os.environ.get("FCR_PLAN_BACKOFF_MINUTES", 10)) # FOR CHAMP Service CHAMP_BASE = os.environ.get("CHAMP_BASE", "https://iapi.charge.space/v1/chargers/") # BMW Auth BMW_AUTH_BASE = os.environ.get( "BMW_AUTH_BASE", "https://customer.bmwgroup.com/gcdm/oauth/authenticate" ) # JAG Auth JAG_AUTH_BASE = os.environ.get( "JAG_AUTH_BASE", "https://jlp-ifas.wirelesscar.net/ifas/jlr/tokens" ) LOG_CARAPI_STATUS_RESPONSES = os.environ.get( "LOG_CARAPI_STATUS_RESPONSES", "false" ) not in ("false", "0", "False")
en
0.596434
# Auth0 settings # Sentry # FREQ # FOR CHAMP Service # BMW Auth # JAG Auth
1.91448
2
indico/modules/rb/operations/bookings.py
CrownedSilverFox/conference-platform
1
6630016
<filename>indico/modules/rb/operations/bookings.py # This file is part of Indico. # Copyright (C) 2002 - 2021 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from collections import defaultdict from datetime import date, datetime, time from itertools import chain, groupby from operator import attrgetter, itemgetter from flask import flash, session from pytz import timezone from sqlalchemy.orm import contains_eager, joinedload from indico.core.config import config from indico.core.db import db from indico.core.db.sqlalchemy.principals import PrincipalType from indico.core.db.sqlalchemy.util.queries import db_dates_overlap, with_total_rows from indico.core.errors import NoReportError from indico.modules.events.models.events import Event from indico.modules.events.models.principals import EventPrincipal from indico.modules.rb import rb_settings from indico.modules.rb.models.reservation_edit_logs import ReservationEditLog from indico.modules.rb.models.reservation_occurrences import ReservationOccurrence from indico.modules.rb.models.reservations import RepeatFrequency, Reservation, ReservationLink from indico.modules.rb.models.room_nonbookable_periods import NonBookablePeriod from indico.modules.rb.models.rooms import Room from indico.modules.rb.operations.blockings import filter_blocked_rooms, get_rooms_blockings, group_blocked_rooms from indico.modules.rb.operations.conflicts import get_concurrent_pre_bookings, get_rooms_conflicts from indico.modules.rb.operations.misc import get_rooms_nonbookable_periods, get_rooms_unbookable_hours from indico.modules.rb.util import (group_by_occurrence_date, serialize_availability, serialize_blockings, serialize_booking_details, serialize_nonbookable_periods, serialize_occurrences, serialize_unbookable_hours) from indico.util.date_time import iterdays, overlaps, server_to_utc from indico.util.i18n import _ from indico.util.iterables import group_list from indico.util.string import natural_sort_key def group_blockings(blocked_rooms, dates): if not blocked_rooms: return {} occurrences = {} for blocked_room in blocked_rooms: blocking = blocked_room.blocking for date_ in dates: if blocking.start_date <= date_ <= blocking.end_date: occurrences[date_] = [blocking] return occurrences def group_nonbookable_periods(periods, dates): if not periods: return {} occurrences = defaultdict(list) for period in periods: for d in dates: if period.start_dt.date() <= d <= period.end_dt.date(): period_occurrence = NonBookablePeriod() period_occurrence.start_dt = ((datetime.combine(d, time(0))) if period.start_dt.date() != d else period.start_dt) period_occurrence.end_dt = ((datetime.combine(d, time(23, 59))) if period.end_dt.date() != d else period.end_dt) occurrences[d].append(period_occurrence) return occurrences def get_existing_room_occurrences(room, start_dt, end_dt, repeat_frequency=RepeatFrequency.NEVER, repeat_interval=None, allow_overlapping=False, only_accepted=False, skip_booking_id=None): return get_existing_rooms_occurrences([room], start_dt, end_dt, repeat_frequency, repeat_interval, allow_overlapping, only_accepted, skip_booking_id).get(room.id, []) def get_existing_rooms_occurrences(rooms, start_dt, end_dt, repeat_frequency, repeat_interval, allow_overlapping=False, only_accepted=False, skip_booking_id=None): room_ids = [room.id for room in rooms] query = (ReservationOccurrence.query .filter(ReservationOccurrence.is_valid, Reservation.room_id.in_(room_ids)) .join(ReservationOccurrence.reservation) .options(ReservationOccurrence.NO_RESERVATION_USER_STRATEGY, contains_eager(ReservationOccurrence.reservation))) if allow_overlapping: query = query.filter(db_dates_overlap(ReservationOccurrence, 'start_dt', start_dt, 'end_dt', end_dt)) else: query = query.filter(ReservationOccurrence.start_dt >= start_dt, ReservationOccurrence.end_dt <= end_dt) if only_accepted: query = query.filter(Reservation.is_accepted) if repeat_frequency != RepeatFrequency.NEVER: candidates = ReservationOccurrence.create_series(start_dt, end_dt, (repeat_frequency, repeat_interval)) dates = [candidate.start_dt for candidate in candidates] query = query.filter(db.cast(ReservationOccurrence.start_dt, db.Date).in_(dates)) if skip_booking_id is not None: query = query.filter(ReservationOccurrence.reservation_id != skip_booking_id) return group_list(query, key=lambda obj: obj.reservation.room_id, sort_by=lambda obj: (obj.reservation.room_id, obj.start_dt)) def get_rooms_availability(rooms, start_dt, end_dt, repeat_frequency, repeat_interval, skip_conflicts_with=None, admin_override_enabled=False, skip_past_conflicts=False): availability = {} candidates = ReservationOccurrence.create_series(start_dt, end_dt, (repeat_frequency, repeat_interval)) date_range = sorted({cand.start_dt.date() for cand in candidates}) occurrences = get_existing_rooms_occurrences(rooms, start_dt.replace(hour=0, minute=0), end_dt.replace(hour=23, minute=59), repeat_frequency, repeat_interval) blocked_rooms = get_rooms_blockings(rooms, start_dt.date(), end_dt.date()) nonoverridable_blocked_rooms = group_blocked_rooms(filter_blocked_rooms(blocked_rooms, nonoverridable_only=True, explicit=True)) overridable_blocked_rooms = group_blocked_rooms(filter_blocked_rooms(blocked_rooms, overridable_only=True, explicit=True)) unbookable_hours = get_rooms_unbookable_hours(rooms) nonbookable_periods = get_rooms_nonbookable_periods(rooms, start_dt, end_dt) conflicts, pre_conflicts, conflicting_candidates = get_rooms_conflicts( rooms, start_dt.replace(tzinfo=None), end_dt.replace(tzinfo=None), repeat_frequency, repeat_interval, nonoverridable_blocked_rooms, nonbookable_periods, unbookable_hours, skip_conflicts_with, allow_admin=admin_override_enabled, skip_past_conflicts=skip_past_conflicts ) dates = list(candidate.start_dt.date() for candidate in candidates) for room in rooms: room_occurrences = occurrences.get(room.id, []) room_conflicting_candidates = conflicting_candidates.get(room.id, []) room_conflicts = conflicts.get(room.id, []) pre_room_conflicts = pre_conflicts.get(room.id, []) pre_bookings = [occ for occ in room_occurrences if not occ.reservation.is_accepted] concurrent_pre_bookings = get_concurrent_pre_bookings(pre_bookings) if pre_bookings else [] existing_bookings = [occ for occ in room_occurrences if occ.reservation.is_accepted] room_nonoverridable_blocked_rooms = nonoverridable_blocked_rooms.get(room.id, []) room_overridable_blocked_rooms = overridable_blocked_rooms.get(room.id, []) room_nonbookable_periods = nonbookable_periods.get(room.id, []) room_unbookable_hours = unbookable_hours.get(room.id, []) room_candidates = get_room_candidates(candidates, room_conflicts) availability[room.id] = {'room_id': room.id, 'candidates': group_by_occurrence_date(room_candidates), 'conflicting_candidates': group_by_occurrence_date(room_conflicting_candidates), 'pre_bookings': group_by_occurrence_date(pre_bookings), 'concurrent_pre_bookings': group_by_occurrence_date(concurrent_pre_bookings), 'bookings': group_by_occurrence_date(existing_bookings), 'conflicts': group_by_occurrence_date(room_conflicts), 'pre_conflicts': group_by_occurrence_date(pre_room_conflicts), 'blockings': group_blockings(room_nonoverridable_blocked_rooms, dates), 'overridable_blockings': group_blockings(room_overridable_blocked_rooms, dates), 'nonbookable_periods': group_nonbookable_periods(room_nonbookable_periods, dates), 'unbookable_hours': room_unbookable_hours} return date_range, availability def get_room_candidates(candidates, conflicts): return [candidate for candidate in candidates if not (any(candidate.overlaps(conflict) for conflict in conflicts))] def _bookings_query(filters, noload_room=False): reservation_strategy = contains_eager('reservation') if noload_room: reservation_strategy.raiseload('room') else: reservation_strategy.joinedload('room') reservation_strategy.noload('booked_for_user') reservation_strategy.noload('created_by_user') query = (ReservationOccurrence.query .join(Reservation) .join(Room) .filter(~Room.is_deleted) .options(reservation_strategy)) text = filters.get('text') room_ids = filters.get('room_ids') booking_criteria = [Reservation.booking_reason.ilike(f'%{text}%'), Reservation.booked_for_name.ilike(f'%{text}%')] if room_ids and text: query = query.filter(db.or_(Room.id.in_(room_ids), *booking_criteria)) elif room_ids: query = query.filter(Room.id.in_(room_ids)) elif text: query = query.filter(db.or_(*booking_criteria)) if filters.get('start_dt'): query = query.filter(ReservationOccurrence.start_dt >= filters['start_dt']) if filters.get('end_dt'): query = query.filter(ReservationOccurrence.end_dt <= filters['end_dt']) booked_for_user = filters.get('booked_for_user') if booked_for_user: query = query.filter(db.or_(Reservation.booked_for_user == booked_for_user, Reservation.created_by_user == booked_for_user)) if not filters.get('include_inactive'): query = query.filter(ReservationOccurrence.is_valid) return query def get_room_calendar(start_date, end_date, room_ids, include_inactive=False, **filters): start_dt = datetime.combine(start_date, time(hour=0, minute=0)) end_dt = datetime.combine(end_date, time(hour=23, minute=59)) query = _bookings_query(dict(filters, start_dt=start_dt, end_dt=end_dt, room_ids=room_ids, include_inactive=include_inactive)) bookings = query.order_by(db.func.indico.natsort(Room.full_name)).all() rooms = set() if room_ids: rooms = set(Room.query .filter(~Room.is_deleted, Room.id.in_(room_ids)) .options(joinedload('location'))) rooms.update(b.reservation.room for b in bookings) rooms = sorted(rooms, key=lambda r: natural_sort_key(r.full_name)) occurrences_by_room = groupby(bookings, attrgetter('reservation.room_id')) unbookable_hours = get_rooms_unbookable_hours(rooms) nonbookable_periods = get_rooms_nonbookable_periods(rooms, start_dt, end_dt) blocked_rooms = get_rooms_blockings(rooms, start_dt, end_dt) nonoverridable_blocked_rooms = group_blocked_rooms(filter_blocked_rooms(blocked_rooms, nonoverridable_only=True, explicit=True)) overridable_blocked_rooms = group_blocked_rooms(filter_blocked_rooms(blocked_rooms, overridable_only=True, explicit=True)) dates = [d.date() for d in iterdays(start_dt, end_dt)] calendar = {room.id: { 'room_id': room.id, 'nonbookable_periods': group_nonbookable_periods(nonbookable_periods.get(room.id, []), dates), 'unbookable_hours': unbookable_hours.get(room.id, []), 'blockings': group_blockings(nonoverridable_blocked_rooms.get(room.id, []), dates), 'overridable_blockings': group_blockings(overridable_blocked_rooms.get(room.id, []), dates), } for room in rooms} for room_id, occurrences in occurrences_by_room: occurrences = list(occurrences) pre_bookings = [occ for occ in occurrences if occ.reservation.is_pending] existing_bookings = [occ for occ in occurrences if not occ.reservation.is_pending and occ.is_valid] concurrent_pre_bookings = get_concurrent_pre_bookings(pre_bookings) additional_data = { 'bookings': group_by_occurrence_date(existing_bookings), 'pre_bookings': group_by_occurrence_date(pre_bookings), 'concurrent_pre_bookings': group_by_occurrence_date(concurrent_pre_bookings) } if include_inactive: additional_data.update({ 'cancellations': group_by_occurrence_date(occ for occ in occurrences if occ.is_cancelled), 'rejections': group_by_occurrence_date(occ for occ in occurrences if occ.is_rejected) }) calendar[room_id].update(additional_data) return calendar def get_room_details_availability(room, start_dt, end_dt): dates = [d.date() for d in iterdays(start_dt, end_dt)] occurrences = get_existing_room_occurrences(room, start_dt, end_dt, RepeatFrequency.DAY, 1) pre_bookings = [occ for occ in occurrences if not occ.reservation.is_accepted] bookings = [occ for occ in occurrences if occ.reservation.is_accepted] blocked_rooms = get_rooms_blockings([room], start_dt.date(), end_dt.date()) nonoverridable_blocked_rooms = group_blocked_rooms(filter_blocked_rooms(blocked_rooms, nonoverridable_only=True, explicit=True)).get(room.id, []) overridable_blocked_rooms = group_blocked_rooms(filter_blocked_rooms(blocked_rooms, overridable_only=True, explicit=True)).get(room.id, []) unbookable_hours = get_rooms_unbookable_hours([room]).get(room.id, []) nonbookable_periods = get_rooms_nonbookable_periods([room], start_dt, end_dt).get(room.id, []) availability = [] for day in dates: iso_day = day.isoformat() nb_periods = serialize_nonbookable_periods(group_nonbookable_periods(nonbookable_periods, dates)).get(iso_day) availability.append({ 'bookings': serialize_occurrences(group_by_occurrence_date(bookings)).get(iso_day), 'pre_bookings': serialize_occurrences(group_by_occurrence_date(pre_bookings)).get(iso_day), 'blockings': serialize_blockings(group_blockings(nonoverridable_blocked_rooms, dates)).get(iso_day), 'overridable_blockings': (serialize_blockings(group_blockings(overridable_blocked_rooms, dates)) .get(iso_day)), 'nonbookable_periods': nb_periods, 'unbookable_hours': serialize_unbookable_hours(unbookable_hours), 'day': iso_day, }) return sorted(availability, key=itemgetter('day')) def get_booking_occurrences(booking): date_range = sorted({cand.start_dt.date() for cand in booking.occurrences}) occurrences = group_by_occurrence_date(booking.occurrences) return date_range, occurrences def check_room_available(room, start_dt, end_dt): occurrences = get_existing_room_occurrences(room, start_dt, end_dt, allow_overlapping=True) prebookings = [occ for occ in occurrences if not occ.reservation.is_accepted] bookings = [occ for occ in occurrences if occ.reservation.is_accepted] unbookable_hours = get_rooms_unbookable_hours([room]).get(room.id, []) hours_overlap = any(hours for hours in unbookable_hours if overlaps((start_dt.time(), end_dt.time()), (hours.start_time, hours.end_time))) nonbookable_periods = any(get_rooms_nonbookable_periods([room], start_dt, end_dt)) blocked_rooms = get_rooms_blockings([room], start_dt, end_dt) nonoverridable_blocked_rooms = filter_blocked_rooms(blocked_rooms, nonoverridable_only=True, explicit=True) blocked_for_user = any(nonoverridable_blocked_rooms) user_booking = any(booking for booking in bookings if booking.reservation.booked_for_id == session.user.id) user_prebooking = any(prebooking for prebooking in prebookings if prebooking.reservation.booked_for_id == session.user.id) return { 'can_book': room.can_book(session.user, allow_admin=False), 'can_prebook': room.can_prebook(session.user, allow_admin=False), 'conflict_booking': any(bookings), 'conflict_prebooking': any(prebookings), 'unbookable': (hours_overlap or nonbookable_periods or blocked_for_user), 'user_booking': user_booking, 'user_prebooking': user_prebooking, } def create_booking_for_event(room_id, event): try: room = Room.get_or_404(room_id) default_timezone = timezone(config.DEFAULT_TIMEZONE) start_dt = event.start_dt.astimezone(default_timezone).replace(tzinfo=None) end_dt = event.end_dt.astimezone(default_timezone).replace(tzinfo=None) booking_reason = f"Event '{event.title}'" data = dict(start_dt=start_dt, end_dt=end_dt, booked_for_user=event.creator, booking_reason=booking_reason, repeat_frequency=RepeatFrequency.NEVER, event_id=event.id) booking = Reservation.create_from_data(room, data, session.user, ignore_admin=True) booking.linked_object = event return booking except NoReportError: flash(_("Booking could not be created. Probably somebody else booked the room in the meantime."), 'error') return None def get_active_bookings(limit, start_dt, last_reservation_id=None, **filters): criteria = [ReservationOccurrence.start_dt > start_dt] if last_reservation_id is not None: criteria.append(db.and_(db.cast(ReservationOccurrence.start_dt, db.Date) >= start_dt, ReservationOccurrence.reservation_id > last_reservation_id)) query = (_bookings_query(filters, noload_room=True) .filter(db.or_(*criteria)) .order_by(ReservationOccurrence.start_dt, ReservationOccurrence.reservation_id, db.func.indico.natsort(Room.full_name)) .limit(limit)) bookings, total = with_total_rows(query) rows_left = total - limit if total > limit else total return group_by_occurrence_date(query, sort_by=lambda obj: (obj.start_dt, obj.reservation_id)), rows_left def has_same_dates(old_booking, new_booking): return (old_booking.start_dt == new_booking['start_dt'] and old_booking.end_dt == new_booking['end_dt'] and old_booking.repeat_interval == new_booking['repeat_interval'] and old_booking.repeat_frequency == new_booking['repeat_frequency']) def has_same_slots(old_booking, new_booking): if ( old_booking.repeat_interval != new_booking['repeat_interval'] or old_booking.repeat_frequency != new_booking['repeat_frequency'] ): return False return old_booking.start_dt <= new_booking['start_dt'] and old_booking.end_dt >= new_booking['end_dt'] def should_split_booking(booking, new_data): today = date.today() is_ongoing_booking = booking.start_dt.date() < today < booking.end_dt.date() old_start_time = booking.start_dt.time() old_end_time = booking.end_dt.time() old_repeat_frequency = booking.repeat_frequency old_repeat_interval = booking.repeat_interval times_changed = new_data['start_dt'].time() != old_start_time or new_data['end_dt'].time() != old_end_time new_repeat_frequency = new_data['repeat_frequency'] new_repeat_interval = new_data['repeat_interval'] repetition_changed = (new_repeat_frequency, new_repeat_interval) != (old_repeat_frequency, old_repeat_interval) return is_ongoing_booking and (times_changed or repetition_changed) def split_booking(booking, new_booking_data): is_ongoing_booking = booking.start_dt.date() < date.today() < booking.end_dt.date() if not is_ongoing_booking: return cancelled_dates = [] rejected_occs = {} room = booking.room occurrences = sorted(booking.occurrences, key=attrgetter('start_dt')) old_frequency = booking.repeat_frequency occurrences_to_cancel = [occ for occ in occurrences if occ.start_dt >= datetime.now() and occ.is_valid] if old_frequency != RepeatFrequency.NEVER and new_booking_data['repeat_frequency'] == RepeatFrequency.NEVER: new_start_dt = new_booking_data['start_dt'] else: new_start_dt = datetime.combine(occurrences_to_cancel[0].start_dt.date(), new_booking_data['start_dt'].time()) cancelled_dates = [occ.start_dt.date() for occ in occurrences if occ.is_cancelled] rejected_occs = {occ.start_dt.date(): occ.rejection_reason for occ in occurrences if occ.is_rejected} new_end_dt = [occ for occ in occurrences if occ.start_dt < datetime.now()][-1].end_dt old_booking_data = { 'booking_reason': booking.booking_reason, 'booked_for_user': booking.booked_for_user, 'start_dt': booking.start_dt, 'end_dt': new_end_dt, 'repeat_frequency': booking.repeat_frequency, 'repeat_interval': booking.repeat_interval, } booking.modify(old_booking_data, session.user) for occurrence_to_cancel in occurrences_to_cancel: occurrence_to_cancel.cancel(session.user, silent=True) prebook = not room.can_book(session.user, allow_admin=False) and room.can_prebook(session.user, allow_admin=False) resv = Reservation.create_from_data(room, dict(new_booking_data, start_dt=new_start_dt), session.user, prebook=prebook, ignore_admin=True) for new_occ in resv.occurrences: new_occ_start = new_occ.start_dt.date() if new_occ_start in cancelled_dates: new_occ.cancel(None, silent=True) if new_occ_start in rejected_occs: new_occ.reject(None, rejected_occs[new_occ_start], silent=True) booking.edit_logs.append(ReservationEditLog(user_name=session.user.full_name, info=[ 'Split into a new booking', f'booking_link:{resv.id}' ])) resv.edit_logs.append(ReservationEditLog(user_name=session.user.full_name, info=[ 'Split from another booking', f'booking_link:{booking.id}' ])) return resv def get_matching_events(start_dt, end_dt, repeat_frequency, repeat_interval): """Get events suitable for booking linking. This finds events that overlap with an occurrence of a booking with the given dates where the user is a manager. """ occurrences = ReservationOccurrence.create_series(start_dt, end_dt, (repeat_frequency, repeat_interval)) excluded_categories = rb_settings.get('excluded_categories') return (Event.query .filter(~Event.is_deleted, ~Event.room_reservation_links.any(ReservationLink.reservation.has(Reservation.is_accepted)), db.or_(Event.happens_between(server_to_utc(occ.start_dt), server_to_utc(occ.end_dt)) for occ in occurrences), Event.timezone == config.DEFAULT_TIMEZONE, db.and_(Event.category_id != cat.id for cat in excluded_categories), Event.acl_entries.any(db.and_(EventPrincipal.type == PrincipalType.user, EventPrincipal.user_id == session.user.id, EventPrincipal.full_access))) .all()) def get_booking_edit_calendar_data(booking, booking_changes): """Return calendar-related data for the booking edit modal.""" room = booking.room booking_details = serialize_booking_details(booking) old_date_range = booking_details['date_range'] booking_availability = dict(booking_details['occurrences'], candidates={}, conflicts={}, conflicting_candidates={}, pre_bookings={}, pre_conflicts={}, pending_cancellations={}, num_days_available=None, num_conflicts=None) response = { 'will_be_split': False, 'calendars': [{'date_range': old_date_range, 'data': booking_availability}] } cancelled_dates = [occ.start_dt.date() for occ in booking.occurrences if occ.is_cancelled] rejected_dates = [occ.start_dt.date() for occ in booking.occurrences if occ.is_rejected] if should_split_booking(booking, booking_changes): old_frequency = booking.repeat_frequency future_occurrences = [occ for occ in sorted(booking.occurrences, key=attrgetter('start_dt')) if occ.start_dt >= datetime.now()] if old_frequency != RepeatFrequency.NEVER and booking_changes['repeat_frequency'] == RepeatFrequency.NEVER: cancelled_dates = [] rejected_dates = [] new_date_range, data = get_rooms_availability([room], skip_conflicts_with=[booking.id], **booking_changes) else: new_booking_start_dt = datetime.combine(future_occurrences[0].start_dt.date(), booking_changes['start_dt'].time()) availability_filters = dict(booking_changes, start_dt=new_booking_start_dt) new_date_range, data = get_rooms_availability([room], skip_conflicts_with=[booking.id], **availability_filters) for occ in booking.occurrences: serialized = serialize_occurrences({occ.start_dt.date(): [occ]}) if occ in future_occurrences and occ.is_valid: booking_availability['pending_cancellations'].update(serialized) elif not occ.is_rejected and not occ.is_cancelled: booking_availability['bookings'].update(serialized) response['will_be_split'] = True elif not has_same_dates(booking, booking_changes): new_date_range, data = get_rooms_availability([room], skip_conflicts_with=[booking.id], skip_past_conflicts=True, **booking_changes) else: return response room_availability = data[room.id] room_availability['cancellations'] = {} room_availability['rejections'] = {} others = defaultdict(list) for k, v in chain(room_availability['bookings'].items(), room_availability['pre_bookings'].items()): others[k].extend(v) other_bookings = {dt: [x for x in other if x.reservation.id != booking.id] for dt, other in others.items()} candidates = room_availability['candidates'] for dt, dt_candidates in candidates.items(): if dt in cancelled_dates: candidates[dt] = [] room_availability['cancellations'].update({dt: dt_candidates}) elif dt in rejected_dates: candidates[dt] = [] room_availability['rejections'].update({dt: dt_candidates}) room_availability['num_days_available'] = ( len(new_date_range) - len(room_availability['conflicts']) - len(room_availability['cancellations']) - len(room_availability['rejections']) ) room_availability['num_conflicts'] = len(room_availability['conflicts']) room_availability['bookings'] = {} room_availability['other'] = serialize_occurrences(other_bookings) room_availability['pending_cancellations'] = {} response['calendars'].append({'date_range': new_date_range, 'data': serialize_availability(data)[room.id]}) return response
<filename>indico/modules/rb/operations/bookings.py # This file is part of Indico. # Copyright (C) 2002 - 2021 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from collections import defaultdict from datetime import date, datetime, time from itertools import chain, groupby from operator import attrgetter, itemgetter from flask import flash, session from pytz import timezone from sqlalchemy.orm import contains_eager, joinedload from indico.core.config import config from indico.core.db import db from indico.core.db.sqlalchemy.principals import PrincipalType from indico.core.db.sqlalchemy.util.queries import db_dates_overlap, with_total_rows from indico.core.errors import NoReportError from indico.modules.events.models.events import Event from indico.modules.events.models.principals import EventPrincipal from indico.modules.rb import rb_settings from indico.modules.rb.models.reservation_edit_logs import ReservationEditLog from indico.modules.rb.models.reservation_occurrences import ReservationOccurrence from indico.modules.rb.models.reservations import RepeatFrequency, Reservation, ReservationLink from indico.modules.rb.models.room_nonbookable_periods import NonBookablePeriod from indico.modules.rb.models.rooms import Room from indico.modules.rb.operations.blockings import filter_blocked_rooms, get_rooms_blockings, group_blocked_rooms from indico.modules.rb.operations.conflicts import get_concurrent_pre_bookings, get_rooms_conflicts from indico.modules.rb.operations.misc import get_rooms_nonbookable_periods, get_rooms_unbookable_hours from indico.modules.rb.util import (group_by_occurrence_date, serialize_availability, serialize_blockings, serialize_booking_details, serialize_nonbookable_periods, serialize_occurrences, serialize_unbookable_hours) from indico.util.date_time import iterdays, overlaps, server_to_utc from indico.util.i18n import _ from indico.util.iterables import group_list from indico.util.string import natural_sort_key def group_blockings(blocked_rooms, dates): if not blocked_rooms: return {} occurrences = {} for blocked_room in blocked_rooms: blocking = blocked_room.blocking for date_ in dates: if blocking.start_date <= date_ <= blocking.end_date: occurrences[date_] = [blocking] return occurrences def group_nonbookable_periods(periods, dates): if not periods: return {} occurrences = defaultdict(list) for period in periods: for d in dates: if period.start_dt.date() <= d <= period.end_dt.date(): period_occurrence = NonBookablePeriod() period_occurrence.start_dt = ((datetime.combine(d, time(0))) if period.start_dt.date() != d else period.start_dt) period_occurrence.end_dt = ((datetime.combine(d, time(23, 59))) if period.end_dt.date() != d else period.end_dt) occurrences[d].append(period_occurrence) return occurrences def get_existing_room_occurrences(room, start_dt, end_dt, repeat_frequency=RepeatFrequency.NEVER, repeat_interval=None, allow_overlapping=False, only_accepted=False, skip_booking_id=None): return get_existing_rooms_occurrences([room], start_dt, end_dt, repeat_frequency, repeat_interval, allow_overlapping, only_accepted, skip_booking_id).get(room.id, []) def get_existing_rooms_occurrences(rooms, start_dt, end_dt, repeat_frequency, repeat_interval, allow_overlapping=False, only_accepted=False, skip_booking_id=None): room_ids = [room.id for room in rooms] query = (ReservationOccurrence.query .filter(ReservationOccurrence.is_valid, Reservation.room_id.in_(room_ids)) .join(ReservationOccurrence.reservation) .options(ReservationOccurrence.NO_RESERVATION_USER_STRATEGY, contains_eager(ReservationOccurrence.reservation))) if allow_overlapping: query = query.filter(db_dates_overlap(ReservationOccurrence, 'start_dt', start_dt, 'end_dt', end_dt)) else: query = query.filter(ReservationOccurrence.start_dt >= start_dt, ReservationOccurrence.end_dt <= end_dt) if only_accepted: query = query.filter(Reservation.is_accepted) if repeat_frequency != RepeatFrequency.NEVER: candidates = ReservationOccurrence.create_series(start_dt, end_dt, (repeat_frequency, repeat_interval)) dates = [candidate.start_dt for candidate in candidates] query = query.filter(db.cast(ReservationOccurrence.start_dt, db.Date).in_(dates)) if skip_booking_id is not None: query = query.filter(ReservationOccurrence.reservation_id != skip_booking_id) return group_list(query, key=lambda obj: obj.reservation.room_id, sort_by=lambda obj: (obj.reservation.room_id, obj.start_dt)) def get_rooms_availability(rooms, start_dt, end_dt, repeat_frequency, repeat_interval, skip_conflicts_with=None, admin_override_enabled=False, skip_past_conflicts=False): availability = {} candidates = ReservationOccurrence.create_series(start_dt, end_dt, (repeat_frequency, repeat_interval)) date_range = sorted({cand.start_dt.date() for cand in candidates}) occurrences = get_existing_rooms_occurrences(rooms, start_dt.replace(hour=0, minute=0), end_dt.replace(hour=23, minute=59), repeat_frequency, repeat_interval) blocked_rooms = get_rooms_blockings(rooms, start_dt.date(), end_dt.date()) nonoverridable_blocked_rooms = group_blocked_rooms(filter_blocked_rooms(blocked_rooms, nonoverridable_only=True, explicit=True)) overridable_blocked_rooms = group_blocked_rooms(filter_blocked_rooms(blocked_rooms, overridable_only=True, explicit=True)) unbookable_hours = get_rooms_unbookable_hours(rooms) nonbookable_periods = get_rooms_nonbookable_periods(rooms, start_dt, end_dt) conflicts, pre_conflicts, conflicting_candidates = get_rooms_conflicts( rooms, start_dt.replace(tzinfo=None), end_dt.replace(tzinfo=None), repeat_frequency, repeat_interval, nonoverridable_blocked_rooms, nonbookable_periods, unbookable_hours, skip_conflicts_with, allow_admin=admin_override_enabled, skip_past_conflicts=skip_past_conflicts ) dates = list(candidate.start_dt.date() for candidate in candidates) for room in rooms: room_occurrences = occurrences.get(room.id, []) room_conflicting_candidates = conflicting_candidates.get(room.id, []) room_conflicts = conflicts.get(room.id, []) pre_room_conflicts = pre_conflicts.get(room.id, []) pre_bookings = [occ for occ in room_occurrences if not occ.reservation.is_accepted] concurrent_pre_bookings = get_concurrent_pre_bookings(pre_bookings) if pre_bookings else [] existing_bookings = [occ for occ in room_occurrences if occ.reservation.is_accepted] room_nonoverridable_blocked_rooms = nonoverridable_blocked_rooms.get(room.id, []) room_overridable_blocked_rooms = overridable_blocked_rooms.get(room.id, []) room_nonbookable_periods = nonbookable_periods.get(room.id, []) room_unbookable_hours = unbookable_hours.get(room.id, []) room_candidates = get_room_candidates(candidates, room_conflicts) availability[room.id] = {'room_id': room.id, 'candidates': group_by_occurrence_date(room_candidates), 'conflicting_candidates': group_by_occurrence_date(room_conflicting_candidates), 'pre_bookings': group_by_occurrence_date(pre_bookings), 'concurrent_pre_bookings': group_by_occurrence_date(concurrent_pre_bookings), 'bookings': group_by_occurrence_date(existing_bookings), 'conflicts': group_by_occurrence_date(room_conflicts), 'pre_conflicts': group_by_occurrence_date(pre_room_conflicts), 'blockings': group_blockings(room_nonoverridable_blocked_rooms, dates), 'overridable_blockings': group_blockings(room_overridable_blocked_rooms, dates), 'nonbookable_periods': group_nonbookable_periods(room_nonbookable_periods, dates), 'unbookable_hours': room_unbookable_hours} return date_range, availability def get_room_candidates(candidates, conflicts): return [candidate for candidate in candidates if not (any(candidate.overlaps(conflict) for conflict in conflicts))] def _bookings_query(filters, noload_room=False): reservation_strategy = contains_eager('reservation') if noload_room: reservation_strategy.raiseload('room') else: reservation_strategy.joinedload('room') reservation_strategy.noload('booked_for_user') reservation_strategy.noload('created_by_user') query = (ReservationOccurrence.query .join(Reservation) .join(Room) .filter(~Room.is_deleted) .options(reservation_strategy)) text = filters.get('text') room_ids = filters.get('room_ids') booking_criteria = [Reservation.booking_reason.ilike(f'%{text}%'), Reservation.booked_for_name.ilike(f'%{text}%')] if room_ids and text: query = query.filter(db.or_(Room.id.in_(room_ids), *booking_criteria)) elif room_ids: query = query.filter(Room.id.in_(room_ids)) elif text: query = query.filter(db.or_(*booking_criteria)) if filters.get('start_dt'): query = query.filter(ReservationOccurrence.start_dt >= filters['start_dt']) if filters.get('end_dt'): query = query.filter(ReservationOccurrence.end_dt <= filters['end_dt']) booked_for_user = filters.get('booked_for_user') if booked_for_user: query = query.filter(db.or_(Reservation.booked_for_user == booked_for_user, Reservation.created_by_user == booked_for_user)) if not filters.get('include_inactive'): query = query.filter(ReservationOccurrence.is_valid) return query def get_room_calendar(start_date, end_date, room_ids, include_inactive=False, **filters): start_dt = datetime.combine(start_date, time(hour=0, minute=0)) end_dt = datetime.combine(end_date, time(hour=23, minute=59)) query = _bookings_query(dict(filters, start_dt=start_dt, end_dt=end_dt, room_ids=room_ids, include_inactive=include_inactive)) bookings = query.order_by(db.func.indico.natsort(Room.full_name)).all() rooms = set() if room_ids: rooms = set(Room.query .filter(~Room.is_deleted, Room.id.in_(room_ids)) .options(joinedload('location'))) rooms.update(b.reservation.room for b in bookings) rooms = sorted(rooms, key=lambda r: natural_sort_key(r.full_name)) occurrences_by_room = groupby(bookings, attrgetter('reservation.room_id')) unbookable_hours = get_rooms_unbookable_hours(rooms) nonbookable_periods = get_rooms_nonbookable_periods(rooms, start_dt, end_dt) blocked_rooms = get_rooms_blockings(rooms, start_dt, end_dt) nonoverridable_blocked_rooms = group_blocked_rooms(filter_blocked_rooms(blocked_rooms, nonoverridable_only=True, explicit=True)) overridable_blocked_rooms = group_blocked_rooms(filter_blocked_rooms(blocked_rooms, overridable_only=True, explicit=True)) dates = [d.date() for d in iterdays(start_dt, end_dt)] calendar = {room.id: { 'room_id': room.id, 'nonbookable_periods': group_nonbookable_periods(nonbookable_periods.get(room.id, []), dates), 'unbookable_hours': unbookable_hours.get(room.id, []), 'blockings': group_blockings(nonoverridable_blocked_rooms.get(room.id, []), dates), 'overridable_blockings': group_blockings(overridable_blocked_rooms.get(room.id, []), dates), } for room in rooms} for room_id, occurrences in occurrences_by_room: occurrences = list(occurrences) pre_bookings = [occ for occ in occurrences if occ.reservation.is_pending] existing_bookings = [occ for occ in occurrences if not occ.reservation.is_pending and occ.is_valid] concurrent_pre_bookings = get_concurrent_pre_bookings(pre_bookings) additional_data = { 'bookings': group_by_occurrence_date(existing_bookings), 'pre_bookings': group_by_occurrence_date(pre_bookings), 'concurrent_pre_bookings': group_by_occurrence_date(concurrent_pre_bookings) } if include_inactive: additional_data.update({ 'cancellations': group_by_occurrence_date(occ for occ in occurrences if occ.is_cancelled), 'rejections': group_by_occurrence_date(occ for occ in occurrences if occ.is_rejected) }) calendar[room_id].update(additional_data) return calendar def get_room_details_availability(room, start_dt, end_dt): dates = [d.date() for d in iterdays(start_dt, end_dt)] occurrences = get_existing_room_occurrences(room, start_dt, end_dt, RepeatFrequency.DAY, 1) pre_bookings = [occ for occ in occurrences if not occ.reservation.is_accepted] bookings = [occ for occ in occurrences if occ.reservation.is_accepted] blocked_rooms = get_rooms_blockings([room], start_dt.date(), end_dt.date()) nonoverridable_blocked_rooms = group_blocked_rooms(filter_blocked_rooms(blocked_rooms, nonoverridable_only=True, explicit=True)).get(room.id, []) overridable_blocked_rooms = group_blocked_rooms(filter_blocked_rooms(blocked_rooms, overridable_only=True, explicit=True)).get(room.id, []) unbookable_hours = get_rooms_unbookable_hours([room]).get(room.id, []) nonbookable_periods = get_rooms_nonbookable_periods([room], start_dt, end_dt).get(room.id, []) availability = [] for day in dates: iso_day = day.isoformat() nb_periods = serialize_nonbookable_periods(group_nonbookable_periods(nonbookable_periods, dates)).get(iso_day) availability.append({ 'bookings': serialize_occurrences(group_by_occurrence_date(bookings)).get(iso_day), 'pre_bookings': serialize_occurrences(group_by_occurrence_date(pre_bookings)).get(iso_day), 'blockings': serialize_blockings(group_blockings(nonoverridable_blocked_rooms, dates)).get(iso_day), 'overridable_blockings': (serialize_blockings(group_blockings(overridable_blocked_rooms, dates)) .get(iso_day)), 'nonbookable_periods': nb_periods, 'unbookable_hours': serialize_unbookable_hours(unbookable_hours), 'day': iso_day, }) return sorted(availability, key=itemgetter('day')) def get_booking_occurrences(booking): date_range = sorted({cand.start_dt.date() for cand in booking.occurrences}) occurrences = group_by_occurrence_date(booking.occurrences) return date_range, occurrences def check_room_available(room, start_dt, end_dt): occurrences = get_existing_room_occurrences(room, start_dt, end_dt, allow_overlapping=True) prebookings = [occ for occ in occurrences if not occ.reservation.is_accepted] bookings = [occ for occ in occurrences if occ.reservation.is_accepted] unbookable_hours = get_rooms_unbookable_hours([room]).get(room.id, []) hours_overlap = any(hours for hours in unbookable_hours if overlaps((start_dt.time(), end_dt.time()), (hours.start_time, hours.end_time))) nonbookable_periods = any(get_rooms_nonbookable_periods([room], start_dt, end_dt)) blocked_rooms = get_rooms_blockings([room], start_dt, end_dt) nonoverridable_blocked_rooms = filter_blocked_rooms(blocked_rooms, nonoverridable_only=True, explicit=True) blocked_for_user = any(nonoverridable_blocked_rooms) user_booking = any(booking for booking in bookings if booking.reservation.booked_for_id == session.user.id) user_prebooking = any(prebooking for prebooking in prebookings if prebooking.reservation.booked_for_id == session.user.id) return { 'can_book': room.can_book(session.user, allow_admin=False), 'can_prebook': room.can_prebook(session.user, allow_admin=False), 'conflict_booking': any(bookings), 'conflict_prebooking': any(prebookings), 'unbookable': (hours_overlap or nonbookable_periods or blocked_for_user), 'user_booking': user_booking, 'user_prebooking': user_prebooking, } def create_booking_for_event(room_id, event): try: room = Room.get_or_404(room_id) default_timezone = timezone(config.DEFAULT_TIMEZONE) start_dt = event.start_dt.astimezone(default_timezone).replace(tzinfo=None) end_dt = event.end_dt.astimezone(default_timezone).replace(tzinfo=None) booking_reason = f"Event '{event.title}'" data = dict(start_dt=start_dt, end_dt=end_dt, booked_for_user=event.creator, booking_reason=booking_reason, repeat_frequency=RepeatFrequency.NEVER, event_id=event.id) booking = Reservation.create_from_data(room, data, session.user, ignore_admin=True) booking.linked_object = event return booking except NoReportError: flash(_("Booking could not be created. Probably somebody else booked the room in the meantime."), 'error') return None def get_active_bookings(limit, start_dt, last_reservation_id=None, **filters): criteria = [ReservationOccurrence.start_dt > start_dt] if last_reservation_id is not None: criteria.append(db.and_(db.cast(ReservationOccurrence.start_dt, db.Date) >= start_dt, ReservationOccurrence.reservation_id > last_reservation_id)) query = (_bookings_query(filters, noload_room=True) .filter(db.or_(*criteria)) .order_by(ReservationOccurrence.start_dt, ReservationOccurrence.reservation_id, db.func.indico.natsort(Room.full_name)) .limit(limit)) bookings, total = with_total_rows(query) rows_left = total - limit if total > limit else total return group_by_occurrence_date(query, sort_by=lambda obj: (obj.start_dt, obj.reservation_id)), rows_left def has_same_dates(old_booking, new_booking): return (old_booking.start_dt == new_booking['start_dt'] and old_booking.end_dt == new_booking['end_dt'] and old_booking.repeat_interval == new_booking['repeat_interval'] and old_booking.repeat_frequency == new_booking['repeat_frequency']) def has_same_slots(old_booking, new_booking): if ( old_booking.repeat_interval != new_booking['repeat_interval'] or old_booking.repeat_frequency != new_booking['repeat_frequency'] ): return False return old_booking.start_dt <= new_booking['start_dt'] and old_booking.end_dt >= new_booking['end_dt'] def should_split_booking(booking, new_data): today = date.today() is_ongoing_booking = booking.start_dt.date() < today < booking.end_dt.date() old_start_time = booking.start_dt.time() old_end_time = booking.end_dt.time() old_repeat_frequency = booking.repeat_frequency old_repeat_interval = booking.repeat_interval times_changed = new_data['start_dt'].time() != old_start_time or new_data['end_dt'].time() != old_end_time new_repeat_frequency = new_data['repeat_frequency'] new_repeat_interval = new_data['repeat_interval'] repetition_changed = (new_repeat_frequency, new_repeat_interval) != (old_repeat_frequency, old_repeat_interval) return is_ongoing_booking and (times_changed or repetition_changed) def split_booking(booking, new_booking_data): is_ongoing_booking = booking.start_dt.date() < date.today() < booking.end_dt.date() if not is_ongoing_booking: return cancelled_dates = [] rejected_occs = {} room = booking.room occurrences = sorted(booking.occurrences, key=attrgetter('start_dt')) old_frequency = booking.repeat_frequency occurrences_to_cancel = [occ for occ in occurrences if occ.start_dt >= datetime.now() and occ.is_valid] if old_frequency != RepeatFrequency.NEVER and new_booking_data['repeat_frequency'] == RepeatFrequency.NEVER: new_start_dt = new_booking_data['start_dt'] else: new_start_dt = datetime.combine(occurrences_to_cancel[0].start_dt.date(), new_booking_data['start_dt'].time()) cancelled_dates = [occ.start_dt.date() for occ in occurrences if occ.is_cancelled] rejected_occs = {occ.start_dt.date(): occ.rejection_reason for occ in occurrences if occ.is_rejected} new_end_dt = [occ for occ in occurrences if occ.start_dt < datetime.now()][-1].end_dt old_booking_data = { 'booking_reason': booking.booking_reason, 'booked_for_user': booking.booked_for_user, 'start_dt': booking.start_dt, 'end_dt': new_end_dt, 'repeat_frequency': booking.repeat_frequency, 'repeat_interval': booking.repeat_interval, } booking.modify(old_booking_data, session.user) for occurrence_to_cancel in occurrences_to_cancel: occurrence_to_cancel.cancel(session.user, silent=True) prebook = not room.can_book(session.user, allow_admin=False) and room.can_prebook(session.user, allow_admin=False) resv = Reservation.create_from_data(room, dict(new_booking_data, start_dt=new_start_dt), session.user, prebook=prebook, ignore_admin=True) for new_occ in resv.occurrences: new_occ_start = new_occ.start_dt.date() if new_occ_start in cancelled_dates: new_occ.cancel(None, silent=True) if new_occ_start in rejected_occs: new_occ.reject(None, rejected_occs[new_occ_start], silent=True) booking.edit_logs.append(ReservationEditLog(user_name=session.user.full_name, info=[ 'Split into a new booking', f'booking_link:{resv.id}' ])) resv.edit_logs.append(ReservationEditLog(user_name=session.user.full_name, info=[ 'Split from another booking', f'booking_link:{booking.id}' ])) return resv def get_matching_events(start_dt, end_dt, repeat_frequency, repeat_interval): """Get events suitable for booking linking. This finds events that overlap with an occurrence of a booking with the given dates where the user is a manager. """ occurrences = ReservationOccurrence.create_series(start_dt, end_dt, (repeat_frequency, repeat_interval)) excluded_categories = rb_settings.get('excluded_categories') return (Event.query .filter(~Event.is_deleted, ~Event.room_reservation_links.any(ReservationLink.reservation.has(Reservation.is_accepted)), db.or_(Event.happens_between(server_to_utc(occ.start_dt), server_to_utc(occ.end_dt)) for occ in occurrences), Event.timezone == config.DEFAULT_TIMEZONE, db.and_(Event.category_id != cat.id for cat in excluded_categories), Event.acl_entries.any(db.and_(EventPrincipal.type == PrincipalType.user, EventPrincipal.user_id == session.user.id, EventPrincipal.full_access))) .all()) def get_booking_edit_calendar_data(booking, booking_changes): """Return calendar-related data for the booking edit modal.""" room = booking.room booking_details = serialize_booking_details(booking) old_date_range = booking_details['date_range'] booking_availability = dict(booking_details['occurrences'], candidates={}, conflicts={}, conflicting_candidates={}, pre_bookings={}, pre_conflicts={}, pending_cancellations={}, num_days_available=None, num_conflicts=None) response = { 'will_be_split': False, 'calendars': [{'date_range': old_date_range, 'data': booking_availability}] } cancelled_dates = [occ.start_dt.date() for occ in booking.occurrences if occ.is_cancelled] rejected_dates = [occ.start_dt.date() for occ in booking.occurrences if occ.is_rejected] if should_split_booking(booking, booking_changes): old_frequency = booking.repeat_frequency future_occurrences = [occ for occ in sorted(booking.occurrences, key=attrgetter('start_dt')) if occ.start_dt >= datetime.now()] if old_frequency != RepeatFrequency.NEVER and booking_changes['repeat_frequency'] == RepeatFrequency.NEVER: cancelled_dates = [] rejected_dates = [] new_date_range, data = get_rooms_availability([room], skip_conflicts_with=[booking.id], **booking_changes) else: new_booking_start_dt = datetime.combine(future_occurrences[0].start_dt.date(), booking_changes['start_dt'].time()) availability_filters = dict(booking_changes, start_dt=new_booking_start_dt) new_date_range, data = get_rooms_availability([room], skip_conflicts_with=[booking.id], **availability_filters) for occ in booking.occurrences: serialized = serialize_occurrences({occ.start_dt.date(): [occ]}) if occ in future_occurrences and occ.is_valid: booking_availability['pending_cancellations'].update(serialized) elif not occ.is_rejected and not occ.is_cancelled: booking_availability['bookings'].update(serialized) response['will_be_split'] = True elif not has_same_dates(booking, booking_changes): new_date_range, data = get_rooms_availability([room], skip_conflicts_with=[booking.id], skip_past_conflicts=True, **booking_changes) else: return response room_availability = data[room.id] room_availability['cancellations'] = {} room_availability['rejections'] = {} others = defaultdict(list) for k, v in chain(room_availability['bookings'].items(), room_availability['pre_bookings'].items()): others[k].extend(v) other_bookings = {dt: [x for x in other if x.reservation.id != booking.id] for dt, other in others.items()} candidates = room_availability['candidates'] for dt, dt_candidates in candidates.items(): if dt in cancelled_dates: candidates[dt] = [] room_availability['cancellations'].update({dt: dt_candidates}) elif dt in rejected_dates: candidates[dt] = [] room_availability['rejections'].update({dt: dt_candidates}) room_availability['num_days_available'] = ( len(new_date_range) - len(room_availability['conflicts']) - len(room_availability['cancellations']) - len(room_availability['rejections']) ) room_availability['num_conflicts'] = len(room_availability['conflicts']) room_availability['bookings'] = {} room_availability['other'] = serialize_occurrences(other_bookings) room_availability['pending_cancellations'] = {} response['calendars'].append({'date_range': new_date_range, 'data': serialize_availability(data)[room.id]}) return response
en
0.920913
# This file is part of Indico. # Copyright (C) 2002 - 2021 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. Get events suitable for booking linking. This finds events that overlap with an occurrence of a booking with the given dates where the user is a manager. Return calendar-related data for the booking edit modal.
