max_stars_repo_path
stringlengths
4
286
max_stars_repo_name
stringlengths
5
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.03M
content_cleaned
stringlengths
6
1.03M
language
stringclasses
111 values
language_score
float64
0.03
1
comments
stringlengths
0
556k
edu_score
float64
0.32
5.03
edu_int_score
int64
0
5
library/math_tool_box.py
brianchiang-tw/Python
0
6630251
import functools import random import math class StatMaker: container = [] size = 0 def __init__(self, new_list): self.container = new_list self.size = len(self.container) # Get the minimum value of a series def get_min(self): min_value = functools.reduce( lambda smallest, x: smallest if smallest < x else x, self.container, self.container[0] ) return min_value # Get the maximum value of a series def get_max(self): max_value = functools.reduce( lambda largest, x: largest if largest > x else x, self.container, self.container[0] ) return max_value # Get the summation of a series def get_sum(self): sum_value = functools.reduce( lambda sum, x: sum + x, self.container, 0 ) return sum_value # Get the average of a series def get_avg(self): avg = self.get_sum() / self.size return avg # Get the standard deviation of a series def get_std(self): # Recall: # var = { ( sigma[ (Xi - avg )^2 ] ) / (N-1) } # = { ( sigma[ Xi^2 ] - N * avg^2 ) / (N-1) } # std = sqrt(var) sum_of_element_square = functools.reduce( lambda sum, x: sum + x**2, self.container, 0 ) N_of_avg_square = self.size * self.get_avg()**2 var = ( sum_of_element_square - N_of_avg_square) / ( self.size-1 ) std = var**( 1/2 ) return std ### Tutorial: # list_test = list( range(1,6) ) # [1, 2, 3, 4, 5] # print( list_test ) # random.shuffle( list_test ) # example output: # [3, 1, 2, 5, 4] # print( list_test ) # stat_info = StatMaker(list_test) # min_value = stat_info.get_min() # max_value = stat_info.get_max() # sum_value = stat_info.get_sum() # avg_value = stat_info.get_avg() # std_value = stat_info.get_std() # 1 # print( min_value ) # 5 # print( max_value ) # 15 # print( sum_value ) # 3.0 # print( avg_value ) # 1.5811388300841898 # print( std_value )
import functools import random import math class StatMaker: container = [] size = 0 def __init__(self, new_list): self.container = new_list self.size = len(self.container) # Get the minimum value of a series def get_min(self): min_value = functools.reduce( lambda smallest, x: smallest if smallest < x else x, self.container, self.container[0] ) return min_value # Get the maximum value of a series def get_max(self): max_value = functools.reduce( lambda largest, x: largest if largest > x else x, self.container, self.container[0] ) return max_value # Get the summation of a series def get_sum(self): sum_value = functools.reduce( lambda sum, x: sum + x, self.container, 0 ) return sum_value # Get the average of a series def get_avg(self): avg = self.get_sum() / self.size return avg # Get the standard deviation of a series def get_std(self): # Recall: # var = { ( sigma[ (Xi - avg )^2 ] ) / (N-1) } # = { ( sigma[ Xi^2 ] - N * avg^2 ) / (N-1) } # std = sqrt(var) sum_of_element_square = functools.reduce( lambda sum, x: sum + x**2, self.container, 0 ) N_of_avg_square = self.size * self.get_avg()**2 var = ( sum_of_element_square - N_of_avg_square) / ( self.size-1 ) std = var**( 1/2 ) return std ### Tutorial: # list_test = list( range(1,6) ) # [1, 2, 3, 4, 5] # print( list_test ) # random.shuffle( list_test ) # example output: # [3, 1, 2, 5, 4] # print( list_test ) # stat_info = StatMaker(list_test) # min_value = stat_info.get_min() # max_value = stat_info.get_max() # sum_value = stat_info.get_sum() # avg_value = stat_info.get_avg() # std_value = stat_info.get_std() # 1 # print( min_value ) # 5 # print( max_value ) # 15 # print( sum_value ) # 3.0 # print( avg_value ) # 1.5811388300841898 # print( std_value )
en
0.482989
# Get the minimum value of a series # Get the maximum value of a series # Get the summation of a series # Get the average of a series # Get the standard deviation of a series # Recall: # var = { ( sigma[ (Xi - avg )^2 ] ) / (N-1) } # = { ( sigma[ Xi^2 ] - N * avg^2 ) / (N-1) } # std = sqrt(var) ### Tutorial: # list_test = list( range(1,6) ) # [1, 2, 3, 4, 5] # print( list_test ) # random.shuffle( list_test ) # example output: # [3, 1, 2, 5, 4] # print( list_test ) # stat_info = StatMaker(list_test) # min_value = stat_info.get_min() # max_value = stat_info.get_max() # sum_value = stat_info.get_sum() # avg_value = stat_info.get_avg() # std_value = stat_info.get_std() # 1 # print( min_value ) # 5 # print( max_value ) # 15 # print( sum_value ) # 3.0 # print( avg_value ) # 1.5811388300841898 # print( std_value )
3.6024
4
robopose/third_party/craves/heatmap_utils.py
lesteve/robopose
43
6630252
<filename>robopose/third_party/craves/heatmap_utils.py import torch import numpy as np def heatmap_from_keypoints(bbox, pts2d): scale_factor = 60.0 out_res = 64 nparts = 17 sigma = 1 label_type = 'Gaussian' bbox = bbox.cpu().numpy() pts2d = pts2d.cpu().numpy() x0, y0, x1, y1 = bbox c = np.array([(x0+x1), (y0+y1)])/2 s = np.sqrt((y1-y0)*(x1-x0)) / scale_factor r = 0 tpts = np.asarray(pts2d).copy() target = torch.zeros(nparts, out_res, out_res) for i in range(nparts): # if tpts[i, 2] > 0: # This is evil!! if tpts[i, 1] > 0: tpts[i, 0:2] = to_torch(transform(tpts[i, 0:2], c, s, [out_res, out_res], rot=r)) target[i] = draw_labelmap(target[i], tpts[i], sigma, type=label_type) return target def to_numpy(tensor): if torch.is_tensor(tensor): return tensor.cpu().numpy() elif type(tensor).__module__ != 'numpy': raise ValueError("Cannot convert {} to numpy array" .format(type(tensor))) return tensor def to_torch(ndarray): if type(ndarray).__module__ == 'numpy': return torch.from_numpy(ndarray) elif not torch.is_tensor(ndarray): raise ValueError("Cannot convert {} to torch tensor" .format(type(ndarray))) return ndarray def draw_labelmap(img, pt, sigma, type='Gaussian'): # Draw a 2D gaussian # Adopted from https://github.com/anewell/pose-hg-train/blob/master/src/pypose/draw.py img = to_numpy(img) # Check that any part of the gaussian is in-bounds ul = [int(pt[0] - 3 * sigma), int(pt[1] - 3 * sigma)] br = [int(pt[0] + 3 * sigma + 1), int(pt[1] + 3 * sigma + 1)] if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or br[0] < 0 or br[1] < 0): # If not, just return the image as is return to_torch(img) # Generate gaussian size = 6 * sigma + 1 x = np.arange(0, size, 1, float) y = x[:, np.newaxis] x0 = y0 = size // 2 # The gaussian is not normalized, we want the center value to equal 1 if type == 'Gaussian': g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) elif type == 'Cauchy': g = sigma / (((x - x0) ** 2 + (y - y0) ** 2 + sigma ** 2) ** 1.5) # Usable gaussian range g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0] g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1] # Image range img_x = max(0, ul[0]), min(br[0], img.shape[1]) img_y = max(0, ul[1]), min(br[1], img.shape[0]) img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]] return to_torch(img) def transform(pt, center, scale, res, invert=0, rot=0): # Transform pixel location to different reference # print(scale) t = get_transform(center, scale, res, rot=rot) if invert: t = np.linalg.inv(t) new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T #new_pt = np.array([pt[0], pt[1], 1.]).T new_pt = np.dot(t, new_pt) # return new_pt[:2].astype(int) + 1 return (new_pt[:2] + 0.5).astype(int) def get_transform(center, scale, res, rot=0): """ General image processing functions """ # Generate transformation matrix h = 200 * scale t = np.zeros((3, 3)) t[0, 0] = float(res[1]) / h t[1, 1] = float(res[0]) / h t[0, 2] = res[1] * (-float(center[0]) / h + .5) t[1, 2] = res[0] * (-float(center[1]) / h + .5) t[2, 2] = 1 if not rot == 0: rot = -rot # To match direction of rotation from cropping rot_mat = np.zeros((3,3)) rot_rad = rot * np.pi / 180 sn,cs = np.sin(rot_rad), np.cos(rot_rad) rot_mat[0,:2] = [cs, -sn] rot_mat[1,:2] = [sn, cs] rot_mat[2,2] = 1 # Need to rotate around center t_mat = np.eye(3) t_mat[0,2] = -res[1]/2 t_mat[1,2] = -res[0]/2 t_inv = t_mat.copy() t_inv[:2,2] *= -1 t = np.dot(t_inv,np.dot(rot_mat,np.dot(t_mat,t))) return t
<filename>robopose/third_party/craves/heatmap_utils.py import torch import numpy as np def heatmap_from_keypoints(bbox, pts2d): scale_factor = 60.0 out_res = 64 nparts = 17 sigma = 1 label_type = 'Gaussian' bbox = bbox.cpu().numpy() pts2d = pts2d.cpu().numpy() x0, y0, x1, y1 = bbox c = np.array([(x0+x1), (y0+y1)])/2 s = np.sqrt((y1-y0)*(x1-x0)) / scale_factor r = 0 tpts = np.asarray(pts2d).copy() target = torch.zeros(nparts, out_res, out_res) for i in range(nparts): # if tpts[i, 2] > 0: # This is evil!! if tpts[i, 1] > 0: tpts[i, 0:2] = to_torch(transform(tpts[i, 0:2], c, s, [out_res, out_res], rot=r)) target[i] = draw_labelmap(target[i], tpts[i], sigma, type=label_type) return target def to_numpy(tensor): if torch.is_tensor(tensor): return tensor.cpu().numpy() elif type(tensor).__module__ != 'numpy': raise ValueError("Cannot convert {} to numpy array" .format(type(tensor))) return tensor def to_torch(ndarray): if type(ndarray).__module__ == 'numpy': return torch.from_numpy(ndarray) elif not torch.is_tensor(ndarray): raise ValueError("Cannot convert {} to torch tensor" .format(type(ndarray))) return ndarray def draw_labelmap(img, pt, sigma, type='Gaussian'): # Draw a 2D gaussian # Adopted from https://github.com/anewell/pose-hg-train/blob/master/src/pypose/draw.py img = to_numpy(img) # Check that any part of the gaussian is in-bounds ul = [int(pt[0] - 3 * sigma), int(pt[1] - 3 * sigma)] br = [int(pt[0] + 3 * sigma + 1), int(pt[1] + 3 * sigma + 1)] if (ul[0] >= img.shape[1] or ul[1] >= img.shape[0] or br[0] < 0 or br[1] < 0): # If not, just return the image as is return to_torch(img) # Generate gaussian size = 6 * sigma + 1 x = np.arange(0, size, 1, float) y = x[:, np.newaxis] x0 = y0 = size // 2 # The gaussian is not normalized, we want the center value to equal 1 if type == 'Gaussian': g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) elif type == 'Cauchy': g = sigma / (((x - x0) ** 2 + (y - y0) ** 2 + sigma ** 2) ** 1.5) # Usable gaussian range g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0] g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1] # Image range img_x = max(0, ul[0]), min(br[0], img.shape[1]) img_y = max(0, ul[1]), min(br[1], img.shape[0]) img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]] return to_torch(img) def transform(pt, center, scale, res, invert=0, rot=0): # Transform pixel location to different reference # print(scale) t = get_transform(center, scale, res, rot=rot) if invert: t = np.linalg.inv(t) new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T #new_pt = np.array([pt[0], pt[1], 1.]).T new_pt = np.dot(t, new_pt) # return new_pt[:2].astype(int) + 1 return (new_pt[:2] + 0.5).astype(int) def get_transform(center, scale, res, rot=0): """ General image processing functions """ # Generate transformation matrix h = 200 * scale t = np.zeros((3, 3)) t[0, 0] = float(res[1]) / h t[1, 1] = float(res[0]) / h t[0, 2] = res[1] * (-float(center[0]) / h + .5) t[1, 2] = res[0] * (-float(center[1]) / h + .5) t[2, 2] = 1 if not rot == 0: rot = -rot # To match direction of rotation from cropping rot_mat = np.zeros((3,3)) rot_rad = rot * np.pi / 180 sn,cs = np.sin(rot_rad), np.cos(rot_rad) rot_mat[0,:2] = [cs, -sn] rot_mat[1,:2] = [sn, cs] rot_mat[2,2] = 1 # Need to rotate around center t_mat = np.eye(3) t_mat[0,2] = -res[1]/2 t_mat[1,2] = -res[0]/2 t_inv = t_mat.copy() t_inv[:2,2] *= -1 t = np.dot(t_inv,np.dot(rot_mat,np.dot(t_mat,t))) return t
en
0.741739
# if tpts[i, 2] > 0: # This is evil!! # Draw a 2D gaussian # Adopted from https://github.com/anewell/pose-hg-train/blob/master/src/pypose/draw.py # Check that any part of the gaussian is in-bounds # If not, just return the image as is # Generate gaussian # The gaussian is not normalized, we want the center value to equal 1 # Usable gaussian range # Image range # Transform pixel location to different reference # print(scale) #new_pt = np.array([pt[0], pt[1], 1.]).T # return new_pt[:2].astype(int) + 1 General image processing functions # Generate transformation matrix # To match direction of rotation from cropping # Need to rotate around center
2.328275
2
miwell-flask-app/tests/functional_tests/test_pages/test_main_pages/test_about_page.py
joshuahigginson1/DevOps-Assessment-1
1
6630253
# Contains the code to test our about page. # Imports -------------------------------------------------------------------------------- from tests.functional_test_framework import LiveServerTestCase # Tests ---------------------------------------------------------------------------------- class TestAboutPage(LiveServerTestCase): pass
# Contains the code to test our about page. # Imports -------------------------------------------------------------------------------- from tests.functional_test_framework import LiveServerTestCase # Tests ---------------------------------------------------------------------------------- class TestAboutPage(LiveServerTestCase): pass
en
0.253894
# Contains the code to test our about page. # Imports -------------------------------------------------------------------------------- # Tests ----------------------------------------------------------------------------------
1.526103
2
tensorflow-mnist-code/admm_pruning.py
KaiqiZhang/admm-pruning
90
6630254
<gh_stars>10-100 # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A deep MNIST classifier using convolutional layers. See extensive documentation at https://www.tensorflow.org/get_started/mnist/pros """ # Disable linter warnings to maintain consistency with tutorial. # pylint: disable=invalid-name # pylint: disable=g-bad-import-order from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import tempfile from model import create_model from solver import create_admm_solver from tensorflow.examples.tutorials.mnist import input_data from prune_utility import apply_prune_on_grads,apply_prune,get_configuration,projection import tensorflow as tf import numpy as np from numpy import linalg as LA FLAGS = None # pruning ratio prune_configuration = get_configuration() dense_w = {} P1 = prune_configuration.P1 P2 = prune_configuration.P2 P3 = prune_configuration.P3 P4 = prune_configuration.P4 prune_configuration.display() def main(_): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) model = create_model() x = model.x y_ = model.y_ cross_entropy = model.cross_entropy layers = model.layers logits = model.logits solver = create_admm_solver(model) keep_prob = model.keep_prob train_step = solver.train_step train_step1 = solver.train_step1 W_conv1 = model.W_conv1 W_conv2 = model.W_conv2 W_fc1 = model.W_fc1 W_fc2 = model.W_fc2 A = solver.A B = solver.B C = solver.C D = solver.D E = solver.E F = solver.F G = solver.G H = solver.H my_trainer = tf.train.AdamOptimizer(1e-3) grads = my_trainer.compute_gradients(cross_entropy) with tf.name_scope('accuracy'): correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y_, 1)) correct_prediction = tf.cast(correct_prediction, tf.float32) accuracy = tf.reduce_mean(correct_prediction) graph_location = tempfile.mkdtemp() print('Saving graph to: %s' % graph_location) train_writer = tf.summary.FileWriter(graph_location) train_writer.add_graph(tf.get_default_graph()) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print('test accuracy %g' % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) Z1 = sess.run(W_conv1) Z1 = projection(Z1, percent=P1) U1 = np.zeros_like(Z1) Z2 = sess.run(W_conv2) Z2 = projection(Z2, percent=P2) U2 = np.zeros_like(Z2) Z3 = sess.run(W_fc1) Z3 = projection(Z3, percent=P3) U3 = np.zeros_like(Z3) Z4 = sess.run(W_fc2) Z4 = projection(Z4, percent=P4) U4 = np.zeros_like(Z4) for j in range(30): for i in range(5000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) train_step1.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0, A:Z1, B:U1, C:Z2, D:U2, E:Z3, F:U3, G:Z4, H:U4}) Z1 = sess.run(W_conv1) + U1 Z1 = projection(Z1, percent=P1) U1 = U1 + sess.run(W_conv1) - Z1 Z2 = sess.run(W_conv2) + U2 Z2 = projection(Z2, percent=P2) U2 = U2 + sess.run(W_conv2) - Z2 Z3 = sess.run(W_fc1) + U3 Z3 = projection(Z3, percent=P3) U3 = U3 + sess.run(W_fc1) - Z3 Z4 = sess.run(W_fc2) + U4 Z4 = projection(Z4, percent=P4) U4 = U4 + sess.run(W_fc2) - Z4 print('test accuracy %g' % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) print(LA.norm(sess.run(W_conv1) - Z1)) print(LA.norm(sess.run(W_conv2) - Z2)) print(LA.norm(sess.run(W_fc1) - Z3)) print(LA.norm(sess.run(W_fc2) - Z4)) dense_w['conv1/W_conv1'] = W_conv1 dense_w['conv2/W_conv2'] = W_conv2 dense_w['fc1/W_fc1'] = W_fc1 dense_w['fc2/W_fc2'] = W_fc2 dict_nzidx = apply_prune(dense_w,sess) print ("checking space dictionary") print (dict_nzidx.keys()) grads = apply_prune_on_grads(grads,dict_nzidx) apply_gradient_op = my_trainer.apply_gradients(grads) for var in tf.global_variables(): if tf.is_variable_initialized(var).eval() == False: sess.run(tf.variables_initializer([var])) print ("start retraining after pruning") for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) apply_gradient_op.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print('test accuracy %g' % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) print(np.sum(sess.run(W_conv1)!=0)) print(np.sum(sess.run(W_conv2) != 0)) print(np.sum(sess.run(W_fc1) != 0)) print(np.sum(sess.run(W_fc2) != 0)) # do the saving. saver = tf.train.Saver() saver.save(sess,"./lenet_5_pruned_model.ckpt") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data', help='Directory for storing input data') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A deep MNIST classifier using convolutional layers. See extensive documentation at https://www.tensorflow.org/get_started/mnist/pros """ # Disable linter warnings to maintain consistency with tutorial. # pylint: disable=invalid-name # pylint: disable=g-bad-import-order from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import tempfile from model import create_model from solver import create_admm_solver from tensorflow.examples.tutorials.mnist import input_data from prune_utility import apply_prune_on_grads,apply_prune,get_configuration,projection import tensorflow as tf import numpy as np from numpy import linalg as LA FLAGS = None # pruning ratio prune_configuration = get_configuration() dense_w = {} P1 = prune_configuration.P1 P2 = prune_configuration.P2 P3 = prune_configuration.P3 P4 = prune_configuration.P4 prune_configuration.display() def main(_): # Import data mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) model = create_model() x = model.x y_ = model.y_ cross_entropy = model.cross_entropy layers = model.layers logits = model.logits solver = create_admm_solver(model) keep_prob = model.keep_prob train_step = solver.train_step train_step1 = solver.train_step1 W_conv1 = model.W_conv1 W_conv2 = model.W_conv2 W_fc1 = model.W_fc1 W_fc2 = model.W_fc2 A = solver.A B = solver.B C = solver.C D = solver.D E = solver.E F = solver.F G = solver.G H = solver.H my_trainer = tf.train.AdamOptimizer(1e-3) grads = my_trainer.compute_gradients(cross_entropy) with tf.name_scope('accuracy'): correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y_, 1)) correct_prediction = tf.cast(correct_prediction, tf.float32) accuracy = tf.reduce_mean(correct_prediction) graph_location = tempfile.mkdtemp() print('Saving graph to: %s' % graph_location) train_writer = tf.summary.FileWriter(graph_location) train_writer.add_graph(tf.get_default_graph()) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print('test accuracy %g' % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) Z1 = sess.run(W_conv1) Z1 = projection(Z1, percent=P1) U1 = np.zeros_like(Z1) Z2 = sess.run(W_conv2) Z2 = projection(Z2, percent=P2) U2 = np.zeros_like(Z2) Z3 = sess.run(W_fc1) Z3 = projection(Z3, percent=P3) U3 = np.zeros_like(Z3) Z4 = sess.run(W_fc2) Z4 = projection(Z4, percent=P4) U4 = np.zeros_like(Z4) for j in range(30): for i in range(5000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) train_step1.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0, A:Z1, B:U1, C:Z2, D:U2, E:Z3, F:U3, G:Z4, H:U4}) Z1 = sess.run(W_conv1) + U1 Z1 = projection(Z1, percent=P1) U1 = U1 + sess.run(W_conv1) - Z1 Z2 = sess.run(W_conv2) + U2 Z2 = projection(Z2, percent=P2) U2 = U2 + sess.run(W_conv2) - Z2 Z3 = sess.run(W_fc1) + U3 Z3 = projection(Z3, percent=P3) U3 = U3 + sess.run(W_fc1) - Z3 Z4 = sess.run(W_fc2) + U4 Z4 = projection(Z4, percent=P4) U4 = U4 + sess.run(W_fc2) - Z4 print('test accuracy %g' % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) print(LA.norm(sess.run(W_conv1) - Z1)) print(LA.norm(sess.run(W_conv2) - Z2)) print(LA.norm(sess.run(W_fc1) - Z3)) print(LA.norm(sess.run(W_fc2) - Z4)) dense_w['conv1/W_conv1'] = W_conv1 dense_w['conv2/W_conv2'] = W_conv2 dense_w['fc1/W_fc1'] = W_fc1 dense_w['fc2/W_fc2'] = W_fc2 dict_nzidx = apply_prune(dense_w,sess) print ("checking space dictionary") print (dict_nzidx.keys()) grads = apply_prune_on_grads(grads,dict_nzidx) apply_gradient_op = my_trainer.apply_gradients(grads) for var in tf.global_variables(): if tf.is_variable_initialized(var).eval() == False: sess.run(tf.variables_initializer([var])) print ("start retraining after pruning") for i in range(20000): batch = mnist.train.next_batch(50) if i % 100 == 0: train_accuracy = accuracy.eval(feed_dict={ x: batch[0], y_: batch[1], keep_prob: 1.0}) print('step %d, training accuracy %g' % (i, train_accuracy)) apply_gradient_op.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print('test accuracy %g' % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) print(np.sum(sess.run(W_conv1)!=0)) print(np.sum(sess.run(W_conv2) != 0)) print(np.sum(sess.run(W_fc1) != 0)) print(np.sum(sess.run(W_fc2) != 0)) # do the saving. saver = tf.train.Saver() saver.save(sess,"./lenet_5_pruned_model.ckpt") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data', help='Directory for storing input data') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
en
0.747761
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== A deep MNIST classifier using convolutional layers. See extensive documentation at https://www.tensorflow.org/get_started/mnist/pros # Disable linter warnings to maintain consistency with tutorial. # pylint: disable=invalid-name # pylint: disable=g-bad-import-order # pruning ratio # Import data # do the saving.
2.251371
2
examples/optionsdata.py
victorjourne/ezibpy
296
6630255
#!/usr/bin/env python # -*- coding: UTF-8 -*- # # ezIBpy: a Pythonic Client for Interactive Brokers API # https://github.com/ranaroussi/ezibpy # # Copyright 2015 <NAME> # # Licensed under the GNU Lesser General Public License, v3.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.gnu.org/licenses/lgpl-3.0.en.html # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ezibpy import time # initialize ezIBpy ibConn = ezibpy.ezIBpy() # connect to IB (7496/7497 = TWS, 4001 = IBGateway) ibConn.connect(clientId=100, host="localhost", port=4001) # create some contracts using dedicated methods put = ibConn.createOptionContract("AAPL", expiry="20161021", strike=117.0, otype="PUT") call = ibConn.createOptionContract("AAPL", expiry="20161021", strike=117.0, otype="CALL") # request market data for all created contracts ibConn.requestMarketData() # wait 30 seconds time.sleep(30) # print market data print("Options Data") print(ibConn.optionsData) # cancel market data request & disconnect ibConn.cancelMarketData() ibConn.disconnect()
#!/usr/bin/env python # -*- coding: UTF-8 -*- # # ezIBpy: a Pythonic Client for Interactive Brokers API # https://github.com/ranaroussi/ezibpy # # Copyright 2015 <NAME> # # Licensed under the GNU Lesser General Public License, v3.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.gnu.org/licenses/lgpl-3.0.en.html # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ezibpy import time # initialize ezIBpy ibConn = ezibpy.ezIBpy() # connect to IB (7496/7497 = TWS, 4001 = IBGateway) ibConn.connect(clientId=100, host="localhost", port=4001) # create some contracts using dedicated methods put = ibConn.createOptionContract("AAPL", expiry="20161021", strike=117.0, otype="PUT") call = ibConn.createOptionContract("AAPL", expiry="20161021", strike=117.0, otype="CALL") # request market data for all created contracts ibConn.requestMarketData() # wait 30 seconds time.sleep(30) # print market data print("Options Data") print(ibConn.optionsData) # cancel market data request & disconnect ibConn.cancelMarketData() ibConn.disconnect()
en
0.792779
#!/usr/bin/env python # -*- coding: UTF-8 -*- # # ezIBpy: a Pythonic Client for Interactive Brokers API # https://github.com/ranaroussi/ezibpy # # Copyright 2015 <NAME> # # Licensed under the GNU Lesser General Public License, v3.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.gnu.org/licenses/lgpl-3.0.en.html # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # initialize ezIBpy # connect to IB (7496/7497 = TWS, 4001 = IBGateway) # create some contracts using dedicated methods # request market data for all created contracts # wait 30 seconds # print market data # cancel market data request & disconnect
2.354981
2
src/vsc/rand_obj.py
fvutils/pyvsc
54
6630256
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Created on Jul 23, 2019 # # @author: ballance import inspect from vsc.impl.randobj_int import RandObjInt from vsc.constraints import constraint_t, dynamic_constraint_t from vsc.impl.ctor import push_constraint_scope, pop_constraint_scope, \ clear_exprs, push_srcinfo_mode, pop_srcinfo_mode, in_srcinfo_mode from vsc.impl.generator_int import GeneratorInt from vsc.impl.expr_mode import _expr_mode, get_expr_mode, expr_mode, get_expr_mode_depth, \ enter_expr_mode, leave_expr_mode, is_raw_mode, is_expr_mode from vsc.model.field_composite_model import FieldCompositeModel from vsc.model.constraint_block_model import ConstraintBlockModel from vsc.model.randomizer import Randomizer from vsc.model.field_scalar_model import FieldScalarModel from vsc.model.source_info import SourceInfo from vsc.types import type_base, field_info, list_t from vsc.model.solve_failure import SolveFailure from vsc.impl.constraint_proxy import ConstraintProxy class _randobj: """Mark a class as randomizable""" def __init__(self, kwargs): self.srcinfo = False for kw in kwargs.keys(): if kw == "srcinfo": self.srcinfo = kwargs[kw] else: raise Exception("Unknown randobj kwarg: %s" % kw) def __call__(self, T): srcinfo = self.srcinfo class randobj_interposer(T): def __init__(self, *args, **kwargs): ro_i = self._get_ro_int() ro_i.srcinfo = srcinfo # Capture the instantiation location frame = inspect.stack()[1] ro_i.srcinfo_inst = SourceInfo(frame.filename, frame.lineno) # Initialize the field_info member before going deeper if ro_i.ctor_level == 0: self.tname = T.__qualname__ self._int_field_info = field_info() # Decide whether to record sourceinfo for this class push_srcinfo_mode(srcinfo) # Call the user's constructor ro_i.ctor_level += 1 super().__init__(*args, **kwargs) ro_i.ctor_level -= 1 if ro_i.ctor_level == 0: self.build_field_model(None) pop_srcinfo_mode() # Add the interposer class ret = type(T.__name__, (randobj_interposer,), dict()) if not hasattr(T, "_ro_init"): def __getattribute__(self, a): ret = object.__getattribute__(self, a) if isinstance(ret, type_base) and not is_raw_mode(): # We're not in an expression, so the user # wants the value of this field ret = ret.get_val() elif a == "rand_mode": ret = self._int_rand_info.rand_mode elif isinstance(ret, (constraint_t,dynamic_constraint_t)): if not is_expr_mode(): # The constraint_t wrapper is per-type. In regular # procedural code we need to return a reference # to the instance object. The proxy provides a # way to do so. model = object.__getattribute__(self, "get_model")() cm = model.get_constraint(a) ret = ConstraintProxy(cm) return ret def __setattr__(self, field, val): try: # Retrieve the field object so we can check if it's # a type_base object. This will throw an exception # if the field doesn't exist fo = object.__getattribute__(self, field) except: object.__setattr__(self, field, val) else: if isinstance(fo, type_base): if not is_raw_mode(): # We're not in an expression context, so the # user really wants us to set the actual value # of the field if isinstance(val, type_base): # Looks like we're re-assigning it. if self._get_ro_int().ctor_level > 0: object.__setattr__(self, field, val) else: raise Exception("Cannot re-construct field") else: fo.set_val(val) else: raise Exception("Attempting to use '=' in a constraint") elif isinstance(fo, list_t): fo.clear() for i in val: fo.append(i) elif field == "rand_mode": self._int_rand_info.rand_mode = bool(val) else: object.__setattr__(self, field, val) def randomize(self, debug=0, lint=0, solve_fail_debug=0): frame = inspect.stack()[1] model = self.get_model() try: Randomizer.do_randomize( SourceInfo(frame.filename, frame.lineno), [model], debug=debug, lint=lint, solve_fail_debug=solve_fail_debug) except SolveFailure as e: print(e.diagnostics) raise e def build_field_model(self, name): if self._int_field_info.model is None: model = FieldCompositeModel(name, self._int_field_info.is_rand, self) model.typename = T.__qualname__ self._int_field_info.model = model # Iterate through the fields and constraints # First, assign IDs to each of the randomized fields with expr_mode(): for f in dir(self): if not f.startswith("__") and not f.startswith("_int"): fo = getattr(self, f) if hasattr(fo, "_int_field_info"): if fo._int_field_info.model is None: fo._int_field_info.model = fo.build_field_model(f) else: # Some fields may already be created, and will # have been given a placeholder name. Back-annotate # the proper name now fo._int_field_info.model.name = f fo._int_field_info.parent = self._int_field_info model.add_field(fo._int_field_info.model) # Now, elaborate the constraints for f in dir(self): if not f.startswith("__") and not f.startswith("_int"): fo = getattr(self, f) if isinstance(fo, constraint_t): clear_exprs() block = ConstraintBlockModel(f) block.srcinfo = fo.srcinfo push_constraint_scope(block) try: fo.c(self) except Exception as e: print("Exception while processing constraint: " + str(e)) raise e fo.set_model(pop_constraint_scope()) model.add_constraint(fo.model) clear_exprs() elif isinstance(fo, dynamic_constraint_t): clear_exprs() block = ConstraintBlockModel(f) block.srcinfo = fo.srcinfo push_constraint_scope(block) try: fo.c(self) except Exception as e: print("Exception while processing constraint: " + str(e)) raise e fo.set_model(pop_constraint_scope()) fo.model.is_dynamic = True model.add_dynamic_constraint(fo.model) clear_exprs() self._int_field_info.model.name = name return self._int_field_info.model def get_model(self): with expr_mode(): if self._int_field_info.model is None: self._int_field_info.model = self.build_field_model(None) return self._int_field_info.model def _get_ro_int(self): if not hasattr(self, "_ro_int"): self._ro_int = RandObjInt() return self._ro_int def __enter__(self): ro_i = self._get_ro_int() enter_expr_mode() self.get_model() # Ensure model is constructed push_srcinfo_mode(ro_i.srcinfo) push_constraint_scope(ConstraintBlockModel("inline")) return self def __exit__(self, t, v, tb): frame = inspect.stack()[1] c = pop_constraint_scope() leave_expr_mode() pop_srcinfo_mode() model = self.get_model() # Ensure model is constructed try: Randomizer.do_randomize( SourceInfo(frame.filename, frame.lineno), [model], [c], debug=self.debug, lint=self.lint, solve_fail_debug=self.solve_fail_debug) except SolveFailure as e: print(e.diagnostics) raise e def randomize_with(self, debug=0, lint=0, solve_fail_debug=0): # Ensure the 'model' data structures have been built self.get_model() self.debug = debug self.lint = lint self.solve_fail_debug = solve_fail_debug return self def do_pre_randomize(self): if hasattr(self, "pre_randomize"): self.pre_randomize() def do_post_randomize(self): if hasattr(self, "post_randomize"): self.post_randomize() def _id_fields(self, it, parent): """Apply an ID to all fields so they can be referenced using indexed expressions """ it._int_field_info.parent = parent fid = 0 for fn in dir(it): fo = getattr(it, fn) if hasattr(fo, "_int_field_info"): fi = fo._int_field_info fi.id = fid fi.parent = it._int_field_info fid += 1 if fi.is_composite: self._id_fields(fo, fi) setattr(T, "__getattribute__", __getattribute__) setattr(T, "__setattr__", __setattr__) setattr(T, "randomize", randomize) setattr(T, "randomize_with", randomize_with) setattr(T, "build_field_model", build_field_model) setattr(T, "get_model", get_model) setattr(T, "_get_ro_int", _get_ro_int) setattr(T, "__enter__", __enter__) setattr(T, "__exit__", __exit__) setattr(T, "do_pre_randomize", do_pre_randomize) setattr(T, "do_post_randomize", do_post_randomize) setattr(T, "_id_fields", _id_fields) setattr(T, "_ro_init", True) return ret def randobj(*args, **kwargs): if len(args) == 1 and len(kwargs) == 0 and callable(args[0]): # Called without arguments obj = _randobj({}) return obj(args[0]) else: obj = _randobj(kwargs) return obj def generator(T): """Mark a class as a generator""" class generator_interposer(T): def __init__(self, *args, **kwargs): gen_i = self._get_int() # Capture the instantiation location frame = inspect.stack()[1] gen_i.srcinfo_inst = SourceInfo(frame.filename, frame.lineno) # Call the user's constructor with gen_i: super().__init__(*args, **kwargs) self._int_field_info = field_info() if gen_i.ctor_level == 0: self.build_model() pass # Add the interposer class ret = type(T.__name__, (generator_interposer,), dict()) if not hasattr(T, "_gen_init"): def __getattribute__(self, a): ret = object.__getattribute__(self, a) if isinstance(ret, type_base) and not is_raw_mode(): # We're not in an expression, so the user # wants the value of this field ret = ret.get_val() return ret def __setattr__(self, field, val): try: # Retrieve the field object so we can check if it's # a type_base object. This will throw an exception # if the field doesn't exist fo = object.__getattribute__(self, field) except: object.__setattr__(self, field, val) else: if isinstance(fo, type_base): if not is_raw_mode(): # We're not in an expression context, so the # user really wants us to set the actual value # of the field fo.set_val(val) else: raise Exception("Attempting to use '=' in a constraint") else: object.__setattr__(self, field, val) def randomize(self): model = self.get_model() Randomizer.do_randomize([model]) def build_field_model(self, name): if self._int_field_info.model is None: model = FieldCompositeModel(name, self._int_field_info.is_rand, self) model.typename = T.__name__ self._int_field_info.model = model # Iterate through the fields and constraints # First, assign IDs to each of the randomized fields with expr_mode(): for f in dir(self): if not f.startswith("__") and not f.startswith("_int"): fo = getattr(self, f) if hasattr(fo, "_int_field_info"): if fo._int_field_info.model is None: fo._int_field_info.model = fo.build_field_model(f) model.add_field(fo._int_field_info.model) # Now, elaborate the constraints for f in dir(self): if not f.startswith("__") and not f.startswith("_int"): fo = getattr(self, f) if isinstance(fo, constraint_t): clear_exprs() block = ConstraintBlockModel(f) block.srcinfo = fo.srcinfo push_constraint_scope(block) try: fo.c(self) except Exception as e: print("Exception while processing constraint: " + str(e)) raise e fo.set_model(pop_constraint_scope()) model.add_constraint(fo.model) clear_exprs() self._int_field_info.model.name = name return self._int_field_info.model def get_model(self): with expr_mode(): if self._int_field_info.model is None: self._int_field_info.model = self.build_field_model(None) return self._int_field_info.model def _get_int(self): if not hasattr(self, "_gen_int"): self._gen_int = GeneratorInt() return self._gen_int setattr(T, "__getattribute__", __getattribute__) setattr(T, "__setattr__", __setattr__) setattr(T, "randomize", randomize) # setattr(T, "randomize_with", randomize_with) setattr(T, "build_field_model", build_field_model) setattr(T, "get_model", get_model) # setattr(T, "__enter__", __enter__) # setattr(T, "__exit__", __exit__) # setattr(T, "do_pre_randomize", do_pre_randomize) # setattr(T, "do_post_randomize", do_post_randomize) setattr(T, "_int_field_info", field_info(True)) setattr(T, "_get_int", _get_int) setattr(T, "_ro_init", True) return ret
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Created on Jul 23, 2019 # # @author: ballance import inspect from vsc.impl.randobj_int import RandObjInt from vsc.constraints import constraint_t, dynamic_constraint_t from vsc.impl.ctor import push_constraint_scope, pop_constraint_scope, \ clear_exprs, push_srcinfo_mode, pop_srcinfo_mode, in_srcinfo_mode from vsc.impl.generator_int import GeneratorInt from vsc.impl.expr_mode import _expr_mode, get_expr_mode, expr_mode, get_expr_mode_depth, \ enter_expr_mode, leave_expr_mode, is_raw_mode, is_expr_mode from vsc.model.field_composite_model import FieldCompositeModel from vsc.model.constraint_block_model import ConstraintBlockModel from vsc.model.randomizer import Randomizer from vsc.model.field_scalar_model import FieldScalarModel from vsc.model.source_info import SourceInfo from vsc.types import type_base, field_info, list_t from vsc.model.solve_failure import SolveFailure from vsc.impl.constraint_proxy import ConstraintProxy class _randobj: """Mark a class as randomizable""" def __init__(self, kwargs): self.srcinfo = False for kw in kwargs.keys(): if kw == "srcinfo": self.srcinfo = kwargs[kw] else: raise Exception("Unknown randobj kwarg: %s" % kw) def __call__(self, T): srcinfo = self.srcinfo class randobj_interposer(T): def __init__(self, *args, **kwargs): ro_i = self._get_ro_int() ro_i.srcinfo = srcinfo # Capture the instantiation location frame = inspect.stack()[1] ro_i.srcinfo_inst = SourceInfo(frame.filename, frame.lineno) # Initialize the field_info member before going deeper if ro_i.ctor_level == 0: self.tname = T.__qualname__ self._int_field_info = field_info() # Decide whether to record sourceinfo for this class push_srcinfo_mode(srcinfo) # Call the user's constructor ro_i.ctor_level += 1 super().__init__(*args, **kwargs) ro_i.ctor_level -= 1 if ro_i.ctor_level == 0: self.build_field_model(None) pop_srcinfo_mode() # Add the interposer class ret = type(T.__name__, (randobj_interposer,), dict()) if not hasattr(T, "_ro_init"): def __getattribute__(self, a): ret = object.__getattribute__(self, a) if isinstance(ret, type_base) and not is_raw_mode(): # We're not in an expression, so the user # wants the value of this field ret = ret.get_val() elif a == "rand_mode": ret = self._int_rand_info.rand_mode elif isinstance(ret, (constraint_t,dynamic_constraint_t)): if not is_expr_mode(): # The constraint_t wrapper is per-type. In regular # procedural code we need to return a reference # to the instance object. The proxy provides a # way to do so. model = object.__getattribute__(self, "get_model")() cm = model.get_constraint(a) ret = ConstraintProxy(cm) return ret def __setattr__(self, field, val): try: # Retrieve the field object so we can check if it's # a type_base object. This will throw an exception # if the field doesn't exist fo = object.__getattribute__(self, field) except: object.__setattr__(self, field, val) else: if isinstance(fo, type_base): if not is_raw_mode(): # We're not in an expression context, so the # user really wants us to set the actual value # of the field if isinstance(val, type_base): # Looks like we're re-assigning it. if self._get_ro_int().ctor_level > 0: object.__setattr__(self, field, val) else: raise Exception("Cannot re-construct field") else: fo.set_val(val) else: raise Exception("Attempting to use '=' in a constraint") elif isinstance(fo, list_t): fo.clear() for i in val: fo.append(i) elif field == "rand_mode": self._int_rand_info.rand_mode = bool(val) else: object.__setattr__(self, field, val) def randomize(self, debug=0, lint=0, solve_fail_debug=0): frame = inspect.stack()[1] model = self.get_model() try: Randomizer.do_randomize( SourceInfo(frame.filename, frame.lineno), [model], debug=debug, lint=lint, solve_fail_debug=solve_fail_debug) except SolveFailure as e: print(e.diagnostics) raise e def build_field_model(self, name): if self._int_field_info.model is None: model = FieldCompositeModel(name, self._int_field_info.is_rand, self) model.typename = T.__qualname__ self._int_field_info.model = model # Iterate through the fields and constraints # First, assign IDs to each of the randomized fields with expr_mode(): for f in dir(self): if not f.startswith("__") and not f.startswith("_int"): fo = getattr(self, f) if hasattr(fo, "_int_field_info"): if fo._int_field_info.model is None: fo._int_field_info.model = fo.build_field_model(f) else: # Some fields may already be created, and will # have been given a placeholder name. Back-annotate # the proper name now fo._int_field_info.model.name = f fo._int_field_info.parent = self._int_field_info model.add_field(fo._int_field_info.model) # Now, elaborate the constraints for f in dir(self): if not f.startswith("__") and not f.startswith("_int"): fo = getattr(self, f) if isinstance(fo, constraint_t): clear_exprs() block = ConstraintBlockModel(f) block.srcinfo = fo.srcinfo push_constraint_scope(block) try: fo.c(self) except Exception as e: print("Exception while processing constraint: " + str(e)) raise e fo.set_model(pop_constraint_scope()) model.add_constraint(fo.model) clear_exprs() elif isinstance(fo, dynamic_constraint_t): clear_exprs() block = ConstraintBlockModel(f) block.srcinfo = fo.srcinfo push_constraint_scope(block) try: fo.c(self) except Exception as e: print("Exception while processing constraint: " + str(e)) raise e fo.set_model(pop_constraint_scope()) fo.model.is_dynamic = True model.add_dynamic_constraint(fo.model) clear_exprs() self._int_field_info.model.name = name return self._int_field_info.model def get_model(self): with expr_mode(): if self._int_field_info.model is None: self._int_field_info.model = self.build_field_model(None) return self._int_field_info.model def _get_ro_int(self): if not hasattr(self, "_ro_int"): self._ro_int = RandObjInt() return self._ro_int def __enter__(self): ro_i = self._get_ro_int() enter_expr_mode() self.get_model() # Ensure model is constructed push_srcinfo_mode(ro_i.srcinfo) push_constraint_scope(ConstraintBlockModel("inline")) return self def __exit__(self, t, v, tb): frame = inspect.stack()[1] c = pop_constraint_scope() leave_expr_mode() pop_srcinfo_mode() model = self.get_model() # Ensure model is constructed try: Randomizer.do_randomize( SourceInfo(frame.filename, frame.lineno), [model], [c], debug=self.debug, lint=self.lint, solve_fail_debug=self.solve_fail_debug) except SolveFailure as e: print(e.diagnostics) raise e def randomize_with(self, debug=0, lint=0, solve_fail_debug=0): # Ensure the 'model' data structures have been built self.get_model() self.debug = debug self.lint = lint self.solve_fail_debug = solve_fail_debug return self def do_pre_randomize(self): if hasattr(self, "pre_randomize"): self.pre_randomize() def do_post_randomize(self): if hasattr(self, "post_randomize"): self.post_randomize() def _id_fields(self, it, parent): """Apply an ID to all fields so they can be referenced using indexed expressions """ it._int_field_info.parent = parent fid = 0 for fn in dir(it): fo = getattr(it, fn) if hasattr(fo, "_int_field_info"): fi = fo._int_field_info fi.id = fid fi.parent = it._int_field_info fid += 1 if fi.is_composite: self._id_fields(fo, fi) setattr(T, "__getattribute__", __getattribute__) setattr(T, "__setattr__", __setattr__) setattr(T, "randomize", randomize) setattr(T, "randomize_with", randomize_with) setattr(T, "build_field_model", build_field_model) setattr(T, "get_model", get_model) setattr(T, "_get_ro_int", _get_ro_int) setattr(T, "__enter__", __enter__) setattr(T, "__exit__", __exit__) setattr(T, "do_pre_randomize", do_pre_randomize) setattr(T, "do_post_randomize", do_post_randomize) setattr(T, "_id_fields", _id_fields) setattr(T, "_ro_init", True) return ret def randobj(*args, **kwargs): if len(args) == 1 and len(kwargs) == 0 and callable(args[0]): # Called without arguments obj = _randobj({}) return obj(args[0]) else: obj = _randobj(kwargs) return obj def generator(T): """Mark a class as a generator""" class generator_interposer(T): def __init__(self, *args, **kwargs): gen_i = self._get_int() # Capture the instantiation location frame = inspect.stack()[1] gen_i.srcinfo_inst = SourceInfo(frame.filename, frame.lineno) # Call the user's constructor with gen_i: super().__init__(*args, **kwargs) self._int_field_info = field_info() if gen_i.ctor_level == 0: self.build_model() pass # Add the interposer class ret = type(T.__name__, (generator_interposer,), dict()) if not hasattr(T, "_gen_init"): def __getattribute__(self, a): ret = object.__getattribute__(self, a) if isinstance(ret, type_base) and not is_raw_mode(): # We're not in an expression, so the user # wants the value of this field ret = ret.get_val() return ret def __setattr__(self, field, val): try: # Retrieve the field object so we can check if it's # a type_base object. This will throw an exception # if the field doesn't exist fo = object.__getattribute__(self, field) except: object.__setattr__(self, field, val) else: if isinstance(fo, type_base): if not is_raw_mode(): # We're not in an expression context, so the # user really wants us to set the actual value # of the field fo.set_val(val) else: raise Exception("Attempting to use '=' in a constraint") else: object.__setattr__(self, field, val) def randomize(self): model = self.get_model() Randomizer.do_randomize([model]) def build_field_model(self, name): if self._int_field_info.model is None: model = FieldCompositeModel(name, self._int_field_info.is_rand, self) model.typename = T.__name__ self._int_field_info.model = model # Iterate through the fields and constraints # First, assign IDs to each of the randomized fields with expr_mode(): for f in dir(self): if not f.startswith("__") and not f.startswith("_int"): fo = getattr(self, f) if hasattr(fo, "_int_field_info"): if fo._int_field_info.model is None: fo._int_field_info.model = fo.build_field_model(f) model.add_field(fo._int_field_info.model) # Now, elaborate the constraints for f in dir(self): if not f.startswith("__") and not f.startswith("_int"): fo = getattr(self, f) if isinstance(fo, constraint_t): clear_exprs() block = ConstraintBlockModel(f) block.srcinfo = fo.srcinfo push_constraint_scope(block) try: fo.c(self) except Exception as e: print("Exception while processing constraint: " + str(e)) raise e fo.set_model(pop_constraint_scope()) model.add_constraint(fo.model) clear_exprs() self._int_field_info.model.name = name return self._int_field_info.model def get_model(self): with expr_mode(): if self._int_field_info.model is None: self._int_field_info.model = self.build_field_model(None) return self._int_field_info.model def _get_int(self): if not hasattr(self, "_gen_int"): self._gen_int = GeneratorInt() return self._gen_int setattr(T, "__getattribute__", __getattribute__) setattr(T, "__setattr__", __setattr__) setattr(T, "randomize", randomize) # setattr(T, "randomize_with", randomize_with) setattr(T, "build_field_model", build_field_model) setattr(T, "get_model", get_model) # setattr(T, "__enter__", __enter__) # setattr(T, "__exit__", __exit__) # setattr(T, "do_pre_randomize", do_pre_randomize) # setattr(T, "do_post_randomize", do_post_randomize) setattr(T, "_int_field_info", field_info(True)) setattr(T, "_get_int", _get_int) setattr(T, "_ro_init", True) return ret
en
0.843287
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Created on Jul 23, 2019 # # @author: ballance Mark a class as randomizable # Capture the instantiation location # Initialize the field_info member before going deeper # Decide whether to record sourceinfo for this class # Call the user's constructor # Add the interposer class # We're not in an expression, so the user # wants the value of this field # The constraint_t wrapper is per-type. In regular # procedural code we need to return a reference # to the instance object. The proxy provides a # way to do so. # Retrieve the field object so we can check if it's # a type_base object. This will throw an exception # if the field doesn't exist # We're not in an expression context, so the # user really wants us to set the actual value # of the field # Looks like we're re-assigning it. # Iterate through the fields and constraints # First, assign IDs to each of the randomized fields # Some fields may already be created, and will # have been given a placeholder name. Back-annotate # the proper name now # Now, elaborate the constraints # Ensure model is constructed # Ensure model is constructed # Ensure the 'model' data structures have been built Apply an ID to all fields so they can be referenced using indexed expressions # Called without arguments Mark a class as a generator # Capture the instantiation location # Call the user's constructor # Add the interposer class # We're not in an expression, so the user # wants the value of this field # Retrieve the field object so we can check if it's # a type_base object. This will throw an exception # if the field doesn't exist # We're not in an expression context, so the # user really wants us to set the actual value # of the field # Iterate through the fields and constraints # First, assign IDs to each of the randomized fields # Now, elaborate the constraints # setattr(T, "randomize_with", randomize_with) # setattr(T, "__enter__", __enter__) # setattr(T, "__exit__", __exit__) # setattr(T, "do_pre_randomize", do_pre_randomize) # setattr(T, "do_post_randomize", do_post_randomize)
1.452931
1
tests/pyre.pkg/filesystem/virtual_info.py
avalentino/pyre
25
6630257
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # <NAME>. aïvázis # orthologue # (c) 1998-2021 all rights reserved # """ Verify that the metadata associated with node are maintained properly """ def test(): # support import pyre.primitives # my package import pyre.filesystem # build a virtual filesystem root = pyre.filesystem.virtual() # and a couple of nodes root['home/users'] = root.folder() root['home/users/mga'] = root.folder() # check their uris assert str(root['home/users'].uri) == '/home/users' assert str(root['home/users/mga'].uri) == '/home/users/mga' # all done return root # main if __name__ == "__main__": # skip pyre initialization since we don't rely on the executive pyre_noboot = True # do... test() # end of file
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # <NAME>. aïvázis # orthologue # (c) 1998-2021 all rights reserved # """ Verify that the metadata associated with node are maintained properly """ def test(): # support import pyre.primitives # my package import pyre.filesystem # build a virtual filesystem root = pyre.filesystem.virtual() # and a couple of nodes root['home/users'] = root.folder() root['home/users/mga'] = root.folder() # check their uris assert str(root['home/users'].uri) == '/home/users' assert str(root['home/users/mga'].uri) == '/home/users/mga' # all done return root # main if __name__ == "__main__": # skip pyre initialization since we don't rely on the executive pyre_noboot = True # do... test() # end of file
en
0.849946
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # <NAME>. aïvázis # orthologue # (c) 1998-2021 all rights reserved # Verify that the metadata associated with node are maintained properly # support # my package # build a virtual filesystem # and a couple of nodes # check their uris # all done # main # skip pyre initialization since we don't rely on the executive # do... # end of file
2.157557
2
challenges/week_1/checker.py
Eric-Njoroge/python
6
6630258
import bus_fare_challenge as solution import datetime import unittest class TestBusFareChallenge(unittest.TestCase): def setUp(self) -> None: self.date = datetime.datetime.now().date() self.day = self.date.strftime("%a") self.charts = { "Mon": 100, "Tue": 100, "Wed": 100, "Thu": 100, "Fri": 100, "Sat": 60, "Sun": 80, } def test_date(self) -> None: """ Tests whether the date returned by the program is correct. """ actual = self.date given = solution.date self.assertEqual(actual, given, f"Today's date is Wrong by {given - actual}!") def test_day(self) -> None: """ Tests whether the day returned by the program is correct. """ actual = self.day given = solution.day self.assertEqual( actual, given, f"Today is wrong, expexted {actual} but got {given}!" ) def test_fare(self) -> None: """ Tests whether the fare returned by the program is correct. """ actual = self.charts[self.day] given = solution.fare self.assertEqual( actual, given, f"Fare is wrong, expected {actual} but got {given}!" ) if __name__ == "__main__": print("=========================================================================") print("=========================================================================") print("===== Start: Checking Return Values For Today's Date, Day and Fare =====") unittest.main(exit=False) print("===== End: Checking Return Values For Today's Date, Day and Fare =======") print("=========================================================================")
import bus_fare_challenge as solution import datetime import unittest class TestBusFareChallenge(unittest.TestCase): def setUp(self) -> None: self.date = datetime.datetime.now().date() self.day = self.date.strftime("%a") self.charts = { "Mon": 100, "Tue": 100, "Wed": 100, "Thu": 100, "Fri": 100, "Sat": 60, "Sun": 80, } def test_date(self) -> None: """ Tests whether the date returned by the program is correct. """ actual = self.date given = solution.date self.assertEqual(actual, given, f"Today's date is Wrong by {given - actual}!") def test_day(self) -> None: """ Tests whether the day returned by the program is correct. """ actual = self.day given = solution.day self.assertEqual( actual, given, f"Today is wrong, expexted {actual} but got {given}!" ) def test_fare(self) -> None: """ Tests whether the fare returned by the program is correct. """ actual = self.charts[self.day] given = solution.fare self.assertEqual( actual, given, f"Fare is wrong, expected {actual} but got {given}!" ) if __name__ == "__main__": print("=========================================================================") print("=========================================================================") print("===== Start: Checking Return Values For Today's Date, Day and Fare =====") unittest.main(exit=False) print("===== End: Checking Return Values For Today's Date, Day and Fare =======") print("=========================================================================")
en
0.960739
Tests whether the date returned by the program is correct. Tests whether the day returned by the program is correct. Tests whether the fare returned by the program is correct.
3.77603
4
kaori/__init__.py
austinpray/kaori
3
6630259
from pathlib import Path from .support.config import get_config _test_config_path = Path(__file__).parent.joinpath('../config/kaori_test.py').absolute() test_config = get_config(str(_test_config_path)) __all__ = ['test_config']
from pathlib import Path from .support.config import get_config _test_config_path = Path(__file__).parent.joinpath('../config/kaori_test.py').absolute() test_config = get_config(str(_test_config_path)) __all__ = ['test_config']
none
1
1.797832
2
ch10/errorExample.py
rfreiberger/Automate-the-Boring-Stuff
0
6630260
<filename>ch10/errorExample.py<gh_stars>0 def spam(): bacon() def bacon(): raise Exception('This is the error message.') spam()
<filename>ch10/errorExample.py<gh_stars>0 def spam(): bacon() def bacon(): raise Exception('This is the error message.') spam()
none
1
1.895998
2
exam_practice/encapsulation.py
IroniX2/python-exercises
0
6630261
# Bad way class Testing: def __init__(self, x, y): self.__set_x(x) self.__set_y(y) # Getters and Setters have to be private or else we have two ways - # of doing something (not pythonic) def __get_x(self): return self.__x def __set_x(self, x): if x < 0: self.__x = 0 elif x > 1000: self.__x = 1000 else: self.__x = x def __get_y(self): return self.__y def __set_y(self, y): self.__y = y # Fix for bad setup to be able to call var.x - # instead of var.get_x() x = property(__get_x, __set_x) y = property(__get_y, __set_y) testing = Testing(10001, 2) print("Testing:", testing.x, testing.y) # Proper Properties way class Tester: def __init__(self, x, y): self.x = x self.y = y @property def x(self): return self.__x @x.setter def x(self, x): if x < 0: self.__x = 0 elif x > 1000: self.__x = 1000 else: self.__x = x @property def y(self): return self.__y @y.setter def y(self, y): self.__y = y tester = Tester(10001, 2) print(type(tester.x)) print("Tester:", tester.x, tester.y)
# Bad way class Testing: def __init__(self, x, y): self.__set_x(x) self.__set_y(y) # Getters and Setters have to be private or else we have two ways - # of doing something (not pythonic) def __get_x(self): return self.__x def __set_x(self, x): if x < 0: self.__x = 0 elif x > 1000: self.__x = 1000 else: self.__x = x def __get_y(self): return self.__y def __set_y(self, y): self.__y = y # Fix for bad setup to be able to call var.x - # instead of var.get_x() x = property(__get_x, __set_x) y = property(__get_y, __set_y) testing = Testing(10001, 2) print("Testing:", testing.x, testing.y) # Proper Properties way class Tester: def __init__(self, x, y): self.x = x self.y = y @property def x(self): return self.__x @x.setter def x(self, x): if x < 0: self.__x = 0 elif x > 1000: self.__x = 1000 else: self.__x = x @property def y(self): return self.__y @y.setter def y(self, y): self.__y = y tester = Tester(10001, 2) print(type(tester.x)) print("Tester:", tester.x, tester.y)
en
0.836432
# Bad way # Getters and Setters have to be private or else we have two ways - # of doing something (not pythonic) # Fix for bad setup to be able to call var.x - # instead of var.get_x() # Proper Properties way
3.798641
4
bop_toolkit_lib/visibility.py
gist-ailab/bop_toolkit
201
6630262
<reponame>gist-ailab/bop_toolkit<gh_stars>100-1000 # Author: <NAME> (<EMAIL>) # Center for Machine Perception, Czech Technical University in Prague """Estimation of the visible object surface from depth images.""" import numpy as np def _estimate_visib_mask(d_test, d_model, delta, visib_mode='bop19'): """Estimates a mask of the visible object surface. :param d_test: Distance image of a scene in which the visibility is estimated. :param d_model: Rendered distance image of the object model. :param delta: Tolerance used in the visibility test. :param visib_mode: Visibility mode: 1) 'bop18' - Object is considered NOT VISIBLE at pixels with missing depth. 2) 'bop19' - Object is considered VISIBLE at pixels with missing depth. This allows to use the VSD pose error function also on shiny objects, which are typically not captured well by the depth sensors. A possible problem with this mode is that some invisible parts can be considered visible. However, the shadows of missing depth measurements, where this problem is expected to appear and which are often present at depth discontinuities, are typically relatively narrow and therefore this problem is less significant. :return: Visibility mask. """ assert (d_test.shape == d_model.shape) if visib_mode == 'bop18': mask_valid = np.logical_and(d_test > 0, d_model > 0) d_diff = d_model.astype(np.float32) - d_test.astype(np.float32) visib_mask = np.logical_and(d_diff <= delta, mask_valid) elif visib_mode == 'bop19': d_diff = d_model.astype(np.float32) - d_test.astype(np.float32) visib_mask = np.logical_and( np.logical_or(d_diff <= delta, d_test == 0), d_model > 0) else: raise ValueError('Unknown visibility mode.') return visib_mask def estimate_visib_mask_gt(d_test, d_gt, delta, visib_mode='bop19'): """Estimates a mask of the visible object surface in the ground-truth pose. :param d_test: Distance image of a scene in which the visibility is estimated. :param d_gt: Rendered distance image of the object model in the GT pose. :param delta: Tolerance used in the visibility test. :param visib_mode: See _estimate_visib_mask. :return: Visibility mask. """ visib_gt = _estimate_visib_mask(d_test, d_gt, delta, visib_mode) return visib_gt def estimate_visib_mask_est(d_test, d_est, visib_gt, delta, visib_mode='bop19'): """Estimates a mask of the visible object surface in the estimated pose. For an explanation of why the visibility mask is calculated differently for the estimated and the ground-truth pose, see equation (14) and related text in Hodan et al., On Evaluation of 6D Object Pose Estimation, ECCVW'16. :param d_test: Distance image of a scene in which the visibility is estimated. :param d_est: Rendered distance image of the object model in the est. pose. :param visib_gt: Visibility mask of the object model in the GT pose (from function estimate_visib_mask_gt). :param delta: Tolerance used in the visibility test. :param visib_mode: See _estimate_visib_mask. :return: Visibility mask. """ visib_est = _estimate_visib_mask(d_test, d_est, delta, visib_mode) visib_est = np.logical_or(visib_est, np.logical_and(visib_gt, d_est > 0)) return visib_est
# Author: <NAME> (<EMAIL>) # Center for Machine Perception, Czech Technical University in Prague """Estimation of the visible object surface from depth images.""" import numpy as np def _estimate_visib_mask(d_test, d_model, delta, visib_mode='bop19'): """Estimates a mask of the visible object surface. :param d_test: Distance image of a scene in which the visibility is estimated. :param d_model: Rendered distance image of the object model. :param delta: Tolerance used in the visibility test. :param visib_mode: Visibility mode: 1) 'bop18' - Object is considered NOT VISIBLE at pixels with missing depth. 2) 'bop19' - Object is considered VISIBLE at pixels with missing depth. This allows to use the VSD pose error function also on shiny objects, which are typically not captured well by the depth sensors. A possible problem with this mode is that some invisible parts can be considered visible. However, the shadows of missing depth measurements, where this problem is expected to appear and which are often present at depth discontinuities, are typically relatively narrow and therefore this problem is less significant. :return: Visibility mask. """ assert (d_test.shape == d_model.shape) if visib_mode == 'bop18': mask_valid = np.logical_and(d_test > 0, d_model > 0) d_diff = d_model.astype(np.float32) - d_test.astype(np.float32) visib_mask = np.logical_and(d_diff <= delta, mask_valid) elif visib_mode == 'bop19': d_diff = d_model.astype(np.float32) - d_test.astype(np.float32) visib_mask = np.logical_and( np.logical_or(d_diff <= delta, d_test == 0), d_model > 0) else: raise ValueError('Unknown visibility mode.') return visib_mask def estimate_visib_mask_gt(d_test, d_gt, delta, visib_mode='bop19'): """Estimates a mask of the visible object surface in the ground-truth pose. :param d_test: Distance image of a scene in which the visibility is estimated. :param d_gt: Rendered distance image of the object model in the GT pose. :param delta: Tolerance used in the visibility test. :param visib_mode: See _estimate_visib_mask. :return: Visibility mask. """ visib_gt = _estimate_visib_mask(d_test, d_gt, delta, visib_mode) return visib_gt def estimate_visib_mask_est(d_test, d_est, visib_gt, delta, visib_mode='bop19'): """Estimates a mask of the visible object surface in the estimated pose. For an explanation of why the visibility mask is calculated differently for the estimated and the ground-truth pose, see equation (14) and related text in Hodan et al., On Evaluation of 6D Object Pose Estimation, ECCVW'16. :param d_test: Distance image of a scene in which the visibility is estimated. :param d_est: Rendered distance image of the object model in the est. pose. :param visib_gt: Visibility mask of the object model in the GT pose (from function estimate_visib_mask_gt). :param delta: Tolerance used in the visibility test. :param visib_mode: See _estimate_visib_mask. :return: Visibility mask. """ visib_est = _estimate_visib_mask(d_test, d_est, delta, visib_mode) visib_est = np.logical_or(visib_est, np.logical_and(visib_gt, d_est > 0)) return visib_est
en
0.863666
# Author: <NAME> (<EMAIL>) # Center for Machine Perception, Czech Technical University in Prague Estimation of the visible object surface from depth images. Estimates a mask of the visible object surface. :param d_test: Distance image of a scene in which the visibility is estimated. :param d_model: Rendered distance image of the object model. :param delta: Tolerance used in the visibility test. :param visib_mode: Visibility mode: 1) 'bop18' - Object is considered NOT VISIBLE at pixels with missing depth. 2) 'bop19' - Object is considered VISIBLE at pixels with missing depth. This allows to use the VSD pose error function also on shiny objects, which are typically not captured well by the depth sensors. A possible problem with this mode is that some invisible parts can be considered visible. However, the shadows of missing depth measurements, where this problem is expected to appear and which are often present at depth discontinuities, are typically relatively narrow and therefore this problem is less significant. :return: Visibility mask. Estimates a mask of the visible object surface in the ground-truth pose. :param d_test: Distance image of a scene in which the visibility is estimated. :param d_gt: Rendered distance image of the object model in the GT pose. :param delta: Tolerance used in the visibility test. :param visib_mode: See _estimate_visib_mask. :return: Visibility mask. Estimates a mask of the visible object surface in the estimated pose. For an explanation of why the visibility mask is calculated differently for the estimated and the ground-truth pose, see equation (14) and related text in Hodan et al., On Evaluation of 6D Object Pose Estimation, ECCVW'16. :param d_test: Distance image of a scene in which the visibility is estimated. :param d_est: Rendered distance image of the object model in the est. pose. :param visib_gt: Visibility mask of the object model in the GT pose (from function estimate_visib_mask_gt). :param delta: Tolerance used in the visibility test. :param visib_mode: See _estimate_visib_mask. :return: Visibility mask.
2.791266
3
tools.py
n3llo/test_dinasty
0
6630263
<gh_stars>0 ''' Package for the automatic computing of scores and rankings for the Play.it Dinasty keeper league <NAME> (<EMAIL>) ''' import argparse import os import tools def parse_arguments(): ''' Parse arguments ''' # Initialize parser parser = argparse.ArgumentParser() # Parse arguments parser.add_argument('--games', dest='games', help='Select the range of games whose scores will be retrieved') parser.add_argument('--retrieve_scores', dest='retrieve_scores', default=False, action='store_true', help='Retrieve scores for the selected games') parser.add_argument('--print_rankings', dest='print_rankings', default=False, action='store_true', help='Print rankings updated to the last game retrieved') parser.add_argument('--run_dir', dest='run_dir', default=os.getcwd(), help='Select the directory containing the .py files') parser.add_argument('--data_dir', dest='data_dir', default=os.getcwd(), help='') parser.add_argument('--home_bonus_score', dest='home_bonus_score', type=int, default=5, help='') parser.add_argument('--n_best_scores', dest='n_best_scores', type=int, default=10, help='') parser.add_argument('--league_id', dest='league_id', type=int, default=170806, help='') return parser.parse_args() def set_up_run(args): ''' Create file and folder names ''' args.data_file = os.path.join(args.run_dir, 'dinasty.yaml') args.schedule_file = os.path.join(args.run_dir, 'schedule_2016-17.yaml') args.league_url = 'http://basketball.sports.ws/game/%d' % args.league_id args.scores_dir = os.path.join(args.data_dir, 'scores') args.forum_games_dir = os.path.join(args.data_dir, 'forum-games') args.games_dir = os.path.join(args.data_dir, 'games') args.stats_dir = os.path.join(args.data_dir, 'stats') if args.retrieve_scores: r = args.games.split(',') if len(r) == 2: args.range = range(int(r[0]), int(r[1]) + 1) tools.make_directory(args.data_dir) tools.make_directory(args.scores_dir) tools.make_directory(args.stats_dir) tools.make_directory(args.forum_games_dir) tools.make_directory(args.games_dir) return args def make_directory(dir_name): ''' Create directory if it does not exist yet ''' if not os.path.isdir(dir_name): os.mkdir(dir_name)
''' Package for the automatic computing of scores and rankings for the Play.it Dinasty keeper league <NAME> (<EMAIL>) ''' import argparse import os import tools def parse_arguments(): ''' Parse arguments ''' # Initialize parser parser = argparse.ArgumentParser() # Parse arguments parser.add_argument('--games', dest='games', help='Select the range of games whose scores will be retrieved') parser.add_argument('--retrieve_scores', dest='retrieve_scores', default=False, action='store_true', help='Retrieve scores for the selected games') parser.add_argument('--print_rankings', dest='print_rankings', default=False, action='store_true', help='Print rankings updated to the last game retrieved') parser.add_argument('--run_dir', dest='run_dir', default=os.getcwd(), help='Select the directory containing the .py files') parser.add_argument('--data_dir', dest='data_dir', default=os.getcwd(), help='') parser.add_argument('--home_bonus_score', dest='home_bonus_score', type=int, default=5, help='') parser.add_argument('--n_best_scores', dest='n_best_scores', type=int, default=10, help='') parser.add_argument('--league_id', dest='league_id', type=int, default=170806, help='') return parser.parse_args() def set_up_run(args): ''' Create file and folder names ''' args.data_file = os.path.join(args.run_dir, 'dinasty.yaml') args.schedule_file = os.path.join(args.run_dir, 'schedule_2016-17.yaml') args.league_url = 'http://basketball.sports.ws/game/%d' % args.league_id args.scores_dir = os.path.join(args.data_dir, 'scores') args.forum_games_dir = os.path.join(args.data_dir, 'forum-games') args.games_dir = os.path.join(args.data_dir, 'games') args.stats_dir = os.path.join(args.data_dir, 'stats') if args.retrieve_scores: r = args.games.split(',') if len(r) == 2: args.range = range(int(r[0]), int(r[1]) + 1) tools.make_directory(args.data_dir) tools.make_directory(args.scores_dir) tools.make_directory(args.stats_dir) tools.make_directory(args.forum_games_dir) tools.make_directory(args.games_dir) return args def make_directory(dir_name): ''' Create directory if it does not exist yet ''' if not os.path.isdir(dir_name): os.mkdir(dir_name)
en
0.638718
Package for the automatic computing of scores and rankings for the Play.it Dinasty keeper league <NAME> (<EMAIL>) Parse arguments # Initialize parser # Parse arguments Create file and folder names Create directory if it does not exist yet
2.99371
3
examples/request_init_listener.py
clohfink/python-driver
1,163
6630264
<gh_stars>1000+ #!/usr/bin/env python # Copyright DataStax, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script shows an example "request init listener" which can be registered to track certain request metrics # for a session. In this case we're just accumulating total request and error counts, as well as some statistics # about the encoded request size. Note that the counts would be available using the internal 'metrics' tracking -- # this is just demonstrating a way to track a few custom attributes. from __future__ import print_function from cassandra.cluster import Cluster from greplin import scales import pprint pp = pprint.PrettyPrinter(indent=2) class RequestAnalyzer(object): """ Class used to track request and error counts for a Session. Also computes statistics on encoded request size. """ requests = scales.PmfStat('request size') errors = scales.IntStat('errors') def __init__(self, session): scales.init(self, '/cassandra') # each instance will be registered with a session, and receive a callback for each request generated session.add_request_init_listener(self.on_request) def on_request(self, rf): # This callback is invoked each time a request is created, on the thread creating the request. # We can use this to count events, or add callbacks rf.add_callbacks(self.on_success, self.on_error, callback_args=(rf,), errback_args=(rf,)) def on_success(self, _, response_future): # future callback on a successful request; just record the size self.requests.addValue(response_future.request_encoded_size) def on_error(self, _, response_future): # future callback for failed; record size and increment errors self.requests.addValue(response_future.request_encoded_size) self.errors += 1 def __str__(self): # just extracting request count from the size stats (which are recorded on all requests) request_sizes = dict(self.requests) count = request_sizes.pop('count') return "%d requests (%d errors)\nRequest size statistics:\n%s" % (count, self.errors, pp.pformat(request_sizes)) # connect a session session = Cluster().connect() # attach a listener to this session ra = RequestAnalyzer(session) session.execute("SELECT release_version FROM system.local") session.execute("SELECT release_version FROM system.local") print(ra) # 2 requests (0 errors) # Request size statistics: # { '75percentile': 74, # '95percentile': 74, # '98percentile': 74, # '999percentile': 74, # '99percentile': 74, # 'max': 74, # 'mean': 74.0, # 'median': 74.0, # 'min': 74, # 'stddev': 0.0} try: # intentional error to show that count increase session.execute("syntax err") except Exception as e: pass print() print(ra) # note: the counts are updated, but the stats are not because scales only updates every 20s # 3 requests (1 errors) # Request size statistics: # { '75percentile': 74, # '95percentile': 74, # '98percentile': 74, # '999percentile': 74, # '99percentile': 74, # 'max': 74, # 'mean': 74.0, # 'median': 74.0, # 'min': 74, # 'stddev': 0.0}
#!/usr/bin/env python # Copyright DataStax, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script shows an example "request init listener" which can be registered to track certain request metrics # for a session. In this case we're just accumulating total request and error counts, as well as some statistics # about the encoded request size. Note that the counts would be available using the internal 'metrics' tracking -- # this is just demonstrating a way to track a few custom attributes. from __future__ import print_function from cassandra.cluster import Cluster from greplin import scales import pprint pp = pprint.PrettyPrinter(indent=2) class RequestAnalyzer(object): """ Class used to track request and error counts for a Session. Also computes statistics on encoded request size. """ requests = scales.PmfStat('request size') errors = scales.IntStat('errors') def __init__(self, session): scales.init(self, '/cassandra') # each instance will be registered with a session, and receive a callback for each request generated session.add_request_init_listener(self.on_request) def on_request(self, rf): # This callback is invoked each time a request is created, on the thread creating the request. # We can use this to count events, or add callbacks rf.add_callbacks(self.on_success, self.on_error, callback_args=(rf,), errback_args=(rf,)) def on_success(self, _, response_future): # future callback on a successful request; just record the size self.requests.addValue(response_future.request_encoded_size) def on_error(self, _, response_future): # future callback for failed; record size and increment errors self.requests.addValue(response_future.request_encoded_size) self.errors += 1 def __str__(self): # just extracting request count from the size stats (which are recorded on all requests) request_sizes = dict(self.requests) count = request_sizes.pop('count') return "%d requests (%d errors)\nRequest size statistics:\n%s" % (count, self.errors, pp.pformat(request_sizes)) # connect a session session = Cluster().connect() # attach a listener to this session ra = RequestAnalyzer(session) session.execute("SELECT release_version FROM system.local") session.execute("SELECT release_version FROM system.local") print(ra) # 2 requests (0 errors) # Request size statistics: # { '75percentile': 74, # '95percentile': 74, # '98percentile': 74, # '999percentile': 74, # '99percentile': 74, # 'max': 74, # 'mean': 74.0, # 'median': 74.0, # 'min': 74, # 'stddev': 0.0} try: # intentional error to show that count increase session.execute("syntax err") except Exception as e: pass print() print(ra) # note: the counts are updated, but the stats are not because scales only updates every 20s # 3 requests (1 errors) # Request size statistics: # { '75percentile': 74, # '95percentile': 74, # '98percentile': 74, # '999percentile': 74, # '99percentile': 74, # 'max': 74, # 'mean': 74.0, # 'median': 74.0, # 'min': 74, # 'stddev': 0.0}
en
0.774112
#!/usr/bin/env python # Copyright DataStax, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script shows an example "request init listener" which can be registered to track certain request metrics # for a session. In this case we're just accumulating total request and error counts, as well as some statistics # about the encoded request size. Note that the counts would be available using the internal 'metrics' tracking -- # this is just demonstrating a way to track a few custom attributes. Class used to track request and error counts for a Session. Also computes statistics on encoded request size. # each instance will be registered with a session, and receive a callback for each request generated # This callback is invoked each time a request is created, on the thread creating the request. # We can use this to count events, or add callbacks # future callback on a successful request; just record the size # future callback for failed; record size and increment errors # just extracting request count from the size stats (which are recorded on all requests) # connect a session # attach a listener to this session # 2 requests (0 errors) # Request size statistics: # { '75percentile': 74, # '95percentile': 74, # '98percentile': 74, # '999percentile': 74, # '99percentile': 74, # 'max': 74, # 'mean': 74.0, # 'median': 74.0, # 'min': 74, # 'stddev': 0.0} # intentional error to show that count increase # note: the counts are updated, but the stats are not because scales only updates every 20s # 3 requests (1 errors) # Request size statistics: # { '75percentile': 74, # '95percentile': 74, # '98percentile': 74, # '999percentile': 74, # '99percentile': 74, # 'max': 74, # 'mean': 74.0, # 'median': 74.0, # 'min': 74, # 'stddev': 0.0}
2.251937
2
metachecker/routes/meta.py
art101nft/metachecker
2
6630265
import requests from flask import Blueprint, render_template from flask import redirect, url_for from flask_login import logout_user, login_required from metachecker import config bp = Blueprint('meta', 'meta') @bp.route('/about') def about(): return render_template('about.html') @bp.route('/disconnect') def disconnect(): logout_user() return redirect(url_for('collection.index')) @bp.route('/ipfs/<path:path>') @login_required def load_ipfs(path): ipfs_uri = f'{config.IPFS_SERVER}/ipfs/{path}' res = requests.get(ipfs_uri, timeout=60) return res.content
import requests from flask import Blueprint, render_template from flask import redirect, url_for from flask_login import logout_user, login_required from metachecker import config bp = Blueprint('meta', 'meta') @bp.route('/about') def about(): return render_template('about.html') @bp.route('/disconnect') def disconnect(): logout_user() return redirect(url_for('collection.index')) @bp.route('/ipfs/<path:path>') @login_required def load_ipfs(path): ipfs_uri = f'{config.IPFS_SERVER}/ipfs/{path}' res = requests.get(ipfs_uri, timeout=60) return res.content
none
1
2.014569
2
PythonDesafios/d029.py
adaatii/Python-Curso-em-Video-
0
6630266
<reponame>adaatii/Python-Curso-em-Video- #Escreva um programa que leia a velocidade de um carro. # Se ele ultrapassar 80Km/h, mostre uma mensagem dizendo # que ele foi multado. A multa vai custar R$7,00 por cada # Km acima do limite. velo = float(input('Qual a velocidade do carro? ')) if velo > 80: print('Multado! voce excedeu o limite de 80km/h') multa = (velo-80)*7 print('Voce deve pagar uma multa de R${:.2f}!'.format(multa)) print('Tenha um bom dia, dirija com segurança!')
#Escreva um programa que leia a velocidade de um carro. # Se ele ultrapassar 80Km/h, mostre uma mensagem dizendo # que ele foi multado. A multa vai custar R$7,00 por cada # Km acima do limite. velo = float(input('Qual a velocidade do carro? ')) if velo > 80: print('Multado! voce excedeu o limite de 80km/h') multa = (velo-80)*7 print('Voce deve pagar uma multa de R${:.2f}!'.format(multa)) print('Tenha um bom dia, dirija com segurança!')
pt
0.99544
#Escreva um programa que leia a velocidade de um carro. # Se ele ultrapassar 80Km/h, mostre uma mensagem dizendo # que ele foi multado. A multa vai custar R$7,00 por cada # Km acima do limite.
3.873431
4
qcloudsdkcam/AttachUserPoliciesRequest.py
f3n9/qcloudcli
0
6630267
# -*- coding: utf-8 -*- from qcloudsdkcore.request import Request class AttachUserPoliciesRequest(Request): def __init__(self): super(AttachUserPoliciesRequest, self).__init__( 'cam', 'qcloudcliV1', 'AttachUserPolicies', 'cam.api.qcloud.com') def get_uin(self): return self.get_params().get('uin') def set_uin(self, uin): self.add_param('uin', uin)
# -*- coding: utf-8 -*- from qcloudsdkcore.request import Request class AttachUserPoliciesRequest(Request): def __init__(self): super(AttachUserPoliciesRequest, self).__init__( 'cam', 'qcloudcliV1', 'AttachUserPolicies', 'cam.api.qcloud.com') def get_uin(self): return self.get_params().get('uin') def set_uin(self, uin): self.add_param('uin', uin)
en
0.769321
# -*- coding: utf-8 -*-
1.841276
2
benchmarks/benchmark_files.py
devincornell/sqlitedocuments
1
6630268
<gh_stars>1-10 #from .doctable import DocTable, DocTableRow #from .util import Timer import sys sys.path.append('..') import doctable import pickle import os import typing from dataclasses import dataclass, field import random import time @doctable.schema(require_slots=False) class TestObjBase: idx: int = doctable.IDCol() size: int = 10000000 def __post_init__(self): if self.data is None: self.data = [random.randrange(10**12)]*self.size @dataclass class TestObj1(TestObjBase): data: list = doctable.Col(None) @dataclass class TestObj2(TestObjBase): data: list = doctable.Col(None, coltype='picklefile', type_args=dict(folder='tmp')) def run_benchmark(num_vals = 10): tmp = doctable.TempFolder('tmp') timer = doctable.Timer('creating databases', logfile=tmp.joinpath('log.txt')) db1 = doctable.DocTable(schema=TestObj1, target=tmp.joinpath('1.db'), new_db=True) db2 = doctable.DocTable(schema=TestObj2, target=tmp.joinpath('2.db'), new_db=True) db2.clean_col_files('data') timer.step('creating synthetic data') data1 = [TestObj1(i) for i in range(num_vals)] data2 = [TestObj2(i) for i in range(num_vals)] timer.step('insert into table directly') db1.insert(data1) timer.step('insert into a column file') db2.insert(data2) timer.step('finished inserting') print(f'===========================================') print(f'===== Total took: {timer.total_diff()} =================') print(f'===========================================') #timer.print_table() if __name__ == '__main__': run_benchmark()
#from .doctable import DocTable, DocTableRow #from .util import Timer import sys sys.path.append('..') import doctable import pickle import os import typing from dataclasses import dataclass, field import random import time @doctable.schema(require_slots=False) class TestObjBase: idx: int = doctable.IDCol() size: int = 10000000 def __post_init__(self): if self.data is None: self.data = [random.randrange(10**12)]*self.size @dataclass class TestObj1(TestObjBase): data: list = doctable.Col(None) @dataclass class TestObj2(TestObjBase): data: list = doctable.Col(None, coltype='picklefile', type_args=dict(folder='tmp')) def run_benchmark(num_vals = 10): tmp = doctable.TempFolder('tmp') timer = doctable.Timer('creating databases', logfile=tmp.joinpath('log.txt')) db1 = doctable.DocTable(schema=TestObj1, target=tmp.joinpath('1.db'), new_db=True) db2 = doctable.DocTable(schema=TestObj2, target=tmp.joinpath('2.db'), new_db=True) db2.clean_col_files('data') timer.step('creating synthetic data') data1 = [TestObj1(i) for i in range(num_vals)] data2 = [TestObj2(i) for i in range(num_vals)] timer.step('insert into table directly') db1.insert(data1) timer.step('insert into a column file') db2.insert(data2) timer.step('finished inserting') print(f'===========================================') print(f'===== Total took: {timer.total_diff()} =================') print(f'===========================================') #timer.print_table() if __name__ == '__main__': run_benchmark()
fa
0.095698
#from .doctable import DocTable, DocTableRow #from .util import Timer #timer.print_table()
2.373705
2
backend/app.py
cbaron3/safewalks.io
1
6630269
<filename>backend/app.py<gh_stars>1-10 from flask import Flask, request, jsonify, make_response import googlemaps from datetime import datetime import secrets import json import operator import opendata import urllib.request import requests import types # Handling cross origin resource handling # declare constants HOST = '0.0.0.0' PORT = 5000 import polyline # initialize flask application app = Flask(__name__) from flask_cors import CORS CORS(app, resources={r'/*': {'origins': '*'}}) # Google maps client gmaps = googlemaps.Client(key=secrets.API_KEY) # Debug variable DEBUG = True # Safest path # Usage: IP:HOST/api/path?from=LAT,LON&to=LAT,LON # Example: http://0.0.0.0:5000/api/path?from=43.004663,-81.276361&to=248 Trott Dr @app.route('/api/path', methods=['GET']) def safe_path(): print(request.args) # Grab data from requests start = request.args.get('from') #print(start) end = request.args.get('to') end = gmaps.geocode(end) end = (end[0]['geometry']['location']['lat'], end[0]['geometry']['location']['lng']) if DEBUG: print('Start coordinates: {}'.format(start)) print('End coordinates: {}'.format(end)) # Query Directions API from start to end now = datetime.now() routes = gmaps.directions(origin=start, destination=end, mode="walking", alternatives=True, departure_time=now) print('Possible routes: {}'.format(len(routes))) seen_lights = [None] * len(routes) tracked_lights = [None] * len(routes) all_lights = [None] * len(routes) total_lights = [0] * len(routes) for index, route in enumerate(routes): # For every route, calculate the possible lights ne_bound = (route['bounds']['northeast']['lat'], route['bounds']['northeast']['lng']) sw_bound = (route['bounds']['southwest']['lat'], route['bounds']['southwest']['lng']) available_lights = opendata.queryAreaLights(ne_bound, sw_bound, 0.00025) all_lights[index] = available_lights # Decode polyline for waypoints waypoints = polyline.decode(route['overview_polyline']['points']) # Add start and stop points to waypoints #print(start) if type(start) is not list: start = start.split(',') waypoints.insert(0, (float(start[0]),float(start[1]) ) ) waypoints.append((float(end[0]),float(end[1]) ) ) print('{} waypoints for route {}'.format(len(waypoints), index+1)) for i in range(len(waypoints) - 1): point = waypoints[i] next_point = waypoints[i+1] in_range = opendata.getSeenLights(point, next_point, available_lights, 0.0005) for rlight in in_range: if not seen_lights[index]: seen_lights[index] = set() if not tracked_lights[index]: tracked_lights[index] = list() # If light has already been tracked for this path, dont track it again if rlight['id'] not in seen_lights[index]: # If not tracked, track it and increment the total count of lights for this route seen_lights[index].add(rlight['id']) tracked_lights[index].append(rlight) total_lights[index] += (1 * rlight['head']) max_light_density = 0 max_index = -1 max_dist = 0 print('Lights for each route: {}'.format(total_lights)) for i in range(len(total_lights)): dist = routes[i]['legs'][0]['distance']['text'] dist = dist.split(' ') dist = float( dist[0] ) total_lights[i] = total_lights[i]/dist # Check lights per km if total_lights[i] > max_light_density: max_light_density = total_lights[i] max_index = i max_dist = dist elif total_lights[i] == max_light_density: # If same amount of light, only change max if new one is shorter if dist < max_dist: max_light_density = total_lights[i] max_index = i max_dist = dist print('Weighted lights for each route: {}'.format(total_lights)) print('Best route: {}'.format(max_index+1)) # Return as a response a list of routes with their corresponding tracked lights and their bounding box lights and their safety rating safety_result = [] for i in range(len(routes)): ids = [] not_tracked = [] for tlight in tracked_lights[i]: ids.append(tlight['id']) for nlight in all_lights[i]: if nlight['attributes']['OBJECTID'] not in ids: not_tracked.append(nlight) print(not_tracked) safety_result.append( { 'rating': total_lights[i], 'polyline': routes[i]['overview_polyline']['points'], 'area_lights' : not_tracked, 'in_range_lights': tracked_lights[i] } ) safety_result = json.dumps(safety_result) resp = make_response(safety_result, 200) resp.headers['Access-Control-Allow-Origin'] = '*' resp.headers['Access-Control-Allow-Headers'] = 'Content-Type,Authorization' return(resp) if __name__ == '__main__': app.run(host=HOST, debug=True, port=PORT)
<filename>backend/app.py<gh_stars>1-10 from flask import Flask, request, jsonify, make_response import googlemaps from datetime import datetime import secrets import json import operator import opendata import urllib.request import requests import types # Handling cross origin resource handling # declare constants HOST = '0.0.0.0' PORT = 5000 import polyline # initialize flask application app = Flask(__name__) from flask_cors import CORS CORS(app, resources={r'/*': {'origins': '*'}}) # Google maps client gmaps = googlemaps.Client(key=secrets.API_KEY) # Debug variable DEBUG = True # Safest path # Usage: IP:HOST/api/path?from=LAT,LON&to=LAT,LON # Example: http://0.0.0.0:5000/api/path?from=43.004663,-81.276361&to=248 Trott Dr @app.route('/api/path', methods=['GET']) def safe_path(): print(request.args) # Grab data from requests start = request.args.get('from') #print(start) end = request.args.get('to') end = gmaps.geocode(end) end = (end[0]['geometry']['location']['lat'], end[0]['geometry']['location']['lng']) if DEBUG: print('Start coordinates: {}'.format(start)) print('End coordinates: {}'.format(end)) # Query Directions API from start to end now = datetime.now() routes = gmaps.directions(origin=start, destination=end, mode="walking", alternatives=True, departure_time=now) print('Possible routes: {}'.format(len(routes))) seen_lights = [None] * len(routes) tracked_lights = [None] * len(routes) all_lights = [None] * len(routes) total_lights = [0] * len(routes) for index, route in enumerate(routes): # For every route, calculate the possible lights ne_bound = (route['bounds']['northeast']['lat'], route['bounds']['northeast']['lng']) sw_bound = (route['bounds']['southwest']['lat'], route['bounds']['southwest']['lng']) available_lights = opendata.queryAreaLights(ne_bound, sw_bound, 0.00025) all_lights[index] = available_lights # Decode polyline for waypoints waypoints = polyline.decode(route['overview_polyline']['points']) # Add start and stop points to waypoints #print(start) if type(start) is not list: start = start.split(',') waypoints.insert(0, (float(start[0]),float(start[1]) ) ) waypoints.append((float(end[0]),float(end[1]) ) ) print('{} waypoints for route {}'.format(len(waypoints), index+1)) for i in range(len(waypoints) - 1): point = waypoints[i] next_point = waypoints[i+1] in_range = opendata.getSeenLights(point, next_point, available_lights, 0.0005) for rlight in in_range: if not seen_lights[index]: seen_lights[index] = set() if not tracked_lights[index]: tracked_lights[index] = list() # If light has already been tracked for this path, dont track it again if rlight['id'] not in seen_lights[index]: # If not tracked, track it and increment the total count of lights for this route seen_lights[index].add(rlight['id']) tracked_lights[index].append(rlight) total_lights[index] += (1 * rlight['head']) max_light_density = 0 max_index = -1 max_dist = 0 print('Lights for each route: {}'.format(total_lights)) for i in range(len(total_lights)): dist = routes[i]['legs'][0]['distance']['text'] dist = dist.split(' ') dist = float( dist[0] ) total_lights[i] = total_lights[i]/dist # Check lights per km if total_lights[i] > max_light_density: max_light_density = total_lights[i] max_index = i max_dist = dist elif total_lights[i] == max_light_density: # If same amount of light, only change max if new one is shorter if dist < max_dist: max_light_density = total_lights[i] max_index = i max_dist = dist print('Weighted lights for each route: {}'.format(total_lights)) print('Best route: {}'.format(max_index+1)) # Return as a response a list of routes with their corresponding tracked lights and their bounding box lights and their safety rating safety_result = [] for i in range(len(routes)): ids = [] not_tracked = [] for tlight in tracked_lights[i]: ids.append(tlight['id']) for nlight in all_lights[i]: if nlight['attributes']['OBJECTID'] not in ids: not_tracked.append(nlight) print(not_tracked) safety_result.append( { 'rating': total_lights[i], 'polyline': routes[i]['overview_polyline']['points'], 'area_lights' : not_tracked, 'in_range_lights': tracked_lights[i] } ) safety_result = json.dumps(safety_result) resp = make_response(safety_result, 200) resp.headers['Access-Control-Allow-Origin'] = '*' resp.headers['Access-Control-Allow-Headers'] = 'Content-Type,Authorization' return(resp) if __name__ == '__main__': app.run(host=HOST, debug=True, port=PORT)
en
0.771797
# Handling cross origin resource handling # declare constants # initialize flask application # Google maps client # Debug variable # Safest path # Usage: IP:HOST/api/path?from=LAT,LON&to=LAT,LON # Example: http://0.0.0.0:5000/api/path?from=43.004663,-81.276361&to=248 Trott Dr # Grab data from requests #print(start) # Query Directions API from start to end # For every route, calculate the possible lights # Decode polyline for waypoints # Add start and stop points to waypoints #print(start) # If light has already been tracked for this path, dont track it again # If not tracked, track it and increment the total count of lights for this route # Check lights per km # If same amount of light, only change max if new one is shorter # Return as a response a list of routes with their corresponding tracked lights and their bounding box lights and their safety rating
2.779415
3
mlcomp/contrib/catalyst/register.py
sUeharaE4/mlcomp
0
6630270
from catalyst.dl import registry from catalyst.contrib.models.segmentation import ( Unet, ResnetLinknet, MobileUnet, ResnetUnet, ResnetFPNUnet, ResnetPSPnet, FPNUnet, Linknet, PSPnet, ResNetLinknet) from mlcomp.contrib.criterion import RingLoss from mlcomp.contrib.catalyst.callbacks.inference import InferBestCallback from mlcomp.contrib.catalyst.optim import OneCycleCosineAnnealLR from mlcomp.contrib.model.segmentation_model_pytorch import \ SegmentationModelPytorch from mlcomp.contrib.model import Pretrained from mlcomp.contrib.segmentation.deeplabv3.deeplab import DeepLab def register(): registry.Criterion(RingLoss) registry.Callback(InferBestCallback) registry.Scheduler(OneCycleCosineAnnealLR) # classification registry.Model(Pretrained) # segmentation registry.Model(Unet) registry.Model(ResnetLinknet) registry.Model(MobileUnet) registry.Model(ResnetUnet) registry.Model(ResnetFPNUnet) registry.Model(ResnetPSPnet) registry.Model(FPNUnet) registry.Model(Linknet) registry.Model(PSPnet) registry.Model(ResNetLinknet) registry.Model(SegmentationModelPytorch) registry.Model(DeepLab) __all__ = ['register']
from catalyst.dl import registry from catalyst.contrib.models.segmentation import ( Unet, ResnetLinknet, MobileUnet, ResnetUnet, ResnetFPNUnet, ResnetPSPnet, FPNUnet, Linknet, PSPnet, ResNetLinknet) from mlcomp.contrib.criterion import RingLoss from mlcomp.contrib.catalyst.callbacks.inference import InferBestCallback from mlcomp.contrib.catalyst.optim import OneCycleCosineAnnealLR from mlcomp.contrib.model.segmentation_model_pytorch import \ SegmentationModelPytorch from mlcomp.contrib.model import Pretrained from mlcomp.contrib.segmentation.deeplabv3.deeplab import DeepLab def register(): registry.Criterion(RingLoss) registry.Callback(InferBestCallback) registry.Scheduler(OneCycleCosineAnnealLR) # classification registry.Model(Pretrained) # segmentation registry.Model(Unet) registry.Model(ResnetLinknet) registry.Model(MobileUnet) registry.Model(ResnetUnet) registry.Model(ResnetFPNUnet) registry.Model(ResnetPSPnet) registry.Model(FPNUnet) registry.Model(Linknet) registry.Model(PSPnet) registry.Model(ResNetLinknet) registry.Model(SegmentationModelPytorch) registry.Model(DeepLab) __all__ = ['register']
en
0.652533
# classification # segmentation
1.874459
2
math/numberTheory/euler.py
snowflying/algorithm-in-python
1
6630271
#coding: utf-8 ''' mbinary ####################################################################### # File : euler.py # Author: mbinary # Mail: <EMAIL> # Blog: https://mbinary.xyz # Github: https://github.com/mbinary # Created Time: 2018-12-16 10:53 # Description: euler function: phi(n) perfect num: \sigma (n) = 2n, \sigma (n) is the sum of all factors of n eg \sigma (9) = 3+3+9 = 15 ####################################################################### ''' from factor import factor from collections import Counter from functools import reduce from operator import mul def phi(n): st = set(factor(n)) return round(reduce(mul,(1-1/p for p in st),n)) def sigma(n): ct = Counter(factor(n)) return reduce(mul,(round((p**(ct[p]+1)-1)/(p-1)) for p in ct),1) if __name__=='__main__': while 1: n = int(input('n: ')) print('phi(n):',phi(n)) print('sigma(n):',sigma(n))
#coding: utf-8 ''' mbinary ####################################################################### # File : euler.py # Author: mbinary # Mail: <EMAIL> # Blog: https://mbinary.xyz # Github: https://github.com/mbinary # Created Time: 2018-12-16 10:53 # Description: euler function: phi(n) perfect num: \sigma (n) = 2n, \sigma (n) is the sum of all factors of n eg \sigma (9) = 3+3+9 = 15 ####################################################################### ''' from factor import factor from collections import Counter from functools import reduce from operator import mul def phi(n): st = set(factor(n)) return round(reduce(mul,(1-1/p for p in st),n)) def sigma(n): ct = Counter(factor(n)) return reduce(mul,(round((p**(ct[p]+1)-1)/(p-1)) for p in ct),1) if __name__=='__main__': while 1: n = int(input('n: ')) print('phi(n):',phi(n)) print('sigma(n):',sigma(n))
de
0.370576
#coding: utf-8 mbinary ####################################################################### # File : euler.py # Author: mbinary # Mail: <EMAIL> # Blog: https://mbinary.xyz # Github: https://github.com/mbinary # Created Time: 2018-12-16 10:53 # Description: euler function: phi(n) perfect num: \sigma (n) = 2n, \sigma (n) is the sum of all factors of n eg \sigma (9) = 3+3+9 = 15 #######################################################################
3.464021
3
comparator.py
vybhavjain/SPEECH_IMAGE_FINAL
0
6630272
<reponame>vybhavjain/SPEECH_IMAGE_FINAL import turtle import fcomponent as fc def start(r): # Horizontal Oval turtle.penup() turtle.setpos(0,60) turtle.pendown() turtle.penup() turtle.setpos(-(r/1.414),60+(r/1.414)) turtle.pendown() turtle.write(" Start") turtle.right(45) for loop in range(2): turtle.circle(r,90) turtle.circle(r/2,90) turtle.circle(r,45) turtle.right(90) turtle.forward(50) turtle.left(90) def stop(r): # Horizontal Oval turtle.penup() turtle.setpos(-10,-220) turtle.pendown() turtle.right(45) for loop in range(2): turtle.circle(r,90) turtle.circle(r/2,90) turtle.write(" Stop") def flowchart1(): start(25) # function to print the start inside the oval turtle.penup() # makes pen disappear in the current block only turtle.setpos(0,20) turtle.pendown() fc.arrow() turtle.penup() # makes pen disappear in the current block only turtle.setpos(0,0) turtle.pendown() fc.parallelogram(" Get a and b",40) turtle.setpos(0,-40) fc.arrow() fc.rhombus(60) # draws a rhombus for the conditional statement turtle.penup() turtle.setpos(-30,-90) turtle.pendown() turtle.write(' is a>b?') # code if comparison is true turtle.penup() turtle.setpos(0,-40) turtle.pendown() turtle.forward(60) turtle.left(45) turtle.forward(70) turtle.write('yes') # results of comparison is true turtle.right(90) turtle.forward(60) turtle.left(90) fc.arrow() turtle.right(90) turtle.penup() turtle.forward(20) turtle.pendown() turtle.left(90) fc.parallelogram(" display a ",30) turtle.right(90) turtle.forward(55) turtle.right(90) turtle.forward(85) turtle.left(180) turtle.right(90) fc.arrow() turtle.left(90) # code if comparison is flase turtle.penup() turtle.setpos(0,-40) turtle.pendown() turtle.right(135) turtle.forward(60) turtle.right(45) turtle.forward(70) turtle.write('no') #results of comparison is false turtle.left(90) turtle.forward(60) turtle.left(90) fc.arrow() turtle.right(90) turtle.penup() turtle.forward(20) turtle.pendown() turtle.left(90) fc.parallelogram(" display b ",30) turtle.right(90) turtle.forward(55) turtle.left(90) turtle.forward(100) turtle.left(90) fc.arrow() turtle.right(90) stop(25) # function to print inside oval stop turtle.hideturtle() turtle.done()
import turtle import fcomponent as fc def start(r): # Horizontal Oval turtle.penup() turtle.setpos(0,60) turtle.pendown() turtle.penup() turtle.setpos(-(r/1.414),60+(r/1.414)) turtle.pendown() turtle.write(" Start") turtle.right(45) for loop in range(2): turtle.circle(r,90) turtle.circle(r/2,90) turtle.circle(r,45) turtle.right(90) turtle.forward(50) turtle.left(90) def stop(r): # Horizontal Oval turtle.penup() turtle.setpos(-10,-220) turtle.pendown() turtle.right(45) for loop in range(2): turtle.circle(r,90) turtle.circle(r/2,90) turtle.write(" Stop") def flowchart1(): start(25) # function to print the start inside the oval turtle.penup() # makes pen disappear in the current block only turtle.setpos(0,20) turtle.pendown() fc.arrow() turtle.penup() # makes pen disappear in the current block only turtle.setpos(0,0) turtle.pendown() fc.parallelogram(" Get a and b",40) turtle.setpos(0,-40) fc.arrow() fc.rhombus(60) # draws a rhombus for the conditional statement turtle.penup() turtle.setpos(-30,-90) turtle.pendown() turtle.write(' is a>b?') # code if comparison is true turtle.penup() turtle.setpos(0,-40) turtle.pendown() turtle.forward(60) turtle.left(45) turtle.forward(70) turtle.write('yes') # results of comparison is true turtle.right(90) turtle.forward(60) turtle.left(90) fc.arrow() turtle.right(90) turtle.penup() turtle.forward(20) turtle.pendown() turtle.left(90) fc.parallelogram(" display a ",30) turtle.right(90) turtle.forward(55) turtle.right(90) turtle.forward(85) turtle.left(180) turtle.right(90) fc.arrow() turtle.left(90) # code if comparison is flase turtle.penup() turtle.setpos(0,-40) turtle.pendown() turtle.right(135) turtle.forward(60) turtle.right(45) turtle.forward(70) turtle.write('no') #results of comparison is false turtle.left(90) turtle.forward(60) turtle.left(90) fc.arrow() turtle.right(90) turtle.penup() turtle.forward(20) turtle.pendown() turtle.left(90) fc.parallelogram(" display b ",30) turtle.right(90) turtle.forward(55) turtle.left(90) turtle.forward(100) turtle.left(90) fc.arrow() turtle.right(90) stop(25) # function to print inside oval stop turtle.hideturtle() turtle.done()
en
0.874365
# Horizontal Oval # Horizontal Oval # function to print the start inside the oval # makes pen disappear in the current block only # makes pen disappear in the current block only # draws a rhombus for the conditional statement # code if comparison is true # results of comparison is true # code if comparison is flase #results of comparison is false # function to print inside oval stop
4.01808
4
pyelf/structs64.py
guilload/pyelf
3
6630273