1.619913
2
Stack/9-stack-sorting-with-recursion.py
mahmutcankurt/DataStructures_Python
1
6630017
<reponame>mahmutcankurt/DataStructures_Python<gh_stars>1-10 def insert(s, element): if(len(s) == 0 or element > s[-1]): s.append(element) return else: temp = s.pop() insert(s, element) s.append(temp) def sorting(s): if(len(s) != 0): temp = s.pop() sorting(s) insert(s, temp) def printStack(s): for i in s[::-1]: print(i, end=" ") print() if __name__ =="__main__": s = [] s.append(31) s.append(-6) s.append(19) s.append(14) s.append(-4) print("Stack elements before sorting: ") printStack(s) sorting(s) print("\nStack elements after sorting: ") printStack(s)
def insert(s, element): if(len(s) == 0 or element > s[-1]): s.append(element) return else: temp = s.pop() insert(s, element) s.append(temp) def sorting(s): if(len(s) != 0): temp = s.pop() sorting(s) insert(s, temp) def printStack(s): for i in s[::-1]: print(i, end=" ") print() if __name__ =="__main__": s = [] s.append(31) s.append(-6) s.append(19) s.append(14) s.append(-4) print("Stack elements before sorting: ") printStack(s) sorting(s) print("\nStack elements after sorting: ") printStack(s)
none
1
4.116955
4
functions/test/faceapi_test.py
yokawasa/facetag-functions
2
6630018
# -*- coding: utf-8 -*- import glob,os,io import sys sys.path.append('../') from commons.config import Config from commons.faceapi import AzureCognitiveFaceAPI from commons.blockblob import AzureStorageBlockBlob config = Config() # Face API # pip install azure-cognitiveservices-vision-face # FaceAPI Python SDK # https://docs.microsoft.com/en-us/azure/cognitive-services/face/quickstarts/python-sdk # https://azure.microsoft.com/en-us/services/cognitive-services/face/ # https://github.com/Azure-Samples/cognitive-services-quickstart-code/blob/master/python/Face/FaceQuickstart.py if __name__ == "__main__": storage_info = AzureStorageBlockBlob.parse_storage_conn_string(config.get_value('AzureWebJobsStorage')) api = AzureCognitiveFaceAPI( config.get_value('FACEAPI_ENDPOINT'), config.get_value('FACEAPI_SUBKEY'), storage_info['AccountName'], storage_info['AccountKey']) # person group id should be lowercase and alphanumeric (dash is ok) person_group_id = "my-unique-person-group00" ## Create PersonGroup #print('Create Person group:', person_group_id) #try: # faceapi.create_person_group(person_group_id, person_group_id) #except Exception as e: # # print("[Errno {0}] {1}".format(e.errno, e.strerror)) # print(e) ## Create Person #person_name = "Yoichi01" #print('Create Person:', person_name) #try: # person = faceapi.create_person(person_group_id, person_name) # print("person: id={}".format(person.person_id)) #except Exception as e: # print(e) ## Add images to a person person1_id = "47ca6a82-f5d1-45a8-9ac2-86a61ad6de90" person2_id = "4caa393c-510f-4d56-9438-f7fc8eadb52c" # Find all jpeg images of friends in working directory ## ็ตถๅฏพใƒ‘ใ‚นๆŒ‡ๅฎšใ€ใชใœใ‹ใ†ใพใใ„ใ‹ใชใ„ #person1_images = [file for file in glob.glob('/Users/yoichika/dev/github/facetag-services/samples/*.jpg') if file.startswith("man")] ## ็›ธๅฏพใƒ‘ใ‚นๆŒ‡ๅฎšใ ใจใ†ใพใใ„ใ os.chdir("/Users/yoichika/dev/github/facetag-services/samples") person1_images = [file for file in glob.glob('*.jpg') if file.startswith("man")] # Add to a woman person for image in person1_images: print(image) #w = open(image, 'r+b') #face_client.person_group_person.add_face_from_stream(PERSON_GROUP_ID, woman.person_id, w) ## ใ“ใ‚Œใ‚’blob storageใ‹ใ‚‰่ชญใฟ่พผใ‚€ใ‚„ใ‚Šๆ–น """ storage_account_name = "facetagstore" storage_account_key= "<KEY> compvision_endpoint = "https://yoichikacompvision01.cognitiveservices.azure.com" container_name = "test" blobclient = blockblob.AzureStorageBlockBlob(storage_account_name,storage_account_key) blob_names = ["man1-person-group.jpg", "man2-person-group.jpg", "man3-person-group.jpg"] for blob_name in blob_names: ## get blob to bytes # image_blob1 = blobclient.get_blob(container_name, blob1_name) ## get blob to stream in_stream = io.BytesIO() blobclient.get_blob_stream(container_name, blob_name, in_stream) in_stream.seek(0) persisted_face = api.add_face(person_group_id, person1_id, in_stream) print("persion_id={} persisted_face id={}".format(person1_id, persisted_face.persisted_face_id)) blob_names = ["woman1-person-group.jpg", "woman2-person-group.jpg", "woman3-person-group.jpg"] for blob_name in blob_names: ## get blob to bytes # image_blob1 = blobclient.get_blob(container_name, blob1_name) ## get blob to stream in_stream = io.BytesIO() blobclient.get_blob_stream(container_name, blob_name, in_stream) in_stream.seek(0) persisted_face = api.add_face(person_group_id, person2_id, in_stream) print("persion_id={} persisted_face id={}".format(person2_id, persisted_face.persisted_face_id)) # expected output #persion_id=47ca6a82-f5d1-45a8-9ac2-86a61ad6de90 persisted_face id=837f5342-fa1c-4c3d-bf85-7ace20632f7d """ """ ## Train PersonGroup print("Train Person group:", person_group_id) try: api.train_person_group(person_group_id) except Exception as e: print(e) """ container_name = "imageslocal" blob_name = "test-image-person-group.jpg" """ blobclient = AzureStorageBlockBlob(storage_account_name,storage_account_key) in_stream = io.BytesIO() blobclient.get_blob_stream(container_name, blob_name, in_stream) in_stream.seek(0) ## Identify Face api.identify_face(person_group_id, in_stream, max_num_of_candidates_returned=1, confidence_threshold=0.5) """ ret = api.identify_face_blob(person_group_id, container_name, blob_name, max_num_of_candidates_returned=1, confidence_threshold=0.5) print(ret)
# -*- coding: utf-8 -*- import glob,os,io import sys sys.path.append('../') from commons.config import Config from commons.faceapi import AzureCognitiveFaceAPI from commons.blockblob import AzureStorageBlockBlob config = Config() # Face API # pip install azure-cognitiveservices-vision-face # FaceAPI Python SDK # https://docs.microsoft.com/en-us/azure/cognitive-services/face/quickstarts/python-sdk # https://azure.microsoft.com/en-us/services/cognitive-services/face/ # https://github.com/Azure-Samples/cognitive-services-quickstart-code/blob/master/python/Face/FaceQuickstart.py if __name__ == "__main__": storage_info = AzureStorageBlockBlob.parse_storage_conn_string(config.get_value('AzureWebJobsStorage')) api = AzureCognitiveFaceAPI( config.get_value('FACEAPI_ENDPOINT'), config.get_value('FACEAPI_SUBKEY'), storage_info['AccountName'], storage_info['AccountKey']) # person group id should be lowercase and alphanumeric (dash is ok) person_group_id = "my-unique-person-group00" ## Create PersonGroup #print('Create Person group:', person_group_id) #try: # faceapi.create_person_group(person_group_id, person_group_id) #except Exception as e: # # print("[Errno {0}] {1}".format(e.errno, e.strerror)) # print(e) ## Create Person #person_name = "Yoichi01" #print('Create Person:', person_name) #try: # person = faceapi.create_person(person_group_id, person_name) # print("person: id={}".format(person.person_id)) #except Exception as e: # print(e) ## Add images to a person person1_id = "47ca6a82-f5d1-45a8-9ac2-86a61ad6de90" person2_id = "4caa393c-510f-4d56-9438-f7fc8eadb52c" # Find all jpeg images of friends in working directory ## ็ตถๅฏพใƒ‘ใ‚นๆŒ‡ๅฎšใ€ใชใœใ‹ใ†ใพใใ„ใ‹ใชใ„ #person1_images = [file for file in glob.glob('/Users/yoichika/dev/github/facetag-services/samples/*.jpg') if file.startswith("man")] ## ็›ธๅฏพใƒ‘ใ‚นๆŒ‡ๅฎšใ ใจใ†ใพใใ„ใ os.chdir("/Users/yoichika/dev/github/facetag-services/samples") person1_images = [file for file in glob.glob('*.jpg') if file.startswith("man")] # Add to a woman person for image in person1_images: print(image) #w = open(image, 'r+b') #face_client.person_group_person.add_face_from_stream(PERSON_GROUP_ID, woman.person_id, w) ## ใ“ใ‚Œใ‚’blob storageใ‹ใ‚‰่ชญใฟ่พผใ‚€ใ‚„ใ‚Šๆ–น """ storage_account_name = "facetagstore" storage_account_key= "<KEY> compvision_endpoint = "https://yoichikacompvision01.cognitiveservices.azure.com" container_name = "test" blobclient = blockblob.AzureStorageBlockBlob(storage_account_name,storage_account_key) blob_names = ["man1-person-group.jpg", "man2-person-group.jpg", "man3-person-group.jpg"] for blob_name in blob_names: ## get blob to bytes # image_blob1 = blobclient.get_blob(container_name, blob1_name) ## get blob to stream in_stream = io.BytesIO() blobclient.get_blob_stream(container_name, blob_name, in_stream) in_stream.seek(0) persisted_face = api.add_face(person_group_id, person1_id, in_stream) print("persion_id={} persisted_face id={}".format(person1_id, persisted_face.persisted_face_id)) blob_names = ["woman1-person-group.jpg", "woman2-person-group.jpg", "woman3-person-group.jpg"] for blob_name in blob_names: ## get blob to bytes # image_blob1 = blobclient.get_blob(container_name, blob1_name) ## get blob to stream in_stream = io.BytesIO() blobclient.get_blob_stream(container_name, blob_name, in_stream) in_stream.seek(0) persisted_face = api.add_face(person_group_id, person2_id, in_stream) print("persion_id={} persisted_face id={}".format(person2_id, persisted_face.persisted_face_id)) # expected output #persion_id=47ca6a82-f5d1-45a8-9ac2-86a61ad6de90 persisted_face id=837f5342-fa1c-4c3d-bf85-7ace20632f7d """ """ ## Train PersonGroup print("Train Person group:", person_group_id) try: api.train_person_group(person_group_id) except Exception as e: print(e) """ container_name = "imageslocal" blob_name = "test-image-person-group.jpg" """ blobclient = AzureStorageBlockBlob(storage_account_name,storage_account_key) in_stream = io.BytesIO() blobclient.get_blob_stream(container_name, blob_name, in_stream) in_stream.seek(0) ## Identify Face api.identify_face(person_group_id, in_stream, max_num_of_candidates_returned=1, confidence_threshold=0.5) """ ret = api.identify_face_blob(person_group_id, container_name, blob_name, max_num_of_candidates_returned=1, confidence_threshold=0.5) print(ret)
en
0.376871
# -*- coding: utf-8 -*- # Face API # pip install azure-cognitiveservices-vision-face # FaceAPI Python SDK # https://docs.microsoft.com/en-us/azure/cognitive-services/face/quickstarts/python-sdk # https://azure.microsoft.com/en-us/services/cognitive-services/face/ # https://github.com/Azure-Samples/cognitive-services-quickstart-code/blob/master/python/Face/FaceQuickstart.py # person group id should be lowercase and alphanumeric (dash is ok) ## Create PersonGroup #print('Create Person group:', person_group_id) #try: # faceapi.create_person_group(person_group_id, person_group_id) #except Exception as e: # # print("[Errno {0}] {1}".format(e.errno, e.strerror)) # print(e) ## Create Person #person_name = "Yoichi01" #print('Create Person:', person_name) #try: # person = faceapi.create_person(person_group_id, person_name) # print("person: id={}".format(person.person_id)) #except Exception as e: # print(e) ## Add images to a person # Find all jpeg images of friends in working directory ## ็ตถๅฏพใƒ‘ใ‚นๆŒ‡ๅฎšใ€ใชใœใ‹ใ†ใพใใ„ใ‹ใชใ„ #person1_images = [file for file in glob.glob('/Users/yoichika/dev/github/facetag-services/samples/*.jpg') if file.startswith("man")] ## ็›ธๅฏพใƒ‘ใ‚นๆŒ‡ๅฎšใ ใจใ†ใพใใ„ใ # Add to a woman person #w = open(image, 'r+b') #face_client.person_group_person.add_face_from_stream(PERSON_GROUP_ID, woman.person_id, w) ## ใ“ใ‚Œใ‚’blob storageใ‹ใ‚‰่ชญใฟ่พผใ‚€ใ‚„ใ‚Šๆ–น storage_account_name = "facetagstore" storage_account_key= "<KEY> compvision_endpoint = "https://yoichikacompvision01.cognitiveservices.azure.com" container_name = "test" blobclient = blockblob.AzureStorageBlockBlob(storage_account_name,storage_account_key) blob_names = ["man1-person-group.jpg", "man2-person-group.jpg", "man3-person-group.jpg"] for blob_name in blob_names: ## get blob to bytes # image_blob1 = blobclient.get_blob(container_name, blob1_name) ## get blob to stream in_stream = io.BytesIO() blobclient.get_blob_stream(container_name, blob_name, in_stream) in_stream.seek(0) persisted_face = api.add_face(person_group_id, person1_id, in_stream) print("persion_id={} persisted_face id={}".format(person1_id, persisted_face.persisted_face_id)) blob_names = ["woman1-person-group.jpg", "woman2-person-group.jpg", "woman3-person-group.jpg"] for blob_name in blob_names: ## get blob to bytes # image_blob1 = blobclient.get_blob(container_name, blob1_name) ## get blob to stream in_stream = io.BytesIO() blobclient.get_blob_stream(container_name, blob_name, in_stream) in_stream.seek(0) persisted_face = api.add_face(person_group_id, person2_id, in_stream) print("persion_id={} persisted_face id={}".format(person2_id, persisted_face.persisted_face_id)) # expected output #persion_id=47ca6a82-f5d1-45a8-9ac2-86a61ad6de90 persisted_face id=837f5342-fa1c-4c3d-bf85-7ace20632f7d ## Train PersonGroup print("Train Person group:", person_group_id) try: api.train_person_group(person_group_id) except Exception as e: print(e) blobclient = AzureStorageBlockBlob(storage_account_name,storage_account_key) in_stream = io.BytesIO() blobclient.get_blob_stream(container_name, blob_name, in_stream) in_stream.seek(0) ## Identify Face api.identify_face(person_group_id, in_stream, max_num_of_candidates_returned=1, confidence_threshold=0.5)
2.203276
2
pymtl3/passes/backends/verilog/translation/behavioral/VBehavioralTranslatorL2.py
kevinyuan/pymtl3
152
6630019
#========================================================================= # VBehavioralTranslatorL2.py #========================================================================= # Author : <NAME> # Date : March 18, 2019 """Provide the level 2 SystemVerilog translator implementation.""" from pymtl3.passes.backends.generic.behavioral.BehavioralTranslatorL2 import ( BehavioralTranslatorL2, ) from pymtl3.passes.rtlir import BehavioralRTLIR as bir from pymtl3.passes.rtlir import RTLIRType as rt from ...util.utility import make_indent from .VBehavioralTranslatorL1 import ( BehavioralRTLIRToVVisitorL1, VBehavioralTranslatorL1, ) class VBehavioralTranslatorL2( VBehavioralTranslatorL1, BehavioralTranslatorL2 ): def _get_rtlir2v_visitor( s ): return BehavioralRTLIRToVVisitorL2 def rtlir_tr_behavioral_tmpvars( s, tmpvars ): make_indent( tmpvars, 1 ) return '\n'.join( tmpvars ) def rtlir_tr_behavioral_tmpvar( s, id_, upblk_id, dtype ): return s.rtlir_tr_wire_decl( "__tmpvar__"+upblk_id+'_'+id_, rt.Wire(dtype['raw_dtype']), s.rtlir_tr_unpacked_array_type(None), dtype ) #------------------------------------------------------------------------- # BehavioralRTLIRToVVisitorL2 #------------------------------------------------------------------------- class BehavioralRTLIRToVVisitorL2( BehavioralRTLIRToVVisitorL1 ): """Visitor that translates RTLIR to SystemVerilog for a single upblk.""" def __init__( s, is_reserved ): super().__init__( is_reserved ) # The dictionary of operator-character pairs s.ops = { # Unary operators # bir.Invert : '~', bir.Not : '!', bir.UAdd : '+', bir.USub : '-', bir.Invert : '~', bir.UAdd : '+', bir.USub : '-', # Boolean operators # bir.And : '&&', bir.Or : '||', # Binary operators bir.Add : '+', bir.Sub : '-', bir.Mult : '*', bir.Div : '/', bir.Mod : '%', bir.Pow : '**', bir.ShiftLeft : '<<', bir.ShiftRightLogic : '>>', bir.BitAnd : '&', bir.BitOr : '|', bir.BitXor : '^', # Comparison operators bir.Eq : '==', bir.NotEq : '!=', bir.Lt : '<', bir.LtE : '<=', bir.Gt : '>', bir.GtE : '>=' } def visit_expr_wrap( s, node ): """Return expressions selectively wrapped with brackets.""" if isinstance( node, # ( bir.IfExp, bir.UnaryOp, bir.BoolOp, bir.BinOp, bir.Compare ) ): ( bir.IfExp, bir.UnaryOp, bir.BinOp, bir.Compare ) ): return f"( {s.visit(node)} )" else: return s.visit( node ) #----------------------------------------------------------------------- # Statements #----------------------------------------------------------------------- # All statement nodes return a list of strings. #----------------------------------------------------------------------- # visit_If #----------------------------------------------------------------------- def visit_If( s, node ): node.cond._top_expr = True src = [] body = [] orelse = [] # Grab condition, if-body, and orelse-body cond = s.visit( node.cond ) for stmt in node.body: body.extend( s.visit( stmt ) ) make_indent( body, 1 ) for stmt in node.orelse: orelse.extend( s.visit( stmt ) ) # Assemble the statement, starting with if-body if_begin = f'if ( {cond} ) begin' src.extend( [ if_begin ] ) src.extend( body ) # if len( node.body ) > 1: src.extend( [ 'end' ] ) # If orelse-body is not empty, add it to the list of strings if node.orelse != []: # If an if statement is the only statement in the orelse-body if len( node.orelse ) == 1 and isinstance( node.orelse[ 0 ], bir.If ): # No indent will be added, also append if-begin to else-begin else_begin = f'else {orelse[0]}' orelse = orelse[ 1 : ] # Else indent orelse-body else: else_begin = 'else' + ( ' begin' if len( node.orelse ) > 1 else '' ) make_indent( orelse, 1 ) src.extend( [ else_begin ] ) src.extend( orelse ) if len( node.orelse ) > 1: src.extend( [ 'end' ] ) return src #----------------------------------------------------------------------- # visit_For #----------------------------------------------------------------------- def visit_For( s, node ): node.start._top_expr = True node.end._top_expr = True node.step._top_expr = True src = [] body = [] loop_var = s.visit( node.var ) start = s.visit( node.start ) end = s.visit( node.end ) begin = ' begin' if len( node.body ) > 1 else '' cmp_op = '>' if node.step._value < 0 else '<' inc_op = '-' if node.step._value < 0 else '+' step_abs = s.visit( node.step ) if node.step._value < 0 and step_abs[0] == '-': step_abs = step_abs[1:] for stmt in node.body: body.extend( s.visit( stmt ) ) make_indent( body, 1 ) for_begin = \ 'for ( int unsigned {v} = {s}; {v} {comp} {t}; {v} {inc}= {stp} ){begin}'.format( v = loop_var, s = start, t = end, stp = step_abs, comp = cmp_op, inc = inc_op, begin = begin ) # Assemble for statement src.extend( [ for_begin ] ) src.extend( body ) if len( node.body ) > 1: src.extend( [ 'end' ] ) return src #----------------------------------------------------------------------- # Expressions #----------------------------------------------------------------------- # All expression nodes return a single string. #----------------------------------------------------------------------- # visit_IfExp #----------------------------------------------------------------------- def visit_IfExp( s, node ): node.cond._top_expr = True node.body._top_expr = True node.orelse._top_expr = True cond = s.visit_expr_wrap( node.cond ) true = s.visit( node.body ) false = s.visit( node.orelse ) return f'{cond} ? {true} : {false}' #----------------------------------------------------------------------- # visit_UnaryOp #----------------------------------------------------------------------- def visit_UnaryOp( s, node ): node.operand._top_expr = True op = s.ops[ type( node.op ) ] operand = s.visit_expr_wrap( node.operand ) return f'{op}{operand}' #----------------------------------------------------------------------- # visit_BoolOp #----------------------------------------------------------------------- # def visit_BoolOp( s, node ): # for value in node.values: # value._top_expr = True # op = s.ops[ type( node.op ) ] # values = [] # for value in node.values: # values.append( s.visit_expr_wrap( value ) ) # src = f' {op} '.join( values ) # return src #----------------------------------------------------------------------- # visit_BinOp #----------------------------------------------------------------------- def visit_BinOp( s, node ): node.left._top_expr = True node.right._top_expr = True op = s.ops[ type( node.op ) ] lhs = s.visit_expr_wrap( node.left ) rhs = s.visit_expr_wrap( node.right ) return f'{lhs} {op} {rhs}' #----------------------------------------------------------------------- # visit_Compare #----------------------------------------------------------------------- def visit_Compare( s, node ): node.left._top_expr = True node.right._top_expr = True op = s.ops[ type( node.op ) ] lhs = s.visit_expr_wrap( node.left ) rhs = s.visit_expr_wrap( node.right ) return f'{lhs} {op} {rhs}' #----------------------------------------------------------------------- # visit_LoopVar #----------------------------------------------------------------------- def visit_LoopVar( s, node ): s.check_res( node, node.name ) nbits = node.Type.get_dtype().get_length() return f"{nbits}'({node.name})" #----------------------------------------------------------------------- # visit_TmpVar #----------------------------------------------------------------------- def visit_TmpVar( s, node ): tmpvar = f"__tmpvar__{node.upblk_name}_{node.name}" if not node._is_explicit and not s.is_assign_LHS: nbits = node.Type.get_dtype().get_length() return f"{nbits}'({tmpvar})" else: return tmpvar #----------------------------------------------------------------------- # visit_LoopVarDecl #----------------------------------------------------------------------- def visit_LoopVarDecl( s, node ): s.check_res( node, node.name ) return node.name
#========================================================================= # VBehavioralTranslatorL2.py #========================================================================= # Author : <NAME> # Date : March 18, 2019 """Provide the level 2 SystemVerilog translator implementation.""" from pymtl3.passes.backends.generic.behavioral.BehavioralTranslatorL2 import ( BehavioralTranslatorL2, ) from pymtl3.passes.rtlir import BehavioralRTLIR as bir from pymtl3.passes.rtlir import RTLIRType as rt from ...util.utility import make_indent from .VBehavioralTranslatorL1 import ( BehavioralRTLIRToVVisitorL1, VBehavioralTranslatorL1, ) class VBehavioralTranslatorL2( VBehavioralTranslatorL1, BehavioralTranslatorL2 ): def _get_rtlir2v_visitor( s ): return BehavioralRTLIRToVVisitorL2 def rtlir_tr_behavioral_tmpvars( s, tmpvars ): make_indent( tmpvars, 1 ) return '\n'.join( tmpvars ) def rtlir_tr_behavioral_tmpvar( s, id_, upblk_id, dtype ): return s.rtlir_tr_wire_decl( "__tmpvar__"+upblk_id+'_'+id_, rt.Wire(dtype['raw_dtype']), s.rtlir_tr_unpacked_array_type(None), dtype ) #------------------------------------------------------------------------- # BehavioralRTLIRToVVisitorL2 #------------------------------------------------------------------------- class BehavioralRTLIRToVVisitorL2( BehavioralRTLIRToVVisitorL1 ): """Visitor that translates RTLIR to SystemVerilog for a single upblk.""" def __init__( s, is_reserved ): super().__init__( is_reserved ) # The dictionary of operator-character pairs s.ops = { # Unary operators # bir.Invert : '~', bir.Not : '!', bir.UAdd : '+', bir.USub : '-', bir.Invert : '~', bir.UAdd : '+', bir.USub : '-', # Boolean operators # bir.And : '&&', bir.Or : '||', # Binary operators bir.Add : '+', bir.Sub : '-', bir.Mult : '*', bir.Div : '/', bir.Mod : '%', bir.Pow : '**', bir.ShiftLeft : '<<', bir.ShiftRightLogic : '>>', bir.BitAnd : '&', bir.BitOr : '|', bir.BitXor : '^', # Comparison operators bir.Eq : '==', bir.NotEq : '!=', bir.Lt : '<', bir.LtE : '<=', bir.Gt : '>', bir.GtE : '>=' } def visit_expr_wrap( s, node ): """Return expressions selectively wrapped with brackets.""" if isinstance( node, # ( bir.IfExp, bir.UnaryOp, bir.BoolOp, bir.BinOp, bir.Compare ) ): ( bir.IfExp, bir.UnaryOp, bir.BinOp, bir.Compare ) ): return f"( {s.visit(node)} )" else: return s.visit( node ) #----------------------------------------------------------------------- # Statements #----------------------------------------------------------------------- # All statement nodes return a list of strings. #----------------------------------------------------------------------- # visit_If #----------------------------------------------------------------------- def visit_If( s, node ): node.cond._top_expr = True src = [] body = [] orelse = [] # Grab condition, if-body, and orelse-body cond = s.visit( node.cond ) for stmt in node.body: body.extend( s.visit( stmt ) ) make_indent( body, 1 ) for stmt in node.orelse: orelse.extend( s.visit( stmt ) ) # Assemble the statement, starting with if-body if_begin = f'if ( {cond} ) begin' src.extend( [ if_begin ] ) src.extend( body ) # if len( node.body ) > 1: src.extend( [ 'end' ] ) # If orelse-body is not empty, add it to the list of strings if node.orelse != []: # If an if statement is the only statement in the orelse-body if len( node.orelse ) == 1 and isinstance( node.orelse[ 0 ], bir.If ): # No indent will be added, also append if-begin to else-begin else_begin = f'else {orelse[0]}' orelse = orelse[ 1 : ] # Else indent orelse-body else: else_begin = 'else' + ( ' begin' if len( node.orelse ) > 1 else '' ) make_indent( orelse, 1 ) src.extend( [ else_begin ] ) src.extend( orelse ) if len( node.orelse ) > 1: src.extend( [ 'end' ] ) return src #----------------------------------------------------------------------- # visit_For #----------------------------------------------------------------------- def visit_For( s, node ): node.start._top_expr = True node.end._top_expr = True node.step._top_expr = True src = [] body = [] loop_var = s.visit( node.var ) start = s.visit( node.start ) end = s.visit( node.end ) begin = ' begin' if len( node.body ) > 1 else '' cmp_op = '>' if node.step._value < 0 else '<' inc_op = '-' if node.step._value < 0 else '+' step_abs = s.visit( node.step ) if node.step._value < 0 and step_abs[0] == '-': step_abs = step_abs[1:] for stmt in node.body: body.extend( s.visit( stmt ) ) make_indent( body, 1 ) for_begin = \ 'for ( int unsigned {v} = {s}; {v} {comp} {t}; {v} {inc}= {stp} ){begin}'.format( v = loop_var, s = start, t = end, stp = step_abs, comp = cmp_op, inc = inc_op, begin = begin ) # Assemble for statement src.extend( [ for_begin ] ) src.extend( body ) if len( node.body ) > 1: src.extend( [ 'end' ] ) return src #----------------------------------------------------------------------- # Expressions #----------------------------------------------------------------------- # All expression nodes return a single string. #----------------------------------------------------------------------- # visit_IfExp #----------------------------------------------------------------------- def visit_IfExp( s, node ): node.cond._top_expr = True node.body._top_expr = True node.orelse._top_expr = True cond = s.visit_expr_wrap( node.cond ) true = s.visit( node.body ) false = s.visit( node.orelse ) return f'{cond} ? {true} : {false}' #----------------------------------------------------------------------- # visit_UnaryOp #----------------------------------------------------------------------- def visit_UnaryOp( s, node ): node.operand._top_expr = True op = s.ops[ type( node.op ) ] operand = s.visit_expr_wrap( node.operand ) return f'{op}{operand}' #----------------------------------------------------------------------- # visit_BoolOp #----------------------------------------------------------------------- # def visit_BoolOp( s, node ): # for value in node.values: # value._top_expr = True # op = s.ops[ type( node.op ) ] # values = [] # for value in node.values: # values.append( s.visit_expr_wrap( value ) ) # src = f' {op} '.join( values ) # return src #----------------------------------------------------------------------- # visit_BinOp #----------------------------------------------------------------------- def visit_BinOp( s, node ): node.left._top_expr = True node.right._top_expr = True op = s.ops[ type( node.op ) ] lhs = s.visit_expr_wrap( node.left ) rhs = s.visit_expr_wrap( node.right ) return f'{lhs} {op} {rhs}' #----------------------------------------------------------------------- # visit_Compare #----------------------------------------------------------------------- def visit_Compare( s, node ): node.left._top_expr = True node.right._top_expr = True op = s.ops[ type( node.op ) ] lhs = s.visit_expr_wrap( node.left ) rhs = s.visit_expr_wrap( node.right ) return f'{lhs} {op} {rhs}' #----------------------------------------------------------------------- # visit_LoopVar #----------------------------------------------------------------------- def visit_LoopVar( s, node ): s.check_res( node, node.name ) nbits = node.Type.get_dtype().get_length() return f"{nbits}'({node.name})" #----------------------------------------------------------------------- # visit_TmpVar #----------------------------------------------------------------------- def visit_TmpVar( s, node ): tmpvar = f"__tmpvar__{node.upblk_name}_{node.name}" if not node._is_explicit and not s.is_assign_LHS: nbits = node.Type.get_dtype().get_length() return f"{nbits}'({tmpvar})" else: return tmpvar #----------------------------------------------------------------------- # visit_LoopVarDecl #----------------------------------------------------------------------- def visit_LoopVarDecl( s, node ): s.check_res( node, node.name ) return node.name
en
0.144218
#========================================================================= # VBehavioralTranslatorL2.py #========================================================================= # Author : <NAME> # Date : March 18, 2019 Provide the level 2 SystemVerilog translator implementation. #------------------------------------------------------------------------- # BehavioralRTLIRToVVisitorL2 #------------------------------------------------------------------------- Visitor that translates RTLIR to SystemVerilog for a single upblk. # The dictionary of operator-character pairs # Unary operators # bir.Invert : '~', bir.Not : '!', bir.UAdd : '+', bir.USub : '-', # Boolean operators # bir.And : '&&', bir.Or : '||', # Binary operators # Comparison operators Return expressions selectively wrapped with brackets. # ( bir.IfExp, bir.UnaryOp, bir.BoolOp, bir.BinOp, bir.Compare ) ): #----------------------------------------------------------------------- # Statements #----------------------------------------------------------------------- # All statement nodes return a list of strings. #----------------------------------------------------------------------- # visit_If #----------------------------------------------------------------------- # Grab condition, if-body, and orelse-body # Assemble the statement, starting with if-body # if len( node.body ) > 1: # If orelse-body is not empty, add it to the list of strings # If an if statement is the only statement in the orelse-body # No indent will be added, also append if-begin to else-begin # Else indent orelse-body #----------------------------------------------------------------------- # visit_For #----------------------------------------------------------------------- # Assemble for statement #----------------------------------------------------------------------- # Expressions #----------------------------------------------------------------------- # All expression nodes return a single string. #----------------------------------------------------------------------- # visit_IfExp #----------------------------------------------------------------------- #----------------------------------------------------------------------- # visit_UnaryOp #----------------------------------------------------------------------- #----------------------------------------------------------------------- # visit_BoolOp #----------------------------------------------------------------------- # def visit_BoolOp( s, node ): # for value in node.values: # value._top_expr = True # op = s.ops[ type( node.op ) ] # values = [] # for value in node.values: # values.append( s.visit_expr_wrap( value ) ) # src = f' {op} '.join( values ) # return src #----------------------------------------------------------------------- # visit_BinOp #----------------------------------------------------------------------- #----------------------------------------------------------------------- # visit_Compare #----------------------------------------------------------------------- #----------------------------------------------------------------------- # visit_LoopVar #----------------------------------------------------------------------- #----------------------------------------------------------------------- # visit_TmpVar #----------------------------------------------------------------------- #----------------------------------------------------------------------- # visit_LoopVarDecl #-----------------------------------------------------------------------
2.214565
2
mk_release.py
vika-sonne/blender-xray
0
6630020
#!/usr/bin/env python3 from io_scene_xray import bl_info from zipfile import ZipFile, ZIP_DEFLATED from os import path, walk with ZipFile('blender-xray-' + ('.'.join(map(str, bl_info['version']))) + '.zip', 'w') as z: z.write('LICENSE', 'io_scene_xray/LICENSE', compress_type=ZIP_DEFLATED) for root, _, files in walk('io_scene_xray'): for file in files: if not file.endswith('.py'): continue z.write(path.join(root, file), compress_type=ZIP_DEFLATED)
#!/usr/bin/env python3 from io_scene_xray import bl_info from zipfile import ZipFile, ZIP_DEFLATED from os import path, walk with ZipFile('blender-xray-' + ('.'.join(map(str, bl_info['version']))) + '.zip', 'w') as z: z.write('LICENSE', 'io_scene_xray/LICENSE', compress_type=ZIP_DEFLATED) for root, _, files in walk('io_scene_xray'): for file in files: if not file.endswith('.py'): continue z.write(path.join(root, file), compress_type=ZIP_DEFLATED)
fr
0.221828
#!/usr/bin/env python3
2.256592
2
ch4/hebberr_combo/hebberr_combo.py
CompCogNeuro/sims
76
6630021
<gh_stars>10-100 #!/usr/local/bin/pyleabra -i # Copyright (c) 2019, The Emergent Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. # use: # just type file name to run, or: # pyleabra -i <file>.py # hebberr_combo shows how XCal hebbian learning in shallower layers # of a network can aid an error driven learning network to # generalize to unseen combinations of patterns. from leabra import go, leabra, emer, relpos, eplot, env, agg, patgen, prjn, etable, efile, split, etensor, params, netview, rand, erand, gi, giv, pygiv, pyparams, mat32 import importlib as il import io, sys, getopt from datetime import datetime, timezone from enum import Enum # this will become Sim later.. TheSim = 1 # LogPrec is precision for saving float values in logs LogPrec = 4 # note: we cannot use methods for callbacks from Go -- must be separate functions # so below are all the callbacks from the GUI toolbar actions def InitCB(recv, send, sig, data): TheSim.Init() TheSim.UpdateClassView() TheSim.vp.SetNeedsFullRender() def TrainCB(recv, send, sig, data): if not TheSim.IsRunning: TheSim.IsRunning = True TheSim.ToolBar.UpdateActions() TheSim.Train() def StopCB(recv, send, sig, data): TheSim.Stop() def StepTrialCB(recv, send, sig, data): if not TheSim.IsRunning: TheSim.IsRunning = True TheSim.TrainTrial() TheSim.IsRunning = False TheSim.UpdateClassView() TheSim.vp.SetNeedsFullRender() def StepEpochCB(recv, send, sig, data): if not TheSim.IsRunning: TheSim.IsRunning = True TheSim.ToolBar.UpdateActions() TheSim.TrainEpoch() def StepRunCB(recv, send, sig, data): if not TheSim.IsRunning: TheSim.IsRunning = True TheSim.ToolBar.UpdateActions() TheSim.TrainRun() def TestTrialCB(recv, send, sig, data): if not TheSim.IsRunning: TheSim.IsRunning = True TheSim.TestTrial(False) TheSim.IsRunning = False TheSim.UpdateClassView() TheSim.vp.SetNeedsFullRender() def TestItemCB2(recv, send, sig, data): win = gi.Window(handle=recv) vp = win.WinViewport2D() dlg = gi.Dialog(handle=send) if sig != gi.DialogAccepted: return val = gi.StringPromptDialogValue(dlg) idxs = TheSim.TestEnv.Table.RowsByString("Name", val, True, True) # contains, ignoreCase if len(idxs) == 0: gi.PromptDialog(vp, gi.DlgOpts(Title="Name Not Found", Prompt="No patterns found containing: " + val), True, False, go.nil, go.nil) else: if not TheSim.IsRunning: TheSim.IsRunning = True print("testing index: %s" % idxs[0]) TheSim.TestItem(idxs[0]) TheSim.IsRunning = False vp.SetNeedsFullRender() def TestItemCB(recv, send, sig, data): win = gi.Window(handle=recv) gi.StringPromptDialog(win.WinViewport2D(), "", "Test Item", gi.DlgOpts(Title="Test Item", Prompt="Enter the Name of a given input pattern to test (case insensitive, contains given string."), win, TestItemCB2) def TestAllCB(recv, send, sig, data): if not TheSim.IsRunning: TheSim.IsRunning = True TheSim.ToolBar.UpdateActions() TheSim.RunTestAll() def ResetRunLogCB(recv, send, sig, data): TheSim.RunLog.SetNumRows(0) TheSim.RunPlot.Update() def NewRndSeedCB(recv, send, sig, data): TheSim.NewRndSeed() def ReadmeCB(recv, send, sig, data): gi.OpenURL("https://github.com/CompCogNeuro/sims/blob/master/ch4/hebberr_combo/README.md") def UpdtFuncNotRunning(act): act.SetActiveStateUpdt(not TheSim.IsRunning) def UpdtFuncRunning(act): act.SetActiveStateUpdt(TheSim.IsRunning) ############################################ # Enums -- note: must start at 0 for GUI class PatsType(Enum): Easy = 0 Hard = 1 Impossible = 2 Lines2 = 3 class LearnType(Enum): Hebbian = 0 ErrorDriven = 1 ErrorHebbIn = 2 ##################################################### # Sim class Sim(pygiv.ClassViewObj): """ Sim encapsulates the entire simulation model, and we define all the functionality as methods on this struct. This structure keeps all relevant state information organized and available without having to pass everything around as arguments to methods, and provides the core GUI interface (note the view tags for the fields which provide hints to how things should be displayed). """ def __init__(self): super(Sim, self).__init__() self.Net = leabra.Network() self.SetTags("Net", 'view:"no-inline" desc:"the network -- click to view / edit parameters for layers, prjns, etc"') self.Learn = LearnType.ErrorDriven self.SetTags("Learn", 'desc:"select which type of learning to use"') self.Pats = PatsType.Lines2 self.SetTags("Pats", 'desc:"select which type of patterns to use"') self.Easy = etable.Table() self.SetTags("Easy", 'view:"no-inline" desc:"easy training patterns -- can be learned with Hebbian"') self.Hard = etable.Table() self.SetTags("Hard", 'view:"no-inline" desc:"hard training patterns -- require error-driven"') self.Impossible = etable.Table() self.SetTags("Impossible", 'view:"no-inline" desc:"impossible training patterns -- require error-driven + hidden layer"') self.Lines2 = etable.Table() self.SetTags("Lines2", 'view:"no-inline" desc:"lines training patterns"') self.TrnEpcLog = etable.Table() self.SetTags("TrnEpcLog", 'view:"no-inline" desc:"training epoch-level log data"') self.TstEpcLog = etable.Table() self.SetTags("TstEpcLog", 'view:"no-inline" desc:"testing epoch-level log data"') self.TstTrlLog = etable.Table() self.SetTags("TstTrlLog", 'view:"no-inline" desc:"testing trial-level log data"') self.RunLog = etable.Table() self.SetTags("RunLog", 'view:"no-inline" desc:"summary log of each run"') self.RunStats = etable.Table() self.SetTags("RunStats", 'view:"no-inline" desc:"aggregate stats on all runs"') self.Params = params.Sets() self.SetTags("Params", 'view:"no-inline" desc:"full collection of param sets"') self.ParamSet = str() self.SetTags("ParamSet", 'view:"-" desc:"which set of *additional* parameters to use -- always applies Base and optionaly this next if set"') self.MaxRuns = int(10) self.SetTags("MaxRuns", 'desc:"maximum number of model runs to perform"') self.MaxEpcs = int(100) self.SetTags("MaxEpcs", 'desc:"maximum number of epochs to run per model run"') self.NZeroStop = int(20) self.SetTags("NZeroStop", 'desc:"if a positive number, training will stop after this many epochs with zero SSE"') self.TrainEnv = env.FixedTable() self.SetTags("TrainEnv", 'desc:"Training environment -- contains everything about iterating over input / output patterns over training"') self.TestEnv = env.FixedTable() self.SetTags("TestEnv", 'desc:"Testing environment -- manages iterating over testing"') self.Time = leabra.Time() self.SetTags("Time", 'desc:"leabra timing parameters and state"') self.ViewOn = True self.SetTags("ViewOn", 'desc:"whether to update the network view while running"') self.TrainUpdt = leabra.TimeScales.AlphaCycle self.SetTags("TrainUpdt", 'desc:"at what time scale to update the display during training? Anything longer than Epoch updates at Epoch in this model"') self.TestUpdt = leabra.TimeScales.Cycle self.SetTags("TestUpdt", 'desc:"at what time scale to update the display during testing? Anything longer than Epoch updates at Epoch in this model"') self.TestInterval = int(5) self.SetTags("TestInterval", 'desc:"how often to run through all the test patterns, in terms of training epochs -- can use 0 or -1 for no testing"') self.LayStatNms = go.Slice_string(["Input", "Output"]) self.SetTags("LayStatNms", 'desc:"names of layers to collect more detailed stats on (avg act, etc)"') # statistics: note use float64 as that is best for etable.Table self.TrlErr = float(0) self.SetTags("TrlErr", 'inactive:"+" desc:"1 if trial was error, 0 if correct -- based on SSE = 0 (subject to .5 unit-wise tolerance)"') self.TrlSSE = float(0) self.SetTags("TrlSSE", 'inactive:"+" desc:"current trial\'s sum squared error"') self.TrlAvgSSE = float(0) self.SetTags("TrlAvgSSE", 'inactive:"+" desc:"current trial\'s average sum squared error"') self.TrlCosDiff = float(0) self.SetTags("TrlCosDiff", 'inactive:"+" desc:"current trial\'s cosine difference"') self.EpcSSE = float(0) self.SetTags("EpcSSE", 'inactive:"+" desc:"last epoch\'s total sum squared error"') self.EpcAvgSSE = float(0) self.SetTags("EpcAvgSSE", 'inactive:"+" desc:"last epoch\'s average sum squared error (average over trials, and over units within layer)"') self.EpcPctErr = float(0) self.SetTags("EpcPctErr", 'inactive:"+" desc:"last epoch\'s average TrlErr"') self.EpcPctCor = float(0) self.SetTags("EpcPctCor", 'inactive:"+" desc:"1 - last epoch\'s average TrlErr"') self.EpcCosDiff = float(0) self.SetTags("EpcCosDiff", 'inactive:"+" desc:"last epoch\'s average cosine difference for output layer (a normalized error measure, maximum of 1 when the minus phase exactly matches the plus)"') self.FirstZero = int(-1) self.SetTags("FirstZero", 'inactive:"+" desc:"epoch at when SSE first went to zero"') self.NZero = int(0) self.SetTags("NZero", 'inactive:"+" desc:"number of epochs in a row with zero SSE"') # internal state - view:"-" self.SumErr = float(0) self.SetTags("SumErr", 'view:"-" inactive:"+" desc:"sum to increment as we go through epoch"') self.SumSSE = float(0) self.SetTags("SumSSE", 'view:"-" inactive:"+" desc:"sum to increment as we go through epoch"') self.SumAvgSSE = float(0) self.SetTags("SumAvgSSE", 'view:"-" inactive:"+" desc:"sum to increment as we go through epoch"') self.SumCosDiff = float(0) self.SetTags("SumCosDiff", 'view:"-" inactive:"+" desc:"sum to increment as we go through epoch"') self.Win = 0 self.SetTags("Win", 'view:"-" desc:"main GUI window"') self.NetView = 0 self.SetTags("NetView", 'view:"-" desc:"the network viewer"') self.ToolBar = 0 self.SetTags("ToolBar", 'view:"-" desc:"the master toolbar"') self.TrnEpcPlot = 0 self.SetTags("TrnEpcPlot", 'view:"-" desc:"the training epoch plot"') self.TstEpcPlot = 0 self.SetTags("TstEpcPlot", 'view:"-" desc:"the testing epoch plot"') self.TstTrlPlot = 0 self.SetTags("TstTrlPlot", 'view:"-" desc:"the test-trial plot"') self.RunPlot = 0 self.SetTags("RunPlot", 'view:"-" desc:"the run plot"') self.TrnEpcFile = 0 self.SetTags("TrnEpcFile", 'view:"-" desc:"log file"') self.RunFile = 0 self.SetTags("RunFile", 'view:"-" desc:"log file"') self.ValsTsrs = {} self.SetTags("ValsTsrs", 'view:"-" desc:"for holding layer values"') self.IsRunning = False self.SetTags("IsRunning", 'view:"-" desc:"true if sim is running"') self.StopNow = False self.SetTags("StopNow", 'view:"-" desc:"flag to stop running"') self.NeedsNewRun = False self.SetTags("NeedsNewRun", 'view:"-" desc:"flag to initialize NewRun if last one finished"') self.RndSeed = int(1) self.SetTags("RndSeed", 'view:"-" desc:"the current random seed"') self.vp = 0 self.SetTags("vp", 'view:"-" desc:"viewport"') def InitParams(ss): """ Sets the default set of parameters -- Base is always applied, and others can be optionally selected to apply on top of that """ ss.Params.OpenJSON("hebberr_combo.params") def Config(ss): """ Config configures all the elements using the standard functions """ ss.InitParams() ss.OpenPats() ss.ConfigEnv() ss.ConfigNet(ss.Net) ss.ConfigTrnEpcLog(ss.TrnEpcLog) ss.ConfigTstEpcLog(ss.TstEpcLog) ss.ConfigTstTrlLog(ss.TstTrlLog) ss.ConfigRunLog(ss.RunLog) def ConfigEnv(ss): if ss.MaxRuns == 0: ss.MaxRuns = 10 if ss.MaxEpcs == 0: # allow user override ss.MaxEpcs = 100 ss.NZeroStop = 20 ss.TrainEnv.Nm = "TrainEnv" ss.TrainEnv.Dsc = "training params and state" ss.TrainEnv.Table = etable.NewIdxView(ss.Easy) ss.TrainEnv.Validate() ss.TrainEnv.Run.Max = ss.MaxRuns # note: we are not setting epoch max -- do that manually ss.TestEnv.Nm = "TestEnv" ss.TestEnv.Dsc = "testing params and state" ss.TestEnv.Table = etable.NewIdxView(ss.Easy) ss.TestEnv.Sequential = True ss.TestEnv.Validate() ss.TrainEnv.Init(0) ss.TestEnv.Init(0) def UpdateEnv(ss): if ss.Pats == PatsType.Easy: ss.TrainEnv.Table = etable.NewIdxView(ss.Easy) ss.TestEnv.Table = etable.NewIdxView(ss.Easy) elif ss.Pats == PatsType.Hard: ss.TrainEnv.Table = etable.NewIdxView(ss.Hard) ss.TestEnv.Table = etable.NewIdxView(ss.Hard) elif ss.Pats == PatsType.Impossible: ss.TrainEnv.Table = etable.NewIdxView(ss.Impossible) ss.TestEnv.Table = etable.NewIdxView(ss.Impossible) elif ss.Pats == PatsType.Lines2: all = etable.NewIdxView(ss.Lines2) splits = split.Permuted(all, go.Slice_float64([.9, .1]), go.Slice_string(["Train", "Test"])) ss.TrainEnv.Table = splits.Splits[0] ss.TestEnv.Table = splits.Splits[1] def ConfigNet(ss, net): net.InitName(net, "PatAssoc") inp = net.AddLayer2D("Input", 5, 5, emer.Input) hid = net.AddLayer2D("Hidden", 6, 5, emer.Hidden) out = net.AddLayer2D("Output", 5, 2, emer.Target) out.SetClass("Output") full = prjn.NewFull() inhid = net.ConnectLayers(inp, hid, full, emer.Forward) inhid.SetClass("InputToHidden") net.BidirConnectLayersPy(hid, out, full) hid.SetRelPos(relpos.Rel(Rel= relpos.Above, Other= "Input", YAlign= relpos.Front, XAlign= relpos.Left, YOffset= 1)) net.Defaults() ss.SetParams("Network", False) # only set Network params net.Build() net.InitWts() def Init(ss): """ Init restarts the run, and initializes everything, including network weights and resets the epoch log table """ rand.Seed(ss.RndSeed) ss.UpdateEnv() ss.StopNow = False ss.SetParams("", False) ss.NewRun() ss.UpdateView(True) def NewRndSeed(ss): """ NewRndSeed gets a new random seed based on current time -- otherwise uses the same random seed for every run """ ss.RndSeed = int(datetime.now(timezone.utc).timestamp()) def Counters(ss, train): """ Counters returns a string of the current counter state use tabs to achieve a reasonable formatting overall and add a few tabs at the end to allow for expansion.. """ if train: return "Run:\t%d\tEpoch:\t%d\tTrial:\t%d\tCycle:\t%d\tName:\t%s\t\t\t" % (ss.TrainEnv.Run.Cur, ss.TrainEnv.Epoch.Cur, ss.TrainEnv.Trial.Cur, ss.Time.Cycle, ss.TrainEnv.TrialName.Cur) else: return "Run:\t%d\tEpoch:\t%d\tTrial:\t%d\tCycle:\t%d\tName:\t%s\t\t\t" % (ss.TrainEnv.Run.Cur, ss.TrainEnv.Epoch.Cur, ss.TestEnv.Trial.Cur, ss.Time.Cycle, ss.TestEnv.TrialName.Cur) def UpdateView(ss, train): if ss.NetView != 0 and ss.NetView.IsVisible(): ss.NetView.Record(ss.Counters(train)) ss.NetView.GoUpdate() def AlphaCyc(ss, train): """ AlphaCyc runs one alpha-cycle (100 msec, 4 quarters) of processing. External inputs must have already been applied prior to calling, using ApplyExt method on relevant layers (see TrainTrial, TestTrial). If train is true, then learning DWt or WtFmDWt calls are made. Handles netview updating within scope of AlphaCycle """ if ss.Win != 0: ss.Win.PollEvents() # this is essential for GUI responsiveness while running viewUpdt = ss.TrainUpdt.value if not train: viewUpdt = ss.TestUpdt.value # update prior weight changes at start, so any DWt values remain visible at end # you might want to do this less frequently to achieve a mini-batch update # in which case, move it out to the TrainTrial method where the relevant # counters are being dealt with. if train: ss.Net.WtFmDWt() ss.Net.AlphaCycInit(train) ss.Time.AlphaCycStart() for qtr in range(4): for cyc in range(ss.Time.CycPerQtr): ss.Net.Cycle(ss.Time) ss.Time.CycleInc() if ss.ViewOn: if viewUpdt == leabra.Cycle: if cyc != ss.Time.CycPerQtr-1: # will be updated by quarter ss.UpdateView(train) elif viewUpdt == leabra.FastSpike: if (cyc+1)%10 == 0: ss.UpdateView(train) ss.Net.QuarterFinal(ss.Time) ss.Time.QuarterInc() if ss.ViewOn: if viewUpdt == leabra.Quarter: ss.UpdateView(train) if viewUpdt == leabra.Phase: if qtr >= 2: ss.UpdateView(train) if train: ss.Net.DWt() if ss.ViewOn and viewUpdt == leabra.AlphaCycle: ss.UpdateView(train) def ApplyInputs(ss, en): """ ApplyInputs applies input patterns from given envirbonment. It is good practice to have this be a separate method with appropriate # going to the same layers, but good practice and cheap anyway args so that it can be used for various different contexts (training, testing, etc). """ ss.Net.InitExt() lays = ["Input", "Output"] for lnm in lays : ly = leabra.Layer(ss.Net.LayerByName(lnm)) pats = en.State(ly.Nm) if pats != 0: ly.ApplyExt(pats) def TrainTrial(ss): """ TrainTrial runs one trial of training using TrainEnv """ if ss.NeedsNewRun: ss.NewRun() ss.TrainEnv.Step() # Key to query counters FIRST because current state is in NEXT epoch # if epoch counter has changed epc = env.CounterCur(ss.TrainEnv, env.Epoch) chg = env.CounterChg(ss.TrainEnv, env.Epoch) if chg: ss.LogTrnEpc(ss.TrnEpcLog) if ss.ViewOn and ss.TrainUpdt.value > leabra.AlphaCycle: ss.UpdateView(True) if ss.TestInterval > 0 and epc%ss.TestInterval == 0: # note: epc is *next* so won't trigger first time ss.TestAll() if epc >= ss.MaxEpcs or (ss.NZeroStop > 0 and ss.NZero >= ss.NZeroStop): # done with training.. ss.RunEnd() if ss.TrainEnv.Run.Incr(): # we are done! ss.StopNow = True return else: ss.NeedsNewRun = True return # note: type must be in place before apply inputs ss.Net.LayerByName("Output").SetType(emer.Target) ss.ApplyInputs(ss.TrainEnv) ss.AlphaCyc(True) # train ss.TrialStats(True) # accumulate def RunEnd(ss): """ RunEnd is called at the end of a run -- save weights, record final log, etc here """ ss.LogRun(ss.RunLog) def NewRun(ss): """ NewRun intializes a new run of the model, using the TrainEnv.Run counter for the new run value """ run = ss.TrainEnv.Run.Cur ss.UpdateEnv() ss.TrainEnv.Init(run) ss.TestEnv.Init(run) ss.Time.Reset() ss.Net.InitWts() ss.InitStats() ss.TrnEpcLog.SetNumRows(0) ss.TstEpcLog.SetNumRows(0) ss.NeedsNewRun = False ss.TrainEnv.Run.Max = ss.MaxRuns def InitStats(ss): """ InitStats initializes all the statistics, especially important for the cumulative epoch stats -- called at start of new run """ ss.SumSSE = 0 ss.SumAvgSSE = 0 ss.SumCosDiff = 0 ss.SumErr = 0 ss.FirstZero = -1 ss.NZero = 0 ss.TrlErr = 0 ss.TrlSSE = 0 ss.TrlAvgSSE = 0 ss.EpcSSE = 0 ss.EpcAvgSSE = 0 ss.EpcPctErr = 0 ss.EpcCosDiff = 0 def TrialStats(ss, accum): """ TrialStats computes the trial-level statistics and adds them to the epoch accumulators if accum is true. Note that we're accumulating stats here on the Sim side so the core algorithm side remains as simple as possible, and doesn't need to worry about different time-scales over which stats could be accumulated etc. You can also aggregate directly from log data, as is done for testing stats """ out = leabra.Layer(ss.Net.LayerByName("Output")) ss.TrlCosDiff = float(out.CosDiff.Cos) ss.TrlSSE = out.SSE(0.5) # 0.5 = per-unit tolerance -- right side of .5 ss.TrlAvgSSE = ss.TrlSSE / len(out.Neurons) if ss.TrlSSE > 0: ss.TrlErr = 1 else: ss.TrlErr = 0 if accum: ss.SumErr += ss.TrlErr ss.SumSSE += ss.TrlSSE ss.SumAvgSSE += ss.TrlAvgSSE ss.SumCosDiff += ss.TrlCosDiff return def TrainEpoch(ss): """ TrainEpoch runs training trials for remainder of this epoch """ ss.StopNow = False curEpc = ss.TrainEnv.Epoch.Cur while True: ss.TrainTrial() if ss.StopNow or ss.TrainEnv.Epoch.Cur != curEpc: break ss.Stopped() def TrainRun(ss): """ TrainRun runs training trials for remainder of run """ ss.StopNow = False curRun = ss.TrainEnv.Run.Cur while True: ss.TrainTrial() if ss.StopNow or ss.TrainEnv.Run.Cur != curRun: break ss.Stopped() def Train(ss): """ Train runs the full training from this point onward """ ss.StopNow = False while True: ss.TrainTrial() if ss.StopNow: break ss.Stopped() def Stop(ss): """ Stop tells the sim to stop running """ ss.StopNow = True def Stopped(ss): """ Stopped is called when a run method stops running -- updates the IsRunning flag and toolbar """ ss.IsRunning = False if ss.Win != 0: vp = ss.Win.WinViewport2D() if ss.ToolBar != 0: ss.ToolBar.UpdateActions() vp.SetNeedsFullRender() ss.UpdateClassView() def SaveWeights(ss, filename): """ SaveWeights saves the network weights -- when called with giv.CallMethod it will auto-prompt for filename """ ss.Net.SaveWtsJSON(filename) def TestTrial(ss, returnOnChg): """ TestTrial runs one trial of testing -- always sequentially presented inputs """ ss.TestEnv.Step() chg = env.CounterChg(ss.TestEnv, env.Epoch) if chg: if ss.ViewOn and ss.TestUpdt.value > leabra.AlphaCycle: ss.UpdateView(False) ss.LogTstEpc(ss.TstEpcLog) if returnOnChg: return ss.Net.LayerByName("Output").SetType(emer.Compare) ss.ApplyInputs(ss.TestEnv) ss.AlphaCyc(False) ss.TrialStats(False) ss.LogTstTrl(ss.TstTrlLog) def TestItem(ss, idx): """ TestItem tests given item which is at given index in test item list """ cur = ss.TestEnv.Trial.Cur ss.TestEnv.Trial.Cur = idx ss.TestEnv.SetTrialName() ss.Net.LayerByName("Output").SetType(emer.Compare) ss.ApplyInputs(ss.TestEnv) ss.AlphaCyc(False) ss.TrialStats(False) ss.TestEnv.Trial.Cur = cur def TestAll(ss): """ TestAll runs through the full set of testing items """ ss.TestEnv.Init(ss.TrainEnv.Run.Cur) while True: ss.TestTrial(True) chg = env.CounterChg(ss.TestEnv, env.Epoch) if chg or ss.StopNow: break def RunTestAll(ss): """ RunTestAll runs through the full set of testing items, has stop running = false at end -- for gui """ ss.StopNow = False ss.TestAll() ss.Stopped() def SetParams(ss, sheet, setMsg): """ SetParams sets the params for "Base" and then current ParamSet. If sheet is empty, then it applies all avail sheets (e.g., Network, Sim) otherwise just the named sheet if setMsg = true then we output a message for each param that was set. """ if sheet == "": ss.Params.ValidateSheets(go.Slice_string(["Network", "Sim"])) ss.SetParamsSet("Base", sheet, setMsg) if ss.ParamSet != "" and ss.ParamSet != "Base": sps = ss.ParamSet.split() for ps in sps: ss.SetParamsSet(ps, sheet, setMsg) if ss.Learn == LearnType.Hebbian: ss.SetParamsSet("Hebbian", sheet, setMsg) elif ss.Learn == LearnType.ErrorDriven: ss.SetParamsSet("ErrorDriven", sheet, setMsg) elif ss.Learn == LearnType.ErrorHebbIn: ss.SetParamsSet("ErrorHebbIn", sheet, setMsg) def SetParamsSet(ss, setNm, sheet, setMsg): """ SetParamsSet sets the params for given params.Set name. If sheet is empty, then it applies all avail sheets (e.g., Network, Sim) otherwise just the named sheet if setMsg = true then we output a message for each param that was set. """ pset = ss.Params.SetByNameTry(setNm) if sheet == "" or sheet == "Network": if "Network" in pset.Sheets: netp = pset.SheetByNameTry("Network") ss.Net.ApplyParams(netp, setMsg) if sheet == "" or sheet == "Sim": if "Sim" in pset.Sheets: simp= pset.SheetByNameTry("Sim") pyparams.ApplyParams(ss, simp, setMsg) def OpenPats(ss): ss.Easy.SetMetaData("name", "Easy") ss.Easy.SetMetaData("desc", "Easy Training patterns") ss.Easy.OpenCSV("easy.tsv", etable.Tab) ss.Hard.SetMetaData("name", "Hard") ss.Hard.SetMetaData("desc", "Hard Training patterns") ss.Hard.OpenCSV("hard.tsv", etable.Tab) ss.Impossible.SetMetaData("name", "Impossible") ss.Impossible.SetMetaData("desc", "Impossible Training patterns") ss.Impossible.OpenCSV("impossible.tsv", etable.Tab) ss.Lines2.SetMetaData("name", "Lines2") ss.Lines2.SetMetaData("desc", "Lines2 Training patterns") ss.Lines2.OpenCSV("lines2out1.tsv", etable.Tab) def ValsTsr(ss, name): """ ValsTsr gets value tensor of given name, creating if not yet made """ if name in ss.ValsTsrs: return ss.ValsTsrs[name] tsr = etensor.Float32() ss.ValsTsrs[name] = tsr return tsr def LogTrnEpc(ss, dt): """ LogTrnEpc adds data from current epoch to the TrnEpcLog table. computes epoch averages prior to logging. # this is triggered by increment so use previous value """ row = dt.Rows dt.SetNumRows(row + 1) epc = ss.TrainEnv.Epoch.Prv nt = float(ss.TrainEnv.Table.Len()) # number of trials in view ss.EpcSSE = ss.SumSSE / nt ss.SumSSE = 0 ss.EpcAvgSSE = ss.SumAvgSSE / nt ss.SumAvgSSE = 0 ss.EpcPctErr = float(ss.SumErr) / nt ss.SumErr = 0 ss.EpcPctCor = 1 - ss.EpcPctErr ss.EpcCosDiff = ss.SumCosDiff / nt ss.SumCosDiff = 0 if ss.FirstZero < 0 and ss.EpcPctErr == 0: ss.FirstZero = epc if ss.EpcPctErr == 0: ss.NZero += 1 else: ss.NZero = 0 dt.SetCellFloat("Run", row, float(ss.TrainEnv.Run.Cur)) dt.SetCellFloat("Epoch", row, float(epc)) dt.SetCellFloat("SSE", row, ss.EpcSSE) dt.SetCellFloat("AvgSSE", row, ss.EpcAvgSSE) dt.SetCellFloat("PctErr", row, ss.EpcPctErr) dt.SetCellFloat("PctCor", row, ss.EpcPctCor) dt.SetCellFloat("CosDiff", row, ss.EpcCosDiff) for lnm in ss.LayStatNms: ly = leabra.Layer(ss.Net.LayerByName(lnm)) dt.SetCellFloat(ly.Nm+" ActAvg", row, float(ly.Pool(0).ActAvg.ActPAvgEff)) # note: essential to use Go version of update when called from another goroutine ss.TrnEpcPlot.GoUpdate() if ss.TrnEpcFile != 0: if ss.TrainEnv.Run.Cur == 0 and epc == 0: dt.WriteCSVHeaders(ss.TrnEpcFile, etable.Tab) dt.WriteCSVRow(ss.TrnEpcFile, row, etable.Tab) def ConfigTrnEpcLog(ss, dt): dt.SetMetaData("name", "TrnEpcLog") dt.SetMetaData("desc", "Record of performance over epochs of training") dt.SetMetaData("read-only", "true") dt.SetMetaData("precision", str(LogPrec)) sch = etable.Schema( [etable.Column("Run", etensor.INT64, go.nil, go.nil), etable.Column("Epoch", etensor.INT64, go.nil, go.nil), etable.Column("SSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("AvgSSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("PctErr", etensor.FLOAT64, go.nil, go.nil), etable.Column("PctCor", etensor.FLOAT64, go.nil, go.nil), etable.Column("CosDiff", etensor.FLOAT64, go.nil, go.nil)] ) for lnm in ss.LayStatNms: sch.append(etable.Column(lnm + " ActAvg", etensor.FLOAT64, go.nil, go.nil)) dt.SetFromSchema(sch, 0) def ConfigTrnEpcPlot(ss, plt, dt): plt.Params.Title = "Pattern Associator Epoch Plot" plt.Params.XAxisCol = "Epoch" plt.SetTable(dt) # order of params: on, fixMin, min, fixMax, max plt.SetColParams("Run", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("Epoch", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("SSE", eplot.On, eplot.FixMin, 0, eplot.FloatMax, 0) # default plot plt.SetColParams("AvgSSE", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("PctErr", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("PctCor", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("CosDiff", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) for lnm in ss.LayStatNms: plt.SetColParams(lnm+" ActAvg", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 0.5) return plt def LogTstTrl(ss, dt): """ LogTstTrl adds data from current trial to the TstTrlLog table. # this is triggered by increment so use previous value log always contains number of testing items """ epc = ss.TrainEnv.Epoch.Prv inp = leabra.Layer(ss.Net.LayerByName("Input")) out = leabra.Layer(ss.Net.LayerByName("Output")) trl = ss.TestEnv.Trial.Cur row = trl if dt.Rows <= row: dt.SetNumRows(row + 1) dt.SetCellFloat("Run", row, float(ss.TrainEnv.Run.Cur)) dt.SetCellFloat("Epoch", row, float(epc)) dt.SetCellFloat("Trial", row, float(trl)) dt.SetCellString("TrialName", row, ss.TestEnv.TrialName.Cur) dt.SetCellFloat("Err", row, ss.TrlErr) dt.SetCellFloat("SSE", row, ss.TrlSSE) dt.SetCellFloat("AvgSSE", row, ss.TrlAvgSSE) dt.SetCellFloat("CosDiff", row, ss.TrlCosDiff) for lnm in ss.LayStatNms: ly = leabra.Layer(ss.Net.LayerByName(lnm)) dt.SetCellFloat(ly.Nm+" ActM.Avg", row, float(ly.Pool(0).ActM.Avg)) ivt = ss.ValsTsr("Input") ovt = ss.ValsTsr("Output") inp.UnitValsTensor(ivt, "Act") dt.SetCellTensor("InAct", row, ivt) out.UnitValsTensor(ovt, "ActM") dt.SetCellTensor("OutActM", row, ovt) out.UnitValsTensor(ovt, "Targ") dt.SetCellTensor("OutTarg", row, ovt) # note: essential to use Go version of update when called from another goroutine ss.TstTrlPlot.GoUpdate() def ConfigTstTrlLog(ss, dt): inp = leabra.Layer(ss.Net.LayerByName("Input")) out = leabra.Layer(ss.Net.LayerByName("Output")) dt.SetMetaData("name", "TstTrlLog") dt.SetMetaData("desc", "Record of testing per input pattern") dt.SetMetaData("read-only", "true") dt.SetMetaData("precision", str(LogPrec)) nt = ss.TestEnv.Table.Len() # number in view sch = etable.Schema( [etable.Column("Run", etensor.INT64, go.nil, go.nil), etable.Column("Epoch", etensor.INT64, go.nil, go.nil), etable.Column("Trial", etensor.INT64, go.nil, go.nil), etable.Column("TrialName", etensor.STRING, go.nil, go.nil), etable.Column("Err", etensor.FLOAT64, go.nil, go.nil), etable.Column("SSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("AvgSSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("CosDiff", etensor.FLOAT64, go.nil, go.nil)] ) for lnm in ss.LayStatNms: sch.append(etable.Column(lnm + " ActM.Avg", etensor.FLOAT64, go.nil, go.nil)) sch.append(etable.Column("InAct", etensor.FLOAT64, inp.Shp.Shp, go.nil)) sch.append(etable.Column("OutActM", etensor.FLOAT64, out.Shp.Shp, go.nil)) sch.append(etable.Column("OutTarg", etensor.FLOAT64, out.Shp.Shp, go.nil)) dt.SetFromSchema(sch, nt) def ConfigTstTrlPlot(ss, plt, dt): plt.Params.Title = "Pattern Associator Test Trial Plot" plt.Params.XAxisCol = "Trial" plt.SetTable(dt) # order of params: on, fixMin, min, fixMax, max plt.SetColParams("Run", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("Epoch", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("Trial", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("TrialName", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("Err", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("SSE", eplot.On, eplot.FixMin, 0, eplot.FloatMax, 0) # default plot plt.SetColParams("AvgSSE", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("CosDiff", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) for lnm in ss.LayStatNms: plt.SetColParams(lnm+" ActM.Avg", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 0.5) plt.SetColParams("InAct", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("OutActM", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("OutTarg", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) return plt def LogTstEpc(ss, dt): row = dt.Rows dt.SetNumRows(row + 1) trl = ss.TstTrlLog tix = etable.NewIdxView(trl) epc = ss.TrainEnv.Epoch.Prv # ? # note: this shows how to use agg methods to compute summary data from another # data table, instead of incrementing on the Sim dt.SetCellFloat("Run", row, float(ss.TrainEnv.Run.Cur)) dt.SetCellFloat("Epoch", row, float(epc)) dt.SetCellFloat("SSE", row, agg.Sum(tix, "SSE")[0]) dt.SetCellFloat("AvgSSE", row, agg.Mean(tix, "AvgSSE")[0]) dt.SetCellFloat("PctErr", row, agg.Mean(tix, "Err")[0]) dt.SetCellFloat("PctCor", row, 1-agg.Mean(tix, "Err")[0]) dt.SetCellFloat("CosDiff", row, agg.Mean(tix, "CosDiff")[0]) # note: essential to use Go version of update when called from another goroutine if ss.TstEpcPlot != 0: ss.TstEpcPlot.GoUpdate() def ConfigTstEpcLog(ss, dt): dt.SetMetaData("name", "TstEpcLog") dt.SetMetaData("desc", "Summary stats for testing trials") dt.SetMetaData("read-only", "true") dt.SetMetaData("precision", str(LogPrec)) sch = etable.Schema( [etable.Column("Run", etensor.INT64, go.nil, go.nil), etable.Column("Epoch", etensor.INT64, go.nil, go.nil), etable.Column("SSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("AvgSSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("PctErr", etensor.FLOAT64, go.nil, go.nil), etable.Column("PctCor", etensor.FLOAT64, go.nil, go.nil), etable.Column("CosDiff", etensor.FLOAT64, go.nil, go.nil)] ) dt.SetFromSchema(sch, 0) def ConfigTstEpcPlot(ss, plt, dt): plt.Params.Title = "Pattern Associator Testing Epoch Plot" plt.Params.XAxisCol = "Epoch" plt.SetTable(dt) # order of params: on, fixMin, min, fixMax, max plt.SetColParams("Run", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("Epoch", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("SSE", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) # default plot plt.SetColParams("AvgSSE", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("PctErr", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("PctCor", eplot.On, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("CosDiff", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) return plt def LogRun(ss, dt): """ LogRun adds data from current run to the RunLog table. """ run = ss.TrainEnv.Run.Cur # this is NOT triggered by increment yet -- use Cur row = dt.Rows dt.SetNumRows(row + 1) epclog = ss.TstEpcLog epcix = etable.NewIdxView(epclog) # compute mean over last N epochs for run level nlast = 5 if nlast > epcix.Len()-1: nlast = epcix.Len() - 1 epcix.Idxs = go.Slice_int(epcix.Idxs[epcix.Len()-nlast:]) params = ss.Learn.name + "_" + ss.Pats.name dt.SetCellFloat("Run", row, float(run)) dt.SetCellString("Params", row, params) dt.SetCellFloat("FirstZero", row, float(ss.FirstZero)) dt.SetCellFloat("SSE", row, agg.Mean(epcix, "SSE")[0]) dt.SetCellFloat("AvgSSE", row, agg.Mean(epcix, "AvgSSE")[0]) dt.SetCellFloat("PctErr", row, agg.Mean(epcix, "PctErr")[0]) dt.SetCellFloat("PctCor", row, agg.Mean(epcix, "PctCor")[0]) dt.SetCellFloat("CosDiff", row, agg.Mean(epcix, "CosDiff")[0]) runix = etable.NewIdxView(dt) spl = split.GroupBy(runix, go.Slice_string(["Params"])) split.Desc(spl, "FirstZero") split.Desc(spl, "PctCor") split.Desc(spl, "SSE") ss.RunStats = spl.AggsToTable(etable.AddAggName) # note: essential to use Go version of update when called from another goroutine if ss.RunPlot != 0: ss.RunPlot.GoUpdate() if ss.RunFile != 0: if row == 0: dt.WriteCSVHeaders(ss.RunFile, etable.Tab) dt.WriteCSVRow(ss.RunFile, row, etable.Tab) def ConfigRunLog(ss, dt): dt.SetMetaData("name", "RunLog") dt.SetMetaData("desc", "Record of performance at end of training") dt.SetMetaData("read-only", "true") dt.SetMetaData("precision", str(LogPrec)) sch = etable.Schema( [etable.Column("Run", etensor.INT64, go.nil, go.nil), etable.Column("Params", etensor.STRING, go.nil, go.nil), etable.Column("FirstZero", etensor.FLOAT64, go.nil, go.nil), etable.Column("SSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("AvgSSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("PctErr", etensor.FLOAT64, go.nil, go.nil), etable.Column("PctCor", etensor.FLOAT64, go.nil, go.nil), etable.Column("CosDiff", etensor.FLOAT64, go.nil, go.nil)] ) dt.SetFromSchema(sch, 0) def ConfigRunPlot(ss, plt, dt): plt.Params.Title = "Pattern Associator Run Plot" plt.Params.XAxisCol = "Run" plt.SetTable(dt) # order of params: on, fixMin, min, fixMax, max plt.SetColParams("Run", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("FirstZero", eplot.On, eplot.FixMin, 0, eplot.FloatMax, 0) # default plot plt.SetColParams("SSE", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("AvgSSE", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("PctErr", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("PctCor", eplot.On, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("CosDiff", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) return plt def ConfigNetView(ss, nv): nv.ViewDefaults() nv.Scene().Camera.Pose.Pos.Set(0.2, 1.27, 2.62) nv.Scene().Camera.LookAt(mat32.Vec3(0.2, 0, 0), mat32.Vec3(0, 1, 0)) def ConfigGui(ss): """ ConfigGui configures the GoGi gui interface for this simulation, """ width = 1600 height = 1200 gi.SetAppName("hebberr_combo") gi.SetAppAbout('shows how XCal hebbian learning in shallower layers of a network can aid an error driven learning network to generalize to unseen combinations of patterns. See <a href="https://github.com/CompCogNeuro/sims/blob/master/ch4/hebberr_combo/README.md">README.md on GitHub</a>.</p>') win = gi.NewMainWindow("hebberr_combo", "Hebbian+Error Driven Learning", width, height) ss.Win = win vp = win.WinViewport2D() ss.vp = vp updt = vp.UpdateStart() mfr = win.SetMainFrame() tbar = gi.AddNewToolBar(mfr, "tbar") tbar.SetStretchMaxWidth() ss.ToolBar = tbar split = gi.AddNewSplitView(mfr, "split") split.Dim = mat32.X split.SetStretchMaxWidth() split.SetStretchMaxHeight() cv = ss.NewClassView("sv") cv.AddFrame(split) cv.Config() tv = gi.AddNewTabView(split, "tv") nv = netview.NetView() tv.AddTab(nv, "NetView") nv.Var = "Act" nv.SetNet(ss.Net) ss.NetView = nv ss.ConfigNetView(nv) plt = eplot.Plot2D() tv.AddTab(plt, "TrnEpcPlot") ss.TrnEpcPlot = ss.ConfigTrnEpcPlot(plt, ss.TrnEpcLog) plt = eplot.Plot2D() tv.AddTab(plt, "TstTrlPlot") ss.TstTrlPlot = ss.ConfigTstTrlPlot(plt, ss.TstTrlLog) plt = eplot.Plot2D() tv.AddTab(plt, "TstEpcPlot") ss.TstEpcPlot = ss.ConfigTstEpcPlot(plt, ss.TstEpcLog) plt = eplot.Plot2D() tv.AddTab(plt, "RunPlot") ss.RunPlot = ss.ConfigRunPlot(plt, ss.RunLog) split.SetSplitsList(go.Slice_float32([.2, .8])) recv = win.This() tbar.AddAction(gi.ActOpts(Label="Init", Icon="update", Tooltip="Initialize everything including network weights, and start over. Also applies current params.", UpdateFunc=UpdtFuncNotRunning), recv, InitCB) tbar.AddAction(gi.ActOpts(Label="Train", Icon="run", Tooltip="Starts the network training, picking up from wherever it may have left off. If not stopped, training will complete the specified number of Runs through the full number of Epochs of training, with testing automatically occuring at the specified interval.", UpdateFunc=UpdtFuncNotRunning), recv, TrainCB) tbar.AddAction(gi.ActOpts(Label="Stop", Icon="stop", Tooltip="Interrupts running. Hitting Train again will pick back up where it left off.", UpdateFunc=UpdtFuncRunning), recv, StopCB) tbar.AddAction(gi.ActOpts(Label="Step Trial", Icon="step-fwd", Tooltip="Advances one training trial at a time.", UpdateFunc=UpdtFuncNotRunning), recv, StepTrialCB) tbar.AddAction(gi.ActOpts(Label="Step Epoch", Icon="fast-fwd", Tooltip="Advances one epoch (complete set of training patterns) at a time.", UpdateFunc=UpdtFuncNotRunning), recv, StepEpochCB) tbar.AddAction(gi.ActOpts(Label="Step Run", Icon="fast-fwd", Tooltip="Advances one full training Run at a time.", UpdateFunc=UpdtFuncNotRunning), recv, StepRunCB) tbar.AddSeparator("test") tbar.AddAction(gi.ActOpts(Label="Test Trial", Icon="step-fwd", Tooltip="Runs the next testing trial.", UpdateFunc=UpdtFuncNotRunning), recv, TestTrialCB) tbar.AddAction(gi.ActOpts(Label="Test Item", Icon="step-fwd", Tooltip="Prompts for a specific input pattern name to run, and runs it in testing mode.", UpdateFunc=UpdtFuncNotRunning), recv, TestItemCB) tbar.AddAction(gi.ActOpts(Label="Test All", Icon="fast-fwd", Tooltip="Tests all of the testing trials.", UpdateFunc=UpdtFuncNotRunning), recv, TestAllCB) tbar.AddSeparator("log") tbar.AddAction(gi.ActOpts(Label="Reset RunLog", Icon="reset", Tooltip="Resets the accumulated log of all Runs, which are tagged with the ParamSet used"), recv, ResetRunLogCB) tbar.AddSeparator("misc") tbar.AddAction(gi.ActOpts(Label="New Seed", Icon="new", Tooltip="Generate a new initial random seed to get different results. By default, Init re-establishes the same initial seed every time."), recv, NewRndSeedCB) tbar.AddAction(gi.ActOpts(Label="README", Icon="file-markdown", Tooltip="Opens your browser on the README file that contains instructions for how to run this model."), recv, ReadmeCB) # main menu appnm = gi.AppName() mmen = win.MainMenu mmen.ConfigMenus(go.Slice_string([appnm, "File", "Edit", "Window"])) amen = gi.Action(win.MainMenu.ChildByName(appnm, 0)) amen.Menu.AddAppMenu(win) emen = gi.Action(win.MainMenu.ChildByName("Edit", 1)) emen.Menu.AddCopyCutPaste(win) win.MainMenuUpdated() vp.UpdateEndNoSig(updt) win.GoStartEventLoop() # TheSim is the overall state for this simulation TheSim = Sim() def main(argv): TheSim.Config() TheSim.ConfigGui() TheSim.Init() main(sys.argv[1:])
#!/usr/local/bin/pyleabra -i # Copyright (c) 2019, The Emergent Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. # use: # just type file name to run, or: # pyleabra -i <file>.py # hebberr_combo shows how XCal hebbian learning in shallower layers # of a network can aid an error driven learning network to # generalize to unseen combinations of patterns. from leabra import go, leabra, emer, relpos, eplot, env, agg, patgen, prjn, etable, efile, split, etensor, params, netview, rand, erand, gi, giv, pygiv, pyparams, mat32 import importlib as il import io, sys, getopt from datetime import datetime, timezone from enum import Enum # this will become Sim later.. TheSim = 1 # LogPrec is precision for saving float values in logs LogPrec = 4 # note: we cannot use methods for callbacks from Go -- must be separate functions # so below are all the callbacks from the GUI toolbar actions def InitCB(recv, send, sig, data): TheSim.Init() TheSim.UpdateClassView() TheSim.vp.SetNeedsFullRender() def TrainCB(recv, send, sig, data): if not TheSim.IsRunning: TheSim.IsRunning = True TheSim.ToolBar.UpdateActions() TheSim.Train() def StopCB(recv, send, sig, data): TheSim.Stop() def StepTrialCB(recv, send, sig, data): if not TheSim.IsRunning: TheSim.IsRunning = True TheSim.TrainTrial() TheSim.IsRunning = False TheSim.UpdateClassView() TheSim.vp.SetNeedsFullRender() def StepEpochCB(recv, send, sig, data): if not TheSim.IsRunning: TheSim.IsRunning = True TheSim.ToolBar.UpdateActions() TheSim.TrainEpoch() def StepRunCB(recv, send, sig, data): if not TheSim.IsRunning: TheSim.IsRunning = True TheSim.ToolBar.UpdateActions() TheSim.TrainRun() def TestTrialCB(recv, send, sig, data): if not TheSim.IsRunning: TheSim.IsRunning = True TheSim.TestTrial(False) TheSim.IsRunning = False TheSim.UpdateClassView() TheSim.vp.SetNeedsFullRender() def TestItemCB2(recv, send, sig, data): win = gi.Window(handle=recv) vp = win.WinViewport2D() dlg = gi.Dialog(handle=send) if sig != gi.DialogAccepted: return val = gi.StringPromptDialogValue(dlg) idxs = TheSim.TestEnv.Table.RowsByString("Name", val, True, True) # contains, ignoreCase if len(idxs) == 0: gi.PromptDialog(vp, gi.DlgOpts(Title="Name Not Found", Prompt="No patterns found containing: " + val), True, False, go.nil, go.nil) else: if not TheSim.IsRunning: TheSim.IsRunning = True print("testing index: %s" % idxs[0]) TheSim.TestItem(idxs[0]) TheSim.IsRunning = False vp.SetNeedsFullRender() def TestItemCB(recv, send, sig, data): win = gi.Window(handle=recv) gi.StringPromptDialog(win.WinViewport2D(), "", "Test Item", gi.DlgOpts(Title="Test Item", Prompt="Enter the Name of a given input pattern to test (case insensitive, contains given string."), win, TestItemCB2) def TestAllCB(recv, send, sig, data): if not TheSim.IsRunning: TheSim.IsRunning = True TheSim.ToolBar.UpdateActions() TheSim.RunTestAll() def ResetRunLogCB(recv, send, sig, data): TheSim.RunLog.SetNumRows(0) TheSim.RunPlot.Update() def NewRndSeedCB(recv, send, sig, data): TheSim.NewRndSeed() def ReadmeCB(recv, send, sig, data): gi.OpenURL("https://github.com/CompCogNeuro/sims/blob/master/ch4/hebberr_combo/README.md") def UpdtFuncNotRunning(act): act.SetActiveStateUpdt(not TheSim.IsRunning) def UpdtFuncRunning(act): act.SetActiveStateUpdt(TheSim.IsRunning) ############################################ # Enums -- note: must start at 0 for GUI class PatsType(Enum): Easy = 0 Hard = 1 Impossible = 2 Lines2 = 3 class LearnType(Enum): Hebbian = 0 ErrorDriven = 1 ErrorHebbIn = 2 ##################################################### # Sim class Sim(pygiv.ClassViewObj): """ Sim encapsulates the entire simulation model, and we define all the functionality as methods on this struct. This structure keeps all relevant state information organized and available without having to pass everything around as arguments to methods, and provides the core GUI interface (note the view tags for the fields which provide hints to how things should be displayed). """ def __init__(self): super(Sim, self).__init__() self.Net = leabra.Network() self.SetTags("Net", 'view:"no-inline" desc:"the network -- click to view / edit parameters for layers, prjns, etc"') self.Learn = LearnType.ErrorDriven self.SetTags("Learn", 'desc:"select which type of learning to use"') self.Pats = PatsType.Lines2 self.SetTags("Pats", 'desc:"select which type of patterns to use"') self.Easy = etable.Table() self.SetTags("Easy", 'view:"no-inline" desc:"easy training patterns -- can be learned with Hebbian"') self.Hard = etable.Table() self.SetTags("Hard", 'view:"no-inline" desc:"hard training patterns -- require error-driven"') self.Impossible = etable.Table() self.SetTags("Impossible", 'view:"no-inline" desc:"impossible training patterns -- require error-driven + hidden layer"') self.Lines2 = etable.Table() self.SetTags("Lines2", 'view:"no-inline" desc:"lines training patterns"') self.TrnEpcLog = etable.Table() self.SetTags("TrnEpcLog", 'view:"no-inline" desc:"training epoch-level log data"') self.TstEpcLog = etable.Table() self.SetTags("TstEpcLog", 'view:"no-inline" desc:"testing epoch-level log data"') self.TstTrlLog = etable.Table() self.SetTags("TstTrlLog", 'view:"no-inline" desc:"testing trial-level log data"') self.RunLog = etable.Table() self.SetTags("RunLog", 'view:"no-inline" desc:"summary log of each run"') self.RunStats = etable.Table() self.SetTags("RunStats", 'view:"no-inline" desc:"aggregate stats on all runs"') self.Params = params.Sets() self.SetTags("Params", 'view:"no-inline" desc:"full collection of param sets"') self.ParamSet = str() self.SetTags("ParamSet", 'view:"-" desc:"which set of *additional* parameters to use -- always applies Base and optionaly this next if set"') self.MaxRuns = int(10) self.SetTags("MaxRuns", 'desc:"maximum number of model runs to perform"') self.MaxEpcs = int(100) self.SetTags("MaxEpcs", 'desc:"maximum number of epochs to run per model run"') self.NZeroStop = int(20) self.SetTags("NZeroStop", 'desc:"if a positive number, training will stop after this many epochs with zero SSE"') self.TrainEnv = env.FixedTable() self.SetTags("TrainEnv", 'desc:"Training environment -- contains everything about iterating over input / output patterns over training"') self.TestEnv = env.FixedTable() self.SetTags("TestEnv", 'desc:"Testing environment -- manages iterating over testing"') self.Time = leabra.Time() self.SetTags("Time", 'desc:"leabra timing parameters and state"') self.ViewOn = True self.SetTags("ViewOn", 'desc:"whether to update the network view while running"') self.TrainUpdt = leabra.TimeScales.AlphaCycle self.SetTags("TrainUpdt", 'desc:"at what time scale to update the display during training? Anything longer than Epoch updates at Epoch in this model"') self.TestUpdt = leabra.TimeScales.Cycle self.SetTags("TestUpdt", 'desc:"at what time scale to update the display during testing? Anything longer than Epoch updates at Epoch in this model"') self.TestInterval = int(5) self.SetTags("TestInterval", 'desc:"how often to run through all the test patterns, in terms of training epochs -- can use 0 or -1 for no testing"') self.LayStatNms = go.Slice_string(["Input", "Output"]) self.SetTags("LayStatNms", 'desc:"names of layers to collect more detailed stats on (avg act, etc)"') # statistics: note use float64 as that is best for etable.Table self.TrlErr = float(0) self.SetTags("TrlErr", 'inactive:"+" desc:"1 if trial was error, 0 if correct -- based on SSE = 0 (subject to .5 unit-wise tolerance)"') self.TrlSSE = float(0) self.SetTags("TrlSSE", 'inactive:"+" desc:"current trial\'s sum squared error"') self.TrlAvgSSE = float(0) self.SetTags("TrlAvgSSE", 'inactive:"+" desc:"current trial\'s average sum squared error"') self.TrlCosDiff = float(0) self.SetTags("TrlCosDiff", 'inactive:"+" desc:"current trial\'s cosine difference"') self.EpcSSE = float(0) self.SetTags("EpcSSE", 'inactive:"+" desc:"last epoch\'s total sum squared error"') self.EpcAvgSSE = float(0) self.SetTags("EpcAvgSSE", 'inactive:"+" desc:"last epoch\'s average sum squared error (average over trials, and over units within layer)"') self.EpcPctErr = float(0) self.SetTags("EpcPctErr", 'inactive:"+" desc:"last epoch\'s average TrlErr"') self.EpcPctCor = float(0) self.SetTags("EpcPctCor", 'inactive:"+" desc:"1 - last epoch\'s average TrlErr"') self.EpcCosDiff = float(0) self.SetTags("EpcCosDiff", 'inactive:"+" desc:"last epoch\'s average cosine difference for output layer (a normalized error measure, maximum of 1 when the minus phase exactly matches the plus)"') self.FirstZero = int(-1) self.SetTags("FirstZero", 'inactive:"+" desc:"epoch at when SSE first went to zero"') self.NZero = int(0) self.SetTags("NZero", 'inactive:"+" desc:"number of epochs in a row with zero SSE"') # internal state - view:"-" self.SumErr = float(0) self.SetTags("SumErr", 'view:"-" inactive:"+" desc:"sum to increment as we go through epoch"') self.SumSSE = float(0) self.SetTags("SumSSE", 'view:"-" inactive:"+" desc:"sum to increment as we go through epoch"') self.SumAvgSSE = float(0) self.SetTags("SumAvgSSE", 'view:"-" inactive:"+" desc:"sum to increment as we go through epoch"') self.SumCosDiff = float(0) self.SetTags("SumCosDiff", 'view:"-" inactive:"+" desc:"sum to increment as we go through epoch"') self.Win = 0 self.SetTags("Win", 'view:"-" desc:"main GUI window"') self.NetView = 0 self.SetTags("NetView", 'view:"-" desc:"the network viewer"') self.ToolBar = 0 self.SetTags("ToolBar", 'view:"-" desc:"the master toolbar"') self.TrnEpcPlot = 0 self.SetTags("TrnEpcPlot", 'view:"-" desc:"the training epoch plot"') self.TstEpcPlot = 0 self.SetTags("TstEpcPlot", 'view:"-" desc:"the testing epoch plot"') self.TstTrlPlot = 0 self.SetTags("TstTrlPlot", 'view:"-" desc:"the test-trial plot"') self.RunPlot = 0 self.SetTags("RunPlot", 'view:"-" desc:"the run plot"') self.TrnEpcFile = 0 self.SetTags("TrnEpcFile", 'view:"-" desc:"log file"') self.RunFile = 0 self.SetTags("RunFile", 'view:"-" desc:"log file"') self.ValsTsrs = {} self.SetTags("ValsTsrs", 'view:"-" desc:"for holding layer values"') self.IsRunning = False self.SetTags("IsRunning", 'view:"-" desc:"true if sim is running"') self.StopNow = False self.SetTags("StopNow", 'view:"-" desc:"flag to stop running"') self.NeedsNewRun = False self.SetTags("NeedsNewRun", 'view:"-" desc:"flag to initialize NewRun if last one finished"') self.RndSeed = int(1) self.SetTags("RndSeed", 'view:"-" desc:"the current random seed"') self.vp = 0 self.SetTags("vp", 'view:"-" desc:"viewport"') def InitParams(ss): """ Sets the default set of parameters -- Base is always applied, and others can be optionally selected to apply on top of that """ ss.Params.OpenJSON("hebberr_combo.params") def Config(ss): """ Config configures all the elements using the standard functions """ ss.InitParams() ss.OpenPats() ss.ConfigEnv() ss.ConfigNet(ss.Net) ss.ConfigTrnEpcLog(ss.TrnEpcLog) ss.ConfigTstEpcLog(ss.TstEpcLog) ss.ConfigTstTrlLog(ss.TstTrlLog) ss.ConfigRunLog(ss.RunLog) def ConfigEnv(ss): if ss.MaxRuns == 0: ss.MaxRuns = 10 if ss.MaxEpcs == 0: # allow user override ss.MaxEpcs = 100 ss.NZeroStop = 20 ss.TrainEnv.Nm = "TrainEnv" ss.TrainEnv.Dsc = "training params and state" ss.TrainEnv.Table = etable.NewIdxView(ss.Easy) ss.TrainEnv.Validate() ss.TrainEnv.Run.Max = ss.MaxRuns # note: we are not setting epoch max -- do that manually ss.TestEnv.Nm = "TestEnv" ss.TestEnv.Dsc = "testing params and state" ss.TestEnv.Table = etable.NewIdxView(ss.Easy) ss.TestEnv.Sequential = True ss.TestEnv.Validate() ss.TrainEnv.Init(0) ss.TestEnv.Init(0) def UpdateEnv(ss): if ss.Pats == PatsType.Easy: ss.TrainEnv.Table = etable.NewIdxView(ss.Easy) ss.TestEnv.Table = etable.NewIdxView(ss.Easy) elif ss.Pats == PatsType.Hard: ss.TrainEnv.Table = etable.NewIdxView(ss.Hard) ss.TestEnv.Table = etable.NewIdxView(ss.Hard) elif ss.Pats == PatsType.Impossible: ss.TrainEnv.Table = etable.NewIdxView(ss.Impossible) ss.TestEnv.Table = etable.NewIdxView(ss.Impossible) elif ss.Pats == PatsType.Lines2: all = etable.NewIdxView(ss.Lines2) splits = split.Permuted(all, go.Slice_float64([.9, .1]), go.Slice_string(["Train", "Test"])) ss.TrainEnv.Table = splits.Splits[0] ss.TestEnv.Table = splits.Splits[1] def ConfigNet(ss, net): net.InitName(net, "PatAssoc") inp = net.AddLayer2D("Input", 5, 5, emer.Input) hid = net.AddLayer2D("Hidden", 6, 5, emer.Hidden) out = net.AddLayer2D("Output", 5, 2, emer.Target) out.SetClass("Output") full = prjn.NewFull() inhid = net.ConnectLayers(inp, hid, full, emer.Forward) inhid.SetClass("InputToHidden") net.BidirConnectLayersPy(hid, out, full) hid.SetRelPos(relpos.Rel(Rel= relpos.Above, Other= "Input", YAlign= relpos.Front, XAlign= relpos.Left, YOffset= 1)) net.Defaults() ss.SetParams("Network", False) # only set Network params net.Build() net.InitWts() def Init(ss): """ Init restarts the run, and initializes everything, including network weights and resets the epoch log table """ rand.Seed(ss.RndSeed) ss.UpdateEnv() ss.StopNow = False ss.SetParams("", False) ss.NewRun() ss.UpdateView(True) def NewRndSeed(ss): """ NewRndSeed gets a new random seed based on current time -- otherwise uses the same random seed for every run """ ss.RndSeed = int(datetime.now(timezone.utc).timestamp()) def Counters(ss, train): """ Counters returns a string of the current counter state use tabs to achieve a reasonable formatting overall and add a few tabs at the end to allow for expansion.. """ if train: return "Run:\t%d\tEpoch:\t%d\tTrial:\t%d\tCycle:\t%d\tName:\t%s\t\t\t" % (ss.TrainEnv.Run.Cur, ss.TrainEnv.Epoch.Cur, ss.TrainEnv.Trial.Cur, ss.Time.Cycle, ss.TrainEnv.TrialName.Cur) else: return "Run:\t%d\tEpoch:\t%d\tTrial:\t%d\tCycle:\t%d\tName:\t%s\t\t\t" % (ss.TrainEnv.Run.Cur, ss.TrainEnv.Epoch.Cur, ss.TestEnv.Trial.Cur, ss.Time.Cycle, ss.TestEnv.TrialName.Cur) def UpdateView(ss, train): if ss.NetView != 0 and ss.NetView.IsVisible(): ss.NetView.Record(ss.Counters(train)) ss.NetView.GoUpdate() def AlphaCyc(ss, train): """ AlphaCyc runs one alpha-cycle (100 msec, 4 quarters) of processing. External inputs must have already been applied prior to calling, using ApplyExt method on relevant layers (see TrainTrial, TestTrial). If train is true, then learning DWt or WtFmDWt calls are made. Handles netview updating within scope of AlphaCycle """ if ss.Win != 0: ss.Win.PollEvents() # this is essential for GUI responsiveness while running viewUpdt = ss.TrainUpdt.value if not train: viewUpdt = ss.TestUpdt.value # update prior weight changes at start, so any DWt values remain visible at end # you might want to do this less frequently to achieve a mini-batch update # in which case, move it out to the TrainTrial method where the relevant # counters are being dealt with. if train: ss.Net.WtFmDWt() ss.Net.AlphaCycInit(train) ss.Time.AlphaCycStart() for qtr in range(4): for cyc in range(ss.Time.CycPerQtr): ss.Net.Cycle(ss.Time) ss.Time.CycleInc() if ss.ViewOn: if viewUpdt == leabra.Cycle: if cyc != ss.Time.CycPerQtr-1: # will be updated by quarter ss.UpdateView(train) elif viewUpdt == leabra.FastSpike: if (cyc+1)%10 == 0: ss.UpdateView(train) ss.Net.QuarterFinal(ss.Time) ss.Time.QuarterInc() if ss.ViewOn: if viewUpdt == leabra.Quarter: ss.UpdateView(train) if viewUpdt == leabra.Phase: if qtr >= 2: ss.UpdateView(train) if train: ss.Net.DWt() if ss.ViewOn and viewUpdt == leabra.AlphaCycle: ss.UpdateView(train) def ApplyInputs(ss, en): """ ApplyInputs applies input patterns from given envirbonment. It is good practice to have this be a separate method with appropriate # going to the same layers, but good practice and cheap anyway args so that it can be used for various different contexts (training, testing, etc). """ ss.Net.InitExt() lays = ["Input", "Output"] for lnm in lays : ly = leabra.Layer(ss.Net.LayerByName(lnm)) pats = en.State(ly.Nm) if pats != 0: ly.ApplyExt(pats) def TrainTrial(ss): """ TrainTrial runs one trial of training using TrainEnv """ if ss.NeedsNewRun: ss.NewRun() ss.TrainEnv.Step() # Key to query counters FIRST because current state is in NEXT epoch # if epoch counter has changed epc = env.CounterCur(ss.TrainEnv, env.Epoch) chg = env.CounterChg(ss.TrainEnv, env.Epoch) if chg: ss.LogTrnEpc(ss.TrnEpcLog) if ss.ViewOn and ss.TrainUpdt.value > leabra.AlphaCycle: ss.UpdateView(True) if ss.TestInterval > 0 and epc%ss.TestInterval == 0: # note: epc is *next* so won't trigger first time ss.TestAll() if epc >= ss.MaxEpcs or (ss.NZeroStop > 0 and ss.NZero >= ss.NZeroStop): # done with training.. ss.RunEnd() if ss.TrainEnv.Run.Incr(): # we are done! ss.StopNow = True return else: ss.NeedsNewRun = True return # note: type must be in place before apply inputs ss.Net.LayerByName("Output").SetType(emer.Target) ss.ApplyInputs(ss.TrainEnv) ss.AlphaCyc(True) # train ss.TrialStats(True) # accumulate def RunEnd(ss): """ RunEnd is called at the end of a run -- save weights, record final log, etc here """ ss.LogRun(ss.RunLog) def NewRun(ss): """ NewRun intializes a new run of the model, using the TrainEnv.Run counter for the new run value """ run = ss.TrainEnv.Run.Cur ss.UpdateEnv() ss.TrainEnv.Init(run) ss.TestEnv.Init(run) ss.Time.Reset() ss.Net.InitWts() ss.InitStats() ss.TrnEpcLog.SetNumRows(0) ss.TstEpcLog.SetNumRows(0) ss.NeedsNewRun = False ss.TrainEnv.Run.Max = ss.MaxRuns def InitStats(ss): """ InitStats initializes all the statistics, especially important for the cumulative epoch stats -- called at start of new run """ ss.SumSSE = 0 ss.SumAvgSSE = 0 ss.SumCosDiff = 0 ss.SumErr = 0 ss.FirstZero = -1 ss.NZero = 0 ss.TrlErr = 0 ss.TrlSSE = 0 ss.TrlAvgSSE = 0 ss.EpcSSE = 0 ss.EpcAvgSSE = 0 ss.EpcPctErr = 0 ss.EpcCosDiff = 0 def TrialStats(ss, accum): """ TrialStats computes the trial-level statistics and adds them to the epoch accumulators if accum is true. Note that we're accumulating stats here on the Sim side so the core algorithm side remains as simple as possible, and doesn't need to worry about different time-scales over which stats could be accumulated etc. You can also aggregate directly from log data, as is done for testing stats """ out = leabra.Layer(ss.Net.LayerByName("Output")) ss.TrlCosDiff = float(out.CosDiff.Cos) ss.TrlSSE = out.SSE(0.5) # 0.5 = per-unit tolerance -- right side of .5 ss.TrlAvgSSE = ss.TrlSSE / len(out.Neurons) if ss.TrlSSE > 0: ss.TrlErr = 1 else: ss.TrlErr = 0 if accum: ss.SumErr += ss.TrlErr ss.SumSSE += ss.TrlSSE ss.SumAvgSSE += ss.TrlAvgSSE ss.SumCosDiff += ss.TrlCosDiff return def TrainEpoch(ss): """ TrainEpoch runs training trials for remainder of this epoch """ ss.StopNow = False curEpc = ss.TrainEnv.Epoch.Cur while True: ss.TrainTrial() if ss.StopNow or ss.TrainEnv.Epoch.Cur != curEpc: break ss.Stopped() def TrainRun(ss): """ TrainRun runs training trials for remainder of run """ ss.StopNow = False curRun = ss.TrainEnv.Run.Cur while True: ss.TrainTrial() if ss.StopNow or ss.TrainEnv.Run.Cur != curRun: break ss.Stopped() def Train(ss): """ Train runs the full training from this point onward """ ss.StopNow = False while True: ss.TrainTrial() if ss.StopNow: break ss.Stopped() def Stop(ss): """ Stop tells the sim to stop running """ ss.StopNow = True def Stopped(ss): """ Stopped is called when a run method stops running -- updates the IsRunning flag and toolbar """ ss.IsRunning = False if ss.Win != 0: vp = ss.Win.WinViewport2D() if ss.ToolBar != 0: ss.ToolBar.UpdateActions() vp.SetNeedsFullRender() ss.UpdateClassView() def SaveWeights(ss, filename): """ SaveWeights saves the network weights -- when called with giv.CallMethod it will auto-prompt for filename """ ss.Net.SaveWtsJSON(filename) def TestTrial(ss, returnOnChg): """ TestTrial runs one trial of testing -- always sequentially presented inputs """ ss.TestEnv.Step() chg = env.CounterChg(ss.TestEnv, env.Epoch) if chg: if ss.ViewOn and ss.TestUpdt.value > leabra.AlphaCycle: ss.UpdateView(False) ss.LogTstEpc(ss.TstEpcLog) if returnOnChg: return ss.Net.LayerByName("Output").SetType(emer.Compare) ss.ApplyInputs(ss.TestEnv) ss.AlphaCyc(False) ss.TrialStats(False) ss.LogTstTrl(ss.TstTrlLog) def TestItem(ss, idx): """ TestItem tests given item which is at given index in test item list """ cur = ss.TestEnv.Trial.Cur ss.TestEnv.Trial.Cur = idx ss.TestEnv.SetTrialName() ss.Net.LayerByName("Output").SetType(emer.Compare) ss.ApplyInputs(ss.TestEnv) ss.AlphaCyc(False) ss.TrialStats(False) ss.TestEnv.Trial.Cur = cur def TestAll(ss): """ TestAll runs through the full set of testing items """ ss.TestEnv.Init(ss.TrainEnv.Run.Cur) while True: ss.TestTrial(True) chg = env.CounterChg(ss.TestEnv, env.Epoch) if chg or ss.StopNow: break def RunTestAll(ss): """ RunTestAll runs through the full set of testing items, has stop running = false at end -- for gui """ ss.StopNow = False ss.TestAll() ss.Stopped() def SetParams(ss, sheet, setMsg): """ SetParams sets the params for "Base" and then current ParamSet. If sheet is empty, then it applies all avail sheets (e.g., Network, Sim) otherwise just the named sheet if setMsg = true then we output a message for each param that was set. """ if sheet == "": ss.Params.ValidateSheets(go.Slice_string(["Network", "Sim"])) ss.SetParamsSet("Base", sheet, setMsg) if ss.ParamSet != "" and ss.ParamSet != "Base": sps = ss.ParamSet.split() for ps in sps: ss.SetParamsSet(ps, sheet, setMsg) if ss.Learn == LearnType.Hebbian: ss.SetParamsSet("Hebbian", sheet, setMsg) elif ss.Learn == LearnType.ErrorDriven: ss.SetParamsSet("ErrorDriven", sheet, setMsg) elif ss.Learn == LearnType.ErrorHebbIn: ss.SetParamsSet("ErrorHebbIn", sheet, setMsg) def SetParamsSet(ss, setNm, sheet, setMsg): """ SetParamsSet sets the params for given params.Set name. If sheet is empty, then it applies all avail sheets (e.g., Network, Sim) otherwise just the named sheet if setMsg = true then we output a message for each param that was set. """ pset = ss.Params.SetByNameTry(setNm) if sheet == "" or sheet == "Network": if "Network" in pset.Sheets: netp = pset.SheetByNameTry("Network") ss.Net.ApplyParams(netp, setMsg) if sheet == "" or sheet == "Sim": if "Sim" in pset.Sheets: simp= pset.SheetByNameTry("Sim") pyparams.ApplyParams(ss, simp, setMsg) def OpenPats(ss): ss.Easy.SetMetaData("name", "Easy") ss.Easy.SetMetaData("desc", "Easy Training patterns") ss.Easy.OpenCSV("easy.tsv", etable.Tab) ss.Hard.SetMetaData("name", "Hard") ss.Hard.SetMetaData("desc", "Hard Training patterns") ss.Hard.OpenCSV("hard.tsv", etable.Tab) ss.Impossible.SetMetaData("name", "Impossible") ss.Impossible.SetMetaData("desc", "Impossible Training patterns") ss.Impossible.OpenCSV("impossible.tsv", etable.Tab) ss.Lines2.SetMetaData("name", "Lines2") ss.Lines2.SetMetaData("desc", "Lines2 Training patterns") ss.Lines2.OpenCSV("lines2out1.tsv", etable.Tab) def ValsTsr(ss, name): """ ValsTsr gets value tensor of given name, creating if not yet made """ if name in ss.ValsTsrs: return ss.ValsTsrs[name] tsr = etensor.Float32() ss.ValsTsrs[name] = tsr return tsr def LogTrnEpc(ss, dt): """ LogTrnEpc adds data from current epoch to the TrnEpcLog table. computes epoch averages prior to logging. # this is triggered by increment so use previous value """ row = dt.Rows dt.SetNumRows(row + 1) epc = ss.TrainEnv.Epoch.Prv nt = float(ss.TrainEnv.Table.Len()) # number of trials in view ss.EpcSSE = ss.SumSSE / nt ss.SumSSE = 0 ss.EpcAvgSSE = ss.SumAvgSSE / nt ss.SumAvgSSE = 0 ss.EpcPctErr = float(ss.SumErr) / nt ss.SumErr = 0 ss.EpcPctCor = 1 - ss.EpcPctErr ss.EpcCosDiff = ss.SumCosDiff / nt ss.SumCosDiff = 0 if ss.FirstZero < 0 and ss.EpcPctErr == 0: ss.FirstZero = epc if ss.EpcPctErr == 0: ss.NZero += 1 else: ss.NZero = 0 dt.SetCellFloat("Run", row, float(ss.TrainEnv.Run.Cur)) dt.SetCellFloat("Epoch", row, float(epc)) dt.SetCellFloat("SSE", row, ss.EpcSSE) dt.SetCellFloat("AvgSSE", row, ss.EpcAvgSSE) dt.SetCellFloat("PctErr", row, ss.EpcPctErr) dt.SetCellFloat("PctCor", row, ss.EpcPctCor) dt.SetCellFloat("CosDiff", row, ss.EpcCosDiff) for lnm in ss.LayStatNms: ly = leabra.Layer(ss.Net.LayerByName(lnm)) dt.SetCellFloat(ly.Nm+" ActAvg", row, float(ly.Pool(0).ActAvg.ActPAvgEff)) # note: essential to use Go version of update when called from another goroutine ss.TrnEpcPlot.GoUpdate() if ss.TrnEpcFile != 0: if ss.TrainEnv.Run.Cur == 0 and epc == 0: dt.WriteCSVHeaders(ss.TrnEpcFile, etable.Tab) dt.WriteCSVRow(ss.TrnEpcFile, row, etable.Tab) def ConfigTrnEpcLog(ss, dt): dt.SetMetaData("name", "TrnEpcLog") dt.SetMetaData("desc", "Record of performance over epochs of training") dt.SetMetaData("read-only", "true") dt.SetMetaData("precision", str(LogPrec)) sch = etable.Schema( [etable.Column("Run", etensor.INT64, go.nil, go.nil), etable.Column("Epoch", etensor.INT64, go.nil, go.nil), etable.Column("SSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("AvgSSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("PctErr", etensor.FLOAT64, go.nil, go.nil), etable.Column("PctCor", etensor.FLOAT64, go.nil, go.nil), etable.Column("CosDiff", etensor.FLOAT64, go.nil, go.nil)] ) for lnm in ss.LayStatNms: sch.append(etable.Column(lnm + " ActAvg", etensor.FLOAT64, go.nil, go.nil)) dt.SetFromSchema(sch, 0) def ConfigTrnEpcPlot(ss, plt, dt): plt.Params.Title = "Pattern Associator Epoch Plot" plt.Params.XAxisCol = "Epoch" plt.SetTable(dt) # order of params: on, fixMin, min, fixMax, max plt.SetColParams("Run", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("Epoch", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("SSE", eplot.On, eplot.FixMin, 0, eplot.FloatMax, 0) # default plot plt.SetColParams("AvgSSE", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("PctErr", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("PctCor", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("CosDiff", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) for lnm in ss.LayStatNms: plt.SetColParams(lnm+" ActAvg", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 0.5) return plt def LogTstTrl(ss, dt): """ LogTstTrl adds data from current trial to the TstTrlLog table. # this is triggered by increment so use previous value log always contains number of testing items """ epc = ss.TrainEnv.Epoch.Prv inp = leabra.Layer(ss.Net.LayerByName("Input")) out = leabra.Layer(ss.Net.LayerByName("Output")) trl = ss.TestEnv.Trial.Cur row = trl if dt.Rows <= row: dt.SetNumRows(row + 1) dt.SetCellFloat("Run", row, float(ss.TrainEnv.Run.Cur)) dt.SetCellFloat("Epoch", row, float(epc)) dt.SetCellFloat("Trial", row, float(trl)) dt.SetCellString("TrialName", row, ss.TestEnv.TrialName.Cur) dt.SetCellFloat("Err", row, ss.TrlErr) dt.SetCellFloat("SSE", row, ss.TrlSSE) dt.SetCellFloat("AvgSSE", row, ss.TrlAvgSSE) dt.SetCellFloat("CosDiff", row, ss.TrlCosDiff) for lnm in ss.LayStatNms: ly = leabra.Layer(ss.Net.LayerByName(lnm)) dt.SetCellFloat(ly.Nm+" ActM.Avg", row, float(ly.Pool(0).ActM.Avg)) ivt = ss.ValsTsr("Input") ovt = ss.ValsTsr("Output") inp.UnitValsTensor(ivt, "Act") dt.SetCellTensor("InAct", row, ivt) out.UnitValsTensor(ovt, "ActM") dt.SetCellTensor("OutActM", row, ovt) out.UnitValsTensor(ovt, "Targ") dt.SetCellTensor("OutTarg", row, ovt) # note: essential to use Go version of update when called from another goroutine ss.TstTrlPlot.GoUpdate() def ConfigTstTrlLog(ss, dt): inp = leabra.Layer(ss.Net.LayerByName("Input")) out = leabra.Layer(ss.Net.LayerByName("Output")) dt.SetMetaData("name", "TstTrlLog") dt.SetMetaData("desc", "Record of testing per input pattern") dt.SetMetaData("read-only", "true") dt.SetMetaData("precision", str(LogPrec)) nt = ss.TestEnv.Table.Len() # number in view sch = etable.Schema( [etable.Column("Run", etensor.INT64, go.nil, go.nil), etable.Column("Epoch", etensor.INT64, go.nil, go.nil), etable.Column("Trial", etensor.INT64, go.nil, go.nil), etable.Column("TrialName", etensor.STRING, go.nil, go.nil), etable.Column("Err", etensor.FLOAT64, go.nil, go.nil), etable.Column("SSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("AvgSSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("CosDiff", etensor.FLOAT64, go.nil, go.nil)] ) for lnm in ss.LayStatNms: sch.append(etable.Column(lnm + " ActM.Avg", etensor.FLOAT64, go.nil, go.nil)) sch.append(etable.Column("InAct", etensor.FLOAT64, inp.Shp.Shp, go.nil)) sch.append(etable.Column("OutActM", etensor.FLOAT64, out.Shp.Shp, go.nil)) sch.append(etable.Column("OutTarg", etensor.FLOAT64, out.Shp.Shp, go.nil)) dt.SetFromSchema(sch, nt) def ConfigTstTrlPlot(ss, plt, dt): plt.Params.Title = "Pattern Associator Test Trial Plot" plt.Params.XAxisCol = "Trial" plt.SetTable(dt) # order of params: on, fixMin, min, fixMax, max plt.SetColParams("Run", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("Epoch", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("Trial", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("TrialName", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("Err", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("SSE", eplot.On, eplot.FixMin, 0, eplot.FloatMax, 0) # default plot plt.SetColParams("AvgSSE", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("CosDiff", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) for lnm in ss.LayStatNms: plt.SetColParams(lnm+" ActM.Avg", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 0.5) plt.SetColParams("InAct", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("OutActM", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("OutTarg", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) return plt def LogTstEpc(ss, dt): row = dt.Rows dt.SetNumRows(row + 1) trl = ss.TstTrlLog tix = etable.NewIdxView(trl) epc = ss.TrainEnv.Epoch.Prv # ? # note: this shows how to use agg methods to compute summary data from another # data table, instead of incrementing on the Sim dt.SetCellFloat("Run", row, float(ss.TrainEnv.Run.Cur)) dt.SetCellFloat("Epoch", row, float(epc)) dt.SetCellFloat("SSE", row, agg.Sum(tix, "SSE")[0]) dt.SetCellFloat("AvgSSE", row, agg.Mean(tix, "AvgSSE")[0]) dt.SetCellFloat("PctErr", row, agg.Mean(tix, "Err")[0]) dt.SetCellFloat("PctCor", row, 1-agg.Mean(tix, "Err")[0]) dt.SetCellFloat("CosDiff", row, agg.Mean(tix, "CosDiff")[0]) # note: essential to use Go version of update when called from another goroutine if ss.TstEpcPlot != 0: ss.TstEpcPlot.GoUpdate() def ConfigTstEpcLog(ss, dt): dt.SetMetaData("name", "TstEpcLog") dt.SetMetaData("desc", "Summary stats for testing trials") dt.SetMetaData("read-only", "true") dt.SetMetaData("precision", str(LogPrec)) sch = etable.Schema( [etable.Column("Run", etensor.INT64, go.nil, go.nil), etable.Column("Epoch", etensor.INT64, go.nil, go.nil), etable.Column("SSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("AvgSSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("PctErr", etensor.FLOAT64, go.nil, go.nil), etable.Column("PctCor", etensor.FLOAT64, go.nil, go.nil), etable.Column("CosDiff", etensor.FLOAT64, go.nil, go.nil)] ) dt.SetFromSchema(sch, 0) def ConfigTstEpcPlot(ss, plt, dt): plt.Params.Title = "Pattern Associator Testing Epoch Plot" plt.Params.XAxisCol = "Epoch" plt.SetTable(dt) # order of params: on, fixMin, min, fixMax, max plt.SetColParams("Run", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("Epoch", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("SSE", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) # default plot plt.SetColParams("AvgSSE", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("PctErr", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("PctCor", eplot.On, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("CosDiff", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) return plt def LogRun(ss, dt): """ LogRun adds data from current run to the RunLog table. """ run = ss.TrainEnv.Run.Cur # this is NOT triggered by increment yet -- use Cur row = dt.Rows dt.SetNumRows(row + 1) epclog = ss.TstEpcLog epcix = etable.NewIdxView(epclog) # compute mean over last N epochs for run level nlast = 5 if nlast > epcix.Len()-1: nlast = epcix.Len() - 1 epcix.Idxs = go.Slice_int(epcix.Idxs[epcix.Len()-nlast:]) params = ss.Learn.name + "_" + ss.Pats.name dt.SetCellFloat("Run", row, float(run)) dt.SetCellString("Params", row, params) dt.SetCellFloat("FirstZero", row, float(ss.FirstZero)) dt.SetCellFloat("SSE", row, agg.Mean(epcix, "SSE")[0]) dt.SetCellFloat("AvgSSE", row, agg.Mean(epcix, "AvgSSE")[0]) dt.SetCellFloat("PctErr", row, agg.Mean(epcix, "PctErr")[0]) dt.SetCellFloat("PctCor", row, agg.Mean(epcix, "PctCor")[0]) dt.SetCellFloat("CosDiff", row, agg.Mean(epcix, "CosDiff")[0]) runix = etable.NewIdxView(dt) spl = split.GroupBy(runix, go.Slice_string(["Params"])) split.Desc(spl, "FirstZero") split.Desc(spl, "PctCor") split.Desc(spl, "SSE") ss.RunStats = spl.AggsToTable(etable.AddAggName) # note: essential to use Go version of update when called from another goroutine if ss.RunPlot != 0: ss.RunPlot.GoUpdate() if ss.RunFile != 0: if row == 0: dt.WriteCSVHeaders(ss.RunFile, etable.Tab) dt.WriteCSVRow(ss.RunFile, row, etable.Tab) def ConfigRunLog(ss, dt): dt.SetMetaData("name", "RunLog") dt.SetMetaData("desc", "Record of performance at end of training") dt.SetMetaData("read-only", "true") dt.SetMetaData("precision", str(LogPrec)) sch = etable.Schema( [etable.Column("Run", etensor.INT64, go.nil, go.nil), etable.Column("Params", etensor.STRING, go.nil, go.nil), etable.Column("FirstZero", etensor.FLOAT64, go.nil, go.nil), etable.Column("SSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("AvgSSE", etensor.FLOAT64, go.nil, go.nil), etable.Column("PctErr", etensor.FLOAT64, go.nil, go.nil), etable.Column("PctCor", etensor.FLOAT64, go.nil, go.nil), etable.Column("CosDiff", etensor.FLOAT64, go.nil, go.nil)] ) dt.SetFromSchema(sch, 0) def ConfigRunPlot(ss, plt, dt): plt.Params.Title = "Pattern Associator Run Plot" plt.Params.XAxisCol = "Run" plt.SetTable(dt) # order of params: on, fixMin, min, fixMax, max plt.SetColParams("Run", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("FirstZero", eplot.On, eplot.FixMin, 0, eplot.FloatMax, 0) # default plot plt.SetColParams("SSE", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("AvgSSE", eplot.Off, eplot.FixMin, 0, eplot.FloatMax, 0) plt.SetColParams("PctErr", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("PctCor", eplot.On, eplot.FixMin, 0, eplot.FixMax, 1) plt.SetColParams("CosDiff", eplot.Off, eplot.FixMin, 0, eplot.FixMax, 1) return plt def ConfigNetView(ss, nv): nv.ViewDefaults() nv.Scene().Camera.Pose.Pos.Set(0.2, 1.27, 2.62) nv.Scene().Camera.LookAt(mat32.Vec3(0.2, 0, 0), mat32.Vec3(0, 1, 0)) def ConfigGui(ss): """ ConfigGui configures the GoGi gui interface for this simulation, """ width = 1600 height = 1200 gi.SetAppName("hebberr_combo") gi.SetAppAbout('shows how XCal hebbian learning in shallower layers of a network can aid an error driven learning network to generalize to unseen combinations of patterns. See <a href="https://github.com/CompCogNeuro/sims/blob/master/ch4/hebberr_combo/README.md">README.md on GitHub</a>.</p>') win = gi.NewMainWindow("hebberr_combo", "Hebbian+Error Driven Learning", width, height) ss.Win = win vp = win.WinViewport2D() ss.vp = vp updt = vp.UpdateStart() mfr = win.SetMainFrame() tbar = gi.AddNewToolBar(mfr, "tbar") tbar.SetStretchMaxWidth() ss.ToolBar = tbar split = gi.AddNewSplitView(mfr, "split") split.Dim = mat32.X split.SetStretchMaxWidth() split.SetStretchMaxHeight() cv = ss.NewClassView("sv") cv.AddFrame(split) cv.Config() tv = gi.AddNewTabView(split, "tv") nv = netview.NetView() tv.AddTab(nv, "NetView") nv.Var = "Act" nv.SetNet(ss.Net) ss.NetView = nv ss.ConfigNetView(nv) plt = eplot.Plot2D() tv.AddTab(plt, "TrnEpcPlot") ss.TrnEpcPlot = ss.ConfigTrnEpcPlot(plt, ss.TrnEpcLog) plt = eplot.Plot2D() tv.AddTab(plt, "TstTrlPlot") ss.TstTrlPlot = ss.ConfigTstTrlPlot(plt, ss.TstTrlLog) plt = eplot.Plot2D() tv.AddTab(plt, "TstEpcPlot") ss.TstEpcPlot = ss.ConfigTstEpcPlot(plt, ss.TstEpcLog) plt = eplot.Plot2D() tv.AddTab(plt, "RunPlot") ss.RunPlot = ss.ConfigRunPlot(plt, ss.RunLog) split.SetSplitsList(go.Slice_float32([.2, .8])) recv = win.This() tbar.AddAction(gi.ActOpts(Label="Init", Icon="update", Tooltip="Initialize everything including network weights, and start over. Also applies current params.", UpdateFunc=UpdtFuncNotRunning), recv, InitCB) tbar.AddAction(gi.ActOpts(Label="Train", Icon="run", Tooltip="Starts the network training, picking up from wherever it may have left off. If not stopped, training will complete the specified number of Runs through the full number of Epochs of training, with testing automatically occuring at the specified interval.", UpdateFunc=UpdtFuncNotRunning), recv, TrainCB) tbar.AddAction(gi.ActOpts(Label="Stop", Icon="stop", Tooltip="Interrupts running. Hitting Train again will pick back up where it left off.", UpdateFunc=UpdtFuncRunning), recv, StopCB) tbar.AddAction(gi.ActOpts(Label="Step Trial", Icon="step-fwd", Tooltip="Advances one training trial at a time.", UpdateFunc=UpdtFuncNotRunning), recv, StepTrialCB) tbar.AddAction(gi.ActOpts(Label="Step Epoch", Icon="fast-fwd", Tooltip="Advances one epoch (complete set of training patterns) at a time.", UpdateFunc=UpdtFuncNotRunning), recv, StepEpochCB) tbar.AddAction(gi.ActOpts(Label="Step Run", Icon="fast-fwd", Tooltip="Advances one full training Run at a time.", UpdateFunc=UpdtFuncNotRunning), recv, StepRunCB) tbar.AddSeparator("test") tbar.AddAction(gi.ActOpts(Label="Test Trial", Icon="step-fwd", Tooltip="Runs the next testing trial.", UpdateFunc=UpdtFuncNotRunning), recv, TestTrialCB) tbar.AddAction(gi.ActOpts(Label="Test Item", Icon="step-fwd", Tooltip="Prompts for a specific input pattern name to run, and runs it in testing mode.", UpdateFunc=UpdtFuncNotRunning), recv, TestItemCB) tbar.AddAction(gi.ActOpts(Label="Test All", Icon="fast-fwd", Tooltip="Tests all of the testing trials.", UpdateFunc=UpdtFuncNotRunning), recv, TestAllCB) tbar.AddSeparator("log") tbar.AddAction(gi.ActOpts(Label="Reset RunLog", Icon="reset", Tooltip="Resets the accumulated log of all Runs, which are tagged with the ParamSet used"), recv, ResetRunLogCB) tbar.AddSeparator("misc") tbar.AddAction(gi.ActOpts(Label="New Seed", Icon="new", Tooltip="Generate a new initial random seed to get different results. By default, Init re-establishes the same initial seed every time."), recv, NewRndSeedCB) tbar.AddAction(gi.ActOpts(Label="README", Icon="file-markdown", Tooltip="Opens your browser on the README file that contains instructions for how to run this model."), recv, ReadmeCB) # main menu appnm = gi.AppName() mmen = win.MainMenu mmen.ConfigMenus(go.Slice_string([appnm, "File", "Edit", "Window"])) amen = gi.Action(win.MainMenu.ChildByName(appnm, 0)) amen.Menu.AddAppMenu(win) emen = gi.Action(win.MainMenu.ChildByName("Edit", 1)) emen.Menu.AddCopyCutPaste(win) win.MainMenuUpdated() vp.UpdateEndNoSig(updt) win.GoStartEventLoop() # TheSim is the overall state for this simulation TheSim = Sim() def main(argv): TheSim.Config() TheSim.ConfigGui() TheSim.Init() main(sys.argv[1:])
en
0.845848
#!/usr/local/bin/pyleabra -i # Copyright (c) 2019, The Emergent Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. # use: # just type file name to run, or: # pyleabra -i <file>.py # hebberr_combo shows how XCal hebbian learning in shallower layers # of a network can aid an error driven learning network to # generalize to unseen combinations of patterns. # this will become Sim later.. # LogPrec is precision for saving float values in logs # note: we cannot use methods for callbacks from Go -- must be separate functions # so below are all the callbacks from the GUI toolbar actions # contains, ignoreCase ############################################ # Enums -- note: must start at 0 for GUI ##################################################### # Sim Sim encapsulates the entire simulation model, and we define all the functionality as methods on this struct. This structure keeps all relevant state information organized and available without having to pass everything around as arguments to methods, and provides the core GUI interface (note the view tags for the fields which provide hints to how things should be displayed). # statistics: note use float64 as that is best for etable.Table # internal state - view:"-" Sets the default set of parameters -- Base is always applied, and others can be optionally selected to apply on top of that Config configures all the elements using the standard functions # allow user override # note: we are not setting epoch max -- do that manually # only set Network params Init restarts the run, and initializes everything, including network weights and resets the epoch log table NewRndSeed gets a new random seed based on current time -- otherwise uses the same random seed for every run Counters returns a string of the current counter state use tabs to achieve a reasonable formatting overall and add a few tabs at the end to allow for expansion.. AlphaCyc runs one alpha-cycle (100 msec, 4 quarters) of processing. External inputs must have already been applied prior to calling, using ApplyExt method on relevant layers (see TrainTrial, TestTrial). If train is true, then learning DWt or WtFmDWt calls are made. Handles netview updating within scope of AlphaCycle # this is essential for GUI responsiveness while running # update prior weight changes at start, so any DWt values remain visible at end # you might want to do this less frequently to achieve a mini-batch update # in which case, move it out to the TrainTrial method where the relevant # counters are being dealt with. # will be updated by quarter ApplyInputs applies input patterns from given envirbonment. It is good practice to have this be a separate method with appropriate # going to the same layers, but good practice and cheap anyway args so that it can be used for various different contexts (training, testing, etc). TrainTrial runs one trial of training using TrainEnv # Key to query counters FIRST because current state is in NEXT epoch # if epoch counter has changed # note: epc is *next* so won't trigger first time # done with training.. # we are done! # note: type must be in place before apply inputs # train # accumulate RunEnd is called at the end of a run -- save weights, record final log, etc here NewRun intializes a new run of the model, using the TrainEnv.Run counter for the new run value InitStats initializes all the statistics, especially important for the cumulative epoch stats -- called at start of new run TrialStats computes the trial-level statistics and adds them to the epoch accumulators if accum is true. Note that we're accumulating stats here on the Sim side so the core algorithm side remains as simple as possible, and doesn't need to worry about different time-scales over which stats could be accumulated etc. You can also aggregate directly from log data, as is done for testing stats # 0.5 = per-unit tolerance -- right side of .5 TrainEpoch runs training trials for remainder of this epoch TrainRun runs training trials for remainder of run Train runs the full training from this point onward Stop tells the sim to stop running Stopped is called when a run method stops running -- updates the IsRunning flag and toolbar SaveWeights saves the network weights -- when called with giv.CallMethod it will auto-prompt for filename TestTrial runs one trial of testing -- always sequentially presented inputs TestItem tests given item which is at given index in test item list TestAll runs through the full set of testing items RunTestAll runs through the full set of testing items, has stop running = false at end -- for gui SetParams sets the params for "Base" and then current ParamSet. If sheet is empty, then it applies all avail sheets (e.g., Network, Sim) otherwise just the named sheet if setMsg = true then we output a message for each param that was set. SetParamsSet sets the params for given params.Set name. If sheet is empty, then it applies all avail sheets (e.g., Network, Sim) otherwise just the named sheet if setMsg = true then we output a message for each param that was set. ValsTsr gets value tensor of given name, creating if not yet made LogTrnEpc adds data from current epoch to the TrnEpcLog table. computes epoch averages prior to logging. # this is triggered by increment so use previous value # number of trials in view # note: essential to use Go version of update when called from another goroutine # order of params: on, fixMin, min, fixMax, max # default plot LogTstTrl adds data from current trial to the TstTrlLog table. # this is triggered by increment so use previous value log always contains number of testing items # note: essential to use Go version of update when called from another goroutine # number in view # order of params: on, fixMin, min, fixMax, max # default plot # ? # note: this shows how to use agg methods to compute summary data from another # data table, instead of incrementing on the Sim # note: essential to use Go version of update when called from another goroutine # order of params: on, fixMin, min, fixMax, max # default plot LogRun adds data from current run to the RunLog table. # this is NOT triggered by increment yet -- use Cur # compute mean over last N epochs for run level # note: essential to use Go version of update when called from another goroutine # order of params: on, fixMin, min, fixMax, max # default plot ConfigGui configures the GoGi gui interface for this simulation, # main menu # TheSim is the overall state for this simulation
1.929104
2
examples/example_mnist_prune.py
kshithijiyer/qkeras
388
6630022
# Copyright 2019 Google LLC # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example of mnist model with pruning. Adapted from TF model optimization example.""" import tempfile import numpy as np import tensorflow.keras.backend as K from tensorflow.keras.datasets import mnist from tensorflow.keras.layers import Activation from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from tensorflow.keras.models import Sequential from tensorflow.keras.models import save_model from tensorflow.keras.utils import to_categorical from qkeras import QActivation from qkeras import QDense from qkeras import QConv2D from qkeras import quantized_bits from qkeras.utils import load_qmodel from qkeras.utils import print_model_sparsity from tensorflow_model_optimization.python.core.sparsity.keras import prune from tensorflow_model_optimization.python.core.sparsity.keras import pruning_callbacks from tensorflow_model_optimization.python.core.sparsity.keras import pruning_schedule batch_size = 128 num_classes = 10 epochs = 12 prune_whole_model = True # Prune whole model or just specified layers def build_model(input_shape): x = x_in = Input(shape=input_shape, name="input") x = QConv2D( 32, (2, 2), strides=(2,2), kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="conv2d_0_m")(x) x = QActivation("quantized_relu(4,0)", name="act0_m")(x) x = QConv2D( 64, (3, 3), strides=(2,2), kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="conv2d_1_m")(x) x = QActivation("quantized_relu(4,0)", name="act1_m")(x) x = QConv2D( 64, (2, 2), strides=(2,2), kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="conv2d_2_m")(x) x = QActivation("quantized_relu(4,0)", name="act2_m")(x) x = Flatten()(x) x = QDense(num_classes, kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="dense")(x) x = Activation("softmax", name="softmax")(x) model = Model(inputs=[x_in], outputs=[x]) return model def build_layerwise_model(input_shape, **pruning_params): return Sequential([ prune.prune_low_magnitude( QConv2D( 32, (2, 2), strides=(2,2), kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="conv2d_0_m"), input_shape=input_shape, **pruning_params), QActivation("quantized_relu(4,0)", name="act0_m"), prune.prune_low_magnitude( QConv2D( 64, (3, 3), strides=(2,2), kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="conv2d_1_m"), **pruning_params), QActivation("quantized_relu(4,0)", name="act1_m"), prune.prune_low_magnitude( QConv2D( 64, (2, 2), strides=(2,2), kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="conv2d_2_m"), **pruning_params), QActivation("quantized_relu(4,0)", name="act2_m"), Flatten(), prune.prune_low_magnitude( QDense( num_classes, kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="dense"), **pruning_params), Activation("softmax", name="softmax") ]) def train_and_save(model, x_train, y_train, x_test, y_test): model.compile( loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) # Print the model summary. model.summary() # Add a pruning step callback to peg the pruning step to the optimizer's # step. Also add a callback to add pruning summaries to tensorboard callbacks = [ pruning_callbacks.UpdatePruningStep(), #pruning_callbacks.PruningSummaries(log_dir=tempfile.mkdtemp()) pruning_callbacks.PruningSummaries(log_dir="/tmp/mnist_prune") ] model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, callbacks=callbacks, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print("Test loss:", score[0]) print("Test accuracy:", score[1]) print_model_sparsity(model) # Export and import the model. Check that accuracy persists. _, keras_file = tempfile.mkstemp(".h5") print("Saving model to: ", keras_file) save_model(model, keras_file) print("Reloading model") with prune.prune_scope(): loaded_model = load_qmodel(keras_file) score = loaded_model.evaluate(x_test, y_test, verbose=0) print("Test loss:", score[0]) print("Test accuracy:", score[1]) def main(): # input image dimensions img_rows, img_cols = 28, 28 # the data, shuffled and split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == "channels_first": x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype("float32") x_test = x_test.astype("float32") x_train /= 255 x_test /= 255 print("x_train shape:", x_train.shape) print(x_train.shape[0], "train samples") print(x_test.shape[0], "test samples") # convert class vectors to binary class matrices y_train = to_categorical(y_train, num_classes) y_test = to_categorical(y_test, num_classes) pruning_params = { "pruning_schedule": pruning_schedule.ConstantSparsity(0.75, begin_step=2000, frequency=100) } if prune_whole_model: model = build_model(input_shape) model = prune.prune_low_magnitude(model, **pruning_params) else: model = build_layerwise_model(input_shape, **pruning_params) train_and_save(model, x_train, y_train, x_test, y_test) if __name__ == "__main__": main()
# Copyright 2019 Google LLC # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example of mnist model with pruning. Adapted from TF model optimization example.""" import tempfile import numpy as np import tensorflow.keras.backend as K from tensorflow.keras.datasets import mnist from tensorflow.keras.layers import Activation from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from tensorflow.keras.models import Sequential from tensorflow.keras.models import save_model from tensorflow.keras.utils import to_categorical from qkeras import QActivation from qkeras import QDense from qkeras import QConv2D from qkeras import quantized_bits from qkeras.utils import load_qmodel from qkeras.utils import print_model_sparsity from tensorflow_model_optimization.python.core.sparsity.keras import prune from tensorflow_model_optimization.python.core.sparsity.keras import pruning_callbacks from tensorflow_model_optimization.python.core.sparsity.keras import pruning_schedule batch_size = 128 num_classes = 10 epochs = 12 prune_whole_model = True # Prune whole model or just specified layers def build_model(input_shape): x = x_in = Input(shape=input_shape, name="input") x = QConv2D( 32, (2, 2), strides=(2,2), kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="conv2d_0_m")(x) x = QActivation("quantized_relu(4,0)", name="act0_m")(x) x = QConv2D( 64, (3, 3), strides=(2,2), kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="conv2d_1_m")(x) x = QActivation("quantized_relu(4,0)", name="act1_m")(x) x = QConv2D( 64, (2, 2), strides=(2,2), kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="conv2d_2_m")(x) x = QActivation("quantized_relu(4,0)", name="act2_m")(x) x = Flatten()(x) x = QDense(num_classes, kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="dense")(x) x = Activation("softmax", name="softmax")(x) model = Model(inputs=[x_in], outputs=[x]) return model def build_layerwise_model(input_shape, **pruning_params): return Sequential([ prune.prune_low_magnitude( QConv2D( 32, (2, 2), strides=(2,2), kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="conv2d_0_m"), input_shape=input_shape, **pruning_params), QActivation("quantized_relu(4,0)", name="act0_m"), prune.prune_low_magnitude( QConv2D( 64, (3, 3), strides=(2,2), kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="conv2d_1_m"), **pruning_params), QActivation("quantized_relu(4,0)", name="act1_m"), prune.prune_low_magnitude( QConv2D( 64, (2, 2), strides=(2,2), kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="conv2d_2_m"), **pruning_params), QActivation("quantized_relu(4,0)", name="act2_m"), Flatten(), prune.prune_low_magnitude( QDense( num_classes, kernel_quantizer=quantized_bits(4,0,1), bias_quantizer=quantized_bits(4,0,1), name="dense"), **pruning_params), Activation("softmax", name="softmax") ]) def train_and_save(model, x_train, y_train, x_test, y_test): model.compile( loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) # Print the model summary. model.summary() # Add a pruning step callback to peg the pruning step to the optimizer's # step. Also add a callback to add pruning summaries to tensorboard callbacks = [ pruning_callbacks.UpdatePruningStep(), #pruning_callbacks.PruningSummaries(log_dir=tempfile.mkdtemp()) pruning_callbacks.PruningSummaries(log_dir="/tmp/mnist_prune") ] model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, callbacks=callbacks, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print("Test loss:", score[0]) print("Test accuracy:", score[1]) print_model_sparsity(model) # Export and import the model. Check that accuracy persists. _, keras_file = tempfile.mkstemp(".h5") print("Saving model to: ", keras_file) save_model(model, keras_file) print("Reloading model") with prune.prune_scope(): loaded_model = load_qmodel(keras_file) score = loaded_model.evaluate(x_test, y_test, verbose=0) print("Test loss:", score[0]) print("Test accuracy:", score[1]) def main(): # input image dimensions img_rows, img_cols = 28, 28 # the data, shuffled and split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == "channels_first": x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype("float32") x_test = x_test.astype("float32") x_train /= 255 x_test /= 255 print("x_train shape:", x_train.shape) print(x_train.shape[0], "train samples") print(x_test.shape[0], "test samples") # convert class vectors to binary class matrices y_train = to_categorical(y_train, num_classes) y_test = to_categorical(y_test, num_classes) pruning_params = { "pruning_schedule": pruning_schedule.ConstantSparsity(0.75, begin_step=2000, frequency=100) } if prune_whole_model: model = build_model(input_shape) model = prune.prune_low_magnitude(model, **pruning_params) else: model = build_layerwise_model(input_shape, **pruning_params) train_and_save(model, x_train, y_train, x_test, y_test) if __name__ == "__main__": main()
en
0.777163
# Copyright 2019 Google LLC # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== Example of mnist model with pruning. Adapted from TF model optimization example. # Prune whole model or just specified layers # Print the model summary. # Add a pruning step callback to peg the pruning step to the optimizer's # step. Also add a callback to add pruning summaries to tensorboard #pruning_callbacks.PruningSummaries(log_dir=tempfile.mkdtemp()) # Export and import the model. Check that accuracy persists. # input image dimensions # the data, shuffled and split between train and test sets # convert class vectors to binary class matrices
2.073782
2
model/evaluator.py
Gofinge/HF
7
6630023
<reponame>Gofinge/HF from .config import * class Evaluator: def __init__(self): self._acc = 3 pass def evaluate_trend_simple(self, y_true, y_pred): size = len(y_true) correct = 0 all = 0 for i in range(size): if y_true[i] * y_pred[i] > 0 and y_true[i] != 0: correct += 1 all += 1 elif y_true[i] != 0: all += 1 return round(correct / all, self._acc) def evaluate_trend(self, y_true, y_pred): size = len(y_true) correct_rise_or_decline = 0 correct_stay = 0 stay = 0 for i in range(size): if abs(y_true[i]) < eps: stay += 1 for i in range(size): if abs(y_pred[i]) < eps: if abs(y_true[i]) < eps: correct_stay += 1 else: pass # ้ข„ๆต‹ไปทๆ ผไธๅ˜๏ผŒไฝ†ๅฎž้™…ไปทๆ ผๅ˜ๅŒ–๏ผŒ้ข„ๆต‹้”™่ฏฏ else: if abs(y_true[i]) < eps: pass # ้ข„ๆต‹ไปทๆ ผๆ”นๅ˜๏ผŒไฝ†ๅฎž้™…ไปทๆ ผไธๅ˜๏ผŒ้ข„ๆต‹้”™่ฏฏ else: if y_pred[i] * y_true[i] > 0: correct_rise_or_decline += 1 # ้ข„ๆต‹ไปทๆ ผๅ˜ๅŒ–่ถ‹ๅŠฟๅ’Œๅฎž้™…ไปทๆ ผๅ˜ๅŒ–่ถ‹ๅŠฟ็›ธๅŒ else: pass # ้ข„ๆต‹ไปทๆ ผๅ˜ๅŒ–่ถ‹ๅŠฟๅ’Œๅฎž้™…ไปทๆ ผๅ˜ๅŒ–่ถ‹ๅŠฟ็›ธๅ correct = correct_stay + correct_rise_or_decline if stay == 0: correct_stay = 0 stay = 1 return round(correct / size, self._acc), \ round(correct_stay / stay, self._acc), \ round(correct_rise_or_decline / (size - stay), self._acc) def evaluate_trend_2(self, y_true, y_pred): size = len(y_true) correct = 0 for i in range(size): if abs(y_pred[i]) < eps: if abs(y_true[i]) < eps: correct += 1 else: j = i try: while abs(y_true[j]) < eps: j += 1 if y_pred[i] * y_true[j] > 0: correct += 1 except: pass return round(correct / size, self._acc) def evaluate_trend_with_delay(self, y_true, y_pred): size = len(y_true) correct = 0 for i in range(size): j = i try: while abs(y_true[j]) < eps: j += 1 if y_pred[i] * y_true[j] > 0: correct += 1 except IndexError: pass return round(correct / size, self._acc) def evaluate_divided_trend(self, y_true, y_pred, part_num=5): size = len(y_true) part_size = size // part_num acc_list = [] for i in range(part_num): part_y_true = y_true[i * part_size:(i + 1) * part_size] part_y_pred = y_pred[i * part_size:(i + 1) * part_size] acc_list.append(self.evaluate_trend_simple(part_y_true, part_y_pred)) return acc_list def evaluate_one_hot_trend(self, y_true, y_pred): size = len(y_true) correct = 0 all = 0 for i in range(size): v1, v2 = list(y_true[i]), list(y_pred[i]) try: if v1.index(1) == v2.index(1): correct += 1 all += 1 except ValueError: print(v1, v2) print(correct, all) return round(correct / all, self._acc) def evaluate_divided_one_hot_trend(self, y_true, y_pred, part_num=10): size = len(y_true) part_size = size // part_num acc_list = [] for i in range(part_num): part_y_true = y_true[i * part_size:(i + 1) * part_size] part_y_pred = y_pred[i * part_size:(i + 1) * part_size] acc_list.append(self.evaluate_one_hot_trend(part_y_true, part_y_pred)) return acc_list def evaluate_mean_and_variance(self, true_mean_price, y_pred): pred_mean, pred_std = y_pred[0], y_pred[1] all = len(pred_mean) correct = 0 for i in range(all): if abs(true_mean_price[i] - pred_mean[i]) < pred_std[i] * z_95: correct += 1 return round(correct / all, self._acc)
from .config import * class Evaluator: def __init__(self): self._acc = 3 pass def evaluate_trend_simple(self, y_true, y_pred): size = len(y_true) correct = 0 all = 0 for i in range(size): if y_true[i] * y_pred[i] > 0 and y_true[i] != 0: correct += 1 all += 1 elif y_true[i] != 0: all += 1 return round(correct / all, self._acc) def evaluate_trend(self, y_true, y_pred): size = len(y_true) correct_rise_or_decline = 0 correct_stay = 0 stay = 0 for i in range(size): if abs(y_true[i]) < eps: stay += 1 for i in range(size): if abs(y_pred[i]) < eps: if abs(y_true[i]) < eps: correct_stay += 1 else: pass # ้ข„ๆต‹ไปทๆ ผไธๅ˜๏ผŒไฝ†ๅฎž้™…ไปทๆ ผๅ˜ๅŒ–๏ผŒ้ข„ๆต‹้”™่ฏฏ else: if abs(y_true[i]) < eps: pass # ้ข„ๆต‹ไปทๆ ผๆ”นๅ˜๏ผŒไฝ†ๅฎž้™…ไปทๆ ผไธๅ˜๏ผŒ้ข„ๆต‹้”™่ฏฏ else: if y_pred[i] * y_true[i] > 0: correct_rise_or_decline += 1 # ้ข„ๆต‹ไปทๆ ผๅ˜ๅŒ–่ถ‹ๅŠฟๅ’Œๅฎž้™…ไปทๆ ผๅ˜ๅŒ–่ถ‹ๅŠฟ็›ธๅŒ else: pass # ้ข„ๆต‹ไปทๆ ผๅ˜ๅŒ–่ถ‹ๅŠฟๅ’Œๅฎž้™…ไปทๆ ผๅ˜ๅŒ–่ถ‹ๅŠฟ็›ธๅ correct = correct_stay + correct_rise_or_decline if stay == 0: correct_stay = 0 stay = 1 return round(correct / size, self._acc), \ round(correct_stay / stay, self._acc), \ round(correct_rise_or_decline / (size - stay), self._acc) def evaluate_trend_2(self, y_true, y_pred): size = len(y_true) correct = 0 for i in range(size): if abs(y_pred[i]) < eps: if abs(y_true[i]) < eps: correct += 1 else: j = i try: while abs(y_true[j]) < eps: j += 1 if y_pred[i] * y_true[j] > 0: correct += 1 except: pass return round(correct / size, self._acc) def evaluate_trend_with_delay(self, y_true, y_pred): size = len(y_true) correct = 0 for i in range(size): j = i try: while abs(y_true[j]) < eps: j += 1 if y_pred[i] * y_true[j] > 0: correct += 1 except IndexError: pass return round(correct / size, self._acc) def evaluate_divided_trend(self, y_true, y_pred, part_num=5): size = len(y_true) part_size = size // part_num acc_list = [] for i in range(part_num): part_y_true = y_true[i * part_size:(i + 1) * part_size] part_y_pred = y_pred[i * part_size:(i + 1) * part_size] acc_list.append(self.evaluate_trend_simple(part_y_true, part_y_pred)) return acc_list def evaluate_one_hot_trend(self, y_true, y_pred): size = len(y_true) correct = 0 all = 0 for i in range(size): v1, v2 = list(y_true[i]), list(y_pred[i]) try: if v1.index(1) == v2.index(1): correct += 1 all += 1 except ValueError: print(v1, v2) print(correct, all) return round(correct / all, self._acc) def evaluate_divided_one_hot_trend(self, y_true, y_pred, part_num=10): size = len(y_true) part_size = size // part_num acc_list = [] for i in range(part_num): part_y_true = y_true[i * part_size:(i + 1) * part_size] part_y_pred = y_pred[i * part_size:(i + 1) * part_size] acc_list.append(self.evaluate_one_hot_trend(part_y_true, part_y_pred)) return acc_list def evaluate_mean_and_variance(self, true_mean_price, y_pred): pred_mean, pred_std = y_pred[0], y_pred[1] all = len(pred_mean) correct = 0 for i in range(all): if abs(true_mean_price[i] - pred_mean[i]) < pred_std[i] * z_95: correct += 1 return round(correct / all, self._acc)
zh
0.954926
# ้ข„ๆต‹ไปทๆ ผไธๅ˜๏ผŒไฝ†ๅฎž้™…ไปทๆ ผๅ˜ๅŒ–๏ผŒ้ข„ๆต‹้”™่ฏฏ # ้ข„ๆต‹ไปทๆ ผๆ”นๅ˜๏ผŒไฝ†ๅฎž้™…ไปทๆ ผไธๅ˜๏ผŒ้ข„ๆต‹้”™่ฏฏ # ้ข„ๆต‹ไปทๆ ผๅ˜ๅŒ–่ถ‹ๅŠฟๅ’Œๅฎž้™…ไปทๆ ผๅ˜ๅŒ–่ถ‹ๅŠฟ็›ธๅŒ # ้ข„ๆต‹ไปทๆ ผๅ˜ๅŒ–่ถ‹ๅŠฟๅ’Œๅฎž้™…ไปทๆ ผๅ˜ๅŒ–่ถ‹ๅŠฟ็›ธๅ
3.187423
3
clu/scripts/legacy/xdg-runtime.py
fish2000/CLU
1
6630024
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import os, sys SSID = os.getenv('SECURITYSESSIONID') from clu.constants.consts import (DEBUG, HOSTNAME, XDG_RUNTIME_BASE, XDG_RUNTIME_DIR, XDG_RUNTIME_MODE, TEXTMATE) from clu.constants.exceptions import FilesystemError from clu.fs.filesystem import rm_rf, Directory from clu.predicates import attr from clu.repl.ansi import Text, print_ansi from clu.sanitizer import utf8_decode BASEDIR = XDG_RUNTIME_BASE SYMLINK = XDG_RUNTIME_DIR CURRENT = os.path.split(SYMLINK)[1] def name_xdg_runtime_dir(namebase=SSID): return f'{HOSTNAME.casefold()}-{namebase.casefold()}' def make_xdg_runtime_dir(directory, mode=XDG_RUNTIME_MODE): runtime_dir = directory.subdirectory(name_xdg_runtime_dir()) if runtime_dir.exists: rm_rf(runtime_dir) runtime_dir.makedirs(mode=mode) return runtime_dir def enumerate_dirs(directory): return (pth for pth in iter(directory) \ if pth.startswith(f"{HOSTNAME.casefold()}-")) def create_symlink(directory, runtime_dir): if CURRENT in directory: raise FilesystemError(f"Symlink โ€œ{SYMLINK}โ€ already exists") runtime_dir.symlink(directory.subpath(CURRENT)) return CURRENT in directory def remove_symlink(directory): if CURRENT in directory: os.unlink(directory.subpath(CURRENT)) return CURRENT not in directory def remove_existing_dirs(directory): if len(directory) > 0: if DEBUG: return remove_symlink(directory) else: return all(rm_rf(pth) for pth in enumerate_dirs(directory)) \ and remove_symlink(directory) return True def print_launchd_plist(): import plistlib plist_dumps = attr(plistlib, 'dumps', 'writePlistToString') plist_dict = dict(Label="ost.xdg-runtime.script", Program=sys.executable, ProgramArguments=[__file__], RunAtLoad=True, KeepAlive=False) print_ansi(utf8_decode(plist_dumps(plist_dict, sort_keys=False)), color=(TEXTMATE and Text.NOTHING \ or Text.LIGHTCYAN_EX)) def create_xdg_runtime_dir(): """ Create the XDG_RUNTIME_DIR directory """ basedir = Directory(BASEDIR) # First, clear existing directories: if not remove_existing_dirs(basedir): raise FilesystemError(f"Couldnโ€™t clear subdirs from {basedir!s}") # Next, make a new runtime directory: runtime_dir = make_xdg_runtime_dir(basedir) if not runtime_dir.exists: raise FilesystemError(f"Couldnโ€™t create XDG_RUNTIME_DIR {runtime_dir!s}") # Next, symlink the new directory: if not create_symlink(basedir, runtime_dir): raise FilesystemError(f"Couldnโ€™t symlink XDG_RUNTIME_DIR {SYMLINK}" % SYMLINK) return SYMLINK def main(): """ Main entry point for xdg-runtime.py script """ pass if __name__ == '__main__': print_launchd_plist()
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import os, sys SSID = os.getenv('SECURITYSESSIONID') from clu.constants.consts import (DEBUG, HOSTNAME, XDG_RUNTIME_BASE, XDG_RUNTIME_DIR, XDG_RUNTIME_MODE, TEXTMATE) from clu.constants.exceptions import FilesystemError from clu.fs.filesystem import rm_rf, Directory from clu.predicates import attr from clu.repl.ansi import Text, print_ansi from clu.sanitizer import utf8_decode BASEDIR = XDG_RUNTIME_BASE SYMLINK = XDG_RUNTIME_DIR CURRENT = os.path.split(SYMLINK)[1] def name_xdg_runtime_dir(namebase=SSID): return f'{HOSTNAME.casefold()}-{namebase.casefold()}' def make_xdg_runtime_dir(directory, mode=XDG_RUNTIME_MODE): runtime_dir = directory.subdirectory(name_xdg_runtime_dir()) if runtime_dir.exists: rm_rf(runtime_dir) runtime_dir.makedirs(mode=mode) return runtime_dir def enumerate_dirs(directory): return (pth for pth in iter(directory) \ if pth.startswith(f"{HOSTNAME.casefold()}-")) def create_symlink(directory, runtime_dir): if CURRENT in directory: raise FilesystemError(f"Symlink โ€œ{SYMLINK}โ€ already exists") runtime_dir.symlink(directory.subpath(CURRENT)) return CURRENT in directory def remove_symlink(directory): if CURRENT in directory: os.unlink(directory.subpath(CURRENT)) return CURRENT not in directory def remove_existing_dirs(directory): if len(directory) > 0: if DEBUG: return remove_symlink(directory) else: return all(rm_rf(pth) for pth in enumerate_dirs(directory)) \ and remove_symlink(directory) return True def print_launchd_plist(): import plistlib plist_dumps = attr(plistlib, 'dumps', 'writePlistToString') plist_dict = dict(Label="ost.xdg-runtime.script", Program=sys.executable, ProgramArguments=[__file__], RunAtLoad=True, KeepAlive=False) print_ansi(utf8_decode(plist_dumps(plist_dict, sort_keys=False)), color=(TEXTMATE and Text.NOTHING \ or Text.LIGHTCYAN_EX)) def create_xdg_runtime_dir(): """ Create the XDG_RUNTIME_DIR directory """ basedir = Directory(BASEDIR) # First, clear existing directories: if not remove_existing_dirs(basedir): raise FilesystemError(f"Couldnโ€™t clear subdirs from {basedir!s}") # Next, make a new runtime directory: runtime_dir = make_xdg_runtime_dir(basedir) if not runtime_dir.exists: raise FilesystemError(f"Couldnโ€™t create XDG_RUNTIME_DIR {runtime_dir!s}") # Next, symlink the new directory: if not create_symlink(basedir, runtime_dir): raise FilesystemError(f"Couldnโ€™t symlink XDG_RUNTIME_DIR {SYMLINK}" % SYMLINK) return SYMLINK def main(): """ Main entry point for xdg-runtime.py script """ pass if __name__ == '__main__': print_launchd_plist()
en
0.616878
#!/usr/bin/env python # -*- coding: utf-8 -*- Create the XDG_RUNTIME_DIR directory # First, clear existing directories: # Next, make a new runtime directory: # Next, symlink the new directory: Main entry point for xdg-runtime.py script
2.158765
2
dashboard/bq_export/bq_export/utils.py
Murka96/catapult
0
6630025
<reponame>Murka96/catapult # Copyright (c) 2020 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import apache_beam as beam ## Copy of dashboard.common.utils.TestPath for google.cloud.datastore.key.Key ## rather than ndb.Key. def TestPath(key): if key.kind == 'Test': # The Test key looks like ('Master', 'name', 'Bot', 'name', 'Test' 'name'..) # Pull out every other entry and join with '/' to form the path. return '/'.join(key.flat_path[1::2]) assert key.kind == 'TestMetadata' or key.kind == 'TestContainer' return key.name def FloatHack(f): """Workaround BQ streaming inserts not supporting inf and NaN values. Somewhere between Beam and the BigQuery streaming inserts API infinities and NaNs break if passed as is, apparently because JSON cannot represent these values natively. Fortunately BigQuery appears happy to cast string values into floats, so we just have to intercept these values and substitute strings. Nones, and floats other than inf and NaN, are returned unchanged. """ if f is None: return None if math.isinf(f): return 'inf' if f > 0 else '-inf' if math.isnan(f): return 'NaN' return f def PrintCounters(pipeline_result): """Print pipeline counters to stdout. Useful for seeing metrics when running pipelines directly rather than in Dataflow. """ try: metrics = pipeline_result.metrics().query() except ValueError: # Don't crash if there are no metrics, e.g. if we were run with # --template_location, which stages a job template but does not run the job. return for counter in metrics['counters']: print('Counter: ' + repr(counter)) print(' = ' + str(counter.result)) def IsoDateToYYYYMMDD(iso_date_str): """Convert ISO-formatted dates to a YYYYMMDD string.""" return iso_date_str[:4] + iso_date_str[5:7] + iso_date_str[8:10] def _ElementToYYYYMMDD(element): return IsoDateToYYYYMMDD(element['timestamp']) def _GetPartitionNameFn(table_name, element_to_yyyymmdd_fn): def TableWithPartitionSuffix(element): # Partition names are the table name with a $yyyymmdd suffix, e.g. # 'my_dataset.my_table$20200123'. So extract the suffix from the ISO-format # timestamp value in this element. return table_name + '$' + element_to_yyyymmdd_fn(element) return TableWithPartitionSuffix def WriteToPartitionedBigQuery(table_name, schema, element_to_yyyymmdd_fn=_ElementToYYYYMMDD, **kwargs): """Return a WriteToBigQuery configured to load into a day-partitioned table. This is useful for idempotent writing of whole days of data. Instead of writing to the table, this writes to the individual partitions instead (effectively treating each partition as an independent table). Because the table is partitioned by day, this allows us to use the WRITE_TRUNCATE option to regenerate the specified days without deleting the rest of the table. So instead of passing a table name string as the destination for WriteToBigQuery, we pass a function that dynamically calculates the partition name. Because we are loading data into the partition directly we must *not* set 'timePartitioning' in additional_bq_parameters, otherwise the load job will fail with a kind of schema mismatch. """ return beam.io.WriteToBigQuery( _GetPartitionNameFn(table_name, element_to_yyyymmdd_fn), schema=schema, method=beam.io.WriteToBigQuery.Method.FILE_LOADS, write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE, create_disposition=beam.io.BigQueryDisposition.CREATE_NEVER, **kwargs)
# Copyright (c) 2020 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import apache_beam as beam ## Copy of dashboard.common.utils.TestPath for google.cloud.datastore.key.Key ## rather than ndb.Key. def TestPath(key): if key.kind == 'Test': # The Test key looks like ('Master', 'name', 'Bot', 'name', 'Test' 'name'..) # Pull out every other entry and join with '/' to form the path. return '/'.join(key.flat_path[1::2]) assert key.kind == 'TestMetadata' or key.kind == 'TestContainer' return key.name def FloatHack(f): """Workaround BQ streaming inserts not supporting inf and NaN values. Somewhere between Beam and the BigQuery streaming inserts API infinities and NaNs break if passed as is, apparently because JSON cannot represent these values natively. Fortunately BigQuery appears happy to cast string values into floats, so we just have to intercept these values and substitute strings. Nones, and floats other than inf and NaN, are returned unchanged. """ if f is None: return None if math.isinf(f): return 'inf' if f > 0 else '-inf' if math.isnan(f): return 'NaN' return f def PrintCounters(pipeline_result): """Print pipeline counters to stdout. Useful for seeing metrics when running pipelines directly rather than in Dataflow. """ try: metrics = pipeline_result.metrics().query() except ValueError: # Don't crash if there are no metrics, e.g. if we were run with # --template_location, which stages a job template but does not run the job. return for counter in metrics['counters']: print('Counter: ' + repr(counter)) print(' = ' + str(counter.result)) def IsoDateToYYYYMMDD(iso_date_str): """Convert ISO-formatted dates to a YYYYMMDD string.""" return iso_date_str[:4] + iso_date_str[5:7] + iso_date_str[8:10] def _ElementToYYYYMMDD(element): return IsoDateToYYYYMMDD(element['timestamp']) def _GetPartitionNameFn(table_name, element_to_yyyymmdd_fn): def TableWithPartitionSuffix(element): # Partition names are the table name with a $yyyymmdd suffix, e.g. # 'my_dataset.my_table$20200123'. So extract the suffix from the ISO-format # timestamp value in this element. return table_name + '$' + element_to_yyyymmdd_fn(element) return TableWithPartitionSuffix def WriteToPartitionedBigQuery(table_name, schema, element_to_yyyymmdd_fn=_ElementToYYYYMMDD, **kwargs): """Return a WriteToBigQuery configured to load into a day-partitioned table. This is useful for idempotent writing of whole days of data. Instead of writing to the table, this writes to the individual partitions instead (effectively treating each partition as an independent table). Because the table is partitioned by day, this allows us to use the WRITE_TRUNCATE option to regenerate the specified days without deleting the rest of the table. So instead of passing a table name string as the destination for WriteToBigQuery, we pass a function that dynamically calculates the partition name. Because we are loading data into the partition directly we must *not* set 'timePartitioning' in additional_bq_parameters, otherwise the load job will fail with a kind of schema mismatch. """ return beam.io.WriteToBigQuery( _GetPartitionNameFn(table_name, element_to_yyyymmdd_fn), schema=schema, method=beam.io.WriteToBigQuery.Method.FILE_LOADS, write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE, create_disposition=beam.io.BigQueryDisposition.CREATE_NEVER, **kwargs)
en
0.805071
# Copyright (c) 2020 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. ## Copy of dashboard.common.utils.TestPath for google.cloud.datastore.key.Key ## rather than ndb.Key. # The Test key looks like ('Master', 'name', 'Bot', 'name', 'Test' 'name'..) # Pull out every other entry and join with '/' to form the path. Workaround BQ streaming inserts not supporting inf and NaN values. Somewhere between Beam and the BigQuery streaming inserts API infinities and NaNs break if passed as is, apparently because JSON cannot represent these values natively. Fortunately BigQuery appears happy to cast string values into floats, so we just have to intercept these values and substitute strings. Nones, and floats other than inf and NaN, are returned unchanged. Print pipeline counters to stdout. Useful for seeing metrics when running pipelines directly rather than in Dataflow. # Don't crash if there are no metrics, e.g. if we were run with # --template_location, which stages a job template but does not run the job. Convert ISO-formatted dates to a YYYYMMDD string. # Partition names are the table name with a $yyyymmdd suffix, e.g. # 'my_dataset.my_table$20200123'. So extract the suffix from the ISO-format # timestamp value in this element. Return a WriteToBigQuery configured to load into a day-partitioned table. This is useful for idempotent writing of whole days of data. Instead of writing to the table, this writes to the individual partitions instead (effectively treating each partition as an independent table). Because the table is partitioned by day, this allows us to use the WRITE_TRUNCATE option to regenerate the specified days without deleting the rest of the table. So instead of passing a table name string as the destination for WriteToBigQuery, we pass a function that dynamically calculates the partition name. Because we are loading data into the partition directly we must *not* set 'timePartitioning' in additional_bq_parameters, otherwise the load job will fail with a kind of schema mismatch.