from .enums import * from .flags import * from .structure import Structure Elf64_Addr = 'Q' Elf64_Byte = 'B' Elf64_Half = 'H' Elf64_Off = 'Q' Elf64_SHalf = 'h' Elf64_Sword = 'i' Elf64_Sxword = 'q' Elf64_Word = 'I' Elf64_Xword = 'Q' class Elf64_Ehdr(Structure): """ File header. """ members = ({'name': 'e_type', 'type': Elf64_Half, 'enum': E_TYPE}, {'name': 'e_machine', 'type': Elf64_Half, 'enum': E_MACHINE}, {'name': 'e_version', 'type': Elf64_Word}, {'name': 'e_entry', 'type': Elf64_Addr}, {'name': 'e_phoff', 'type': Elf64_Off}, {'name': 'e_shoff', 'type': Elf64_Off}, {'name': 'e_flags', 'type': Elf64_Word}, {'name': 'e_ehsize', 'type': Elf64_Half}, {'name': 'e_phentsize', 'type': Elf64_Half}, {'name': 'e_phnum', 'type': Elf64_Half}, {'name': 'e_shentsize', 'type': Elf64_Half}, {'name': 'e_shnum', 'type': Elf64_Half}, {'name': 'e_shstrndx', 'type': Elf64_Half},) class Elf64_Shdr(Structure): """ Section header. """ members = ({'name': 'sh_name', 'type': Elf64_Word}, {'name': 'sh_type', 'type': Elf64_Word, 'enum': SH_TYPE}, {'name': 'sh_flags', 'type': Elf64_Xword, 'flag': SH_FLAG}, {'name': 'sh_addr', 'type': Elf64_Addr, 'label': 'Address'}, {'name': 'sh_offset', 'type': Elf64_Off}, {'name': 'sh_size', 'type': Elf64_Xword}, {'name': 'sh_link', 'type': Elf64_Word}, {'name': 'sh_info', 'type': Elf64_Word}, {'name': 'sh_addralign', 'type': Elf64_Xword, 'label': 'Align'}, {'name': 'sh_entsize', 'type': Elf64_Xword, 'label': 'Entry size'}, {'name': 'name', 'type': 'property'}, {'name': 'number', 'type': 'property', 'label': 'No.'}) display = ('number', 'name', 'sh_type', 'sh_addr', 'sh_offset', 'sh_size', 'sh_entsize', 'sh_flags', 'sh_link', 'sh_info', 'sh_addralign') @property def name(self): return self.elf.shstrtab[self.sh_name] @property def number(self): return (self.offset - self.elf.header.e_shoff) / self.elf.header.e_shentsize class Elf64_Phdr(Structure): """ Program header. """ members = ({'name': 'p_type', 'type': Elf64_Word}, {'name': 'p_flags', 'type': Elf64_Word}, {'name': 'p_offset', 'type': Elf64_Off}, {'name': 'p_vaddr', 'type': Elf64_Addr}, {'name': 'p_paddr', 'type': Elf64_Addr}, {'name': 'p_filesz', 'type': Elf64_Xword}, {'name': 'p_memsz', 'type': Elf64_Xword}, {'name': 'p_align', 'type': Elf64_Xword}) class Elf64_Sym(Structure): """ Symbol section entry. """ members = ({'name': 'st_name', 'type': Elf64_Word}, {'name': 'st_info', 'type': Elf64_Byte}, {'name': 'st_other', 'type': Elf64_Byte, 'enum': ST_VISIBILITY, 'label': 'VIS'}, {'name': 'st_shndx', 'type': Elf64_Half, 'enum': SH_Nindex}, {'name': 'st_value', 'type': Elf64_Addr}, {'name': 'st_size', 'type': Elf64_Xword}, {'name': 'st_bind', 'type': 'property'}, {'name': 'st_type', 'type': 'property'}, {'name': 'name', 'type': 'property'}, {'name': 'number', 'type': 'property', 'label': 'No.'}) display = ('number', 'st_value', 'st_size', 'st_type', 'st_bind', 'st_other', 'st_shndx', 'name') @property def name(self): symtab = self.elf.sections[self.sheader.sh_link] return symtab[self.st_name] @property def number(self): return (self.offset - self.sheader.sh_offset) / self.sheader.sh_entsize @property def st_bind(self): return ST_BIND[self.st_info >> 4] @property def st_type(self): return ST_TYPE[self.st_info & 0xf] class Elf64_Rel(Structure): """ 'SHT_REL' relocation section entry. """ members = ({'name': 'r_offset', 'type': Elf64_Addr}, {'name': 'r_info', 'type': Elf64_Xword}, {'name': 'r_sym', 'type': 'property'}, {'name': 'r_type', 'type': 'property'},) @property def r_sym(self): return (self.r_info >> 32) & 0xffffffff @property def r_type(self): return self.r_info & 0xffffffff class Elf64_Rela(Structure): """ 'SHT_RELA' relocation section entry. """ members = ({'name': 'r_offset', 'type': Elf64_Addr}, {'name': 'r_info', 'type': Elf64_Xword}, {'name': 'r_addend', 'type': Elf64_Sxword}, {'name': 'r_sym', 'type': 'property'}, {'name': 'r_type', 'type': 'property'}, {'name': 'name', 'type': 'property', 'label': "Symbol's name + addend"}, {'name': 'value', 'type': 'property', 'label': "Symbol's value"}) display = ('r_offset', 'r_info', 'r_type', 'value', 'name') @property def r_sym(self): return (self.r_info >> 32) & 0xffffffff @property def r_type(self): return R_RELOCATION[self.r_info & 0xffffffff] @property def name(self): if self.r_sym == 0: return '' if self.symbol.st_name == 0: sheader = self.elf.sheaders[self.symbol.st_shndx] name = sheader.name else: name = self.symbol.name return '{} {} {}'.format(name, '+' if self.r_addend >= 0 else '-', abs(self.r_addend)) @property def symbol(self): symtab = self.elf.sections[self.sheader.sh_link] symbol = symtab[self.r_sym] return symbol @property def value(self): if self.r_sym == 0: return '' return self.symbol.st_value class Elf64_Dyn(Structure): """ Dynamic section entry. """ members = ({'name': 'd_tag', 'type': Elf64_Sxword}, {'name': 'd_val', 'type': Elf64_Xword}, {'name': 'd_type', 'type': 'property'}, {'name': 'name', 'type': 'property', 'label': 'Name or value'}) display = ('d_tag', 'd_type', 'name',) @property def d_type(self): return D_TAG[self.d_tag] @property def name(self): # TODO: there're more d_types to deal with if self.d_type == DT_NEEDED: symtab = self.elf.sections[self.sheader.sh_link] return 'Shared library: [{}]'.format(symtab[self.d_val]) else: return self.d_val
from .enums import * from .flags import * from .structure import Structure Elf64_Addr = 'Q' Elf64_Byte = 'B' Elf64_Half = 'H' Elf64_Off = 'Q' Elf64_SHalf = 'h' Elf64_Sword = 'i' Elf64_Sxword = 'q' Elf64_Word = 'I' Elf64_Xword = 'Q' class Elf64_Ehdr(Structure): """ File header. """ members = ({'name': 'e_type', 'type': Elf64_Half, 'enum': E_TYPE}, {'name': 'e_machine', 'type': Elf64_Half, 'enum': E_MACHINE}, {'name': 'e_version', 'type': Elf64_Word}, {'name': 'e_entry', 'type': Elf64_Addr}, {'name': 'e_phoff', 'type': Elf64_Off}, {'name': 'e_shoff', 'type': Elf64_Off}, {'name': 'e_flags', 'type': Elf64_Word}, {'name': 'e_ehsize', 'type': Elf64_Half}, {'name': 'e_phentsize', 'type': Elf64_Half}, {'name': 'e_phnum', 'type': Elf64_Half}, {'name': 'e_shentsize', 'type': Elf64_Half}, {'name': 'e_shnum', 'type': Elf64_Half}, {'name': 'e_shstrndx', 'type': Elf64_Half},) class Elf64_Shdr(Structure): """ Section header. """ members = ({'name': 'sh_name', 'type': Elf64_Word}, {'name': 'sh_type', 'type': Elf64_Word, 'enum': SH_TYPE}, {'name': 'sh_flags', 'type': Elf64_Xword, 'flag': SH_FLAG}, {'name': 'sh_addr', 'type': Elf64_Addr, 'label': 'Address'}, {'name': 'sh_offset', 'type': Elf64_Off}, {'name': 'sh_size', 'type': Elf64_Xword}, {'name': 'sh_link', 'type': Elf64_Word}, {'name': 'sh_info', 'type': Elf64_Word}, {'name': 'sh_addralign', 'type': Elf64_Xword, 'label': 'Align'}, {'name': 'sh_entsize', 'type': Elf64_Xword, 'label': 'Entry size'}, {'name': 'name', 'type': 'property'}, {'name': 'number', 'type': 'property', 'label': 'No.'}) display = ('number', 'name', 'sh_type', 'sh_addr', 'sh_offset', 'sh_size', 'sh_entsize', 'sh_flags', 'sh_link', 'sh_info', 'sh_addralign') @property def name(self): return self.elf.shstrtab[self.sh_name] @property def number(self): return (self.offset - self.elf.header.e_shoff) / self.elf.header.e_shentsize class Elf64_Phdr(Structure): """ Program header. """ members = ({'name': 'p_type', 'type': Elf64_Word}, {'name': 'p_flags', 'type': Elf64_Word}, {'name': 'p_offset', 'type': Elf64_Off}, {'name': 'p_vaddr', 'type': Elf64_Addr}, {'name': 'p_paddr', 'type': Elf64_Addr}, {'name': 'p_filesz', 'type': Elf64_Xword}, {'name': 'p_memsz', 'type': Elf64_Xword}, {'name': 'p_align', 'type': Elf64_Xword}) class Elf64_Sym(Structure): """ Symbol section entry. """ members = ({'name': 'st_name', 'type': Elf64_Word}, {'name': 'st_info', 'type': Elf64_Byte}, {'name': 'st_other', 'type': Elf64_Byte, 'enum': ST_VISIBILITY, 'label': 'VIS'}, {'name': 'st_shndx', 'type': Elf64_Half, 'enum': SH_Nindex}, {'name': 'st_value', 'type': Elf64_Addr}, {'name': 'st_size', 'type': Elf64_Xword}, {'name': 'st_bind', 'type': 'property'}, {'name': 'st_type', 'type': 'property'}, {'name': 'name', 'type': 'property'}, {'name': 'number', 'type': 'property', 'label': 'No.'}) display = ('number', 'st_value', 'st_size', 'st_type', 'st_bind', 'st_other', 'st_shndx', 'name') @property def name(self): symtab = self.elf.sections[self.sheader.sh_link] return symtab[self.st_name] @property def number(self): return (self.offset - self.sheader.sh_offset) / self.sheader.sh_entsize @property def st_bind(self): return ST_BIND[self.st_info >> 4] @property def st_type(self): return ST_TYPE[self.st_info & 0xf] class Elf64_Rel(Structure): """ 'SHT_REL' relocation section entry. """ members = ({'name': 'r_offset', 'type': Elf64_Addr}, {'name': 'r_info', 'type': Elf64_Xword}, {'name': 'r_sym', 'type': 'property'}, {'name': 'r_type', 'type': 'property'},) @property def r_sym(self): return (self.r_info >> 32) & 0xffffffff @property def r_type(self): return self.r_info & 0xffffffff class Elf64_Rela(Structure): """ 'SHT_RELA' relocation section entry. """ members = ({'name': 'r_offset', 'type': Elf64_Addr}, {'name': 'r_info', 'type': Elf64_Xword}, {'name': 'r_addend', 'type': Elf64_Sxword}, {'name': 'r_sym', 'type': 'property'}, {'name': 'r_type', 'type': 'property'}, {'name': 'name', 'type': 'property', 'label': "Symbol's name + addend"}, {'name': 'value', 'type': 'property', 'label': "Symbol's value"}) display = ('r_offset', 'r_info', 'r_type', 'value', 'name') @property def r_sym(self): return (self.r_info >> 32) & 0xffffffff @property def r_type(self): return R_RELOCATION[self.r_info & 0xffffffff] @property def name(self): if self.r_sym == 0: return '' if self.symbol.st_name == 0: sheader = self.elf.sheaders[self.symbol.st_shndx] name = sheader.name else: name = self.symbol.name return '{} {} {}'.format(name, '+' if self.r_addend >= 0 else '-', abs(self.r_addend)) @property def symbol(self): symtab = self.elf.sections[self.sheader.sh_link] symbol = symtab[self.r_sym] return symbol @property def value(self): if self.r_sym == 0: return '' return self.symbol.st_value class Elf64_Dyn(Structure): """ Dynamic section entry. """ members = ({'name': 'd_tag', 'type': Elf64_Sxword}, {'name': 'd_val', 'type': Elf64_Xword}, {'name': 'd_type', 'type': 'property'}, {'name': 'name', 'type': 'property', 'label': 'Name or value'}) display = ('d_tag', 'd_type', 'name',) @property def d_type(self): return D_TAG[self.d_tag] @property def name(self): # TODO: there're more d_types to deal with if self.d_type == DT_NEEDED: symtab = self.elf.sections[self.sheader.sh_link] return 'Shared library: [{}]'.format(symtab[self.d_val]) else: return self.d_val
en
0.787254
File header. Section header. Program header. Symbol section entry. 'SHT_REL' relocation section entry. 'SHT_RELA' relocation section entry. Dynamic section entry. # TODO: there're more d_types to deal with
2.091531
2
src/memote/support/biomass.py
Midnighter/memote
0
6630274
# -*- coding: utf-8 -*- # Copyright 2017 Novo Nordisk Foundation Center for Biosustainability, # Technical University of Denmark. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Supporting functions for biomass consistency checks.""" from __future__ import absolute_import import logging import re import numpy as np from cobra.exceptions import OptimizationError from future.utils import raise_with_traceback from six import iteritems import memote.support.helpers as helpers __all__ = ( "sum_biomass_weight", "find_biomass_precursors", "find_blocked_biomass_precursors", ) LOGGER = logging.getLogger(__name__) # 20 Amino Acids, 4 Deoxyribonucleotides, 4 Ribonucleotides, # 8 Universal Cofactors, and H2O ESSENTIAL_PRECURSOR_IDS = [ "MNXM94", "MNXM55", "MNXM134", "MNXM76", "MNXM61", "MNXM97", "MNXM53", "MNXM114", "MNXM42", "MNXM142", "MNXM37", "MNXM89557", "MNXM231", "MNXM70", "MNXM78", "MNXM199", "MNXM140", "MNXM32", "MNXM29", "MNXM147", # Deoxyribonucleotides "MNXM286", "MNXM360", "MNXM394", "MNXM344", # Ribonucleotides "MNXM3", "MNXM51", "MNXM63", "MNXM121", # NAD "MNXM8", # NADP "MNXM5", # S-adenosyl-L-methionine "MNXM16", # FAD "MNXM33", # Pyridoxal 5'-phosphate "MNXM161", # CoA "MNXM12", # Thiamine Diphosphate "MNXM256", # FMN "MNXM119", # H2O "MNXM2", ] def sum_biomass_weight(reaction): """ Compute the sum of all reaction compounds. This function expects all metabolites of the biomass reaction to have formula information assigned. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- float The molecular weight of the biomass reaction in units of g/mmol. """ return ( sum( -coef * met.formula_weight for (met, coef) in iteritems(reaction.metabolites) ) / 1000.0 ) def find_biomass_precursors(model, reaction): """ Return a list of all biomass precursors excluding ATP and H2O. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. model : cobra.Model The metabolic model under investigation. Returns ------- list Metabolite objects that are reactants of the biomass reaction excluding ATP and H2O. """ id_of_main_compartment = helpers.find_compartment_id_in_model(model, "c") gam_reactants = set() try: gam_reactants.update( [helpers.find_met_in_model(model, "MNXM3", id_of_main_compartment)[0]] ) except RuntimeError: pass try: gam_reactants.update( [helpers.find_met_in_model(model, "MNXM2", id_of_main_compartment)[0]] ) except RuntimeError: pass biomass_precursors = set(reaction.reactants) - gam_reactants return list(biomass_precursors) def find_blocked_biomass_precursors(reaction, model): """ Return a list of all biomass precursors that cannot be produced. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. model : cobra.Model The metabolic model under investigation. Returns ------- list Metabolite objects that are reactants of the biomass reaction excluding ATP and H2O that cannot be produced by flux balance analysis. """ LOGGER.debug("Finding blocked biomass precursors") precursors = find_biomass_precursors(model, reaction) blocked_precursors = list() _, ub = helpers.find_bounds(model) for precursor in precursors: with model: dm_rxn = model.add_boundary( precursor, type="safe-demand", reaction_id="safe_demand", lb=0, ub=ub ) flux = helpers.run_fba(model, dm_rxn.id, direction="max") if np.isnan(flux) or abs(flux) < 1e-08: blocked_precursors.append(precursor) return blocked_precursors def gam_in_biomass(model, reaction): """ Return boolean if biomass reaction includes growth-associated maintenance. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- boolean True if the biomass reaction includes ATP and H2O as reactants and ADP, Pi and H as products, False otherwise. """ id_of_main_compartment = helpers.find_compartment_id_in_model(model, "c") try: left = { helpers.find_met_in_model(model, "MNXM3", id_of_main_compartment)[0], helpers.find_met_in_model(model, "MNXM2", id_of_main_compartment)[0], } right = { helpers.find_met_in_model(model, "MNXM7", id_of_main_compartment)[0], helpers.find_met_in_model(model, "MNXM1", id_of_main_compartment)[0], helpers.find_met_in_model(model, "MNXM9", id_of_main_compartment)[0], } except RuntimeError: return False return left.issubset(set(reaction.reactants)) and right.issubset( set(reaction.products) ) def find_direct_metabolites(model, reaction, tolerance=1e-06): """ Return list of possible direct biomass precursor metabolites. The term direct metabolites describes metabolites that are involved only in either transport and/or boundary reactions, AND the biomass reaction(s), but not in any purely metabolic reactions. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.Reaction The biomass reaction of the model under investigation. tolerance : float, optional Tolerance below which values will be regarded as zero. Returns ------- list Metabolites that qualify as direct metabolites i.e. biomass precursors that are taken up to be consumed by the biomass reaction only. """ biomass_rxns = set(helpers.find_biomass_reaction(model)) tra_bou_bio_rxns = helpers.find_interchange_biomass_reactions(model, biomass_rxns) try: precursors = find_biomass_precursors(model, reaction) main_comp = helpers.find_compartment_id_in_model(model, "c") ext_space = helpers.find_compartment_id_in_model(model, "e") except KeyError: LOGGER.error( "Failed to properly identify cytosolic and extracellular " "compartments." ) raise_with_traceback( KeyError( "The cytosolic and/or extracellular " "compartments could not be identified." ) ) except RuntimeError: LOGGER.error( "Failed to properly identify cytosolic and extracellular " "compartments." ) raise_with_traceback( RuntimeError( "The cytosolic and/or extracellular " "compartments could not be " "identified." ) ) else: tra_bou_bio_mets = [ met for met in precursors if met.reactions.issubset(tra_bou_bio_rxns) ] rxns_of_interest = set( [ rxn for met in tra_bou_bio_mets for rxn in met.reactions if rxn not in biomass_rxns ] ) solution = model.optimize(raise_error=True) if np.isclose(solution.objective_value, 0, atol=tolerance): LOGGER.error( "Failed to generate a non-zero objective value with " "flux balance analysis." ) raise OptimizationError( "The flux balance analysis on this model returned an " "objective value of zero. Make sure the model can " "grow! Check if the constraints are not too strict!" ) tra_bou_bio_fluxes = {r: solution[r.id] for r in rxns_of_interest} met_flux_sum = {m: 0 for m in tra_bou_bio_mets} return detect_false_positive_direct_metabolites( tra_bou_bio_mets, biomass_rxns, main_comp, ext_space, tra_bou_bio_fluxes, met_flux_sum, ) def detect_false_positive_direct_metabolites( candidates, biomass_reactions, cytosol, extra, reaction_fluxes, metabolite_fluxes ): """ Weed out false positive direct metabolites. False positives exists in the extracellular compartment with flux from the cytosolic compartment and are part of the biomass reaction(s). It sums fluxes positively or negatively depending on if direct metabolites in the extracellular compartment are defined as reactants or products in various reactions. Parameters ---------- candidates : list of cobra.Metabolite Candidate direct metabolites. biomass_reactions : set of cobra.Reaction The biomass reactions. Usually one or two. cytosol : str The identifier of the cytosolic compartment. extra : str The identifier of the extracellular compartment. Returns ------- list Definitive list of direct metabolites, i.e., biomass precursors that are taken up to be consumed by the biomass reaction only. """ for met in candidates: is_internal = met.compartment != extra for rxn in met.reactions: if rxn in biomass_reactions: continue # Internal metabolites can not be false positives. if is_internal: metabolite_fluxes[met] += abs(reaction_fluxes[rxn]) continue # if the metabolite is in the "e" compartment and a reactant, # sum the fluxes accordingly (outward=negative, inward=positive) if met in rxn.reactants: product_comps = set([p.compartment for p in rxn.products]) # if the reaction has no product (outward flux) if len(product_comps) == 0: metabolite_fluxes[met] += -reaction_fluxes[rxn] # if the reaction has a product in "c" (inward flux) elif cytosol in product_comps: metabolite_fluxes[met] += reaction_fluxes[rxn] # if the metabolite is in the "e" compartment and a product, # sum the fluxes accordingly (outward=negative, inward=positive) elif met in rxn.products: reactant_comps = set([p.compartment for p in rxn.reactants]) # if the reaction has no reactant (inward flux) if len(reactant_comps) == 0: metabolite_fluxes[met] += reaction_fluxes[rxn] # if the reaction has a reactant in "c" (outward flux) elif cytosol in reactant_comps: metabolite_fluxes[met] += -reaction_fluxes[rxn] return [m for m, f in iteritems(metabolite_fluxes) if f > 0] def bundle_biomass_components(model, reaction): """ Return bundle biomass component reactions if it is not one lumped reaction. There are two basic ways of specifying the biomass composition. The most common is a single lumped reaction containing all biomass precursors. Alternatively, the biomass equation can be split into several reactions each focusing on a different macromolecular component for instance a (1 gDW ash) + b (1 gDW phospholipids) + c (free fatty acids)+ d (1 gDW carbs) + e (1 gDW protein) + f (1 gDW RNA) + g (1 gDW DNA) + h (vitamins/cofactors) + xATP + xH2O-> 1 gDCW biomass + xADP + xH + xPi. This function aims to identify if the given biomass reaction 'reaction', is a lumped all-in-one reaction, or whether it is just the final composing reaction of all macromolecular components. It is important to identify which other reaction belong to a given biomass reaction to be able to identify universal biomass components or calculate detailed precursor stoichiometries. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- list One or more reactions that qualify as THE biomass equation together. Notes ----- Counting H2O, ADP, Pi, H, and ATP, the amount of metabolites in a split reaction is comparatively low: Any reaction with less or equal to 15 metabolites can probably be counted as a split reaction containing Ash, Phospholipids, Fatty Acids, Carbohydrates (i.e. cell wall components), Protein, RNA, DNA, Cofactors and Vitamins, and Small Molecules. Any reaction with more than or equal to 28 metabolites, however, (21 AA + 3 Nucleotides (4-ATP) + 4 Deoxy-Nucleotides) can be considered a lumped reaction. Anything in between will be treated conservatively as a lumped reaction. For split reactions, after removing any of the metabolites associated with growth-associated energy expenditure (H2O, ADP, Pi, H, and ATP), the only remaining metabolites should be generalized macromolecule precursors e.g. Protein, Phospholipids etc. Each of these have their own composing reactions. Hence we include the reactions of these metabolites in the set that ultimately makes up the returned list of reactions that together make up the biomass equation. """ if len(reaction.metabolites) >= 16: return [reaction] id_of_main_compartment = helpers.find_compartment_id_in_model(model, "c") gam_mets = ["MNXM3", "MNXM2", "MNXM7", "MNXM1", "MNXM9"] try: gam = set( [ helpers.find_met_in_model(model, met, id_of_main_compartment)[0] for met in gam_mets ] ) except RuntimeError: gam = set() regex = re.compile("^{}(_[a-zA-Z]+?)*?$".format("biomass"), re.IGNORECASE) biomass_metabolite = set(model.metabolites.query(regex)) macromolecules = set(reaction.metabolites) - gam - biomass_metabolite bundled_reactions = set() for met in macromolecules: bundled_reactions = bundled_reactions | set(met.reactions) return list(bundled_reactions) def essential_precursors_not_in_biomass(model, reaction): u""" Return a list of essential precursors missing from the biomass reaction. There are universal components of life that make up the biomass of all known organisms. These include all proteinogenic amino acids, deoxy- and ribonucleotides, water and a range of metabolic cofactors. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- list IDs of essential metabolites missing from the biomass reaction. The IDS will appear in the models namespace if the metabolite exists, but will be using the MetaNetX namespace if the metabolite does not exist in the model. Notes ----- "Answering the question of what to include in the core of a biomass objective function is not always straightforward. One example is different nucleotide forms, which, although inter-convertible, are essential for cellular chemistry. We propose here that all essential and irreplaceable molecules for metabolism should be included in the biomass functions of genome scale metabolic models. In the special case of cofactors, when two forms of the same cofactor take part in the same reactions (such as NAD and NADH), only one form could be included for the sake of simplicity. When a class of cofactors includes active and non-active interconvertible forms, the active forms should be preferred. [1]_." Please note, that [1]_ also suggest to count C1 carriers (derivatives of tetrahydrofolate(B9) or tetrahydromethanopterin) as universal cofactors. We have omitted these from this check because there are many individual compounds that classify as C1 carriers, and it is not clear a priori which one should be preferred. In a future update, we may consider identifying these using a chemical ontology. References ---------- .. [1] <NAME>., <NAME>., & <NAME>. (2017). Integration of Biomass Formulations of Genome-Scale Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in Prokaryotes. Metabolic Engineering, 39(October 2016), 200–208. http://doi.org/10.1016/j.ymben.2016.12.002 """ main_comp = helpers.find_compartment_id_in_model(model, "c") biomass_eq = bundle_biomass_components(model, reaction) pooled_precursors = set([met for rxn in biomass_eq for met in rxn.metabolites]) missing_essential_precursors = [] for mnx_id in ESSENTIAL_PRECURSOR_IDS: try: met = helpers.find_met_in_model(model, mnx_id, main_comp)[0] if met not in pooled_precursors: missing_essential_precursors.append(met.id) except RuntimeError: missing_essential_precursors.append(mnx_id) return missing_essential_precursors
# -*- coding: utf-8 -*- # Copyright 2017 Novo Nordisk Foundation Center for Biosustainability, # Technical University of Denmark. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Supporting functions for biomass consistency checks.""" from __future__ import absolute_import import logging import re import numpy as np from cobra.exceptions import OptimizationError from future.utils import raise_with_traceback from six import iteritems import memote.support.helpers as helpers __all__ = ( "sum_biomass_weight", "find_biomass_precursors", "find_blocked_biomass_precursors", ) LOGGER = logging.getLogger(__name__) # 20 Amino Acids, 4 Deoxyribonucleotides, 4 Ribonucleotides, # 8 Universal Cofactors, and H2O ESSENTIAL_PRECURSOR_IDS = [ "MNXM94", "MNXM55", "MNXM134", "MNXM76", "MNXM61", "MNXM97", "MNXM53", "MNXM114", "MNXM42", "MNXM142", "MNXM37", "MNXM89557", "MNXM231", "MNXM70", "MNXM78", "MNXM199", "MNXM140", "MNXM32", "MNXM29", "MNXM147", # Deoxyribonucleotides "MNXM286", "MNXM360", "MNXM394", "MNXM344", # Ribonucleotides "MNXM3", "MNXM51", "MNXM63", "MNXM121", # NAD "MNXM8", # NADP "MNXM5", # S-adenosyl-L-methionine "MNXM16", # FAD "MNXM33", # Pyridoxal 5'-phosphate "MNXM161", # CoA "MNXM12", # Thiamine Diphosphate "MNXM256", # FMN "MNXM119", # H2O "MNXM2", ] def sum_biomass_weight(reaction): """ Compute the sum of all reaction compounds. This function expects all metabolites of the biomass reaction to have formula information assigned. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- float The molecular weight of the biomass reaction in units of g/mmol. """ return ( sum( -coef * met.formula_weight for (met, coef) in iteritems(reaction.metabolites) ) / 1000.0 ) def find_biomass_precursors(model, reaction): """ Return a list of all biomass precursors excluding ATP and H2O. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. model : cobra.Model The metabolic model under investigation. Returns ------- list Metabolite objects that are reactants of the biomass reaction excluding ATP and H2O. """ id_of_main_compartment = helpers.find_compartment_id_in_model(model, "c") gam_reactants = set() try: gam_reactants.update( [helpers.find_met_in_model(model, "MNXM3", id_of_main_compartment)[0]] ) except RuntimeError: pass try: gam_reactants.update( [helpers.find_met_in_model(model, "MNXM2", id_of_main_compartment)[0]] ) except RuntimeError: pass biomass_precursors = set(reaction.reactants) - gam_reactants return list(biomass_precursors) def find_blocked_biomass_precursors(reaction, model): """ Return a list of all biomass precursors that cannot be produced. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. model : cobra.Model The metabolic model under investigation. Returns ------- list Metabolite objects that are reactants of the biomass reaction excluding ATP and H2O that cannot be produced by flux balance analysis. """ LOGGER.debug("Finding blocked biomass precursors") precursors = find_biomass_precursors(model, reaction) blocked_precursors = list() _, ub = helpers.find_bounds(model) for precursor in precursors: with model: dm_rxn = model.add_boundary( precursor, type="safe-demand", reaction_id="safe_demand", lb=0, ub=ub ) flux = helpers.run_fba(model, dm_rxn.id, direction="max") if np.isnan(flux) or abs(flux) < 1e-08: blocked_precursors.append(precursor) return blocked_precursors def gam_in_biomass(model, reaction): """ Return boolean if biomass reaction includes growth-associated maintenance. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- boolean True if the biomass reaction includes ATP and H2O as reactants and ADP, Pi and H as products, False otherwise. """ id_of_main_compartment = helpers.find_compartment_id_in_model(model, "c") try: left = { helpers.find_met_in_model(model, "MNXM3", id_of_main_compartment)[0], helpers.find_met_in_model(model, "MNXM2", id_of_main_compartment)[0], } right = { helpers.find_met_in_model(model, "MNXM7", id_of_main_compartment)[0], helpers.find_met_in_model(model, "MNXM1", id_of_main_compartment)[0], helpers.find_met_in_model(model, "MNXM9", id_of_main_compartment)[0], } except RuntimeError: return False return left.issubset(set(reaction.reactants)) and right.issubset( set(reaction.products) ) def find_direct_metabolites(model, reaction, tolerance=1e-06): """ Return list of possible direct biomass precursor metabolites. The term direct metabolites describes metabolites that are involved only in either transport and/or boundary reactions, AND the biomass reaction(s), but not in any purely metabolic reactions. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.Reaction The biomass reaction of the model under investigation. tolerance : float, optional Tolerance below which values will be regarded as zero. Returns ------- list Metabolites that qualify as direct metabolites i.e. biomass precursors that are taken up to be consumed by the biomass reaction only. """ biomass_rxns = set(helpers.find_biomass_reaction(model)) tra_bou_bio_rxns = helpers.find_interchange_biomass_reactions(model, biomass_rxns) try: precursors = find_biomass_precursors(model, reaction) main_comp = helpers.find_compartment_id_in_model(model, "c") ext_space = helpers.find_compartment_id_in_model(model, "e") except KeyError: LOGGER.error( "Failed to properly identify cytosolic and extracellular " "compartments." ) raise_with_traceback( KeyError( "The cytosolic and/or extracellular " "compartments could not be identified." ) ) except RuntimeError: LOGGER.error( "Failed to properly identify cytosolic and extracellular " "compartments." ) raise_with_traceback( RuntimeError( "The cytosolic and/or extracellular " "compartments could not be " "identified." ) ) else: tra_bou_bio_mets = [ met for met in precursors if met.reactions.issubset(tra_bou_bio_rxns) ] rxns_of_interest = set( [ rxn for met in tra_bou_bio_mets for rxn in met.reactions if rxn not in biomass_rxns ] ) solution = model.optimize(raise_error=True) if np.isclose(solution.objective_value, 0, atol=tolerance): LOGGER.error( "Failed to generate a non-zero objective value with " "flux balance analysis." ) raise OptimizationError( "The flux balance analysis on this model returned an " "objective value of zero. Make sure the model can " "grow! Check if the constraints are not too strict!" ) tra_bou_bio_fluxes = {r: solution[r.id] for r in rxns_of_interest} met_flux_sum = {m: 0 for m in tra_bou_bio_mets} return detect_false_positive_direct_metabolites( tra_bou_bio_mets, biomass_rxns, main_comp, ext_space, tra_bou_bio_fluxes, met_flux_sum, ) def detect_false_positive_direct_metabolites( candidates, biomass_reactions, cytosol, extra, reaction_fluxes, metabolite_fluxes ): """ Weed out false positive direct metabolites. False positives exists in the extracellular compartment with flux from the cytosolic compartment and are part of the biomass reaction(s). It sums fluxes positively or negatively depending on if direct metabolites in the extracellular compartment are defined as reactants or products in various reactions. Parameters ---------- candidates : list of cobra.Metabolite Candidate direct metabolites. biomass_reactions : set of cobra.Reaction The biomass reactions. Usually one or two. cytosol : str The identifier of the cytosolic compartment. extra : str The identifier of the extracellular compartment. Returns ------- list Definitive list of direct metabolites, i.e., biomass precursors that are taken up to be consumed by the biomass reaction only. """ for met in candidates: is_internal = met.compartment != extra for rxn in met.reactions: if rxn in biomass_reactions: continue # Internal metabolites can not be false positives. if is_internal: metabolite_fluxes[met] += abs(reaction_fluxes[rxn]) continue # if the metabolite is in the "e" compartment and a reactant, # sum the fluxes accordingly (outward=negative, inward=positive) if met in rxn.reactants: product_comps = set([p.compartment for p in rxn.products]) # if the reaction has no product (outward flux) if len(product_comps) == 0: metabolite_fluxes[met] += -reaction_fluxes[rxn] # if the reaction has a product in "c" (inward flux) elif cytosol in product_comps: metabolite_fluxes[met] += reaction_fluxes[rxn] # if the metabolite is in the "e" compartment and a product, # sum the fluxes accordingly (outward=negative, inward=positive) elif met in rxn.products: reactant_comps = set([p.compartment for p in rxn.reactants]) # if the reaction has no reactant (inward flux) if len(reactant_comps) == 0: metabolite_fluxes[met] += reaction_fluxes[rxn] # if the reaction has a reactant in "c" (outward flux) elif cytosol in reactant_comps: metabolite_fluxes[met] += -reaction_fluxes[rxn] return [m for m, f in iteritems(metabolite_fluxes) if f > 0] def bundle_biomass_components(model, reaction): """ Return bundle biomass component reactions if it is not one lumped reaction. There are two basic ways of specifying the biomass composition. The most common is a single lumped reaction containing all biomass precursors. Alternatively, the biomass equation can be split into several reactions each focusing on a different macromolecular component for instance a (1 gDW ash) + b (1 gDW phospholipids) + c (free fatty acids)+ d (1 gDW carbs) + e (1 gDW protein) + f (1 gDW RNA) + g (1 gDW DNA) + h (vitamins/cofactors) + xATP + xH2O-> 1 gDCW biomass + xADP + xH + xPi. This function aims to identify if the given biomass reaction 'reaction', is a lumped all-in-one reaction, or whether it is just the final composing reaction of all macromolecular components. It is important to identify which other reaction belong to a given biomass reaction to be able to identify universal biomass components or calculate detailed precursor stoichiometries. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- list One or more reactions that qualify as THE biomass equation together. Notes ----- Counting H2O, ADP, Pi, H, and ATP, the amount of metabolites in a split reaction is comparatively low: Any reaction with less or equal to 15 metabolites can probably be counted as a split reaction containing Ash, Phospholipids, Fatty Acids, Carbohydrates (i.e. cell wall components), Protein, RNA, DNA, Cofactors and Vitamins, and Small Molecules. Any reaction with more than or equal to 28 metabolites, however, (21 AA + 3 Nucleotides (4-ATP) + 4 Deoxy-Nucleotides) can be considered a lumped reaction. Anything in between will be treated conservatively as a lumped reaction. For split reactions, after removing any of the metabolites associated with growth-associated energy expenditure (H2O, ADP, Pi, H, and ATP), the only remaining metabolites should be generalized macromolecule precursors e.g. Protein, Phospholipids etc. Each of these have their own composing reactions. Hence we include the reactions of these metabolites in the set that ultimately makes up the returned list of reactions that together make up the biomass equation. """ if len(reaction.metabolites) >= 16: return [reaction] id_of_main_compartment = helpers.find_compartment_id_in_model(model, "c") gam_mets = ["MNXM3", "MNXM2", "MNXM7", "MNXM1", "MNXM9"] try: gam = set( [ helpers.find_met_in_model(model, met, id_of_main_compartment)[0] for met in gam_mets ] ) except RuntimeError: gam = set() regex = re.compile("^{}(_[a-zA-Z]+?)*?$".format("biomass"), re.IGNORECASE) biomass_metabolite = set(model.metabolites.query(regex)) macromolecules = set(reaction.metabolites) - gam - biomass_metabolite bundled_reactions = set() for met in macromolecules: bundled_reactions = bundled_reactions | set(met.reactions) return list(bundled_reactions) def essential_precursors_not_in_biomass(model, reaction): u""" Return a list of essential precursors missing from the biomass reaction. There are universal components of life that make up the biomass of all known organisms. These include all proteinogenic amino acids, deoxy- and ribonucleotides, water and a range of metabolic cofactors. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- list IDs of essential metabolites missing from the biomass reaction. The IDS will appear in the models namespace if the metabolite exists, but will be using the MetaNetX namespace if the metabolite does not exist in the model. Notes ----- "Answering the question of what to include in the core of a biomass objective function is not always straightforward. One example is different nucleotide forms, which, although inter-convertible, are essential for cellular chemistry. We propose here that all essential and irreplaceable molecules for metabolism should be included in the biomass functions of genome scale metabolic models. In the special case of cofactors, when two forms of the same cofactor take part in the same reactions (such as NAD and NADH), only one form could be included for the sake of simplicity. When a class of cofactors includes active and non-active interconvertible forms, the active forms should be preferred. [1]_." Please note, that [1]_ also suggest to count C1 carriers (derivatives of tetrahydrofolate(B9) or tetrahydromethanopterin) as universal cofactors. We have omitted these from this check because there are many individual compounds that classify as C1 carriers, and it is not clear a priori which one should be preferred. In a future update, we may consider identifying these using a chemical ontology. References ---------- .. [1] <NAME>., <NAME>., & <NAME>. (2017). Integration of Biomass Formulations of Genome-Scale Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in Prokaryotes. Metabolic Engineering, 39(October 2016), 200–208. http://doi.org/10.1016/j.ymben.2016.12.002 """ main_comp = helpers.find_compartment_id_in_model(model, "c") biomass_eq = bundle_biomass_components(model, reaction) pooled_precursors = set([met for rxn in biomass_eq for met in rxn.metabolites]) missing_essential_precursors = [] for mnx_id in ESSENTIAL_PRECURSOR_IDS: try: met = helpers.find_met_in_model(model, mnx_id, main_comp)[0] if met not in pooled_precursors: missing_essential_precursors.append(met.id) except RuntimeError: missing_essential_precursors.append(mnx_id) return missing_essential_precursors
en
0.858191
# -*- coding: utf-8 -*- # Copyright 2017 Novo Nordisk Foundation Center for Biosustainability, # Technical University of Denmark. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Supporting functions for biomass consistency checks. # 20 Amino Acids, 4 Deoxyribonucleotides, 4 Ribonucleotides, # 8 Universal Cofactors, and H2O # Deoxyribonucleotides # Ribonucleotides # NAD # NADP # S-adenosyl-L-methionine # FAD # Pyridoxal 5'-phosphate # CoA # Thiamine Diphosphate # FMN # H2O Compute the sum of all reaction compounds. This function expects all metabolites of the biomass reaction to have formula information assigned. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- float The molecular weight of the biomass reaction in units of g/mmol. Return a list of all biomass precursors excluding ATP and H2O. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. model : cobra.Model The metabolic model under investigation. Returns ------- list Metabolite objects that are reactants of the biomass reaction excluding ATP and H2O. Return a list of all biomass precursors that cannot be produced. Parameters ---------- reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. model : cobra.Model The metabolic model under investigation. Returns ------- list Metabolite objects that are reactants of the biomass reaction excluding ATP and H2O that cannot be produced by flux balance analysis. Return boolean if biomass reaction includes growth-associated maintenance. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- boolean True if the biomass reaction includes ATP and H2O as reactants and ADP, Pi and H as products, False otherwise. Return list of possible direct biomass precursor metabolites. The term direct metabolites describes metabolites that are involved only in either transport and/or boundary reactions, AND the biomass reaction(s), but not in any purely metabolic reactions. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.Reaction The biomass reaction of the model under investigation. tolerance : float, optional Tolerance below which values will be regarded as zero. Returns ------- list Metabolites that qualify as direct metabolites i.e. biomass precursors that are taken up to be consumed by the biomass reaction only. Weed out false positive direct metabolites. False positives exists in the extracellular compartment with flux from the cytosolic compartment and are part of the biomass reaction(s). It sums fluxes positively or negatively depending on if direct metabolites in the extracellular compartment are defined as reactants or products in various reactions. Parameters ---------- candidates : list of cobra.Metabolite Candidate direct metabolites. biomass_reactions : set of cobra.Reaction The biomass reactions. Usually one or two. cytosol : str The identifier of the cytosolic compartment. extra : str The identifier of the extracellular compartment. Returns ------- list Definitive list of direct metabolites, i.e., biomass precursors that are taken up to be consumed by the biomass reaction only. # Internal metabolites can not be false positives. # if the metabolite is in the "e" compartment and a reactant, # sum the fluxes accordingly (outward=negative, inward=positive) # if the reaction has no product (outward flux) # if the reaction has a product in "c" (inward flux) # if the metabolite is in the "e" compartment and a product, # sum the fluxes accordingly (outward=negative, inward=positive) # if the reaction has no reactant (inward flux) # if the reaction has a reactant in "c" (outward flux) Return bundle biomass component reactions if it is not one lumped reaction. There are two basic ways of specifying the biomass composition. The most common is a single lumped reaction containing all biomass precursors. Alternatively, the biomass equation can be split into several reactions each focusing on a different macromolecular component for instance a (1 gDW ash) + b (1 gDW phospholipids) + c (free fatty acids)+ d (1 gDW carbs) + e (1 gDW protein) + f (1 gDW RNA) + g (1 gDW DNA) + h (vitamins/cofactors) + xATP + xH2O-> 1 gDCW biomass + xADP + xH + xPi. This function aims to identify if the given biomass reaction 'reaction', is a lumped all-in-one reaction, or whether it is just the final composing reaction of all macromolecular components. It is important to identify which other reaction belong to a given biomass reaction to be able to identify universal biomass components or calculate detailed precursor stoichiometries. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- list One or more reactions that qualify as THE biomass equation together. Notes ----- Counting H2O, ADP, Pi, H, and ATP, the amount of metabolites in a split reaction is comparatively low: Any reaction with less or equal to 15 metabolites can probably be counted as a split reaction containing Ash, Phospholipids, Fatty Acids, Carbohydrates (i.e. cell wall components), Protein, RNA, DNA, Cofactors and Vitamins, and Small Molecules. Any reaction with more than or equal to 28 metabolites, however, (21 AA + 3 Nucleotides (4-ATP) + 4 Deoxy-Nucleotides) can be considered a lumped reaction. Anything in between will be treated conservatively as a lumped reaction. For split reactions, after removing any of the metabolites associated with growth-associated energy expenditure (H2O, ADP, Pi, H, and ATP), the only remaining metabolites should be generalized macromolecule precursors e.g. Protein, Phospholipids etc. Each of these have their own composing reactions. Hence we include the reactions of these metabolites in the set that ultimately makes up the returned list of reactions that together make up the biomass equation. Return a list of essential precursors missing from the biomass reaction. There are universal components of life that make up the biomass of all known organisms. These include all proteinogenic amino acids, deoxy- and ribonucleotides, water and a range of metabolic cofactors. Parameters ---------- model : cobra.Model The metabolic model under investigation. reaction : cobra.core.reaction.Reaction The biomass reaction of the model under investigation. Returns ------- list IDs of essential metabolites missing from the biomass reaction. The IDS will appear in the models namespace if the metabolite exists, but will be using the MetaNetX namespace if the metabolite does not exist in the model. Notes ----- "Answering the question of what to include in the core of a biomass objective function is not always straightforward. One example is different nucleotide forms, which, although inter-convertible, are essential for cellular chemistry. We propose here that all essential and irreplaceable molecules for metabolism should be included in the biomass functions of genome scale metabolic models. In the special case of cofactors, when two forms of the same cofactor take part in the same reactions (such as NAD and NADH), only one form could be included for the sake of simplicity. When a class of cofactors includes active and non-active interconvertible forms, the active forms should be preferred. [1]_." Please note, that [1]_ also suggest to count C1 carriers (derivatives of tetrahydrofolate(B9) or tetrahydromethanopterin) as universal cofactors. We have omitted these from this check because there are many individual compounds that classify as C1 carriers, and it is not clear a priori which one should be preferred. In a future update, we may consider identifying these using a chemical ontology. References ---------- .. [1] <NAME>., <NAME>., & <NAME>. (2017). Integration of Biomass Formulations of Genome-Scale Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in Prokaryotes. Metabolic Engineering, 39(October 2016), 200–208. http://doi.org/10.1016/j.ymben.2016.12.002
1.877881
2
_unittests/ut_onnxrt/test_rt_valid_model_onevsrest_classifier.py
henrywu2019/mlprodict
1
6630275
""" @brief test log(time=4s) """ import unittest from logging import getLogger from pandas import DataFrame from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import ExtTestCase from pyquickhelper.pandashelper import df2rst from sklearn.exceptions import ConvergenceWarning try: from sklearn.utils._testing import ignore_warnings except ImportError: from sklearn.utils.testing import ignore_warnings from skl2onnx import __version__ as skl2onnx_version from mlprodict.onnxrt.validate import ( enumerate_validated_operator_opsets, summary_report ) from mlprodict.onnxrt.doc.doc_write_helper import ( split_columns_subsets, build_key_split, filter_rows ) class TestRtValidateOneVsRestClassifier(ExtTestCase): @ignore_warnings(category=(UserWarning, ConvergenceWarning, RuntimeWarning)) def test_rt_OneVsRestClassifier_python(self): fLOG(__file__, self._testMethodName, OutputPrint=__name__ == "__main__") logger = getLogger('skl2onnx') logger.disabled = True verbose = 1 if __name__ == "__main__" else 0 debug = False buffer = [] def myprint(*args, **kwargs): buffer.append(" ".join(map(str, args))) rows = list(enumerate_validated_operator_opsets( verbose, models={"OneVsRestClassifier"}, opset_min=9, opset_max=11, fLOG=myprint, benchmark=True, runtime='python', debug=debug, filter_exp=lambda m, p: True or 'm-cl' in p)) self.assertGreater(len(rows), 1) self.assertIn('skl_nop', rows[0]) self.assertIn('onx_size', rows[-1]) piv = summary_report(DataFrame(rows)) self.assertGreater(piv.shape[0], 1) self.assertGreater(piv.shape[0], 2) common, subsets = split_columns_subsets(piv) rst = df2rst(piv, number_format=2, replacements={'nan': '', 'ERR: 4convert': ''}, split_row=lambda index, dp=piv: build_key_split( dp.loc[index, "name"], index), split_col_common=common, split_col_subsets=subsets, filter_rows=filter_rows, column_size={'problem': 25}, label_pattern=".. _lpy-{section}:") self.assertIn("opset9 | RT/SKL-N=1", rst) if __name__ == "__main__": unittest.main()
""" @brief test log(time=4s) """ import unittest from logging import getLogger from pandas import DataFrame from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import ExtTestCase from pyquickhelper.pandashelper import df2rst from sklearn.exceptions import ConvergenceWarning try: from sklearn.utils._testing import ignore_warnings except ImportError: from sklearn.utils.testing import ignore_warnings from skl2onnx import __version__ as skl2onnx_version from mlprodict.onnxrt.validate import ( enumerate_validated_operator_opsets, summary_report ) from mlprodict.onnxrt.doc.doc_write_helper import ( split_columns_subsets, build_key_split, filter_rows ) class TestRtValidateOneVsRestClassifier(ExtTestCase): @ignore_warnings(category=(UserWarning, ConvergenceWarning, RuntimeWarning)) def test_rt_OneVsRestClassifier_python(self): fLOG(__file__, self._testMethodName, OutputPrint=__name__ == "__main__") logger = getLogger('skl2onnx') logger.disabled = True verbose = 1 if __name__ == "__main__" else 0 debug = False buffer = [] def myprint(*args, **kwargs): buffer.append(" ".join(map(str, args))) rows = list(enumerate_validated_operator_opsets( verbose, models={"OneVsRestClassifier"}, opset_min=9, opset_max=11, fLOG=myprint, benchmark=True, runtime='python', debug=debug, filter_exp=lambda m, p: True or 'm-cl' in p)) self.assertGreater(len(rows), 1) self.assertIn('skl_nop', rows[0]) self.assertIn('onx_size', rows[-1]) piv = summary_report(DataFrame(rows)) self.assertGreater(piv.shape[0], 1) self.assertGreater(piv.shape[0], 2) common, subsets = split_columns_subsets(piv) rst = df2rst(piv, number_format=2, replacements={'nan': '', 'ERR: 4convert': ''}, split_row=lambda index, dp=piv: build_key_split( dp.loc[index, "name"], index), split_col_common=common, split_col_subsets=subsets, filter_rows=filter_rows, column_size={'problem': 25}, label_pattern=".. _lpy-{section}:") self.assertIn("opset9 | RT/SKL-N=1", rst) if __name__ == "__main__": unittest.main()
en
0.452621
@brief test log(time=4s)
2.420161
2
kitt/dataloading/mapping.py
spirali/k
2
6630276
<filename>kitt/dataloading/mapping.py def create_tuple_mapper(input_fn, output_fn): """ Creates a mapping function that receives a tuple (input, output) and uses the two provided functions to return tuple (input_fn(input), output_fn(output)). """ def fun(item): input, output = item return input_fn(input), output_fn(output) return fun def identity_fn(x): return x
<filename>kitt/dataloading/mapping.py def create_tuple_mapper(input_fn, output_fn): """ Creates a mapping function that receives a tuple (input, output) and uses the two provided functions to return tuple (input_fn(input), output_fn(output)). """ def fun(item): input, output = item return input_fn(input), output_fn(output) return fun def identity_fn(x): return x
en
0.611806
Creates a mapping function that receives a tuple (input, output) and uses the two provided functions to return tuple (input_fn(input), output_fn(output)).