2.001976
2
gigfinder/shpwriter.py
TobiasRosskopf/gigfinder
0
6630026
#! python3.8 # -*- coding: utf-8 -*- # File name: shpwriter.py # Author: <NAME> # Email: <EMAIL> # Created: 27.11.2019 # Modified: 27.11.2019 """ TODO: Module's docstring """ # Standard imports # --- # Third party imports import shapefile def lat_lng_to_shp(list_lat_lng): """TODO: Docstring""" with shapefile.Writer('out') as w: w.field('NR', 'N') w.field('LAT', 'F', decimal=10) w.field('LNG', 'F', decimal=10) nr = 0 for (lat, lng) in list_lat_lng: nr += 1 # print("{0:.6f}, {1:.6f}".format(lat, lng)) w.point(lng, lat) w.record(nr, lat, lng)
#! python3.8 # -*- coding: utf-8 -*- # File name: shpwriter.py # Author: <NAME> # Email: <EMAIL> # Created: 27.11.2019 # Modified: 27.11.2019 """ TODO: Module's docstring """ # Standard imports # --- # Third party imports import shapefile def lat_lng_to_shp(list_lat_lng): """TODO: Docstring""" with shapefile.Writer('out') as w: w.field('NR', 'N') w.field('LAT', 'F', decimal=10) w.field('LNG', 'F', decimal=10) nr = 0 for (lat, lng) in list_lat_lng: nr += 1 # print("{0:.6f}, {1:.6f}".format(lat, lng)) w.point(lng, lat) w.record(nr, lat, lng)
en
0.422899
#! python3.8 # -*- coding: utf-8 -*- # File name: shpwriter.py # Author: <NAME> # Email: <EMAIL> # Created: 27.11.2019 # Modified: 27.11.2019 TODO: Module's docstring # Standard imports # --- # Third party imports TODO: Docstring # print("{0:.6f}, {1:.6f}".format(lat, lng))
3.328034
3
infrastructure/logger.py
Axerovor/CS285_Homework_ImitationLearning_hw1
0
6630027
<reponame>Axerovor/CS285_Homework_ImitationLearning_hw1<filename>infrastructure/logger.py import os import torch from torch.utils.tensorboard import SummaryWriter import numpy as np class Logger: def __init__(self, log_dir, n_logged_samples=10, summary_writer=None): self._log_dir = log_dir print('########################') print('logging outputs to ', log_dir) print('########################') self._n_logged_samples = n_logged_samples self._summ_writer = SummaryWriter(log_dir, flush_secs=1, max_queue=1) def log_scalar(self, scalar, name, step_): self._summ_writer.add_scalar('{}'.format(name), scalar, step_) def log_scalars(self, scalar_dict, group_name, step, phase): """Will log all scalars in the same plot.""" self._summ_writer.add_scalars('{}_{}'.format(group_name, phase), scalar_dict, step) def log_image(self, image, name, step): assert (len(image.shape) == 3) # [C, H, W] self._summ_writer.add_image('{}'.format(name), image, step) def log_video(self, video_frames, name, step, fps=10): assert len(video_frames.shape) == 5, "Need [N, T, C, H, W] input tensor for video logging!" self._summ_writer.add_video('{}'.format(name), video_frames, step, fps=fps) def log_paths_as_videos(self, paths, step, max_videos_to_save=2, fps=10, video_title='video'): # reshape the rollouts videos = [np.transpose(p['image_obs'], [0, 3, 1, 2]) for p in paths] # max rollout length max_videos_to_save = np.min([max_videos_to_save, len(videos)]) max_length = videos[0].shape[0] for i in range(max_videos_to_save): if videos[i].shape[0] > max_length: max_length = videos[i].shape[0] # pad rollouts to all be same length for i in range(max_videos_to_save): if videos[i].shape[0] < max_length: padding = np.tile([videos[i][-1]], (max_length - videos[i].shape[0], 1, 1, 1)) videos[i] = np.concatenate([videos[i], padding], 0) # log videos to tensorboard event file print("Logging videos") videos = np.stack(videos[:max_videos_to_save], 0) self.log_video(videos, video_title, step, fps=fps) def log_figures(self, figure, name, step, phase): """figure: matplotlib.pyplot figure handle""" assert figure.shape[0] > 0, "Figure logging requires input shape [batch x figures]!" self._summ_writer.add_figure('{}_{}'.format(name, phase), figure, step) def log_figure(self, figure, name, step, phase): """figure: matplotlib.pyplot figure handle""" self._summ_writer.add_figure('{}_{}'.format(name, phase), figure, step) def log_graph(self, array, name, step, phase): """figure: matplotlib.pyplot figure handle""" im = plot_graph(array) self._summ_writer.add_image('{}_{}'.format(name, phase), im, step) def dump_scalars(self, log_path=None): log_path = os.path.join(self._log_dir, "scalar_data.json") if log_path is None else log_path self._summ_writer.export_scalars_to_json(log_path) def flush(self): self._summ_writer.flush()
import os import torch from torch.utils.tensorboard import SummaryWriter import numpy as np class Logger: def __init__(self, log_dir, n_logged_samples=10, summary_writer=None): self._log_dir = log_dir print('########################') print('logging outputs to ', log_dir) print('########################') self._n_logged_samples = n_logged_samples self._summ_writer = SummaryWriter(log_dir, flush_secs=1, max_queue=1) def log_scalar(self, scalar, name, step_): self._summ_writer.add_scalar('{}'.format(name), scalar, step_) def log_scalars(self, scalar_dict, group_name, step, phase): """Will log all scalars in the same plot.""" self._summ_writer.add_scalars('{}_{}'.format(group_name, phase), scalar_dict, step) def log_image(self, image, name, step): assert (len(image.shape) == 3) # [C, H, W] self._summ_writer.add_image('{}'.format(name), image, step) def log_video(self, video_frames, name, step, fps=10): assert len(video_frames.shape) == 5, "Need [N, T, C, H, W] input tensor for video logging!" self._summ_writer.add_video('{}'.format(name), video_frames, step, fps=fps) def log_paths_as_videos(self, paths, step, max_videos_to_save=2, fps=10, video_title='video'): # reshape the rollouts videos = [np.transpose(p['image_obs'], [0, 3, 1, 2]) for p in paths] # max rollout length max_videos_to_save = np.min([max_videos_to_save, len(videos)]) max_length = videos[0].shape[0] for i in range(max_videos_to_save): if videos[i].shape[0] > max_length: max_length = videos[i].shape[0] # pad rollouts to all be same length for i in range(max_videos_to_save): if videos[i].shape[0] < max_length: padding = np.tile([videos[i][-1]], (max_length - videos[i].shape[0], 1, 1, 1)) videos[i] = np.concatenate([videos[i], padding], 0) # log videos to tensorboard event file print("Logging videos") videos = np.stack(videos[:max_videos_to_save], 0) self.log_video(videos, video_title, step, fps=fps) def log_figures(self, figure, name, step, phase): """figure: matplotlib.pyplot figure handle""" assert figure.shape[0] > 0, "Figure logging requires input shape [batch x figures]!" self._summ_writer.add_figure('{}_{}'.format(name, phase), figure, step) def log_figure(self, figure, name, step, phase): """figure: matplotlib.pyplot figure handle""" self._summ_writer.add_figure('{}_{}'.format(name, phase), figure, step) def log_graph(self, array, name, step, phase): """figure: matplotlib.pyplot figure handle""" im = plot_graph(array) self._summ_writer.add_image('{}_{}'.format(name, phase), im, step) def dump_scalars(self, log_path=None): log_path = os.path.join(self._log_dir, "scalar_data.json") if log_path is None else log_path self._summ_writer.export_scalars_to_json(log_path) def flush(self): self._summ_writer.flush()
en
0.504333
#######################') #######################') Will log all scalars in the same plot. # [C, H, W] # reshape the rollouts # max rollout length # pad rollouts to all be same length # log videos to tensorboard event file figure: matplotlib.pyplot figure handle figure: matplotlib.pyplot figure handle figure: matplotlib.pyplot figure handle
2.693085
3
answer_selection/datasets/msmarco/reformat_corpus_from_idxs.py
shashiongithub/Document-Modeling-with-External-Information
0
6630028
#################################### # Author: <NAME> # Date: July 2017 # Project: Document Modeling with External Attention for Sentence Extraction #################################### ''' msmarco dataset builds data set with new splits |train', val', test from pre-calculated indexes ''' import os,sys import pdb import nltk import io from utils import * if __name__ == "__main__": splits = ['training','validation','test'] force = False vocab = get_modified_vocab(force=force) isf_dict,idf_dict = get_isf_idf_dict(vocab) stopwords = get_stopwords_ids(vocab) train_idxs = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"training.indexes"),'r').read().strip('\n').split('\n') val_idxs = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"validation.indexes"),'r').read().strip('\n').split('\n') train_idxs = [int(x) for x in train_idxs] val_idxs = [int(x) for x in val_idxs] data_gen = read_data("training") data = [] for sample in data_gen: data.append(sample) data_gen = read_data("validation") data_test = [] for sample in data_gen: data_test.append(sample) for idxs, corpus_split in zip([train_idxs,val_idxs,range(len(data_test))],splits): mx_doc_len = 0 mx_sent_len = 0 # outputs files docs_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.doc" % (corpus_split)), 'w') questions_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.question" % (corpus_split)), 'w') labels_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.label" % (corpus_split)), 'w') cnt_scores_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.cnt.scores" % (corpus_split)), 'w') isf_scores_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.isf.scores" % (corpus_split)), 'w') locisf_scores_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.locisf.scores" % (corpus_split)), 'w') idf_scores_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.idf.scores" % (corpus_split)), 'w') # write to output files count = 0 nempties = 0 for _id in idxs: if corpus_split=='test': sample_id,sents,question,labels = data_test[_id].unpack() else: sample_id,sents,question,labels = data[_id].unpack() fullpath_doc_name = os.path.join(BASE_DIR,corpus_split,sample_id+'.doc') ref_sents = words_to_id(sents,vocab) ref_question = words_to_id([question],vocab)[0] cnt,isf,idf,locisf = eval_cnts(ref_question,ref_sents,isf_dict,idf_dict,stopwords) mx_doc_len = max(mx_doc_len,len(ref_sents)) # write doc docs_out.write(fullpath_doc_name+'\n') for i,sent in enumerate(ref_sents): docs_out.write(' '.join([str(wid) for wid in sent]) +'\n') mx_sent_len = max(mx_sent_len,len(sent)) docs_out.write('\n') # write question questions_out.write(fullpath_doc_name+'\n') questions_out.write(' '.join([str(wid) for wid in ref_question]) +'\n\n') # write labels labels_out.write(fullpath_doc_name+'\n') labels_out.write('\n'.join([str(lbl) for lbl in labels]) + '\n\n') # writing sentence cnt scores cnt_scores_out.write(fullpath_doc_name+'\n') cnt_scores_out.write('\n'.join(["%d" % x for x in cnt]) + '\n\n') # writing sentence isf scores isf_scores_out.write(fullpath_doc_name+'\n') isf_scores_out.write('\n'.join(["%.6f" % x for x in isf]) + '\n\n') # writing sentence idf scores idf_scores_out.write(fullpath_doc_name+'\n') idf_scores_out.write('\n'.join(["%.6f" % x for x in idf]) + '\n\n') # writing sentence local isf scores locisf_scores_out.write(fullpath_doc_name+'\n') locisf_scores_out.write('\n'.join(["%.6f" % x for x in locisf]) + '\n\n') ## INSERT QUERY EXPANSION HERE if count%10000 == 0: print "-->doc_count:",count count +=1 print("%s: %d" %(corpus_split,count)) print("Max document length (nsents) in %s set:%d" % (corpus_split,mx_doc_len)) print("Max sentence length (nwords) in %s set:%d" % (corpus_split,mx_sent_len)) print("# empty new labels: ",nempties)
#################################### # Author: <NAME> # Date: July 2017 # Project: Document Modeling with External Attention for Sentence Extraction #################################### ''' msmarco dataset builds data set with new splits |train', val', test from pre-calculated indexes ''' import os,sys import pdb import nltk import io from utils import * if __name__ == "__main__": splits = ['training','validation','test'] force = False vocab = get_modified_vocab(force=force) isf_dict,idf_dict = get_isf_idf_dict(vocab) stopwords = get_stopwords_ids(vocab) train_idxs = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"training.indexes"),'r').read().strip('\n').split('\n') val_idxs = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"validation.indexes"),'r').read().strip('\n').split('\n') train_idxs = [int(x) for x in train_idxs] val_idxs = [int(x) for x in val_idxs] data_gen = read_data("training") data = [] for sample in data_gen: data.append(sample) data_gen = read_data("validation") data_test = [] for sample in data_gen: data_test.append(sample) for idxs, corpus_split in zip([train_idxs,val_idxs,range(len(data_test))],splits): mx_doc_len = 0 mx_sent_len = 0 # outputs files docs_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.doc" % (corpus_split)), 'w') questions_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.question" % (corpus_split)), 'w') labels_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.label" % (corpus_split)), 'w') cnt_scores_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.cnt.scores" % (corpus_split)), 'w') isf_scores_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.isf.scores" % (corpus_split)), 'w') locisf_scores_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.locisf.scores" % (corpus_split)), 'w') idf_scores_out = open(os.path.join(PREPROC_DATA_DIR,'msmarco',"%s.idf.scores" % (corpus_split)), 'w') # write to output files count = 0 nempties = 0 for _id in idxs: if corpus_split=='test': sample_id,sents,question,labels = data_test[_id].unpack() else: sample_id,sents,question,labels = data[_id].unpack() fullpath_doc_name = os.path.join(BASE_DIR,corpus_split,sample_id+'.doc') ref_sents = words_to_id(sents,vocab) ref_question = words_to_id([question],vocab)[0] cnt,isf,idf,locisf = eval_cnts(ref_question,ref_sents,isf_dict,idf_dict,stopwords) mx_doc_len = max(mx_doc_len,len(ref_sents)) # write doc docs_out.write(fullpath_doc_name+'\n') for i,sent in enumerate(ref_sents): docs_out.write(' '.join([str(wid) for wid in sent]) +'\n') mx_sent_len = max(mx_sent_len,len(sent)) docs_out.write('\n') # write question questions_out.write(fullpath_doc_name+'\n') questions_out.write(' '.join([str(wid) for wid in ref_question]) +'\n\n') # write labels labels_out.write(fullpath_doc_name+'\n') labels_out.write('\n'.join([str(lbl) for lbl in labels]) + '\n\n') # writing sentence cnt scores cnt_scores_out.write(fullpath_doc_name+'\n') cnt_scores_out.write('\n'.join(["%d" % x for x in cnt]) + '\n\n') # writing sentence isf scores isf_scores_out.write(fullpath_doc_name+'\n') isf_scores_out.write('\n'.join(["%.6f" % x for x in isf]) + '\n\n') # writing sentence idf scores idf_scores_out.write(fullpath_doc_name+'\n') idf_scores_out.write('\n'.join(["%.6f" % x for x in idf]) + '\n\n') # writing sentence local isf scores locisf_scores_out.write(fullpath_doc_name+'\n') locisf_scores_out.write('\n'.join(["%.6f" % x for x in locisf]) + '\n\n') ## INSERT QUERY EXPANSION HERE if count%10000 == 0: print "-->doc_count:",count count +=1 print("%s: %d" %(corpus_split,count)) print("Max document length (nsents) in %s set:%d" % (corpus_split,mx_doc_len)) print("Max sentence length (nwords) in %s set:%d" % (corpus_split,mx_sent_len)) print("# empty new labels: ",nempties)
en
0.644002
#################################### # Author: <NAME> # Date: July 2017 # Project: Document Modeling with External Attention for Sentence Extraction #################################### msmarco dataset builds data set with new splits |train', val', test from pre-calculated indexes # outputs files # write to output files # write doc # write question # write labels # writing sentence cnt scores # writing sentence isf scores # writing sentence idf scores # writing sentence local isf scores ## INSERT QUERY EXPANSION HERE
2.443655
2
cogs/filters.py
Termed/AlphaWolf
1
6630029
import discord import os from discord.ext import commands from discord.utils import get class onMessage(commands.Cog): def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_message(self, message): message_content = message.content if message_content.isupper(): embed = discord.Embed(title="Warning", description="{}, Please refrain from using too many capital letters".format(message.author.mention)) await message.channel.send(embed=embed) def setup(bot): bot.add_cog(onMessage(bot))
import discord import os from discord.ext import commands from discord.utils import get class onMessage(commands.Cog): def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_message(self, message): message_content = message.content if message_content.isupper(): embed = discord.Embed(title="Warning", description="{}, Please refrain from using too many capital letters".format(message.author.mention)) await message.channel.send(embed=embed) def setup(bot): bot.add_cog(onMessage(bot))
none
1
2.763339
3
tracing.py
anyface/Cpp-Pytorch-Model-Imagenet
1
6630030
<filename>tracing.py import torch import torchvision from torchvision import transforms from PIL import Image from time import time import numpy as np # An instance of your model. model = torchvision.models.resnet18(pretrained=True) model.eval() # An example input you would normally provide to your model's forward() method. example = torch.rand(1, 3, 224, 224) # Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing. traced_script_module = torch.jit.trace(model, example) traced_script_module.save("model.pt") # evalute time batch = torch.rand(64, 3, 224, 224) start = time() output = traced_script_module(batch) stop = time() print(str(stop-start) + "s") # read image image = Image.open('1.jpg').convert('RGB') default_transform = transforms.Compose([ transforms.Resize([224, 224]), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) image = default_transform(image) # forward output = traced_script_module(image.unsqueeze(0)) print(output[0, :10]) # print top-5 predicted labels labels = np.loadtxt('synset_words.txt', dtype=str, delimiter='\n') data_out = output[0].data.numpy() sorted_idxs = np.argsort(-data_out) for i,idx in enumerate(sorted_idxs[:5]): print('top-%d label: %s, score: %f' % (i, labels[idx], data_out[idx]))
<filename>tracing.py import torch import torchvision from torchvision import transforms from PIL import Image from time import time import numpy as np # An instance of your model. model = torchvision.models.resnet18(pretrained=True) model.eval() # An example input you would normally provide to your model's forward() method. example = torch.rand(1, 3, 224, 224) # Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing. traced_script_module = torch.jit.trace(model, example) traced_script_module.save("model.pt") # evalute time batch = torch.rand(64, 3, 224, 224) start = time() output = traced_script_module(batch) stop = time() print(str(stop-start) + "s") # read image image = Image.open('1.jpg').convert('RGB') default_transform = transforms.Compose([ transforms.Resize([224, 224]), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) image = default_transform(image) # forward output = traced_script_module(image.unsqueeze(0)) print(output[0, :10]) # print top-5 predicted labels labels = np.loadtxt('synset_words.txt', dtype=str, delimiter='\n') data_out = output[0].data.numpy() sorted_idxs = np.argsort(-data_out) for i,idx in enumerate(sorted_idxs[:5]): print('top-%d label: %s, score: %f' % (i, labels[idx], data_out[idx]))
en
0.744288
# An instance of your model. # An example input you would normally provide to your model's forward() method. # Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing. # evalute time # read image # forward # print top-5 predicted labels
2.568532
3
cogs/redditmoderation.py
niztg/DevilBot
1
6630031
<filename>cogs/redditmoderation.py import discord from discord.ext import commands import praw, prawcore from .utils import checks class redditModerationCog(commands.Cog): """r/Overwatch_Memes Moderation related Commands""" def __init__(self, bot): self.bot = bot self.db_conn = bot.db_conn self.colour = 0xff9300 self.footer = 'Bot developed by DevilJamJar#0001\nWith a lot of help from โ™ฟnizcomix#7532' self.thumb = 'https://styles.redditmedia.com/t5_3el0q/styles/communityIcon_iag4ayvh1eq41.jpg' @commands.command(pass_context=True, aliases=['lb'], invoke_without_command=True) @checks.check_mod_server() async def leaderboard(self, ctx, amount: int = 10): """Displays moderation leaderboard""" if 0 < amount < 15: pass else: return await ctx.send('The limit needs to be between `1` and `14`') async with ctx.typing(): record = await self.db_conn.fetch( 'SELECT "Mod_Name", ("Flair_Removals" * 5 + "Regular_Removals") AS Removals FROM "ModStatsAug" ORDER BY Removals DESC LIMIT $1', amount) embed = discord.Embed(title=f'Monthly Top {amount} Moderator Actions Leaderboard', color=0xff9300) for row in record: embed.add_field( name=row[0], value=row[1], inline=False ) embed.set_thumbnail(url=self.thumb) embed.set_footer(text=self.footer) await ctx.send(embed=embed) @commands.command(aliases=['stat', 'overview']) @checks.check_mod_server() async def stats(self, ctx, *, user:str=None): """Displays mod stats for a user, or for you.""" if not user: user = ctx.author.display_name user = user.lower() async with ctx.typing(): record = await self.db_conn.fetch( 'SELECT * FROM "ModStatsAug" WHERE "Mod_Name" = $1', user) if not len(record): return await ctx.send('Specified user `not found.` Please note that the default user is your `nickname` if another user is not specified.') embed=discord.Embed(title=f'Monthly Moderator Stats for u/{record[0][0]}', color=self.colour) embed.add_field(name='Flair removals:', value=f'{record[0][1]}', inline=False) embed.add_field(name='Regular removals:', value=f'{record[0][2]}', inline=False) embed.add_field(name='Total action count:', value=f'{int(record[0][1]) * 5 + int(record[0][2])}', inline=False) return await ctx.send(embed=embed) def setup(bot): bot.add_cog(redditModerationCog(bot))
<filename>cogs/redditmoderation.py import discord from discord.ext import commands import praw, prawcore from .utils import checks class redditModerationCog(commands.Cog): """r/Overwatch_Memes Moderation related Commands""" def __init__(self, bot): self.bot = bot self.db_conn = bot.db_conn self.colour = 0xff9300 self.footer = 'Bot developed by DevilJamJar#0001\nWith a lot of help from โ™ฟnizcomix#7532' self.thumb = 'https://styles.redditmedia.com/t5_3el0q/styles/communityIcon_iag4ayvh1eq41.jpg' @commands.command(pass_context=True, aliases=['lb'], invoke_without_command=True) @checks.check_mod_server() async def leaderboard(self, ctx, amount: int = 10): """Displays moderation leaderboard""" if 0 < amount < 15: pass else: return await ctx.send('The limit needs to be between `1` and `14`') async with ctx.typing(): record = await self.db_conn.fetch( 'SELECT "Mod_Name", ("Flair_Removals" * 5 + "Regular_Removals") AS Removals FROM "ModStatsAug" ORDER BY Removals DESC LIMIT $1', amount) embed = discord.Embed(title=f'Monthly Top {amount} Moderator Actions Leaderboard', color=0xff9300) for row in record: embed.add_field( name=row[0], value=row[1], inline=False ) embed.set_thumbnail(url=self.thumb) embed.set_footer(text=self.footer) await ctx.send(embed=embed) @commands.command(aliases=['stat', 'overview']) @checks.check_mod_server() async def stats(self, ctx, *, user:str=None): """Displays mod stats for a user, or for you.""" if not user: user = ctx.author.display_name user = user.lower() async with ctx.typing(): record = await self.db_conn.fetch( 'SELECT * FROM "ModStatsAug" WHERE "Mod_Name" = $1', user) if not len(record): return await ctx.send('Specified user `not found.` Please note that the default user is your `nickname` if another user is not specified.') embed=discord.Embed(title=f'Monthly Moderator Stats for u/{record[0][0]}', color=self.colour) embed.add_field(name='Flair removals:', value=f'{record[0][1]}', inline=False) embed.add_field(name='Regular removals:', value=f'{record[0][2]}', inline=False) embed.add_field(name='Total action count:', value=f'{int(record[0][1]) * 5 + int(record[0][2])}', inline=False) return await ctx.send(embed=embed) def setup(bot): bot.add_cog(redditModerationCog(bot))
en
0.808576
r/Overwatch_Memes Moderation related Commands #0001\nWith a lot of help from โ™ฟnizcomix#7532' Displays moderation leaderboard Displays mod stats for a user, or for you.
2.6387
3
heroespy/util/util.py
DanRyanIrish/HEROES-Telescope
0
6630032
import numpy as np import matplotlib.pyplot as plt import sys import platform import datetime from scipy import constants as con from scipy.special import kv import urllib2 as url from bs4 import BeautifulSoup import os import tempfile import shutil from sunpy.time import parse_time from scipy.integrate import quad from scipy import interpolate #data_dir = os.path.join(os.path.dirname(heroes.__file__), "util", "data") data_dir = '/Users/schriste/Dropbox/python/heroes/util/data/' _msis_atmosphere_file = None class Fit_data: """A class for data.""" def __init__(self, x, y, xtitle, ytitle, name, xunits, yunits, log): self.xrange = [x.min(), x.max()] self.yrange = [y.min(), y.max()] self.x = x self.y = y self.xtitle = xtitle self.ytitle = ytitle self.log = log self.name = name self.xunits = xunits self.yunits = yunits def func(self, x): if self.log[0] == 1: fit_x = np.log10(self.x) else: fit_x = self.x if self.log[1] == 1: fit_y = np.log10(self.y) fill_value = -100 else: fit_y = self.y fill_value = 0 f = interpolate.interp1d(fit_x, fit_y, kind = 3, bounds_error=False, fill_value = fill_value) x_in = x if self.log[0] == 1: x_in = 10 ** x_in if self.log[1] == 1: f1 = lambda y: 10 ** f(y) else: f1 = f return f1(x_in) def show(self): ax = plt.subplot(111) if self.log is not None: if self.log[0] == 1: ax.set_xscale('log') if self.log[1] == 1: ax.set_yscale('log') ax.set_ylabel(self.ytitle + ' [' + self.yunits + ']') ax.set_xlabel(self.xtitle + ' [' + self.xunits + ']') ax.set_title(self.name) num_points = self.x.shape[0] fit_x = np.linspace(self.xrange[0], self.xrange[1], num = num_points*10) fit_y = self.func(fit_x) ax.plot(fit_x, fit_y, "-", color = 'blue') ax.plot(self.x, self.y, "o", color = 'red') plt.show() # densities # source; wolframalpha density = {"air stp": 0.001204, "si": 2.33, "be": 1.848, "water": 1, "cadmium telluride": 6.2, "cesium iodide": 4.51, "gallium arsenide": 5.31, "mercuric iodide": 6.36, "lead glass": 6.22} '''The X-ray transmission data comes from NIST (http://www.nist.gov/pml/data/xraycoef/index.cfm)''' def xray_transmission(path_length_m, energy_kev, material='air stp'): """Provide the X-ray transmission (0 to 1) in given a path length in meters at a particular energy given in keV through a material with a constant density.""" coefficients = mass_attenuation_coefficicent(energy_kev, material=material) transmission = np.exp(-coefficients * density_cgs.get(material) * path_length_m * 100.0) return transmission def load_mass_attenuation_coefficients(material='air_dry_near_sea_level'): '''Load the mass attenuation coefficients (cm2/g) and mass energy-absorption coefficients (cm2/g) from the data files as a function of energy (MeV). The allowed materials are listed in density.''' filename = data_dir + 'XrayMassCoef_' + material.replace(' ', '_').capitalize() + '.txt' data = np.genfromtxt(filename, comments = ';', missing_values = ' ', skip_header = 8) return data def mass_attenuation_coefficicent(energy_kev, material): """Returns the mass attenuation coefficient at an energy given in keV""" data = load_mass_attenuation_coefficients(material) # data is better behaved in log space data_energy_kev = np.log10(data[:,0]*1000) data_attenuation_coeff = np.log10(data[:,1]) f = interpolate.interp1d(data_energy_kev, data_attenuation_coeff) return 10 ** f(np.log10(energy_kev)) def plot_mass_attenuation_coefficient(material='air_dry_near_sea_level'): '''Plot the mass the mass attenuation coefficients and mass energy-absorption coefficients for a named material. See load_mass_attenuation_coefficients definition for list of allowed materials.''' data = load_mass_attenuation_coefficients(material=material) energy_kev = data[:,0] mass_atten_coeff = data[:,1] mass_energy_atten_coeff = data[:,2] ax = plt.subplot(111) ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('Energy [keV]') ax.set_title(material.replace('_', ' ').capitalize()) ax.set_ylabel(r'Mass Attenuation Coefficient [cm$^2$/g]') ax.plot(energy_kev, mass_atten_coeff) ax.plot(energy_kev, mass_energy_atten_coeff) ax.legend((r'$\mu/\rho$', r'$\mu_{en}/\rho$')) plt.show() def xray_absorption(energy_kev, thickness_um, material='si'): '''Calculate the xray absorption in a material with a thickess (given in microns).''' return 1-xray_transmission(energy_kev, thickness_um/1e6, material=material) def detector_efficiency(energy_kev, thickness_um, material='si'): '''Calculate the detector quantum efficiency (in percent) at a given energy''' return xray_absorption(energy_kev, thickness_um, material=material)*100.0 def load_attenuation_length(material='si'): filename = data_dir + material + '_xray_atten_length.txt' data = np.genfromtxt(filename, comments = ';', missing_values = ' ', skip_header = 3) return data def xyplot(x, y, ytitle = None, xtitle = None, title = None, log = None): fig = plt.figure() ax = fig.add_subplot(111) if log is not None: if log[0] == 1: ax.set_xscale('log') if log[1] == 1: ax.set_yscale('log') if ytitle is not None: ax.set_ylabel(ytitle) if xtitle is not None: ax.set_xlabel(xtitle) if title is not None: ax.set_title(title) ax.plot(x, y) # plt.show() return fig def oplot(x, y, plt): ax = plt.gca() ax.plot(x, y) plt.show() def thermal_bremsstrahlung_thin(energy_kev, kt): """This function calculates the optically thin continuum thermal bremsstrahlung photon flux incident on the Earth from an isothermal plasma on the Sun. Normalization is for an emission measure on the Sun of 1.e49 cm-3 function brem_49,e,kt , verbose=verbose if keyword_set(verbose) then print, 'Differential Bremsstrahlung '+$ 'spectrum at Earth for emission measure of 1.e49.' ; kt0 =( kt(0) > 0.1) ;protect against vectors for kt result = (1.e8/9.26) * float(acgaunt(12.3985/E, KT0/.08617)) *exp(-(E/KT0 < 50)) /E / KT0^.5 return, result(*) """ # kt0 =( kt(0) > 0.1) ; protect against vectors for kt #result = (1.e8/9.26) * float(acgaunt(12.3985/E, KT0/.08617)) *exp(-(E/KT0 < 50)) /E / KT0^.5 result = (1.e8/9.26) * gaunt_factor(energy_kev, kt) * 1 / (energy_kev * np.sqrt(kt)) * np.exp(- (energy_kev / kt)) return result def rgaunt_factor(energy_kev, kt, Z=1): """Analytic fitting formula for the non-relativistivic gaunt factor Source ====== Itoh et al. 2000, ApJSS, 128, 125 """ k = con.physical_constants.get('Boltzmann constant')[0] electron_volt = con.physical_constants.get('electron volt')[0] # units temp_K_to_kev_conversion = k / electron_volt / 1000 data_gaunt = np.genfromtxt(data_dir + 'itoh.txt') coefficients = data_gaunt[Z-1].reshape(11,11) u = energy_kev / kt temperature_K = kt / temp_K_to_kev_conversion gaunt_factor = 0 U = (np.log10(u) + 1.5) / 2.5 t = (np.log10(temperature_K) - 7.25) / 1.25 for j in range(11): for i in range(11): gaunt_factor += coefficients[i,j] * (t ** i) * (U ** j) return gaunt_factor def nrgaunt_factor(energy_kev, kt, Z=1): """Analytic fitting formula for the non-relativistivic gaunt factor Source ====== Itoh et al. 2000, ApJSS, 128, 125 """ k = con.physical_constants.get('Boltzmann constant')[0] electron_volt = con.physical_constants.get('electron volt')[0] # units temp_K_to_kev_conversion = k / electron_volt / 1000 coefficients = np.genfromtxt(data_dir + 'itohnr.txt', delimiter = ",") u = energy_kev / kt temperature_K = kt / temp_K_to_kev_conversion print(temperature_K) U = (np.log10(u) + 1.5) / 2.5 g2 = Z ** 2 * 1.579e5 / temperature_K G = (np.log10(g2) + 0.5) / 2.5 gaunt_factor = 0 for j in range(11): for i in range(11): gaunt_factor += coefficients[i,j] * (G ** i) * (U ** j) return gaunt_factor def effective_area(energy_kev): """Returns the HEROES effective area in cm^2 at a particular energy given in keV.""" data_energy_kev = np.arange(20,80,10) data_effective_area = np.array([80,75,60,40,15,5]) f = interpolate.interp1d(data_energy_kev, data_effective_area) return f(energy_kev) def effective_area2_fitdata(): number_of_modules = 8 data = np.genfromtxt('/Users/schriste/Dropbox/python/heroes/util/data/heroes_effective_area_0am5am.txt', comments=';', names=['x','y1','y2']) result = Fit_data(data['x'], number_of_modules * data['y1'], 'Energy', 'Effective Area', 'HEROES', 'keV', 'cm$^{2}$', log = [0,0]) return result def effective_area2(energy_kev): fit_data = effective_area2_fitdata() return fit_data.func(energy_kev) def detector_background(energy_kev): data_energy_kev = np.arange(20,80,10) data_det_background = np.array([2,2,2.5,3,3,3]) * 0.001 f = interpolate.interp1d(data_energy_kev, data_det_background) return f(energy_kev) def atmo_transmission(energy_kev): data_energy_kev = np.arange(20,80,10) data_atmo_transmission = np.array([0.26, 2.0, 3.2, 3.7, 4.2, 4.5]) * 0.1 f = interpolate.interp1d(data_energy_kev, data_atmo_transmission) return f(energy_kev) def detector_efficiency(energy_kev): data_energy_kev = np.arange(20,80,10) data_detector_efficiency = np.array([9.8, 9.2, 9.9, 9.7, 8.9, 7.7]) * 0.1 f = interpolate.interp1d(data_energy_kev, data_detector_efficiency) return f(energy_kev) def sensitivity(background_counts, flux_to_counts_conversion, statistical_significance=5): """Calculates the sensitivity of an instrument using the following formula K = signal / sqrt(signal + background) where K is the significance (in sigma). This equation solves to Sensitivity Flux limit = (K^2 + sqrt(K^4 - 4*background)) / 2 * flux_to_counts_conversion """ result = 1/(2 * flux_to_counts_conversion) * statistical_significance ** 2 + np.sqrt( statistical_significance ** 4 - 4 * background_counts ) return result def sensitivity(integration_time, de = 5, statistical_sig = 5): """Returns the HEROES sensitivity at a particular energy given in keV. de is the width of the energy interval in keV""" energy_kev = np.arange(20,80,10) det_eff = detector_background(energy_kev) det_background = detector_background(energy_kev) eff_area = effective_area(energy_kev) det_efficiency = detector_efficiency(energy_kev) transmission = atmo_transmission(energy_kev) background_area = 8 * 0.04 fraction_flux = 0.8 a = statistical_sig ** 2 + np.sqrt(statistical_sig ** 4 + 4*statistical_sig ** 2 * det_background * de * background_area * integration_time) b = 2 * eff_area * de * integration_time * transmission * det_eff * fraction_flux return a/b def get_msis_atmosphere_density(latitude=55, longitude=45, reload=False, date = '2000/01/01 01:00:00'): '''Downloads the MSIS atmospheric model from the web at a given longitude, latitude and returns the density (g/cm^3) as a function of height (km). The data is saved in a temporary file and further calls use this to save time''' global _msis_atmosphere_file t = parse_time(date) vars = [5,11] # 5 is height, 11 is density g/cm^3 if (_msis_atmosphere_file == None) or (reload is True): temp = tempfile.NamedTemporaryFile(delete=False) _msis_atmosphere_file = temp.name addr = 'http://omniweb.gsfc.nasa.gov/cgi/vitmo/vitmo_model.cgi' data = u'model=msis&year=' + str(t.year) + '&month=' + str(t.month).zfill(2) data += '&day=' + str(t.day).zfill(2) + '&time_flag=0&hour=' data += str(t.hour).zfill(2) + '&geo_flag=0.&latitude' data += str(latitude) + '&longitude=' + str(longitude) data += u'&height=100.&profile=1&start=0.&stop=1000.&step=20.&f10_7=&f10_7_3=&ap=&format=0&' data += 'vars=0' + str(vars[0]) + '&vars=0' + str(vars[1]) a = url.Request(addr, data) req = url.urlopen(a) with open(temp.name, 'wb') as fp: shutil.copyfileobj(req, fp) data = np.genfromtxt(_msis_atmosphere_file, skip_header = 18, skip_footer = 16, dtype='f8,f8', names=['x','y']) return data def atmosphere_density_fitdata(date = '2000/01/01 01:00:00', latitude=55, longitude=45): data = get_msis_atmosphere_density(date=date, latitude=latitude, longitude=longitude) f = Fit_data(1e5 * data['x'], data['y'], 'Height', 'density', 'MSIS', 'cm', 'g cm$^{-3}$', log = [0,1]) return f def atmosphere_density(height_km, date = '2000/01/01 01:00:00', latitude=55, longitude=45): ''' Returns the atmospheric density (in g/cm^-3) at a specific height (given in cm) Source ------ http://omniweb.gsfc.nasa.gov/vitmo/msis_vitmo.html ''' fitdata = atmosphere_density_fitdata(date = date, latitude = latitude, longitude = longitude) return fitdata.func(height_km) def atmosphere_mass(height_km): '''Returns the amount of mass in a 1 sq cm column of air above a height given in km''' mass_flux = quad(atmosphere_density_fitdata().func, height_km * 1e5, 1e8)[0] return mass_flux def xray_transmission_in_atmosphere(energy_kev, height_km, view_angle=90, data = None): """Find the total mass of atmosphere above a height given in km""" co = mass_attenuation_coefficicent(energy_kev, material='air stp') mass_flux = atmosphere_mass(height_km) return np.exp(-co * mass_flux * np.sin(np.deg2rad(view_angle)) ) def foxsi_effective_area_fitdata(): data = np.genfromtxt(data_dir + 'foxsi_effective_area.txt', skip_header = 1, delimiter = ',', dtype='f8,f8,f8', names=['x','y1','y2']) f = Fit_data(data['x'], data['y1'], 'Energy', 'Effective Area', 'FOXSI', 'keV', 'cm$^{2}$', log = [0,0]) return f def heroes_effective_area(num_shells=14): data = np.genfromtxt(data_dir + 'heroes_aeff_' + str(num_shells) + 'shells.txt', skip_header = 2) x = data[:,0] y = np.arange(0,13) z = data[:,1:] def plot_foxsi_effarea_compare(): data = np.genfromtxt(data_dir + 'foxsi_effective_area.txt', skip_header = 1, delimiter = ',') energy_kev = data[:,0] foxsi1_cm2 = data[:,1] foxsi2_cm2 = data[:,2] ax = plt.subplot(111) #ax.set_xscale('log') #ax.set_yscale('log') ax.set_xlabel('Energy [keV]') #ax.set_title(material.replace('_', ' ').capitalize()) ax.set_ylabel(r'Effective Area [cm$^2$]') ax.plot(energy_kev, foxsi1_cm2, color = 'blue') ax.plot(energy_kev, foxsi2_cm2, color = 'red') ax.legend((r'FOXSI-1', r'FOXSI-2')) plt.show()
import numpy as np import matplotlib.pyplot as plt import sys import platform import datetime from scipy import constants as con from scipy.special import kv import urllib2 as url from bs4 import BeautifulSoup import os import tempfile import shutil from sunpy.time import parse_time from scipy.integrate import quad from scipy import interpolate #data_dir = os.path.join(os.path.dirname(heroes.__file__), "util", "data") data_dir = '/Users/schriste/Dropbox/python/heroes/util/data/' _msis_atmosphere_file = None class Fit_data: """A class for data.""" def __init__(self, x, y, xtitle, ytitle, name, xunits, yunits, log): self.xrange = [x.min(), x.max()] self.yrange = [y.min(), y.max()] self.x = x self.y = y self.xtitle = xtitle self.ytitle = ytitle self.log = log self.name = name self.xunits = xunits self.yunits = yunits def func(self, x): if self.log[0] == 1: fit_x = np.log10(self.x) else: fit_x = self.x if self.log[1] == 1: fit_y = np.log10(self.y) fill_value = -100 else: fit_y = self.y fill_value = 0 f = interpolate.interp1d(fit_x, fit_y, kind = 3, bounds_error=False, fill_value = fill_value) x_in = x if self.log[0] == 1: x_in = 10 ** x_in if self.log[1] == 1: f1 = lambda y: 10 ** f(y) else: f1 = f return f1(x_in) def show(self): ax = plt.subplot(111) if self.log is not None: if self.log[0] == 1: ax.set_xscale('log') if self.log[1] == 1: ax.set_yscale('log') ax.set_ylabel(self.ytitle + ' [' + self.yunits + ']') ax.set_xlabel(self.xtitle + ' [' + self.xunits + ']') ax.set_title(self.name) num_points = self.x.shape[0] fit_x = np.linspace(self.xrange[0], self.xrange[1], num = num_points*10) fit_y = self.func(fit_x) ax.plot(fit_x, fit_y, "-", color = 'blue') ax.plot(self.x, self.y, "o", color = 'red') plt.show() # densities # source; wolframalpha density = {"air stp": 0.001204, "si": 2.33, "be": 1.848, "water": 1, "cadmium telluride": 6.2, "cesium iodide": 4.51, "gallium arsenide": 5.31, "mercuric iodide": 6.36, "lead glass": 6.22} '''The X-ray transmission data comes from NIST (http://www.nist.gov/pml/data/xraycoef/index.cfm)''' def xray_transmission(path_length_m, energy_kev, material='air stp'): """Provide the X-ray transmission (0 to 1) in given a path length in meters at a particular energy given in keV through a material with a constant density.""" coefficients = mass_attenuation_coefficicent(energy_kev, material=material) transmission = np.exp(-coefficients * density_cgs.get(material) * path_length_m * 100.0) return transmission def load_mass_attenuation_coefficients(material='air_dry_near_sea_level'): '''Load the mass attenuation coefficients (cm2/g) and mass energy-absorption coefficients (cm2/g) from the data files as a function of energy (MeV). The allowed materials are listed in density.''' filename = data_dir + 'XrayMassCoef_' + material.replace(' ', '_').capitalize() + '.txt' data = np.genfromtxt(filename, comments = ';', missing_values = ' ', skip_header = 8) return data def mass_attenuation_coefficicent(energy_kev, material): """Returns the mass attenuation coefficient at an energy given in keV""" data = load_mass_attenuation_coefficients(material) # data is better behaved in log space data_energy_kev = np.log10(data[:,0]*1000) data_attenuation_coeff = np.log10(data[:,1]) f = interpolate.interp1d(data_energy_kev, data_attenuation_coeff) return 10 ** f(np.log10(energy_kev)) def plot_mass_attenuation_coefficient(material='air_dry_near_sea_level'): '''Plot the mass the mass attenuation coefficients and mass energy-absorption coefficients for a named material. See load_mass_attenuation_coefficients definition for list of allowed materials.''' data = load_mass_attenuation_coefficients(material=material) energy_kev = data[:,0] mass_atten_coeff = data[:,1] mass_energy_atten_coeff = data[:,2] ax = plt.subplot(111) ax.set_xscale('log') ax.set_yscale('log') ax.set_xlabel('Energy [keV]') ax.set_title(material.replace('_', ' ').capitalize()) ax.set_ylabel(r'Mass Attenuation Coefficient [cm$^2$/g]') ax.plot(energy_kev, mass_atten_coeff) ax.plot(energy_kev, mass_energy_atten_coeff) ax.legend((r'$\mu/\rho$', r'$\mu_{en}/\rho$')) plt.show() def xray_absorption(energy_kev, thickness_um, material='si'): '''Calculate the xray absorption in a material with a thickess (given in microns).''' return 1-xray_transmission(energy_kev, thickness_um/1e6, material=material) def detector_efficiency(energy_kev, thickness_um, material='si'): '''Calculate the detector quantum efficiency (in percent) at a given energy''' return xray_absorption(energy_kev, thickness_um, material=material)*100.0 def load_attenuation_length(material='si'): filename = data_dir + material + '_xray_atten_length.txt' data = np.genfromtxt(filename, comments = ';', missing_values = ' ', skip_header = 3) return data def xyplot(x, y, ytitle = None, xtitle = None, title = None, log = None): fig = plt.figure() ax = fig.add_subplot(111) if log is not None: if log[0] == 1: ax.set_xscale('log') if log[1] == 1: ax.set_yscale('log') if ytitle is not None: ax.set_ylabel(ytitle) if xtitle is not None: ax.set_xlabel(xtitle) if title is not None: ax.set_title(title) ax.plot(x, y) # plt.show() return fig def oplot(x, y, plt): ax = plt.gca() ax.plot(x, y) plt.show() def thermal_bremsstrahlung_thin(energy_kev, kt): """This function calculates the optically thin continuum thermal bremsstrahlung photon flux incident on the Earth from an isothermal plasma on the Sun. Normalization is for an emission measure on the Sun of 1.e49 cm-3 function brem_49,e,kt , verbose=verbose if keyword_set(verbose) then print, 'Differential Bremsstrahlung '+$ 'spectrum at Earth for emission measure of 1.e49.' ; kt0 =( kt(0) > 0.1) ;protect against vectors for kt result = (1.e8/9.26) * float(acgaunt(12.3985/E, KT0/.08617)) *exp(-(E/KT0 < 50)) /E / KT0^.5 return, result(*) """ # kt0 =( kt(0) > 0.1) ; protect against vectors for kt #result = (1.e8/9.26) * float(acgaunt(12.3985/E, KT0/.08617)) *exp(-(E/KT0 < 50)) /E / KT0^.5 result = (1.e8/9.26) * gaunt_factor(energy_kev, kt) * 1 / (energy_kev * np.sqrt(kt)) * np.exp(- (energy_kev / kt)) return result def rgaunt_factor(energy_kev, kt, Z=1): """Analytic fitting formula for the non-relativistivic gaunt factor Source ====== Itoh et al. 2000, ApJSS, 128, 125 """ k = con.physical_constants.get('Boltzmann constant')[0] electron_volt = con.physical_constants.get('electron volt')[0] # units temp_K_to_kev_conversion = k / electron_volt / 1000 data_gaunt = np.genfromtxt(data_dir + 'itoh.txt') coefficients = data_gaunt[Z-1].reshape(11,11) u = energy_kev / kt temperature_K = kt / temp_K_to_kev_conversion gaunt_factor = 0 U = (np.log10(u) + 1.5) / 2.5 t = (np.log10(temperature_K) - 7.25) / 1.25 for j in range(11): for i in range(11): gaunt_factor += coefficients[i,j] * (t ** i) * (U ** j) return gaunt_factor def nrgaunt_factor(energy_kev, kt, Z=1): """Analytic fitting formula for the non-relativistivic gaunt factor Source ====== Itoh et al. 2000, ApJSS, 128, 125 """ k = con.physical_constants.get('Boltzmann constant')[0] electron_volt = con.physical_constants.get('electron volt')[0] # units temp_K_to_kev_conversion = k / electron_volt / 1000 coefficients = np.genfromtxt(data_dir + 'itohnr.txt', delimiter = ",") u = energy_kev / kt temperature_K = kt / temp_K_to_kev_conversion print(temperature_K) U = (np.log10(u) + 1.5) / 2.5 g2 = Z ** 2 * 1.579e5 / temperature_K G = (np.log10(g2) + 0.5) / 2.5 gaunt_factor = 0 for j in range(11): for i in range(11): gaunt_factor += coefficients[i,j] * (G ** i) * (U ** j) return gaunt_factor def effective_area(energy_kev): """Returns the HEROES effective area in cm^2 at a particular energy given in keV.""" data_energy_kev = np.arange(20,80,10) data_effective_area = np.array([80,75,60,40,15,5]) f = interpolate.interp1d(data_energy_kev, data_effective_area) return f(energy_kev) def effective_area2_fitdata(): number_of_modules = 8 data = np.genfromtxt('/Users/schriste/Dropbox/python/heroes/util/data/heroes_effective_area_0am5am.txt', comments=';', names=['x','y1','y2']) result = Fit_data(data['x'], number_of_modules * data['y1'], 'Energy', 'Effective Area', 'HEROES', 'keV', 'cm$^{2}$', log = [0,0]) return result def effective_area2(energy_kev): fit_data = effective_area2_fitdata() return fit_data.func(energy_kev) def detector_background(energy_kev): data_energy_kev = np.arange(20,80,10) data_det_background = np.array([2,2,2.5,3,3,3]) * 0.001 f = interpolate.interp1d(data_energy_kev, data_det_background) return f(energy_kev) def atmo_transmission(energy_kev): data_energy_kev = np.arange(20,80,10) data_atmo_transmission = np.array([0.26, 2.0, 3.2, 3.7, 4.2, 4.5]) * 0.1 f = interpolate.interp1d(data_energy_kev, data_atmo_transmission) return f(energy_kev) def detector_efficiency(energy_kev): data_energy_kev = np.arange(20,80,10) data_detector_efficiency = np.array([9.8, 9.2, 9.9, 9.7, 8.9, 7.7]) * 0.1 f = interpolate.interp1d(data_energy_kev, data_detector_efficiency) return f(energy_kev) def sensitivity(background_counts, flux_to_counts_conversion, statistical_significance=5): """Calculates the sensitivity of an instrument using the following formula K = signal / sqrt(signal + background) where K is the significance (in sigma). This equation solves to Sensitivity Flux limit = (K^2 + sqrt(K^4 - 4*background)) / 2 * flux_to_counts_conversion """ result = 1/(2 * flux_to_counts_conversion) * statistical_significance ** 2 + np.sqrt( statistical_significance ** 4 - 4 * background_counts ) return result def sensitivity(integration_time, de = 5, statistical_sig = 5): """Returns the HEROES sensitivity at a particular energy given in keV. de is the width of the energy interval in keV""" energy_kev = np.arange(20,80,10) det_eff = detector_background(energy_kev) det_background = detector_background(energy_kev) eff_area = effective_area(energy_kev) det_efficiency = detector_efficiency(energy_kev) transmission = atmo_transmission(energy_kev) background_area = 8 * 0.04 fraction_flux = 0.8 a = statistical_sig ** 2 + np.sqrt(statistical_sig ** 4 + 4*statistical_sig ** 2 * det_background * de * background_area * integration_time) b = 2 * eff_area * de * integration_time * transmission * det_eff * fraction_flux return a/b def get_msis_atmosphere_density(latitude=55, longitude=45, reload=False, date = '2000/01/01 01:00:00'): '''Downloads the MSIS atmospheric model from the web at a given longitude, latitude and returns the density (g/cm^3) as a function of height (km). The data is saved in a temporary file and further calls use this to save time''' global _msis_atmosphere_file t = parse_time(date) vars = [5,11] # 5 is height, 11 is density g/cm^3 if (_msis_atmosphere_file == None) or (reload is True): temp = tempfile.NamedTemporaryFile(delete=False) _msis_atmosphere_file = temp.name addr = 'http://omniweb.gsfc.nasa.gov/cgi/vitmo/vitmo_model.cgi' data = u'model=msis&year=' + str(t.year) + '&month=' + str(t.month).zfill(2) data += '&day=' + str(t.day).zfill(2) + '&time_flag=0&hour=' data += str(t.hour).zfill(2) + '&geo_flag=0.&latitude' data += str(latitude) + '&longitude=' + str(longitude) data += u'&height=100.&profile=1&start=0.&stop=1000.&step=20.&f10_7=&f10_7_3=&ap=&format=0&' data += 'vars=0' + str(vars[0]) + '&vars=0' + str(vars[1]) a = url.Request(addr, data) req = url.urlopen(a) with open(temp.name, 'wb') as fp: shutil.copyfileobj(req, fp) data = np.genfromtxt(_msis_atmosphere_file, skip_header = 18, skip_footer = 16, dtype='f8,f8', names=['x','y']) return data def atmosphere_density_fitdata(date = '2000/01/01 01:00:00', latitude=55, longitude=45): data = get_msis_atmosphere_density(date=date, latitude=latitude, longitude=longitude) f = Fit_data(1e5 * data['x'], data['y'], 'Height', 'density', 'MSIS', 'cm', 'g cm$^{-3}$', log = [0,1]) return f def atmosphere_density(height_km, date = '2000/01/01 01:00:00', latitude=55, longitude=45): ''' Returns the atmospheric density (in g/cm^-3) at a specific height (given in cm) Source ------ http://omniweb.gsfc.nasa.gov/vitmo/msis_vitmo.html ''' fitdata = atmosphere_density_fitdata(date = date, latitude = latitude, longitude = longitude) return fitdata.func(height_km) def atmosphere_mass(height_km): '''Returns the amount of mass in a 1 sq cm column of air above a height given in km''' mass_flux = quad(atmosphere_density_fitdata().func, height_km * 1e5, 1e8)[0] return mass_flux def xray_transmission_in_atmosphere(energy_kev, height_km, view_angle=90, data = None): """Find the total mass of atmosphere above a height given in km""" co = mass_attenuation_coefficicent(energy_kev, material='air stp') mass_flux = atmosphere_mass(height_km) return np.exp(-co * mass_flux * np.sin(np.deg2rad(view_angle)) ) def foxsi_effective_area_fitdata(): data = np.genfromtxt(data_dir + 'foxsi_effective_area.txt', skip_header = 1, delimiter = ',', dtype='f8,f8,f8', names=['x','y1','y2']) f = Fit_data(data['x'], data['y1'], 'Energy', 'Effective Area', 'FOXSI', 'keV', 'cm$^{2}$', log = [0,0]) return f def heroes_effective_area(num_shells=14): data = np.genfromtxt(data_dir + 'heroes_aeff_' + str(num_shells) + 'shells.txt', skip_header = 2) x = data[:,0] y = np.arange(0,13) z = data[:,1:] def plot_foxsi_effarea_compare(): data = np.genfromtxt(data_dir + 'foxsi_effective_area.txt', skip_header = 1, delimiter = ',') energy_kev = data[:,0] foxsi1_cm2 = data[:,1] foxsi2_cm2 = data[:,2] ax = plt.subplot(111) #ax.set_xscale('log') #ax.set_yscale('log') ax.set_xlabel('Energy [keV]') #ax.set_title(material.replace('_', ' ').capitalize()) ax.set_ylabel(r'Effective Area [cm$^2$]') ax.plot(energy_kev, foxsi1_cm2, color = 'blue') ax.plot(energy_kev, foxsi2_cm2, color = 'red') ax.legend((r'FOXSI-1', r'FOXSI-2')) plt.show()
en
0.708918
#data_dir = os.path.join(os.path.dirname(heroes.__file__), "util", "data") A class for data. # densities # source; wolframalpha The X-ray transmission data comes from NIST (http://www.nist.gov/pml/data/xraycoef/index.cfm) Provide the X-ray transmission (0 to 1) in given a path length in meters at a particular energy given in keV through a material with a constant density. Load the mass attenuation coefficients (cm2/g) and mass energy-absorption coefficients (cm2/g) from the data files as a function of energy (MeV). The allowed materials are listed in density. Returns the mass attenuation coefficient at an energy given in keV # data is better behaved in log space Plot the mass the mass attenuation coefficients and mass energy-absorption coefficients for a named material. See load_mass_attenuation_coefficients definition for list of allowed materials. Calculate the xray absorption in a material with a thickess (given in microns). Calculate the detector quantum efficiency (in percent) at a given energy # plt.show() This function calculates the optically thin continuum thermal bremsstrahlung photon flux incident on the Earth from an isothermal plasma on the Sun. Normalization is for an emission measure on the Sun of 1.e49 cm-3 function brem_49,e,kt , verbose=verbose if keyword_set(verbose) then print, 'Differential Bremsstrahlung '+$ 'spectrum at Earth for emission measure of 1.e49.' ; kt0 =( kt(0) > 0.1) ;protect against vectors for kt result = (1.e8/9.26) * float(acgaunt(12.3985/E, KT0/.08617)) *exp(-(E/KT0 < 50)) /E / KT0^.5 return, result(*) # kt0 =( kt(0) > 0.1) ; protect against vectors for kt #result = (1.e8/9.26) * float(acgaunt(12.3985/E, KT0/.08617)) *exp(-(E/KT0 < 50)) /E / KT0^.5 Analytic fitting formula for the non-relativistivic gaunt factor Source ====== Itoh et al. 2000, ApJSS, 128, 125 # units Analytic fitting formula for the non-relativistivic gaunt factor Source ====== Itoh et al. 2000, ApJSS, 128, 125 # units Returns the HEROES effective area in cm^2 at a particular energy given in keV. Calculates the sensitivity of an instrument using the following formula K = signal / sqrt(signal + background) where K is the significance (in sigma). This equation solves to Sensitivity Flux limit = (K^2 + sqrt(K^4 - 4*background)) / 2 * flux_to_counts_conversion Returns the HEROES sensitivity at a particular energy given in keV. de is the width of the energy interval in keV Downloads the MSIS atmospheric model from the web at a given longitude, latitude and returns the density (g/cm^3) as a function of height (km). The data is saved in a temporary file and further calls use this to save time # 5 is height, 11 is density g/cm^3 Returns the atmospheric density (in g/cm^-3) at a specific height (given in cm) Source ------ http://omniweb.gsfc.nasa.gov/vitmo/msis_vitmo.html Returns the amount of mass in a 1 sq cm column of air above a height given in km Find the total mass of atmosphere above a height given in km #ax.set_xscale('log') #ax.set_yscale('log') #ax.set_title(material.replace('_', ' ').capitalize())
2.377863
2
tfx/components/base/base_driver_test.py
NunoEdgarGFlowHub/tfx
0
6630033
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.components.base.base_driver.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import os import tensorflow as tf from tfx.components.base import base_driver from tfx.orchestration import data_types from tfx.utils import channel from tfx.utils import types class BaseDriverTest(tf.test.TestCase): def setUp(self): self._mock_metadata = tf.test.mock.Mock() self._input_dict = { 'input_data': [types.TfxArtifact(type_name='InputType')], } input_dir = os.path.join( os.environ.get('TEST_TMP_DIR', self.get_temp_dir()), self._testMethodName, 'input_dir') # valid input artifacts must have a uri pointing to an existing directory. for key, input_list in self._input_dict.items(): for index, artifact in enumerate(input_list): artifact.id = index + 1 uri = os.path.join(input_dir, key, str(artifact.id), '') artifact.uri = uri tf.gfile.MakeDirs(uri) self._output_dict = { 'output_data': [types.TfxArtifact(type_name='OutputType')], } self._exec_properties = { 'key': 'value', } self._base_output_dir = os.path.join( os.environ.get('TEST_TMP_DIR', self.get_temp_dir()), self._testMethodName, 'base_output_dir') self._driver_args = data_types.DriverArgs( worker_name='worker_name', base_output_dir=self._base_output_dir, enable_cache=True) self._execution_id = 100 def _check_output(self, execution_decision): output_dict = execution_decision.output_dict self.assertEqual(self._output_dict.keys(), output_dict.keys()) for name, output_list in output_dict.items(): for (original_output, output) in zip(self._output_dict[name], output_list): if execution_decision.execution_id: # Uncached results should have a newly created uri. self.assertEqual( os.path.join(self._base_output_dir, name, str(execution_decision.execution_id), ''), output.uri) else: # Cached results have a different set of uri. self.assertEqual( os.path.join(self._base_output_dir, name, str(self._execution_id), ''), output.uri) self.assertEqual(original_output.split, output.split) def test_prepare_execution(self): input_dict = copy.deepcopy(self._input_dict) output_dict = copy.deepcopy(self._output_dict) exec_properties = copy.deepcopy(self._exec_properties) self._mock_metadata.previous_run.return_value = None self._mock_metadata.prepare_execution.return_value = self._execution_id driver = base_driver.BaseDriver(metadata_handler=self._mock_metadata) execution_decision = driver.prepare_execution(input_dict, output_dict, exec_properties, self._driver_args) self.assertEqual(self._execution_id, execution_decision.execution_id) self._check_output(execution_decision) def test_cached_execution(self): input_dict = copy.deepcopy(self._input_dict) output_dict = copy.deepcopy(self._output_dict) exec_properties = copy.deepcopy(self._exec_properties) cached_output_dict = copy.deepcopy(self._output_dict) for key, artifact_list in cached_output_dict.items(): for artifact in artifact_list: artifact.uri = os.path.join(self._base_output_dir, key, str(self._execution_id), '') # valid cached artifacts must have an existing uri. tf.gfile.MakeDirs(artifact.uri) self._mock_metadata.previous_run.return_value = self._execution_id self._mock_metadata.fetch_previous_result_artifacts.return_value = cached_output_dict driver = base_driver.BaseDriver(metadata_handler=self._mock_metadata) execution_decision = driver.prepare_execution(input_dict, output_dict, exec_properties, self._driver_args) self.assertIsNone(execution_decision.execution_id) self._check_output(execution_decision) def test_artifact_missing(self): input_dict = copy.deepcopy(self._input_dict) input_dict['input_data'][0].uri = 'should/not/exist' output_dict = copy.deepcopy(self._output_dict) exec_properties = copy.deepcopy(self._exec_properties) driver_options = copy.deepcopy(self._driver_args) driver_options.enable_cache = False cached_output_dict = copy.deepcopy(self._output_dict) for key, artifact_list in cached_output_dict.items(): for artifact in artifact_list: artifact.uri = os.path.join(self._base_output_dir, key, str(self._execution_id), '') # valid cached artifacts must have an existing uri. tf.gfile.MakeDirs(artifact.uri) self._mock_metadata.previous_run.return_value = self._execution_id self._mock_metadata.fetch_previous_result_artifacts.return_value = cached_output_dict driver = base_driver.BaseDriver(self._mock_metadata) with self.assertRaises(RuntimeError): driver.prepare_execution(input_dict, output_dict, exec_properties, driver_options) def test_no_cache_on_missing_uri(self): input_dict = copy.deepcopy(self._input_dict) output_dict = copy.deepcopy(self._output_dict) exec_properties = copy.deepcopy(self._exec_properties) cached_output_dict = copy.deepcopy(self._output_dict) for key, artifact_list in cached_output_dict.items(): for artifact in artifact_list: artifact.uri = os.path.join(self._base_output_dir, key, str(self._execution_id), '') # Non existing output uri will force a cache miss. self.assertFalse(tf.gfile.Exists(artifact.uri)) self._mock_metadata.previous_run.return_value = self._execution_id self._mock_metadata.fetch_previous_result_artifacts.return_value = cached_output_dict actual_execution_id = self._execution_id + 1 self._mock_metadata.prepare_execution.return_value = actual_execution_id driver = base_driver.BaseDriver(metadata_handler=self._mock_metadata) execution_decision = driver.prepare_execution(input_dict, output_dict, exec_properties, self._driver_args) self.assertEqual(actual_execution_id, execution_decision.execution_id) self._check_output(execution_decision) def test_pre_execution_new_execution(self): input_dict = { 'input_a': channel.Channel( type_name='input_a', artifacts=[types.TfxArtifact(type_name='input_a')]) } output_dict = { 'output_a': channel.Channel( type_name='output_a', artifacts=[ types.TfxArtifact(type_name='output_a', split='split') ]) } execution_id = 1 exec_properties = copy.deepcopy(self._exec_properties) driver_args = data_types.DriverArgs( worker_name='worker_name', base_output_dir='base', enable_cache=True) pipeline_info = data_types.PipelineInfo( pipeline_name='my_pipeline_name', pipeline_root=os.environ.get('TEST_TMP_DIR', self.get_temp_dir()), run_id='my_run_id') component_info = data_types.ComponentInfo( component_type='a.b.c', component_id='my_component_id') self._mock_metadata.get_artifacts_by_info.side_effect = list( input_dict['input_a'].get()) self._mock_metadata.register_execution.side_effect = [execution_id] self._mock_metadata.previous_execution.side_effect = [None] driver = base_driver.BaseDriver(metadata_handler=self._mock_metadata) execution_decision = driver.pre_execution( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, driver_args=driver_args, pipeline_info=pipeline_info, component_info=component_info) self.assertFalse(execution_decision.use_cached_results) self.assertEqual(execution_decision.execution_id, 1) self.assertItemsEqual(execution_decision.exec_properties, exec_properties) self.assertEqual( execution_decision.output_dict['output_a'][0].uri, os.path.join(pipeline_info.pipeline_root, component_info.component_id, 'output_a', str(execution_id), 'split', '')) def test_pre_execution_cached(self): input_dict = { 'input_a': channel.Channel( type_name='input_a', artifacts=[types.TfxArtifact(type_name='input_a')]) } output_dict = { 'output_a': channel.Channel( type_name='output_a', artifacts=[ types.TfxArtifact(type_name='output_a', split='split') ]) } execution_id = 1 exec_properties = copy.deepcopy(self._exec_properties) driver_args = data_types.DriverArgs( worker_name='worker_name', base_output_dir='base', enable_cache=True) pipeline_info = data_types.PipelineInfo( pipeline_name='my_pipeline_name', pipeline_root=os.environ.get('TEST_TMP_DIR', self.get_temp_dir()), run_id='my_run_id') component_info = data_types.ComponentInfo( component_type='a.b.c', component_id='my_component_id') self._mock_metadata.get_artifacts_by_info.side_effect = list( input_dict['input_a'].get()) self._mock_metadata.register_execution.side_effect = [execution_id] self._mock_metadata.previous_execution.side_effect = [2] self._mock_metadata.fetch_previous_result_artifacts.side_effect = [ self._output_dict ] driver = base_driver.BaseDriver(metadata_handler=self._mock_metadata) execution_decision = driver.pre_execution( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, driver_args=driver_args, pipeline_info=pipeline_info, component_info=component_info) self.assertTrue(execution_decision.use_cached_results) self.assertEqual(execution_decision.execution_id, 1) self.assertItemsEqual(execution_decision.exec_properties, exec_properties) self.assertItemsEqual(execution_decision.output_dict, self._output_dict) if __name__ == '__main__': tf.test.main()
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for tfx.components.base.base_driver.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import os import tensorflow as tf from tfx.components.base import base_driver from tfx.orchestration import data_types from tfx.utils import channel from tfx.utils import types class BaseDriverTest(tf.test.TestCase): def setUp(self): self._mock_metadata = tf.test.mock.Mock() self._input_dict = { 'input_data': [types.TfxArtifact(type_name='InputType')], } input_dir = os.path.join( os.environ.get('TEST_TMP_DIR', self.get_temp_dir()), self._testMethodName, 'input_dir') # valid input artifacts must have a uri pointing to an existing directory. for key, input_list in self._input_dict.items(): for index, artifact in enumerate(input_list): artifact.id = index + 1 uri = os.path.join(input_dir, key, str(artifact.id), '') artifact.uri = uri tf.gfile.MakeDirs(uri) self._output_dict = { 'output_data': [types.TfxArtifact(type_name='OutputType')], } self._exec_properties = { 'key': 'value', } self._base_output_dir = os.path.join( os.environ.get('TEST_TMP_DIR', self.get_temp_dir()), self._testMethodName, 'base_output_dir') self._driver_args = data_types.DriverArgs( worker_name='worker_name', base_output_dir=self._base_output_dir, enable_cache=True) self._execution_id = 100 def _check_output(self, execution_decision): output_dict = execution_decision.output_dict self.assertEqual(self._output_dict.keys(), output_dict.keys()) for name, output_list in output_dict.items(): for (original_output, output) in zip(self._output_dict[name], output_list): if execution_decision.execution_id: # Uncached results should have a newly created uri. self.assertEqual( os.path.join(self._base_output_dir, name, str(execution_decision.execution_id), ''), output.uri) else: # Cached results have a different set of uri. self.assertEqual( os.path.join(self._base_output_dir, name, str(self._execution_id), ''), output.uri) self.assertEqual(original_output.split, output.split) def test_prepare_execution(self): input_dict = copy.deepcopy(self._input_dict) output_dict = copy.deepcopy(self._output_dict) exec_properties = copy.deepcopy(self._exec_properties) self._mock_metadata.previous_run.return_value = None self._mock_metadata.prepare_execution.return_value = self._execution_id driver = base_driver.BaseDriver(metadata_handler=self._mock_metadata) execution_decision = driver.prepare_execution(input_dict, output_dict, exec_properties, self._driver_args) self.assertEqual(self._execution_id, execution_decision.execution_id) self._check_output(execution_decision) def test_cached_execution(self): input_dict = copy.deepcopy(self._input_dict) output_dict = copy.deepcopy(self._output_dict) exec_properties = copy.deepcopy(self._exec_properties) cached_output_dict = copy.deepcopy(self._output_dict) for key, artifact_list in cached_output_dict.items(): for artifact in artifact_list: artifact.uri = os.path.join(self._base_output_dir, key, str(self._execution_id), '') # valid cached artifacts must have an existing uri. tf.gfile.MakeDirs(artifact.uri) self._mock_metadata.previous_run.return_value = self._execution_id self._mock_metadata.fetch_previous_result_artifacts.return_value = cached_output_dict driver = base_driver.BaseDriver(metadata_handler=self._mock_metadata) execution_decision = driver.prepare_execution(input_dict, output_dict, exec_properties, self._driver_args) self.assertIsNone(execution_decision.execution_id) self._check_output(execution_decision) def test_artifact_missing(self): input_dict = copy.deepcopy(self._input_dict) input_dict['input_data'][0].uri = 'should/not/exist' output_dict = copy.deepcopy(self._output_dict) exec_properties = copy.deepcopy(self._exec_properties) driver_options = copy.deepcopy(self._driver_args) driver_options.enable_cache = False cached_output_dict = copy.deepcopy(self._output_dict) for key, artifact_list in cached_output_dict.items(): for artifact in artifact_list: artifact.uri = os.path.join(self._base_output_dir, key, str(self._execution_id), '') # valid cached artifacts must have an existing uri. tf.gfile.MakeDirs(artifact.uri) self._mock_metadata.previous_run.return_value = self._execution_id self._mock_metadata.fetch_previous_result_artifacts.return_value = cached_output_dict driver = base_driver.BaseDriver(self._mock_metadata) with self.assertRaises(RuntimeError): driver.prepare_execution(input_dict, output_dict, exec_properties, driver_options) def test_no_cache_on_missing_uri(self): input_dict = copy.deepcopy(self._input_dict) output_dict = copy.deepcopy(self._output_dict) exec_properties = copy.deepcopy(self._exec_properties) cached_output_dict = copy.deepcopy(self._output_dict) for key, artifact_list in cached_output_dict.items(): for artifact in artifact_list: artifact.uri = os.path.join(self._base_output_dir, key, str(self._execution_id), '') # Non existing output uri will force a cache miss. self.assertFalse(tf.gfile.Exists(artifact.uri)) self._mock_metadata.previous_run.return_value = self._execution_id self._mock_metadata.fetch_previous_result_artifacts.return_value = cached_output_dict actual_execution_id = self._execution_id + 1 self._mock_metadata.prepare_execution.return_value = actual_execution_id driver = base_driver.BaseDriver(metadata_handler=self._mock_metadata) execution_decision = driver.prepare_execution(input_dict, output_dict, exec_properties, self._driver_args) self.assertEqual(actual_execution_id, execution_decision.execution_id) self._check_output(execution_decision) def test_pre_execution_new_execution(self): input_dict = { 'input_a': channel.Channel( type_name='input_a', artifacts=[types.TfxArtifact(type_name='input_a')]) } output_dict = { 'output_a': channel.Channel( type_name='output_a', artifacts=[ types.TfxArtifact(type_name='output_a', split='split') ]) } execution_id = 1 exec_properties = copy.deepcopy(self._exec_properties) driver_args = data_types.DriverArgs( worker_name='worker_name', base_output_dir='base', enable_cache=True) pipeline_info = data_types.PipelineInfo( pipeline_name='my_pipeline_name', pipeline_root=os.environ.get('TEST_TMP_DIR', self.get_temp_dir()), run_id='my_run_id') component_info = data_types.ComponentInfo( component_type='a.b.c', component_id='my_component_id') self._mock_metadata.get_artifacts_by_info.side_effect = list( input_dict['input_a'].get()) self._mock_metadata.register_execution.side_effect = [execution_id] self._mock_metadata.previous_execution.side_effect = [None] driver = base_driver.BaseDriver(metadata_handler=self._mock_metadata) execution_decision = driver.pre_execution( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, driver_args=driver_args, pipeline_info=pipeline_info, component_info=component_info) self.assertFalse(execution_decision.use_cached_results) self.assertEqual(execution_decision.execution_id, 1) self.assertItemsEqual(execution_decision.exec_properties, exec_properties) self.assertEqual( execution_decision.output_dict['output_a'][0].uri, os.path.join(pipeline_info.pipeline_root, component_info.component_id, 'output_a', str(execution_id), 'split', '')) def test_pre_execution_cached(self): input_dict = { 'input_a': channel.Channel( type_name='input_a', artifacts=[types.TfxArtifact(type_name='input_a')]) } output_dict = { 'output_a': channel.Channel( type_name='output_a', artifacts=[ types.TfxArtifact(type_name='output_a', split='split') ]) } execution_id = 1 exec_properties = copy.deepcopy(self._exec_properties) driver_args = data_types.DriverArgs( worker_name='worker_name', base_output_dir='base', enable_cache=True) pipeline_info = data_types.PipelineInfo( pipeline_name='my_pipeline_name', pipeline_root=os.environ.get('TEST_TMP_DIR', self.get_temp_dir()), run_id='my_run_id') component_info = data_types.ComponentInfo( component_type='a.b.c', component_id='my_component_id') self._mock_metadata.get_artifacts_by_info.side_effect = list( input_dict['input_a'].get()) self._mock_metadata.register_execution.side_effect = [execution_id] self._mock_metadata.previous_execution.side_effect = [2] self._mock_metadata.fetch_previous_result_artifacts.side_effect = [ self._output_dict ] driver = base_driver.BaseDriver(metadata_handler=self._mock_metadata) execution_decision = driver.pre_execution( input_dict=input_dict, output_dict=output_dict, exec_properties=exec_properties, driver_args=driver_args, pipeline_info=pipeline_info, component_info=component_info) self.assertTrue(execution_decision.use_cached_results) self.assertEqual(execution_decision.execution_id, 1) self.assertItemsEqual(execution_decision.exec_properties, exec_properties) self.assertItemsEqual(execution_decision.output_dict, self._output_dict) if __name__ == '__main__': tf.test.main()
en
0.838823
# Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Tests for tfx.components.base.base_driver. # valid input artifacts must have a uri pointing to an existing directory. # Uncached results should have a newly created uri. # Cached results have a different set of uri. # valid cached artifacts must have an existing uri. # valid cached artifacts must have an existing uri. # Non existing output uri will force a cache miss.