3.360691
3
agent_stable_baselines/stable_baselines/ddpg/main.py
Jannkar/doom_actionspace
1
6630277
import argparse import time import os import gym import tensorflow as tf import numpy as np from mpi4py import MPI from stable_baselines import logger, bench from stable_baselines.common.misc_util import set_global_seeds, boolean_flag from stable_baselines.ddpg.policies import MlpPolicy, LnMlpPolicy from stable_baselines.ddpg import DDPG from stable_baselines.ddpg.memory import Memory from stable_baselines.ddpg.noise import AdaptiveParamNoiseSpec, OrnsteinUhlenbeckActionNoise, NormalActionNoise def run(env_id, seed, noise_type, layer_norm, evaluation, **kwargs): """ run the training of DDPG :param env_id: (str) the environment ID :param seed: (int) the initial random seed :param noise_type: (str) the wanted noises ('adaptive-param', 'normal' or 'ou'), can use multiple noise type by seperating them with commas :param layer_norm: (bool) use layer normalization :param evaluation: (bool) enable evaluation of DDPG training :param kwargs: (dict) extra keywords for the training.train function """ # Configure things. rank = MPI.COMM_WORLD.Get_rank() if rank != 0: logger.set_level(logger.DISABLED) # Create envs. env = gym.make(env_id) env = bench.Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank))) if evaluation and rank == 0: eval_env = gym.make(env_id) eval_env = bench.Monitor(eval_env, os.path.join(logger.get_dir(), 'gym_eval')) env = bench.Monitor(env, None) else: eval_env = None # Parse noise_type action_noise = None param_noise = None nb_actions = env.action_space.shape[-1] for current_noise_type in noise_type.split(','): current_noise_type = current_noise_type.strip() if current_noise_type == 'none': pass elif 'adaptive-param' in current_noise_type: _, stddev = current_noise_type.split('_') param_noise = AdaptiveParamNoiseSpec(initial_stddev=float(stddev), desired_action_stddev=float(stddev)) elif 'normal' in current_noise_type: _, stddev = current_noise_type.split('_') action_noise = NormalActionNoise(mean=np.zeros(nb_actions), sigma=float(stddev) * np.ones(nb_actions)) elif 'ou' in current_noise_type: _, stddev = current_noise_type.split('_') action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(nb_actions), sigma=float(stddev) * np.ones(nb_actions)) else: raise RuntimeError('unknown noise type "{}"'.format(current_noise_type)) # Seed everything to make things reproducible. seed = seed + 1000000 * rank logger.info('rank {}: seed={}, logdir={}'.format(rank, seed, logger.get_dir())) tf.reset_default_graph() set_global_seeds(seed) env.seed(seed) if eval_env is not None: eval_env.seed(seed) # Disable logging for rank != 0 to avoid noise. start_time = 0 if rank == 0: start_time = time.time() if layer_norm: policy = LnMlpPolicy else: policy = MlpPolicy num_timesteps = kwargs['num_timesteps'] del kwargs['num_timesteps'] model = DDPG(policy=policy, env=env, memory_policy=Memory, eval_env=eval_env, param_noise=param_noise, action_noise=action_noise, memory_limit=int(1e6), verbose=2, **kwargs) model.learn(total_timesteps=num_timesteps) env.close() if eval_env is not None: eval_env.close() if rank == 0: logger.info('total runtime: {}s'.format(time.time() - start_time)) def parse_args(): """ parse the arguments for DDPG training :return: (dict) the arguments """ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--env-id', type=str, default='HalfCheetah-v1') boolean_flag(parser, 'render-eval', default=False) boolean_flag(parser, 'layer-norm', default=True) boolean_flag(parser, 'render', default=False) boolean_flag(parser, 'normalize-returns', default=False) boolean_flag(parser, 'normalize-observations', default=True) parser.add_argument('--seed', help='RNG seed', type=int, default=0) parser.add_argument('--critic-l2-reg', type=float, default=1e-2) parser.add_argument('--batch-size', type=int, default=64) # per MPI worker parser.add_argument('--actor-lr', type=float, default=1e-4) parser.add_argument('--critic-lr', type=float, default=1e-3) boolean_flag(parser, 'enable-popart', default=False) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--reward-scale', type=float, default=1.) parser.add_argument('--clip-norm', type=float, default=None) parser.add_argument('--nb-train-steps', type=int, default=50) # per epoch cycle and MPI worker parser.add_argument('--nb-eval-steps', type=int, default=100) # per epoch cycle and MPI worker parser.add_argument('--nb-rollout-steps', type=int, default=100) # per epoch cycle and MPI worker # choices are adaptive-param_xx, ou_xx, normal_xx, none parser.add_argument('--noise-type', type=str, default='adaptive-param_0.2') parser.add_argument('--num-timesteps', type=int, default=int(1e6)) boolean_flag(parser, 'evaluation', default=False) args = parser.parse_args() dict_args = vars(args) return dict_args if __name__ == '__main__': args = parse_args() if MPI.COMM_WORLD.Get_rank() == 0: logger.configure() # Run actual script. run(**args)
import argparse import time import os import gym import tensorflow as tf import numpy as np from mpi4py import MPI from stable_baselines import logger, bench from stable_baselines.common.misc_util import set_global_seeds, boolean_flag from stable_baselines.ddpg.policies import MlpPolicy, LnMlpPolicy from stable_baselines.ddpg import DDPG from stable_baselines.ddpg.memory import Memory from stable_baselines.ddpg.noise import AdaptiveParamNoiseSpec, OrnsteinUhlenbeckActionNoise, NormalActionNoise def run(env_id, seed, noise_type, layer_norm, evaluation, **kwargs): """ run the training of DDPG :param env_id: (str) the environment ID :param seed: (int) the initial random seed :param noise_type: (str) the wanted noises ('adaptive-param', 'normal' or 'ou'), can use multiple noise type by seperating them with commas :param layer_norm: (bool) use layer normalization :param evaluation: (bool) enable evaluation of DDPG training :param kwargs: (dict) extra keywords for the training.train function """ # Configure things. rank = MPI.COMM_WORLD.Get_rank() if rank != 0: logger.set_level(logger.DISABLED) # Create envs. env = gym.make(env_id) env = bench.Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank))) if evaluation and rank == 0: eval_env = gym.make(env_id) eval_env = bench.Monitor(eval_env, os.path.join(logger.get_dir(), 'gym_eval')) env = bench.Monitor(env, None) else: eval_env = None # Parse noise_type action_noise = None param_noise = None nb_actions = env.action_space.shape[-1] for current_noise_type in noise_type.split(','): current_noise_type = current_noise_type.strip() if current_noise_type == 'none': pass elif 'adaptive-param' in current_noise_type: _, stddev = current_noise_type.split('_') param_noise = AdaptiveParamNoiseSpec(initial_stddev=float(stddev), desired_action_stddev=float(stddev)) elif 'normal' in current_noise_type: _, stddev = current_noise_type.split('_') action_noise = NormalActionNoise(mean=np.zeros(nb_actions), sigma=float(stddev) * np.ones(nb_actions)) elif 'ou' in current_noise_type: _, stddev = current_noise_type.split('_') action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(nb_actions), sigma=float(stddev) * np.ones(nb_actions)) else: raise RuntimeError('unknown noise type "{}"'.format(current_noise_type)) # Seed everything to make things reproducible. seed = seed + 1000000 * rank logger.info('rank {}: seed={}, logdir={}'.format(rank, seed, logger.get_dir())) tf.reset_default_graph() set_global_seeds(seed) env.seed(seed) if eval_env is not None: eval_env.seed(seed) # Disable logging for rank != 0 to avoid noise. start_time = 0 if rank == 0: start_time = time.time() if layer_norm: policy = LnMlpPolicy else: policy = MlpPolicy num_timesteps = kwargs['num_timesteps'] del kwargs['num_timesteps'] model = DDPG(policy=policy, env=env, memory_policy=Memory, eval_env=eval_env, param_noise=param_noise, action_noise=action_noise, memory_limit=int(1e6), verbose=2, **kwargs) model.learn(total_timesteps=num_timesteps) env.close() if eval_env is not None: eval_env.close() if rank == 0: logger.info('total runtime: {}s'.format(time.time() - start_time)) def parse_args(): """ parse the arguments for DDPG training :return: (dict) the arguments """ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--env-id', type=str, default='HalfCheetah-v1') boolean_flag(parser, 'render-eval', default=False) boolean_flag(parser, 'layer-norm', default=True) boolean_flag(parser, 'render', default=False) boolean_flag(parser, 'normalize-returns', default=False) boolean_flag(parser, 'normalize-observations', default=True) parser.add_argument('--seed', help='RNG seed', type=int, default=0) parser.add_argument('--critic-l2-reg', type=float, default=1e-2) parser.add_argument('--batch-size', type=int, default=64) # per MPI worker parser.add_argument('--actor-lr', type=float, default=1e-4) parser.add_argument('--critic-lr', type=float, default=1e-3) boolean_flag(parser, 'enable-popart', default=False) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--reward-scale', type=float, default=1.) parser.add_argument('--clip-norm', type=float, default=None) parser.add_argument('--nb-train-steps', type=int, default=50) # per epoch cycle and MPI worker parser.add_argument('--nb-eval-steps', type=int, default=100) # per epoch cycle and MPI worker parser.add_argument('--nb-rollout-steps', type=int, default=100) # per epoch cycle and MPI worker # choices are adaptive-param_xx, ou_xx, normal_xx, none parser.add_argument('--noise-type', type=str, default='adaptive-param_0.2') parser.add_argument('--num-timesteps', type=int, default=int(1e6)) boolean_flag(parser, 'evaluation', default=False) args = parser.parse_args() dict_args = vars(args) return dict_args if __name__ == '__main__': args = parse_args() if MPI.COMM_WORLD.Get_rank() == 0: logger.configure() # Run actual script. run(**args)
en
0.68398
run the training of DDPG :param env_id: (str) the environment ID :param seed: (int) the initial random seed :param noise_type: (str) the wanted noises ('adaptive-param', 'normal' or 'ou'), can use multiple noise type by seperating them with commas :param layer_norm: (bool) use layer normalization :param evaluation: (bool) enable evaluation of DDPG training :param kwargs: (dict) extra keywords for the training.train function # Configure things. # Create envs. # Parse noise_type # Seed everything to make things reproducible. # Disable logging for rank != 0 to avoid noise. parse the arguments for DDPG training :return: (dict) the arguments # per MPI worker # per epoch cycle and MPI worker # per epoch cycle and MPI worker # per epoch cycle and MPI worker # choices are adaptive-param_xx, ou_xx, normal_xx, none # Run actual script.
2.220142
2
synapse/storage/schema/main/delta/61/03recreate_min_depth.py
mlakkadshaw/synapse
9,945
6630278
# Copyright 2021 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This migration handles the process of changing the type of `room_depth.min_depth` to a BIGINT. """ from synapse.storage.engines import BaseDatabaseEngine, PostgresEngine from synapse.storage.types import Cursor def run_create(cur: Cursor, database_engine: BaseDatabaseEngine, *args, **kwargs): if not isinstance(database_engine, PostgresEngine): # this only applies to postgres - sqlite does not distinguish between big and # little ints. return # First add a new column to contain the bigger min_depth cur.execute("ALTER TABLE room_depth ADD COLUMN min_depth2 BIGINT") # Create a trigger which will keep it populated. cur.execute( """ CREATE OR REPLACE FUNCTION populate_min_depth2() RETURNS trigger AS $BODY$ BEGIN new.min_depth2 := new.min_depth; RETURN NEW; END; $BODY$ LANGUAGE plpgsql """ ) cur.execute( """ CREATE TRIGGER populate_min_depth2_trigger BEFORE INSERT OR UPDATE ON room_depth FOR EACH ROW EXECUTE PROCEDURE populate_min_depth2() """ ) # Start a bg process to populate it for old rooms cur.execute( """ INSERT INTO background_updates (ordering, update_name, progress_json) VALUES (6103, 'populate_room_depth_min_depth2', '{}') """ ) # and another to switch them over once it completes. cur.execute( """ INSERT INTO background_updates (ordering, update_name, progress_json, depends_on) VALUES (6103, 'replace_room_depth_min_depth', '{}', 'populate_room_depth2') """ ) def run_upgrade(cur: Cursor, database_engine: BaseDatabaseEngine, *args, **kwargs): pass
# Copyright 2021 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This migration handles the process of changing the type of `room_depth.min_depth` to a BIGINT. """ from synapse.storage.engines import BaseDatabaseEngine, PostgresEngine from synapse.storage.types import Cursor def run_create(cur: Cursor, database_engine: BaseDatabaseEngine, *args, **kwargs): if not isinstance(database_engine, PostgresEngine): # this only applies to postgres - sqlite does not distinguish between big and # little ints. return # First add a new column to contain the bigger min_depth cur.execute("ALTER TABLE room_depth ADD COLUMN min_depth2 BIGINT") # Create a trigger which will keep it populated. cur.execute( """ CREATE OR REPLACE FUNCTION populate_min_depth2() RETURNS trigger AS $BODY$ BEGIN new.min_depth2 := new.min_depth; RETURN NEW; END; $BODY$ LANGUAGE plpgsql """ ) cur.execute( """ CREATE TRIGGER populate_min_depth2_trigger BEFORE INSERT OR UPDATE ON room_depth FOR EACH ROW EXECUTE PROCEDURE populate_min_depth2() """ ) # Start a bg process to populate it for old rooms cur.execute( """ INSERT INTO background_updates (ordering, update_name, progress_json) VALUES (6103, 'populate_room_depth_min_depth2', '{}') """ ) # and another to switch them over once it completes. cur.execute( """ INSERT INTO background_updates (ordering, update_name, progress_json, depends_on) VALUES (6103, 'replace_room_depth_min_depth', '{}', 'populate_room_depth2') """ ) def run_upgrade(cur: Cursor, database_engine: BaseDatabaseEngine, *args, **kwargs): pass
en
0.714647
# Copyright 2021 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. This migration handles the process of changing the type of `room_depth.min_depth` to a BIGINT. # this only applies to postgres - sqlite does not distinguish between big and # little ints. # First add a new column to contain the bigger min_depth # Create a trigger which will keep it populated. CREATE OR REPLACE FUNCTION populate_min_depth2() RETURNS trigger AS $BODY$ BEGIN new.min_depth2 := new.min_depth; RETURN NEW; END; $BODY$ LANGUAGE plpgsql CREATE TRIGGER populate_min_depth2_trigger BEFORE INSERT OR UPDATE ON room_depth FOR EACH ROW EXECUTE PROCEDURE populate_min_depth2() # Start a bg process to populate it for old rooms INSERT INTO background_updates (ordering, update_name, progress_json) VALUES (6103, 'populate_room_depth_min_depth2', '{}') # and another to switch them over once it completes. INSERT INTO background_updates (ordering, update_name, progress_json, depends_on) VALUES (6103, 'replace_room_depth_min_depth', '{}', 'populate_room_depth2')
2.163694
2
API/moviepiapi/CastingList.py
theoarmengou/MoviePi
1
6630279
<filename>API/moviepiapi/CastingList.py<gh_stars>1-10 ## # EPITECH PROJECT, 2019 # MoviePi # File description: # actorList.py ## from flask_restful import Resource from moviepiapi.utils import fill_return_packet, db from flask import request ############################################################################### # CASTING LIST # # DOC : DOCUMENTATION/CASTINGLIST.MD # ############################################################################### class CastingList(Resource): def get(self, film_id): if not film_id: return fill_return_packet(0, "Aucune ID n'est detecté", None) result = db.request( "SELECT fk_actors FROM films_casting WHERE fk_films=%s", str(film_id)) if not result: return fill_return_packet(0, "Le film n'a aucun casting", None) casting_list = result[0]['fk_actors'] query = "SELECT id, name, image FROM actors WHERE id IN(" + \ casting_list + ")" result = db.request(query) if not result: return fill_return_packet(0, "KO", None) return fill_return_packet(1, "OK", result)
<filename>API/moviepiapi/CastingList.py<gh_stars>1-10 ## # EPITECH PROJECT, 2019 # MoviePi # File description: # actorList.py ## from flask_restful import Resource from moviepiapi.utils import fill_return_packet, db from flask import request ############################################################################### # CASTING LIST # # DOC : DOCUMENTATION/CASTINGLIST.MD # ############################################################################### class CastingList(Resource): def get(self, film_id): if not film_id: return fill_return_packet(0, "Aucune ID n'est detecté", None) result = db.request( "SELECT fk_actors FROM films_casting WHERE fk_films=%s", str(film_id)) if not result: return fill_return_packet(0, "Le film n'a aucun casting", None) casting_list = result[0]['fk_actors'] query = "SELECT id, name, image FROM actors WHERE id IN(" + \ casting_list + ")" result = db.request(query) if not result: return fill_return_packet(0, "KO", None) return fill_return_packet(1, "OK", result)
de
0.533493
## # EPITECH PROJECT, 2019 # MoviePi # File description: # actorList.py ## ############################################################################### # CASTING LIST # # DOC : DOCUMENTATION/CASTINGLIST.MD # ###############################################################################
2.954164
3
implementations/python/mzlib/tools/cli.py
wulongict/mzSpecLib
0
6630280
import click from mzlib.spectrum_library import SpectrumLibrary from mzlib.index import MemoryIndex, SQLIndex from mzlib.backends.text import TextSpectralLibraryWriter CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help']) @click.group(context_settings=CONTEXT_SETTINGS) def main(): '''A collection of utilities for inspecting and manipulating spectral libraries. ''' pass @main.command("describe", short_help=("Produce a minimal textual description" " of a spectral library")) @click.argument('path', type=click.Path(exists=True)) @click.option("-d", "--diagnostics", is_flag=True, help="Run more diagnostics, greatly increasing runtime but producing additional information") def describe(path, diagnostics=False): '''Produces a minimal textual description of a spectral library. ''' click.echo("Describing \"%s\"" % (path,)) if SQLIndex.exists(path): index_type = SQLIndex else: index_type = MemoryIndex library = SpectrumLibrary(filename=path, index_type=index_type) click.echo(f"Format: {library.format}") click.echo(f"Size: {library.__len__()}") fh = click.open_file("-", 'wt') TextSpectralLibraryWriter(fh).write_header(library.backend) @main.command("convert", short_help=("Convert a spectral library from one format to another")) @click.argument('inpath', type=click.Path(exists=True)) @click.argument("outpath", type=click.Path()) @click.option("-f", "--format", type=click.Choice(["text", "json"]), default="text") def convert(inpath, outpath, format=None): '''Convert a spectral library from one format to another. If `outpath` is `-`, instead of writing to file, data will instead be sent to STDOUT. ''' if format is None: format = "text" if SQLIndex.exists(inpath): index_type = SQLIndex else: index_type = MemoryIndex library = SpectrumLibrary(filename=inpath, index_type=index_type) fh = click.open_file(outpath, mode='w') library.write(fh, format) if __name__ == "__main__": main()
import click from mzlib.spectrum_library import SpectrumLibrary from mzlib.index import MemoryIndex, SQLIndex from mzlib.backends.text import TextSpectralLibraryWriter CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help']) @click.group(context_settings=CONTEXT_SETTINGS) def main(): '''A collection of utilities for inspecting and manipulating spectral libraries. ''' pass @main.command("describe", short_help=("Produce a minimal textual description" " of a spectral library")) @click.argument('path', type=click.Path(exists=True)) @click.option("-d", "--diagnostics", is_flag=True, help="Run more diagnostics, greatly increasing runtime but producing additional information") def describe(path, diagnostics=False): '''Produces a minimal textual description of a spectral library. ''' click.echo("Describing \"%s\"" % (path,)) if SQLIndex.exists(path): index_type = SQLIndex else: index_type = MemoryIndex library = SpectrumLibrary(filename=path, index_type=index_type) click.echo(f"Format: {library.format}") click.echo(f"Size: {library.__len__()}") fh = click.open_file("-", 'wt') TextSpectralLibraryWriter(fh).write_header(library.backend) @main.command("convert", short_help=("Convert a spectral library from one format to another")) @click.argument('inpath', type=click.Path(exists=True)) @click.argument("outpath", type=click.Path()) @click.option("-f", "--format", type=click.Choice(["text", "json"]), default="text") def convert(inpath, outpath, format=None): '''Convert a spectral library from one format to another. If `outpath` is `-`, instead of writing to file, data will instead be sent to STDOUT. ''' if format is None: format = "text" if SQLIndex.exists(inpath): index_type = SQLIndex else: index_type = MemoryIndex library = SpectrumLibrary(filename=inpath, index_type=index_type) fh = click.open_file(outpath, mode='w') library.write(fh, format) if __name__ == "__main__": main()
en
0.801284
A collection of utilities for inspecting and manipulating spectral libraries. Produces a minimal textual description of a spectral library. Convert a spectral library from one format to another. If `outpath` is `-`, instead of writing to file, data will instead be sent to STDOUT.
2.271386
2
databricks_utils/vega.py
e2fyi/databricks-utils
1
6630281
""" Basic vega functions to plot vega charts in databricks or jupyter notebooks. .. moduleauthor:: <EMAIL> """ import json DEFAULT_VEGA_OPTS = dict(theme="quartz", defaultStyle=True, actions=dict(export=True, source=True, editor=False, renderer="canvas")) """Default settings for `vega-embed` (See `https://github.com/vega/vega-embed`).""" def vega_embed(spec, display=None, **kwargs): """ Display a vega chart. Also return the HTML to display the vega chart. :param display: Callable to render the resultant HTML (e.g. displayHTML). :param kwargs: See `https://github.com/vega/vega-embed` for the vega embed settings. """ tmp = dict() tmp.update(DEFAULT_VEGA_OPTS) tmp.update(kwargs) conf = json.dumps(tmp) if isinstance(spec, dict): spec = json.dumps(spec) html = """ <!DOCTYPE html> <html> <head> <script src="https://cdn.jsdelivr.net/npm/vega@3"></script> <script src="https://cdn.jsdelivr.net/npm/vega-lite@2"></script> <script src="https://cdn.jsdelivr.net/npm/vega-embed@3"></script> <script src="https://cdn.jsdelivr.net/npm/vega-themes@2"></script> </head> <body> <div id="vis"></div> <script type="text/javascript"> var spec = """+spec+"""; vegaEmbed('#vis', spec, """+conf+""").catch(console.error); </script> </body> </html>""" if callable(display): display(html) # pylint: disable=undefined-variable return html
""" Basic vega functions to plot vega charts in databricks or jupyter notebooks. .. moduleauthor:: <EMAIL> """ import json DEFAULT_VEGA_OPTS = dict(theme="quartz", defaultStyle=True, actions=dict(export=True, source=True, editor=False, renderer="canvas")) """Default settings for `vega-embed` (See `https://github.com/vega/vega-embed`).""" def vega_embed(spec, display=None, **kwargs): """ Display a vega chart. Also return the HTML to display the vega chart. :param display: Callable to render the resultant HTML (e.g. displayHTML). :param kwargs: See `https://github.com/vega/vega-embed` for the vega embed settings. """ tmp = dict() tmp.update(DEFAULT_VEGA_OPTS) tmp.update(kwargs) conf = json.dumps(tmp) if isinstance(spec, dict): spec = json.dumps(spec) html = """ <!DOCTYPE html> <html> <head> <script src="https://cdn.jsdelivr.net/npm/vega@3"></script> <script src="https://cdn.jsdelivr.net/npm/vega-lite@2"></script> <script src="https://cdn.jsdelivr.net/npm/vega-embed@3"></script> <script src="https://cdn.jsdelivr.net/npm/vega-themes@2"></script> </head> <body> <div id="vis"></div> <script type="text/javascript"> var spec = """+spec+"""; vegaEmbed('#vis', spec, """+conf+""").catch(console.error); </script> </body> </html>""" if callable(display): display(html) # pylint: disable=undefined-variable return html
en
0.394517
Basic vega functions to plot vega charts in databricks or jupyter notebooks. .. moduleauthor:: <EMAIL> Default settings for `vega-embed` (See `https://github.com/vega/vega-embed`). Display a vega chart. Also return the HTML to display the vega chart. :param display: Callable to render the resultant HTML (e.g. displayHTML). :param kwargs: See `https://github.com/vega/vega-embed` for the vega embed settings. <!DOCTYPE html> <html> <head> <script src="https://cdn.jsdelivr.net/npm/vega@3"></script> <script src="https://cdn.jsdelivr.net/npm/vega-lite@2"></script> <script src="https://cdn.jsdelivr.net/npm/vega-embed@3"></script> <script src="https://cdn.jsdelivr.net/npm/vega-themes@2"></script> </head> <body> <div id="vis"></div> <script type="text/javascript"> var spec = ; vegaEmbed('#vis', spec, ).catch(console.error); </script> </body> </html> # pylint: disable=undefined-variable
2.827508
3
hackabot/quiz.py
Bulichek/pepequestbot
0
6630282
<gh_stars>0 Quizes = [ ("Какую долю ваших расходов за месяц занимает косметика?", ["10% (5000 ₽)", "5% (2500 ₽)", "21% (10500 ₽)", "13% (6500 ₽)"], 0), ("Назовите максимальную сумму, которую Вы тратили за раз в одном из магазинов:", ["15200 ₽", "3840 ₽", "7340 ₽", "2710 ₽"], 0), ("На какую категорию товаров Вы потратили больше всего в прошлом месяце:", ["кино", "фаст фуд", "супермаркеты", "искусство"], 2), ("Если ваша цель — просто сохранить свои деньги, оптимальной стратегией будет:", ["Хранить деньги под матрасом", "Инвестировать в акции/облигации", "Положить деньги в банк под стандартный процент", "Часть держать на вкладах, часть — в инвестициях."], 2), ("Что из перечисленного нельзя купить на бирже?", ["акции", "зерно", "автомобиль", "нефть"], 2), ("Правила минимизации валютных рисков заключается в том, чтобы брать кредиты:", ["в рублях", "в долларах", "в рублях и долларах", "в той валюте в которой совершается большая часть расходов и получаются доходы"], 3), ("Предположим, вы положили 10 000 рублей на вклад под 5% годовых. " "Какая сумма будет на этом вкладе через 10 лет?", ["10 000 * (1+10*0,05)", "10 000 * (1+0,05)^10", "10 000 * 1,05 * 10", "10 000 * 10 / 1,05"], 1), ("Допустим, вы положили 100 000 рублей под 5% годовых на один год. " "Инфляция за это время составила 3%. Сколько вы заработали на самом деле?", ["Всё просто, 100 000 * 1,05!", "100 000 * 1,03", "100 000 * (1,05-1,03)", "100 000 * 1,05 * 0,97"], 2), ("Вы положили 50 000 рублей под 4% годовых на три года. " "В первый год инфляция составила 2,2%, во второй — 6%, в третий — 3,9%. " "Выгодным ли отказался вклад?", ["Да", "Нет"], 1), ] QuizPrompts = [ "Вот тебе квиз от Олега :)", "Олег призывает тебя к ответу", "А вот и квиз подъехал", "Такс такс что тут у нас квиз от Олега наконец-тА", "Квиз... (кродёться)", ] QuizSuccess = [ "Верно!", "Красава", "Молодец, Олег гордится тобой", "Олег гордится тобой", "Молодец, кэшбэк твой", ] QuizFail = [ "Неверно", "Иди, учись", "Мог бы и лучше ответить", "Постарайся в следующий раз", "И ты ещё хотел участвовать в квестах?" ]
Quizes = [ ("Какую долю ваших расходов за месяц занимает косметика?", ["10% (5000 ₽)", "5% (2500 ₽)", "21% (10500 ₽)", "13% (6500 ₽)"], 0), ("Назовите максимальную сумму, которую Вы тратили за раз в одном из магазинов:", ["15200 ₽", "3840 ₽", "7340 ₽", "2710 ₽"], 0), ("На какую категорию товаров Вы потратили больше всего в прошлом месяце:", ["кино", "фаст фуд", "супермаркеты", "искусство"], 2), ("Если ваша цель — просто сохранить свои деньги, оптимальной стратегией будет:", ["Хранить деньги под матрасом", "Инвестировать в акции/облигации", "Положить деньги в банк под стандартный процент", "Часть держать на вкладах, часть — в инвестициях."], 2), ("Что из перечисленного нельзя купить на бирже?", ["акции", "зерно", "автомобиль", "нефть"], 2), ("Правила минимизации валютных рисков заключается в том, чтобы брать кредиты:", ["в рублях", "в долларах", "в рублях и долларах", "в той валюте в которой совершается большая часть расходов и получаются доходы"], 3), ("Предположим, вы положили 10 000 рублей на вклад под 5% годовых. " "Какая сумма будет на этом вкладе через 10 лет?", ["10 000 * (1+10*0,05)", "10 000 * (1+0,05)^10", "10 000 * 1,05 * 10", "10 000 * 10 / 1,05"], 1), ("Допустим, вы положили 100 000 рублей под 5% годовых на один год. " "Инфляция за это время составила 3%. Сколько вы заработали на самом деле?", ["Всё просто, 100 000 * 1,05!", "100 000 * 1,03", "100 000 * (1,05-1,03)", "100 000 * 1,05 * 0,97"], 2), ("Вы положили 50 000 рублей под 4% годовых на три года. " "В первый год инфляция составила 2,2%, во второй — 6%, в третий — 3,9%. " "Выгодным ли отказался вклад?", ["Да", "Нет"], 1), ] QuizPrompts = [ "Вот тебе квиз от Олега :)", "Олег призывает тебя к ответу", "А вот и квиз подъехал", "Такс такс что тут у нас квиз от Олега наконец-тА", "Квиз... (кродёться)", ] QuizSuccess = [ "Верно!", "Красава", "Молодец, Олег гордится тобой", "Олег гордится тобой", "Молодец, кэшбэк твой", ] QuizFail = [ "Неверно", "Иди, учись", "Мог бы и лучше ответить", "Постарайся в следующий раз", "И ты ещё хотел участвовать в квестах?" ]
none
1
2.231864
2
Chess Bot.py
life-elevated/ChessBot
0
6630283
<reponame>life-elevated/ChessBot<gh_stars>0 #minimax import pygame, sys, time from pygame.locals import * import time import pygame.gfxdraw boardString = "" # 1=whitespace 2=blackspace 3=user 4=computer 5=selected sizeBase = 600 rowcount = 10 # Adjust this to set the size of the board, must be divisible by 2 tileMeasurements = sizeBase/rowcount if tileMeasurements > sizeBase/rowcount: tileMeasurements = sizeBase/rowcount active_player = 'user' # Set who goes first here. This is changed by switch_player() after every turn. game_score = {'user':0, 'computer':0} # The scorecard tileX = 0 tileY = 0 offset = False pygame.init() size = (sizeBase,sizeBase) white = (255,255,255) computer = (255,0,0) user = (250,250,250) black = (0,0,0) screen = pygame.display.set_mode(size) screen.fill(white) pygame.display.set_caption("Checkers Bot") black_square = pygame.Surface((tileMeasurements, tileMeasurements)) pygame.draw.rect(black_square, black, (0,0,tileMeasurements,tileMeasurements),0) black_circle = pygame.Surface((tileMeasurements,tileMeasurements), pygame.SRCALPHA, 32) black_circle.convert_alpha() x = black_circle.get_rect() pygame.draw.circle(black_circle,black,x.center,9) user_circle = pygame.Surface((tileMeasurements,tileMeasurements), pygame.SRCALPHA, 32) user_circle.convert_alpha() x = user_circle.get_rect() pygame.draw.circle(user_circle,user,x.center,9) computer_circle = pygame.Surface((tileMeasurements,tileMeasurements), pygame.SRCALPHA, 32) computer_circle.convert_alpha() x = computer_circle.get_rect() pygame.draw.circle(computer_circle,computer,x.center,9) #pygame.draw.circle(black_circle,black,(x.centerx+tileMeasurements,x.centery/2),15) playing = True playtiles = pygame.sprite.Group() gamepiece_group = pygame.sprite.Group() class Board(): def __init__(self): pass def get_board(self): pass class Tile(pygame.sprite.Sprite): def __init__(self, color, name, posX, posY, width, height, occupied=False, owner=None, tile_location={}): pygame.sprite.Sprite.__init__(self) self.image = pygame.Surface((tileMeasurements,tileMeasurements)) pygame.draw.rect(self.image, black,(0,0,width,height),0) self.rect = self.image.get_rect() self.rect.x = posX self.rect.y = posY self.name = name self.occupied = occupied self.owner = owner self.tile_location = tile_location tileSize = tileMeasurements class gamePiece(pygame.sprite.Sprite): def __init__(self, color, tile_location, name, posX, posY, radius, direction): pygame.sprite.Sprite.__init__(self) self.originalimage = pygame.Surface((tileMeasurements,tileMeasurements), pygame.SRCALPHA, 32) self.originalimage.convert_alpha() pygame.draw.circle(self.originalimage, color, (self.originalimage.get_width()/2,self.originalimage.get_height()/2), radius, 0) self.rect = self.originalimage.get_rect() self.image = self.originalimage self.rect.x = posX self.rect.y = posY self.name = name self.tile_location = tile_location self.selected = False self.direction = direction def createBoard(screenSizeXY, tileSize): global tileX, tileY, offset, boardString, tiles print("Creating board in a "+str(int(screenSizeXY/tileSize))+"x"+str(int(screenSizeXY/tileSize))+" grid with each tile being "+str(int(tileSize))+" pixels in length and height ("+str(int(((screenSizeXY/tileSize)*(screenSizeXY/tileSize))/2))+" playable/unplayable tiles)") tileX = int(tileMeasurements) for i in range(int(((screenSizeXY/tileSize)*(screenSizeXY/tileSize))/2)): if tileY <= 2*tileSize: tile_location = {'row': int(tileY/(screenSizeXY/(screenSizeXY/tileSize))+1), 'col': int(tileX/(screenSizeXY/(screenSizeXY/tileSize))+1)} playtiles.add(Tile(black, "Tile", tileX, tileY, tileSize, tileSize, occupied=True, owner='computer', tile_location=tile_location)) gamepiece_group.add(gamePiece(computer, tile_location, 'computer', tileX, tileY, int(tileSize*0.4), 'down')) if offset: boardString = boardString + "41" else: boardString = boardString + "14" elif tileY >= ((screenSizeXY/tileSize)-3)*tileSize: tile_location = {'row': int(tileY/(screenSizeXY/(screenSizeXY/tileSize))+1), 'col': int(tileX/(screenSizeXY/(screenSizeXY/tileSize))+1)} playtiles.add(Tile(black, "Tile", tileX, tileY, tileSize, tileSize, occupied=True, owner='user', tile_location=tile_location)) gamepiece_group.add(gamePiece(user, tile_location, 'user', tileX, tileY, int(tileSize*0.4), 'up')) if offset: boardString = boardString + "31" else: boardString = boardString + "13" else: tile_location = {'row': int(tileY/(screenSizeXY/(screenSizeXY/tileSize))+1), 'col': int(tileX/(screenSizeXY/(screenSizeXY/tileSize))+1)} newtile = Tile(black, "Tile", tileX, tileY, tileSize, tileSize, occupied=False, tile_location=tile_location) playtiles.add(newtile) if offset: boardString = boardString + "21" else: boardString = boardString + "12" if tileX >= screenSizeXY - (tileMeasurements*2): tileY = tileY+tileSize if offset: offset = False tileX = int(tileMeasurements) else: offset = True tileX = 0 boardString = boardString + "\n" else: tileX = tileX+(tileSize*2) def remove_highlight(): if active_player == 'user': circle = user_circle else: circle = computer_circle screen.blit(circle, (selected_piece.rect.x, selected_piece.rect.y)) def add_highlight(): screen.blit(black_circle, (selected_piece.rect.x, selected_piece.rect.y)) def switch_player(): global active_player, move_pending, selected_piece if active_player == 'user': active_player = 'computer' else: active_player = 'user' if move_pending: move_pending = False selected_piece = None print('USER TURN IS OVER') def check_game_score(): global playing user = game_score['user'] computer = game_score['computer'] winner = None print('\nUser score: {}\nComputer score: {}'.format(user,computer)) print('Must reach {} to win the game'.format(winning_score)) if user == winning_score: playing = False winner = 'User' elif computer == winning_score: playing = False winner = 'Computer' if winner: print('\n\n\n{} HAS WON THE GAME!!'.format(winner)) def check_if_piece_clicked(mouse): global selected_piece, move_pending for piece in gamepiece_group: if piece.rect.collidepoint(mouse): # Find the game piece that is being clicked if piece.name == active_player and not move_pending: # Only select a piece if it belongs to the active player and move is not pending if selected_piece: remove_highlight() piece.selected = True selected_piece = piece add_highlight() def check_if_tile_clicked(mouse): global destination_tile for tile in playtiles: if tile.rect.collidepoint(mouse): if selected_piece and not tile.occupied: # Only move if a piece is selected and destination is not occupied destination_tile = tile return True def make_move(): # POSSIBLY DO SOME AI STUFF HERE WHEN DETERMINING # all possible moves for the computer player. if check_for_valid_move(): # If this returns true then proceed with the move. _move() def check_for_valid_move(): # Check if the move is valid and return True if it is. Otherwise returns implicitly as None. global selected_piece, gamepiece, origin_tile, user_score, computer_score, middle_tile, move_pending for tile in playtiles: if tile.rect.x == selected_piece.rect.x and tile.rect.y == selected_piece.rect.y: origin_tile = tile # This is the tile where the moving piece came from direction = selected_piece.direction origin_row = origin_tile.tile_location['row'] origin_column = origin_tile.tile_location['col'] destination_row = destination_tile.tile_location['row'] destination_column = destination_tile.tile_location['col'] if destination_row == origin_row + 1: # Piece is trying to move down 1 row if move_pending: return if direction == 'down' or direction == 'both': if destination_column == origin_column + 1 or destination_column == origin_column - 1: # Piece is trying to move 1 tile to the left or right if not destination_tile.occupied: # Only allow if destination is not occupied return True elif destination_row == origin_row - 1: # Piece is trying to move up 1 row if move_pending: return if direction == 'up' or direction == 'both': if destination_column == origin_column + 1 or destination_column == origin_column - 1: if not destination_tile.occupied: return True elif destination_row == origin_row + 2: # Piece is trying to move down 2 rows, possible jump if direction == 'down' or direction == 'both': if destination_column == origin_column + 2 or destination_column == origin_column - 2: # Piece is trying to move 2 tiles to the left or right if destination_column == origin_column + 2: # jumping right for tile in playtiles: if tile.tile_location['row'] == origin_row + 1 and tile.tile_location['col'] == origin_column + 1: if tile.owner and not tile.owner == active_player: if not destination_tile.occupied: game_score[active_player] += 1 middle_tile = tile tile.owner = None tile.occupied = False if active_player == 'user': move_pending = True return True elif destination_column == origin_column - 2: # jumping to left for tile in playtiles: # Looping the tiles to find the tile that's being jumped. if tile.tile_location['row'] == origin_row + 1 and tile.tile_location['col'] == origin_column - 1: # This is the tile being jumped if tile.owner and not tile.owner == active_player: # Make sure the owner of the tile is the opponent so you don't jump your own piece if not destination_tile.occupied: game_score[active_player] += 1 middle_tile = tile tile.owner = None # Remove the owner of the tile that was just jumped tile.occupied = False # Mark the tile as unoccupied if active_player == 'user': move_pending = True return True elif destination_row == origin_row - 2: # Piece is trying to move up 2 rows, possible jump if direction == 'up' or direction == 'both': if destination_column == origin_column + 2 or destination_column == origin_column - 2: if destination_column == origin_column + 2: # jumping to right for tile in playtiles: if tile.tile_location['row'] == origin_row - 1 and tile.tile_location['col'] == origin_column + 1: if tile.owner and not tile.owner == active_player: if not destination_tile.occupied: game_score[active_player] += 1 middle_tile = tile tile.owner = None tile.occupied = False if active_player == 'user': move_pending = True #This is a valid jump so I set this to True to prevent selecting a different piece after a jump. return True elif destination_column == origin_column - 2: # jumping to left for tile in playtiles: if tile.tile_location['row'] == origin_row - 1 and tile.tile_location['col'] == origin_column - 1: if tile.owner and not tile.owner == active_player: if not destination_tile.occupied: game_score[active_player] += 1 middle_tile = tile tile.owner = None tile.occupied = False if active_player == 'user': move_pending = True return True def _move(): # This should really only be called by make_move() global selected_piece, gamepiece, origin_tile, middle_tile, jumped_piece destination_tile.occupied = True # Sets the destination tile as being occupied destination_tile.owner = active_player # Set the destination tile's owner as the active player origin_tile.occupied = False origin_tile.owner = None screen.blit(black_square, (origin_tile.rect.x, origin_tile.rect.y)) selected_piece.rect.x = destination_tile.rect.x selected_piece.rect.y = destination_tile.rect.y gamepiece_group.draw(screen) if middle_tile: for piece in gamepiece_group: if piece.rect.x == middle_tile.rect.x and piece.rect.y == middle_tile.rect.y: jumped_piece = piece break jumped_piece.kill() screen.blit(black_square,(middle_tile.rect.x, middle_tile.rect.y)) middle_tile = None jumped_piece = None check_game_score() # Check the game score and end the game if there is a winner # WE NEED TO CHECK RIGHT HERE IF THE PIECE HAS REACHED THE # FAR END OF THE BOARD OF THE OPPONENTS SIDE. THIS PIECE # SHOULD BECOME A KING PIECE THAT CAN MOVE BOTH DIRECTIONS NOW. # If the piece has reached the oppenents far side then # set selected_piece.direction = 'both' if not move_pending: selected_piece=None switch_player() # Move is done and move_pending is False, switch player. else: add_highlight() createBoard(sizeBase, tileMeasurements) playtiles.draw(screen) gamepiece_group.draw(screen) selected_piece = None # A variable to hold the selected piece that is trying to move. destination_tile = None # A variable to hold the destination tile that is being moved to. middle_tile = None # A variable to hold the tile that is between a jumping piece and it's destination origin_tile = None # A variable to hold the tile where the moving piece originated from jumped_piece = None # A variable to hold the game piece that was jumped move_pending = False # A variable to hold whether or not a multi-move is pending. Not curently implemented winning_score = len(gamepiece_group) / 2 # The score required to win the game. while playing: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() if event.type == pygame.MOUSEBUTTONUP: mouse = pygame.mouse.get_pos() check_if_piece_clicked(mouse) # Check if a game piece was clicked if check_if_tile_clicked(mouse): # Check if a tile was clicked make_move() # Attempt the move if event.type == pygame.KEYUP: if event.key == pygame.K_SPACE and move_pending: remove_highlight() switch_player() pygame.display.flip()
#minimax import pygame, sys, time from pygame.locals import * import time import pygame.gfxdraw boardString = "" # 1=whitespace 2=blackspace 3=user 4=computer 5=selected sizeBase = 600 rowcount = 10 # Adjust this to set the size of the board, must be divisible by 2 tileMeasurements = sizeBase/rowcount if tileMeasurements > sizeBase/rowcount: tileMeasurements = sizeBase/rowcount active_player = 'user' # Set who goes first here. This is changed by switch_player() after every turn. game_score = {'user':0, 'computer':0} # The scorecard tileX = 0 tileY = 0 offset = False pygame.init() size = (sizeBase,sizeBase) white = (255,255,255) computer = (255,0,0) user = (250,250,250) black = (0,0,0) screen = pygame.display.set_mode(size) screen.fill(white) pygame.display.set_caption("Checkers Bot") black_square = pygame.Surface((tileMeasurements, tileMeasurements)) pygame.draw.rect(black_square, black, (0,0,tileMeasurements,tileMeasurements),0) black_circle = pygame.Surface((tileMeasurements,tileMeasurements), pygame.SRCALPHA, 32) black_circle.convert_alpha() x = black_circle.get_rect() pygame.draw.circle(black_circle,black,x.center,9) user_circle = pygame.Surface((tileMeasurements,tileMeasurements), pygame.SRCALPHA, 32) user_circle.convert_alpha() x = user_circle.get_rect() pygame.draw.circle(user_circle,user,x.center,9) computer_circle = pygame.Surface((tileMeasurements,tileMeasurements), pygame.SRCALPHA, 32) computer_circle.convert_alpha() x = computer_circle.get_rect() pygame.draw.circle(computer_circle,computer,x.center,9) #pygame.draw.circle(black_circle,black,(x.centerx+tileMeasurements,x.centery/2),15) playing = True playtiles = pygame.sprite.Group() gamepiece_group = pygame.sprite.Group() class Board(): def __init__(self): pass def get_board(self): pass class Tile(pygame.sprite.Sprite): def __init__(self, color, name, posX, posY, width, height, occupied=False, owner=None, tile_location={}): pygame.sprite.Sprite.__init__(self) self.image = pygame.Surface((tileMeasurements,tileMeasurements)) pygame.draw.rect(self.image, black,(0,0,width,height),0) self.rect = self.image.get_rect() self.rect.x = posX self.rect.y = posY self.name = name self.occupied = occupied self.owner = owner self.tile_location = tile_location tileSize = tileMeasurements class gamePiece(pygame.sprite.Sprite): def __init__(self, color, tile_location, name, posX, posY, radius, direction): pygame.sprite.Sprite.__init__(self) self.originalimage = pygame.Surface((tileMeasurements,tileMeasurements), pygame.SRCALPHA, 32) self.originalimage.convert_alpha() pygame.draw.circle(self.originalimage, color, (self.originalimage.get_width()/2,self.originalimage.get_height()/2), radius, 0) self.rect = self.originalimage.get_rect() self.image = self.originalimage self.rect.x = posX self.rect.y = posY self.name = name self.tile_location = tile_location self.selected = False self.direction = direction def createBoard(screenSizeXY, tileSize): global tileX, tileY, offset, boardString, tiles print("Creating board in a "+str(int(screenSizeXY/tileSize))+"x"+str(int(screenSizeXY/tileSize))+" grid with each tile being "+str(int(tileSize))+" pixels in length and height ("+str(int(((screenSizeXY/tileSize)*(screenSizeXY/tileSize))/2))+" playable/unplayable tiles)") tileX = int(tileMeasurements) for i in range(int(((screenSizeXY/tileSize)*(screenSizeXY/tileSize))/2)): if tileY <= 2*tileSize: tile_location = {'row': int(tileY/(screenSizeXY/(screenSizeXY/tileSize))+1), 'col': int(tileX/(screenSizeXY/(screenSizeXY/tileSize))+1)} playtiles.add(Tile(black, "Tile", tileX, tileY, tileSize, tileSize, occupied=True, owner='computer', tile_location=tile_location)) gamepiece_group.add(gamePiece(computer, tile_location, 'computer', tileX, tileY, int(tileSize*0.4), 'down')) if offset: boardString = boardString + "41" else: boardString = boardString + "14" elif tileY >= ((screenSizeXY/tileSize)-3)*tileSize: tile_location = {'row': int(tileY/(screenSizeXY/(screenSizeXY/tileSize))+1), 'col': int(tileX/(screenSizeXY/(screenSizeXY/tileSize))+1)} playtiles.add(Tile(black, "Tile", tileX, tileY, tileSize, tileSize, occupied=True, owner='user', tile_location=tile_location)) gamepiece_group.add(gamePiece(user, tile_location, 'user', tileX, tileY, int(tileSize*0.4), 'up')) if offset: boardString = boardString + "31" else: boardString = boardString + "13" else: tile_location = {'row': int(tileY/(screenSizeXY/(screenSizeXY/tileSize))+1), 'col': int(tileX/(screenSizeXY/(screenSizeXY/tileSize))+1)} newtile = Tile(black, "Tile", tileX, tileY, tileSize, tileSize, occupied=False, tile_location=tile_location) playtiles.add(newtile) if offset: boardString = boardString + "21" else: boardString = boardString + "12" if tileX >= screenSizeXY - (tileMeasurements*2): tileY = tileY+tileSize if offset: offset = False tileX = int(tileMeasurements) else: offset = True tileX = 0 boardString = boardString + "\n" else: tileX = tileX+(tileSize*2) def remove_highlight(): if active_player == 'user': circle = user_circle else: circle = computer_circle screen.blit(circle, (selected_piece.rect.x, selected_piece.rect.y)) def add_highlight(): screen.blit(black_circle, (selected_piece.rect.x, selected_piece.rect.y)) def switch_player(): global active_player, move_pending, selected_piece if active_player == 'user': active_player = 'computer' else: active_player = 'user' if move_pending: move_pending = False selected_piece = None print('USER TURN IS OVER') def check_game_score(): global playing user = game_score['user'] computer = game_score['computer'] winner = None print('\nUser score: {}\nComputer score: {}'.format(user,computer)) print('Must reach {} to win the game'.format(winning_score)) if user == winning_score: playing = False winner = 'User' elif computer == winning_score: playing = False winner = 'Computer' if winner: print('\n\n\n{} HAS WON THE GAME!!'.format(winner)) def check_if_piece_clicked(mouse): global selected_piece, move_pending for piece in gamepiece_group: if piece.rect.collidepoint(mouse): # Find the game piece that is being clicked if piece.name == active_player and not move_pending: # Only select a piece if it belongs to the active player and move is not pending if selected_piece: remove_highlight() piece.selected = True selected_piece = piece add_highlight() def check_if_tile_clicked(mouse): global destination_tile for tile in playtiles: if tile.rect.collidepoint(mouse): if selected_piece and not tile.occupied: # Only move if a piece is selected and destination is not occupied destination_tile = tile return True def make_move(): # POSSIBLY DO SOME AI STUFF HERE WHEN DETERMINING # all possible moves for the computer player. if check_for_valid_move(): # If this returns true then proceed with the move. _move() def check_for_valid_move(): # Check if the move is valid and return True if it is. Otherwise returns implicitly as None. global selected_piece, gamepiece, origin_tile, user_score, computer_score, middle_tile, move_pending for tile in playtiles: if tile.rect.x == selected_piece.rect.x and tile.rect.y == selected_piece.rect.y: origin_tile = tile # This is the tile where the moving piece came from direction = selected_piece.direction origin_row = origin_tile.tile_location['row'] origin_column = origin_tile.tile_location['col'] destination_row = destination_tile.tile_location['row'] destination_column = destination_tile.tile_location['col'] if destination_row == origin_row + 1: # Piece is trying to move down 1 row if move_pending: return if direction == 'down' or direction == 'both': if destination_column == origin_column + 1 or destination_column == origin_column - 1: # Piece is trying to move 1 tile to the left or right if not destination_tile.occupied: # Only allow if destination is not occupied return True elif destination_row == origin_row - 1: # Piece is trying to move up 1 row if move_pending: return if direction == 'up' or direction == 'both': if destination_column == origin_column + 1 or destination_column == origin_column - 1: if not destination_tile.occupied: return True elif destination_row == origin_row + 2: # Piece is trying to move down 2 rows, possible jump if direction == 'down' or direction == 'both': if destination_column == origin_column + 2 or destination_column == origin_column - 2: # Piece is trying to move 2 tiles to the left or right if destination_column == origin_column + 2: # jumping right for tile in playtiles: if tile.tile_location['row'] == origin_row + 1 and tile.tile_location['col'] == origin_column + 1: if tile.owner and not tile.owner == active_player: if not destination_tile.occupied: game_score[active_player] += 1 middle_tile = tile tile.owner = None tile.occupied = False if active_player == 'user': move_pending = True return True elif destination_column == origin_column - 2: # jumping to left for tile in playtiles: # Looping the tiles to find the tile that's being jumped. if tile.tile_location['row'] == origin_row + 1 and tile.tile_location['col'] == origin_column - 1: # This is the tile being jumped if tile.owner and not tile.owner == active_player: # Make sure the owner of the tile is the opponent so you don't jump your own piece if not destination_tile.occupied: game_score[active_player] += 1 middle_tile = tile tile.owner = None # Remove the owner of the tile that was just jumped tile.occupied = False # Mark the tile as unoccupied if active_player == 'user': move_pending = True return True elif destination_row == origin_row - 2: # Piece is trying to move up 2 rows, possible jump if direction == 'up' or direction == 'both': if destination_column == origin_column + 2 or destination_column == origin_column - 2: if destination_column == origin_column + 2: # jumping to right for tile in playtiles: if tile.tile_location['row'] == origin_row - 1 and tile.tile_location['col'] == origin_column + 1: if tile.owner and not tile.owner == active_player: if not destination_tile.occupied: game_score[active_player] += 1 middle_tile = tile tile.owner = None tile.occupied = False if active_player == 'user': move_pending = True #This is a valid jump so I set this to True to prevent selecting a different piece after a jump. return True elif destination_column == origin_column - 2: # jumping to left for tile in playtiles: if tile.tile_location['row'] == origin_row - 1 and tile.tile_location['col'] == origin_column - 1: if tile.owner and not tile.owner == active_player: if not destination_tile.occupied: game_score[active_player] += 1 middle_tile = tile tile.owner = None tile.occupied = False if active_player == 'user': move_pending = True return True def _move(): # This should really only be called by make_move() global selected_piece, gamepiece, origin_tile, middle_tile, jumped_piece destination_tile.occupied = True # Sets the destination tile as being occupied destination_tile.owner = active_player # Set the destination tile's owner as the active player origin_tile.occupied = False origin_tile.owner = None screen.blit(black_square, (origin_tile.rect.x, origin_tile.rect.y)) selected_piece.rect.x = destination_tile.rect.x selected_piece.rect.y = destination_tile.rect.y gamepiece_group.draw(screen) if middle_tile: for piece in gamepiece_group: if piece.rect.x == middle_tile.rect.x and piece.rect.y == middle_tile.rect.y: jumped_piece = piece break jumped_piece.kill() screen.blit(black_square,(middle_tile.rect.x, middle_tile.rect.y)) middle_tile = None jumped_piece = None check_game_score() # Check the game score and end the game if there is a winner # WE NEED TO CHECK RIGHT HERE IF THE PIECE HAS REACHED THE # FAR END OF THE BOARD OF THE OPPONENTS SIDE. THIS PIECE # SHOULD BECOME A KING PIECE THAT CAN MOVE BOTH DIRECTIONS NOW. # If the piece has reached the oppenents far side then # set selected_piece.direction = 'both' if not move_pending: selected_piece=None switch_player() # Move is done and move_pending is False, switch player. else: add_highlight() createBoard(sizeBase, tileMeasurements) playtiles.draw(screen) gamepiece_group.draw(screen) selected_piece = None # A variable to hold the selected piece that is trying to move. destination_tile = None # A variable to hold the destination tile that is being moved to. middle_tile = None # A variable to hold the tile that is between a jumping piece and it's destination origin_tile = None # A variable to hold the tile where the moving piece originated from jumped_piece = None # A variable to hold the game piece that was jumped move_pending = False # A variable to hold whether or not a multi-move is pending. Not curently implemented winning_score = len(gamepiece_group) / 2 # The score required to win the game. while playing: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() if event.type == pygame.MOUSEBUTTONUP: mouse = pygame.mouse.get_pos() check_if_piece_clicked(mouse) # Check if a game piece was clicked if check_if_tile_clicked(mouse): # Check if a tile was clicked make_move() # Attempt the move if event.type == pygame.KEYUP: if event.key == pygame.K_SPACE and move_pending: remove_highlight() switch_player() pygame.display.flip()
en
0.930689
#minimax # 1=whitespace 2=blackspace 3=user 4=computer 5=selected # Adjust this to set the size of the board, must be divisible by 2 # Set who goes first here. This is changed by switch_player() after every turn. # The scorecard #pygame.draw.circle(black_circle,black,(x.centerx+tileMeasurements,x.centery/2),15) # Find the game piece that is being clicked # Only select a piece if it belongs to the active player and move is not pending # Only move if a piece is selected and destination is not occupied # POSSIBLY DO SOME AI STUFF HERE WHEN DETERMINING # all possible moves for the computer player. # If this returns true then proceed with the move. # Check if the move is valid and return True if it is. Otherwise returns implicitly as None. # This is the tile where the moving piece came from # Piece is trying to move down 1 row # Piece is trying to move 1 tile to the left or right # Only allow if destination is not occupied # Piece is trying to move up 1 row # Piece is trying to move down 2 rows, possible jump # Piece is trying to move 2 tiles to the left or right # jumping right # jumping to left # Looping the tiles to find the tile that's being jumped. # This is the tile being jumped # Make sure the owner of the tile is the opponent so you don't jump your own piece # Remove the owner of the tile that was just jumped # Mark the tile as unoccupied # Piece is trying to move up 2 rows, possible jump # jumping to right #This is a valid jump so I set this to True to prevent selecting a different piece after a jump. # jumping to left # This should really only be called by make_move() # Sets the destination tile as being occupied # Set the destination tile's owner as the active player # Check the game score and end the game if there is a winner # WE NEED TO CHECK RIGHT HERE IF THE PIECE HAS REACHED THE # FAR END OF THE BOARD OF THE OPPONENTS SIDE. THIS PIECE # SHOULD BECOME A KING PIECE THAT CAN MOVE BOTH DIRECTIONS NOW. # If the piece has reached the oppenents far side then # set selected_piece.direction = 'both' # Move is done and move_pending is False, switch player. # A variable to hold the selected piece that is trying to move. # A variable to hold the destination tile that is being moved to. # A variable to hold the tile that is between a jumping piece and it's destination # A variable to hold the tile where the moving piece originated from # A variable to hold the game piece that was jumped # A variable to hold whether or not a multi-move is pending. Not curently implemented # The score required to win the game. # Check if a game piece was clicked # Check if a tile was clicked # Attempt the move
3.054881
3
examples/applications/semantic_search_quora_annoy.py
zhangxieyang2/sentence-transformers
1
6630284
<filename>examples/applications/semantic_search_quora_annoy.py """ This example uses Approximate Nearest Neighbor Search (ANN) with Annoy (https://github.com/spotify/annoy). Searching a large corpus with Millions of embeddings can be time-consuming. To speed this up, ANN can index the existent vectors. For a new query vector, this index can be used to find the nearest neighbors. This nearest neighbor search is not perfect, i.e., it might not perfectly find all top-k nearest neighbors. In this example, we use Annoy. It learns to a tree that partitions embeddings into smaller sections. For our query embeddings, we can efficiently check which section matches and only search that section for nearest neighbor. Selecting the n_trees parameter is quite important. With more trees, we get a better recall, but a worse run-time. This script will compare the result from ANN with exact nearest neighbor search and output a Recall@k value as well as the missing results in the top-k hits list. See the Annoy repository, how to install Annoy. For details how Annoy works, see: https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html As dataset, we use the Quora Duplicate Questions dataset, which contains about 500k questions: https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs Questions are embedded and Annoy is used for (approximate) semantic similarity search. """ from sentence_transformers import SentenceTransformer, util import os import csv import pickle import time import torch from annoy import AnnoyIndex if __name__ == '__main__': model_name = 'distilbert-base-nli-stsb-quora-ranking' model = SentenceTransformer(model_name) url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 100000 n_trees = 256 #Number of trees used for Annoy. More trees => better recall, worse run-time embedding_size = 768 #Size of embeddings top_k_hits = 10 #Output k hits annoy_index_path = 'quora-embeddings-{}-size-{}-annoy_index-trees-{}.ann'.format(model_name.replace('/', '_'), max_corpus_size,n_trees) embedding_cache_path = 'quora-embeddings-{}-size-{}.pkl'.format(model_name.replace('/', '_'), max_corpus_size) #Check if embedding cache path exists if not os.path.exists(embedding_cache_path): # Check if the dataset exists. If not, download and extract # Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) # Get all unique sentences from the file corpus_sentences = set() with open(dataset_path, encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_MINIMAL) for row in reader: corpus_sentences.add(row['question1']) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences.add(row['question2']) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences = list(corpus_sentences) print("Encode the corpus. This might take a while") corpus_embeddings = model.encode(corpus_sentences, show_progress_bar=True, convert_to_numpy=True, num_workers=2) print("Store file on disc") with open(embedding_cache_path, "wb") as fOut: pickle.dump({'sentences': corpus_sentences, 'embeddings': corpus_embeddings}, fOut) else: print("Load pre-computed embeddings from disc") with open(embedding_cache_path, "rb") as fIn: cache_data = pickle.load(fIn) corpus_sentences = cache_data['sentences'] corpus_embeddings = cache_data['embeddings'] if not os.path.exists(annoy_index_path): # Create Annoy Index print("Create Annoy index with {} trees. This can take some time.".format(n_trees)) annoy_index = AnnoyIndex(embedding_size, 'angular') for i in range(len(corpus_embeddings)): annoy_index.add_item(i, corpus_embeddings[i]) annoy_index.build(n_trees) annoy_index.save(annoy_index_path) else: #Load Annoy Index from disc annoy_index = AnnoyIndex(embedding_size, 'angular') annoy_index.load(annoy_index_path) corpus_embeddings = torch.from_numpy(corpus_embeddings) ######### Search in the index ########### print("Corpus loaded with {} sentences / embeddings".format(len(corpus_sentences))) while True: inp_question = input("Please enter a question: ") start_time = time.time() question_embedding = model.encode(inp_question) corpus_ids, scores = annoy_index.get_nns_by_vector(question_embedding, top_k_hits, include_distances=True) hits = [] for id, score in zip(corpus_ids, scores): hits.append({'corpus_id': id, 'score': 1-((score**2) / 2)}) end_time = time.time() print("Input question:", inp_question) print("Results (after {:.3f} seconds):".format(end_time-start_time)) for hit in hits[0:top_k_hits]: print("\t{:.3f}\t{}".format(hit['score'], corpus_sentences[hit['corpus_id']])) # Approximate Nearest Neighbor (ANN) is not exact, it might miss entries with high cosine similarity # Here, we compute the recall of ANN compared to the exact results correct_hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k_hits)[0] correct_hits_ids = set([hit['corpus_id'] for hit in correct_hits]) #Compute recall ann_corpus_ids = set(corpus_ids) if len(ann_corpus_ids) != len(correct_hits_ids): print("Approximate Nearest Neighbor returned a different number of results than expected") recall = len(ann_corpus_ids.intersection(correct_hits_ids)) / len(correct_hits_ids) print("\nApproximate Nearest Neighbor Recall@{}: {:.2f}".format(top_k_hits, recall * 100)) if recall < 1: print("Missing results:") for hit in correct_hits[0:top_k_hits]: if hit['corpus_id'] not in ann_corpus_ids: print("\t{:.3f}\t{}".format(hit['score'], corpus_sentences[hit['corpus_id']])) print("\n\n========\n")
<filename>examples/applications/semantic_search_quora_annoy.py """ This example uses Approximate Nearest Neighbor Search (ANN) with Annoy (https://github.com/spotify/annoy). Searching a large corpus with Millions of embeddings can be time-consuming. To speed this up, ANN can index the existent vectors. For a new query vector, this index can be used to find the nearest neighbors. This nearest neighbor search is not perfect, i.e., it might not perfectly find all top-k nearest neighbors. In this example, we use Annoy. It learns to a tree that partitions embeddings into smaller sections. For our query embeddings, we can efficiently check which section matches and only search that section for nearest neighbor. Selecting the n_trees parameter is quite important. With more trees, we get a better recall, but a worse run-time. This script will compare the result from ANN with exact nearest neighbor search and output a Recall@k value as well as the missing results in the top-k hits list. See the Annoy repository, how to install Annoy. For details how Annoy works, see: https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html As dataset, we use the Quora Duplicate Questions dataset, which contains about 500k questions: https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs Questions are embedded and Annoy is used for (approximate) semantic similarity search. """ from sentence_transformers import SentenceTransformer, util import os import csv import pickle import time import torch from annoy import AnnoyIndex if __name__ == '__main__': model_name = 'distilbert-base-nli-stsb-quora-ranking' model = SentenceTransformer(model_name) url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 100000 n_trees = 256 #Number of trees used for Annoy. More trees => better recall, worse run-time embedding_size = 768 #Size of embeddings top_k_hits = 10 #Output k hits annoy_index_path = 'quora-embeddings-{}-size-{}-annoy_index-trees-{}.ann'.format(model_name.replace('/', '_'), max_corpus_size,n_trees) embedding_cache_path = 'quora-embeddings-{}-size-{}.pkl'.format(model_name.replace('/', '_'), max_corpus_size) #Check if embedding cache path exists if not os.path.exists(embedding_cache_path): # Check if the dataset exists. If not, download and extract # Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) # Get all unique sentences from the file corpus_sentences = set() with open(dataset_path, encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_MINIMAL) for row in reader: corpus_sentences.add(row['question1']) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences.add(row['question2']) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences = list(corpus_sentences) print("Encode the corpus. This might take a while") corpus_embeddings = model.encode(corpus_sentences, show_progress_bar=True, convert_to_numpy=True, num_workers=2) print("Store file on disc") with open(embedding_cache_path, "wb") as fOut: pickle.dump({'sentences': corpus_sentences, 'embeddings': corpus_embeddings}, fOut) else: print("Load pre-computed embeddings from disc") with open(embedding_cache_path, "rb") as fIn: cache_data = pickle.load(fIn) corpus_sentences = cache_data['sentences'] corpus_embeddings = cache_data['embeddings'] if not os.path.exists(annoy_index_path): # Create Annoy Index print("Create Annoy index with {} trees. This can take some time.".format(n_trees)) annoy_index = AnnoyIndex(embedding_size, 'angular') for i in range(len(corpus_embeddings)): annoy_index.add_item(i, corpus_embeddings[i]) annoy_index.build(n_trees) annoy_index.save(annoy_index_path) else: #Load Annoy Index from disc annoy_index = AnnoyIndex(embedding_size, 'angular') annoy_index.load(annoy_index_path) corpus_embeddings = torch.from_numpy(corpus_embeddings) ######### Search in the index ########### print("Corpus loaded with {} sentences / embeddings".format(len(corpus_sentences))) while True: inp_question = input("Please enter a question: ") start_time = time.time() question_embedding = model.encode(inp_question) corpus_ids, scores = annoy_index.get_nns_by_vector(question_embedding, top_k_hits, include_distances=True) hits = [] for id, score in zip(corpus_ids, scores): hits.append({'corpus_id': id, 'score': 1-((score**2) / 2)}) end_time = time.time() print("Input question:", inp_question) print("Results (after {:.3f} seconds):".format(end_time-start_time)) for hit in hits[0:top_k_hits]: print("\t{:.3f}\t{}".format(hit['score'], corpus_sentences[hit['corpus_id']])) # Approximate Nearest Neighbor (ANN) is not exact, it might miss entries with high cosine similarity # Here, we compute the recall of ANN compared to the exact results correct_hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k_hits)[0] correct_hits_ids = set([hit['corpus_id'] for hit in correct_hits]) #Compute recall ann_corpus_ids = set(corpus_ids) if len(ann_corpus_ids) != len(correct_hits_ids): print("Approximate Nearest Neighbor returned a different number of results than expected") recall = len(ann_corpus_ids.intersection(correct_hits_ids)) / len(correct_hits_ids) print("\nApproximate Nearest Neighbor Recall@{}: {:.2f}".format(top_k_hits, recall * 100)) if recall < 1: print("Missing results:") for hit in correct_hits[0:top_k_hits]: if hit['corpus_id'] not in ann_corpus_ids: print("\t{:.3f}\t{}".format(hit['score'], corpus_sentences[hit['corpus_id']])) print("\n\n========\n")
en
0.843108
This example uses Approximate Nearest Neighbor Search (ANN) with Annoy (https://github.com/spotify/annoy). Searching a large corpus with Millions of embeddings can be time-consuming. To speed this up, ANN can index the existent vectors. For a new query vector, this index can be used to find the nearest neighbors. This nearest neighbor search is not perfect, i.e., it might not perfectly find all top-k nearest neighbors. In this example, we use Annoy. It learns to a tree that partitions embeddings into smaller sections. For our query embeddings, we can efficiently check which section matches and only search that section for nearest neighbor. Selecting the n_trees parameter is quite important. With more trees, we get a better recall, but a worse run-time. This script will compare the result from ANN with exact nearest neighbor search and output a Recall@k value as well as the missing results in the top-k hits list. See the Annoy repository, how to install Annoy. For details how Annoy works, see: https://erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-search-in-high-dimensional-spaces.html As dataset, we use the Quora Duplicate Questions dataset, which contains about 500k questions: https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs Questions are embedded and Annoy is used for (approximate) semantic similarity search. #Number of trees used for Annoy. More trees => better recall, worse run-time #Size of embeddings #Output k hits #Check if embedding cache path exists # Check if the dataset exists. If not, download and extract # Download dataset if needed # Get all unique sentences from the file # Create Annoy Index #Load Annoy Index from disc ######### Search in the index ########### # Approximate Nearest Neighbor (ANN) is not exact, it might miss entries with high cosine similarity # Here, we compute the recall of ANN compared to the exact results #Compute recall
3.041238
3
packages/python/plotly/plotly/validators/carpet/baxis/__init__.py
sgn/plotly.py
3
6630285
<reponame>sgn/plotly.py import _plotly_utils.basevalidators class TypeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="type", parent_name="carpet.baxis", **kwargs): super(TypeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), values=kwargs.pop("values", ["-", "linear", "date", "category"]), **kwargs ) import _plotly_utils.basevalidators class TitleValidator(_plotly_utils.basevalidators.TitleValidator): def __init__(self, plotly_name="title", parent_name="carpet.baxis", **kwargs): super(TitleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Title"), data_docs=kwargs.pop( "data_docs", """ font Sets this axis' title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. offset An additional amount by which to offset the title from the tick labels, given in pixels. Note that this used to be set by the now deprecated `titleoffset` attribute. text Sets the title of this axis. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. """, ), **kwargs ) import _plotly_utils.basevalidators class TickvalssrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="tickvalssrc", parent_name="carpet.baxis", **kwargs): super(TickvalssrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class TickvalsValidator(_plotly_utils.basevalidators.DataArrayValidator): def __init__(self, plotly_name="tickvals", parent_name="carpet.baxis", **kwargs): super(TickvalsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "data"), **kwargs ) import _plotly_utils.basevalidators class TicktextsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="ticktextsrc", parent_name="carpet.baxis", **kwargs): super(TicktextsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class TicktextValidator(_plotly_utils.basevalidators.DataArrayValidator): def __init__(self, plotly_name="ticktext", parent_name="carpet.baxis", **kwargs): super(TicktextValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "data"), **kwargs ) import _plotly_utils.basevalidators class TicksuffixValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="ticksuffix", parent_name="carpet.baxis", **kwargs): super(TicksuffixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class TickprefixValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="tickprefix", parent_name="carpet.baxis", **kwargs): super(TickprefixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class TickmodeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="tickmode", parent_name="carpet.baxis", **kwargs): super(TickmodeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), values=kwargs.pop("values", ["linear", "array"]), **kwargs ) import _plotly_utils.basevalidators class TickformatstopValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__( self, plotly_name="tickformatstopdefaults", parent_name="carpet.baxis", **kwargs ): super(TickformatstopValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Tickformatstop"), data_docs=kwargs.pop( "data_docs", """ """, ), **kwargs ) import _plotly_utils.basevalidators class TickformatstopsValidator(_plotly_utils.basevalidators.CompoundArrayValidator): def __init__( self, plotly_name="tickformatstops", parent_name="carpet.baxis", **kwargs ): super(TickformatstopsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Tickformatstop"), data_docs=kwargs.pop( "data_docs", """ dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" """, ), **kwargs ) import _plotly_utils.basevalidators class TickformatValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="tickformat", parent_name="carpet.baxis", **kwargs): super(TickformatValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class TickfontValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name="tickfont", parent_name="carpet.baxis", **kwargs): super(TickfontValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Tickfont"), data_docs=kwargs.pop( "data_docs", """ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size """, ), **kwargs ) import _plotly_utils.basevalidators class TickangleValidator(_plotly_utils.basevalidators.AngleValidator): def __init__(self, plotly_name="tickangle", parent_name="carpet.baxis", **kwargs): super(TickangleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class Tick0Validator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="tick0", parent_name="carpet.baxis", **kwargs): super(Tick0Validator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class StartlinewidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="startlinewidth", parent_name="carpet.baxis", **kwargs ): super(StartlinewidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class StartlinecolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="startlinecolor", parent_name="carpet.baxis", **kwargs ): super(StartlinecolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class StartlineValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__(self, plotly_name="startline", parent_name="carpet.baxis", **kwargs): super(StartlineValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class SmoothingValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="smoothing", parent_name="carpet.baxis", **kwargs): super(SmoothingValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), max=kwargs.pop("max", 1.3), min=kwargs.pop("min", 0), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class ShowticksuffixValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="showticksuffix", parent_name="carpet.baxis", **kwargs ): super(ShowticksuffixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["all", "first", "last", "none"]), **kwargs ) import _plotly_utils.basevalidators class ShowtickprefixValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="showtickprefix", parent_name="carpet.baxis", **kwargs ): super(ShowtickprefixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["all", "first", "last", "none"]), **kwargs ) import _plotly_utils.basevalidators class ShowticklabelsValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="showticklabels", parent_name="carpet.baxis", **kwargs ): super(ShowticklabelsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["start", "end", "both", "none"]), **kwargs ) import _plotly_utils.basevalidators class ShowlineValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__(self, plotly_name="showline", parent_name="carpet.baxis", **kwargs): super(ShowlineValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class ShowgridValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__(self, plotly_name="showgrid", parent_name="carpet.baxis", **kwargs): super(ShowgridValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class ShowexponentValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="showexponent", parent_name="carpet.baxis", **kwargs ): super(ShowexponentValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["all", "first", "last", "none"]), **kwargs ) import _plotly_utils.basevalidators class SeparatethousandsValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name="separatethousands", parent_name="carpet.baxis", **kwargs ): super(SeparatethousandsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class RangemodeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="rangemode", parent_name="carpet.baxis", **kwargs): super(RangemodeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["normal", "tozero", "nonnegative"]), **kwargs ) import _plotly_utils.basevalidators class RangeValidator(_plotly_utils.basevalidators.InfoArrayValidator): def __init__(self, plotly_name="range", parent_name="carpet.baxis", **kwargs): super(RangeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), items=kwargs.pop( "items", [ {"valType": "any", "editType": "calc"}, {"valType": "any", "editType": "calc"}, ], ), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class NticksValidator(_plotly_utils.basevalidators.IntegerValidator): def __init__(self, plotly_name="nticks", parent_name="carpet.baxis", **kwargs): super(NticksValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class MinorgridwidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="minorgridwidth", parent_name="carpet.baxis", **kwargs ): super(MinorgridwidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class MinorgridcountValidator(_plotly_utils.basevalidators.IntegerValidator): def __init__( self, plotly_name="minorgridcount", parent_name="carpet.baxis", **kwargs ): super(MinorgridcountValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class MinorgridcolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="minorgridcolor", parent_name="carpet.baxis", **kwargs ): super(MinorgridcolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class LinewidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="linewidth", parent_name="carpet.baxis", **kwargs): super(LinewidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class LinecolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__(self, plotly_name="linecolor", parent_name="carpet.baxis", **kwargs): super(LinecolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class LabelsuffixValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="labelsuffix", parent_name="carpet.baxis", **kwargs): super(LabelsuffixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class LabelprefixValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="labelprefix", parent_name="carpet.baxis", **kwargs): super(LabelprefixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class LabelpaddingValidator(_plotly_utils.basevalidators.IntegerValidator): def __init__( self, plotly_name="labelpadding", parent_name="carpet.baxis", **kwargs ): super(LabelpaddingValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class GridwidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="gridwidth", parent_name="carpet.baxis", **kwargs): super(GridwidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class GridcolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__(self, plotly_name="gridcolor", parent_name="carpet.baxis", **kwargs): super(GridcolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class FixedrangeValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__(self, plotly_name="fixedrange", parent_name="carpet.baxis", **kwargs): super(FixedrangeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class ExponentformatValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="exponentformat", parent_name="carpet.baxis", **kwargs ): super(ExponentformatValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["none", "e", "E", "power", "SI", "B"]), **kwargs ) import _plotly_utils.basevalidators class EndlinewidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="endlinewidth", parent_name="carpet.baxis", **kwargs ): super(EndlinewidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class EndlinecolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="endlinecolor", parent_name="carpet.baxis", **kwargs ): super(EndlinecolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class EndlineValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__(self, plotly_name="endline", parent_name="carpet.baxis", **kwargs): super(EndlineValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class DtickValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="dtick", parent_name="carpet.baxis", **kwargs): super(DtickValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class ColorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__(self, plotly_name="color", parent_name="carpet.baxis", **kwargs): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class CheatertypeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="cheatertype", parent_name="carpet.baxis", **kwargs): super(CheatertypeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), values=kwargs.pop("values", ["index", "value"]), **kwargs ) import _plotly_utils.basevalidators class CategoryorderValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="categoryorder", parent_name="carpet.baxis", **kwargs ): super(CategoryorderValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), values=kwargs.pop( "values", ["trace", "category ascending", "category descending", "array"], ), **kwargs ) import _plotly_utils.basevalidators class CategoryarraysrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name="categoryarraysrc", parent_name="carpet.baxis", **kwargs ): super(CategoryarraysrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class CategoryarrayValidator(_plotly_utils.basevalidators.DataArrayValidator): def __init__( self, plotly_name="categoryarray", parent_name="carpet.baxis", **kwargs ): super(CategoryarrayValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "data"), **kwargs ) import _plotly_utils.basevalidators class AutorangeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="autorange", parent_name="carpet.baxis", **kwargs): super(AutorangeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", [True, False, "reversed"]), **kwargs ) import _plotly_utils.basevalidators class Arraytick0Validator(_plotly_utils.basevalidators.IntegerValidator): def __init__(self, plotly_name="arraytick0", parent_name="carpet.baxis", **kwargs): super(Arraytick0Validator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class ArraydtickValidator(_plotly_utils.basevalidators.IntegerValidator): def __init__(self, plotly_name="arraydtick", parent_name="carpet.baxis", **kwargs): super(ArraydtickValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 1), role=kwargs.pop("role", "info"), **kwargs )
import _plotly_utils.basevalidators class TypeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="type", parent_name="carpet.baxis", **kwargs): super(TypeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), values=kwargs.pop("values", ["-", "linear", "date", "category"]), **kwargs ) import _plotly_utils.basevalidators class TitleValidator(_plotly_utils.basevalidators.TitleValidator): def __init__(self, plotly_name="title", parent_name="carpet.baxis", **kwargs): super(TitleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Title"), data_docs=kwargs.pop( "data_docs", """ font Sets this axis' title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. offset An additional amount by which to offset the title from the tick labels, given in pixels. Note that this used to be set by the now deprecated `titleoffset` attribute. text Sets the title of this axis. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. """, ), **kwargs ) import _plotly_utils.basevalidators class TickvalssrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="tickvalssrc", parent_name="carpet.baxis", **kwargs): super(TickvalssrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class TickvalsValidator(_plotly_utils.basevalidators.DataArrayValidator): def __init__(self, plotly_name="tickvals", parent_name="carpet.baxis", **kwargs): super(TickvalsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "data"), **kwargs ) import _plotly_utils.basevalidators class TicktextsrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="ticktextsrc", parent_name="carpet.baxis", **kwargs): super(TicktextsrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class TicktextValidator(_plotly_utils.basevalidators.DataArrayValidator): def __init__(self, plotly_name="ticktext", parent_name="carpet.baxis", **kwargs): super(TicktextValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "data"), **kwargs ) import _plotly_utils.basevalidators class TicksuffixValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="ticksuffix", parent_name="carpet.baxis", **kwargs): super(TicksuffixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class TickprefixValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="tickprefix", parent_name="carpet.baxis", **kwargs): super(TickprefixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class TickmodeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="tickmode", parent_name="carpet.baxis", **kwargs): super(TickmodeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), values=kwargs.pop("values", ["linear", "array"]), **kwargs ) import _plotly_utils.basevalidators class TickformatstopValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__( self, plotly_name="tickformatstopdefaults", parent_name="carpet.baxis", **kwargs ): super(TickformatstopValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Tickformatstop"), data_docs=kwargs.pop( "data_docs", """ """, ), **kwargs ) import _plotly_utils.basevalidators class TickformatstopsValidator(_plotly_utils.basevalidators.CompoundArrayValidator): def __init__( self, plotly_name="tickformatstops", parent_name="carpet.baxis", **kwargs ): super(TickformatstopsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Tickformatstop"), data_docs=kwargs.pop( "data_docs", """ dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" """, ), **kwargs ) import _plotly_utils.basevalidators class TickformatValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="tickformat", parent_name="carpet.baxis", **kwargs): super(TickformatValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class TickfontValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name="tickfont", parent_name="carpet.baxis", **kwargs): super(TickfontValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Tickfont"), data_docs=kwargs.pop( "data_docs", """ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size """, ), **kwargs ) import _plotly_utils.basevalidators class TickangleValidator(_plotly_utils.basevalidators.AngleValidator): def __init__(self, plotly_name="tickangle", parent_name="carpet.baxis", **kwargs): super(TickangleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class Tick0Validator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="tick0", parent_name="carpet.baxis", **kwargs): super(Tick0Validator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class StartlinewidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="startlinewidth", parent_name="carpet.baxis", **kwargs ): super(StartlinewidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class StartlinecolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="startlinecolor", parent_name="carpet.baxis", **kwargs ): super(StartlinecolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class StartlineValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__(self, plotly_name="startline", parent_name="carpet.baxis", **kwargs): super(StartlineValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class SmoothingValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="smoothing", parent_name="carpet.baxis", **kwargs): super(SmoothingValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), max=kwargs.pop("max", 1.3), min=kwargs.pop("min", 0), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class ShowticksuffixValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="showticksuffix", parent_name="carpet.baxis", **kwargs ): super(ShowticksuffixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["all", "first", "last", "none"]), **kwargs ) import _plotly_utils.basevalidators class ShowtickprefixValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="showtickprefix", parent_name="carpet.baxis", **kwargs ): super(ShowtickprefixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["all", "first", "last", "none"]), **kwargs ) import _plotly_utils.basevalidators class ShowticklabelsValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="showticklabels", parent_name="carpet.baxis", **kwargs ): super(ShowticklabelsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["start", "end", "both", "none"]), **kwargs ) import _plotly_utils.basevalidators class ShowlineValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__(self, plotly_name="showline", parent_name="carpet.baxis", **kwargs): super(ShowlineValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class ShowgridValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__(self, plotly_name="showgrid", parent_name="carpet.baxis", **kwargs): super(ShowgridValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class ShowexponentValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="showexponent", parent_name="carpet.baxis", **kwargs ): super(ShowexponentValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["all", "first", "last", "none"]), **kwargs ) import _plotly_utils.basevalidators class SeparatethousandsValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name="separatethousands", parent_name="carpet.baxis", **kwargs ): super(SeparatethousandsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class RangemodeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="rangemode", parent_name="carpet.baxis", **kwargs): super(RangemodeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["normal", "tozero", "nonnegative"]), **kwargs ) import _plotly_utils.basevalidators class RangeValidator(_plotly_utils.basevalidators.InfoArrayValidator): def __init__(self, plotly_name="range", parent_name="carpet.baxis", **kwargs): super(RangeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), items=kwargs.pop( "items", [ {"valType": "any", "editType": "calc"}, {"valType": "any", "editType": "calc"}, ], ), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class NticksValidator(_plotly_utils.basevalidators.IntegerValidator): def __init__(self, plotly_name="nticks", parent_name="carpet.baxis", **kwargs): super(NticksValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class MinorgridwidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="minorgridwidth", parent_name="carpet.baxis", **kwargs ): super(MinorgridwidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class MinorgridcountValidator(_plotly_utils.basevalidators.IntegerValidator): def __init__( self, plotly_name="minorgridcount", parent_name="carpet.baxis", **kwargs ): super(MinorgridcountValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class MinorgridcolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="minorgridcolor", parent_name="carpet.baxis", **kwargs ): super(MinorgridcolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class LinewidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="linewidth", parent_name="carpet.baxis", **kwargs): super(LinewidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class LinecolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__(self, plotly_name="linecolor", parent_name="carpet.baxis", **kwargs): super(LinecolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class LabelsuffixValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="labelsuffix", parent_name="carpet.baxis", **kwargs): super(LabelsuffixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class LabelprefixValidator(_plotly_utils.basevalidators.StringValidator): def __init__(self, plotly_name="labelprefix", parent_name="carpet.baxis", **kwargs): super(LabelprefixValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class LabelpaddingValidator(_plotly_utils.basevalidators.IntegerValidator): def __init__( self, plotly_name="labelpadding", parent_name="carpet.baxis", **kwargs ): super(LabelpaddingValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class GridwidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="gridwidth", parent_name="carpet.baxis", **kwargs): super(GridwidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class GridcolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__(self, plotly_name="gridcolor", parent_name="carpet.baxis", **kwargs): super(GridcolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class FixedrangeValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__(self, plotly_name="fixedrange", parent_name="carpet.baxis", **kwargs): super(FixedrangeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class ExponentformatValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="exponentformat", parent_name="carpet.baxis", **kwargs ): super(ExponentformatValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", ["none", "e", "E", "power", "SI", "B"]), **kwargs ) import _plotly_utils.basevalidators class EndlinewidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name="endlinewidth", parent_name="carpet.baxis", **kwargs ): super(EndlinewidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class EndlinecolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="endlinecolor", parent_name="carpet.baxis", **kwargs ): super(EndlinecolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class EndlineValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__(self, plotly_name="endline", parent_name="carpet.baxis", **kwargs): super(EndlineValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class DtickValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="dtick", parent_name="carpet.baxis", **kwargs): super(DtickValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class ColorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__(self, plotly_name="color", parent_name="carpet.baxis", **kwargs): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs ) import _plotly_utils.basevalidators class CheatertypeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="cheatertype", parent_name="carpet.baxis", **kwargs): super(CheatertypeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), values=kwargs.pop("values", ["index", "value"]), **kwargs ) import _plotly_utils.basevalidators class CategoryorderValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__( self, plotly_name="categoryorder", parent_name="carpet.baxis", **kwargs ): super(CategoryorderValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), values=kwargs.pop( "values", ["trace", "category ascending", "category descending", "array"], ), **kwargs ) import _plotly_utils.basevalidators class CategoryarraysrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__( self, plotly_name="categoryarraysrc", parent_name="carpet.baxis", **kwargs ): super(CategoryarraysrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class CategoryarrayValidator(_plotly_utils.basevalidators.DataArrayValidator): def __init__( self, plotly_name="categoryarray", parent_name="carpet.baxis", **kwargs ): super(CategoryarrayValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "data"), **kwargs ) import _plotly_utils.basevalidators class AutorangeValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="autorange", parent_name="carpet.baxis", **kwargs): super(AutorangeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), values=kwargs.pop("values", [True, False, "reversed"]), **kwargs ) import _plotly_utils.basevalidators class Arraytick0Validator(_plotly_utils.basevalidators.IntegerValidator): def __init__(self, plotly_name="arraytick0", parent_name="carpet.baxis", **kwargs): super(Arraytick0Validator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "info"), **kwargs ) import _plotly_utils.basevalidators class ArraydtickValidator(_plotly_utils.basevalidators.IntegerValidator): def __init__(self, plotly_name="arraydtick", parent_name="carpet.baxis", **kwargs): super(ArraydtickValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), min=kwargs.pop("min", 1), role=kwargs.pop("role", "info"), **kwargs )
en
0.803403
font Sets this axis' title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. offset An additional amount by which to offset the title from the tick labels, given in pixels. Note that this used to be set by the now deprecated `titleoffset` attribute. text Sets the title of this axis. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size
2.333595
2
pysen/factory.py
linshoK/pysen
423
6630286
<gh_stars>100-1000 import dataclasses import pathlib from typing import Dict, List, Optional from .black import Black, BlackSetting from .component import ComponentBase from .flake8 import Flake8, Flake8Setting from .isort import Isort, IsortSectionName, IsortSetting from .mypy import ( Mypy, MypyFollowImports, MypyPlugin, MypyPreset, MypySetting, MypyTarget, ) from .py_version import PythonVersion from .source import Source @dataclasses.dataclass class MypyModuleOption: preset: Optional[MypyPreset] = None ignore_errors: bool = False follow_imports: Optional[MypyFollowImports] = None def __post_init__(self) -> None: if self.preset is not None and self.ignore_errors: raise ValueError("cannot specify both preset and ignore_errors") def get_setting(self) -> MypySetting: if self.ignore_errors: return MypySetting(ignore_errors=True, follow_imports=self.follow_imports) preset: MypyPreset if self.preset is not None: preset = self.preset else: preset = MypyPreset.STRICT return preset.get_setting(follow_imports=self.follow_imports) @dataclasses.dataclass class ConfigureLintOptions: enable_black: Optional[bool] = None enable_flake8: Optional[bool] = None enable_isort: Optional[bool] = None enable_mypy: Optional[bool] = None mypy_preset: Optional[MypyPreset] = None mypy_modules: Optional[Dict[str, MypyModuleOption]] = None source: Optional[Source] = None line_length: Optional[int] = None py_version: Optional[PythonVersion] = None isort_known_third_party: Optional[List[str]] = None isort_known_first_party: Optional[List[str]] = None isort_default_section: Optional[IsortSectionName] = None mypy_path: Optional[List[pathlib.Path]] = None mypy_plugins: Optional[List[MypyPlugin]] = None mypy_targets: Optional[List[MypyTarget]] = None def configure_lint(options: ConfigureLintOptions) -> List[ComponentBase]: components: List[ComponentBase] = [] python_version: PythonVersion if options.py_version is not None: python_version = options.py_version else: python_version = PythonVersion(3, 7) line_length = options.line_length or 88 # NOTE: `isort` may format code in a way that violates `black` rules # Apply `isort` after `black` to avoid such violation if options.enable_isort: isort_setting = IsortSetting.default() isort_setting.line_length = line_length isort_setting.default_section = ( options.isort_default_section or IsortSectionName.THIRDPARTY ) if options.isort_known_third_party is not None: isort_setting.known_third_party = set(options.isort_known_third_party) if options.isort_known_first_party is not None: isort_setting.known_first_party = set(options.isort_known_first_party) if options.enable_black: isort_setting = isort_setting.to_black_compatible() isort = Isort(setting=isort_setting, source=options.source) components.append(isort) if options.enable_black: black_setting = BlackSetting.default(python_version) black_setting.line_length = line_length black = Black(setting=black_setting, source=options.source) components.append(black) if options.enable_flake8: flake8_setting = Flake8Setting.default() flake8_setting.max_line_length = line_length if options.enable_black: flake8_setting = flake8_setting.to_black_compatible() flake8 = Flake8(setting=flake8_setting, source=options.source) components.append(flake8) if options.enable_mypy: if options.mypy_preset is not None: mypy_setting = options.mypy_preset.get_setting() else: mypy_setting = MypySetting.strict() mypy_setting.python_version = python_version if options.mypy_path is not None: mypy_setting.mypy_path = list(options.mypy_path) if options.mypy_plugins is not None: mypy_setting.plugins = list(options.mypy_plugins) mypy_module_settings: Dict[str, MypySetting] = {} if options.mypy_modules is not None: for module_name, module_option in options.mypy_modules.items(): mypy_module_settings[module_name] = module_option.get_setting() mypy = Mypy( setting=mypy_setting, module_settings=mypy_module_settings, mypy_targets=options.mypy_targets, ) components.append(mypy) return components
import dataclasses import pathlib from typing import Dict, List, Optional from .black import Black, BlackSetting from .component import ComponentBase from .flake8 import Flake8, Flake8Setting from .isort import Isort, IsortSectionName, IsortSetting from .mypy import ( Mypy, MypyFollowImports, MypyPlugin, MypyPreset, MypySetting, MypyTarget, ) from .py_version import PythonVersion from .source import Source @dataclasses.dataclass class MypyModuleOption: preset: Optional[MypyPreset] = None ignore_errors: bool = False follow_imports: Optional[MypyFollowImports] = None def __post_init__(self) -> None: if self.preset is not None and self.ignore_errors: raise ValueError("cannot specify both preset and ignore_errors") def get_setting(self) -> MypySetting: if self.ignore_errors: return MypySetting(ignore_errors=True, follow_imports=self.follow_imports) preset: MypyPreset if self.preset is not None: preset = self.preset else: preset = MypyPreset.STRICT return preset.get_setting(follow_imports=self.follow_imports) @dataclasses.dataclass class ConfigureLintOptions: enable_black: Optional[bool] = None enable_flake8: Optional[bool] = None enable_isort: Optional[bool] = None enable_mypy: Optional[bool] = None mypy_preset: Optional[MypyPreset] = None mypy_modules: Optional[Dict[str, MypyModuleOption]] = None source: Optional[Source] = None line_length: Optional[int] = None py_version: Optional[PythonVersion] = None isort_known_third_party: Optional[List[str]] = None isort_known_first_party: Optional[List[str]] = None isort_default_section: Optional[IsortSectionName] = None mypy_path: Optional[List[pathlib.Path]] = None mypy_plugins: Optional[List[MypyPlugin]] = None mypy_targets: Optional[List[MypyTarget]] = None def configure_lint(options: ConfigureLintOptions) -> List[ComponentBase]: components: List[ComponentBase] = [] python_version: PythonVersion if options.py_version is not None: python_version = options.py_version else: python_version = PythonVersion(3, 7) line_length = options.line_length or 88 # NOTE: `isort` may format code in a way that violates `black` rules # Apply `isort` after `black` to avoid such violation if options.enable_isort: isort_setting = IsortSetting.default() isort_setting.line_length = line_length isort_setting.default_section = ( options.isort_default_section or IsortSectionName.THIRDPARTY ) if options.isort_known_third_party is not None: isort_setting.known_third_party = set(options.isort_known_third_party) if options.isort_known_first_party is not None: isort_setting.known_first_party = set(options.isort_known_first_party) if options.enable_black: isort_setting = isort_setting.to_black_compatible() isort = Isort(setting=isort_setting, source=options.source) components.append(isort) if options.enable_black: black_setting = BlackSetting.default(python_version) black_setting.line_length = line_length black = Black(setting=black_setting, source=options.source) components.append(black) if options.enable_flake8: flake8_setting = Flake8Setting.default() flake8_setting.max_line_length = line_length if options.enable_black: flake8_setting = flake8_setting.to_black_compatible() flake8 = Flake8(setting=flake8_setting, source=options.source) components.append(flake8) if options.enable_mypy: if options.mypy_preset is not None: mypy_setting = options.mypy_preset.get_setting() else: mypy_setting = MypySetting.strict() mypy_setting.python_version = python_version if options.mypy_path is not None: mypy_setting.mypy_path = list(options.mypy_path) if options.mypy_plugins is not None: mypy_setting.plugins = list(options.mypy_plugins) mypy_module_settings: Dict[str, MypySetting] = {} if options.mypy_modules is not None: for module_name, module_option in options.mypy_modules.items(): mypy_module_settings[module_name] = module_option.get_setting() mypy = Mypy( setting=mypy_setting, module_settings=mypy_module_settings, mypy_targets=options.mypy_targets, ) components.append(mypy) return components
en
0.817744
# NOTE: `isort` may format code in a way that violates `black` rules # Apply `isort` after `black` to avoid such violation
1.991251
2
server_lifecycle.py
pauliacomi/separation-explorer
11
6630287
from threading import Thread import src.datastore def on_server_loaded(server_context): ''' If present, this function is called when the server first starts. ''' t = Thread(target=src.datastore.load, args=()) t.setDaemon(True) t.start() def on_server_unloaded(server_context): ''' If present, this function is called when the server shuts down. ''' pass def on_session_created(session_context): ''' If present, this function is called when a session is created. ''' pass def on_session_destroyed(session_context): ''' If present, this function is called when a session is closed. ''' pass
from threading import Thread import src.datastore def on_server_loaded(server_context): ''' If present, this function is called when the server first starts. ''' t = Thread(target=src.datastore.load, args=()) t.setDaemon(True) t.start() def on_server_unloaded(server_context): ''' If present, this function is called when the server shuts down. ''' pass def on_session_created(session_context): ''' If present, this function is called when a session is created. ''' pass def on_session_destroyed(session_context): ''' If present, this function is called when a session is closed. ''' pass
en
0.939666
If present, this function is called when the server first starts. If present, this function is called when the server shuts down. If present, this function is called when a session is created. If present, this function is called when a session is closed.
2.968932
3
INBa/2014/MOCHALOV_V_V/task_2_15.py
YukkaSarasti/pythonintask
0
6630288
<filename>INBa/2014/MOCHALOV_V_V/task_2_15.py # Задача 2. Вариант 15. # Напишите программу, которая будет выводить на экран наиболее понравившееся вам высказывание, автором которого является Плутарх. Не забудьте о том, что автор должен быть упомянут на отдельной строке. # Mochalov V. V. # 02.03.2016 print("Два основных достояния человеческой природы - это ум и рассуждения.") print(" Плутарх.") input("\n\nНажмите Enter для выхода.")