1.881947
2
trace-creator/trace-creator.py
CSIRT-MU/trace-share
1
6630034
#!/usr/bin/env python # # BSD 3-Clause License # # Copyright (c) 2018, CSIRT-MU, Masaryk University # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # """ Script to run commands on attacker machine within the TraceCreator and capture packet trace and scripts output based on given configuration. Needs elevated privileges due to tshark ability to store files in a shared folder. Requirements: * tshark * Python 3 * Python modules: termcolor, paramiko, YAML Usage: # ./trace-creator.py -c <configuration_file> -o <output_directory> -i <capture_interface> -d <additional_capture_delay> -u <ssh_username> -p <ssh_password> """ # Common python modules import sys # Common system functions import os # Common operating system functions import argparse # Arguments parser import subprocess # Executes commands in shell import time # Manipulates time values import re # Regular expressions support import shlex # Split the string s using shell-like syntax import shutil # Copy files and directory trees # Additional python modules from termcolor import cprint # Colors in the console output import paramiko # SSH connection module import yaml # YAML configuration parser def create_capture_directory(directory): """ Creates temporary capture directory (script requires other directory than virtually shared). :param directory: capture directory path """ if not os.path.exists(directory): os.makedirs(directory) subprocess.call("chmod 777 " + directory, shell=True) def get_task_id(task, timestamp): """ Generates task ID with format "<timestamp>-<task_name>". :param task: parsed configuration of one task from the whole configuration file :param timestamp: timestamp of the task :return: normalized file name """ task_id = "{timestamp}-{name}".format(timestamp=timestamp, name=task["name"][:50].lower()) # Remove invalid characters from the tak name return re.sub(r'[ @#$%^&*<>{}:|;\'\\\"/]', r'_', task_id) def host_configure(host, command, timestamp, output_directory, username, password): """ Run given command on the host via SSH connection. :param host: IP address of the remote host :param command: command to run :param timestamp: timestamp of the task :param output_directory: directory path to store commands output :param username: SSH connection username :param password: SSH connection password """ cprint("[info] Configuration of host: " + host, "green") ssh_client = paramiko.SSHClient() ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh_client.connect(host, username=username, password=password) stdin_handle, stdout_handle, stderr_handle = ssh_client.exec_command(command) stdout = stdout_handle.read() stderr = stderr_handle.read() if stdout or stderr: directory_name = "{path}/{task_id}/".format(path=output_directory, task_id=get_task_id(task, timestamp)) if not os.path.exists(directory_name): os.makedirs(directory_name) if stdout: with open(directory_name + host + ".out", 'w') as out_file: out_file.write(stdout) cprint("[info] Command output: \n" + str(stdout), "green") if stderr: with open(directory_name + host + ".err", 'w') as err_file: err_file.write(stdout) cprint("[warning] Command error output: \n" + str(stderr), "blue") ssh_client.close() def start_tshark(task, network_interface, capture_directory, timestamp): """ Starts tshark capture process based on task configuration. :param task: parsed configuration of one task from the whole configuration file :param network_interface: capture network interface :param capture_directory: temporary directory to store generated data :param timestamp: timestamp of the task :return: initialized tshark process """ cprint("[info] Starting tshark capture...", "green") capture_file_path = "{path}/{filename}.pcapng".format(path=capture_directory, filename=get_task_id(task, timestamp)) tshark_command = "tshark -i {interface} -q -w {output_file} -F pcapng".format(interface=network_interface, output_file=capture_file_path) if "filter" in task: tshark_command += " -f \"{filter}\"".format(filter=task["filter"]) # shlex.split splits into shell args list, alternatively use without shlex.split and add shell=True tshark_process = subprocess.Popen(shlex.split(tshark_command), stdout=subprocess.PIPE, stderr=subprocess.PIPE) return tshark_process def run_command(task, timestamp, output_directory): """ Run task command and provide its output. :param task: parsed configuration of one task from the whole configuration file :param timestamp: timestamp of the task :param output_directory: directory for log and error files """ cprint("[info] Running command: " + task["command"], "green") process = subprocess.Popen(shlex.split(task["command"]), stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() if stdout: log_filename = "{path}/{filename}.out".format(path=output_directory, filename=get_task_id(task, timestamp)) with open(log_filename, 'w') as out_file: out_file.write(stdout) cprint("[info] Command output: \n" + str(stdout), "green") if stderr: err_filename = "{path}/{filename}.err".format(path=output_directory, filename=get_task_id(task, timestamp)) with open(err_filename, 'w') as err_file: err_file.write(stderr) cprint("[warning] Command error output: \n" + str(stderr), "blue") def move_files(source_directory, destination_directory): """ Move all files within the source_directory to the destination_directory. :param source_directory: source directory with files :param destination_directory: destination directory """ for item in os.listdir(source_directory): source = os.path.join(source_directory, item) destination = os.path.join(destination_directory, item) shutil.move(source, destination) def process_creator_task(task, capture_directory, args): """ Process task in given configuration. Prepare hosts, start tshark capture with specified filter, run desired command, and provide command outputs together with generated capture files. :param task: parsed configuration of one task from the whole configuration file :param capture_directory: temporary directory to store generated data :param args: creator script arguments """ cprint("[info] Processing task: " + task["name"], "green") task_timestamp = time.strftime("%Y-%m-%d_%H-%M-%S") if "configuration" in task: for host_configuration in task["configuration"]: host_configure(host_configuration["ip"], host_configuration["command"], task_timestamp, args.output_directory, args.username, args.password) tshark_process = start_tshark(task, args.interface, capture_directory, task_timestamp) run_command(task, task_timestamp, args.output_directory) time.sleep(args.delay) tshark_process.terminate() move_files(capture_directory, args.output_directory) cprint("[info] Finished task: " + task["name"], "green") if __name__ == "__main__": # Argument parser automatically creates -h argument parser = argparse.ArgumentParser() parser.add_argument("-c", "--configuration", help="Path to the configuration file.", type=argparse.FileType('r'), required=False, default="/vagrant/configuration/trace-creator.yml") parser.add_argument("-o", "--output_directory", help="Output directory for captured files.", type=str, required=False, default="/vagrant/capture/") parser.add_argument("-i", "--interface", help="Capture network interface.", type=str, required=False, default="enp0s8") parser.add_argument("-d", "--delay", help="Delay to stop capture after process finished (in seconds).", type=int, required=False, default=3) parser.add_argument("-u", "--username", help="Username for connection to remote host via SSH.", type=str, required=False, default="vagrant") parser.add_argument("-p", "--password", help="Username for connection to remote host via SSH.", type=str, required=False, default="vagrant") args = parser.parse_args() try: configuration = yaml.load(args.configuration) except yaml.YAMLError as exc: cprint("[error] YAML configuration not correctly loaded: " + str(exc), "red") sys.exit(1) # Create temporary capture directory (necessary for tshark) capture_directory = "/tmp/capture/" create_capture_directory(capture_directory) # Create output directory if not exists if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) cprint("[info] Starting commands execution and packet capture...", "green") for task in configuration: process_creator_task(task, capture_directory, args) cprint("[info] All data exported!", "green") cprint("[info] Now you can destroy TraceCreator environment using \"vagrant destroy\" command.", "green")
#!/usr/bin/env python # # BSD 3-Clause License # # Copyright (c) 2018, CSIRT-MU, Masaryk University # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # """ Script to run commands on attacker machine within the TraceCreator and capture packet trace and scripts output based on given configuration. Needs elevated privileges due to tshark ability to store files in a shared folder. Requirements: * tshark * Python 3 * Python modules: termcolor, paramiko, YAML Usage: # ./trace-creator.py -c <configuration_file> -o <output_directory> -i <capture_interface> -d <additional_capture_delay> -u <ssh_username> -p <ssh_password> """ # Common python modules import sys # Common system functions import os # Common operating system functions import argparse # Arguments parser import subprocess # Executes commands in shell import time # Manipulates time values import re # Regular expressions support import shlex # Split the string s using shell-like syntax import shutil # Copy files and directory trees # Additional python modules from termcolor import cprint # Colors in the console output import paramiko # SSH connection module import yaml # YAML configuration parser def create_capture_directory(directory): """ Creates temporary capture directory (script requires other directory than virtually shared). :param directory: capture directory path """ if not os.path.exists(directory): os.makedirs(directory) subprocess.call("chmod 777 " + directory, shell=True) def get_task_id(task, timestamp): """ Generates task ID with format "<timestamp>-<task_name>". :param task: parsed configuration of one task from the whole configuration file :param timestamp: timestamp of the task :return: normalized file name """ task_id = "{timestamp}-{name}".format(timestamp=timestamp, name=task["name"][:50].lower()) # Remove invalid characters from the tak name return re.sub(r'[ @#$%^&*<>{}:|;\'\\\"/]', r'_', task_id) def host_configure(host, command, timestamp, output_directory, username, password): """ Run given command on the host via SSH connection. :param host: IP address of the remote host :param command: command to run :param timestamp: timestamp of the task :param output_directory: directory path to store commands output :param username: SSH connection username :param password: SSH connection password """ cprint("[info] Configuration of host: " + host, "green") ssh_client = paramiko.SSHClient() ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh_client.connect(host, username=username, password=password) stdin_handle, stdout_handle, stderr_handle = ssh_client.exec_command(command) stdout = stdout_handle.read() stderr = stderr_handle.read() if stdout or stderr: directory_name = "{path}/{task_id}/".format(path=output_directory, task_id=get_task_id(task, timestamp)) if not os.path.exists(directory_name): os.makedirs(directory_name) if stdout: with open(directory_name + host + ".out", 'w') as out_file: out_file.write(stdout) cprint("[info] Command output: \n" + str(stdout), "green") if stderr: with open(directory_name + host + ".err", 'w') as err_file: err_file.write(stdout) cprint("[warning] Command error output: \n" + str(stderr), "blue") ssh_client.close() def start_tshark(task, network_interface, capture_directory, timestamp): """ Starts tshark capture process based on task configuration. :param task: parsed configuration of one task from the whole configuration file :param network_interface: capture network interface :param capture_directory: temporary directory to store generated data :param timestamp: timestamp of the task :return: initialized tshark process """ cprint("[info] Starting tshark capture...", "green") capture_file_path = "{path}/{filename}.pcapng".format(path=capture_directory, filename=get_task_id(task, timestamp)) tshark_command = "tshark -i {interface} -q -w {output_file} -F pcapng".format(interface=network_interface, output_file=capture_file_path) if "filter" in task: tshark_command += " -f \"{filter}\"".format(filter=task["filter"]) # shlex.split splits into shell args list, alternatively use without shlex.split and add shell=True tshark_process = subprocess.Popen(shlex.split(tshark_command), stdout=subprocess.PIPE, stderr=subprocess.PIPE) return tshark_process def run_command(task, timestamp, output_directory): """ Run task command and provide its output. :param task: parsed configuration of one task from the whole configuration file :param timestamp: timestamp of the task :param output_directory: directory for log and error files """ cprint("[info] Running command: " + task["command"], "green") process = subprocess.Popen(shlex.split(task["command"]), stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() if stdout: log_filename = "{path}/{filename}.out".format(path=output_directory, filename=get_task_id(task, timestamp)) with open(log_filename, 'w') as out_file: out_file.write(stdout) cprint("[info] Command output: \n" + str(stdout), "green") if stderr: err_filename = "{path}/{filename}.err".format(path=output_directory, filename=get_task_id(task, timestamp)) with open(err_filename, 'w') as err_file: err_file.write(stderr) cprint("[warning] Command error output: \n" + str(stderr), "blue") def move_files(source_directory, destination_directory): """ Move all files within the source_directory to the destination_directory. :param source_directory: source directory with files :param destination_directory: destination directory """ for item in os.listdir(source_directory): source = os.path.join(source_directory, item) destination = os.path.join(destination_directory, item) shutil.move(source, destination) def process_creator_task(task, capture_directory, args): """ Process task in given configuration. Prepare hosts, start tshark capture with specified filter, run desired command, and provide command outputs together with generated capture files. :param task: parsed configuration of one task from the whole configuration file :param capture_directory: temporary directory to store generated data :param args: creator script arguments """ cprint("[info] Processing task: " + task["name"], "green") task_timestamp = time.strftime("%Y-%m-%d_%H-%M-%S") if "configuration" in task: for host_configuration in task["configuration"]: host_configure(host_configuration["ip"], host_configuration["command"], task_timestamp, args.output_directory, args.username, args.password) tshark_process = start_tshark(task, args.interface, capture_directory, task_timestamp) run_command(task, task_timestamp, args.output_directory) time.sleep(args.delay) tshark_process.terminate() move_files(capture_directory, args.output_directory) cprint("[info] Finished task: " + task["name"], "green") if __name__ == "__main__": # Argument parser automatically creates -h argument parser = argparse.ArgumentParser() parser.add_argument("-c", "--configuration", help="Path to the configuration file.", type=argparse.FileType('r'), required=False, default="/vagrant/configuration/trace-creator.yml") parser.add_argument("-o", "--output_directory", help="Output directory for captured files.", type=str, required=False, default="/vagrant/capture/") parser.add_argument("-i", "--interface", help="Capture network interface.", type=str, required=False, default="enp0s8") parser.add_argument("-d", "--delay", help="Delay to stop capture after process finished (in seconds).", type=int, required=False, default=3) parser.add_argument("-u", "--username", help="Username for connection to remote host via SSH.", type=str, required=False, default="vagrant") parser.add_argument("-p", "--password", help="Username for connection to remote host via SSH.", type=str, required=False, default="vagrant") args = parser.parse_args() try: configuration = yaml.load(args.configuration) except yaml.YAMLError as exc: cprint("[error] YAML configuration not correctly loaded: " + str(exc), "red") sys.exit(1) # Create temporary capture directory (necessary for tshark) capture_directory = "/tmp/capture/" create_capture_directory(capture_directory) # Create output directory if not exists if not os.path.exists(args.output_directory): os.makedirs(args.output_directory) cprint("[info] Starting commands execution and packet capture...", "green") for task in configuration: process_creator_task(task, capture_directory, args) cprint("[info] All data exported!", "green") cprint("[info] Now you can destroy TraceCreator environment using \"vagrant destroy\" command.", "green")
en
0.692866
#!/usr/bin/env python # # BSD 3-Clause License # # Copyright (c) 2018, CSIRT-MU, Masaryk University # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Script to run commands on attacker machine within the TraceCreator and capture packet trace and scripts output based on given configuration. Needs elevated privileges due to tshark ability to store files in a shared folder. Requirements: * tshark * Python 3 * Python modules: termcolor, paramiko, YAML Usage: # ./trace-creator.py -c <configuration_file> -o <output_directory> -i <capture_interface> -d <additional_capture_delay> -u <ssh_username> -p <ssh_password> # Common python modules # Common system functions # Common operating system functions # Arguments parser # Executes commands in shell # Manipulates time values # Regular expressions support # Split the string s using shell-like syntax # Copy files and directory trees # Additional python modules # Colors in the console output # SSH connection module # YAML configuration parser Creates temporary capture directory (script requires other directory than virtually shared). :param directory: capture directory path Generates task ID with format "<timestamp>-<task_name>". :param task: parsed configuration of one task from the whole configuration file :param timestamp: timestamp of the task :return: normalized file name # Remove invalid characters from the tak name #$%^&*<>{}:|;\'\\\"/]', r'_', task_id) Run given command on the host via SSH connection. :param host: IP address of the remote host :param command: command to run :param timestamp: timestamp of the task :param output_directory: directory path to store commands output :param username: SSH connection username :param password: SSH connection password Starts tshark capture process based on task configuration. :param task: parsed configuration of one task from the whole configuration file :param network_interface: capture network interface :param capture_directory: temporary directory to store generated data :param timestamp: timestamp of the task :return: initialized tshark process # shlex.split splits into shell args list, alternatively use without shlex.split and add shell=True Run task command and provide its output. :param task: parsed configuration of one task from the whole configuration file :param timestamp: timestamp of the task :param output_directory: directory for log and error files Move all files within the source_directory to the destination_directory. :param source_directory: source directory with files :param destination_directory: destination directory Process task in given configuration. Prepare hosts, start tshark capture with specified filter, run desired command, and provide command outputs together with generated capture files. :param task: parsed configuration of one task from the whole configuration file :param capture_directory: temporary directory to store generated data :param args: creator script arguments # Argument parser automatically creates -h argument # Create temporary capture directory (necessary for tshark) # Create output directory if not exists
1.220829
1
src/envoxy/tests/test_asserts.py
muzzley/envoxy
2
6630035
from ..asserts import * from .fixtures import test_payload import pytest import datetime from ..exceptions import ValidationException ##### assertz ##### def test_assertz_ok(test_payload): assert assertz(True, "Error", 0, 500) == None assert assertz(test_payload["username"] == "", "Error", 0, 500) == None def test_assertz_nok(test_payload): with pytest.raises(ValidationException): assertz(False, "Error", 0, 500) with pytest.raises(ValidationException): assertz(type(test_payload["application_ids"]) is not list, "Error", 0, 500) ##### assertz_mandatory ##### def test_assertz_mandatory_ok(test_payload): assert assertz_mandatory(test_payload, "password") == None assert assertz_mandatory(test_payload["application_ids"], 1) == None def test_assertz_mandatory_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_mandatory(test_payload, "non_existent_key") assert str(e.value) == "Mandatory: non_existent_key" with pytest.raises(ValidationException) as e: assertz_mandatory(test_payload, "") assert str(e.value) == "Key must not be emtpy" with pytest.raises(ValidationException) as e: assertz_mandatory(test_payload, "username") with pytest.raises(ValidationException) as e: assertz_mandatory(test_payload["user"], "last_name") assert str(e.value) == "Mandatory: last_name" with pytest.raises(ValidationException) as e: assertz_mandatory({}) assert str(e.value) == "Mandatory: {}" with pytest.raises(ValidationException) as e: assertz_mandatory(test_payload, "features") assert str(e.value) == "Mandatory: features" with pytest.raises(ValidationException) as e: null_value = None assertz_mandatory(null_value) assert str(e.value) == "Mandatory: None" ##### assertz_string ##### def test_assertz_string_ok(test_payload): assert assertz_string(test_payload["user"]["name"]) == None assert assertz_string(u"random unicode string") == None assert assertz_string(None) == None assert assertz_string(test_payload, "password") == None def test_assertz_string_nok(test_payload): with pytest.raises(ValidationException) as e: assert assertz_string(test_payload, "application_ids", 2000, 400) is not None assert str(e.value) == f"Invalid value type: {test_payload['application_ids']}" with pytest.raises(ValidationException) as e: assert assertz_string(test_payload, "age", 2000) is not None assert str(e.value) == f"Invalid value type: {test_payload['age']}" ##### assertz_integer ##### def test_assertz_integer_ok(test_payload): assert assertz_integer(test_payload["age"]) == None assert assertz_integer(-40000) == None assert assertz_integer(None) == None def test_assertz_integer_nok(test_payload): with pytest.raises(ValidationException) as e: assert assertz_integer(test_payload["user"], "name", 2000, 400) is not None assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assert assertz_integer(test_payload, "user", 2001) is not None assert str(e.value) == f"Invalid value type: {test_payload['user']}" ##### assertz_float ##### def test_assertz_float_ok(test_payload): assert assertz_float(test_payload["value"]) == None assert assertz_float(3.14159265359) == None assert assertz_float(None) == None def test_assertz_float_nok(test_payload): with pytest.raises(ValidationException) as e: assert assertz_float(test_payload["user"], "name", 2000, 400) is not None assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assert assertz_float(test_payload, "user", 2001) is not None assert str(e.value) == f"Invalid value type: {test_payload['user']}" ##### assertz_timestamp ##### def test_assertz_timestamp_ok(test_payload): assert assertz_timestamp(test_payload["created"]) == None assert assertz_timestamp(datetime.datetime.now()) == None assert assertz_timestamp(datetime.date.today()) == None assert assertz_timestamp(None) == None def test_assertz_timestamp_nok(test_payload): with pytest.raises(ValidationException) as e: assert assertz_timestamp(test_payload["user"], "name", 2000, 400) assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assert assertz_timestamp(test_payload["user"]) assert str(e.value) == f"Invalid value type: {test_payload['user']}" ##### assertz_boolean ##### def test_assertz_boolean_ok(test_payload): assert assertz_boolean(test_payload["active"]) == None assert assertz_boolean(False) == None assert assertz_boolean(None) == None def test_assertz_boolean_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_boolean(test_payload["user"], "name", 2000, 400) assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assertz_boolean(test_payload, "user", 2001) assert str(e.value) == f"Invalid value type: {test_payload['user']}" ##### assertz_complex ##### def test_assertz_complex_ok(test_payload): assert assertz_complex(test_payload, "user") == None assert assertz_complex(test_payload["application_ids"]) == None assert assertz_complex('{"key": "value", "key1": {"key2": "value"}}') == None assert assertz_complex(None) == None def test_assertz_complex_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_complex(test_payload["user"], "name", 2000, 400) assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assertz_complex(test_payload, "created", 2001) assert str(e.value) == f"Invalid value type: {test_payload['created']}" with pytest.raises(ValidationException) as e: assertz_complex('[]') assert str(e.value) == "Invalid value type: []" ##### assertz_dict ##### def test_assertz_dict_ok(test_payload): assert assertz_dict(test_payload, "user") == None assert assertz_dict({"key": "value", "key1": {"key2": "value"}}) == None assert assertz_dict(None) == None def test_assertz_dict_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_dict(test_payload["user"], "name", 2000, 400) assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assertz_dict(test_payload, "password", 2001) assert str(e.value) == f"Invalid value type: {test_payload['password']}" with pytest.raises(ValidationException) as e: assertz_dict({}) assert str(e.value) == "Invalid value type: {}" ##### assertz_json ##### def test_assertz_json_ok(test_payload): assert assertz_json(test_payload, "headers") == None assert assertz_json('{"key": "value", "key1": {"key2": "value"}}') == None assert assertz_json(None) == None def test_assertz_json_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_json(test_payload["user"], "name", 2000, 400) assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assertz_json(test_payload, "features", 2001) assert str(e.value) == f"Invalid value type: {test_payload['features']}" with pytest.raises(ValidationException) as e: assertz_json('{}') assert str(e.value) == "Invalid value type: {}" ##### assertz_array ##### def test_assertz_array_ok(test_payload): assert assertz_array(test_payload, "application_ids") == None assert assertz_array(["a", "b", "c"]) == None assert assertz_array(None) == None def test_assertz_array_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_array(test_payload["user"], "name", 2000, 400) assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assertz_array(test_payload, "user", 2001) assert str(e.value) == f"Invalid value type: {test_payload['user']}" with pytest.raises(ValidationException) as e: assertz_array([]) assert str(e.value) == f"Invalid value type: []" ##### assertz_uuid ##### def test_assertz_uuid_ok(test_payload): assert assertz_uuid(test_payload, "unique_id") == None assert assertz_uuid("6912574d-988a-4b34-98c4-424c61d37fef") == None assert assertz_uuid(None) == None def test_assertz_uuid_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_uuid(test_payload["user"], "name") assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assertz_uuid(test_payload, "user") assert str(e.value) == f"Invalid value type: {test_payload['user']}" with pytest.raises(ValidationException) as e: assertz_uuid(test_payload, "features") assert str(e.value) == f"Invalid value type: {test_payload['features']}" with pytest.raises(ValidationException) as e: assertz_uuid(test_payload, "age") assert str(e.value) == f"Invalid value type: {test_payload['age']}" with pytest.raises(ValidationException) as e: assertz_uuid([]) assert str(e.value) == f"Invalid value type: []" ##### assertz_utf8 ##### def test_assertz_utf8_ok(test_payload): assert assertz_utf8(test_payload["user"], "alias") == None assert assertz_utf8(None) == None def test_assertz_utf8_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_utf8(test_payload["user"], "icon") assert str(e.value) == "Invalid utf-8 encoding" with pytest.raises(ValidationException) as e: assertz_utf8(test_payload["age"]) assert str(e.value) == "Invalid utf-8 encoding" with pytest.raises(ValidationException) as e: assertz_utf8(test_payload, "features") assert str(e.value) == "Invalid utf-8 encoding" ##### assertz_ascii ##### def test_assertz_ascii_ok(test_payload): assert assertz_ascii(test_payload["user"], "name") == None assert assertz_ascii(test_payload["regex"]) == None assert assertz_ascii(None) == None def test_assertz_ascii_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_ascii(test_payload["user"], "icon") assert str(e.value) == "Invalid ascii encoding" with pytest.raises(ValidationException) as e: assertz_ascii(test_payload["user"]["alias"]) assert str(e.value) == "Invalid ascii encoding" with pytest.raises(ValidationException) as e: assertz_ascii(test_payload, "features") assert str(e.value) == "Invalid ascii encoding" ##### assertz_hash ##### def test_assertz_hash_ok(test_payload): assert assertz_hash(test_payload, "hash") == None assert assertz_hash("zc6kj0xrb27rs0mthfn9j4m8m8pchy0q8sewh7x0c9o9g") == None assert assertz_hash(None) == None def test_assertz_hash_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_hash(test_payload["user"], "icon") assert str(e.value) == "Invalid hash" with pytest.raises(ValidationException) as e: assertz_hash(test_payload["user"]["alias"]) assert str(e.value) == "Invalid hash" with pytest.raises(ValidationException) as e: assertz_hash("b66hx5xqs6siakp6ne4dj6w9dms7ydgmoxdmgjy33x6wt0iz1efmuxxnfwx7tjsr") assert str(e.value) == "Invalid hash" ##### assertz_uri ##### def test_assertz_url_ok(test_payload): assert assertz_url(test_payload, "website") == None assert assertz_url(test_payload["sample_uri"]) == None assert assertz_url(None) == None def test_assertz_url_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_url(test_payload["user"], "icon") assert str(e.value) == "Invalid url" with pytest.raises(ValidationException) as e: assertz_url(test_payload["user"]["alias"]) assert str(e.value) == "Invalid url" with pytest.raises(ValidationException) as e: assertz_url(test_payload["application_ids"]) assert str(e.value) == "Invalid url" ##### assertz_email ##### def test_assertz_email_ok(test_payload): assert assertz_email(test_payload["user"], "email") == None assert assertz_email(None) == None def test_assertz_email_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_email(test_payload["user"], "icon") assert str(e.value) == "Invalid email" with pytest.raises(ValidationException) as e: assertz_email("john@doe") assert str(e.value) == "Invalid email" ##### assertz_location ##### def test_assertz_location_ok(test_payload): assert assertz_location(test_payload["user"], "home") == None assert assertz_location(test_payload["user"]["work"]) == None assert assertz_location(None) == None def test_assertz_location_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_location(test_payload["user"], "icon") assert str(e.value) == "Invalid location" with pytest.raises(ValidationException) as e: assertz_location(test_payload["username"]) assert str(e.value) == "Invalid location" with pytest.raises(ValidationException) as e: assertz_location(test_payload["location"]) assert str(e.value) == "Invalid location" ##### assertz_phone ##### def test_assertz_phone_ok(test_payload): assert assertz_phone(test_payload["user"], "phone") == None assert assertz_phone(None) == None def test_assertz_phone_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_phone(test_payload["user"], "icon") assert str(e.value) == "Invalid phone" with pytest.raises(ValidationException) as e: assertz_phone(test_payload["username"]) assert str(e.value) == "Invalid phone" with pytest.raises(ValidationException) as e: assertz_phone(test_payload["user"]["cellphone"]) assert str(e.value) == "Invalid phone" ##### assertz_unauthorized ##### def test_assertz_unauthorized_ok(test_payload): assert assertz_unauthorized(test_payload["age"] > 18, "invalid age") == None def test_assertz_unauthorized_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_unauthorized(test_payload["active"] == False, "inactive") assert str(e.value) == "inactive" with pytest.raises(ValidationException) as e: assertz_unauthorized(test_payload["age"] < 25, "age must be under 25") assert str(e.value) == "age must be under 25" with pytest.raises(ValidationException) as e: assertz_unauthorized(test_payload["username"] and test_payload["password"], "username or password should not be empty") assert str(e.value) == "username or password should not be empty" def test_assertz_mandatory_reply_ok(test_payload): _result = assertz_mandatory_reply(test_payload, "activated", 1000, 400) assert 'payload' in _result assert 'status' in _result assert _result['status'] == 400 assert _result['payload']['code'] == 1000 assert _result['payload']['text'] == 'Mandatory: activated'
from ..asserts import * from .fixtures import test_payload import pytest import datetime from ..exceptions import ValidationException ##### assertz ##### def test_assertz_ok(test_payload): assert assertz(True, "Error", 0, 500) == None assert assertz(test_payload["username"] == "", "Error", 0, 500) == None def test_assertz_nok(test_payload): with pytest.raises(ValidationException): assertz(False, "Error", 0, 500) with pytest.raises(ValidationException): assertz(type(test_payload["application_ids"]) is not list, "Error", 0, 500) ##### assertz_mandatory ##### def test_assertz_mandatory_ok(test_payload): assert assertz_mandatory(test_payload, "password") == None assert assertz_mandatory(test_payload["application_ids"], 1) == None def test_assertz_mandatory_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_mandatory(test_payload, "non_existent_key") assert str(e.value) == "Mandatory: non_existent_key" with pytest.raises(ValidationException) as e: assertz_mandatory(test_payload, "") assert str(e.value) == "Key must not be emtpy" with pytest.raises(ValidationException) as e: assertz_mandatory(test_payload, "username") with pytest.raises(ValidationException) as e: assertz_mandatory(test_payload["user"], "last_name") assert str(e.value) == "Mandatory: last_name" with pytest.raises(ValidationException) as e: assertz_mandatory({}) assert str(e.value) == "Mandatory: {}" with pytest.raises(ValidationException) as e: assertz_mandatory(test_payload, "features") assert str(e.value) == "Mandatory: features" with pytest.raises(ValidationException) as e: null_value = None assertz_mandatory(null_value) assert str(e.value) == "Mandatory: None" ##### assertz_string ##### def test_assertz_string_ok(test_payload): assert assertz_string(test_payload["user"]["name"]) == None assert assertz_string(u"random unicode string") == None assert assertz_string(None) == None assert assertz_string(test_payload, "password") == None def test_assertz_string_nok(test_payload): with pytest.raises(ValidationException) as e: assert assertz_string(test_payload, "application_ids", 2000, 400) is not None assert str(e.value) == f"Invalid value type: {test_payload['application_ids']}" with pytest.raises(ValidationException) as e: assert assertz_string(test_payload, "age", 2000) is not None assert str(e.value) == f"Invalid value type: {test_payload['age']}" ##### assertz_integer ##### def test_assertz_integer_ok(test_payload): assert assertz_integer(test_payload["age"]) == None assert assertz_integer(-40000) == None assert assertz_integer(None) == None def test_assertz_integer_nok(test_payload): with pytest.raises(ValidationException) as e: assert assertz_integer(test_payload["user"], "name", 2000, 400) is not None assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assert assertz_integer(test_payload, "user", 2001) is not None assert str(e.value) == f"Invalid value type: {test_payload['user']}" ##### assertz_float ##### def test_assertz_float_ok(test_payload): assert assertz_float(test_payload["value"]) == None assert assertz_float(3.14159265359) == None assert assertz_float(None) == None def test_assertz_float_nok(test_payload): with pytest.raises(ValidationException) as e: assert assertz_float(test_payload["user"], "name", 2000, 400) is not None assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assert assertz_float(test_payload, "user", 2001) is not None assert str(e.value) == f"Invalid value type: {test_payload['user']}" ##### assertz_timestamp ##### def test_assertz_timestamp_ok(test_payload): assert assertz_timestamp(test_payload["created"]) == None assert assertz_timestamp(datetime.datetime.now()) == None assert assertz_timestamp(datetime.date.today()) == None assert assertz_timestamp(None) == None def test_assertz_timestamp_nok(test_payload): with pytest.raises(ValidationException) as e: assert assertz_timestamp(test_payload["user"], "name", 2000, 400) assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assert assertz_timestamp(test_payload["user"]) assert str(e.value) == f"Invalid value type: {test_payload['user']}" ##### assertz_boolean ##### def test_assertz_boolean_ok(test_payload): assert assertz_boolean(test_payload["active"]) == None assert assertz_boolean(False) == None assert assertz_boolean(None) == None def test_assertz_boolean_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_boolean(test_payload["user"], "name", 2000, 400) assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assertz_boolean(test_payload, "user", 2001) assert str(e.value) == f"Invalid value type: {test_payload['user']}" ##### assertz_complex ##### def test_assertz_complex_ok(test_payload): assert assertz_complex(test_payload, "user") == None assert assertz_complex(test_payload["application_ids"]) == None assert assertz_complex('{"key": "value", "key1": {"key2": "value"}}') == None assert assertz_complex(None) == None def test_assertz_complex_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_complex(test_payload["user"], "name", 2000, 400) assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assertz_complex(test_payload, "created", 2001) assert str(e.value) == f"Invalid value type: {test_payload['created']}" with pytest.raises(ValidationException) as e: assertz_complex('[]') assert str(e.value) == "Invalid value type: []" ##### assertz_dict ##### def test_assertz_dict_ok(test_payload): assert assertz_dict(test_payload, "user") == None assert assertz_dict({"key": "value", "key1": {"key2": "value"}}) == None assert assertz_dict(None) == None def test_assertz_dict_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_dict(test_payload["user"], "name", 2000, 400) assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assertz_dict(test_payload, "password", 2001) assert str(e.value) == f"Invalid value type: {test_payload['password']}" with pytest.raises(ValidationException) as e: assertz_dict({}) assert str(e.value) == "Invalid value type: {}" ##### assertz_json ##### def test_assertz_json_ok(test_payload): assert assertz_json(test_payload, "headers") == None assert assertz_json('{"key": "value", "key1": {"key2": "value"}}') == None assert assertz_json(None) == None def test_assertz_json_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_json(test_payload["user"], "name", 2000, 400) assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assertz_json(test_payload, "features", 2001) assert str(e.value) == f"Invalid value type: {test_payload['features']}" with pytest.raises(ValidationException) as e: assertz_json('{}') assert str(e.value) == "Invalid value type: {}" ##### assertz_array ##### def test_assertz_array_ok(test_payload): assert assertz_array(test_payload, "application_ids") == None assert assertz_array(["a", "b", "c"]) == None assert assertz_array(None) == None def test_assertz_array_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_array(test_payload["user"], "name", 2000, 400) assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assertz_array(test_payload, "user", 2001) assert str(e.value) == f"Invalid value type: {test_payload['user']}" with pytest.raises(ValidationException) as e: assertz_array([]) assert str(e.value) == f"Invalid value type: []" ##### assertz_uuid ##### def test_assertz_uuid_ok(test_payload): assert assertz_uuid(test_payload, "unique_id") == None assert assertz_uuid("6912574d-988a-4b34-98c4-424c61d37fef") == None assert assertz_uuid(None) == None def test_assertz_uuid_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_uuid(test_payload["user"], "name") assert str(e.value) == f"Invalid value type: {test_payload['user']['name']}" with pytest.raises(ValidationException) as e: assertz_uuid(test_payload, "user") assert str(e.value) == f"Invalid value type: {test_payload['user']}" with pytest.raises(ValidationException) as e: assertz_uuid(test_payload, "features") assert str(e.value) == f"Invalid value type: {test_payload['features']}" with pytest.raises(ValidationException) as e: assertz_uuid(test_payload, "age") assert str(e.value) == f"Invalid value type: {test_payload['age']}" with pytest.raises(ValidationException) as e: assertz_uuid([]) assert str(e.value) == f"Invalid value type: []" ##### assertz_utf8 ##### def test_assertz_utf8_ok(test_payload): assert assertz_utf8(test_payload["user"], "alias") == None assert assertz_utf8(None) == None def test_assertz_utf8_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_utf8(test_payload["user"], "icon") assert str(e.value) == "Invalid utf-8 encoding" with pytest.raises(ValidationException) as e: assertz_utf8(test_payload["age"]) assert str(e.value) == "Invalid utf-8 encoding" with pytest.raises(ValidationException) as e: assertz_utf8(test_payload, "features") assert str(e.value) == "Invalid utf-8 encoding" ##### assertz_ascii ##### def test_assertz_ascii_ok(test_payload): assert assertz_ascii(test_payload["user"], "name") == None assert assertz_ascii(test_payload["regex"]) == None assert assertz_ascii(None) == None def test_assertz_ascii_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_ascii(test_payload["user"], "icon") assert str(e.value) == "Invalid ascii encoding" with pytest.raises(ValidationException) as e: assertz_ascii(test_payload["user"]["alias"]) assert str(e.value) == "Invalid ascii encoding" with pytest.raises(ValidationException) as e: assertz_ascii(test_payload, "features") assert str(e.value) == "Invalid ascii encoding" ##### assertz_hash ##### def test_assertz_hash_ok(test_payload): assert assertz_hash(test_payload, "hash") == None assert assertz_hash("zc6kj0xrb27rs0mthfn9j4m8m8pchy0q8sewh7x0c9o9g") == None assert assertz_hash(None) == None def test_assertz_hash_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_hash(test_payload["user"], "icon") assert str(e.value) == "Invalid hash" with pytest.raises(ValidationException) as e: assertz_hash(test_payload["user"]["alias"]) assert str(e.value) == "Invalid hash" with pytest.raises(ValidationException) as e: assertz_hash("b66hx5xqs6siakp6ne4dj6w9dms7ydgmoxdmgjy33x6wt0iz1efmuxxnfwx7tjsr") assert str(e.value) == "Invalid hash" ##### assertz_uri ##### def test_assertz_url_ok(test_payload): assert assertz_url(test_payload, "website") == None assert assertz_url(test_payload["sample_uri"]) == None assert assertz_url(None) == None def test_assertz_url_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_url(test_payload["user"], "icon") assert str(e.value) == "Invalid url" with pytest.raises(ValidationException) as e: assertz_url(test_payload["user"]["alias"]) assert str(e.value) == "Invalid url" with pytest.raises(ValidationException) as e: assertz_url(test_payload["application_ids"]) assert str(e.value) == "Invalid url" ##### assertz_email ##### def test_assertz_email_ok(test_payload): assert assertz_email(test_payload["user"], "email") == None assert assertz_email(None) == None def test_assertz_email_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_email(test_payload["user"], "icon") assert str(e.value) == "Invalid email" with pytest.raises(ValidationException) as e: assertz_email("john@doe") assert str(e.value) == "Invalid email" ##### assertz_location ##### def test_assertz_location_ok(test_payload): assert assertz_location(test_payload["user"], "home") == None assert assertz_location(test_payload["user"]["work"]) == None assert assertz_location(None) == None def test_assertz_location_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_location(test_payload["user"], "icon") assert str(e.value) == "Invalid location" with pytest.raises(ValidationException) as e: assertz_location(test_payload["username"]) assert str(e.value) == "Invalid location" with pytest.raises(ValidationException) as e: assertz_location(test_payload["location"]) assert str(e.value) == "Invalid location" ##### assertz_phone ##### def test_assertz_phone_ok(test_payload): assert assertz_phone(test_payload["user"], "phone") == None assert assertz_phone(None) == None def test_assertz_phone_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_phone(test_payload["user"], "icon") assert str(e.value) == "Invalid phone" with pytest.raises(ValidationException) as e: assertz_phone(test_payload["username"]) assert str(e.value) == "Invalid phone" with pytest.raises(ValidationException) as e: assertz_phone(test_payload["user"]["cellphone"]) assert str(e.value) == "Invalid phone" ##### assertz_unauthorized ##### def test_assertz_unauthorized_ok(test_payload): assert assertz_unauthorized(test_payload["age"] > 18, "invalid age") == None def test_assertz_unauthorized_nok(test_payload): with pytest.raises(ValidationException) as e: assertz_unauthorized(test_payload["active"] == False, "inactive") assert str(e.value) == "inactive" with pytest.raises(ValidationException) as e: assertz_unauthorized(test_payload["age"] < 25, "age must be under 25") assert str(e.value) == "age must be under 25" with pytest.raises(ValidationException) as e: assertz_unauthorized(test_payload["username"] and test_payload["password"], "username or password should not be empty") assert str(e.value) == "username or password should not be empty" def test_assertz_mandatory_reply_ok(test_payload): _result = assertz_mandatory_reply(test_payload, "activated", 1000, 400) assert 'payload' in _result assert 'status' in _result assert _result['status'] == 400 assert _result['payload']['code'] == 1000 assert _result['payload']['text'] == 'Mandatory: activated'
de
0.332463
##### assertz ##### ##### assertz_mandatory ##### ##### assertz_string ##### ##### assertz_integer ##### ##### assertz_float ##### ##### assertz_timestamp ##### ##### assertz_boolean ##### ##### assertz_complex ##### ##### assertz_dict ##### ##### assertz_json ##### ##### assertz_array ##### ##### assertz_uuid ##### ##### assertz_utf8 ##### ##### assertz_ascii ##### ##### assertz_hash ##### ##### assertz_uri ##### ##### assertz_email ##### ##### assertz_location ##### ##### assertz_phone ##### ##### assertz_unauthorized #####
2.46758
2
anidbcli/anidbconnector.py
skyejonke/anidbcli
32
6630036
import socket import hashlib import time import os import json import anidbcli.encryptors as encryptors API_ADDRESS = "api.anidb.net" API_PORT = 9000 SOCKET_TIMEOUT = 5 MAX_RECEIVE_SIZE = 65507 # Max size of an UDP packet is about 1400B anyway RETRY_COUNT = 3 API_ENDPOINT_ENCRYPT = "ENCRYPT user=%s&type=1" API_ENDPOINT_LOGIN = "AUTH user=%s&pass=%s&protover=3&client=anidbcli&clientver=1&enc=UTF8" API_ENDPOINT_LOGOUT = "LOGOUT s=%s" ENCRYPTION_ENABLED = 209 LOGIN_ACCEPTED = 200 LOGIN_ACCEPTED_NEW_VERSION_AVAILABLE = 201 class AnidbConnector: def __init__(self, bind_addr = None): """For class initialization use class methods create_plain or create_secure.""" self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) if bind_addr: self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(tuple(bind_addr)) self.socket.connect((socket.gethostbyname_ex(API_ADDRESS)[2][0], API_PORT)) self.socket.settimeout(SOCKET_TIMEOUT) self.crypto = encryptors.PlainTextCrypto() self.salt = None def _set_crypto(self, crypto): self.crypto = crypto @classmethod def create_plain(cls, username, password): """Creates unencrypted UDP API connection using the provided credenitals.""" instance = cls() instance._login(username, password) return instance @classmethod def create_secure(cls, username, password, api_key): """Creates AES128 encrypted UDP API connection using the provided credenitals and users api key.""" instance = cls() enc_res = instance.send_request(API_ENDPOINT_ENCRYPT % username, False) if enc_res["code"] != ENCRYPTION_ENABLED: raise Exception(enc_res["data"]) instance.salt = enc_res["data"].split(" ")[0] md5 = hashlib.md5(bytes(api_key + instance.salt, "ascii")) instance._set_crypto(encryptors.Aes128TextEncryptor(md5.digest())) instance._login(username, password) return instance @classmethod def create_from_session(cls, session_key, sock_addr, api_key, salt): """Crates instance from an existing session. If salt is not None, encrypted instance is created.""" instance = cls(sock_addr) instance.session = session_key if (salt != None): instance.salt = salt md5 = hashlib.md5(bytes(api_key + instance.salt, "ascii")) instance._set_crypto(encryptors.Aes128TextEncryptor(md5.digest())) return instance def _login(self, username, password): response = self.send_request(API_ENDPOINT_LOGIN % (username, password), False) if response["code"] == LOGIN_ACCEPTED or response["code"] == LOGIN_ACCEPTED_NEW_VERSION_AVAILABLE: self.session = response["data"].split(" ")[0] else: raise Exception(response["data"]) def close(self, persistent, persist_file): """Logs out the user from current session and closes the connection.""" if not self.session: raise Exception("Cannot logout: No active session.") if persistent: try: os.makedirs(os.path.dirname(persist_file)) except: pass # Exists d = dict() d["session_key"] = self.session d["timestamp"] = time.time() d["salt"] = None d["sockaddr"] = self.socket.getsockname() if (self.salt): d["salt"] = self.salt with open(persist_file, "w") as file: file.writelines(json.dumps(d)) else: try: os.remove(persist_file) except: pass # does not exist self.send_request(API_ENDPOINT_LOGOUT % self.session, False) self.socket.close() def send_request(self, content, appendSession=True): """Sends request to the API and returns a dictionary containing response code and data.""" if appendSession: if not self.session: raise Exception("No session was set") content += "&s=%s" % self.session res = None for _ in range(RETRY_COUNT): try: self.socket.send(self.crypto.Encrypt(content)) res = self.socket.recv(MAX_RECEIVE_SIZE) break except: # Socket timeout / upd packet not sent time.sleep(1) pass if not res: raise Exception("Cound not connect to anidb UDP API: Socket timeout.") res = self.crypto.Decrypt(res) res = res.rstrip("\n") response = dict() response["code"] = int(res[:3]) response["data"] = res[4:] return response