<filename>INBa/2014/MOCHALOV_V_V/task_2_15.py # Задача 2. Вариант 15. # Напишите программу, которая будет выводить на экран наиболее понравившееся вам высказывание, автором которого является Плутарх. Не забудьте о том, что автор должен быть упомянут на отдельной строке. # Mochalov V. V. # 02.03.2016 print("Два основных достояния человеческой природы - это ум и рассуждения.") print(" Плутарх.") input("\n\nНажмите Enter для выхода.")
ru
0.997321
# Задача 2. Вариант 15. # Напишите программу, которая будет выводить на экран наиболее понравившееся вам высказывание, автором которого является Плутарх. Не забудьте о том, что автор должен быть упомянут на отдельной строке. # Mochalov V. V. # 02.03.2016
2.225796
2
authenticate/views.py
ockibagusp/cloud-platform
1
6630289
import jwt from rest_framework import status from rest_framework.response import Response from rest_framework.views import APIView from authenticate.forms import SuperNodeAuthForm, UserAuthForm from authenticate.utils import supernode_jwt_payload_handler, user_jwt_payload_handler from authenticate.serializers import UserSerializer from supernodes.serializers import SuperNodesSerializer from cloud_platform import settings class UserTokenCreator(APIView): """ Create token if user credentials was provided and valid. """ def post(self, request, format=None): form = UserAuthForm(request.data) if form.is_valid(): return Response({ 'user': UserSerializer(form.user).data, 'token': self.create_token(form.user) }) return Response(form.errors, status=status.HTTP_400_BAD_REQUEST) @staticmethod def create_token(user): payload = user_jwt_payload_handler(user) token = jwt.encode(payload, settings.SECRET_KEY) return token.decode('unicode_escape') class NodeTokenCreator(APIView): """ Create token if node credentials was provided and valid. """ def post(self, request, format=None): form = SuperNodeAuthForm(request.data) if form.is_valid(): return Response({ 'supernode': SuperNodesSerializer(form.supernode, context={'request': request}).data, 'token': self.create_token(form.supernode) }) return Response(form.errors, status=status.HTTP_400_BAD_REQUEST) @staticmethod def create_token(node): payload = supernode_jwt_payload_handler(node) token = jwt.encode(payload, settings.SECRET_KEY) return token.decode('unicode_escape')
import jwt from rest_framework import status from rest_framework.response import Response from rest_framework.views import APIView from authenticate.forms import SuperNodeAuthForm, UserAuthForm from authenticate.utils import supernode_jwt_payload_handler, user_jwt_payload_handler from authenticate.serializers import UserSerializer from supernodes.serializers import SuperNodesSerializer from cloud_platform import settings class UserTokenCreator(APIView): """ Create token if user credentials was provided and valid. """ def post(self, request, format=None): form = UserAuthForm(request.data) if form.is_valid(): return Response({ 'user': UserSerializer(form.user).data, 'token': self.create_token(form.user) }) return Response(form.errors, status=status.HTTP_400_BAD_REQUEST) @staticmethod def create_token(user): payload = user_jwt_payload_handler(user) token = jwt.encode(payload, settings.SECRET_KEY) return token.decode('unicode_escape') class NodeTokenCreator(APIView): """ Create token if node credentials was provided and valid. """ def post(self, request, format=None): form = SuperNodeAuthForm(request.data) if form.is_valid(): return Response({ 'supernode': SuperNodesSerializer(form.supernode, context={'request': request}).data, 'token': self.create_token(form.supernode) }) return Response(form.errors, status=status.HTTP_400_BAD_REQUEST) @staticmethod def create_token(node): payload = supernode_jwt_payload_handler(node) token = jwt.encode(payload, settings.SECRET_KEY) return token.decode('unicode_escape')
en
0.937162
Create token if user credentials was provided and valid. Create token if node credentials was provided and valid.
2.307822
2
practica_kmedias/esqueleto_kmeans.py
binary-hideout/sistemas-adaptativos
0
6630290
<filename>practica_kmedias/esqueleto_kmeans.py ''' INSTRUCCIONES: Completa la primera iteracion de k-medias. Para ello, utiliza la siguiente informacion y el esqueleto que a continuacion se te presenta. ''' from math import sqrt from sys import float_info from random import randint def calcularDistanciaEuclideana(puntoA, puntoB): ''' (A) Primer funcion a completar Entradas: puntoA y puntoB -- son listas numericas de cualquier longitud (debe ser la misma longitud en ambas listas). Salida: Distancia euclidiana entre las listas.''' suma = 0 for A, B in zip(puntoA, puntoB): suma += (B - A) ** 2 return sqrt(suma) def actualizarCentroide(datos, grupos, indiceCentroide): ''' (B) Segunda funcion a completar Entradas: datos -- lista anidada donde cada sublista es un vector de caracteristicas grupos -- lista numerica que contiene, para cada vector en datos, cual es el grupo al que corresponde indiceCentroide -- centroide a actualizarCentroide Salida: lista que contiene los nuevos valores para el centroide cuyo indice es indiceCentroide ''' nuevo_centroide = list() dimension = len(datos[0]) for d in range(dimension): suma = 0.0 cantidad = 0 for indice, muestra in enumerate(datos): if grupos[indice] == indiceCentroide: suma += muestra[d] cantidad += 1 nuevo_centroide.append(suma / cantidad) return tuple(nuevo_centroide) def centroideMasCercano(centroides, muestra): '''Recibe una 'muestra' que almacena un elemento de una colección de datos y 'centroides' que almacena una colección de los centroides. Regresa 'k' que es la posición del centroide más cercano. ''' menor = float_info.max for indice, centroide in enumerate(centroides): dist = calcularDistanciaEuclideana(muestra, centroide) if dist < menor: menor = dist cercano = indice return cercano def agrupar(datos, centroides): '''Agrupa los datos y actualiza centroides. ''' print('Centroides originales:') print(centroides) grupos = list() # (C) Bloque de codigo: Calculo de distancias y asignacion de grupos for muestra in datos: pertenencia = centroideMasCercano(centroides, muestra) grupos.append(pertenencia) print('Grupos de pertenencia:') print(grupos) # (D) Bloque de codigo: Actualizacion de centroides for i in range(len(centroides)): centroides[i] = actualizarCentroide(datos, grupos, i) print('Centroides actualizados:') print(centroides) #Imprime centroides actualizados print('\n-----Colores-----') datos = ((153, 51, 255), (121, 236, 221), (209, 236, 121), (240, 164, 76), (240, 98, 76), (76, 93, 240), (50, 239, 94)) centroides = [(255, 0, 0), (0, 255, 0), (0, 0, 255)] #Inicializacion de centroides agrupar(datos, centroides) print('\n-----Archivo de datos-----') data = list() with open('datos_nivel_bonus.txt', 'r') as file: for line in file.readlines(): temp = [int(num) for num in line.split()] data.append(temp) centers = [data[randint(0, 149)] for i in range(5)] agrupar(data, centers)
<filename>practica_kmedias/esqueleto_kmeans.py ''' INSTRUCCIONES: Completa la primera iteracion de k-medias. Para ello, utiliza la siguiente informacion y el esqueleto que a continuacion se te presenta. ''' from math import sqrt from sys import float_info from random import randint def calcularDistanciaEuclideana(puntoA, puntoB): ''' (A) Primer funcion a completar Entradas: puntoA y puntoB -- son listas numericas de cualquier longitud (debe ser la misma longitud en ambas listas). Salida: Distancia euclidiana entre las listas.''' suma = 0 for A, B in zip(puntoA, puntoB): suma += (B - A) ** 2 return sqrt(suma) def actualizarCentroide(datos, grupos, indiceCentroide): ''' (B) Segunda funcion a completar Entradas: datos -- lista anidada donde cada sublista es un vector de caracteristicas grupos -- lista numerica que contiene, para cada vector en datos, cual es el grupo al que corresponde indiceCentroide -- centroide a actualizarCentroide Salida: lista que contiene los nuevos valores para el centroide cuyo indice es indiceCentroide ''' nuevo_centroide = list() dimension = len(datos[0]) for d in range(dimension): suma = 0.0 cantidad = 0 for indice, muestra in enumerate(datos): if grupos[indice] == indiceCentroide: suma += muestra[d] cantidad += 1 nuevo_centroide.append(suma / cantidad) return tuple(nuevo_centroide) def centroideMasCercano(centroides, muestra): '''Recibe una 'muestra' que almacena un elemento de una colección de datos y 'centroides' que almacena una colección de los centroides. Regresa 'k' que es la posición del centroide más cercano. ''' menor = float_info.max for indice, centroide in enumerate(centroides): dist = calcularDistanciaEuclideana(muestra, centroide) if dist < menor: menor = dist cercano = indice return cercano def agrupar(datos, centroides): '''Agrupa los datos y actualiza centroides. ''' print('Centroides originales:') print(centroides) grupos = list() # (C) Bloque de codigo: Calculo de distancias y asignacion de grupos for muestra in datos: pertenencia = centroideMasCercano(centroides, muestra) grupos.append(pertenencia) print('Grupos de pertenencia:') print(grupos) # (D) Bloque de codigo: Actualizacion de centroides for i in range(len(centroides)): centroides[i] = actualizarCentroide(datos, grupos, i) print('Centroides actualizados:') print(centroides) #Imprime centroides actualizados print('\n-----Colores-----') datos = ((153, 51, 255), (121, 236, 221), (209, 236, 121), (240, 164, 76), (240, 98, 76), (76, 93, 240), (50, 239, 94)) centroides = [(255, 0, 0), (0, 255, 0), (0, 0, 255)] #Inicializacion de centroides agrupar(datos, centroides) print('\n-----Archivo de datos-----') data = list() with open('datos_nivel_bonus.txt', 'r') as file: for line in file.readlines(): temp = [int(num) for num in line.split()] data.append(temp) centers = [data[randint(0, 149)] for i in range(5)] agrupar(data, centers)
es
0.930229
INSTRUCCIONES: Completa la primera iteracion de k-medias. Para ello, utiliza la siguiente informacion y el esqueleto que a continuacion se te presenta. (A) Primer funcion a completar Entradas: puntoA y puntoB -- son listas numericas de cualquier longitud (debe ser la misma longitud en ambas listas). Salida: Distancia euclidiana entre las listas. (B) Segunda funcion a completar Entradas: datos -- lista anidada donde cada sublista es un vector de caracteristicas grupos -- lista numerica que contiene, para cada vector en datos, cual es el grupo al que corresponde indiceCentroide -- centroide a actualizarCentroide Salida: lista que contiene los nuevos valores para el centroide cuyo indice es indiceCentroide Recibe una 'muestra' que almacena un elemento de una colección de datos y 'centroides' que almacena una colección de los centroides. Regresa 'k' que es la posición del centroide más cercano. Agrupa los datos y actualiza centroides. # (C) Bloque de codigo: Calculo de distancias y asignacion de grupos # (D) Bloque de codigo: Actualizacion de centroides #Imprime centroides actualizados #Inicializacion de centroides
3.151297
3
app/models/adapters/helpers/node.py
mobile2015/neoPyth
0
6630291
<filename>app/models/adapters/helpers/node.py __author__ = 'rikkt0r' class Node: def __init__(self, node): self.node = node @property def serialize(self): return { "id": self.node.id, "name": self.node.name }
<filename>app/models/adapters/helpers/node.py __author__ = 'rikkt0r' class Node: def __init__(self, node): self.node = node @property def serialize(self): return { "id": self.node.id, "name": self.node.name }
none
1
2.313192
2
wallet/test/helpers/metamask.py
EYBlockchain/nightfall_3
107
6630292
from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.by import By from .find_elements import * from time import sleep def initializeMetamask(driver, findElements, metamaskConfig): # Load metamask, check if the account is already set up firstTimeButton = findElements.element_exist_xpath('//button[text()="Get Started"]') if firstTimeButton: ####################### # Set up the metamask # ####################### firstTimeButton.click() findElements.element_exist_xpath('//button[text()="Import wallet"]').click() # Import wallet findElements.element_exist_xpath('//button[text()="I Agree"]').click() # Agree terms sleep(3) findElements.element_exist_xpath('//input[@placeholder="Paste Secret Recovery Phrase from clipboard"]').send_keys(metamaskConfig['mnemonic']) # Seed phrase findElements.element_exist_xpath('//*[@id="password"]').send_keys(metamaskConfig['password']) # Password findElements.element_exist_xpath('//*[@id="confirm-password"]').send_keys(metamaskConfig['password']) # Repeat password findElements.element_exist_xpath('//div[contains(@class, "first-time-flow__checkbox first-time-flow__terms")]').click() # Read agreements ( for sure) findElements.element_exist_xpath('//button[text()="Import"]').click() # Read agreements ( for sure) findElements.element_exist_xpath('//button[text()="All Done"]').click() # All Done button # Accept all the emerging popups of the first metamask login driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') while True: popupMetamask = findElements.element_exist_xpath('//button[@class="fas fa-times popover-header__button"]') if popupMetamask: popupMetamask.click() driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') popupMetamask = findElements.element_exist_xpath('//button[@class="fas fa-times popover-header__button"]') else: break else: ####################### # Login metamask # ####################### passwordElement = WebDriverWait(driver, 1000).until( EC.presence_of_element_located((By.ID, "password")) ) passwordElement.send_keys(metamaskConfig['password']) clickElement = driver.find_element_by_class_name("MuiButton-label") clickElement.click() def selectNetworkMetamask(driver, findElements, networkConfig): # Configure network driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') # Select network findElements.element_exist_xpath('//*[@id="app-content"]/div/div[1]/div/div[2]/div[1]/div/span').click() # Select network # Find network networkElement = findElements.element_exist_xpath('(//*[contains(text(), "' + networkConfig['name'] + '")] | //*[@value="' + networkConfig['name'] + '"])') if not networkElement: findElements.element_exist_xpath('//button[text()="Add Network"]').click() # Add Network #findElements.element_exist_xpath('(//*[contains(text(), "' + networkConfig['type'] + '")])').click() findElements.element_exist_xpath('(//*[contains(@class, "form-field__input")])[1]').send_keys(networkConfig['name']) findElements.element_exist_xpath('(//*[contains(@class, "form-field__input")])[2]').send_keys(networkConfig['url']) findElements.element_exist_xpath('(//*[contains(@class, "form-field__input")])[3]').send_keys(networkConfig['chainId']) #findElements.element_exist_xpath('//input[@id="network-name"]').send_keys(networkConfig['name']) # Name #findElements.element_exist_xpath('//input[@id="rpc-url"]').send_keys(networkConfig['url']) # URL #findElements.element_exist_xpath('//input[@id="chainId"]').send_keys(networkConfig['chainId']) # ChainId #findElements.element_exist_xpath('//input[@id="network-ticker"]').send_keys(networkConfig['ticker']) # ChainId findElements.element_exist_xpath('//button[text()="Save"]').click() # Save else: findElements.element_exist_xpath('(//*[contains(text(), "' + networkConfig['name'] + '")])').click() def selectTestNetworkMetamask(driver, findElements, networkConfig): # Configure network driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') # Select network findElements.element_exist_xpath('//*[@id="app-content"]/div/div[1]/div/div[2]/div[1]/div/span').click() # Select network # Find network networkElement = findElements.element_exist_xpath('(//*[contains(text(), "' + networkConfig['name'] + '")] | //*[@value="' + networkConfig['name'] + '"])') try: networkElement.click() except Exception: findElements.element_exist_xpath('//*[contains(@class, "network-dropdown-content--link")]').click() # Show networks findElements.element_exist_xpath('//*[@id="app-content"]/div/div[3]/div/div[2]/div[2]/div[2]/div[7]/div[2]/div/div/div[1]/div[2]').click() # Enable test networks findElements.element_exist_xpath('//*[contains(@class, "settings-page__close-button")]').click() # Save findElements.element_exist_xpath('//*[@id="app-content"]/div/div[1]/div/div[2]/div[1]/div/span').click() # Select network findElements.element_exist_xpath('//*[contains(text(), "' + networkConfig['name'] + '")]').click() def deleteNetworkMetamask(driver, findElements, networkConfig): # Configure network driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') # Select network findElements.element_exist_xpath('//*[local-name()="svg"]').click() # Color button findElements.element_exist_xpath('//div[contains(text(),"Settings")]').click() # Settings findElements.element_exist_xpath('//div[contains(text(),"Networks")]').click() # Network networkToDelete = findElements.element_exist_xpath('//div[contains(text(), "' + networkConfig['name'] + '")]') if networkToDelete: networkToDelete.click() findElements.element_exist_xpath('//button[text()="Delete"]').click() # Delete findElements.element_exist_xpath('//button[text()="Delete"]').click() # Delete findElements.element_exist_xpath('//div[contains(@class, "close-button")]').click() # Close def addEthAccountMetamask(driver, findElements, accountParams): # Configure network driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') # Select network findElements.element_exist_xpath('//*[local-name()="svg"]').click() # Color button findElements.element_exist_xpath('//div[contains(text(),"Import Account")]').click() # Import account findElements.element_exist_xpath('//input[@id="private-key-box"]').send_keys(accountParams['privateKey']) # Private Key findElements.element_exist_xpath('//button[text()="Import"]').click() # Import def selectEthAccountMetamask(driver, findElements, accountParams): # Configure network driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') # Select network findElements.element_exist_xpath('//*[local-name()="svg"]').click() # Color button findElements.element_exist_xpath('//div[contains(text(), "' + accountParams['name'] + '")]').click() def addTokenMetamask(tokenAddress, findElements): # Add DAI token findElements.element_exist_xpath('//button[@class="button btn-secondary btn--rounded add-token-button__button"]').click() # Add token button findElements.element_exist_xpath('//*[@id="custom-address"]').send_keys(tokenAddress) # Address textbox # Check if the token is already added isTokenAdded = findElements.element_exist_xpath("//*[contains(text(), 'Token has already been added')]") if not isTokenAdded: findElements.element_exist_xpath('//*[@id="app-content"]/div/div[4]/div/div[2]/div[2]/footer/button[2]').click() # Next findElements.button_clickable_xpath('//*[@id="app-content"]/div/div[4]/div/div[3]/footer/button[2]').click() # Add Token def signTransactionMetamask(driver, findElements, stop=0): sleep(5) activityButton = findElements.element_exist_xpath('//button[text()="Activity"]') if activityButton: activityButton.click() while True: sleep(4) pendingTx = findElements.element_exist_xpath('//div[contains(@class, "list-item transaction-list-item transaction-list-item--unconfirmed")]') approve = findElements.element_exist_xpath('//button[text()="Confirm"]') # Confirm approve if pendingTx: pendingTx.click() elif approve: approve.click() else: break
from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.by import By from .find_elements import * from time import sleep def initializeMetamask(driver, findElements, metamaskConfig): # Load metamask, check if the account is already set up firstTimeButton = findElements.element_exist_xpath('//button[text()="Get Started"]') if firstTimeButton: ####################### # Set up the metamask # ####################### firstTimeButton.click() findElements.element_exist_xpath('//button[text()="Import wallet"]').click() # Import wallet findElements.element_exist_xpath('//button[text()="I Agree"]').click() # Agree terms sleep(3) findElements.element_exist_xpath('//input[@placeholder="Paste Secret Recovery Phrase from clipboard"]').send_keys(metamaskConfig['mnemonic']) # Seed phrase findElements.element_exist_xpath('//*[@id="password"]').send_keys(metamaskConfig['password']) # Password findElements.element_exist_xpath('//*[@id="confirm-password"]').send_keys(metamaskConfig['password']) # Repeat password findElements.element_exist_xpath('//div[contains(@class, "first-time-flow__checkbox first-time-flow__terms")]').click() # Read agreements ( for sure) findElements.element_exist_xpath('//button[text()="Import"]').click() # Read agreements ( for sure) findElements.element_exist_xpath('//button[text()="All Done"]').click() # All Done button # Accept all the emerging popups of the first metamask login driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') while True: popupMetamask = findElements.element_exist_xpath('//button[@class="fas fa-times popover-header__button"]') if popupMetamask: popupMetamask.click() driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') popupMetamask = findElements.element_exist_xpath('//button[@class="fas fa-times popover-header__button"]') else: break else: ####################### # Login metamask # ####################### passwordElement = WebDriverWait(driver, 1000).until( EC.presence_of_element_located((By.ID, "password")) ) passwordElement.send_keys(metamaskConfig['password']) clickElement = driver.find_element_by_class_name("MuiButton-label") clickElement.click() def selectNetworkMetamask(driver, findElements, networkConfig): # Configure network driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') # Select network findElements.element_exist_xpath('//*[@id="app-content"]/div/div[1]/div/div[2]/div[1]/div/span').click() # Select network # Find network networkElement = findElements.element_exist_xpath('(//*[contains(text(), "' + networkConfig['name'] + '")] | //*[@value="' + networkConfig['name'] + '"])') if not networkElement: findElements.element_exist_xpath('//button[text()="Add Network"]').click() # Add Network #findElements.element_exist_xpath('(//*[contains(text(), "' + networkConfig['type'] + '")])').click() findElements.element_exist_xpath('(//*[contains(@class, "form-field__input")])[1]').send_keys(networkConfig['name']) findElements.element_exist_xpath('(//*[contains(@class, "form-field__input")])[2]').send_keys(networkConfig['url']) findElements.element_exist_xpath('(//*[contains(@class, "form-field__input")])[3]').send_keys(networkConfig['chainId']) #findElements.element_exist_xpath('//input[@id="network-name"]').send_keys(networkConfig['name']) # Name #findElements.element_exist_xpath('//input[@id="rpc-url"]').send_keys(networkConfig['url']) # URL #findElements.element_exist_xpath('//input[@id="chainId"]').send_keys(networkConfig['chainId']) # ChainId #findElements.element_exist_xpath('//input[@id="network-ticker"]').send_keys(networkConfig['ticker']) # ChainId findElements.element_exist_xpath('//button[text()="Save"]').click() # Save else: findElements.element_exist_xpath('(//*[contains(text(), "' + networkConfig['name'] + '")])').click() def selectTestNetworkMetamask(driver, findElements, networkConfig): # Configure network driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') # Select network findElements.element_exist_xpath('//*[@id="app-content"]/div/div[1]/div/div[2]/div[1]/div/span').click() # Select network # Find network networkElement = findElements.element_exist_xpath('(//*[contains(text(), "' + networkConfig['name'] + '")] | //*[@value="' + networkConfig['name'] + '"])') try: networkElement.click() except Exception: findElements.element_exist_xpath('//*[contains(@class, "network-dropdown-content--link")]').click() # Show networks findElements.element_exist_xpath('//*[@id="app-content"]/div/div[3]/div/div[2]/div[2]/div[2]/div[7]/div[2]/div/div/div[1]/div[2]').click() # Enable test networks findElements.element_exist_xpath('//*[contains(@class, "settings-page__close-button")]').click() # Save findElements.element_exist_xpath('//*[@id="app-content"]/div/div[1]/div/div[2]/div[1]/div/span').click() # Select network findElements.element_exist_xpath('//*[contains(text(), "' + networkConfig['name'] + '")]').click() def deleteNetworkMetamask(driver, findElements, networkConfig): # Configure network driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') # Select network findElements.element_exist_xpath('//*[local-name()="svg"]').click() # Color button findElements.element_exist_xpath('//div[contains(text(),"Settings")]').click() # Settings findElements.element_exist_xpath('//div[contains(text(),"Networks")]').click() # Network networkToDelete = findElements.element_exist_xpath('//div[contains(text(), "' + networkConfig['name'] + '")]') if networkToDelete: networkToDelete.click() findElements.element_exist_xpath('//button[text()="Delete"]').click() # Delete findElements.element_exist_xpath('//button[text()="Delete"]').click() # Delete findElements.element_exist_xpath('//div[contains(@class, "close-button")]').click() # Close def addEthAccountMetamask(driver, findElements, accountParams): # Configure network driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') # Select network findElements.element_exist_xpath('//*[local-name()="svg"]').click() # Color button findElements.element_exist_xpath('//div[contains(text(),"Import Account")]').click() # Import account findElements.element_exist_xpath('//input[@id="private-key-box"]').send_keys(accountParams['privateKey']) # Private Key findElements.element_exist_xpath('//button[text()="Import"]').click() # Import def selectEthAccountMetamask(driver, findElements, accountParams): # Configure network driver.get('chrome-extension://nkbihfbeogaeaoehlefnkodbefgpgknn/home.html#') # Select network findElements.element_exist_xpath('//*[local-name()="svg"]').click() # Color button findElements.element_exist_xpath('//div[contains(text(), "' + accountParams['name'] + '")]').click() def addTokenMetamask(tokenAddress, findElements): # Add DAI token findElements.element_exist_xpath('//button[@class="button btn-secondary btn--rounded add-token-button__button"]').click() # Add token button findElements.element_exist_xpath('//*[@id="custom-address"]').send_keys(tokenAddress) # Address textbox # Check if the token is already added isTokenAdded = findElements.element_exist_xpath("//*[contains(text(), 'Token has already been added')]") if not isTokenAdded: findElements.element_exist_xpath('//*[@id="app-content"]/div/div[4]/div/div[2]/div[2]/footer/button[2]').click() # Next findElements.button_clickable_xpath('//*[@id="app-content"]/div/div[4]/div/div[3]/footer/button[2]').click() # Add Token def signTransactionMetamask(driver, findElements, stop=0): sleep(5) activityButton = findElements.element_exist_xpath('//button[text()="Activity"]') if activityButton: activityButton.click() while True: sleep(4) pendingTx = findElements.element_exist_xpath('//div[contains(@class, "list-item transaction-list-item transaction-list-item--unconfirmed")]') approve = findElements.element_exist_xpath('//button[text()="Confirm"]') # Confirm approve if pendingTx: pendingTx.click() elif approve: approve.click() else: break
en
0.340234
# Load metamask, check if the account is already set up ####################### # Set up the metamask # ####################### # Import wallet # Agree terms # Seed phrase # Password # Repeat password # Read agreements ( for sure) # Read agreements ( for sure) # All Done button # Accept all the emerging popups of the first metamask login #') #') ####################### # Login metamask # ####################### # Configure network #') # Select network # Select network # Find network # Add Network #findElements.element_exist_xpath('(//*[contains(text(), "' + networkConfig['type'] + '")])').click() #findElements.element_exist_xpath('//input[@id="network-name"]').send_keys(networkConfig['name']) # Name #findElements.element_exist_xpath('//input[@id="rpc-url"]').send_keys(networkConfig['url']) # URL #findElements.element_exist_xpath('//input[@id="chainId"]').send_keys(networkConfig['chainId']) # ChainId #findElements.element_exist_xpath('//input[@id="network-ticker"]').send_keys(networkConfig['ticker']) # ChainId # Save # Configure network #') # Select network # Select network # Find network # Show networks # Enable test networks # Save # Select network # Configure network #') # Select network # Color button # Settings # Network # Delete # Delete # Close # Configure network #') # Select network # Color button # Import account # Private Key # Import # Configure network #') # Select network # Color button # Add DAI token # Add token button # Address textbox # Check if the token is already added # Next # Add Token # Confirm approve
2.575806
3
backend-service/visits-service/app/app/db/base.py
abhishek70/python-petclinic-microservices
2
6630293
<filename>backend-service/visits-service/app/app/db/base.py<gh_stars>1-10 # Import all the models, so that Base has them before being # imported by Alembic from ..models.visit import Visit # noqa from .base_class import Base # noqa
<filename>backend-service/visits-service/app/app/db/base.py<gh_stars>1-10 # Import all the models, so that Base has them before being # imported by Alembic from ..models.visit import Visit # noqa from .base_class import Base # noqa
en
0.951317
# Import all the models, so that Base has them before being # imported by Alembic # noqa # noqa
1.361224
1
frontend.py
milonoir/yaml_rulz_frontend
0
6630294
from flask import Flask from flask import request from flask import render_template from flask_wtf.csrf import CSRFProtect from flask_wtf import FlaskForm from wtforms import TextAreaField from wtforms.validators import DataRequired from yaml_rulz.validator import YAMLValidator app = Flask(__name__) csrf = CSRFProtect(app) app.config['SECRET_KEY'] = b'\<KEY>' class Form(FlaskForm): schema = TextAreaField('Template', [DataRequired()]) resource = TextAreaField('Resource', [DataRequired()]) @app.route('/', methods=['GET', 'POST']) def index(): form = Form() issues = [] if request.method == 'POST' and form.validate(): try: validator = YAMLValidator( schema_content=form.schema.data, resource_content=form.resource.data, exclusions_content=None ) except Exception as exc: issues.append({'severity': 'Fatal', 'message': 'Error: {}'.format(exc)}) else: _, issues = validator.get_validation_issues() return render_template('frontend.html', form=form, issues=issues)
from flask import Flask from flask import request from flask import render_template from flask_wtf.csrf import CSRFProtect from flask_wtf import FlaskForm from wtforms import TextAreaField from wtforms.validators import DataRequired from yaml_rulz.validator import YAMLValidator app = Flask(__name__) csrf = CSRFProtect(app) app.config['SECRET_KEY'] = b'\<KEY>' class Form(FlaskForm): schema = TextAreaField('Template', [DataRequired()]) resource = TextAreaField('Resource', [DataRequired()]) @app.route('/', methods=['GET', 'POST']) def index(): form = Form() issues = [] if request.method == 'POST' and form.validate(): try: validator = YAMLValidator( schema_content=form.schema.data, resource_content=form.resource.data, exclusions_content=None ) except Exception as exc: issues.append({'severity': 'Fatal', 'message': 'Error: {}'.format(exc)}) else: _, issues = validator.get_validation_issues() return render_template('frontend.html', form=form, issues=issues)
none
1
2.503997
3
genome_integration/resources/get_ensembl_gene_information.py
adriaan-vd-graaf/genome_integration
13
6630295
from genome_integration import gene_regions import gzip """ These classes are intended to easily access and query ensembl genes information, But they have other uses as well, so it is possible that these will be joined with the ensembl """ class EnsemblGene(gene_regions.StartEndRegion): """ Contains all the standard fields for gene information from ensembl. Attributes ---------- ensg_id: str ensembl id gene_name: str gene name strand: str strand of the gene either `+` or `-` gc_percent: str percentage of GC bases. gene_type: str gene type ensembl_version: ensembl version of the gene. Methods ------- None """ def __init__(self, ensg_id, gene_name, chromosome, start, end, strand, gc_percent, gene_type, ensembl_version): super().__init__([chromosome, start, end]) self.ensg_id = ensg_id self.gene_name = gene_name self.strand = strand self.gc_percent = gc_percent self.gene_type = gene_type self.ensembl_version = ensembl_version def __repr__(self): return f"EnsemblGene object: {self.ensg_id}, {self.gene_name}, {self.chromosome}:{self.start}-{self.end},{self.strand}" def __str__(self): return f"{self.ensg_id}, {self.gene_name}, {self.chromosome}:{self.start}-{self.end},{self.strand}" class EnsemblGenes: """ EnsemblGene information This class contains many genes likely with ensembl data. Attributes ---------- list_of_genes: list list of EnsemblGenes objects self.ensg_ids: set of strings Ensembl gene ids in the set. self.gene_names: list names of the genes self.ensg_to_full: dict dict of ensembl ids as keys and associated EnsemblGene information as values self.ensg_to_gene: dict dict of ensembl ids as keys and self.gene_to_full: dict gene to full self.genes_warned_about : set genes that are duplicate. self.allow_patch_overlapping_gene_names: bool allows for overlapping gene names to be available. Methods ------- add_gene(ensembl_gene): add an ensembl_gene object to self. get_sorted_genes(self) return sorted genes. return_overlapping_regions(self, gene_region_to_check): return the overlapping regions of a StartEndRegion object. list_to_full(self, list, fail_on_bad_id=True) returns an ensemblGenes object with only the genes in the files. str_to_full(self, str) return the Ensembl genes object associated with a certain string. str_to_gene(self, str): return the gene name associated with a certain string. str_to_ensg(self, str): return the ensembl id associated with a certain string. """ def __init__(self, allow_patch_overlapping_gene_names=False): self.list_of_genes = [] self.ensg_ids = set() self.gene_names = set() self.ensg_to_full = {} self.gene_to_full = {} self.genes_warned_about = set() self.allow_patch_overlapping_gene_names = allow_patch_overlapping_gene_names def add_gene(self, ensembl_gene): """ Add an EnsemblGene object to self. :param ensembl_gene: :return: None """ self.list_of_genes.append(ensembl_gene) if ensembl_gene.ensg_id in self.ensg_ids: raise ValueError("ERROR: found duplicate ENSG ID, when adding {}, this should not happen.".format(ensembl_gene.ensg_id)) self.ensg_ids.add(ensembl_gene.ensg_id) if ensembl_gene.gene_name in self.gene_names and ensembl_gene.gene_name not in self.genes_warned_about: # print("WARNING: found duplicate gene name, when adding {}, lookups on gene name may be wrong.".format(ensembl_gene.gene_name)) self.genes_warned_about.add(ensembl_gene.gene_name) self.ensg_to_full[ensembl_gene.ensg_id] = ensembl_gene #this ensures that there will never be weird patch genes in the if ensembl_gene.gene_name in self.gene_names and (not self.allow_patch_overlapping_gene_names): try: len(ensembl_gene.chromosome < 3) #only chromosome names smaller than 3. except: return self.gene_names.add(ensembl_gene.gene_name) self.gene_to_full[ensembl_gene.gene_name] = ensembl_gene def get_sorted_genes(self): return sorted(self.list_of_genes) def return_overlapping_regions(self, gene_region_to_check): """ This may be a bit slow, as it will iterate over all gene regions here. :param gene_region_to_check: :return: """ sorted_genes = self.get_sorted_genes() to_return = EnsemblGenes() for gene in sorted_genes: if gene_region_to_check.region_overlaps(gene): to_return.add_gene(gene) return to_return def return_overlapping_regions_based_on_coordinates(self, chromosome, position): """ This may be a bit slow, as it will iterate over all gene regions here. Cool thing though, this is sorted. :param gene_region_to_check: :return: EnsemblGenes object with overlapping genes. """ sorted_genes = self.get_sorted_genes() to_return = EnsemblGenes() for gene in sorted_genes: if gene.snp_in_region(chromosome, position): to_return.add_gene(gene) return to_return def __str__(self): return "EnsemblGenes object containing {} genes".format(len(self.gene_names)) def list_to_full(self, list, fail_on_bad_id=True): """ turn a list of gene identifiers into a list of ensembl gene information :param list: list of IDs you want to know all the ensembl information of. :param fail_on_bad_id: bool, if bad IDs should fail. Default is True. :return: list of ensembl genes informaiton. """ if fail_on_bad_id: return [self.str_to_full(x) for x in list] else: return_list = [] for gene in list: try: return_list.append(self.str_to_full(gene)) except ValueError: print(f"Could not find {gene}, but continueing.") return return_list def str_to_full(self, str): if str in self.ensg_to_full.keys(): return self.ensg_to_full[str] elif str in self.gene_to_full.keys(): return self.gene_to_full[str] else: raise ValueError(f"{str} was not convertible to a gene that I know.") def str_to_gene(self, str): return self.str_to_full(str).gene_name def str_to_ensg(self, str): return self.str_to_full(str).ensg_id def __iter__(self): self.ordered_ensembl_info = sorted(self.list_of_genes) self.ordered_ensg_ids = [x.ensg_id for x in self.ordered_ensembl_info] self.ordered_gene_names = [x.gene_name for x in self.ordered_ensembl_info] self.iterator_indice = 0 return self def __next__(self): if self.iterator_indice < len(self.ordered_ensg_ids): self.iterator_indice += 1 return self.ensg_to_full[self.ordered_ensg_ids[self.iterator_indice - 1]] else: raise StopIteration() def read_gene_information(): """ This loads in the ENSG gene information from the package and returns it. very handy to have if you want to do a quick check of a certain ENSG ID, or just want gene names of everything. TODO: Properly handle the Ensembl and human genome versions. :return: EnsemblGene object with all the genes that are in the file '2018_05_18_ensembl_gene_information.txt.gz' in the resource/ensembldata folder of this package. """ resource_path = '/'.join(('ensembl_data', '2018_05_18_ensembl_gene_information.txt.gz')) if len(__file__.split("/")) > 1: gene_file = "{}/{}".format("/".join(__file__.split("/")[:-1]), resource_path) else: gene_file = resource_path ensembl_genes = EnsemblGenes() with gzip.open(gene_file, "rb") as f: f.readline() for line in f: split = line.decode("utf8").split() ensembl_genes.add_gene( EnsemblGene( split[0], split[1], split[2], split[3], split[4], split[5], split[6], split[7], split[8] ) ) return ensembl_genes
from genome_integration import gene_regions import gzip """ These classes are intended to easily access and query ensembl genes information, But they have other uses as well, so it is possible that these will be joined with the ensembl """ class EnsemblGene(gene_regions.StartEndRegion): """ Contains all the standard fields for gene information from ensembl. Attributes ---------- ensg_id: str ensembl id gene_name: str gene name strand: str strand of the gene either `+` or `-` gc_percent: str percentage of GC bases. gene_type: str gene type ensembl_version: ensembl version of the gene. Methods ------- None """ def __init__(self, ensg_id, gene_name, chromosome, start, end, strand, gc_percent, gene_type, ensembl_version): super().__init__([chromosome, start, end]) self.ensg_id = ensg_id self.gene_name = gene_name self.strand = strand self.gc_percent = gc_percent self.gene_type = gene_type self.ensembl_version = ensembl_version def __repr__(self): return f"EnsemblGene object: {self.ensg_id}, {self.gene_name}, {self.chromosome}:{self.start}-{self.end},{self.strand}" def __str__(self): return f"{self.ensg_id}, {self.gene_name}, {self.chromosome}:{self.start}-{self.end},{self.strand}" class EnsemblGenes: """ EnsemblGene information This class contains many genes likely with ensembl data. Attributes ---------- list_of_genes: list list of EnsemblGenes objects self.ensg_ids: set of strings Ensembl gene ids in the set. self.gene_names: list names of the genes self.ensg_to_full: dict dict of ensembl ids as keys and associated EnsemblGene information as values self.ensg_to_gene: dict dict of ensembl ids as keys and self.gene_to_full: dict gene to full self.genes_warned_about : set genes that are duplicate. self.allow_patch_overlapping_gene_names: bool allows for overlapping gene names to be available. Methods ------- add_gene(ensembl_gene): add an ensembl_gene object to self. get_sorted_genes(self) return sorted genes. return_overlapping_regions(self, gene_region_to_check): return the overlapping regions of a StartEndRegion object. list_to_full(self, list, fail_on_bad_id=True) returns an ensemblGenes object with only the genes in the files. str_to_full(self, str) return the Ensembl genes object associated with a certain string. str_to_gene(self, str): return the gene name associated with a certain string. str_to_ensg(self, str): return the ensembl id associated with a certain string. """ def __init__(self, allow_patch_overlapping_gene_names=False): self.list_of_genes = [] self.ensg_ids = set() self.gene_names = set() self.ensg_to_full = {} self.gene_to_full = {} self.genes_warned_about = set() self.allow_patch_overlapping_gene_names = allow_patch_overlapping_gene_names def add_gene(self, ensembl_gene): """ Add an EnsemblGene object to self. :param ensembl_gene: :return: None """ self.list_of_genes.append(ensembl_gene) if ensembl_gene.ensg_id in self.ensg_ids: raise ValueError("ERROR: found duplicate ENSG ID, when adding {}, this should not happen.".format(ensembl_gene.ensg_id)) self.ensg_ids.add(ensembl_gene.ensg_id) if ensembl_gene.gene_name in self.gene_names and ensembl_gene.gene_name not in self.genes_warned_about: # print("WARNING: found duplicate gene name, when adding {}, lookups on gene name may be wrong.".format(ensembl_gene.gene_name)) self.genes_warned_about.add(ensembl_gene.gene_name) self.ensg_to_full[ensembl_gene.ensg_id] = ensembl_gene #this ensures that there will never be weird patch genes in the if ensembl_gene.gene_name in self.gene_names and (not self.allow_patch_overlapping_gene_names): try: len(ensembl_gene.chromosome < 3) #only chromosome names smaller than 3. except: return self.gene_names.add(ensembl_gene.gene_name) self.gene_to_full[ensembl_gene.gene_name] = ensembl_gene def get_sorted_genes(self): return sorted(self.list_of_genes) def return_overlapping_regions(self, gene_region_to_check): """ This may be a bit slow, as it will iterate over all gene regions here. :param gene_region_to_check: :return: """ sorted_genes = self.get_sorted_genes() to_return = EnsemblGenes() for gene in sorted_genes: if gene_region_to_check.region_overlaps(gene): to_return.add_gene(gene) return to_return def return_overlapping_regions_based_on_coordinates(self, chromosome, position): """ This may be a bit slow, as it will iterate over all gene regions here. Cool thing though, this is sorted. :param gene_region_to_check: :return: EnsemblGenes object with overlapping genes. """ sorted_genes = self.get_sorted_genes() to_return = EnsemblGenes() for gene in sorted_genes: if gene.snp_in_region(chromosome, position): to_return.add_gene(gene) return to_return def __str__(self): return "EnsemblGenes object containing {} genes".format(len(self.gene_names)) def list_to_full(self, list, fail_on_bad_id=True): """ turn a list of gene identifiers into a list of ensembl gene information :param list: list of IDs you want to know all the ensembl information of. :param fail_on_bad_id: bool, if bad IDs should fail. Default is True. :return: list of ensembl genes informaiton. """ if fail_on_bad_id: return [self.str_to_full(x) for x in list] else: return_list = [] for gene in list: try: return_list.append(self.str_to_full(gene)) except ValueError: print(f"Could not find {gene}, but continueing.") return return_list def str_to_full(self, str): if str in self.ensg_to_full.keys(): return self.ensg_to_full[str] elif str in self.gene_to_full.keys(): return self.gene_to_full[str] else: raise ValueError(f"{str} was not convertible to a gene that I know.") def str_to_gene(self, str): return self.str_to_full(str).gene_name def str_to_ensg(self, str): return self.str_to_full(str).ensg_id def __iter__(self): self.ordered_ensembl_info = sorted(self.list_of_genes) self.ordered_ensg_ids = [x.ensg_id for x in self.ordered_ensembl_info] self.ordered_gene_names = [x.gene_name for x in self.ordered_ensembl_info] self.iterator_indice = 0 return self def __next__(self): if self.iterator_indice < len(self.ordered_ensg_ids): self.iterator_indice += 1 return self.ensg_to_full[self.ordered_ensg_ids[self.iterator_indice - 1]] else: raise StopIteration() def read_gene_information(): """ This loads in the ENSG gene information from the package and returns it. very handy to have if you want to do a quick check of a certain ENSG ID, or just want gene names of everything. TODO: Properly handle the Ensembl and human genome versions. :return: EnsemblGene object with all the genes that are in the file '2018_05_18_ensembl_gene_information.txt.gz' in the resource/ensembldata folder of this package. """ resource_path = '/'.join(('ensembl_data', '2018_05_18_ensembl_gene_information.txt.gz')) if len(__file__.split("/")) > 1: gene_file = "{}/{}".format("/".join(__file__.split("/")[:-1]), resource_path) else: gene_file = resource_path ensembl_genes = EnsemblGenes() with gzip.open(gene_file, "rb") as f: f.readline() for line in f: split = line.decode("utf8").split() ensembl_genes.add_gene( EnsemblGene( split[0], split[1], split[2], split[3], split[4], split[5], split[6], split[7], split[8] ) ) return ensembl_genes
en
0.774035
These classes are intended to easily access and query ensembl genes information, But they have other uses as well, so it is possible that these will be joined with the ensembl Contains all the standard fields for gene information from ensembl. Attributes ---------- ensg_id: str ensembl id gene_name: str gene name strand: str strand of the gene either `+` or `-` gc_percent: str percentage of GC bases. gene_type: str gene type ensembl_version: ensembl version of the gene. Methods ------- None EnsemblGene information This class contains many genes likely with ensembl data. Attributes ---------- list_of_genes: list list of EnsemblGenes objects self.ensg_ids: set of strings Ensembl gene ids in the set. self.gene_names: list names of the genes self.ensg_to_full: dict dict of ensembl ids as keys and associated EnsemblGene information as values self.ensg_to_gene: dict dict of ensembl ids as keys and self.gene_to_full: dict gene to full self.genes_warned_about : set genes that are duplicate. self.allow_patch_overlapping_gene_names: bool allows for overlapping gene names to be available. Methods ------- add_gene(ensembl_gene): add an ensembl_gene object to self. get_sorted_genes(self) return sorted genes. return_overlapping_regions(self, gene_region_to_check): return the overlapping regions of a StartEndRegion object. list_to_full(self, list, fail_on_bad_id=True) returns an ensemblGenes object with only the genes in the files. str_to_full(self, str) return the Ensembl genes object associated with a certain string. str_to_gene(self, str): return the gene name associated with a certain string. str_to_ensg(self, str): return the ensembl id associated with a certain string. Add an EnsemblGene object to self. :param ensembl_gene: :return: None # print("WARNING: found duplicate gene name, when adding {}, lookups on gene name may be wrong.".format(ensembl_gene.gene_name)) #this ensures that there will never be weird patch genes in the #only chromosome names smaller than 3. This may be a bit slow, as it will iterate over all gene regions here. :param gene_region_to_check: :return: This may be a bit slow, as it will iterate over all gene regions here. Cool thing though, this is sorted. :param gene_region_to_check: :return: EnsemblGenes object with overlapping genes. turn a list of gene identifiers into a list of ensembl gene information :param list: list of IDs you want to know all the ensembl information of. :param fail_on_bad_id: bool, if bad IDs should fail. Default is True. :return: list of ensembl genes informaiton. This loads in the ENSG gene information from the package and returns it. very handy to have if you want to do a quick check of a certain ENSG ID, or just want gene names of everything. TODO: Properly handle the Ensembl and human genome versions. :return: EnsemblGene object with all the genes that are in the file '2018_05_18_ensembl_gene_information.txt.gz' in the resource/ensembldata folder of this package.
2.94819
3
lib/sedna/algorithms/unseen_task_detect/unseen_task_detect.py
chou-shun/sedna
0
6630296
<gh_stars>0 # Copyright 2021 The KubeEdge Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unseen task detection algorithms for Lifelong Learning""" import abc from typing import List import numpy as np from sedna.algorithms.multi_task_learning.task_jobs.artifact import Task from sedna.common.class_factory import ClassFactory, ClassType __all__ = ('ModelProbeFilter', 'TaskAttrFilter') class BaseFilter(metaclass=abc.ABCMeta): """The base class to define unified interface.""" def __call__(self, task: Task = None): """predict function, and it must be implemented by different methods class. :param task: inference task :return: `True` means unseen task, `False` means not an unseen task. """ raise NotImplementedError @ClassFactory.register(ClassType.UTD) class ModelProbeFilter(BaseFilter, abc.ABC): def __init__(self): pass def __call__(self, tasks: List[Task] = None, threshold=0.5, **kwargs): all_proba = [] for task in tasks: sample = task.samples model = task.model if hasattr(model, "predict_proba"): proba = model.predict_proba(sample) all_proba.append(np.max(proba)) return np.mean(all_proba) > threshold if all_proba else True @ClassFactory.register(ClassType.UTD) class TaskAttrFilter(BaseFilter, abc.ABC): def __init__(self): pass def __call__(self, tasks: List[Task] = None, **kwargs): for task in tasks: model_attr = list(map(list, task.model.meta_attr)) sample_attr = list(map(list, task.samples.meta_attr)) if not (model_attr and sample_attr): continue if list(model_attr) == list(sample_attr): return False return True
# Copyright 2021 The KubeEdge Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unseen task detection algorithms for Lifelong Learning""" import abc from typing import List import numpy as np from sedna.algorithms.multi_task_learning.task_jobs.artifact import Task from sedna.common.class_factory import ClassFactory, ClassType __all__ = ('ModelProbeFilter', 'TaskAttrFilter') class BaseFilter(metaclass=abc.ABCMeta): """The base class to define unified interface.""" def __call__(self, task: Task = None): """predict function, and it must be implemented by different methods class. :param task: inference task :return: `True` means unseen task, `False` means not an unseen task. """ raise NotImplementedError @ClassFactory.register(ClassType.UTD) class ModelProbeFilter(BaseFilter, abc.ABC): def __init__(self): pass def __call__(self, tasks: List[Task] = None, threshold=0.5, **kwargs): all_proba = [] for task in tasks: sample = task.samples model = task.model if hasattr(model, "predict_proba"): proba = model.predict_proba(sample) all_proba.append(np.max(proba)) return np.mean(all_proba) > threshold if all_proba else True @ClassFactory.register(ClassType.UTD) class TaskAttrFilter(BaseFilter, abc.ABC): def __init__(self): pass def __call__(self, tasks: List[Task] = None, **kwargs): for task in tasks: model_attr = list(map(list, task.model.meta_attr)) sample_attr = list(map(list, task.samples.meta_attr)) if not (model_attr and sample_attr): continue if list(model_attr) == list(sample_attr): return False return True
en
0.836428
# Copyright 2021 The KubeEdge Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Unseen task detection algorithms for Lifelong Learning The base class to define unified interface. predict function, and it must be implemented by different methods class. :param task: inference task :return: `True` means unseen task, `False` means not an unseen task.
2.14575
2
ee_api/__init__.py
dgketchum/MT_RSense
0
6630297
import ee def is_authorized(): try: ee.Initialize() print('Authorized') except Exception as e: print('You are not authorized: {}'.format(e)) exit(1) return None if __name__ == '__main__': pass # ========================= EOF ====================================================================
import ee def is_authorized(): try: ee.Initialize() print('Authorized') except Exception as e: print('You are not authorized: {}'.format(e)) exit(1) return None if __name__ == '__main__': pass # ========================= EOF ====================================================================
en
0.354309
# ========================= EOF ====================================================================
2.676602
3
scripts/check_pipfile_and_toxini.py
BuildJet/agents-aea
1
6630298
<filename>scripts/check_pipfile_and_toxini.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This script checks that dependencies in tox.ini and Pipfile match.""" import sys from typing import Dict # specified in setup.py WHITELIST = {"base58": ">=1.0.3"} def get_deps_in_pipfile(file: str = "Pipfile") -> Dict[str, str]: """ Get the dependencies of the Pipfile. :param file: the file to check. :return: dictionary with dependencies and their versions """ result: Dict[str, str] = WHITELIST with open(file, "r") as f: is_dev_dependency = False for line in f: if line == "[dev-packages]\n": is_dev_dependency = True continue if line == "[packages]\n": is_dev_dependency = True continue if not is_dev_dependency: continue try: package, version = line.split(" = ") result[package] = version.strip("\n").strip('"') except Exception: # nosec # pylint: disable=broad-except pass return result def check_versions_in_tox_correct(file: str = "tox.ini") -> None: """ Check the versions in tox are matching the ones in Pipfile. :param file: the file to check. :param dependencies: the deps in pipfile :return: True if match """ dependencies = get_deps_in_pipfile() with open(file, "r") as f: for line in f: for match_type in ["==", ">="]: if match_type in line: name_part, version_part = line.split(match_type) check_match( name_part.strip(" "), version_part.strip("\n"), dependencies, match_type, ) def check_match( name_part: str, version_part: str, dependencies: Dict[str, str], match_type: str ) -> None: """Check for a match independencies.""" result = False for package, version_and_match_type in dependencies.items(): if package == name_part: if version_and_match_type == f"{match_type}{version_part}": result = True break print( f"Non-matching versions for package={package}, {name_part}. Expected='{version_and_match_type}', found='{match_type}{version_part}'." ) sys.exit(1) if not result: print(f"Package not found for: {name_part}") sys.exit(1) if __name__ == "__main__": check_versions_in_tox_correct() print("OK") sys.exit(0)
<filename>scripts/check_pipfile_and_toxini.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This script checks that dependencies in tox.ini and Pipfile match.""" import sys from typing import Dict # specified in setup.py WHITELIST = {"base58": ">=1.0.3"} def get_deps_in_pipfile(file: str = "Pipfile") -> Dict[str, str]: """ Get the dependencies of the Pipfile. :param file: the file to check. :return: dictionary with dependencies and their versions """ result: Dict[str, str] = WHITELIST with open(file, "r") as f: is_dev_dependency = False for line in f: if line == "[dev-packages]\n": is_dev_dependency = True continue if line == "[packages]\n": is_dev_dependency = True continue if not is_dev_dependency: continue try: package, version = line.split(" = ") result[package] = version.strip("\n").strip('"') except Exception: # nosec # pylint: disable=broad-except pass return result def check_versions_in_tox_correct(file: str = "tox.ini") -> None: """ Check the versions in tox are matching the ones in Pipfile. :param file: the file to check. :param dependencies: the deps in pipfile :return: True if match """ dependencies = get_deps_in_pipfile() with open(file, "r") as f: for line in f: for match_type in ["==", ">="]: if match_type in line: name_part, version_part = line.split(match_type) check_match( name_part.strip(" "), version_part.strip("\n"), dependencies, match_type, ) def check_match( name_part: str, version_part: str, dependencies: Dict[str, str], match_type: str ) -> None: """Check for a match independencies.""" result = False for package, version_and_match_type in dependencies.items(): if package == name_part: if version_and_match_type == f"{match_type}{version_part}": result = True break print( f"Non-matching versions for package={package}, {name_part}. Expected='{version_and_match_type}', found='{match_type}{version_part}'." ) sys.exit(1) if not result: print(f"Package not found for: {name_part}") sys.exit(1) if __name__ == "__main__": check_versions_in_tox_correct() print("OK") sys.exit(0)
en
0.740296
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ This script checks that dependencies in tox.ini and Pipfile match. # specified in setup.py Get the dependencies of the Pipfile. :param file: the file to check. :return: dictionary with dependencies and their versions # nosec # pylint: disable=broad-except Check the versions in tox are matching the ones in Pipfile. :param file: the file to check. :param dependencies: the deps in pipfile :return: True if match Check for a match independencies.
2.182487
2
scheduled_bots/drugs/pharma/Mixtures.py
turoger/scheduled-bots
6
6630299
<filename>scheduled_bots/drugs/pharma/Mixtures.py """ create drug/product mixtures Example: https://www.wikidata.org/wiki/Q4663143 """ import time from collections import defaultdict from wikidataintegrator import wdi_core, wdi_login, wdi_helpers from scheduled_bots.local import WDPASS, WDUSER def make_ref(rxnorm): refs = [[ wdi_core.WDItemID(value='Q7383767', prop_nr='P248', is_reference=True), # stated in rxnorm wdi_core.WDExternalID(value=rxnorm, prop_nr='P3345', is_reference=True), # rxcui wdi_core.WDTime(time=time.strftime('+%Y-%m-%dT00:00:00Z'), prop_nr='P813', is_reference=True) # retrieved ]] return refs class Mixtures: def __init__(self): self.login = wdi_login.WDLogin(WDUSER, WDPASS) self._get_mixtures_in_wd() rxnorm_qid = wdi_helpers.id_mapper("P3345", return_as_set=True) rxnorm_qid = {k: list(v)[0] for k, v in rxnorm_qid.items() if len(v) == 1} self.rxnorm_qid = rxnorm_qid def _get_mixtures_in_wd(self): query = """ SELECT distinct ?drug ?compound WHERE { values ?chemical {wd:Q12140 wd:Q11173 wd:Q79529} ?drug wdt:P527 ?compound . ?drug wdt:P31 ?chemical . ?compound wdt:P652 ?unii }""" mixd = defaultdict(set) r = wdi_core.WDItemEngine.execute_sparql_query(query=query) for x in r['results']['bindings']: parent = x['drug']['value'].split("/")[-1] mixd[parent].add(x['compound']['value'].split("/")[-1]) self.mixture_components = {k: v for k, v in mixd.items() if len(v) > 1} self.components_mixture = {frozenset(v): k for k, v in self.mixture_components.items()} # to create, needs: label, ingredients, rxcui def create(self, label: str, rxcui: str, ingredient_qids: list): rxcui = str(rxcui) # check to make sure it doesn't exist if rxcui in self.rxnorm_qid: raise ValueError("rxcui {} already exists: {}".format(rxcui, self.rxnorm_qid[rxcui])) # check by ingredients qid = self.get_mixture_qid(ingredient_qids) if qid: raise ValueError("mixture already exists: {}".format(qid)) # has part s = [wdi_core.WDItemID(x, 'P527', references=make_ref(rxcui)) for x in ingredient_qids] # instance of s.append(wdi_core.WDItemID('Q12140', 'P31', references=make_ref(rxcui))) # drug s.append(wdi_core.WDItemID('Q79529', 'P31', references=make_ref(rxcui))) # chemical substance s.append(wdi_core.WDItemID('Q169336', 'P31', references=make_ref(rxcui))) # mixture # rxnorm s.append(wdi_core.WDExternalID(rxcui, "P3345", references=make_ref(rxcui))) item = wdi_core.WDItemEngine(data=s) if item.create_new_item: item.set_label(label) item.set_label(label) if not item.get_description(): item.set_description("combination drug") item.write(self.login) qid = item.wd_item_id # update cache self.components_mixture[frozenset(ingredient_qids)] = qid self.mixture_components[qid] = ingredient_qids self.rxnorm_qid[rxcui] = qid return qid def get_or_create(self, label, rxcui, ingredient_qids): if rxcui in self.rxnorm_qid: return self.rxnorm_qid[rxcui] qid = self.get_mixture_qid(ingredient_qids) if qid: return qid return self.create(label, rxcui, ingredient_qids) def get_mixture_qid(self, ingredient_qids): # get the qid for the mixture from the ingredient qids return self.components_mixture.get(frozenset(ingredient_qids))
<filename>scheduled_bots/drugs/pharma/Mixtures.py """ create drug/product mixtures Example: https://www.wikidata.org/wiki/Q4663143 """ import time from collections import defaultdict from wikidataintegrator import wdi_core, wdi_login, wdi_helpers from scheduled_bots.local import WDPASS, WDUSER def make_ref(rxnorm): refs = [[ wdi_core.WDItemID(value='Q7383767', prop_nr='P248', is_reference=True), # stated in rxnorm wdi_core.WDExternalID(value=rxnorm, prop_nr='P3345', is_reference=True), # rxcui wdi_core.WDTime(time=time.strftime('+%Y-%m-%dT00:00:00Z'), prop_nr='P813', is_reference=True) # retrieved ]] return refs class Mixtures: def __init__(self): self.login = wdi_login.WDLogin(WDUSER, WDPASS) self._get_mixtures_in_wd() rxnorm_qid = wdi_helpers.id_mapper("P3345", return_as_set=True) rxnorm_qid = {k: list(v)[0] for k, v in rxnorm_qid.items() if len(v) == 1} self.rxnorm_qid = rxnorm_qid def _get_mixtures_in_wd(self): query = """ SELECT distinct ?drug ?compound WHERE { values ?chemical {wd:Q12140 wd:Q11173 wd:Q79529} ?drug wdt:P527 ?compound . ?drug wdt:P31 ?chemical . ?compound wdt:P652 ?unii }""" mixd = defaultdict(set) r = wdi_core.WDItemEngine.execute_sparql_query(query=query) for x in r['results']['bindings']: parent = x['drug']['value'].split("/")[-1] mixd[parent].add(x['compound']['value'].split("/")[-1]) self.mixture_components = {k: v for k, v in mixd.items() if len(v) > 1} self.components_mixture = {frozenset(v): k for k, v in self.mixture_components.items()} # to create, needs: label, ingredients, rxcui def create(self, label: str, rxcui: str, ingredient_qids: list): rxcui = str(rxcui) # check to make sure it doesn't exist if rxcui in self.rxnorm_qid: raise ValueError("rxcui {} already exists: {}".format(rxcui, self.rxnorm_qid[rxcui])) # check by ingredients qid = self.get_mixture_qid(ingredient_qids) if qid: raise ValueError("mixture already exists: {}".format(qid)) # has part s = [wdi_core.WDItemID(x, 'P527', references=make_ref(rxcui)) for x in ingredient_qids] # instance of s.append(wdi_core.WDItemID('Q12140', 'P31', references=make_ref(rxcui))) # drug s.append(wdi_core.WDItemID('Q79529', 'P31', references=make_ref(rxcui))) # chemical substance s.append(wdi_core.WDItemID('Q169336', 'P31', references=make_ref(rxcui))) # mixture # rxnorm s.append(wdi_core.WDExternalID(rxcui, "P3345", references=make_ref(rxcui))) item = wdi_core.WDItemEngine(data=s) if item.create_new_item: item.set_label(label) item.set_label(label) if not item.get_description(): item.set_description("combination drug") item.write(self.login) qid = item.wd_item_id # update cache self.components_mixture[frozenset(ingredient_qids)] = qid self.mixture_components[qid] = ingredient_qids self.rxnorm_qid[rxcui] = qid return qid def get_or_create(self, label, rxcui, ingredient_qids): if rxcui in self.rxnorm_qid: return self.rxnorm_qid[rxcui] qid = self.get_mixture_qid(ingredient_qids) if qid: return qid return self.create(label, rxcui, ingredient_qids) def get_mixture_qid(self, ingredient_qids): # get the qid for the mixture from the ingredient qids return self.components_mixture.get(frozenset(ingredient_qids))
en
0.660315
create drug/product mixtures Example: https://www.wikidata.org/wiki/Q4663143 # stated in rxnorm # rxcui # retrieved SELECT distinct ?drug ?compound WHERE { values ?chemical {wd:Q12140 wd:Q11173 wd:Q79529} ?drug wdt:P527 ?compound . ?drug wdt:P31 ?chemical . ?compound wdt:P652 ?unii } # to create, needs: label, ingredients, rxcui # check to make sure it doesn't exist # check by ingredients # has part # instance of # drug # chemical substance # mixture # rxnorm # update cache # get the qid for the mixture from the ingredient qids
2.735621
3
excepthook.py
wildbeez/SmokeDetector
0
6630300
# coding=utf-8 from datetime import datetime import os import traceback import threading import sys # noinspection PyPackageRequirements from websocket import WebSocketConnectionClosedException import requests from helpers import log, log_exception from globalvars import GlobalVars # noinspection PyProtectedMember def uncaught_exception(exctype, value, tb): delta = datetime.utcnow() - GlobalVars.startup_utc_date log_exception(exctype, value, tb) if delta.total_seconds() < 180 and exctype not in \ {KeyboardInterrupt, SystemExit, requests.ConnectionError, WebSocketConnectionClosedException}: os._exit(4) else: os._exit(1) def install_thread_excepthook(): """ Workaround for sys.excepthook thread bug From http://spyced.blogspot.com/2007/06/workaround-for-sysexcepthook-bug.html (https://sourceforge.net/tracker/?func=detail&atid=105470&aid=1230540&group_id=5470). Call once from __main__ before creating any threads. If using psyco, call psyco.cannotcompile(threading.Thread.run) since this replaces a new-style class method. """ init_old = threading.Thread.__init__ def init(self, *args, **kwargs): init_old(self, *args, **kwargs) run_old = self.run # noinspection PyBroadException,PyShadowingNames def run_with_except_hook(*args, **kw): try: run_old(*args, **kw) except Exception: # Broad exception makes sense here sys.excepthook(*sys.exc_info()) except BaseException: # KeyboardInterrupt and SystemExit raise self.run = run_with_except_hook threading.Thread.__init__ = init
# coding=utf-8 from datetime import datetime import os import traceback import threading import sys # noinspection PyPackageRequirements from websocket import WebSocketConnectionClosedException import requests from helpers import log, log_exception from globalvars import GlobalVars # noinspection PyProtectedMember def uncaught_exception(exctype, value, tb): delta = datetime.utcnow() - GlobalVars.startup_utc_date log_exception(exctype, value, tb) if delta.total_seconds() < 180 and exctype not in \ {KeyboardInterrupt, SystemExit, requests.ConnectionError, WebSocketConnectionClosedException}: os._exit(4) else: os._exit(1) def install_thread_excepthook(): """ Workaround for sys.excepthook thread bug From http://spyced.blogspot.com/2007/06/workaround-for-sysexcepthook-bug.html (https://sourceforge.net/tracker/?func=detail&atid=105470&aid=1230540&group_id=5470). Call once from __main__ before creating any threads. If using psyco, call psyco.cannotcompile(threading.Thread.run) since this replaces a new-style class method. """ init_old = threading.Thread.__init__ def init(self, *args, **kwargs): init_old(self, *args, **kwargs) run_old = self.run # noinspection PyBroadException,PyShadowingNames def run_with_except_hook(*args, **kw): try: run_old(*args, **kw) except Exception: # Broad exception makes sense here sys.excepthook(*sys.exc_info()) except BaseException: # KeyboardInterrupt and SystemExit raise self.run = run_with_except_hook threading.Thread.__init__ = init
en
0.522295
# coding=utf-8 # noinspection PyPackageRequirements # noinspection PyProtectedMember Workaround for sys.excepthook thread bug From http://spyced.blogspot.com/2007/06/workaround-for-sysexcepthook-bug.html (https://sourceforge.net/tracker/?func=detail&atid=105470&aid=1230540&group_id=5470). Call once from __main__ before creating any threads. If using psyco, call psyco.cannotcompile(threading.Thread.run) since this replaces a new-style class method. # noinspection PyBroadException,PyShadowingNames # Broad exception makes sense here # KeyboardInterrupt and SystemExit
1.890899
2
uni_parser/ebnf/ebnf_ast.py
nonemaw/YeTi
1
6630301
class Ast: def __init__(self, name: str, token_position: tuple, grammars: list = None, grammar: str = None): """ I am an AST tree, grammars are my children `grammars` can be both a spelling string, or a list of Ast instance """ # matched grammar object name self.name = name self.children = grammars self.child = grammar # (line_start, char_start, line_end, char_end) self.position = token_position def __str__(self): return f'{self.name} {self.children} {self.print_position()}' def __repr__(self): return f'{self.name}' def __iter__(self): return iter(self.children) def __getitem__(self, item): if self.children: return self.children.__getitem__(item) else: return self.child def empty(self): self.children.clear() def append(self, obj): self.children.append(obj) def extend(self, obj): self.children.extend(obj.children) def print_position(self) -> str: return f'{self.position[0]}({self.position[1]})...{self.position[2]}({self.position[3]})' def format(self, level=4): indent = ' ' * level end_indent = ' ' * (level - 4) # child case (single grammar case, e.g. a matched literal grammar) if self.child: child = 'CR' if self.child == '\n' else self.child return f'{self.name} < {child} >\n' # children case (a list of various grammars) else: next_indent = ' ' * level children = next_indent.join( map(lambda ast: ast.format(level + 4), self)) return f'{self.name} {{\n{indent}{children}{end_indent}}}\n'
class Ast: def __init__(self, name: str, token_position: tuple, grammars: list = None, grammar: str = None): """ I am an AST tree, grammars are my children `grammars` can be both a spelling string, or a list of Ast instance """ # matched grammar object name self.name = name self.children = grammars self.child = grammar # (line_start, char_start, line_end, char_end) self.position = token_position def __str__(self): return f'{self.name} {self.children} {self.print_position()}' def __repr__(self): return f'{self.name}' def __iter__(self): return iter(self.children) def __getitem__(self, item): if self.children: return self.children.__getitem__(item) else: return self.child def empty(self): self.children.clear() def append(self, obj): self.children.append(obj) def extend(self, obj): self.children.extend(obj.children) def print_position(self) -> str: return f'{self.position[0]}({self.position[1]})...{self.position[2]}({self.position[3]})' def format(self, level=4): indent = ' ' * level end_indent = ' ' * (level - 4) # child case (single grammar case, e.g. a matched literal grammar) if self.child: child = 'CR' if self.child == '\n' else self.child return f'{self.name} < {child} >\n' # children case (a list of various grammars) else: next_indent = ' ' * level children = next_indent.join( map(lambda ast: ast.format(level + 4), self)) return f'{self.name} {{\n{indent}{children}{end_indent}}}\n'
en
0.726645
I am an AST tree, grammars are my children `grammars` can be both a spelling string, or a list of Ast instance # matched grammar object name # (line_start, char_start, line_end, char_end) # child case (single grammar case, e.g. a matched literal grammar) # children case (a list of various grammars)
3.492293
3
src/template_finder.py
OppOeds/botty
0
6630302
import cv2 from screen import Screen from typing import Tuple, Union, List import numpy as np from logger import Logger import time import os from config import Config from utils.misc import load_template class TemplateFinder: def __init__(self, screen: Screen, scale_factor: float = None): """ :param screen: Screen object :param scale_factor: Scale factor that is used for templates. Note: UI and NPC templates will always have scale of 1.0 """ self.last_score = -1.0 self._screen = screen self._config = Config() if scale_factor is None: scale_factor = 0.7 if self._config.general['res'] == "1920_1080" else 1.0 self._scale_factor = scale_factor res_str = "" if self._config.general['res'] == "1920_1080" else "_1280_720" self._templates = { # Templates for node in A5 Town "A5_TOWN_0": [load_template(f"assets/templates{res_str}/a5_town/a5_town_0.png", self._scale_factor), self._scale_factor], "A5_TOWN_0.5": [load_template(f"assets/templates{res_str}/a5_town/a5_town_0.5.png", self._scale_factor), self._scale_factor], "A5_TOWN_1": [load_template(f"assets/templates{res_str}/a5_town/a5_town_1.png", self._scale_factor), self._scale_factor], "A5_TOWN_2": [load_template(f"assets/templates{res_str}/a5_town/a5_town_2.png", self._scale_factor), self._scale_factor], "A5_TOWN_3": [load_template(f"assets/templates{res_str}/a5_town/a5_town_3.png", self._scale_factor), self._scale_factor], "A5_TOWN_4": [load_template(f"assets/templates{res_str}/a5_town/a5_town_4.png", self._scale_factor), self._scale_factor], "A5_TOWN_5": [load_template(f"assets/templates{res_str}/a5_town/a5_town_5.png", self._scale_factor), self._scale_factor], "A5_TOWN_6": [load_template(f"assets/templates{res_str}/a5_town/a5_town_6.png", self._scale_factor), self._scale_factor], "A5_TOWN_7": [load_template(f"assets/templates{res_str}/a5_town/a5_town_7.png", self._scale_factor), self._scale_factor], "A5_TOWN_8": [load_template(f"assets/templates{res_str}/a5_town/a5_town_8.png", self._scale_factor), self._scale_factor], "A5_TOWN_9": [load_template(f"assets/templates{res_str}/a5_town/a5_town_9.png", self._scale_factor), self._scale_factor], "A5_TOWN_10": [load_template(f"assets/templates{res_str}/a5_town/a5_town_10.png", self._scale_factor), self._scale_factor], # Templates for nod at Pindle "PINDLE_0": [load_template(f"assets/templates{res_str}/pindle/pindle_0.png", self._scale_factor), self._scale_factor], "PINDLE_1": [load_template(f"assets/templates{res_str}/pindle/pindle_1.png", self._scale_factor), self._scale_factor], "PINDLE_2": [load_template(f"assets/templates{res_str}/pindle/pindle_2.png", self._scale_factor), self._scale_factor], "PINDLE_3": [load_template(f"assets/templates{res_str}/pindle/pindle_3.png", self._scale_factor), self._scale_factor], "PINDLE_4": [load_template(f"assets/templates{res_str}/pindle/pindle_4.png", self._scale_factor), self._scale_factor], "PINDLE_5": [load_template(f"assets/templates{res_str}/pindle/pindle_5.png", self._scale_factor), self._scale_factor], "PINDLE_6": [load_template(f"assets/templates{res_str}/pindle/pindle_6.png", self._scale_factor), self._scale_factor], "PINDLE_7": [load_template(f"assets/templates{res_str}/pindle/pindle_7.png", self._scale_factor), self._scale_factor], # Templates for nodes to Eldritch "ELDRITCH_START": [load_template(f"assets/templates{res_str}/eldritch/eldritch_start.png", self._scale_factor), self._scale_factor], "ELDRITCH_0": [load_template(f"assets/templates{res_str}/eldritch/eldritch_0.png", self._scale_factor), self._scale_factor], "ELDRITCH_1": [load_template(f"assets/templates{res_str}/eldritch/eldritch_1.png", self._scale_factor), self._scale_factor], "ELDRITCH_2": [load_template(f"assets/templates{res_str}/eldritch/eldritch_2.png", self._scale_factor), self._scale_factor], "ELDRITCH_3": [load_template(f"assets/templates{res_str}/eldritch/eldritch_3.png", self._scale_factor), self._scale_factor], "ELDRITCH_4": [load_template(f"assets/templates{res_str}/eldritch/eldritch_4.png", self._scale_factor), self._scale_factor], # Templates for nodes to Shenk (from Eldritch) "SHENK_0": [load_template(f"assets/templates{res_str}/shenk/shenk_0.png", self._scale_factor), self._scale_factor], "SHENK_1": [load_template(f"assets/templates{res_str}/shenk/shenk_1.png", self._scale_factor), self._scale_factor], "SHENK_2": [load_template(f"assets/templates{res_str}/shenk/shenk_2.png", self._scale_factor), self._scale_factor], "SHENK_3": [load_template(f"assets/templates{res_str}/shenk/shenk_3.png", self._scale_factor), self._scale_factor], "SHENK_4": [load_template(f"assets/templates{res_str}/shenk/shenk_4.png", self._scale_factor), self._scale_factor], "SHENK_6": [load_template(f"assets/templates{res_str}/shenk/shenk_6.png", self._scale_factor), self._scale_factor], "SHENK_7": [load_template(f"assets/templates{res_str}/shenk/shenk_7.png", self._scale_factor), self._scale_factor], "SHENK_8": [load_template(f"assets/templates{res_str}/shenk/shenk_8.png", self._scale_factor), self._scale_factor], "SHENK_9": [load_template(f"assets/templates{res_str}/shenk/shenk_9.png", self._scale_factor), self._scale_factor], "SHENK_10": [load_template(f"assets/templates{res_str}/shenk/shenk_10.png", self._scale_factor), self._scale_factor], "SHENK_11": [load_template(f"assets/templates{res_str}/shenk/shenk_11.png", self._scale_factor), self._scale_factor], "SHENK_12": [load_template(f"assets/templates{res_str}/shenk/shenk_12.png", self._scale_factor), self._scale_factor], "SHENK_13": [load_template(f"assets/templates{res_str}/shenk/shenk_13.png", self._scale_factor), self._scale_factor], "SHENK_15": [load_template(f"assets/templates{res_str}/shenk/shenk_15.png", self._scale_factor), self._scale_factor], "SHENK_16": [load_template(f"assets/templates{res_str}/shenk/shenk_16.png", self._scale_factor), self._scale_factor], "SHENK_17": [load_template(f"assets/templates{res_str}/shenk/shenk_17.png", self._scale_factor), self._scale_factor], # Template Selectables "A5_STASH": [load_template(f"assets/templates{res_str}/a5_stash.png", self._scale_factor), self._scale_factor], "A5_WP": [load_template(f"assets/templates{res_str}/a5_wp.png", self._scale_factor), self._scale_factor], "A5_RED_PORTAL": [load_template(f"assets/templates{res_str}/a5_red_portal.png", self._scale_factor), self._scale_factor], "A5_RED_PORTAL_TEXT": [load_template(f"assets/templates{res_str}/a5_red_portal_with_text.png", self._scale_factor), self._scale_factor], "BLUE_PORTAL": [load_template(f"assets/templates{res_str}/blue_portal.png", self._scale_factor), self._scale_factor], "BLUE_PORTAL_2": [load_template(f"assets/templates{res_str}/blue_portal_2.png", self._scale_factor), self._scale_factor], # Template Inventory / UI "INVENTORY_GOLD_BTN": [load_template(f"assets/templates{res_str}/inventory_gold_btn.png", 1.0), 1.0], "D2_LOGO_HS": [load_template(f"assets/templates{res_str}/d2_logo_hs.png", 1.0), 1.0], "LOADING": [load_template(f"assets/templates{res_str}/loading.png", 1.0), 1.0], "PLAY_BTN": [load_template(f"assets/templates{res_str}/play_btn.png", 1.0), 1.0], "PLAY_BTN_GRAY": [load_template(f"assets/templates{res_str}/play_btn_gray.png", 1.0), 1.0], "NORMAL_BTN": [load_template(f"assets/templates{res_str}/normal_btn.png", 1.0), 1.0], "NIGHTMARE_BTN": [load_template(f"assets/templates{res_str}/nightmare_btn.png", 1.0), 1.0], "HELL_BTN": [load_template(f"assets/templates{res_str}/hell_btn.png", 1.0), 1.0], "SAVE_AND_EXIT_NO_HIGHLIGHT": [load_template(f"assets/templates{res_str}/save_and_exit_no_highlight.png", 1.0), 1.0], "SAVE_AND_EXIT_HIGHLIGHT": [load_template(f"assets/templates{res_str}/save_and_exit_highlight.png", 1.0), 1.0], "SERVER_ISSUES": [load_template(f"assets/templates{res_str}/server_issues.png", 1.0), 1.0], "WAYPOINT_MENU": [load_template(f"assets/templates{res_str}/waypoint_menu.png", 1.0), 1.0], "MERC": [load_template(f"assets/templates{res_str}/merc.png", 1.0), 1.0], "TELE_ACTIVE": [load_template(f"assets/templates{res_str}/tele_active.png", 1.0), 1.0], "TELE_INACTIVE": [load_template(f"assets/templates{res_str}/tele_inactive.png", 1.0), 1.0], "VIGOR": [load_template(f"assets/templates{res_str}/vigor.png", 1.0), 1.0], "REPAIR_BTN": [load_template(f"assets/templates{res_str}/repair_btn.png", 1.0), 1.0], "TP_TOMB": [load_template(f"assets/templates{res_str}/tp_tomb.png", 1.0), 1.0], "SUPER_HEALING_POTION": [load_template(f"assets/templates{res_str}/super_healing_potion.png", 1.0), 1.0], "SUPER_MANA_POTION": [load_template(f"assets/templates{res_str}/super_mana_potion.png", 1.0), 1.0], "FULL_REJUV_POTION": [load_template(f"assets/templates{res_str}/full_rejuv_potion.png", 1.0), 1.0], "REJUV_POTION": [load_template(f"assets/templates{res_str}/rejuv_potion.png", 1.0), 1.0], # NPC: Qual-Kehk "QUAL_FRONT": [load_template(f"assets/npc{res_str}/qual_kehk/qual_front.png", 1.0), 1.0], "QUAL_SIDE": [load_template(f"assets/npc{res_str}/qual_kehk/qual_side.png", 1.0), 1.0], "QUAL_BACK": [load_template(f"assets/npc{res_str}/qual_kehk/qual_back.png", 1.0), 1.0], "QUAL_45": [load_template(f"assets/npc{res_str}/qual_kehk/qual_45.png", 1.0), 1.0], "QUAL_45_2": [load_template(f"assets/npc{res_str}/qual_kehk/qual_45_2.png", 1.0), 1.0], "QUAL_45_3": [load_template(f"assets/npc{res_str}/qual_kehk/qual_45_3.png", 1.0), 1.0], "QUAL_NAME_TAG_WHITE": [load_template(f"assets/npc{res_str}/qual_kehk/qual_kehk_white.png", 1.0), 1.0], "QUAL_NAME_TAG_GOLD": [load_template(f"assets/npc{res_str}/qual_kehk/qual_kehk_gold.png", 1.0), 1.0], "QUAL_RESURRECT_BTN": [load_template(f"assets/npc{res_str}/qual_kehk/resurrect_btn.png", 1.0), 1.0], # NPC: Malah "MALAH_FRONT": [load_template(f"assets/npc{res_str}/malah/malah_front.png", 1.0), 1.0], "MALAH_BACK": [load_template(f"assets/npc{res_str}/malah/malah_BACK.png", 1.0), 1.0], "MALAH_45": [load_template(f"assets/npc{res_str}/malah/malah_45.png", 1.0), 1.0], "MALAH_SIDE": [load_template(f"assets/npc{res_str}/malah/malah_side.png", 1.0), 1.0], "MALAH_SIDE_2": [load_template(f"assets/npc{res_str}/malah/malah_side_2.png", 1.0), 1.0], "MALAH_NAME_TAG_WHITE": [load_template(f"assets/npc{res_str}/malah/malah_white.png", 1.0), 1.0], "MALAH_NAME_TAG_GOLD": [load_template(f"assets/npc{res_str}/malah/malah_gold.png", 1.0), 1.0], "MALAH_TRADE_BTN": [load_template(f"assets/npc{res_str}/malah/trade_btn.png", 1.0), 1.0], # NPC: Larzuk "LARZUK_FRONT": [load_template(f"assets/npc{res_str}/larzuk/larzuk_front.png", 1.0), 1.0], "LARZUK_BACK": [load_template(f"assets/npc{res_str}/larzuk/larzuk_back.png", 1.0), 1.0], "LARZUK_SIDE": [load_template(f"assets/npc{res_str}/larzuk/larzuk_side.png", 1.0), 1.0], "LARZUK_SIDE_2": [load_template(f"assets/npc{res_str}/larzuk/larzuk_side_2.png", 1.0), 1.0], "LARZUK_SIDE_3": [load_template(f"assets/npc{res_str}/larzuk/larzuk_side_3.png", 1.0), 1.0], "LARZUK_NAME_TAG_WHITE": [load_template(f"assets/npc{res_str}/larzuk/larzuk_white.png", 1.0), 1.0], "LARZUK_NAME_TAG_GOLD": [load_template(f"assets/npc{res_str}/larzuk/larzuk_gold.png", 1.0), 1.0], "LARZUK_TRADE_REPAIR_BTN": [load_template(f"assets/npc{res_str}/larzuk/trade_repair_btn.png", 1.0), 1.0], # NPC: Anya "ANYA_FRONT": [load_template(f"assets/npc{res_str}/anya/anya_front.png", 1.0), 1.0], "ANYA_BACK": [load_template(f"assets/npc{res_str}/anya/anya_back.png", 1.0), 1.0], "ANYA_SIDE": [load_template(f"assets/npc{res_str}/anya/anya_side.png", 1.0), 1.0], "ANYA_NAME_TAG_GOLD": [load_template(f"assets/npc{res_str}/anya/anya_gold.png", 1.0), 1.0], "ANYA_NAME_TAG_WHITE": [load_template(f"assets/npc{res_str}/anya/anya_white.png", 1.0), 1.0], "ANYA_TRADE_BTN": [load_template(f"assets/npc{res_str}/anya/trade_btn.png", 1.0), 1.0], } def get_template(self, key): return self._templates[key][0] def search( self, ref: Union[str, np.ndarray], inp_img: np.ndarray, threshold: float = None, roi: List[float] = None, normalize_monitor: bool = False, ) -> Tuple[bool, Tuple[float, float]]: """ Search for a template in an image :param ref: Either key of a already loaded template or a image which is used as template :param inp_img: Image in which the template will be searched :param threshold: Threshold which determines if a template is found or not :param roi: Region of Interest of the inp_img to restrict search area. Format [left, top, width, height] :return: Returns found flag and the position as [bool, [x, y]]. If not found, position will be None. Position in image space. """ threshold = self._config.advanced_options["template_threshold"] if threshold is None else threshold if roi is None: # if no roi is provided roi = full inp_img roi = [0, 0, inp_img.shape[1], inp_img.shape[0]] rx, ry, rw, rh = roi inp_img = inp_img[ry:ry + rh, rx:rx + rw] if type(ref) == str: template = self._templates[ref][0] scale = self._templates[ref][1] else: template = ref scale = 1.0 img: np.ndarray = cv2.resize(inp_img, None, fx=scale, fy=scale, interpolation=cv2.INTER_NEAREST) rx *= scale ry *= scale rw *= scale rh *= scale if img.shape[0] > template.shape[0] and img.shape[1] > template.shape[1]: res = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED) _, max_val, _, max_pos = cv2.minMaxLoc(res) self.last_score = max_val if max_val > threshold: ref_point = (max_pos[0] + int(template.shape[1] * 0.5) + rx, max_pos[1] + int(template.shape[0] * 0.5) + ry) ref_point = (int(ref_point[0] * (1.0 / scale)), int(ref_point[1] * (1.0 / scale))) if normalize_monitor: ref_point = self._screen.convert_screen_to_monitor(ref_point) return True, ref_point return False, None def search_and_wait( self, ref: Union[str, List[str]], roi: List[float] = None, time_out: float = None, threshold: float = None, take_ss: bool = True ) -> Tuple[bool, Tuple[float, float]]: """ Helper function that will loop and keep searching for a template :param ref: Key of template which has been loaded beforehand :param time_out: After this amount of time the search will stop and it will return [False, None] :param threshold: Adapt threshold for being found :param take_ss: Bool value to take screenshot on timeout or not (flag must still be set in params!) Rest of params same as TemplateFinder.search() """ threshold = self._config.advanced_options["template_threshold"] if threshold is None else threshold Logger.debug(f"Waiting for Template {ref}") start = time.time() while 1: img = self._screen.grab() is_loading_black_roi = np.average(img[:, 0:self._config.ui_roi["loading_left_black"][2]]) < 1.0 if type(ref) is str: ref = [ref] for x in ref: success, pos = self.search(x, img, roi=roi, threshold=threshold) if success: break if not is_loading_black_roi: if success: return True, pos elif time_out is not None and (time.time() - start) > time_out: if self._config.general["info_screenshots"] and take_ss: cv2.imwrite(f"./info_screenshots/info_wait_for_{ref}_time_out_" + time.strftime("%Y%m%d_%H%M%S") + ".png", img) return False, None # Testing: Have whatever you want to find on the screen if __name__ == "__main__": from screen import Screen from config import Config config = Config() screen = Screen(config.general["monitor"]) template_finder = TemplateFinder(screen) search_templates = ["ELDRITCH_4", "ELDRITCH_3", "ELDRITCH_2", "ELDRITCH_1"] scores = {} while 1: # img = cv2.imread("") img = screen.grab() display_img = img.copy() for template_name in search_templates: success, pos = template_finder.search(template_name, img) scores[template_name] = template_finder.last_score if success: cv2.putText(display_img, str(template_name), pos, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA) cv2.circle(display_img, pos, 7, (255, 0, 0), thickness=5) display_img = cv2.resize(display_img, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_NEAREST) print(scores) cv2.imshow('test', display_img) key = cv2.waitKey(1)
import cv2 from screen import Screen from typing import Tuple, Union, List import numpy as np from logger import Logger import time import os from config import Config from utils.misc import load_template class TemplateFinder: def __init__(self, screen: Screen, scale_factor: float = None): """ :param screen: Screen object :param scale_factor: Scale factor that is used for templates. Note: UI and NPC templates will always have scale of 1.0 """ self.last_score = -1.0 self._screen = screen self._config = Config() if scale_factor is None: scale_factor = 0.7 if self._config.general['res'] == "1920_1080" else 1.0 self._scale_factor = scale_factor res_str = "" if self._config.general['res'] == "1920_1080" else "_1280_720" self._templates = { # Templates for node in A5 Town "A5_TOWN_0": [load_template(f"assets/templates{res_str}/a5_town/a5_town_0.png", self._scale_factor), self._scale_factor], "A5_TOWN_0.5": [load_template(f"assets/templates{res_str}/a5_town/a5_town_0.5.png", self._scale_factor), self._scale_factor], "A5_TOWN_1": [load_template(f"assets/templates{res_str}/a5_town/a5_town_1.png", self._scale_factor), self._scale_factor], "A5_TOWN_2": [load_template(f"assets/templates{res_str}/a5_town/a5_town_2.png", self._scale_factor), self._scale_factor], "A5_TOWN_3": [load_template(f"assets/templates{res_str}/a5_town/a5_town_3.png", self._scale_factor), self._scale_factor], "A5_TOWN_4": [load_template(f"assets/templates{res_str}/a5_town/a5_town_4.png", self._scale_factor), self._scale_factor], "A5_TOWN_5": [load_template(f"assets/templates{res_str}/a5_town/a5_town_5.png", self._scale_factor), self._scale_factor], "A5_TOWN_6": [load_template(f"assets/templates{res_str}/a5_town/a5_town_6.png", self._scale_factor), self._scale_factor], "A5_TOWN_7": [load_template(f"assets/templates{res_str}/a5_town/a5_town_7.png", self._scale_factor), self._scale_factor], "A5_TOWN_8": [load_template(f"assets/templates{res_str}/a5_town/a5_town_8.png", self._scale_factor), self._scale_factor], "A5_TOWN_9": [load_template(f"assets/templates{res_str}/a5_town/a5_town_9.png", self._scale_factor), self._scale_factor], "A5_TOWN_10": [load_template(f"assets/templates{res_str}/a5_town/a5_town_10.png", self._scale_factor), self._scale_factor], # Templates for nod at Pindle "PINDLE_0": [load_template(f"assets/templates{res_str}/pindle/pindle_0.png", self._scale_factor), self._scale_factor], "PINDLE_1": [load_template(f"assets/templates{res_str}/pindle/pindle_1.png", self._scale_factor), self._scale_factor], "PINDLE_2": [load_template(f"assets/templates{res_str}/pindle/pindle_2.png", self._scale_factor), self._scale_factor], "PINDLE_3": [load_template(f"assets/templates{res_str}/pindle/pindle_3.png", self._scale_factor), self._scale_factor], "PINDLE_4": [load_template(f"assets/templates{res_str}/pindle/pindle_4.png", self._scale_factor), self._scale_factor], "PINDLE_5": [load_template(f"assets/templates{res_str}/pindle/pindle_5.png", self._scale_factor), self._scale_factor], "PINDLE_6": [load_template(f"assets/templates{res_str}/pindle/pindle_6.png", self._scale_factor), self._scale_factor], "PINDLE_7": [load_template(f"assets/templates{res_str}/pindle/pindle_7.png", self._scale_factor), self._scale_factor], # Templates for nodes to Eldritch "ELDRITCH_START": [load_template(f"assets/templates{res_str}/eldritch/eldritch_start.png", self._scale_factor), self._scale_factor], "ELDRITCH_0": [load_template(f"assets/templates{res_str}/eldritch/eldritch_0.png", self._scale_factor), self._scale_factor], "ELDRITCH_1": [load_template(f"assets/templates{res_str}/eldritch/eldritch_1.png", self._scale_factor), self._scale_factor], "ELDRITCH_2": [load_template(f"assets/templates{res_str}/eldritch/eldritch_2.png", self._scale_factor), self._scale_factor], "ELDRITCH_3": [load_template(f"assets/templates{res_str}/eldritch/eldritch_3.png", self._scale_factor), self._scale_factor], "ELDRITCH_4": [load_template(f"assets/templates{res_str}/eldritch/eldritch_4.png", self._scale_factor), self._scale_factor], # Templates for nodes to Shenk (from Eldritch) "SHENK_0": [load_template(f"assets/templates{res_str}/shenk/shenk_0.png", self._scale_factor), self._scale_factor], "SHENK_1": [load_template(f"assets/templates{res_str}/shenk/shenk_1.png", self._scale_factor), self._scale_factor], "SHENK_2": [load_template(f"assets/templates{res_str}/shenk/shenk_2.png", self._scale_factor), self._scale_factor], "SHENK_3": [load_template(f"assets/templates{res_str}/shenk/shenk_3.png", self._scale_factor), self._scale_factor], "SHENK_4": [load_template(f"assets/templates{res_str}/shenk/shenk_4.png", self._scale_factor), self._scale_factor], "SHENK_6": [load_template(f"assets/templates{res_str}/shenk/shenk_6.png", self._scale_factor), self._scale_factor], "SHENK_7": [load_template(f"assets/templates{res_str}/shenk/shenk_7.png", self._scale_factor), self._scale_factor], "SHENK_8": [load_template(f"assets/templates{res_str}/shenk/shenk_8.png", self._scale_factor), self._scale_factor], "SHENK_9": [load_template(f"assets/templates{res_str}/shenk/shenk_9.png", self._scale_factor), self._scale_factor], "SHENK_10": [load_template(f"assets/templates{res_str}/shenk/shenk_10.png", self._scale_factor), self._scale_factor], "SHENK_11": [load_template(f"assets/templates{res_str}/shenk/shenk_11.png", self._scale_factor), self._scale_factor], "SHENK_12": [load_template(f"assets/templates{res_str}/shenk/shenk_12.png", self._scale_factor), self._scale_factor], "SHENK_13": [load_template(f"assets/templates{res_str}/shenk/shenk_13.png", self._scale_factor), self._scale_factor], "SHENK_15": [load_template(f"assets/templates{res_str}/shenk/shenk_15.png", self._scale_factor), self._scale_factor], "SHENK_16": [load_template(f"assets/templates{res_str}/shenk/shenk_16.png", self._scale_factor), self._scale_factor], "SHENK_17": [load_template(f"assets/templates{res_str}/shenk/shenk_17.png", self._scale_factor), self._scale_factor], # Template Selectables "A5_STASH": [load_template(f"assets/templates{res_str}/a5_stash.png", self._scale_factor), self._scale_factor], "A5_WP": [load_template(f"assets/templates{res_str}/a5_wp.png", self._scale_factor), self._scale_factor], "A5_RED_PORTAL": [load_template(f"assets/templates{res_str}/a5_red_portal.png", self._scale_factor), self._scale_factor], "A5_RED_PORTAL_TEXT": [load_template(f"assets/templates{res_str}/a5_red_portal_with_text.png", self._scale_factor), self._scale_factor], "BLUE_PORTAL": [load_template(f"assets/templates{res_str}/blue_portal.png", self._scale_factor), self._scale_factor], "BLUE_PORTAL_2": [load_template(f"assets/templates{res_str}/blue_portal_2.png", self._scale_factor), self._scale_factor], # Template Inventory / UI "INVENTORY_GOLD_BTN": [load_template(f"assets/templates{res_str}/inventory_gold_btn.png", 1.0), 1.0], "D2_LOGO_HS": [load_template(f"assets/templates{res_str}/d2_logo_hs.png", 1.0), 1.0], "LOADING": [load_template(f"assets/templates{res_str}/loading.png", 1.0), 1.0], "PLAY_BTN": [load_template(f"assets/templates{res_str}/play_btn.png", 1.0), 1.0], "PLAY_BTN_GRAY": [load_template(f"assets/templates{res_str}/play_btn_gray.png", 1.0), 1.0], "NORMAL_BTN": [load_template(f"assets/templates{res_str}/normal_btn.png", 1.0), 1.0], "NIGHTMARE_BTN": [load_template(f"assets/templates{res_str}/nightmare_btn.png", 1.0), 1.0], "HELL_BTN": [load_template(f"assets/templates{res_str}/hell_btn.png", 1.0), 1.0], "SAVE_AND_EXIT_NO_HIGHLIGHT": [load_template(f"assets/templates{res_str}/save_and_exit_no_highlight.png", 1.0), 1.0], "SAVE_AND_EXIT_HIGHLIGHT": [load_template(f"assets/templates{res_str}/save_and_exit_highlight.png", 1.0), 1.0], "SERVER_ISSUES": [load_template(f"assets/templates{res_str}/server_issues.png", 1.0), 1.0], "WAYPOINT_MENU": [load_template(f"assets/templates{res_str}/waypoint_menu.png", 1.0), 1.0], "MERC": [load_template(f"assets/templates{res_str}/merc.png", 1.0), 1.0], "TELE_ACTIVE": [load_template(f"assets/templates{res_str}/tele_active.png", 1.0), 1.0], "TELE_INACTIVE": [load_template(f"assets/templates{res_str}/tele_inactive.png", 1.0), 1.0], "VIGOR": [load_template(f"assets/templates{res_str}/vigor.png", 1.0), 1.0], "REPAIR_BTN": [load_template(f"assets/templates{res_str}/repair_btn.png", 1.0), 1.0], "TP_TOMB": [load_template(f"assets/templates{res_str}/tp_tomb.png", 1.0), 1.0], "SUPER_HEALING_POTION": [load_template(f"assets/templates{res_str}/super_healing_potion.png", 1.0), 1.0], "SUPER_MANA_POTION": [load_template(f"assets/templates{res_str}/super_mana_potion.png", 1.0), 1.0], "FULL_REJUV_POTION": [load_template(f"assets/templates{res_str}/full_rejuv_potion.png", 1.0), 1.0], "REJUV_POTION": [load_template(f"assets/templates{res_str}/rejuv_potion.png", 1.0), 1.0], # NPC: Qual-Kehk "QUAL_FRONT": [load_template(f"assets/npc{res_str}/qual_kehk/qual_front.png", 1.0), 1.0], "QUAL_SIDE": [load_template(f"assets/npc{res_str}/qual_kehk/qual_side.png", 1.0), 1.0], "QUAL_BACK": [load_template(f"assets/npc{res_str}/qual_kehk/qual_back.png", 1.0), 1.0], "QUAL_45": [load_template(f"assets/npc{res_str}/qual_kehk/qual_45.png", 1.0), 1.0], "QUAL_45_2": [load_template(f"assets/npc{res_str}/qual_kehk/qual_45_2.png", 1.0), 1.0], "QUAL_45_3": [load_template(f"assets/npc{res_str}/qual_kehk/qual_45_3.png", 1.0), 1.0], "QUAL_NAME_TAG_WHITE": [load_template(f"assets/npc{res_str}/qual_kehk/qual_kehk_white.png", 1.0), 1.0], "QUAL_NAME_TAG_GOLD": [load_template(f"assets/npc{res_str}/qual_kehk/qual_kehk_gold.png", 1.0), 1.0], "QUAL_RESURRECT_BTN": [load_template(f"assets/npc{res_str}/qual_kehk/resurrect_btn.png", 1.0), 1.0], # NPC: Malah "MALAH_FRONT": [load_template(f"assets/npc{res_str}/malah/malah_front.png", 1.0), 1.0], "MALAH_BACK": [load_template(f"assets/npc{res_str}/malah/malah_BACK.png", 1.0), 1.0], "MALAH_45": [load_template(f"assets/npc{res_str}/malah/malah_45.png", 1.0), 1.0], "MALAH_SIDE": [load_template(f"assets/npc{res_str}/malah/malah_side.png", 1.0), 1.0], "MALAH_SIDE_2": [load_template(f"assets/npc{res_str}/malah/malah_side_2.png", 1.0), 1.0], "MALAH_NAME_TAG_WHITE": [load_template(f"assets/npc{res_str}/malah/malah_white.png", 1.0), 1.0], "MALAH_NAME_TAG_GOLD": [load_template(f"assets/npc{res_str}/malah/malah_gold.png", 1.0), 1.0], "MALAH_TRADE_BTN": [load_template(f"assets/npc{res_str}/malah/trade_btn.png", 1.0), 1.0], # NPC: Larzuk "LARZUK_FRONT": [load_template(f"assets/npc{res_str}/larzuk/larzuk_front.png", 1.0), 1.0], "LARZUK_BACK": [load_template(f"assets/npc{res_str}/larzuk/larzuk_back.png", 1.0), 1.0], "LARZUK_SIDE": [load_template(f"assets/npc{res_str}/larzuk/larzuk_side.png", 1.0), 1.0], "LARZUK_SIDE_2": [load_template(f"assets/npc{res_str}/larzuk/larzuk_side_2.png", 1.0), 1.0], "LARZUK_SIDE_3": [load_template(f"assets/npc{res_str}/larzuk/larzuk_side_3.png", 1.0), 1.0], "LARZUK_NAME_TAG_WHITE": [load_template(f"assets/npc{res_str}/larzuk/larzuk_white.png", 1.0), 1.0], "LARZUK_NAME_TAG_GOLD": [load_template(f"assets/npc{res_str}/larzuk/larzuk_gold.png", 1.0), 1.0], "LARZUK_TRADE_REPAIR_BTN": [load_template(f"assets/npc{res_str}/larzuk/trade_repair_btn.png", 1.0), 1.0], # NPC: Anya "ANYA_FRONT": [load_template(f"assets/npc{res_str}/anya/anya_front.png", 1.0), 1.0], "ANYA_BACK": [load_template(f"assets/npc{res_str}/anya/anya_back.png", 1.0), 1.0], "ANYA_SIDE": [load_template(f"assets/npc{res_str}/anya/anya_side.png", 1.0), 1.0], "ANYA_NAME_TAG_GOLD": [load_template(f"assets/npc{res_str}/anya/anya_gold.png", 1.0), 1.0], "ANYA_NAME_TAG_WHITE": [load_template(f"assets/npc{res_str}/anya/anya_white.png", 1.0), 1.0], "ANYA_TRADE_BTN": [load_template(f"assets/npc{res_str}/anya/trade_btn.png", 1.0), 1.0], } def get_template(self, key): return self._templates[key][0] def search( self, ref: Union[str, np.ndarray], inp_img: np.ndarray, threshold: float = None, roi: List[float] = None, normalize_monitor: bool = False, ) -> Tuple[bool, Tuple[float, float]]: """ Search for a template in an image :param ref: Either key of a already loaded template or a image which is used as template :param inp_img: Image in which the template will be searched :param threshold: Threshold which determines if a template is found or not :param roi: Region of Interest of the inp_img to restrict search area. Format [left, top, width, height] :return: Returns found flag and the position as [bool, [x, y]]. If not found, position will be None. Position in image space. """ threshold = self._config.advanced_options["template_threshold"] if threshold is None else threshold if roi is None: # if no roi is provided roi = full inp_img roi = [0, 0, inp_img.shape[1], inp_img.shape[0]] rx, ry, rw, rh = roi inp_img = inp_img[ry:ry + rh, rx:rx + rw] if type(ref) == str: template = self._templates[ref][0] scale = self._templates[ref][1] else: template = ref scale = 1.0 img: np.ndarray = cv2.resize(inp_img, None, fx=scale, fy=scale, interpolation=cv2.INTER_NEAREST) rx *= scale ry *= scale rw *= scale rh *= scale if img.shape[0] > template.shape[0] and img.shape[1] > template.shape[1]: res = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED) _, max_val, _, max_pos = cv2.minMaxLoc(res) self.last_score = max_val if max_val > threshold: ref_point = (max_pos[0] + int(template.shape[1] * 0.5) + rx, max_pos[1] + int(template.shape[0] * 0.5) + ry) ref_point = (int(ref_point[0] * (1.0 / scale)), int(ref_point[1] * (1.0 / scale))) if normalize_monitor: ref_point = self._screen.convert_screen_to_monitor(ref_point) return True, ref_point return False, None def search_and_wait( self, ref: Union[str, List[str]], roi: List[float] = None, time_out: float = None, threshold: float = None, take_ss: bool = True ) -> Tuple[bool, Tuple[float, float]]: """ Helper function that will loop and keep searching for a template :param ref: Key of template which has been loaded beforehand :param time_out: After this amount of time the search will stop and it will return [False, None] :param threshold: Adapt threshold for being found :param take_ss: Bool value to take screenshot on timeout or not (flag must still be set in params!) Rest of params same as TemplateFinder.search() """ threshold = self._config.advanced_options["template_threshold"] if threshold is None else threshold Logger.debug(f"Waiting for Template {ref}") start = time.time() while 1: img = self._screen.grab() is_loading_black_roi = np.average(img[:, 0:self._config.ui_roi["loading_left_black"][2]]) < 1.0 if type(ref) is str: ref = [ref] for x in ref: success, pos = self.search(x, img, roi=roi, threshold=threshold) if success: break if not is_loading_black_roi: if success: return True, pos elif time_out is not None and (time.time() - start) > time_out: if self._config.general["info_screenshots"] and take_ss: cv2.imwrite(f"./info_screenshots/info_wait_for_{ref}_time_out_" + time.strftime("%Y%m%d_%H%M%S") + ".png", img) return False, None # Testing: Have whatever you want to find on the screen if __name__ == "__main__": from screen import Screen from config import Config config = Config() screen = Screen(config.general["monitor"]) template_finder = TemplateFinder(screen) search_templates = ["ELDRITCH_4", "ELDRITCH_3", "ELDRITCH_2", "ELDRITCH_1"] scores = {} while 1: # img = cv2.imread("") img = screen.grab() display_img = img.copy() for template_name in search_templates: success, pos = template_finder.search(template_name, img) scores[template_name] = template_finder.last_score if success: cv2.putText(display_img, str(template_name), pos, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2, cv2.LINE_AA) cv2.circle(display_img, pos, 7, (255, 0, 0), thickness=5) display_img = cv2.resize(display_img, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_NEAREST) print(scores) cv2.imshow('test', display_img) key = cv2.waitKey(1)