import socket import hashlib import time import os import json import anidbcli.encryptors as encryptors API_ADDRESS = "api.anidb.net" API_PORT = 9000 SOCKET_TIMEOUT = 5 MAX_RECEIVE_SIZE = 65507 # Max size of an UDP packet is about 1400B anyway RETRY_COUNT = 3 API_ENDPOINT_ENCRYPT = "ENCRYPT user=%s&type=1" API_ENDPOINT_LOGIN = "AUTH user=%s&pass=%s&protover=3&client=anidbcli&clientver=1&enc=UTF8" API_ENDPOINT_LOGOUT = "LOGOUT s=%s" ENCRYPTION_ENABLED = 209 LOGIN_ACCEPTED = 200 LOGIN_ACCEPTED_NEW_VERSION_AVAILABLE = 201 class AnidbConnector: def __init__(self, bind_addr = None): """For class initialization use class methods create_plain or create_secure.""" self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) if bind_addr: self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(tuple(bind_addr)) self.socket.connect((socket.gethostbyname_ex(API_ADDRESS)[2][0], API_PORT)) self.socket.settimeout(SOCKET_TIMEOUT) self.crypto = encryptors.PlainTextCrypto() self.salt = None def _set_crypto(self, crypto): self.crypto = crypto @classmethod def create_plain(cls, username, password): """Creates unencrypted UDP API connection using the provided credenitals.""" instance = cls() instance._login(username, password) return instance @classmethod def create_secure(cls, username, password, api_key): """Creates AES128 encrypted UDP API connection using the provided credenitals and users api key.""" instance = cls() enc_res = instance.send_request(API_ENDPOINT_ENCRYPT % username, False) if enc_res["code"] != ENCRYPTION_ENABLED: raise Exception(enc_res["data"]) instance.salt = enc_res["data"].split(" ")[0] md5 = hashlib.md5(bytes(api_key + instance.salt, "ascii")) instance._set_crypto(encryptors.Aes128TextEncryptor(md5.digest())) instance._login(username, password) return instance @classmethod def create_from_session(cls, session_key, sock_addr, api_key, salt): """Crates instance from an existing session. If salt is not None, encrypted instance is created.""" instance = cls(sock_addr) instance.session = session_key if (salt != None): instance.salt = salt md5 = hashlib.md5(bytes(api_key + instance.salt, "ascii")) instance._set_crypto(encryptors.Aes128TextEncryptor(md5.digest())) return instance def _login(self, username, password): response = self.send_request(API_ENDPOINT_LOGIN % (username, password), False) if response["code"] == LOGIN_ACCEPTED or response["code"] == LOGIN_ACCEPTED_NEW_VERSION_AVAILABLE: self.session = response["data"].split(" ")[0] else: raise Exception(response["data"]) def close(self, persistent, persist_file): """Logs out the user from current session and closes the connection.""" if not self.session: raise Exception("Cannot logout: No active session.") if persistent: try: os.makedirs(os.path.dirname(persist_file)) except: pass # Exists d = dict() d["session_key"] = self.session d["timestamp"] = time.time() d["salt"] = None d["sockaddr"] = self.socket.getsockname() if (self.salt): d["salt"] = self.salt with open(persist_file, "w") as file: file.writelines(json.dumps(d)) else: try: os.remove(persist_file) except: pass # does not exist self.send_request(API_ENDPOINT_LOGOUT % self.session, False) self.socket.close() def send_request(self, content, appendSession=True): """Sends request to the API and returns a dictionary containing response code and data.""" if appendSession: if not self.session: raise Exception("No session was set") content += "&s=%s" % self.session res = None for _ in range(RETRY_COUNT): try: self.socket.send(self.crypto.Encrypt(content)) res = self.socket.recv(MAX_RECEIVE_SIZE) break except: # Socket timeout / upd packet not sent time.sleep(1) pass if not res: raise Exception("Cound not connect to anidb UDP API: Socket timeout.") res = self.crypto.Decrypt(res) res = res.rstrip("\n") response = dict() response["code"] = int(res[:3]) response["data"] = res[4:] return response
en
0.794067
# Max size of an UDP packet is about 1400B anyway For class initialization use class methods create_plain or create_secure. Creates unencrypted UDP API connection using the provided credenitals. Creates AES128 encrypted UDP API connection using the provided credenitals and users api key. Crates instance from an existing session. If salt is not None, encrypted instance is created. Logs out the user from current session and closes the connection. # Exists # does not exist Sends request to the API and returns a dictionary containing response code and data. # Socket timeout / upd packet not sent
2.949848
3
RecoBTag/PerformanceDB/python/measure/Btag_mistag101220.py
ckamtsikis/cmssw
852
6630037
import FWCore.ParameterSet.Config as cms BtagPerformanceESProducer_MISTAGJBPL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGJBPL'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGJBPLtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGJBPLwp_v4_offline') ) BtagPerformanceESProducer_MISTAGJBPM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGJBPM'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGJBPMtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGJBPMwp_v4_offline') ) BtagPerformanceESProducer_MISTAGJBPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGJBPT'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGJBPTtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGJBPTwp_v4_offline') ) BtagPerformanceESProducer_MISTAGJPL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGJPL'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGJPLtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGJPLwp_v4_offline') ) BtagPerformanceESProducer_MISTAGJPM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGJPM'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGJPMtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGJPMwp_v4_offline') ) BtagPerformanceESProducer_MISTAGJPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGJPT'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGJPTtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGJPTwp_v4_offline') ) BtagPerformanceESProducer_MISTAGSSVHEM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGSSVHEM'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGSSVHEMtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGSSVHEMwp_v4_offline') ) BtagPerformanceESProducer_MISTAGSSVHPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGSSVHPT'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGSSVHPTtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGSSVHPTwp_v4_offline') ) BtagPerformanceESProducer_MISTAGTCHEL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGTCHEL'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGTCHELtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGTCHELwp_v4_offline') ) BtagPerformanceESProducer_MISTAGTCHEM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGTCHEM'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGTCHEMtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGTCHEMwp_v4_offline') ) BtagPerformanceESProducer_MISTAGTCHPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGTCHPT'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGTCHPTtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGTCHPTwp_v4_offline') )
import FWCore.ParameterSet.Config as cms BtagPerformanceESProducer_MISTAGJBPL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGJBPL'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGJBPLtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGJBPLwp_v4_offline') ) BtagPerformanceESProducer_MISTAGJBPM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGJBPM'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGJBPMtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGJBPMwp_v4_offline') ) BtagPerformanceESProducer_MISTAGJBPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGJBPT'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGJBPTtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGJBPTwp_v4_offline') ) BtagPerformanceESProducer_MISTAGJPL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGJPL'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGJPLtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGJPLwp_v4_offline') ) BtagPerformanceESProducer_MISTAGJPM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGJPM'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGJPMtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGJPMwp_v4_offline') ) BtagPerformanceESProducer_MISTAGJPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGJPT'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGJPTtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGJPTwp_v4_offline') ) BtagPerformanceESProducer_MISTAGSSVHEM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGSSVHEM'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGSSVHEMtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGSSVHEMwp_v4_offline') ) BtagPerformanceESProducer_MISTAGSSVHPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGSSVHPT'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGSSVHPTtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGSSVHPTwp_v4_offline') ) BtagPerformanceESProducer_MISTAGTCHEL = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGTCHEL'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGTCHELtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGTCHELwp_v4_offline') ) BtagPerformanceESProducer_MISTAGTCHEM = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGTCHEM'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGTCHEMtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGTCHEMwp_v4_offline') ) BtagPerformanceESProducer_MISTAGTCHPT = cms.ESProducer("BtagPerformanceESProducer", # this is what it makes available ComponentName = cms.string('MISTAGTCHPT'), # this is where it gets the payload from PayloadName = cms.string('BTagMISTAGTCHPTtable_v4_offline'), WorkingPointName = cms.string('BTagMISTAGTCHPTwp_v4_offline') )
en
0.977839
# this is what it makes available # this is where it gets the payload from # this is what it makes available # this is where it gets the payload from # this is what it makes available # this is where it gets the payload from # this is what it makes available # this is where it gets the payload from # this is what it makes available # this is where it gets the payload from # this is what it makes available # this is where it gets the payload from # this is what it makes available # this is where it gets the payload from # this is what it makes available # this is where it gets the payload from # this is what it makes available # this is where it gets the payload from # this is what it makes available # this is where it gets the payload from # this is what it makes available # this is where it gets the payload from
1.708547
2
tests/test_commands.py
kali-physi-hacker/pythonanywhere-cli
0
6630038
<reponame>kali-physi-hacker/pythonanywhere-cli import os from mock import patch from pythonanywhere_wrapper.client import PythonAnywhereError from pythonanywhere_cli.commands import Command, StaticFile, Webapps class CommonTestFunctions(object): def command_options(self, **kwargs): options = { "--api_key": None, "--help": False, "--path": None, "--python_version": None, "--url": None, "--user": None, "--version": False, "--virtualenv_path": None, "<domain_name>": None, "<path>": None, "<python_version>": None, "<static_id>": None, "<url>": None, "create": False, "delete": False, "list": True, "reload": False, "static_mapping": True, "update": False, "webapps": False } options.update(kwargs) return options class TestCommand(CommonTestFunctions): class CommandException(Command): COMMANDS = [ "exception" ] def exception(self): raise PythonAnywhereError("Test Exception") def test_get_client_if_options(self): command = Command(self.command_options(**{ "--api_key": "Test Key", "--user": "Test User" })) assert command.client.api_key == "Test Key" assert command.client.user == "Test User" def test_get_client_if_not_options(self): os.environ["PYTHONANYWHERE_CLI_API_KEY"] = "Test Key" os.environ["PYTHONANYWHERE_CLI_USER"] = "Test User" command = Command(self.command_options()) assert command.client.api_key == "Test Key" assert command.client.user == "Test User" @patch("pythonanywhere_cli.commands.snakesay") def test_run_exception(self, snakesay): command_exception = self.CommandException( self.command_options(**{"exception": True}) ) command_exception.run() snakesay.assert_called_with("Test Exception") class TestStaticFile(CommonTestFunctions): @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_create(self, mock_client, snakesay): static_file = StaticFile({ "create": True, "--api_key": None, "--user": None, "<domain_name>": "tests.domain.com", "<url>": "/url/", "<path>": "/path/" }) static_file.run() client_call = static_file.client.webapps.static_files.create client_call.assert_called_with( data={"url": "/url/", "path": "/path/"}, domain_name="tests.domain.com" ) snakesay.assert_called_with(( "Static File mapping created for domain" " tests.domain.com with url /url/ and path /path/" )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_delete(self, mock_client, snakesay): static_file = StaticFile({ "delete": True, "--api_key": None, "--user": None, "<domain_name>": "tests.domain.com", "<static_id>": "123" }) static_file.run() client_call = static_file.client.webapps.static_files.delete client_call.assert_called_with( domain_name="tests.domain.com", static_id="123" ) snakesay.assert_called_with(( "Static File mapping 123 for domain" " tests.domain.com has been removed." )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_list(self, mock_client, snakesay): static_file = StaticFile(self.command_options(**{ "list": True, "<domain_name>": "tests.domain.com", })) client_call = static_file.client.webapps.static_files client_call.return_value.json.return_value = [ {u"url": u"/static/", u"path": u"/static/", u"id": 123}, ] static_file.run() client_call.assert_called_with( domain_name="tests.domain.com" ) snakesay.assert_called_with(( "Static File mappings for domain tests.domain.com: 1. ID: 123" " URL: /static/ Path: /static/" )) @patch("pythonanywhere_cli.commands.snakesay") def test_update_if_not_url_if_not_path(self, snakesay): static_file = StaticFile(self.command_options(**{ "update": True, "<domain_name>": "tests.domain.com", "<static_id>": "123", "--url": None, "--path": None, })) static_file.run() snakesay.assert_called_with(( "You should supply a url or path to make" " any updates." )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_update_if_url(self, mock_client, snakesay): static_file = StaticFile(self.command_options(**{ "update": True, "<domain_name>": "tests.domain.com", "<static_id>": "123", "--url": "/url/", "--path": None, })) static_file.run() client_call = static_file.client.webapps.static_files.update client_call.assert_called_with( domain_name="tests.domain.com", static_id="123", data={"url": "/url/"} ) snakesay.assert_called_with(( "Static File 123 for domain" " tests.domain.com was updated. URL: /url/" )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_update_if_path(self, mock_client, snakesay): static_file = StaticFile(self.command_options(**{ "update": True, "<domain_name>": "tests.domain.com", "<static_id>": "123", "--url": None, "--path": "/path/", })) static_file.run() client_call = static_file.client.webapps.static_files.update client_call.assert_called_with( domain_name="tests.domain.com", static_id="123", data={"path": "/path/"} ) snakesay.assert_called_with(( "Static File 123 for domain" " tests.domain.com was updated. Path: /path/" )) class TestWebapps(CommonTestFunctions): @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_create(self, mock_client, snakesay): webapp = Webapps(self.command_options(**{ "create": True, "<domain_name>": "tests.domain.com", "<python_version>": "python27", })) webapp.run() client_call = webapp.client.webapps.create client_call.assert_called_with( data={ "domain_name": "tests.domain.com", "python_version": "python27" }, ) snakesay.assert_called_with(( "Webapp created with domain" " tests.domain.com using python version python27." )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_delete(self, mock_client, snakesay): webapp = Webapps(self.command_options(**{ "delete": True, "<domain_name>": "tests.domain.com", })) webapp.run() client_call = webapp.client.webapps.delete client_call.assert_called_with(domain_name="tests.domain.com") snakesay.assert_called_with(( "Webapp with domain" " tests.domain.com deleted." )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_reload(self, mock_client, snakesay): webapp = Webapps(self.command_options(**{ "reload": True, "<domain_name>": "tests.domain.com", })) webapp.run() client_call = webapp.client.webapps.reload client_call.assert_called_with(domain_name="tests.domain.com") snakesay.assert_called_with(( "Webapp with domain" " tests.domain.com has been reloaded." )) @patch("pythonanywhere_cli.commands.snakesay") def test_update_if_not_virtualenv_path_if_not_python_vers(self, snakesay): webapp = Webapps(self.command_options(**{ "update": True, "<domain_name>": "tests.domain.com", "--virtualenv_path": None, "--python_version": None, })) webapp.run() snakesay.assert_called_with(( "You should supply a virtualenv_path or" " python_version to make any updates." )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_update_if_virtualenv_path(self, mock_client, snakesay): webapp = Webapps(self.command_options(**{ "update": True, "<domain_name>": "tests.domain.com", "--virtualenv_path": "/path/", "--python_version": None, })) webapp.run() client_call = webapp.client.webapps.update client_call.assert_called_with( domain_name="tests.domain.com", data={"virtualenv_path": "/path/"} ) snakesay.assert_called_with(( "Webapp with domain tests.domain.com" " was updated. Virtualenv Path: /path/" )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_update_if_python_version(self, mock_client, snakesay): webapp = Webapps(self.command_options(**{ "update": True, "<domain_name>": "tests.domain.com", "--virtualenv_path": None, "--python_version": "python27", })) webapp.run() client_call = webapp.client.webapps.update client_call.assert_called_with( domain_name="tests.domain.com", data={"python_version": "python27"} ) snakesay.assert_called_with(( "Webapp with domain tests.domain.com" " was updated. Python Version: python27" ))
import os from mock import patch from pythonanywhere_wrapper.client import PythonAnywhereError from pythonanywhere_cli.commands import Command, StaticFile, Webapps class CommonTestFunctions(object): def command_options(self, **kwargs): options = { "--api_key": None, "--help": False, "--path": None, "--python_version": None, "--url": None, "--user": None, "--version": False, "--virtualenv_path": None, "<domain_name>": None, "<path>": None, "<python_version>": None, "<static_id>": None, "<url>": None, "create": False, "delete": False, "list": True, "reload": False, "static_mapping": True, "update": False, "webapps": False } options.update(kwargs) return options class TestCommand(CommonTestFunctions): class CommandException(Command): COMMANDS = [ "exception" ] def exception(self): raise PythonAnywhereError("Test Exception") def test_get_client_if_options(self): command = Command(self.command_options(**{ "--api_key": "Test Key", "--user": "Test User" })) assert command.client.api_key == "Test Key" assert command.client.user == "Test User" def test_get_client_if_not_options(self): os.environ["PYTHONANYWHERE_CLI_API_KEY"] = "Test Key" os.environ["PYTHONANYWHERE_CLI_USER"] = "Test User" command = Command(self.command_options()) assert command.client.api_key == "Test Key" assert command.client.user == "Test User" @patch("pythonanywhere_cli.commands.snakesay") def test_run_exception(self, snakesay): command_exception = self.CommandException( self.command_options(**{"exception": True}) ) command_exception.run() snakesay.assert_called_with("Test Exception") class TestStaticFile(CommonTestFunctions): @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_create(self, mock_client, snakesay): static_file = StaticFile({ "create": True, "--api_key": None, "--user": None, "<domain_name>": "tests.domain.com", "<url>": "/url/", "<path>": "/path/" }) static_file.run() client_call = static_file.client.webapps.static_files.create client_call.assert_called_with( data={"url": "/url/", "path": "/path/"}, domain_name="tests.domain.com" ) snakesay.assert_called_with(( "Static File mapping created for domain" " tests.domain.com with url /url/ and path /path/" )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_delete(self, mock_client, snakesay): static_file = StaticFile({ "delete": True, "--api_key": None, "--user": None, "<domain_name>": "tests.domain.com", "<static_id>": "123" }) static_file.run() client_call = static_file.client.webapps.static_files.delete client_call.assert_called_with( domain_name="tests.domain.com", static_id="123" ) snakesay.assert_called_with(( "Static File mapping 123 for domain" " tests.domain.com has been removed." )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_list(self, mock_client, snakesay): static_file = StaticFile(self.command_options(**{ "list": True, "<domain_name>": "tests.domain.com", })) client_call = static_file.client.webapps.static_files client_call.return_value.json.return_value = [ {u"url": u"/static/", u"path": u"/static/", u"id": 123}, ] static_file.run() client_call.assert_called_with( domain_name="tests.domain.com" ) snakesay.assert_called_with(( "Static File mappings for domain tests.domain.com: 1. ID: 123" " URL: /static/ Path: /static/" )) @patch("pythonanywhere_cli.commands.snakesay") def test_update_if_not_url_if_not_path(self, snakesay): static_file = StaticFile(self.command_options(**{ "update": True, "<domain_name>": "tests.domain.com", "<static_id>": "123", "--url": None, "--path": None, })) static_file.run() snakesay.assert_called_with(( "You should supply a url or path to make" " any updates." )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_update_if_url(self, mock_client, snakesay): static_file = StaticFile(self.command_options(**{ "update": True, "<domain_name>": "tests.domain.com", "<static_id>": "123", "--url": "/url/", "--path": None, })) static_file.run() client_call = static_file.client.webapps.static_files.update client_call.assert_called_with( domain_name="tests.domain.com", static_id="123", data={"url": "/url/"} ) snakesay.assert_called_with(( "Static File 123 for domain" " tests.domain.com was updated. URL: /url/" )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_update_if_path(self, mock_client, snakesay): static_file = StaticFile(self.command_options(**{ "update": True, "<domain_name>": "tests.domain.com", "<static_id>": "123", "--url": None, "--path": "/path/", })) static_file.run() client_call = static_file.client.webapps.static_files.update client_call.assert_called_with( domain_name="tests.domain.com", static_id="123", data={"path": "/path/"} ) snakesay.assert_called_with(( "Static File 123 for domain" " tests.domain.com was updated. Path: /path/" )) class TestWebapps(CommonTestFunctions): @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_create(self, mock_client, snakesay): webapp = Webapps(self.command_options(**{ "create": True, "<domain_name>": "tests.domain.com", "<python_version>": "python27", })) webapp.run() client_call = webapp.client.webapps.create client_call.assert_called_with( data={ "domain_name": "tests.domain.com", "python_version": "python27" }, ) snakesay.assert_called_with(( "Webapp created with domain" " tests.domain.com using python version python27." )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_delete(self, mock_client, snakesay): webapp = Webapps(self.command_options(**{ "delete": True, "<domain_name>": "tests.domain.com", })) webapp.run() client_call = webapp.client.webapps.delete client_call.assert_called_with(domain_name="tests.domain.com") snakesay.assert_called_with(( "Webapp with domain" " tests.domain.com deleted." )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_reload(self, mock_client, snakesay): webapp = Webapps(self.command_options(**{ "reload": True, "<domain_name>": "tests.domain.com", })) webapp.run() client_call = webapp.client.webapps.reload client_call.assert_called_with(domain_name="tests.domain.com") snakesay.assert_called_with(( "Webapp with domain" " tests.domain.com has been reloaded." )) @patch("pythonanywhere_cli.commands.snakesay") def test_update_if_not_virtualenv_path_if_not_python_vers(self, snakesay): webapp = Webapps(self.command_options(**{ "update": True, "<domain_name>": "tests.domain.com", "--virtualenv_path": None, "--python_version": None, })) webapp.run() snakesay.assert_called_with(( "You should supply a virtualenv_path or" " python_version to make any updates." )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_update_if_virtualenv_path(self, mock_client, snakesay): webapp = Webapps(self.command_options(**{ "update": True, "<domain_name>": "tests.domain.com", "--virtualenv_path": "/path/", "--python_version": None, })) webapp.run() client_call = webapp.client.webapps.update client_call.assert_called_with( domain_name="tests.domain.com", data={"virtualenv_path": "/path/"} ) snakesay.assert_called_with(( "Webapp with domain tests.domain.com" " was updated. Virtualenv Path: /path/" )) @patch("pythonanywhere_cli.commands.snakesay") @patch("pythonanywhere_cli.commands.PythonAnywhere") def test_update_if_python_version(self, mock_client, snakesay): webapp = Webapps(self.command_options(**{ "update": True, "<domain_name>": "tests.domain.com", "--virtualenv_path": None, "--python_version": "python27", })) webapp.run() client_call = webapp.client.webapps.update client_call.assert_called_with( domain_name="tests.domain.com", data={"python_version": "python27"} ) snakesay.assert_called_with(( "Webapp with domain tests.domain.com" " was updated. Python Version: python27" ))
none
1
2.239162
2
labelbits_gpio_40_41.py
TheMindVirus/labelbits
0
6630039
class label: def __init__(self, name = "[LABEL]", shift = 0, mask = 0xFFFFFFFF, comment = "", *args, **kwargs): self.name = name self.shift = shift self.mask = mask self.comment = comment; class labelbits: def __init__(self, labels = [], bits = 32, *args, **kwargs): self.bits = bits self.labels = labels def cover(self, binary, item): masked = "" mask = item.mask << item.shift for i in range(self.bits -1, -1, -1): if ((mask >> i) & 1): masked += str((binary >> i) & 1) else: masked += "-" return masked def mode(self, binary): mapping = ["Input", "Output", "ALT5", "ALT4", "ALT0", "ALT1", "ALT2", "ALT3"] if (binary >= 0) and (binary < len(mapping)): return mapping[binary] else: return str(binary) def info(self, binary, indent = 32): print("<<<LabelBits>>>") raw = format(binary, "#0" + str(self.bits + 2) + "b")[2:] print(("Raw Data:\t").expandtabs(indent) + str(raw) + " [LSB]\n") for item in self.labels: data = (binary >> item.shift) & item.mask line = str(item.name) + ":\t" + self.cover(binary, item) comment = "//" + str(item.comment) print(comment + "\n" + line.expandtabs(indent) + " [" + self.mode(data) + "]\n") ALT_LABELS = \ [ label("FSEL40", 0, 0b111, "GPIO 40"), label("FSEL41", 3, 0b111, "GPIO 41"), label("FSEL42", 6, 0b111, "GPIO 42"), label("FSEL43", 9, 0b111, "GPIO 43"), label("FSEL44", 12, 0b111, "GPIO 44"), label("FSEL45", 15, 0b111, "GPIO 45"), label("FSEL46", 18, 0b111, "GPIO 46"), label("FSEL47", 21, 0b111, "GPIO 47"), label("FSEL48", 24, 0b111, "GPIO 48"), label("FSEL49", 27, 0b111, "GPIO 49"), label("-", 30, 0b11, "Reserved"), ] print("000 - Input") print("001 - Output") print("100 - ALT0") print("101 - ALT1") print("110 - ALT2") print("111 - ALT3") print("011 - ALT4") print("010 - ALT5") print() GPIO = labelbits(ALT_LABELS) GPIO.info(0x00000064)
class label: def __init__(self, name = "[LABEL]", shift = 0, mask = 0xFFFFFFFF, comment = "", *args, **kwargs): self.name = name self.shift = shift self.mask = mask self.comment = comment; class labelbits: def __init__(self, labels = [], bits = 32, *args, **kwargs): self.bits = bits self.labels = labels def cover(self, binary, item): masked = "" mask = item.mask << item.shift for i in range(self.bits -1, -1, -1): if ((mask >> i) & 1): masked += str((binary >> i) & 1) else: masked += "-" return masked def mode(self, binary): mapping = ["Input", "Output", "ALT5", "ALT4", "ALT0", "ALT1", "ALT2", "ALT3"] if (binary >= 0) and (binary < len(mapping)): return mapping[binary] else: return str(binary) def info(self, binary, indent = 32): print("<<<LabelBits>>>") raw = format(binary, "#0" + str(self.bits + 2) + "b")[2:] print(("Raw Data:\t").expandtabs(indent) + str(raw) + " [LSB]\n") for item in self.labels: data = (binary >> item.shift) & item.mask line = str(item.name) + ":\t" + self.cover(binary, item) comment = "//" + str(item.comment) print(comment + "\n" + line.expandtabs(indent) + " [" + self.mode(data) + "]\n") ALT_LABELS = \ [ label("FSEL40", 0, 0b111, "GPIO 40"), label("FSEL41", 3, 0b111, "GPIO 41"), label("FSEL42", 6, 0b111, "GPIO 42"), label("FSEL43", 9, 0b111, "GPIO 43"), label("FSEL44", 12, 0b111, "GPIO 44"), label("FSEL45", 15, 0b111, "GPIO 45"), label("FSEL46", 18, 0b111, "GPIO 46"), label("FSEL47", 21, 0b111, "GPIO 47"), label("FSEL48", 24, 0b111, "GPIO 48"), label("FSEL49", 27, 0b111, "GPIO 49"), label("-", 30, 0b11, "Reserved"), ] print("000 - Input") print("001 - Output") print("100 - ALT0") print("101 - ALT1") print("110 - ALT2") print("111 - ALT3") print("011 - ALT4") print("010 - ALT5") print() GPIO = labelbits(ALT_LABELS) GPIO.info(0x00000064)
none
1
3.218371
3
automation_infra/utils/tunnelled_requestor.py
AnyVisionltd/automation-infra
6
6630040
<gh_stars>1-10 import requests from automation_infra.utils.httprequestor import HTTPRequestor class TunnelledRequestor(HTTPRequestor): """The goal of the requestor object is to enable communication with a service in different ways. This requestor enables interacting with a service via an existing tunnel. Other possible requestors are Kong requestor (to use for interacting with a service via kong), or others as the need arises.""" def __init__(self, tunnel): """params: tunnel: infra.model.Tunnel object A tunnel can be started with the help of the host.TunnelManager plugin start_tunnel() method""" self.tunnel = tunnel def build_url(self, route): url = f"http://{self.tunnel._hostname}:{self.tunnel._local_bind_port}{route}" return url def get(self, route, params=None, **kwargs): """route is the path of the url without the domainname""" formatted_url = self.build_url(route) res = requests.get(formatted_url, params=params, **kwargs) return res def post(self, route, data=None, json=None, **kwargs): formatted_url = self.build_url(route) res = requests.post(formatted_url, data, json, **kwargs) return res def put(self, route, data=None, **kwargs): formatted_url = self.build_url(route) res = requests.put(formatted_url, data, **kwargs) return res def delete(self, route, **kwargs): formatted_url = self.build_url(route) res = requests.delete(formatted_url, **kwargs) return res def patch(self, route, data=None, **kwargs) -> requests.Response: formatted_url = self.build_url(route) res = requests.patch(formatted_url, data, **kwargs) return res # TODO: implement other CRUD methods if needed...
import requests from automation_infra.utils.httprequestor import HTTPRequestor class TunnelledRequestor(HTTPRequestor): """The goal of the requestor object is to enable communication with a service in different ways. This requestor enables interacting with a service via an existing tunnel. Other possible requestors are Kong requestor (to use for interacting with a service via kong), or others as the need arises.""" def __init__(self, tunnel): """params: tunnel: infra.model.Tunnel object A tunnel can be started with the help of the host.TunnelManager plugin start_tunnel() method""" self.tunnel = tunnel def build_url(self, route): url = f"http://{self.tunnel._hostname}:{self.tunnel._local_bind_port}{route}" return url def get(self, route, params=None, **kwargs): """route is the path of the url without the domainname""" formatted_url = self.build_url(route) res = requests.get(formatted_url, params=params, **kwargs) return res def post(self, route, data=None, json=None, **kwargs): formatted_url = self.build_url(route) res = requests.post(formatted_url, data, json, **kwargs) return res def put(self, route, data=None, **kwargs): formatted_url = self.build_url(route) res = requests.put(formatted_url, data, **kwargs) return res def delete(self, route, **kwargs): formatted_url = self.build_url(route) res = requests.delete(formatted_url, **kwargs) return res def patch(self, route, data=None, **kwargs) -> requests.Response: formatted_url = self.build_url(route) res = requests.patch(formatted_url, data, **kwargs) return res # TODO: implement other CRUD methods if needed...
en
0.858906
The goal of the requestor object is to enable communication with a service in different ways. This requestor enables interacting with a service via an existing tunnel. Other possible requestors are Kong requestor (to use for interacting with a service via kong), or others as the need arises. params: tunnel: infra.model.Tunnel object A tunnel can be started with the help of the host.TunnelManager plugin start_tunnel() method route is the path of the url without the domainname # TODO: implement other CRUD methods if needed...
3.005185
3
mayan/apps/documents/migrations/0043_auto_20180429_0759.py
Fourdee/mayan-edms
4
6630041
<gh_stars>1-10 # -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2018-04-29 07:59 from __future__ import unicode_literals import django.core.files.storage from django.db import migrations, models import documents.models class Migration(migrations.Migration): dependencies = [ ('documents', '0042_auto_20180403_0702'), ] operations = [ migrations.AlterField( model_name='documentversion', name='encoding', field=models.CharField(blank=True, editable=False, max_length=64, null=True, verbose_name='Encoding'), ), migrations.AlterField( model_name='documentversion', name='file', field=models.FileField(storage=django.core.files.storage.FileSystemStorage(location=b'/home/rosarior/development/mayan-edms/mayan/media/document_storage'), upload_to=documents.models.UUID_FUNCTION, verbose_name='File'), ), migrations.AlterField( model_name='documentversion', name='mimetype', field=models.CharField(blank=True, editable=False, max_length=255, null=True, verbose_name='MIME type'), ), ]
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2018-04-29 07:59 from __future__ import unicode_literals import django.core.files.storage from django.db import migrations, models import documents.models class Migration(migrations.Migration): dependencies = [ ('documents', '0042_auto_20180403_0702'), ] operations = [ migrations.AlterField( model_name='documentversion', name='encoding', field=models.CharField(blank=True, editable=False, max_length=64, null=True, verbose_name='Encoding'), ), migrations.AlterField( model_name='documentversion', name='file', field=models.FileField(storage=django.core.files.storage.FileSystemStorage(location=b'/home/rosarior/development/mayan-edms/mayan/media/document_storage'), upload_to=documents.models.UUID_FUNCTION, verbose_name='File'), ), migrations.AlterField( model_name='documentversion', name='mimetype', field=models.CharField(blank=True, editable=False, max_length=255, null=True, verbose_name='MIME type'), ), ]
en
0.693727
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2018-04-29 07:59
1.70499
2
src/utils/utils.py
elisaF/rst_discourse_parser
1
6630042
<reponame>elisaF/rst_discourse_parser import re from itertools import izip from nltk.tree import Tree from trees.parse_tree import ParseTree import rst_lib import string def replace_words(text, word_dic): """ take a text and <strong class="highlight">replace</strong> <strong class="highlight">words</strong> that match a key in a dictionary with the associated value, return the changed text """ rc = re.compile('|'.join(map(re.escape, word_dic))) def translate(match): return word_dic[match.group(0)] return rc.sub(translate, text) def unescape_penn_special_word(text): penn_special_chars = {'-LRB-': '(', '-RRB-': ')', '-LAB-': '<', '-RAB-': '>', '-LCB-': '{', '-RCB-': '}', '-LSB-': '[', '-RSB-':']', '\\/' : '/', '\\*' : '*', '``' : '"', "''" : '"', '`' : "'"} return replace_words(text, penn_special_chars) def sorted_dict_values_by_key(adict): L = [] for i in sorted(adict.keys()): L.append(adict[i]) return L def sorted_dict_keys(adict): keys = adict.keys() return sorted(keys) argmax = lambda array: max(izip(array, xrange(len(array))))[1] argmin = lambda array: min(izip(array, xrange(len(array))))[1] def permutation_indices(data): return sorted(range(len(data)), key = data.__getitem__) def argsmax (array, how_many): L = permutation_indices(array)[-how_many:] L.reverse() return L def count_how_many(array, item): tot = 0 for array_item in array: if item == array_item: tot += 1 return tot def split_mrg_by_sentence(s): result = [] cnt_par = 0 last_split_index = 0 for i in range(0, len(s)): if s[i] == "(": cnt_par = cnt_par + 1 elif s[i] == ")": cnt_par = cnt_par - 1 if cnt_par == 0: # Split if last_split_index < i: result.append(s[last_split_index:i].replace("\n","").strip()[1:]) last_split_index = i + 1 return result def simplified_tag(t): """ Returns a simplified POS tag: NP-SBJ -> NP PP=4 -> PP -RRB- -> -RRB- """ if t == None: return None if t[0:1] == "-": return t else: caret_pos = t.find("-") t_minus_caret = "" if not caret_pos == -1: t_minus_caret = t[0:caret_pos] else: t_minus_caret = t equal_pos = t_minus_caret.find("=") t_simplified = "" if not equal_pos == -1: t_simplified = t_minus_caret[0:equal_pos] else: t_simplified = t_minus_caret return t_simplified def split_hilda_inputfile_by_sentence(f): sents = [] for line in open(f).readlines(): line = line.strip() if line == '': continue sents.append(line.split('<s>')) return sents def get_sent_dependencies(deps): sent2dep_list = [] for (i, sent_deps) in enumerate(deps): sent_dep_list = [] #tree = trees[i] for dep_item in sent_deps.split('\r\n'): dep_pattern = r'(.+?)\((.+?)-(\d+?), (.+?)-(\d+?)\)' dep_m = re.match(dep_pattern, dep_item) if dep_m is not None: #dep_type = type2class[dep_m.group(1).split('_')[0]] dep_type = dep_m.group(1) governor_word = dep_m.group(2) governor_word_number = int(dep_m.group(3)) - 1 dependent_word = dep_m.group(4) dependent_word_number = int(dep_m.group(5)) - 1 dep_item_info = (dep_type, governor_word, governor_word_number, dependent_word, dependent_word_number) # print sent_dep_list.append(dep_item_info) sent2dep_list.append(sent_dep_list) return sent2dep_list def print_SGML_tree(parse_tree, offset = 1, depth = 0, status = None, relation = None): joty_script_mapping = {'textual-organization' : 'TextualOrganization', 'same-unit' : 'Same-Unit'} out = '' for i in range(depth): out += ' ' if isinstance(parse_tree, basestring): return out + '( %s (leaf %d) (rel2par %s) (text _!%s_!) )\n' % (status, offset, relation, parse_tree) out += '( %s (span %d %d)' % ('Root' if depth == 0 else status, offset, offset + len(parse_tree.leaves()) - 1) if depth > 0: out += ' (rel2par %s)' % relation out += '\n' left = parse_tree[0] #print left left_status = 'Nucleus' if parse_tree.label()[-5] == 'N' else 'Satellite' right = parse_tree[1] #print right right_status = 'Nucleus' if parse_tree.label()[-2] == 'N' else 'Satellite' if left_status[0] == 'S' and right_status[0] == 'N': left_relation = replace_words(parse_tree.label()[ : -6], joty_script_mapping) right_relation = 'span' elif right_status[0] == 'S' and left_status[0] == 'N': right_relation = replace_words(parse_tree.label()[ : -6], joty_script_mapping) left_relation = 'span' else: left_relation = replace_words(parse_tree.label()[ : -6], joty_script_mapping) right_relation = left_relation out += print_SGML_tree(left, offset, depth + 1, left_status, left_relation) out += print_SGML_tree(right, offset + (len(left.leaves()) if isinstance(left, Tree) else 1), depth + 1, right_status, right_relation) for i in range(depth): out += ' ' out += ')\n' return out def copy_subtree(subtree, detach = False): if isinstance(subtree, Tree): result = subtree.__deepcopy__() if detach: result._parent = None else: result = subtree return result def make_new_subtree(label, subtree1, subtree2, deepcopy = False): if deepcopy: stump1_clone = copy_subtree(subtree1, True) stump2_clone = copy_subtree(subtree2, True) else: stump1_clone = subtree1 stump2_clone = subtree2 if isinstance(stump1_clone, ParseTree): stump1_clone._parent = None if isinstance(stump2_clone, ParseTree): stump2_clone._parent = None return ParseTree(label, [stump1_clone, stump2_clone]) # return ParseTree(label, [stump1_clone, stump2_clone]) def find_EDU_in_sentence_index(cuts, edu_index): for (i, (sent_start_edu, sent_end_edu)) in enumerate(cuts): if edu_index >= sent_start_edu and edu_index < sent_end_edu: return i def load_tree_from_file(filename, tokenize = False): def preprocess_leaf(leaf): leaf = re.sub('_!(.+?)!_', '\\1', leaf) if tokenize: return leaf.split(' ') else: return leaf if filename.endswith('.dis'): pt = rst_lib.load_tree(filename) elif filename.endswith('.tree'): pt = ParseTree.parse(open(filename).read(), leaf_pattern = '_!.+?!_', parse_leaf = preprocess_leaf) return pt def is_punctuation(word): if not word or len(word) == 0: return False for i in range(len(word)): if word[i] not in string.punctuation: return False return True def simplify_tree(tree, start): if not tree: return None # print 'before', tree if not isinstance(tree, ParseTree): t = ParseTree('leaf', [str(start + 1)]) else: t = tree.__deepcopy__(None) # print t L = simplify_tree(tree[0], start) R = simplify_tree(tree[1], start + len(L.leaves())) t[0] = L t[1] = R # print 'end', t # print return t def get_syntactic_subtrees(tree, start_word, end_word): # print tree # print 'start_word', start_word, 'end_word', end_word # print if tree.label() == 'ROOT': tree = tree[0] assert start_word >= 0 and end_word - start_word <= len(tree.leaves()) and start_word < end_word if len(tree.leaves()) == end_word - start_word: return [tree] subtrees = [] start = 0 i = 0 # print len(tree) while i < len(tree) - 1: if start + len(tree[i].leaves()) > start_word: break start += len(tree[i].leaves()) i += 1 j = len(tree) - 1 end = len(tree.leaves()) while j > 0: if end - len(tree[j].leaves()) < end_word: break end -= len(tree[j].leaves()) j -= 1 # print 'i', i, 'j', j for k in range(i, j + 1): subtree = tree[k] if k == i: if k == j: end1 = end_word - start else: end1 = len(subtree.leaves()) subtrees.extend(get_syntactic_subtrees(subtree, start_word - start, end1)) elif k == j: if k == i: start1 = start_word else: start1 = 0 subtrees.extend(get_syntactic_subtrees(subtree, start1, end_word - (end - len(subtree.leaves())))) else: subtrees.append(subtree) length = 0 for subtree in subtrees: length += len(subtree.leaves()) assert length == end_word - start_word return subtrees def get_edu_entity_grid(entity_grid_filename): grid = [] for line in open(entity_grid_filename).readlines()[1 : ]: line = line.strip() if line != '': fields = line.split('\t') grid.append(fields[1 : ]) return grid def compute_edit_distance(sequence1, sequence2): #print 'rst:' , rst_actions #print 'pst:', pt_actions m = len(sequence1) n = len(sequence2) matrix = {} for i in range(m + 1): #print matrix[i] matrix[(i, 0)] = i for j in range(n + 1): matrix[(0, j)] = j for j in range(1, n + 1): for i in range(1, m + 1): if sequence1[i - 1] == sequence2[j - 1]: substitution_cost = 0 else: substitution_cost = 1 matrix[(i, j)] = min(matrix[(i - 1, j - 1)] + substitution_cost, matrix[(i - 1, j)] + 1, matrix[(i, j - 1)] + 1) if i > 1 and j > 1 and sequence1[i - 1] == sequence2[j - 2] and sequence1[i - 2] == sequence2[j - 1]: matrix[(i, j)] = min(matrix[i - 2, j - 2] + substitution_cost, matrix[(i, j)]) #for i in range(1, m + 1): #print rst_actions[i - 1], pt_actions[i - 1], matrix[(i, i)] return matrix[(m, n)]
import re from itertools import izip from nltk.tree import Tree from trees.parse_tree import ParseTree import rst_lib import string def replace_words(text, word_dic): """ take a text and <strong class="highlight">replace</strong> <strong class="highlight">words</strong> that match a key in a dictionary with the associated value, return the changed text """ rc = re.compile('|'.join(map(re.escape, word_dic))) def translate(match): return word_dic[match.group(0)] return rc.sub(translate, text) def unescape_penn_special_word(text): penn_special_chars = {'-LRB-': '(', '-RRB-': ')', '-LAB-': '<', '-RAB-': '>', '-LCB-': '{', '-RCB-': '}', '-LSB-': '[', '-RSB-':']', '\\/' : '/', '\\*' : '*', '``' : '"', "''" : '"', '`' : "'"} return replace_words(text, penn_special_chars) def sorted_dict_values_by_key(adict): L = [] for i in sorted(adict.keys()): L.append(adict[i]) return L def sorted_dict_keys(adict): keys = adict.keys() return sorted(keys) argmax = lambda array: max(izip(array, xrange(len(array))))[1] argmin = lambda array: min(izip(array, xrange(len(array))))[1] def permutation_indices(data): return sorted(range(len(data)), key = data.__getitem__) def argsmax (array, how_many): L = permutation_indices(array)[-how_many:] L.reverse() return L def count_how_many(array, item): tot = 0 for array_item in array: if item == array_item: tot += 1 return tot def split_mrg_by_sentence(s): result = [] cnt_par = 0 last_split_index = 0 for i in range(0, len(s)): if s[i] == "(": cnt_par = cnt_par + 1 elif s[i] == ")": cnt_par = cnt_par - 1 if cnt_par == 0: # Split if last_split_index < i: result.append(s[last_split_index:i].replace("\n","").strip()[1:]) last_split_index = i + 1 return result def simplified_tag(t): """ Returns a simplified POS tag: NP-SBJ -> NP PP=4 -> PP -RRB- -> -RRB- """ if t == None: return None if t[0:1] == "-": return t else: caret_pos = t.find("-") t_minus_caret = "" if not caret_pos == -1: t_minus_caret = t[0:caret_pos] else: t_minus_caret = t equal_pos = t_minus_caret.find("=") t_simplified = "" if not equal_pos == -1: t_simplified = t_minus_caret[0:equal_pos] else: t_simplified = t_minus_caret return t_simplified def split_hilda_inputfile_by_sentence(f): sents = [] for line in open(f).readlines(): line = line.strip() if line == '': continue sents.append(line.split('<s>')) return sents def get_sent_dependencies(deps): sent2dep_list = [] for (i, sent_deps) in enumerate(deps): sent_dep_list = [] #tree = trees[i] for dep_item in sent_deps.split('\r\n'): dep_pattern = r'(.+?)\((.+?)-(\d+?), (.+?)-(\d+?)\)' dep_m = re.match(dep_pattern, dep_item) if dep_m is not None: #dep_type = type2class[dep_m.group(1).split('_')[0]] dep_type = dep_m.group(1) governor_word = dep_m.group(2) governor_word_number = int(dep_m.group(3)) - 1 dependent_word = dep_m.group(4) dependent_word_number = int(dep_m.group(5)) - 1 dep_item_info = (dep_type, governor_word, governor_word_number, dependent_word, dependent_word_number) # print sent_dep_list.append(dep_item_info) sent2dep_list.append(sent_dep_list) return sent2dep_list def print_SGML_tree(parse_tree, offset = 1, depth = 0, status = None, relation = None): joty_script_mapping = {'textual-organization' : 'TextualOrganization', 'same-unit' : 'Same-Unit'} out = '' for i in range(depth): out += ' ' if isinstance(parse_tree, basestring): return out + '( %s (leaf %d) (rel2par %s) (text _!%s_!) )\n' % (status, offset, relation, parse_tree) out += '( %s (span %d %d)' % ('Root' if depth == 0 else status, offset, offset + len(parse_tree.leaves()) - 1) if depth > 0: out += ' (rel2par %s)' % relation out += '\n' left = parse_tree[0] #print left left_status = 'Nucleus' if parse_tree.label()[-5] == 'N' else 'Satellite' right = parse_tree[1] #print right right_status = 'Nucleus' if parse_tree.label()[-2] == 'N' else 'Satellite' if left_status[0] == 'S' and right_status[0] == 'N': left_relation = replace_words(parse_tree.label()[ : -6], joty_script_mapping) right_relation = 'span' elif right_status[0] == 'S' and left_status[0] == 'N': right_relation = replace_words(parse_tree.label()[ : -6], joty_script_mapping) left_relation = 'span' else: left_relation = replace_words(parse_tree.label()[ : -6], joty_script_mapping) right_relation = left_relation out += print_SGML_tree(left, offset, depth + 1, left_status, left_relation) out += print_SGML_tree(right, offset + (len(left.leaves()) if isinstance(left, Tree) else 1), depth + 1, right_status, right_relation) for i in range(depth): out += ' ' out += ')\n' return out def copy_subtree(subtree, detach = False): if isinstance(subtree, Tree): result = subtree.__deepcopy__() if detach: result._parent = None else: result = subtree return result def make_new_subtree(label, subtree1, subtree2, deepcopy = False): if deepcopy: stump1_clone = copy_subtree(subtree1, True) stump2_clone = copy_subtree(subtree2, True) else: stump1_clone = subtree1 stump2_clone = subtree2 if isinstance(stump1_clone, ParseTree): stump1_clone._parent = None if isinstance(stump2_clone, ParseTree): stump2_clone._parent = None return ParseTree(label, [stump1_clone, stump2_clone]) # return ParseTree(label, [stump1_clone, stump2_clone]) def find_EDU_in_sentence_index(cuts, edu_index): for (i, (sent_start_edu, sent_end_edu)) in enumerate(cuts): if edu_index >= sent_start_edu and edu_index < sent_end_edu: return i def load_tree_from_file(filename, tokenize = False): def preprocess_leaf(leaf): leaf = re.sub('_!(.+?)!_', '\\1', leaf) if tokenize: return leaf.split(' ') else: return leaf if filename.endswith('.dis'): pt = rst_lib.load_tree(filename) elif filename.endswith('.tree'): pt = ParseTree.parse(open(filename).read(), leaf_pattern = '_!.+?!_', parse_leaf = preprocess_leaf) return pt def is_punctuation(word): if not word or len(word) == 0: return False for i in range(len(word)): if word[i] not in string.punctuation: return False return True def simplify_tree(tree, start): if not tree: return None # print 'before', tree if not isinstance(tree, ParseTree): t = ParseTree('leaf', [str(start + 1)]) else: t = tree.__deepcopy__(None) # print t L = simplify_tree(tree[0], start) R = simplify_tree(tree[1], start + len(L.leaves())) t[0] = L t[1] = R # print 'end', t # print return t def get_syntactic_subtrees(tree, start_word, end_word): # print tree # print 'start_word', start_word, 'end_word', end_word # print if tree.label() == 'ROOT': tree = tree[0] assert start_word >= 0 and end_word - start_word <= len(tree.leaves()) and start_word < end_word if len(tree.leaves()) == end_word - start_word: return [tree] subtrees = [] start = 0 i = 0 # print len(tree) while i < len(tree) - 1: if start + len(tree[i].leaves()) > start_word: break start += len(tree[i].leaves()) i += 1 j = len(tree) - 1 end = len(tree.leaves()) while j > 0: if end - len(tree[j].leaves()) < end_word: break end -= len(tree[j].leaves()) j -= 1 # print 'i', i, 'j', j for k in range(i, j + 1): subtree = tree[k] if k == i: if k == j: end1 = end_word - start else: end1 = len(subtree.leaves()) subtrees.extend(get_syntactic_subtrees(subtree, start_word - start, end1)) elif k == j: if k == i: start1 = start_word else: start1 = 0 subtrees.extend(get_syntactic_subtrees(subtree, start1, end_word - (end - len(subtree.leaves())))) else: subtrees.append(subtree) length = 0 for subtree in subtrees: length += len(subtree.leaves()) assert length == end_word - start_word return subtrees def get_edu_entity_grid(entity_grid_filename): grid = [] for line in open(entity_grid_filename).readlines()[1 : ]: line = line.strip() if line != '': fields = line.split('\t') grid.append(fields[1 : ]) return grid def compute_edit_distance(sequence1, sequence2): #print 'rst:' , rst_actions #print 'pst:', pt_actions m = len(sequence1) n = len(sequence2) matrix = {} for i in range(m + 1): #print matrix[i] matrix[(i, 0)] = i for j in range(n + 1): matrix[(0, j)] = j for j in range(1, n + 1): for i in range(1, m + 1): if sequence1[i - 1] == sequence2[j - 1]: substitution_cost = 0 else: substitution_cost = 1 matrix[(i, j)] = min(matrix[(i - 1, j - 1)] + substitution_cost, matrix[(i - 1, j)] + 1, matrix[(i, j - 1)] + 1) if i > 1 and j > 1 and sequence1[i - 1] == sequence2[j - 2] and sequence1[i - 2] == sequence2[j - 1]: matrix[(i, j)] = min(matrix[i - 2, j - 2] + substitution_cost, matrix[(i, j)]) #for i in range(1, m + 1): #print rst_actions[i - 1], pt_actions[i - 1], matrix[(i, i)] return matrix[(m, n)]
en
0.331073
take a text and <strong class="highlight">replace</strong> <strong class="highlight">words</strong> that match a key in a dictionary with the associated value, return the changed text # Split Returns a simplified POS tag: NP-SBJ -> NP PP=4 -> PP -RRB- -> -RRB- #tree = trees[i] #dep_type = type2class[dep_m.group(1).split('_')[0]] # print #print left #print right # return ParseTree(label, [stump1_clone, stump2_clone]) # print 'before', tree # print t # print 'end', t # print # print tree # print 'start_word', start_word, 'end_word', end_word # print # print len(tree) # print 'i', i, 'j', j #print 'rst:' , rst_actions #print 'pst:', pt_actions #print matrix[i] #for i in range(1, m + 1): #print rst_actions[i - 1], pt_actions[i - 1], matrix[(i, i)]
2.88718
3
src/qt_models/propeditormodel.py
facade-technologies-inc/facile
2
6630043
""" .. /------------------------------------------------------------------------------\ | -- FACADE TECHNOLOGIES INC. CONFIDENTIAL -- | |------------------------------------------------------------------------------| | | | Copyright [2019] Facade Technologies Inc. | | All Rights Reserved. | | | | NOTICE: All information contained herein is, and remains the property of | | Facade Technologies Inc. and its suppliers if any. The intellectual and | | and technical concepts contained herein are proprietary to Facade | | Technologies Inc. and its suppliers and may be covered by U.S. and Foreign | | Patents, patents in process, and are protected by trade secret or copyright | | law. Dissemination of this information or reproduction of this material is | | strictly forbidden unless prior written permission is obtained from Facade | | Technologies Inc. | | | \------------------------------------------------------------------------------/ This module contains the PropModel() class. """ from enum import Enum from PySide2.QtCore import QAbstractItemModel, QModelIndex, Qt from PySide2.QtGui import QColor class PropModel(QAbstractItemModel): """ A subclass that allows us to show the Data through QTreeView. """ def __init__(self, propData: object): """ Constructs a model for the Property Editor. :param propData: The data from the properties. :type propData: object :return: The constructed model. :rtype: QObject """ QAbstractItemModel.__init__(self) self._propData = propData def index(self, row: int, column: int, parent: QModelIndex) -> QModelIndex: """ Purpose of this function is to return a QModelIndex that maps to the appropriate data :param row: Row of the index. :type row: int :param column: Column of the index. :type column: int :param parent: Parent of that row or column. :type parent: QModelIndex :return: The index for the data. :rtype: QModelIndex """ if not self.hasIndex(row, column, parent): return QModelIndex() # referencing category if not parent.isValid(): internalData = self._propData.getCategories()[row] else: parentData = parent.internalPointer() if parentData in self._propData.getCategories(): internalData = self._propData.getCategoryProperties(parentData)[row] else: return QModelIndex() return self.createIndex(row, column, internalData) def parent(self, index: QModelIndex) -> QModelIndex: """ Purpose of this function is to return the parent index of the index that is provided :param index: Index that is provided. :type index: QModelIndex :return: Returns the parent index of the index provided. :rtype: QModelIndex """ if not index.isValid(): return QModelIndex() data = index.internalPointer() if data in self._propData.getCategories(): return QModelIndex() category = self._propData.getPropertyCategory(data) return self.createIndex(self._propData.getCategoryIndex(category), 0, category) def columnCount(self, parent: QModelIndex) -> int: """ Purpose of this function is to return the number of columns for the children of a given parent :param parent: Parent will tell us our column count. :type parent: QModelIndex :return: Number of columns. :rtype: int """ return 2 def rowCount(self, parent: QModelIndex) -> int: """ Purpose of this function is to return the number of children of a given parent :param parent: Parent will tell us our column count. :type parent: QModelIndex :return: Number of rows. :rtype: int """ if not parent.isValid(): numCategories = self._propData.getNumCategories() return numCategories parentData = parent.internalPointer() if parentData in self._propData.getCategories(): return self._propData.getNumPropertiesInCategory(parentData) else: return 0 def data(self, index: QModelIndex, role: int) -> object: """ Purpose of this function is to retrieve data stored under the given role for the item referred to by the index :param index: Index that is provided. :type index: QModelIndex :param role: The given role for item referred. :type role: int :return: Data of the given role from index. :rtype: object """ if not index.isValid(): return QModelIndex() row = index.row() col = index.column() data = index.internalPointer() if role == Qt.DisplayRole: if data in self._propData.getCategories(): if col == 0: return data else: return None else: col = index.column() if col == 0: return data.getName() elif col == 1: t = data.getType() if issubclass(t, Enum): return data.getValue().name if t == bool: return None return str(data.getValue()) else: return None elif role == Qt.BackgroundRole: if data in self._propData.getCategories(): return QColor(Qt.darkRed) else: shade = row % 2 * 25 return QColor(100 + shade, 150 + shade, 200 + shade) def headerData(self, section: int, orientation: Qt.Orientation, role: int) -> object: """ This method is used for displaying the header data for 'the given role and orientation of that specific section. :param section: Specific section for the header data. :type section: int :param orientation: Given orientation for the header data. :type orientation: Qt.Orientation :param role: The given role for the header data. :type role: int :return: Model of header data. :rtype: object """ if orientation == Qt.Horizontal and role == Qt.DisplayRole: return ["Name", "Value"][section] return None def traverse(self) -> None: """ This method is used for debugging by mimicking how a view might query the model for data. :return: None :rtype: NoneType """ parent = QModelIndex() work = [parent] while len(work) > 0: cur = work.pop() rows = self.rowCount(cur) cols = self.columnCount(cur) for r in range(rows): for c in range(cols): work.append(self.index(r, c, cur)) def setData(self, index: QModelIndex, value: object, role: int) -> bool: """ Purpose of this function is to set the role data for the index to value :param index: Index that is provided. :type index: QModelIndex :param value: Value that is set. :type value: object :param role: The given role data. :type role: int :return: Set data for index to a value. :rtype: bool """ if role != Qt.EditRole: return False if not index.isValid(): return False if not value: return False data = index.internalPointer() if data in self._propData.getCategories(): return False else: if index.column() != 1: return False else: valueWasSet = data.setValue(value) return valueWasSet def flags(self, index: QModelIndex) -> object: """ Purpose of this function is to determine what can be done with a given index :param index: Index that is provided. :type index: QModelIndex :return: Returns the item flags for the given index. :rtype: ItemFlags """ if not index.isValid(): return Qt.NoItemFlags data = index.internalPointer() if data in self._propData.getCategories() or (data.isReadOnly() and data.getType() != bool): return Qt.ItemIsEnabled | Qt.ItemIsSelectable else: if index.column() == 1: return Qt.ItemIsEnabled | Qt.ItemIsSelectable | Qt.ItemIsEditable else: return Qt.ItemIsEnabled | Qt.ItemIsSelectable
""" .. /------------------------------------------------------------------------------\ | -- FACADE TECHNOLOGIES INC. CONFIDENTIAL -- | |------------------------------------------------------------------------------| | | | Copyright [2019] Facade Technologies Inc. | | All Rights Reserved. | | | | NOTICE: All information contained herein is, and remains the property of | | Facade Technologies Inc. and its suppliers if any. The intellectual and | | and technical concepts contained herein are proprietary to Facade | | Technologies Inc. and its suppliers and may be covered by U.S. and Foreign | | Patents, patents in process, and are protected by trade secret or copyright | | law. Dissemination of this information or reproduction of this material is | | strictly forbidden unless prior written permission is obtained from Facade | | Technologies Inc. | | | \------------------------------------------------------------------------------/ This module contains the PropModel() class. """ from enum import Enum from PySide2.QtCore import QAbstractItemModel, QModelIndex, Qt from PySide2.QtGui import QColor class PropModel(QAbstractItemModel): """ A subclass that allows us to show the Data through QTreeView. """ def __init__(self, propData: object): """ Constructs a model for the Property Editor. :param propData: The data from the properties. :type propData: object :return: The constructed model. :rtype: QObject """ QAbstractItemModel.__init__(self) self._propData = propData def index(self, row: int, column: int, parent: QModelIndex) -> QModelIndex: """ Purpose of this function is to return a QModelIndex that maps to the appropriate data :param row: Row of the index. :type row: int :param column: Column of the index. :type column: int :param parent: Parent of that row or column. :type parent: QModelIndex :return: The index for the data. :rtype: QModelIndex """ if not self.hasIndex(row, column, parent): return QModelIndex() # referencing category if not parent.isValid(): internalData = self._propData.getCategories()[row] else: parentData = parent.internalPointer() if parentData in self._propData.getCategories(): internalData = self._propData.getCategoryProperties(parentData)[row] else: return QModelIndex() return self.createIndex(row, column, internalData) def parent(self, index: QModelIndex) -> QModelIndex: """ Purpose of this function is to return the parent index of the index that is provided :param index: Index that is provided. :type index: QModelIndex :return: Returns the parent index of the index provided. :rtype: QModelIndex """ if not index.isValid(): return QModelIndex() data = index.internalPointer() if data in self._propData.getCategories(): return QModelIndex() category = self._propData.getPropertyCategory(data) return self.createIndex(self._propData.getCategoryIndex(category), 0, category) def columnCount(self, parent: QModelIndex) -> int: """ Purpose of this function is to return the number of columns for the children of a given parent :param parent: Parent will tell us our column count. :type parent: QModelIndex :return: Number of columns. :rtype: int """ return 2 def rowCount(self, parent: QModelIndex) -> int: """ Purpose of this function is to return the number of children of a given parent :param parent: Parent will tell us our column count. :type parent: QModelIndex :return: Number of rows. :rtype: int """ if not parent.isValid(): numCategories = self._propData.getNumCategories() return numCategories parentData = parent.internalPointer() if parentData in self._propData.getCategories(): return self._propData.getNumPropertiesInCategory(parentData) else: return 0 def data(self, index: QModelIndex, role: int) -> object: """ Purpose of this function is to retrieve data stored under the given role for the item referred to by the index :param index: Index that is provided. :type index: QModelIndex :param role: The given role for item referred. :type role: int :return: Data of the given role from index. :rtype: object """ if not index.isValid(): return QModelIndex() row = index.row() col = index.column() data = index.internalPointer() if role == Qt.DisplayRole: if data in self._propData.getCategories(): if col == 0: return data else: return None else: col = index.column() if col == 0: return data.getName() elif col == 1: t = data.getType() if issubclass(t, Enum): return data.getValue().name if t == bool: return None return str(data.getValue()) else: return None elif role == Qt.BackgroundRole: if data in self._propData.getCategories(): return QColor(Qt.darkRed) else: shade = row % 2 * 25 return QColor(100 + shade, 150 + shade, 200 + shade) def headerData(self, section: int, orientation: Qt.Orientation, role: int) -> object: """ This method is used for displaying the header data for 'the given role and orientation of that specific section. :param section: Specific section for the header data. :type section: int :param orientation: Given orientation for the header data. :type orientation: Qt.Orientation :param role: The given role for the header data. :type role: int :return: Model of header data. :rtype: object """ if orientation == Qt.Horizontal and role == Qt.DisplayRole: return ["Name", "Value"][section] return None def traverse(self) -> None: """ This method is used for debugging by mimicking how a view might query the model for data. :return: None :rtype: NoneType """ parent = QModelIndex() work = [parent] while len(work) > 0: cur = work.pop() rows = self.rowCount(cur) cols = self.columnCount(cur) for r in range(rows): for c in range(cols): work.append(self.index(r, c, cur)) def setData(self, index: QModelIndex, value: object, role: int) -> bool: """ Purpose of this function is to set the role data for the index to value :param index: Index that is provided. :type index: QModelIndex :param value: Value that is set. :type value: object :param role: The given role data. :type role: int :return: Set data for index to a value. :rtype: bool """ if role != Qt.EditRole: return False if not index.isValid(): return False if not value: return False data = index.internalPointer() if data in self._propData.getCategories(): return False else: if index.column() != 1: return False else: valueWasSet = data.setValue(value) return valueWasSet def flags(self, index: QModelIndex) -> object: """ Purpose of this function is to determine what can be done with a given index :param index: Index that is provided. :type index: QModelIndex :return: Returns the item flags for the given index. :rtype: ItemFlags """ if not index.isValid(): return Qt.NoItemFlags data = index.internalPointer() if data in self._propData.getCategories() or (data.isReadOnly() and data.getType() != bool): return Qt.ItemIsEnabled | Qt.ItemIsSelectable else: if index.column() == 1: return Qt.ItemIsEnabled | Qt.ItemIsSelectable | Qt.ItemIsEditable else: return Qt.ItemIsEnabled | Qt.ItemIsSelectable
en
0.715113
.. /------------------------------------------------------------------------------\ | -- FACADE TECHNOLOGIES INC. CONFIDENTIAL -- | |------------------------------------------------------------------------------| | | | Copyright [2019] Facade Technologies Inc. | | All Rights Reserved. | | | | NOTICE: All information contained herein is, and remains the property of | | Facade Technologies Inc. and its suppliers if any. The intellectual and | | and technical concepts contained herein are proprietary to Facade | | Technologies Inc. and its suppliers and may be covered by U.S. and Foreign | | Patents, patents in process, and are protected by trade secret or copyright | | law. Dissemination of this information or reproduction of this material is | | strictly forbidden unless prior written permission is obtained from Facade | | Technologies Inc. | | | \------------------------------------------------------------------------------/ This module contains the PropModel() class. A subclass that allows us to show the Data through QTreeView. Constructs a model for the Property Editor. :param propData: The data from the properties. :type propData: object :return: The constructed model. :rtype: QObject Purpose of this function is to return a QModelIndex that maps to the appropriate data :param row: Row of the index. :type row: int :param column: Column of the index. :type column: int :param parent: Parent of that row or column. :type parent: QModelIndex :return: The index for the data. :rtype: QModelIndex # referencing category Purpose of this function is to return the parent index of the index that is provided :param index: Index that is provided. :type index: QModelIndex :return: Returns the parent index of the index provided. :rtype: QModelIndex Purpose of this function is to return the number of columns for the children of a given parent :param parent: Parent will tell us our column count. :type parent: QModelIndex :return: Number of columns. :rtype: int Purpose of this function is to return the number of children of a given parent :param parent: Parent will tell us our column count. :type parent: QModelIndex :return: Number of rows. :rtype: int Purpose of this function is to retrieve data stored under the given role for the item referred to by the index :param index: Index that is provided. :type index: QModelIndex :param role: The given role for item referred. :type role: int :return: Data of the given role from index. :rtype: object This method is used for displaying the header data for 'the given role and orientation of that specific section. :param section: Specific section for the header data. :type section: int :param orientation: Given orientation for the header data. :type orientation: Qt.Orientation :param role: The given role for the header data. :type role: int :return: Model of header data. :rtype: object This method is used for debugging by mimicking how a view might query the model for data. :return: None :rtype: NoneType Purpose of this function is to set the role data for the index to value :param index: Index that is provided. :type index: QModelIndex :param value: Value that is set. :type value: object :param role: The given role data. :type role: int :return: Set data for index to a value. :rtype: bool Purpose of this function is to determine what can be done with a given index :param index: Index that is provided. :type index: QModelIndex :return: Returns the item flags for the given index. :rtype: ItemFlags
1.936207
2
Unit2/OnlineWorks/Draw2.py
yuhao1998/PythonStudy
0
6630044
<reponame>yuhao1998/PythonStudy ''' turtleๅ…ซ่ง’ๅ›พๅฝข็ป˜ๅˆถ โ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ชโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ญโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ชโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ญโ€ฌโ€ซโ€ฌ ๆ่ฟฐ ไฝฟ็”จturtleๅบ“๏ผŒ็ป˜ๅˆถไธ€ไธชๅ…ซ่ง’ๅ›พๅฝขใ€‚โ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ชโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ญโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ชโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ญโ€ฌโ€ซโ€ฌ ''' import turtle as t t.pensize(2) for i in range(8): t.fd(150) t.left(135) t.done()
''' turtleๅ…ซ่ง’ๅ›พๅฝข็ป˜ๅˆถ โ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ชโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ญโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ชโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ญโ€ฌโ€ซโ€ฌ ๆ่ฟฐ ไฝฟ็”จturtleๅบ“๏ผŒ็ป˜ๅˆถไธ€ไธชๅ…ซ่ง’ๅ›พๅฝขใ€‚โ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ชโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ญโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ชโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ญโ€ฌโ€ซโ€ฌ ''' import turtle as t t.pensize(2) for i in range(8): t.fd(150) t.left(135) t.done()
zh
0.312434
turtleๅ…ซ่ง’ๅ›พๅฝข็ป˜ๅˆถ โ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ชโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ญโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ชโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ญโ€ฌโ€ซโ€ฌ ๆ่ฟฐ ไฝฟ็”จturtleๅบ“๏ผŒ็ป˜ๅˆถไธ€ไธชๅ…ซ่ง’ๅ›พๅฝขใ€‚โ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ชโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ญโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ชโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ซโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ชโ€ฌโ€ฎโ€ฌโ€ญโ€ฌโ€ซโ€ฌ
2.917784
3
core_tools/data/ds/data_set_DataMgr.py
opietx/core_tools
0
6630045
import numpy as np import copy import string class m_param_origanizer(): def __init__(self, m_param_raw): self.m_param_raw = m_param_raw def get(self, key, nth_set): items = self[key] for i in items: if i.nth_set == nth_set: return i raise ValueError('m_param with id {} and set {} not found in this data collection.'.format(key, nth_set)) def __getitem__(self, key): ''' gets a list with parameters containing this key Returns list<m_param_raw> : raw parameters originating from this id. ''' param_s = [] for m_param in self.m_param_raw: if m_param.param_id == key: param_s.append(m_param) if len(param_s) != 0: return param_s raise ValueError('m_param with id {} not found in this data collection.'.format(key)) def get_m_param_id(self): ''' get the measurement id's ''' id_s = set() for m_param in self.m_param_raw: id_s.add(m_param.param_id_m_param) return list(id_s) def __copy__(self): new_m_param = [] for i in self.m_param_raw: new_m_param.append(copy.copy(i)) return m_param_origanizer(new_m_param) class data_descriptor: #autogenerate parameter info def __set_name__(self, owner, name): # from python 3.6 (super handy :) ) self.name = name def __get__(self, obj, objtype): return getattr(obj.__dict__.get("_dataset_data_description__raw_data"), self.name) class dataset_data_description(): unit = data_descriptor() label = data_descriptor() name = data_descriptor() def __init__(self, name, m_param_raw, m_params_raw_collection): ''' Args: m_param_raw (m_param_raw) : pointer to the raw parameter to add m_params_raw_collection (m_param_origanizer) : object containing a representation of all the data in the dataset ''' self.name = name self.__raw_data = m_param_raw self.__raw_data_org = m_params_raw_collection self.__repr_attr_overview = [] self.__populate_data() def __populate_data(self): for i in range(len(self.__raw_data.dependency)): repr_attr_overview = [] raw_data = self.__raw_data_org[self.__raw_data.dependency[i]] for j in range(len(raw_data)): #this is not pretty, but it works.. dataDescription = dataset_data_description('', raw_data[j], self.__raw_data_org) if self.ndim <= 2: name = string.ascii_lowercase[23+i] + str(j+1) self.__setattr__(name, dataDescription) if j == 0: self.__setattr__(string.ascii_lowercase[23+i], dataDescription) if len(raw_data) == 1: name = string.ascii_lowercase[23+i] repr_attr_overview += [(name, dataDescription)] if self.ndim > 2: self.__setattr__(string.ascii_lowercase[8+i] + str(j+1), dataDescription) if len(raw_data) == 1: self.__setattr__(string.ascii_lowercase[8+i], dataDescription) repr_attr_overview += [(string.ascii_lowercase[8+i], dataDescription)] else: repr_attr_overview += [(string.ascii_lowercase[8+i] + str(j+1), dataDescription)] dataDescription.name = repr_attr_overview[-1][0] self.__repr_attr_overview += [repr_attr_overview] if self.ndim <= 2: name = string.ascii_lowercase[23+self.ndim-1] if len(self.__raw_data.dependency) != 0: name = string.ascii_lowercase[23+self.ndim] else: name = string.ascii_lowercase[8+self.ndim-1] self.__setattr__(name, self) def __call__(self): if self.__raw_data.setpoint is True or self.__raw_data.setpoint_local is True: if self.__raw_data.data_buffer.data.ndim > 1: #over dimensioned idx = [0] * self.__raw_data.data_buffer.data.ndim idx[self.__raw_data.nth_dim] = slice(None) return self.__raw_data.data_buffer.data[tuple(idx)] return self.__raw_data.data_buffer.data @property def shape(self): return self().shape @property def ndim(self): return len(self.shape) def full(self): return self.__raw_data.data_buffer.data def get_raw_content(self): return self.__repr_attr_overview def average(self, dim): ''' average the array across 1 dimension arg: dim (str/int) : 0 ('x'), 1 ('y') , ... ''' dim = self.dim_to_int(dim) if dim > self.ndim: raise ValueError("you are trying to average over a dimension that does not exists") raw_data_org_copy = copy.copy(self.__raw_data_org) raw_data_cpy = raw_data_org_copy.get(self.__raw_data.param_id, self.__raw_data.nth_set) raw_data_cpy.dependency.pop(dim) raw_data_cpy.data_buffer.buffer_lambda = raw_data_cpy.data_buffer.averaging_lambda(dim) return dataset_data_description(self.name, raw_data_cpy, raw_data_org_copy) def slice(self, dim, i): ''' take the ith slice of dimension i ''' dim = self.dim_to_int(dim) if not isinstance(i, slice): i = slice(int(i),int(i)+1) if dim > self.ndim: raise ValueError("you are trying to average over a dimension that does not exists") idx = [slice(None)]*self.ndim idx[dim] = i raw_data_org_copy = copy.copy(self.__raw_data_org) raw_data_cpy = raw_data_org_copy.get(self.__raw_data.param_id, self.__raw_data.nth_set) if i.start is not None and i.stop-i.start == 1: idx[dim] = i.start raw_data_cpy.dependency.pop(dim) elif i.stop is not None: id_to_slice = raw_data_cpy.dependency[dim] items= raw_data_org_copy[id_to_slice] for item in items: # TODO this is not generic yet (I think, this has to be checked). item.data_buffer.buffer_lambda = item.data_buffer.slice_lambda([idx[dim]]) raw_data_cpy.data_buffer.buffer_lambda = raw_data_cpy.data_buffer.slice_lambda(idx) return dataset_data_description(self.name, raw_data_cpy, raw_data_org_copy) def __getitem__(self, args): if not isinstance(args, tuple): args = [args] args = list(args) to_slice = None for i in range(len(args)): if isinstance(args[i], int): to_slice = (i, slice(args[i], args[i]+1)) elif isinstance(args[i], slice) and args[i] != slice(None): to_slice = (i, args[i]) if to_slice is None: return self args.pop(to_slice[0]) return self.slice(to_slice[0], to_slice[1])[tuple(args)] def __repr__(self): output_print = "" output_print += "| " + "{:<15}".format(self.name) + " | " + "{:<15}".format(self.label) + " | " + "{:<8}".format(self.unit)+ " | " + "{:<25}".format(str(self.shape)) + "|\n" for i in self.__repr_attr_overview: for j in i: dataDescription = j[1] if dataDescription.ndim == 1: output_print += "| " + "{:<14}".format(j[0]) + " | " + "{:<15}".format(dataDescription.label) + " | " + "{:<8}".format(dataDescription.unit)+ " | " + "{:<25}".format(str(dataDescription.shape)) + "|\n" return output_print @staticmethod def dim_to_int(dim): ''' convert dim (if text) into a number on which axix of the array to performan a operation (e.g. x = 0, y=1) ''' if isinstance(dim, str): if dim in 'xyz': dim = list(string.ascii_lowercase).index(dim) - 23 else: dim = list(string.ascii_lowercase).index(dim) - 8 return dim class data_set_property_intializer(): ''' mockup of dataclass for development purposes-- dont use this class. ''' def __init__(self, m_params): self.__repr_attr_overview = [] # m_meas_id's m_id = m_params.get_m_param_id() for i in range(len(m_id)): #this is not pretty. n_sets = len(m_params[m_id[i]]) repr_attr_overview = [] for j in range(n_sets): ds_descript = dataset_data_description('', m_params.get(m_id[i], j), m_params) name = 'm' + str(i+1) + string.ascii_lowercase[j] setattr(self, name, ds_descript) if j == 0: setattr(self, 'm' + str(i+1), ds_descript) if j == 0 and n_sets==1: #consistent printing repr_attr_overview += [('m' + str(i+1), ds_descript)] ds_descript.name = 'm' + str(i+1) else: repr_attr_overview += [(name, ds_descript)] ds_descript.name = name self.__repr_attr_overview += [repr_attr_overview] def __repr__(self): output_print = "DataSet :: my_measurement_name\n\nid = 1256\nTrueID = 1225565471200\n\n" output_print += "| idn | label | unit | size |\n" output_print += "---------------------------------------------------------------------------\n" for i in self.__repr_attr_overview: for j in i: output_print += j[1].__repr__() output_print += "\n" output_print += "database : vanderyspen\n" output_print += "set_up : XLD\n" output_print += "project : 6dot\n" output_print += "sample_name : SQ19\n" return output_print
import numpy as np import copy import string class m_param_origanizer(): def __init__(self, m_param_raw): self.m_param_raw = m_param_raw def get(self, key, nth_set): items = self[key] for i in items: if i.nth_set == nth_set: return i raise ValueError('m_param with id {} and set {} not found in this data collection.'.format(key, nth_set)) def __getitem__(self, key): ''' gets a list with parameters containing this key Returns list<m_param_raw> : raw parameters originating from this id. ''' param_s = [] for m_param in self.m_param_raw: if m_param.param_id == key: param_s.append(m_param) if len(param_s) != 0: return param_s raise ValueError('m_param with id {} not found in this data collection.'.format(key)) def get_m_param_id(self): ''' get the measurement id's ''' id_s = set() for m_param in self.m_param_raw: id_s.add(m_param.param_id_m_param) return list(id_s) def __copy__(self): new_m_param = [] for i in self.m_param_raw: new_m_param.append(copy.copy(i)) return m_param_origanizer(new_m_param) class data_descriptor: #autogenerate parameter info def __set_name__(self, owner, name): # from python 3.6 (super handy :) ) self.name = name def __get__(self, obj, objtype): return getattr(obj.__dict__.get("_dataset_data_description__raw_data"), self.name) class dataset_data_description(): unit = data_descriptor() label = data_descriptor() name = data_descriptor() def __init__(self, name, m_param_raw, m_params_raw_collection): ''' Args: m_param_raw (m_param_raw) : pointer to the raw parameter to add m_params_raw_collection (m_param_origanizer) : object containing a representation of all the data in the dataset ''' self.name = name self.__raw_data = m_param_raw self.__raw_data_org = m_params_raw_collection self.__repr_attr_overview = [] self.__populate_data() def __populate_data(self): for i in range(len(self.__raw_data.dependency)): repr_attr_overview = [] raw_data = self.__raw_data_org[self.__raw_data.dependency[i]] for j in range(len(raw_data)): #this is not pretty, but it works.. dataDescription = dataset_data_description('', raw_data[j], self.__raw_data_org) if self.ndim <= 2: name = string.ascii_lowercase[23+i] + str(j+1) self.__setattr__(name, dataDescription) if j == 0: self.__setattr__(string.ascii_lowercase[23+i], dataDescription) if len(raw_data) == 1: name = string.ascii_lowercase[23+i] repr_attr_overview += [(name, dataDescription)] if self.ndim > 2: self.__setattr__(string.ascii_lowercase[8+i] + str(j+1), dataDescription) if len(raw_data) == 1: self.__setattr__(string.ascii_lowercase[8+i], dataDescription) repr_attr_overview += [(string.ascii_lowercase[8+i], dataDescription)] else: repr_attr_overview += [(string.ascii_lowercase[8+i] + str(j+1), dataDescription)] dataDescription.name = repr_attr_overview[-1][0] self.__repr_attr_overview += [repr_attr_overview] if self.ndim <= 2: name = string.ascii_lowercase[23+self.ndim-1] if len(self.__raw_data.dependency) != 0: name = string.ascii_lowercase[23+self.ndim] else: name = string.ascii_lowercase[8+self.ndim-1] self.__setattr__(name, self) def __call__(self): if self.__raw_data.setpoint is True or self.__raw_data.setpoint_local is True: if self.__raw_data.data_buffer.data.ndim > 1: #over dimensioned idx = [0] * self.__raw_data.data_buffer.data.ndim idx[self.__raw_data.nth_dim] = slice(None) return self.__raw_data.data_buffer.data[tuple(idx)] return self.__raw_data.data_buffer.data @property def shape(self): return self().shape @property def ndim(self): return len(self.shape) def full(self): return self.__raw_data.data_buffer.data def get_raw_content(self): return self.__repr_attr_overview def average(self, dim): ''' average the array across 1 dimension arg: dim (str/int) : 0 ('x'), 1 ('y') , ... ''' dim = self.dim_to_int(dim) if dim > self.ndim: raise ValueError("you are trying to average over a dimension that does not exists") raw_data_org_copy = copy.copy(self.__raw_data_org) raw_data_cpy = raw_data_org_copy.get(self.__raw_data.param_id, self.__raw_data.nth_set) raw_data_cpy.dependency.pop(dim) raw_data_cpy.data_buffer.buffer_lambda = raw_data_cpy.data_buffer.averaging_lambda(dim) return dataset_data_description(self.name, raw_data_cpy, raw_data_org_copy) def slice(self, dim, i): ''' take the ith slice of dimension i ''' dim = self.dim_to_int(dim) if not isinstance(i, slice): i = slice(int(i),int(i)+1) if dim > self.ndim: raise ValueError("you are trying to average over a dimension that does not exists") idx = [slice(None)]*self.ndim idx[dim] = i raw_data_org_copy = copy.copy(self.__raw_data_org) raw_data_cpy = raw_data_org_copy.get(self.__raw_data.param_id, self.__raw_data.nth_set) if i.start is not None and i.stop-i.start == 1: idx[dim] = i.start raw_data_cpy.dependency.pop(dim) elif i.stop is not None: id_to_slice = raw_data_cpy.dependency[dim] items= raw_data_org_copy[id_to_slice] for item in items: # TODO this is not generic yet (I think, this has to be checked). item.data_buffer.buffer_lambda = item.data_buffer.slice_lambda([idx[dim]]) raw_data_cpy.data_buffer.buffer_lambda = raw_data_cpy.data_buffer.slice_lambda(idx) return dataset_data_description(self.name, raw_data_cpy, raw_data_org_copy) def __getitem__(self, args): if not isinstance(args, tuple): args = [args] args = list(args) to_slice = None for i in range(len(args)): if isinstance(args[i], int): to_slice = (i, slice(args[i], args[i]+1)) elif isinstance(args[i], slice) and args[i] != slice(None): to_slice = (i, args[i]) if to_slice is None: return self args.pop(to_slice[0]) return self.slice(to_slice[0], to_slice[1])[tuple(args)] def __repr__(self): output_print = "" output_print += "| " + "{:<15}".format(self.name) + " | " + "{:<15}".format(self.label) + " | " + "{:<8}".format(self.unit)+ " | " + "{:<25}".format(str(self.shape)) + "|\n" for i in self.__repr_attr_overview: for j in i: dataDescription = j[1] if dataDescription.ndim == 1: output_print += "| " + "{:<14}".format(j[0]) + " | " + "{:<15}".format(dataDescription.label) + " | " + "{:<8}".format(dataDescription.unit)+ " | " + "{:<25}".format(str(dataDescription.shape)) + "|\n" return output_print @staticmethod def dim_to_int(dim): ''' convert dim (if text) into a number on which axix of the array to performan a operation (e.g. x = 0, y=1) ''' if isinstance(dim, str): if dim in 'xyz': dim = list(string.ascii_lowercase).index(dim) - 23 else: dim = list(string.ascii_lowercase).index(dim) - 8 return dim class data_set_property_intializer(): ''' mockup of dataclass for development purposes-- dont use this class. ''' def __init__(self, m_params): self.__repr_attr_overview = [] # m_meas_id's m_id = m_params.get_m_param_id() for i in range(len(m_id)): #this is not pretty. n_sets = len(m_params[m_id[i]]) repr_attr_overview = [] for j in range(n_sets): ds_descript = dataset_data_description('', m_params.get(m_id[i], j), m_params) name = 'm' + str(i+1) + string.ascii_lowercase[j] setattr(self, name, ds_descript) if j == 0: setattr(self, 'm' + str(i+1), ds_descript) if j == 0 and n_sets==1: #consistent printing repr_attr_overview += [('m' + str(i+1), ds_descript)] ds_descript.name = 'm' + str(i+1) else: repr_attr_overview += [(name, ds_descript)] ds_descript.name = name self.__repr_attr_overview += [repr_attr_overview] def __repr__(self): output_print = "DataSet :: my_measurement_name\n\nid = 1256\nTrueID = 1225565471200\n\n" output_print += "| idn | label | unit | size |\n" output_print += "---------------------------------------------------------------------------\n" for i in self.__repr_attr_overview: for j in i: output_print += j[1].__repr__() output_print += "\n" output_print += "database : vanderyspen\n" output_print += "set_up : XLD\n" output_print += "project : 6dot\n" output_print += "sample_name : SQ19\n" return output_print
en
0.595729
gets a list with parameters containing this key Returns list<m_param_raw> : raw parameters originating from this id. get the measurement id's #autogenerate parameter info # from python 3.6 (super handy :) ) Args: m_param_raw (m_param_raw) : pointer to the raw parameter to add m_params_raw_collection (m_param_origanizer) : object containing a representation of all the data in the dataset #this is not pretty, but it works.. #over dimensioned average the array across 1 dimension arg: dim (str/int) : 0 ('x'), 1 ('y') , ... take the ith slice of dimension i # TODO this is not generic yet (I think, this has to be checked). convert dim (if text) into a number on which axix of the array to performan a operation (e.g. x = 0, y=1) mockup of dataclass for development purposes-- dont use this class. # m_meas_id's #this is not pretty. #consistent printing
2.649228
3
DataStructure/codes/doublyLinkedList.py
yangdongjue5510/TIL
0
6630046
<reponame>yangdongjue5510/TIL class Node: def __init__(self, key = None): self.key = key self.next = self.prev = self def __str__(self): return str(self.key) class DoublyLinkedList: def __init__(self): self.head = Node() self.size = 0 def __iter__(self): #๋ฐ˜๋ณตํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ๋ฐ˜๋ณต์ž. yield๊ฐ€ ์žˆ๋Š”๊ฒŒ generator v = self.head while v != None: yield v #return๊ณผ ๋น„์Šท. v = v.next def __str__(self): return "->".join(str(v) for v in self) #splice def splice(self, a, b, x): if a == None or b == None or x == None : return ap = a.prev bn = b.next #cut ap.next = bn bn.prev = ap #insert after x xn = x.next xn.prev = b x.next = a b.next = xn a.prev = x #search def search(self, key): v = self.head while v.next != self.head: if v.key == key: return v v = v.next return None #isEmpty def isEmpty(self): v = self.head if v.next ==self.head: return True else: return False #first last def first(self): v = self.head if v.next!=self.head: return v.next else: return None def last(self): v = self.head if v.prev != self.head: return v.prev else: return None def moveAfter(self, a, x): #๋…ธ๋“œ a๋ฅผ ๋…ธ๋“œ x ๋’ค๋กœ ์ด๋™ self.splice(a, a, x) #a๋ฅผ ๋–ผ์–ด๋‚ด์–ด x๋’ค๋กœ ๋ถ™์ธ ๊ฒƒ๊ณผ ๊ฐ™๋‹ค def moveBefore(self, a, x): #๋…ธ๋“œ a๋ฅผ ๋…ธ๋“œ x ์•ž์œผ๋กœ ์ด๋™ self.splice(a, a, x.prev) def insertAfter(self, x, key): #key๊ฐ’์„ ๊ฐ–๋Š” ๋…ธ๋“œ๋ฅผ x๋’ค์— ์‚ฝ์ž… self.moveAfter(Node(key), x) def insertBefore(self, x, key): #key๊ฐ’์„ ๊ฐ–๋Š” ๋…ธ๋“œ๋ฅผ x์•ž์— ์‚ฝ์ž… self.moveBefore(Node(key), x) def pushFront(self, key): # key๊ฐ’์„ ๊ฐ–๋Š” ๋…ธ๋“œ๋ฅผ ํ—ค๋“œ ๋’ค์— ์‚ฝ์ž… self.insertAfter(self.head, key) def pushBack(self, key): # key๊ฐ’์„ ๊ฐ–๋Š” ๋…ธ๋“œ๋ฅผ ํ—ค๋“œ ์•ž์— ์‚ฝ์ž… self.insertBefore(self.head, key) #์‚ญ์ œ def remove(self, x): if x == None or x == self.head: return x.prev.next , x.next.prev = x.next, x.prev def popFront(self): if self.isEmpty(): return None key = self.head.next.key self.remove(self.head.next) return key def popBack(self): if self.isEmpty(): return None key = self.head.prev.key self.remove(self.head.prev) return key
class Node: def __init__(self, key = None): self.key = key self.next = self.prev = self def __str__(self): return str(self.key) class DoublyLinkedList: def __init__(self): self.head = Node() self.size = 0 def __iter__(self): #๋ฐ˜๋ณตํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ๋ฐ˜๋ณต์ž. yield๊ฐ€ ์žˆ๋Š”๊ฒŒ generator v = self.head while v != None: yield v #return๊ณผ ๋น„์Šท. v = v.next def __str__(self): return "->".join(str(v) for v in self) #splice def splice(self, a, b, x): if a == None or b == None or x == None : return ap = a.prev bn = b.next #cut ap.next = bn bn.prev = ap #insert after x xn = x.next xn.prev = b x.next = a b.next = xn a.prev = x #search def search(self, key): v = self.head while v.next != self.head: if v.key == key: return v v = v.next return None #isEmpty def isEmpty(self): v = self.head if v.next ==self.head: return True else: return False #first last def first(self): v = self.head if v.next!=self.head: return v.next else: return None def last(self): v = self.head if v.prev != self.head: return v.prev else: return None def moveAfter(self, a, x): #๋…ธ๋“œ a๋ฅผ ๋…ธ๋“œ x ๋’ค๋กœ ์ด๋™ self.splice(a, a, x) #a๋ฅผ ๋–ผ์–ด๋‚ด์–ด x๋’ค๋กœ ๋ถ™์ธ ๊ฒƒ๊ณผ ๊ฐ™๋‹ค def moveBefore(self, a, x): #๋…ธ๋“œ a๋ฅผ ๋…ธ๋“œ x ์•ž์œผ๋กœ ์ด๋™ self.splice(a, a, x.prev) def insertAfter(self, x, key): #key๊ฐ’์„ ๊ฐ–๋Š” ๋…ธ๋“œ๋ฅผ x๋’ค์— ์‚ฝ์ž… self.moveAfter(Node(key), x) def insertBefore(self, x, key): #key๊ฐ’์„ ๊ฐ–๋Š” ๋…ธ๋“œ๋ฅผ x์•ž์— ์‚ฝ์ž… self.moveBefore(Node(key), x) def pushFront(self, key): # key๊ฐ’์„ ๊ฐ–๋Š” ๋…ธ๋“œ๋ฅผ ํ—ค๋“œ ๋’ค์— ์‚ฝ์ž… self.insertAfter(self.head, key) def pushBack(self, key): # key๊ฐ’์„ ๊ฐ–๋Š” ๋…ธ๋“œ๋ฅผ ํ—ค๋“œ ์•ž์— ์‚ฝ์ž… self.insertBefore(self.head, key) #์‚ญ์ œ def remove(self, x): if x == None or x == self.head: return x.prev.next , x.next.prev = x.next, x.prev def popFront(self): if self.isEmpty(): return None key = self.head.next.key self.remove(self.head.next) return key def popBack(self): if self.isEmpty(): return None key = self.head.prev.key self.remove(self.head.prev) return key
ko
0.999582
#๋ฐ˜๋ณตํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ๋ฐ˜๋ณต์ž. yield๊ฐ€ ์žˆ๋Š”๊ฒŒ generator #return๊ณผ ๋น„์Šท. #splice #cut #insert after x #search #isEmpty #first last #๋…ธ๋“œ a๋ฅผ ๋…ธ๋“œ x ๋’ค๋กœ ์ด๋™ #a๋ฅผ ๋–ผ์–ด๋‚ด์–ด x๋’ค๋กœ ๋ถ™์ธ ๊ฒƒ๊ณผ ๊ฐ™๋‹ค #๋…ธ๋“œ a๋ฅผ ๋…ธ๋“œ x ์•ž์œผ๋กœ ์ด๋™ #key๊ฐ’์„ ๊ฐ–๋Š” ๋…ธ๋“œ๋ฅผ x๋’ค์— ์‚ฝ์ž… #key๊ฐ’์„ ๊ฐ–๋Š” ๋…ธ๋“œ๋ฅผ x์•ž์— ์‚ฝ์ž… # key๊ฐ’์„ ๊ฐ–๋Š” ๋…ธ๋“œ๋ฅผ ํ—ค๋“œ ๋’ค์— ์‚ฝ์ž… # key๊ฐ’์„ ๊ฐ–๋Š” ๋…ธ๋“œ๋ฅผ ํ—ค๋“œ ์•ž์— ์‚ฝ์ž… #์‚ญ์ œ
3.611589
4
Chapter08/c8_06_noLonger_working.py
John-ye666/Python-for-Finance-Second-Edition
236
6630047
<reponame>John-ye666/Python-for-Finance-Second-Edition<filename>Chapter08/c8_06_noLonger_working.py import pandas as pd url='http://chart.yahoo.com/table.csv?s=IBM' x=pd.read_csv(url,index_col=0,parse_dates=True) print(x.head())
import pandas as pd url='http://chart.yahoo.com/table.csv?s=IBM' x=pd.read_csv(url,index_col=0,parse_dates=True) print(x.head())
none
1
2.865102
3
exeteracovid/scripts/export_diet_data_to_csv.py
deng113jie/ExeTeraCovid
3
6630048
import numpy as np import pandas as pd from exeteracovid.algorithms.healthy_diet_index import healthy_diet_index def export_diet_data_to_csv(s, src_data, geo_data, dest_data, csv_file): src_ptnts = src_data['patients'] src_diet = src_data['diet'] geo_ptnts = geo_data['patients'] ffq_questions = ('ffq_chips', 'ffq_crisps_snacks', 'ffq_eggs', 'ffq_fast_food', 'ffq_fibre_rich_breakfast', 'ffq_fizzy_pop', 'ffq_fruit', 'ffq_fruit_juice', 'ffq_ice_cream', 'ffq_live_probiotic_fermented', 'ffq_oily_fish', 'ffq_pasta', 'ffq_pulses', 'ffq_red_meat', 'ffq_red_processed_meat', 'ffq_refined_breakfast', 'ffq_rice', 'ffq_salad', 'ffq_sweets', 'ffq_vegetables', 'ffq_white_bread', 'ffq_white_fish', 'ffq_white_fish_battered_breaded', 'ffq_white_meat', 'ffq_white_processed_meat', 'ffq_wholemeal_bread') ffq_dict = {k: s.get(src_diet[k]).data[:] for k in ffq_questions} scores = healthy_diet_index(ffq_dict) p_ids = s.get(src_ptnts['id']).data[:] d_pids = s.get(src_diet['patient_id']).data[:] g_pids = s.get(geo_ptnts['id']).data[:] if not np.array_equal(p_ids, g_pids): print("src_data and geo_data do not match") exit() unique_d_pids = set(d_pids) p_filter = np.zeros(len(p_ids), np.bool) for i in range(len(p_ids)): p_filter[i] = p_ids[i] in unique_d_pids patient_fields = ('110_to_220_cm', '15_to_55_bmi', '16_to_90_years', '40_to_200_kg', 'a1c_measurement_mmol', 'a1c_measurement_mmol_valid', 'a1c_measurement_percent', 'a1c_measurement_percent_valid', 'activity_change', 'age', 'age_filter', 'alcohol_change', 'already_had_covid', 'assessment_count', 'blood_group', 'bmi', 'bmi_clean', 'bmi_valid', 'cancer_clinical_trial_site', 'cancer_type', 'classic_symptoms', 'classic_symptoms_days_ago', 'classic_symptoms_days_ago_valid', 'clinical_study_institutions', 'clinical_study_names', 'clinical_study_nct_ids', 'contact_additional_studies', 'contact_health_worker', 'country_code', 'created_at', 'created_at_day', 'diabetes_diagnosis_year', 'diabetes_diagnosis_year_valid', 'diabetes_oral_biguanide', 'diabetes_oral_dpp4', 'diabetes_oral_meglitinides', 'diabetes_oral_other_medication', 'diabetes_oral_sglt2', 'diabetes_oral_sulfonylurea', 'diabetes_oral_thiazolidinediones', 'diabetes_treatment_basal_insulin', 'diabetes_treatment_insulin_pump', 'diabetes_treatment_lifestyle', 'diabetes_treatment_none', 'diabetes_treatment_other_injection', 'diabetes_treatment_other_oral', 'diabetes_treatment_pfnts', 'diabetes_treatment_rapid_insulin', 'diabetes_type', 'diabetes_uses_cgm', 'diet_change', 'diet_counts', 'does_chemotherapy', 'ethnicity', 'ever_had_covid_test', 'first_assessment_day', 'gender', 'has_asthma', 'has_cancer', 'has_diabetes', 'has_eczema', 'has_hayfever', 'has_heart_disease', 'has_kidney_disease', 'has_lung_disease', 'has_lung_disease_only', 'health_worker_with_contact', 'healthcare_professional', 'height_cm', 'height_cm_clean', 'height_cm_valid', 'help_available', 'housebound_problems', 'ht_combined_oral_contraceptive_pill', 'ht_depot_injection_or_implant', 'ht_hormone_treatment_therapy', 'ht_mirena_or_other_coil', 'ht_none', 'ht_oestrogen_hormone_therapy', 'ht_pfnts', 'ht_progestone_only_pill', 'ht_testosterone_hormone_therapy', 'id', 'interacted_patients_with_covid', 'interacted_with_covid', 'is_carer_for_community', 'is_pregnant', 'is_smoker', 'last_assessment_day', 'lifestyle_version', 'limited_activity', 'lsoa11cd', 'max_assessment_test_result', 'max_test_result', 'mobility_aid', 'need_inside_help', 'need_outside_help', 'needs_help', 'never_used_shortage', 'on_cancer_clinical_trial', 'period_frequency', 'period_status', 'period_stopped_age', 'period_stopped_age_valid', 'pregnant_weeks', 'pregnant_weeks_valid', 'race_is_other', 'race_is_prefer_not_to_say', 'race_is_uk_asian', 'race_is_uk_black', 'race_is_uk_chinese', 'race_is_uk_middle_eastern', 'race_is_uk_mixed_other', 'race_is_uk_mixed_white_black', 'race_is_uk_white', 'race_is_us_asian', 'race_is_us_black', 'race_is_us_hawaiian_pacific', 'race_is_us_indian_native', 'race_is_us_white', 'race_other', 'reported_by_another', 'same_household_as_reporter', 'se_postcode', 'smoked_years_ago', 'smoked_years_ago_valid', 'smoker_status', 'snacking_change', 'sometimes_used_shortage', 'still_have_past_symptoms', 'takes_any_blood_pressure_medications', 'takes_aspirin', 'takes_blood_pressure_medications_pril', 'takes_blood_pressure_medications_sartan', 'takes_corticosteroids', 'takes_immunosuppressants', 'test_count', 'vs_asked_at_set', 'vs_garlic', 'vs_multivitamins', 'vs_none', 'vs_omega_3', 'vs_other', 'vs_pftns', 'vs_probiotics', 'vs_vitamin_c', 'vs_vitamin_d', 'vs_zinc', 'weight_change', 'weight_change_kg', 'weight_change_kg_valid', 'weight_change_pounds', 'weight_change_pounds_valid', 'weight_kg', 'weight_kg_clean', 'weight_kg_valid', 'year_of_birth', 'year_of_birth_valid') patient_geo_fields = ('has_imd_data', 'imd_rank', 'imd_decile', 'ruc11cd') flt_ptnts = dest_data.create_group('patients') for k in patient_fields: r = s.get(src_ptnts[k]) w = r.create_like(flt_ptnts, k) s.apply_filter(p_filter, r, w) for k in patient_geo_fields: r = s.get(geo_ptnts[k]) w = r.create_like(flt_ptnts, k) s.apply_filter(p_filter, r, w) p_dict = {'id': s.apply_filter(p_filter, p_ids)} for k in flt_ptnts.keys(): if "weight" in k or "height" in k: pkey = "patient_{}".format(k) else: pkey = k p_dict[pkey] = s.get(flt_ptnts[k]).data[:] pdf = pd.DataFrame(p_dict) d_dict = {'diet_id': s.get(src_diet['id']).data[:], 'patient_id': s.get(src_diet['patient_id']).data[:]} d_dict.update({ k: s.get(src_diet[k]).data[:] for k in src_diet.keys() if k not in ('id', 'patient_id') }) d_dict.update({'scores': scores}) ddf = pd.DataFrame(d_dict) tdf = pd.merge(left=ddf, right=pdf, left_on='patient_id', right_on='id') for k in tdf.keys(): if k[-2:] == "_x" or k[-2:] == "_y": print(k) print(tdf.columns) tdf.to_csv(csv_file, index=False)
import numpy as np import pandas as pd from exeteracovid.algorithms.healthy_diet_index import healthy_diet_index def export_diet_data_to_csv(s, src_data, geo_data, dest_data, csv_file): src_ptnts = src_data['patients'] src_diet = src_data['diet'] geo_ptnts = geo_data['patients'] ffq_questions = ('ffq_chips', 'ffq_crisps_snacks', 'ffq_eggs', 'ffq_fast_food', 'ffq_fibre_rich_breakfast', 'ffq_fizzy_pop', 'ffq_fruit', 'ffq_fruit_juice', 'ffq_ice_cream', 'ffq_live_probiotic_fermented', 'ffq_oily_fish', 'ffq_pasta', 'ffq_pulses', 'ffq_red_meat', 'ffq_red_processed_meat', 'ffq_refined_breakfast', 'ffq_rice', 'ffq_salad', 'ffq_sweets', 'ffq_vegetables', 'ffq_white_bread', 'ffq_white_fish', 'ffq_white_fish_battered_breaded', 'ffq_white_meat', 'ffq_white_processed_meat', 'ffq_wholemeal_bread') ffq_dict = {k: s.get(src_diet[k]).data[:] for k in ffq_questions} scores = healthy_diet_index(ffq_dict) p_ids = s.get(src_ptnts['id']).data[:] d_pids = s.get(src_diet['patient_id']).data[:] g_pids = s.get(geo_ptnts['id']).data[:] if not np.array_equal(p_ids, g_pids): print("src_data and geo_data do not match") exit() unique_d_pids = set(d_pids) p_filter = np.zeros(len(p_ids), np.bool) for i in range(len(p_ids)): p_filter[i] = p_ids[i] in unique_d_pids patient_fields = ('110_to_220_cm', '15_to_55_bmi', '16_to_90_years', '40_to_200_kg', 'a1c_measurement_mmol', 'a1c_measurement_mmol_valid', 'a1c_measurement_percent', 'a1c_measurement_percent_valid', 'activity_change', 'age', 'age_filter', 'alcohol_change', 'already_had_covid', 'assessment_count', 'blood_group', 'bmi', 'bmi_clean', 'bmi_valid', 'cancer_clinical_trial_site', 'cancer_type', 'classic_symptoms', 'classic_symptoms_days_ago', 'classic_symptoms_days_ago_valid', 'clinical_study_institutions', 'clinical_study_names', 'clinical_study_nct_ids', 'contact_additional_studies', 'contact_health_worker', 'country_code', 'created_at', 'created_at_day', 'diabetes_diagnosis_year', 'diabetes_diagnosis_year_valid', 'diabetes_oral_biguanide', 'diabetes_oral_dpp4', 'diabetes_oral_meglitinides', 'diabetes_oral_other_medication', 'diabetes_oral_sglt2', 'diabetes_oral_sulfonylurea', 'diabetes_oral_thiazolidinediones', 'diabetes_treatment_basal_insulin', 'diabetes_treatment_insulin_pump', 'diabetes_treatment_lifestyle', 'diabetes_treatment_none', 'diabetes_treatment_other_injection', 'diabetes_treatment_other_oral', 'diabetes_treatment_pfnts', 'diabetes_treatment_rapid_insulin', 'diabetes_type', 'diabetes_uses_cgm', 'diet_change', 'diet_counts', 'does_chemotherapy', 'ethnicity', 'ever_had_covid_test', 'first_assessment_day', 'gender', 'has_asthma', 'has_cancer', 'has_diabetes', 'has_eczema', 'has_hayfever', 'has_heart_disease', 'has_kidney_disease', 'has_lung_disease', 'has_lung_disease_only', 'health_worker_with_contact', 'healthcare_professional', 'height_cm', 'height_cm_clean', 'height_cm_valid', 'help_available', 'housebound_problems', 'ht_combined_oral_contraceptive_pill', 'ht_depot_injection_or_implant', 'ht_hormone_treatment_therapy', 'ht_mirena_or_other_coil', 'ht_none', 'ht_oestrogen_hormone_therapy', 'ht_pfnts', 'ht_progestone_only_pill', 'ht_testosterone_hormone_therapy', 'id', 'interacted_patients_with_covid', 'interacted_with_covid', 'is_carer_for_community', 'is_pregnant', 'is_smoker', 'last_assessment_day', 'lifestyle_version', 'limited_activity', 'lsoa11cd', 'max_assessment_test_result', 'max_test_result', 'mobility_aid', 'need_inside_help', 'need_outside_help', 'needs_help', 'never_used_shortage', 'on_cancer_clinical_trial', 'period_frequency', 'period_status', 'period_stopped_age', 'period_stopped_age_valid', 'pregnant_weeks', 'pregnant_weeks_valid', 'race_is_other', 'race_is_prefer_not_to_say', 'race_is_uk_asian', 'race_is_uk_black', 'race_is_uk_chinese', 'race_is_uk_middle_eastern', 'race_is_uk_mixed_other', 'race_is_uk_mixed_white_black', 'race_is_uk_white', 'race_is_us_asian', 'race_is_us_black', 'race_is_us_hawaiian_pacific', 'race_is_us_indian_native', 'race_is_us_white', 'race_other', 'reported_by_another', 'same_household_as_reporter', 'se_postcode', 'smoked_years_ago', 'smoked_years_ago_valid', 'smoker_status', 'snacking_change', 'sometimes_used_shortage', 'still_have_past_symptoms', 'takes_any_blood_pressure_medications', 'takes_aspirin', 'takes_blood_pressure_medications_pril', 'takes_blood_pressure_medications_sartan', 'takes_corticosteroids', 'takes_immunosuppressants', 'test_count', 'vs_asked_at_set', 'vs_garlic', 'vs_multivitamins', 'vs_none', 'vs_omega_3', 'vs_other', 'vs_pftns', 'vs_probiotics', 'vs_vitamin_c', 'vs_vitamin_d', 'vs_zinc', 'weight_change', 'weight_change_kg', 'weight_change_kg_valid', 'weight_change_pounds', 'weight_change_pounds_valid', 'weight_kg', 'weight_kg_clean', 'weight_kg_valid', 'year_of_birth', 'year_of_birth_valid') patient_geo_fields = ('has_imd_data', 'imd_rank', 'imd_decile', 'ruc11cd') flt_ptnts = dest_data.create_group('patients') for k in patient_fields: r = s.get(src_ptnts[k]) w = r.create_like(flt_ptnts, k) s.apply_filter(p_filter, r, w) for k in patient_geo_fields: r = s.get(geo_ptnts[k]) w = r.create_like(flt_ptnts, k) s.apply_filter(p_filter, r, w) p_dict = {'id': s.apply_filter(p_filter, p_ids)} for k in flt_ptnts.keys(): if "weight" in k or "height" in k: pkey = "patient_{}".format(k) else: pkey = k p_dict[pkey] = s.get(flt_ptnts[k]).data[:] pdf = pd.DataFrame(p_dict) d_dict = {'diet_id': s.get(src_diet['id']).data[:], 'patient_id': s.get(src_diet['patient_id']).data[:]} d_dict.update({ k: s.get(src_diet[k]).data[:] for k in src_diet.keys() if k not in ('id', 'patient_id') }) d_dict.update({'scores': scores}) ddf = pd.DataFrame(d_dict) tdf = pd.merge(left=ddf, right=pdf, left_on='patient_id', right_on='id') for k in tdf.keys(): if k[-2:] == "_x" or k[-2:] == "_y": print(k) print(tdf.columns) tdf.to_csv(csv_file, index=False)
none
1
2.901014
3
cowsay/lib/cows/satanic.py
Ovlic/cowsay_py
0
6630049
<reponame>Ovlic/cowsay_py<filename>cowsay/lib/cows/satanic.py def Satanic(thoughts, eyes, eye, tongue): return f""" {thoughts} {thoughts} (__) (\\/) /-------\\/ / | 666 ||{tongue} * ||----|| ~~ ~~ """
def Satanic(thoughts, eyes, eye, tongue): return f""" {thoughts} {thoughts} (__) (\\/) /-------\\/ / | 666 ||{tongue} * ||----|| ~~ ~~ """
en
0.387643
{thoughts} {thoughts} (__) (\\/) /-------\\/ / | 666 ||{tongue} * ||----|| ~~ ~~
1.938572
2
src/webapp/webapp.py
Somsubhra/Enrich
1
6630050
<reponame>Somsubhra/Enrich # Headers __author__ = '<NAME>' __email__ = '<EMAIL>' # All imports from flask import Flask, render_template, request, jsonify from extras import Logger from output import Tagger # The Web App class class WebApp: # Constructor for the Web App class def __init__(self, host, port, debug): self.host = host self.port = port self.debug = debug self.app = Flask(__name__) # Index route @self.app.route('/') def index(): return render_template('index.html') @self.app.route('/api/tag') def tag_api(): text = request.args["text"] _type = request.args["type"] tagger = Tagger(_type) result = tagger.tag(text) return jsonify(success=True, result=result) Logger.log_success('Server started successfully') # Run the Web App def run(self): self.app.run(self.host, self.port, self.debug)
# Headers __author__ = '<NAME>' __email__ = '<EMAIL>' # All imports from flask import Flask, render_template, request, jsonify from extras import Logger from output import Tagger # The Web App class class WebApp: # Constructor for the Web App class def __init__(self, host, port, debug): self.host = host self.port = port self.debug = debug self.app = Flask(__name__) # Index route @self.app.route('/') def index(): return render_template('index.html') @self.app.route('/api/tag') def tag_api(): text = request.args["text"] _type = request.args["type"] tagger = Tagger(_type) result = tagger.tag(text) return jsonify(success=True, result=result) Logger.log_success('Server started successfully') # Run the Web App def run(self): self.app.run(self.host, self.port, self.debug)
en
0.531977
# Headers # All imports # The Web App class # Constructor for the Web App class # Index route # Run the Web App
2.795882
3