en
0.805381
:param screen: Screen object :param scale_factor: Scale factor that is used for templates. Note: UI and NPC templates will always have scale of 1.0 # Templates for node in A5 Town # Templates for nod at Pindle # Templates for nodes to Eldritch # Templates for nodes to Shenk (from Eldritch) # Template Selectables # Template Inventory / UI # NPC: Qual-Kehk # NPC: Malah # NPC: Larzuk # NPC: Anya Search for a template in an image :param ref: Either key of a already loaded template or a image which is used as template :param inp_img: Image in which the template will be searched :param threshold: Threshold which determines if a template is found or not :param roi: Region of Interest of the inp_img to restrict search area. Format [left, top, width, height] :return: Returns found flag and the position as [bool, [x, y]]. If not found, position will be None. Position in image space. # if no roi is provided roi = full inp_img Helper function that will loop and keep searching for a template :param ref: Key of template which has been loaded beforehand :param time_out: After this amount of time the search will stop and it will return [False, None] :param threshold: Adapt threshold for being found :param take_ss: Bool value to take screenshot on timeout or not (flag must still be set in params!) Rest of params same as TemplateFinder.search() # Testing: Have whatever you want to find on the screen # img = cv2.imread("")
2.439086
2
graphnas/gnn_model_manager.py
GraphNAS/GraphNAS
94
6630303
import os import time import numpy as np import torch import torch.nn.functional as F from dgl import DGLGraph from dgl.data import load_data from graphnas.gnn import GraphNet from graphnas.utils.model_utils import EarlyStop, TopAverage, process_action def load(args, save_file=".npy"): save_file = args.dataset + save_file if os.path.exists(save_file): return np.load(save_file).tolist() else: datas = load_data(args) np.save(save_file, datas) return datas def evaluate(output, labels, mask): _, indices = torch.max(output, dim=1) correct = torch.sum(indices[mask] == labels[mask]) return correct.item() * 1.0 / mask.sum().item() # manager the train process of GNN on citation dataset class CitationGNNManager(object): def __init__(self, args): self.args = args if hasattr(args, 'dataset') and args.dataset in ["cora", "citeseer", "pubmed"]: self.data = load(args) self.args.in_feats = self.in_feats = self.data.features.shape[1] self.args.num_class = self.n_classes = self.data.num_labels self.early_stop_manager = EarlyStop(10) self.reward_manager = TopAverage(10) self.args = args self.drop_out = args.in_drop self.multi_label = args.multi_label self.lr = args.lr self.weight_decay = args.weight_decay self.retrain_epochs = args.retrain_epochs self.loss_fn = torch.nn.BCELoss() self.epochs = args.epochs self.train_graph_index = 0 self.train_set_length = 10 self.param_file = args.param_file self.shared_params = None self.loss_fn = torch.nn.functional.nll_loss def load_param(self): # don't share param pass def save_param(self, model, update_all=False): # don't share param pass # train from scratch def evaluate(self, actions=None, format="two"): actions = process_action(actions, format, self.args) print("train action:", actions) # create model model = self.build_gnn(actions) if self.args.cuda: model.cuda() # use optimizer optimizer = torch.optim.Adam(model.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay) try: model, val_acc, test_acc = self.run_model(model, optimizer, self.loss_fn, self.data, self.epochs, cuda=self.args.cuda, return_best=True, half_stop_score=max(self.reward_manager.get_top_average() * 0.7, 0.4)) except RuntimeError as e: if "cuda" in str(e) or "CUDA" in str(e): print(e) val_acc = 0 test_acc = 0 else: raise e return val_acc, test_acc # train from scratch def train(self, actions=None, format="two"): origin_action = actions actions = process_action(actions, format, self.args) print("train action:", actions) # create model model = self.build_gnn(actions) try: if self.args.cuda: model.cuda() # use optimizer optimizer = torch.optim.Adam(model.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay) model, val_acc = self.run_model(model, optimizer, self.loss_fn, self.data, self.epochs, cuda=self.args.cuda, half_stop_score=max(self.reward_manager.get_top_average() * 0.7, 0.4)) except RuntimeError as e: if "cuda" in str(e) or "CUDA" in str(e): print(e) val_acc = 0 else: raise e reward = self.reward_manager.get_reward(val_acc) self.save_param(model, update_all=(reward > 0)) self.record_action_info(origin_action, reward, val_acc) return reward, val_acc def record_action_info(self, origin_action, reward, val_acc): with open(self.args.dataset + "_" + self.args.search_mode + self.args.submanager_log_file, "a") as file: # with open(f'{self.args.dataset}_{self.args.search_mode}_{self.args.format}_manager_result.txt', "a") as file: file.write(str(origin_action)) file.write(";") file.write(str(reward)) file.write(";") file.write(str(val_acc)) file.write("\n") def build_gnn(self, actions): model = GraphNet(actions, self.in_feats, self.n_classes, drop_out=self.args.in_drop, multi_label=False, batch_normal=False) return model def retrain(self, actions, format="two"): return self.train(actions, format) def test_with_param(self, actions=None, format="two", with_retrain=False): return self.train(actions, format) @staticmethod def run_model(model, optimizer, loss_fn, data, epochs, early_stop=5, tmp_model_file="geo_citation.pkl", half_stop_score=0, return_best=False, cuda=True, need_early_stop=False, show_info=False): dur = [] begin_time = time.time() best_performance = 0 min_val_loss = float("inf") min_train_loss = float("inf") model_val_acc = 0 features, g, labels, mask, val_mask, test_mask, n_edges = CitationGNNManager.prepare_data(data, cuda) for epoch in range(1, epochs + 1): model.train() t0 = time.time() # forward logits = model(features, g) logits = F.log_softmax(logits, 1) loss = loss_fn(logits[mask], labels[mask]) optimizer.zero_grad() loss.backward() optimizer.step() train_loss = loss.item() # evaluate model.eval() logits = model(features, g) logits = F.log_softmax(logits, 1) train_acc = evaluate(logits, labels, mask) dur.append(time.time() - t0) val_loss = float(loss_fn(logits[val_mask], labels[val_mask])) val_acc = evaluate(logits, labels, val_mask) test_acc = evaluate(logits, labels, test_mask) if val_loss < min_val_loss: # and train_loss < min_train_loss min_val_loss = val_loss min_train_loss = train_loss model_val_acc = val_acc if test_acc > best_performance: best_performance = test_acc if show_info: print( "Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | acc {:.4f} | val_acc {:.4f} | test_acc {:.4f}".format( epoch, loss.item(), np.mean(dur), train_acc, val_acc, test_acc)) end_time = time.time() print("Each Epoch Cost Time: %f " % ((end_time - begin_time) / epoch)) print(f"val_score:{model_val_acc},test_score:{best_performance}") if return_best: return model, model_val_acc, best_performance else: return model, model_val_acc # @staticmethod # def run_model(model, optimizer, loss_fn, data, epochs, early_stop=5, tmp_model_file="citation_testing_2.pkl", # half_stop_score=0, return_best=False, cuda=True, need_early_stop=False): # # early_stop_manager = EarlyStop(early_stop) # # initialize graph # dur = [] # begin_time = time.time() # features, g, labels, mask, val_mask, test_mask, n_edges = CitationGNNManager.prepare_data(data, cuda) # saved = False # best_performance = 0 # for epoch in range(1, epochs + 1): # should_break = False # t0 = time.time() # # model.train() # logits = model(features, g) # logits = F.log_softmax(logits, 1) # loss = loss_fn(logits[mask], labels[mask]) # optimizer.zero_grad() # loss.backward() # optimizer.step() # # model.eval() # logits = model(features, g) # logits = F.log_softmax(logits, 1) # train_acc = evaluate(logits, labels, mask) # train_loss = float(loss) # dur.append(time.time() - t0) # # val_loss = float(loss_fn(logits[val_mask], labels[val_mask])) # val_acc = evaluate(logits, labels, val_mask) # test_acc = evaluate(logits, labels, test_mask) # # print( # "Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | acc {:.4f} | val_acc {:.4f} | test_acc {:.4f}".format( # epoch, loss.item(), np.mean(dur), train_acc, val_acc, test_acc)) # # end_time = time.time() # print("Each Epoch Cost Time: %f " % ((end_time - begin_time) / epoch)) # # print("Test Accuracy {:.4f}".format(acc)) # if early_stop_manager.should_save(train_loss, train_acc, val_loss, val_acc): # saved = True # torch.save(model.state_dict(), tmp_model_file) # if test_acc > best_performance: # best_performance = test_acc # if need_early_stop and early_stop_manager.should_stop(train_loss, train_acc, val_loss, val_acc): # should_break = True # if should_break and epoch > 50: # print("early stop") # break # if half_stop_score > 0 and epoch > (epochs / 2) and val_acc < half_stop_score: # print("half_stop") # break # if saved: # model.load_state_dict(torch.load(tmp_model_file)) # model.eval() # val_acc = evaluate(model(features, g), labels, val_mask) # print(evaluate(model(features, g), labels, test_mask)) # if return_best: # return model, val_acc, best_performance # else: # return model, val_acc @staticmethod def prepare_data(data, cuda=True): features = torch.FloatTensor(data.features) labels = torch.LongTensor(data.labels) mask = torch.ByteTensor(data.train_mask) test_mask = torch.ByteTensor(data.test_mask) val_mask = torch.ByteTensor(data.val_mask) n_edges = data.graph.number_of_edges() # create DGL graph g = DGLGraph(data.graph) # add self loop g.add_edges(g.nodes(), g.nodes()) degs = g.in_degrees().float() norm = torch.pow(degs, -0.5) norm[torch.isinf(norm)] = 0 if cuda: features = features.cuda() labels = labels.cuda() norm = norm.cuda() g.ndata['norm'] = norm.unsqueeze(1) return features, g, labels, mask, val_mask, test_mask, n_edges
import os import time import numpy as np import torch import torch.nn.functional as F from dgl import DGLGraph from dgl.data import load_data from graphnas.gnn import GraphNet from graphnas.utils.model_utils import EarlyStop, TopAverage, process_action def load(args, save_file=".npy"): save_file = args.dataset + save_file if os.path.exists(save_file): return np.load(save_file).tolist() else: datas = load_data(args) np.save(save_file, datas) return datas def evaluate(output, labels, mask): _, indices = torch.max(output, dim=1) correct = torch.sum(indices[mask] == labels[mask]) return correct.item() * 1.0 / mask.sum().item() # manager the train process of GNN on citation dataset class CitationGNNManager(object): def __init__(self, args): self.args = args if hasattr(args, 'dataset') and args.dataset in ["cora", "citeseer", "pubmed"]: self.data = load(args) self.args.in_feats = self.in_feats = self.data.features.shape[1] self.args.num_class = self.n_classes = self.data.num_labels self.early_stop_manager = EarlyStop(10) self.reward_manager = TopAverage(10) self.args = args self.drop_out = args.in_drop self.multi_label = args.multi_label self.lr = args.lr self.weight_decay = args.weight_decay self.retrain_epochs = args.retrain_epochs self.loss_fn = torch.nn.BCELoss() self.epochs = args.epochs self.train_graph_index = 0 self.train_set_length = 10 self.param_file = args.param_file self.shared_params = None self.loss_fn = torch.nn.functional.nll_loss def load_param(self): # don't share param pass def save_param(self, model, update_all=False): # don't share param pass # train from scratch def evaluate(self, actions=None, format="two"): actions = process_action(actions, format, self.args) print("train action:", actions) # create model model = self.build_gnn(actions) if self.args.cuda: model.cuda() # use optimizer optimizer = torch.optim.Adam(model.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay) try: model, val_acc, test_acc = self.run_model(model, optimizer, self.loss_fn, self.data, self.epochs, cuda=self.args.cuda, return_best=True, half_stop_score=max(self.reward_manager.get_top_average() * 0.7, 0.4)) except RuntimeError as e: if "cuda" in str(e) or "CUDA" in str(e): print(e) val_acc = 0 test_acc = 0 else: raise e return val_acc, test_acc # train from scratch def train(self, actions=None, format="two"): origin_action = actions actions = process_action(actions, format, self.args) print("train action:", actions) # create model model = self.build_gnn(actions) try: if self.args.cuda: model.cuda() # use optimizer optimizer = torch.optim.Adam(model.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay) model, val_acc = self.run_model(model, optimizer, self.loss_fn, self.data, self.epochs, cuda=self.args.cuda, half_stop_score=max(self.reward_manager.get_top_average() * 0.7, 0.4)) except RuntimeError as e: if "cuda" in str(e) or "CUDA" in str(e): print(e) val_acc = 0 else: raise e reward = self.reward_manager.get_reward(val_acc) self.save_param(model, update_all=(reward > 0)) self.record_action_info(origin_action, reward, val_acc) return reward, val_acc def record_action_info(self, origin_action, reward, val_acc): with open(self.args.dataset + "_" + self.args.search_mode + self.args.submanager_log_file, "a") as file: # with open(f'{self.args.dataset}_{self.args.search_mode}_{self.args.format}_manager_result.txt', "a") as file: file.write(str(origin_action)) file.write(";") file.write(str(reward)) file.write(";") file.write(str(val_acc)) file.write("\n") def build_gnn(self, actions): model = GraphNet(actions, self.in_feats, self.n_classes, drop_out=self.args.in_drop, multi_label=False, batch_normal=False) return model def retrain(self, actions, format="two"): return self.train(actions, format) def test_with_param(self, actions=None, format="two", with_retrain=False): return self.train(actions, format) @staticmethod def run_model(model, optimizer, loss_fn, data, epochs, early_stop=5, tmp_model_file="geo_citation.pkl", half_stop_score=0, return_best=False, cuda=True, need_early_stop=False, show_info=False): dur = [] begin_time = time.time() best_performance = 0 min_val_loss = float("inf") min_train_loss = float("inf") model_val_acc = 0 features, g, labels, mask, val_mask, test_mask, n_edges = CitationGNNManager.prepare_data(data, cuda) for epoch in range(1, epochs + 1): model.train() t0 = time.time() # forward logits = model(features, g) logits = F.log_softmax(logits, 1) loss = loss_fn(logits[mask], labels[mask]) optimizer.zero_grad() loss.backward() optimizer.step() train_loss = loss.item() # evaluate model.eval() logits = model(features, g) logits = F.log_softmax(logits, 1) train_acc = evaluate(logits, labels, mask) dur.append(time.time() - t0) val_loss = float(loss_fn(logits[val_mask], labels[val_mask])) val_acc = evaluate(logits, labels, val_mask) test_acc = evaluate(logits, labels, test_mask) if val_loss < min_val_loss: # and train_loss < min_train_loss min_val_loss = val_loss min_train_loss = train_loss model_val_acc = val_acc if test_acc > best_performance: best_performance = test_acc if show_info: print( "Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | acc {:.4f} | val_acc {:.4f} | test_acc {:.4f}".format( epoch, loss.item(), np.mean(dur), train_acc, val_acc, test_acc)) end_time = time.time() print("Each Epoch Cost Time: %f " % ((end_time - begin_time) / epoch)) print(f"val_score:{model_val_acc},test_score:{best_performance}") if return_best: return model, model_val_acc, best_performance else: return model, model_val_acc # @staticmethod # def run_model(model, optimizer, loss_fn, data, epochs, early_stop=5, tmp_model_file="citation_testing_2.pkl", # half_stop_score=0, return_best=False, cuda=True, need_early_stop=False): # # early_stop_manager = EarlyStop(early_stop) # # initialize graph # dur = [] # begin_time = time.time() # features, g, labels, mask, val_mask, test_mask, n_edges = CitationGNNManager.prepare_data(data, cuda) # saved = False # best_performance = 0 # for epoch in range(1, epochs + 1): # should_break = False # t0 = time.time() # # model.train() # logits = model(features, g) # logits = F.log_softmax(logits, 1) # loss = loss_fn(logits[mask], labels[mask]) # optimizer.zero_grad() # loss.backward() # optimizer.step() # # model.eval() # logits = model(features, g) # logits = F.log_softmax(logits, 1) # train_acc = evaluate(logits, labels, mask) # train_loss = float(loss) # dur.append(time.time() - t0) # # val_loss = float(loss_fn(logits[val_mask], labels[val_mask])) # val_acc = evaluate(logits, labels, val_mask) # test_acc = evaluate(logits, labels, test_mask) # # print( # "Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | acc {:.4f} | val_acc {:.4f} | test_acc {:.4f}".format( # epoch, loss.item(), np.mean(dur), train_acc, val_acc, test_acc)) # # end_time = time.time() # print("Each Epoch Cost Time: %f " % ((end_time - begin_time) / epoch)) # # print("Test Accuracy {:.4f}".format(acc)) # if early_stop_manager.should_save(train_loss, train_acc, val_loss, val_acc): # saved = True # torch.save(model.state_dict(), tmp_model_file) # if test_acc > best_performance: # best_performance = test_acc # if need_early_stop and early_stop_manager.should_stop(train_loss, train_acc, val_loss, val_acc): # should_break = True # if should_break and epoch > 50: # print("early stop") # break # if half_stop_score > 0 and epoch > (epochs / 2) and val_acc < half_stop_score: # print("half_stop") # break # if saved: # model.load_state_dict(torch.load(tmp_model_file)) # model.eval() # val_acc = evaluate(model(features, g), labels, val_mask) # print(evaluate(model(features, g), labels, test_mask)) # if return_best: # return model, val_acc, best_performance # else: # return model, val_acc @staticmethod def prepare_data(data, cuda=True): features = torch.FloatTensor(data.features) labels = torch.LongTensor(data.labels) mask = torch.ByteTensor(data.train_mask) test_mask = torch.ByteTensor(data.test_mask) val_mask = torch.ByteTensor(data.val_mask) n_edges = data.graph.number_of_edges() # create DGL graph g = DGLGraph(data.graph) # add self loop g.add_edges(g.nodes(), g.nodes()) degs = g.in_degrees().float() norm = torch.pow(degs, -0.5) norm[torch.isinf(norm)] = 0 if cuda: features = features.cuda() labels = labels.cuda() norm = norm.cuda() g.ndata['norm'] = norm.unsqueeze(1) return features, g, labels, mask, val_mask, test_mask, n_edges
en
0.475434
# manager the train process of GNN on citation dataset # don't share param # don't share param # train from scratch # create model # use optimizer # train from scratch # create model # use optimizer # with open(f'{self.args.dataset}_{self.args.search_mode}_{self.args.format}_manager_result.txt', "a") as file: # forward # evaluate # and train_loss < min_train_loss # @staticmethod # def run_model(model, optimizer, loss_fn, data, epochs, early_stop=5, tmp_model_file="citation_testing_2.pkl", # half_stop_score=0, return_best=False, cuda=True, need_early_stop=False): # # early_stop_manager = EarlyStop(early_stop) # # initialize graph # dur = [] # begin_time = time.time() # features, g, labels, mask, val_mask, test_mask, n_edges = CitationGNNManager.prepare_data(data, cuda) # saved = False # best_performance = 0 # for epoch in range(1, epochs + 1): # should_break = False # t0 = time.time() # # model.train() # logits = model(features, g) # logits = F.log_softmax(logits, 1) # loss = loss_fn(logits[mask], labels[mask]) # optimizer.zero_grad() # loss.backward() # optimizer.step() # # model.eval() # logits = model(features, g) # logits = F.log_softmax(logits, 1) # train_acc = evaluate(logits, labels, mask) # train_loss = float(loss) # dur.append(time.time() - t0) # # val_loss = float(loss_fn(logits[val_mask], labels[val_mask])) # val_acc = evaluate(logits, labels, val_mask) # test_acc = evaluate(logits, labels, test_mask) # # print( # "Epoch {:05d} | Loss {:.4f} | Time(s) {:.4f} | acc {:.4f} | val_acc {:.4f} | test_acc {:.4f}".format( # epoch, loss.item(), np.mean(dur), train_acc, val_acc, test_acc)) # # end_time = time.time() # print("Each Epoch Cost Time: %f " % ((end_time - begin_time) / epoch)) # # print("Test Accuracy {:.4f}".format(acc)) # if early_stop_manager.should_save(train_loss, train_acc, val_loss, val_acc): # saved = True # torch.save(model.state_dict(), tmp_model_file) # if test_acc > best_performance: # best_performance = test_acc # if need_early_stop and early_stop_manager.should_stop(train_loss, train_acc, val_loss, val_acc): # should_break = True # if should_break and epoch > 50: # print("early stop") # break # if half_stop_score > 0 and epoch > (epochs / 2) and val_acc < half_stop_score: # print("half_stop") # break # if saved: # model.load_state_dict(torch.load(tmp_model_file)) # model.eval() # val_acc = evaluate(model(features, g), labels, val_mask) # print(evaluate(model(features, g), labels, test_mask)) # if return_best: # return model, val_acc, best_performance # else: # return model, val_acc # create DGL graph # add self loop
2.284593
2
tests/ea/selection/selector/select/select_2/case_data.py
stevenbennett96/stk
21
6630304
<filename>tests/ea/selection/selector/select/select_2/case_data.py class CaseData: """ A test case. Attributes ---------- selector : :class:`.Selector` The selector to test. population : :class:`tuple` of :class:`.MoleculeRecord` The population from which batches are selected. selected : :class:`tuple` of :class:`.Batch` The batches which should be selected. """ def __init__(self, selector, population, selected): """ Initialize a :class:`.CaseData` instance. Parameters ---------- selector : :class:`.Selector` The selector to test. population : :class:`tuple` of :class:`.MoleculeRecord` The population from which batches are selected. selected : :class:`tuple` of :class:`.Batch` The batches which should be selected. """ self.selector = selector self.population = population self.selected = selected
<filename>tests/ea/selection/selector/select/select_2/case_data.py class CaseData: """ A test case. Attributes ---------- selector : :class:`.Selector` The selector to test. population : :class:`tuple` of :class:`.MoleculeRecord` The population from which batches are selected. selected : :class:`tuple` of :class:`.Batch` The batches which should be selected. """ def __init__(self, selector, population, selected): """ Initialize a :class:`.CaseData` instance. Parameters ---------- selector : :class:`.Selector` The selector to test. population : :class:`tuple` of :class:`.MoleculeRecord` The population from which batches are selected. selected : :class:`tuple` of :class:`.Batch` The batches which should be selected. """ self.selector = selector self.population = population self.selected = selected
en
0.657115
A test case. Attributes ---------- selector : :class:`.Selector` The selector to test. population : :class:`tuple` of :class:`.MoleculeRecord` The population from which batches are selected. selected : :class:`tuple` of :class:`.Batch` The batches which should be selected. Initialize a :class:`.CaseData` instance. Parameters ---------- selector : :class:`.Selector` The selector to test. population : :class:`tuple` of :class:`.MoleculeRecord` The population from which batches are selected. selected : :class:`tuple` of :class:`.Batch` The batches which should be selected.
2.802844
3
testing/mongo_ins_del_loop.py
Rippling/mongoproxy
19
6630305
<gh_stars>10-100 import pymongo con = pymongo.MongoClient("mongodb://localhost:27111") bigcollection = con['test']['bigcollection'] while True: print "Inserting" for i in range(1000): bigcollection.insert_one({ "a": "bbbbbbbbbbbbbbbbbbbb", "b": "CCCCCCCCCCCCCCCCCC"}) print "Removing" res = bigcollection.delete_many({}) print "deleted:", res.deleted_count
import pymongo con = pymongo.MongoClient("mongodb://localhost:27111") bigcollection = con['test']['bigcollection'] while True: print "Inserting" for i in range(1000): bigcollection.insert_one({ "a": "bbbbbbbbbbbbbbbbbbbb", "b": "CCCCCCCCCCCCCCCCCC"}) print "Removing" res = bigcollection.delete_many({}) print "deleted:", res.deleted_count
none
1
2.795352
3
tests/commands/autoupdate_test.py
MahmoudHussien/pre-commit
0
6630306
from __future__ import unicode_literals import pipes import pytest import pre_commit.constants as C from pre_commit import git from pre_commit.commands.autoupdate import _check_hooks_still_exist_at_rev from pre_commit.commands.autoupdate import autoupdate from pre_commit.commands.autoupdate import RepositoryCannotBeUpdatedError from pre_commit.commands.autoupdate import RevInfo from pre_commit.util import cmd_output from testing.auto_namedtuple import auto_namedtuple from testing.fixtures import add_config_to_repo from testing.fixtures import make_config_from_repo from testing.fixtures import make_repo from testing.fixtures import modify_manifest from testing.fixtures import read_config from testing.fixtures import sample_local_config from testing.fixtures import write_config from testing.util import git_commit @pytest.fixture def up_to_date(tempdir_factory): yield make_repo(tempdir_factory, 'python_hooks_repo') @pytest.fixture def out_of_date(tempdir_factory): path = make_repo(tempdir_factory, 'python_hooks_repo') original_rev = git.head_rev(path) git_commit(cwd=path) head_rev = git.head_rev(path) yield auto_namedtuple( path=path, original_rev=original_rev, head_rev=head_rev, ) @pytest.fixture def tagged(out_of_date): cmd_output('git', 'tag', 'v1.2.3', cwd=out_of_date.path) yield out_of_date @pytest.fixture def hook_disappearing(tempdir_factory): path = make_repo(tempdir_factory, 'python_hooks_repo') original_rev = git.head_rev(path) with modify_manifest(path) as manifest: manifest[0]['id'] = 'bar' yield auto_namedtuple(path=path, original_rev=original_rev) def test_rev_info_from_config(): info = RevInfo.from_config({'repo': 'repo/path', 'rev': 'v1.2.3'}) assert info == RevInfo('repo/path', 'v1.2.3', None) def test_rev_info_update_up_to_date_repo(up_to_date): config = make_config_from_repo(up_to_date) info = RevInfo.from_config(config) new_info = info.update(tags_only=False, freeze=False) assert info == new_info def test_rev_info_update_out_of_date_repo(out_of_date): config = make_config_from_repo( out_of_date.path, rev=out_of_date.original_rev, ) info = RevInfo.from_config(config) new_info = info.update(tags_only=False, freeze=False) assert new_info.rev == out_of_date.head_rev def test_rev_info_update_non_master_default_branch(out_of_date): # change the default branch to be not-master cmd_output('git', '-C', out_of_date.path, 'branch', '-m', 'dev') test_rev_info_update_out_of_date_repo(out_of_date) def test_rev_info_update_tags_even_if_not_tags_only(tagged): config = make_config_from_repo(tagged.path, rev=tagged.original_rev) info = RevInfo.from_config(config) new_info = info.update(tags_only=False, freeze=False) assert new_info.rev == 'v1.2.3' def test_rev_info_update_tags_only_does_not_pick_tip(tagged): git_commit(cwd=tagged.path) config = make_config_from_repo(tagged.path, rev=tagged.original_rev) info = RevInfo.from_config(config) new_info = info.update(tags_only=True, freeze=False) assert new_info.rev == 'v1.2.3' def test_rev_info_update_freeze_tag(tagged): git_commit(cwd=tagged.path) config = make_config_from_repo(tagged.path, rev=tagged.original_rev) info = RevInfo.from_config(config) new_info = info.update(tags_only=True, freeze=True) assert new_info.rev == tagged.head_rev assert new_info.frozen == 'v1.2.3' def test_rev_info_update_does_not_freeze_if_already_sha(out_of_date): config = make_config_from_repo( out_of_date.path, rev=out_of_date.original_rev, ) info = RevInfo.from_config(config) new_info = info.update(tags_only=True, freeze=True) assert new_info.rev == out_of_date.head_rev assert new_info.frozen is None def test_autoupdate_up_to_date_repo(up_to_date, tmpdir, store): contents = ( 'repos:\n' '- repo: {}\n' ' rev: {}\n' ' hooks:\n' ' - id: foo\n' ).format(up_to_date, git.head_rev(up_to_date)) cfg = tmpdir.join(C.CONFIG_FILE) cfg.write(contents) assert autoupdate(str(cfg), store, freeze=False, tags_only=False) == 0 assert cfg.read() == contents def test_autoupdate_old_revision_broken(tempdir_factory, in_tmpdir, store): """In $FUTURE_VERSION, hooks.yaml will no longer be supported. This asserts that when that day comes, pre-commit will be able to autoupdate despite not being able to read hooks.yaml in that repository. """ path = make_repo(tempdir_factory, 'python_hooks_repo') config = make_config_from_repo(path, check=False) cmd_output('git', 'mv', C.MANIFEST_FILE, 'nope.yaml', cwd=path) git_commit(cwd=path) # Assume this is the revision the user's old repository was at rev = git.head_rev(path) cmd_output('git', 'mv', 'nope.yaml', C.MANIFEST_FILE, cwd=path) git_commit(cwd=path) update_rev = git.head_rev(path) config['rev'] = rev write_config('.', config) with open(C.CONFIG_FILE) as f: before = f.read() assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=False) == 0 with open(C.CONFIG_FILE) as f: after = f.read() assert before != after assert update_rev in after def test_autoupdate_out_of_date_repo(out_of_date, tmpdir, store): fmt = ( 'repos:\n' '- repo: {}\n' ' rev: {}\n' ' hooks:\n' ' - id: foo\n' ) cfg = tmpdir.join(C.CONFIG_FILE) cfg.write(fmt.format(out_of_date.path, out_of_date.original_rev)) assert autoupdate(str(cfg), store, freeze=False, tags_only=False) == 0 assert cfg.read() == fmt.format(out_of_date.path, out_of_date.head_rev) def test_autoupdate_only_one_to_update(up_to_date, out_of_date, tmpdir, store): fmt = ( 'repos:\n' '- repo: {}\n' ' rev: {}\n' ' hooks:\n' ' - id: foo\n' '- repo: {}\n' ' rev: {}\n' ' hooks:\n' ' - id: foo\n' ) cfg = tmpdir.join(C.CONFIG_FILE) before = fmt.format( up_to_date, git.head_rev(up_to_date), out_of_date.path, out_of_date.original_rev, ) cfg.write(before) assert autoupdate(str(cfg), store, freeze=False, tags_only=False) == 0 assert cfg.read() == fmt.format( up_to_date, git.head_rev(up_to_date), out_of_date.path, out_of_date.head_rev, ) def test_autoupdate_out_of_date_repo_with_correct_repo_name( out_of_date, in_tmpdir, store, ): stale_config = make_config_from_repo( out_of_date.path, rev=out_of_date.original_rev, check=False, ) local_config = sample_local_config() config = {'repos': [stale_config, local_config]} write_config('.', config) with open(C.CONFIG_FILE) as f: before = f.read() repo_name = 'file://{}'.format(out_of_date.path) ret = autoupdate( C.CONFIG_FILE, store, freeze=False, tags_only=False, repos=(repo_name,), ) with open(C.CONFIG_FILE) as f: after = f.read() assert ret == 0 assert before != after assert out_of_date.head_rev in after assert 'local' in after def test_autoupdate_out_of_date_repo_with_wrong_repo_name( out_of_date, in_tmpdir, store, ): config = make_config_from_repo( out_of_date.path, rev=out_of_date.original_rev, check=False, ) write_config('.', config) with open(C.CONFIG_FILE) as f: before = f.read() # It will not update it, because the name doesn't match ret = autoupdate( C.CONFIG_FILE, store, freeze=False, tags_only=False, repos=('dne',), ) with open(C.CONFIG_FILE) as f: after = f.read() assert ret == 0 assert before == after def test_does_not_reformat(tmpdir, out_of_date, store): fmt = ( 'repos:\n' '- repo: {}\n' ' rev: {} # definitely the version I want!\n' ' hooks:\n' ' - id: foo\n' ' # These args are because reasons!\n' ' args: [foo, bar, baz]\n' ) cfg = tmpdir.join(C.CONFIG_FILE) cfg.write(fmt.format(out_of_date.path, out_of_date.original_rev)) assert autoupdate(str(cfg), store, freeze=False, tags_only=False) == 0 expected = fmt.format(out_of_date.path, out_of_date.head_rev) assert cfg.read() == expected def test_loses_formatting_when_not_detectable(out_of_date, store, tmpdir): """A best-effort attempt is made at updating rev without rewriting formatting. When the original formatting cannot be detected, this is abandoned. """ config = ( 'repos: [\n' ' {{\n' ' repo: {}, rev: {},\n' ' hooks: [\n' ' # A comment!\n' ' {{id: foo}},\n' ' ],\n' ' }}\n' ']\n'.format( pipes.quote(out_of_date.path), out_of_date.original_rev, ) ) cfg = tmpdir.join(C.CONFIG_FILE) cfg.write(config) assert autoupdate(str(cfg), store, freeze=False, tags_only=False) == 0 expected = ( 'repos:\n' '- repo: {}\n' ' rev: {}\n' ' hooks:\n' ' - id: foo\n' ).format(out_of_date.path, out_of_date.head_rev) assert cfg.read() == expected def test_autoupdate_tagged_repo(tagged, in_tmpdir, store): config = make_config_from_repo(tagged.path, rev=tagged.original_rev) write_config('.', config) assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=False) == 0 with open(C.CONFIG_FILE) as f: assert 'v1.2.3' in f.read() def test_autoupdate_freeze(tagged, in_tmpdir, store): config = make_config_from_repo(tagged.path, rev=tagged.original_rev) write_config('.', config) assert autoupdate(C.CONFIG_FILE, store, freeze=True, tags_only=False) == 0 with open(C.CONFIG_FILE) as f: expected = 'rev: {} # frozen: v1.2.3'.format(tagged.head_rev) assert expected in f.read() # if we un-freeze it should remove the frozen comment assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=False) == 0 with open(C.CONFIG_FILE) as f: assert 'rev: v1.2.3\n' in f.read() def test_autoupdate_tags_only(tagged, in_tmpdir, store): # add some commits after the tag git_commit(cwd=tagged.path) config = make_config_from_repo(tagged.path, rev=tagged.original_rev) write_config('.', config) assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=True) == 0 with open(C.CONFIG_FILE) as f: assert 'v1.2.3' in f.read() def test_autoupdate_latest_no_config(out_of_date, in_tmpdir, store): config = make_config_from_repo( out_of_date.path, rev=out_of_date.original_rev, ) write_config('.', config) cmd_output('git', 'rm', '-r', ':/', cwd=out_of_date.path) git_commit(cwd=out_of_date.path) assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=False) == 1 with open(C.CONFIG_FILE) as f: assert out_of_date.original_rev in f.read() def test_hook_disppearing_repo_raises(hook_disappearing, store): config = make_config_from_repo( hook_disappearing.path, rev=hook_disappearing.original_rev, hooks=[{'id': 'foo'}], ) info = RevInfo.from_config(config).update(tags_only=False, freeze=False) with pytest.raises(RepositoryCannotBeUpdatedError): _check_hooks_still_exist_at_rev(config, info, store) def test_autoupdate_hook_disappearing_repo(hook_disappearing, tmpdir, store): contents = ( 'repos:\n' '- repo: {}\n' ' rev: {}\n' ' hooks:\n' ' - id: foo\n' ).format(hook_disappearing.path, hook_disappearing.original_rev) cfg = tmpdir.join(C.CONFIG_FILE) cfg.write(contents) assert autoupdate(str(cfg), store, freeze=False, tags_only=False) == 1 assert cfg.read() == contents def test_autoupdate_local_hooks(in_git_dir, store): config = sample_local_config() add_config_to_repo('.', config) assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=False) == 0 new_config_writen = read_config('.') assert len(new_config_writen['repos']) == 1 assert new_config_writen['repos'][0] == config def test_autoupdate_local_hooks_with_out_of_date_repo( out_of_date, in_tmpdir, store, ): stale_config = make_config_from_repo( out_of_date.path, rev=out_of_date.original_rev, check=False, ) local_config = sample_local_config() config = {'repos': [local_config, stale_config]} write_config('.', config) assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=False) == 0 new_config_writen = read_config('.') assert len(new_config_writen['repos']) == 2 assert new_config_writen['repos'][0] == local_config def test_autoupdate_meta_hooks(tmpdir, store): cfg = tmpdir.join(C.CONFIG_FILE) cfg.write( 'repos:\n' '- repo: meta\n' ' hooks:\n' ' - id: check-useless-excludes\n', ) assert autoupdate(str(cfg), store, freeze=False, tags_only=True) == 0 assert cfg.read() == ( 'repos:\n' '- repo: meta\n' ' hooks:\n' ' - id: check-useless-excludes\n' ) def test_updates_old_format_to_new_format(tmpdir, capsys, store): cfg = tmpdir.join(C.CONFIG_FILE) cfg.write( '- repo: local\n' ' hooks:\n' ' - id: foo\n' ' name: foo\n' ' entry: ./bin/foo.sh\n' ' language: script\n', ) assert autoupdate(str(cfg), store, freeze=False, tags_only=True) == 0 contents = cfg.read() assert contents == ( 'repos:\n' '- repo: local\n' ' hooks:\n' ' - id: foo\n' ' name: foo\n' ' entry: ./bin/foo.sh\n' ' language: script\n' ) out, _ = capsys.readouterr() assert out == 'Configuration has been migrated.\n'
from __future__ import unicode_literals import pipes import pytest import pre_commit.constants as C from pre_commit import git from pre_commit.commands.autoupdate import _check_hooks_still_exist_at_rev from pre_commit.commands.autoupdate import autoupdate from pre_commit.commands.autoupdate import RepositoryCannotBeUpdatedError from pre_commit.commands.autoupdate import RevInfo from pre_commit.util import cmd_output from testing.auto_namedtuple import auto_namedtuple from testing.fixtures import add_config_to_repo from testing.fixtures import make_config_from_repo from testing.fixtures import make_repo from testing.fixtures import modify_manifest from testing.fixtures import read_config from testing.fixtures import sample_local_config from testing.fixtures import write_config from testing.util import git_commit @pytest.fixture def up_to_date(tempdir_factory): yield make_repo(tempdir_factory, 'python_hooks_repo') @pytest.fixture def out_of_date(tempdir_factory): path = make_repo(tempdir_factory, 'python_hooks_repo') original_rev = git.head_rev(path) git_commit(cwd=path) head_rev = git.head_rev(path) yield auto_namedtuple( path=path, original_rev=original_rev, head_rev=head_rev, ) @pytest.fixture def tagged(out_of_date): cmd_output('git', 'tag', 'v1.2.3', cwd=out_of_date.path) yield out_of_date @pytest.fixture def hook_disappearing(tempdir_factory): path = make_repo(tempdir_factory, 'python_hooks_repo') original_rev = git.head_rev(path) with modify_manifest(path) as manifest: manifest[0]['id'] = 'bar' yield auto_namedtuple(path=path, original_rev=original_rev) def test_rev_info_from_config(): info = RevInfo.from_config({'repo': 'repo/path', 'rev': 'v1.2.3'}) assert info == RevInfo('repo/path', 'v1.2.3', None) def test_rev_info_update_up_to_date_repo(up_to_date): config = make_config_from_repo(up_to_date) info = RevInfo.from_config(config) new_info = info.update(tags_only=False, freeze=False) assert info == new_info def test_rev_info_update_out_of_date_repo(out_of_date): config = make_config_from_repo( out_of_date.path, rev=out_of_date.original_rev, ) info = RevInfo.from_config(config) new_info = info.update(tags_only=False, freeze=False) assert new_info.rev == out_of_date.head_rev def test_rev_info_update_non_master_default_branch(out_of_date): # change the default branch to be not-master cmd_output('git', '-C', out_of_date.path, 'branch', '-m', 'dev') test_rev_info_update_out_of_date_repo(out_of_date) def test_rev_info_update_tags_even_if_not_tags_only(tagged): config = make_config_from_repo(tagged.path, rev=tagged.original_rev) info = RevInfo.from_config(config) new_info = info.update(tags_only=False, freeze=False) assert new_info.rev == 'v1.2.3' def test_rev_info_update_tags_only_does_not_pick_tip(tagged): git_commit(cwd=tagged.path) config = make_config_from_repo(tagged.path, rev=tagged.original_rev) info = RevInfo.from_config(config) new_info = info.update(tags_only=True, freeze=False) assert new_info.rev == 'v1.2.3' def test_rev_info_update_freeze_tag(tagged): git_commit(cwd=tagged.path) config = make_config_from_repo(tagged.path, rev=tagged.original_rev) info = RevInfo.from_config(config) new_info = info.update(tags_only=True, freeze=True) assert new_info.rev == tagged.head_rev assert new_info.frozen == 'v1.2.3' def test_rev_info_update_does_not_freeze_if_already_sha(out_of_date): config = make_config_from_repo( out_of_date.path, rev=out_of_date.original_rev, ) info = RevInfo.from_config(config) new_info = info.update(tags_only=True, freeze=True) assert new_info.rev == out_of_date.head_rev assert new_info.frozen is None def test_autoupdate_up_to_date_repo(up_to_date, tmpdir, store): contents = ( 'repos:\n' '- repo: {}\n' ' rev: {}\n' ' hooks:\n' ' - id: foo\n' ).format(up_to_date, git.head_rev(up_to_date)) cfg = tmpdir.join(C.CONFIG_FILE) cfg.write(contents) assert autoupdate(str(cfg), store, freeze=False, tags_only=False) == 0 assert cfg.read() == contents def test_autoupdate_old_revision_broken(tempdir_factory, in_tmpdir, store): """In $FUTURE_VERSION, hooks.yaml will no longer be supported. This asserts that when that day comes, pre-commit will be able to autoupdate despite not being able to read hooks.yaml in that repository. """ path = make_repo(tempdir_factory, 'python_hooks_repo') config = make_config_from_repo(path, check=False) cmd_output('git', 'mv', C.MANIFEST_FILE, 'nope.yaml', cwd=path) git_commit(cwd=path) # Assume this is the revision the user's old repository was at rev = git.head_rev(path) cmd_output('git', 'mv', 'nope.yaml', C.MANIFEST_FILE, cwd=path) git_commit(cwd=path) update_rev = git.head_rev(path) config['rev'] = rev write_config('.', config) with open(C.CONFIG_FILE) as f: before = f.read() assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=False) == 0 with open(C.CONFIG_FILE) as f: after = f.read() assert before != after assert update_rev in after def test_autoupdate_out_of_date_repo(out_of_date, tmpdir, store): fmt = ( 'repos:\n' '- repo: {}\n' ' rev: {}\n' ' hooks:\n' ' - id: foo\n' ) cfg = tmpdir.join(C.CONFIG_FILE) cfg.write(fmt.format(out_of_date.path, out_of_date.original_rev)) assert autoupdate(str(cfg), store, freeze=False, tags_only=False) == 0 assert cfg.read() == fmt.format(out_of_date.path, out_of_date.head_rev) def test_autoupdate_only_one_to_update(up_to_date, out_of_date, tmpdir, store): fmt = ( 'repos:\n' '- repo: {}\n' ' rev: {}\n' ' hooks:\n' ' - id: foo\n' '- repo: {}\n' ' rev: {}\n' ' hooks:\n' ' - id: foo\n' ) cfg = tmpdir.join(C.CONFIG_FILE) before = fmt.format( up_to_date, git.head_rev(up_to_date), out_of_date.path, out_of_date.original_rev, ) cfg.write(before) assert autoupdate(str(cfg), store, freeze=False, tags_only=False) == 0 assert cfg.read() == fmt.format( up_to_date, git.head_rev(up_to_date), out_of_date.path, out_of_date.head_rev, ) def test_autoupdate_out_of_date_repo_with_correct_repo_name( out_of_date, in_tmpdir, store, ): stale_config = make_config_from_repo( out_of_date.path, rev=out_of_date.original_rev, check=False, ) local_config = sample_local_config() config = {'repos': [stale_config, local_config]} write_config('.', config) with open(C.CONFIG_FILE) as f: before = f.read() repo_name = 'file://{}'.format(out_of_date.path) ret = autoupdate( C.CONFIG_FILE, store, freeze=False, tags_only=False, repos=(repo_name,), ) with open(C.CONFIG_FILE) as f: after = f.read() assert ret == 0 assert before != after assert out_of_date.head_rev in after assert 'local' in after def test_autoupdate_out_of_date_repo_with_wrong_repo_name( out_of_date, in_tmpdir, store, ): config = make_config_from_repo( out_of_date.path, rev=out_of_date.original_rev, check=False, ) write_config('.', config) with open(C.CONFIG_FILE) as f: before = f.read() # It will not update it, because the name doesn't match ret = autoupdate( C.CONFIG_FILE, store, freeze=False, tags_only=False, repos=('dne',), ) with open(C.CONFIG_FILE) as f: after = f.read() assert ret == 0 assert before == after def test_does_not_reformat(tmpdir, out_of_date, store): fmt = ( 'repos:\n' '- repo: {}\n' ' rev: {} # definitely the version I want!\n' ' hooks:\n' ' - id: foo\n' ' # These args are because reasons!\n' ' args: [foo, bar, baz]\n' ) cfg = tmpdir.join(C.CONFIG_FILE) cfg.write(fmt.format(out_of_date.path, out_of_date.original_rev)) assert autoupdate(str(cfg), store, freeze=False, tags_only=False) == 0 expected = fmt.format(out_of_date.path, out_of_date.head_rev) assert cfg.read() == expected def test_loses_formatting_when_not_detectable(out_of_date, store, tmpdir): """A best-effort attempt is made at updating rev without rewriting formatting. When the original formatting cannot be detected, this is abandoned. """ config = ( 'repos: [\n' ' {{\n' ' repo: {}, rev: {},\n' ' hooks: [\n' ' # A comment!\n' ' {{id: foo}},\n' ' ],\n' ' }}\n' ']\n'.format( pipes.quote(out_of_date.path), out_of_date.original_rev, ) ) cfg = tmpdir.join(C.CONFIG_FILE) cfg.write(config) assert autoupdate(str(cfg), store, freeze=False, tags_only=False) == 0 expected = ( 'repos:\n' '- repo: {}\n' ' rev: {}\n' ' hooks:\n' ' - id: foo\n' ).format(out_of_date.path, out_of_date.head_rev) assert cfg.read() == expected def test_autoupdate_tagged_repo(tagged, in_tmpdir, store): config = make_config_from_repo(tagged.path, rev=tagged.original_rev) write_config('.', config) assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=False) == 0 with open(C.CONFIG_FILE) as f: assert 'v1.2.3' in f.read() def test_autoupdate_freeze(tagged, in_tmpdir, store): config = make_config_from_repo(tagged.path, rev=tagged.original_rev) write_config('.', config) assert autoupdate(C.CONFIG_FILE, store, freeze=True, tags_only=False) == 0 with open(C.CONFIG_FILE) as f: expected = 'rev: {} # frozen: v1.2.3'.format(tagged.head_rev) assert expected in f.read() # if we un-freeze it should remove the frozen comment assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=False) == 0 with open(C.CONFIG_FILE) as f: assert 'rev: v1.2.3\n' in f.read() def test_autoupdate_tags_only(tagged, in_tmpdir, store): # add some commits after the tag git_commit(cwd=tagged.path) config = make_config_from_repo(tagged.path, rev=tagged.original_rev) write_config('.', config) assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=True) == 0 with open(C.CONFIG_FILE) as f: assert 'v1.2.3' in f.read() def test_autoupdate_latest_no_config(out_of_date, in_tmpdir, store): config = make_config_from_repo( out_of_date.path, rev=out_of_date.original_rev, ) write_config('.', config) cmd_output('git', 'rm', '-r', ':/', cwd=out_of_date.path) git_commit(cwd=out_of_date.path) assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=False) == 1 with open(C.CONFIG_FILE) as f: assert out_of_date.original_rev in f.read() def test_hook_disppearing_repo_raises(hook_disappearing, store): config = make_config_from_repo( hook_disappearing.path, rev=hook_disappearing.original_rev, hooks=[{'id': 'foo'}], ) info = RevInfo.from_config(config).update(tags_only=False, freeze=False) with pytest.raises(RepositoryCannotBeUpdatedError): _check_hooks_still_exist_at_rev(config, info, store) def test_autoupdate_hook_disappearing_repo(hook_disappearing, tmpdir, store): contents = ( 'repos:\n' '- repo: {}\n' ' rev: {}\n' ' hooks:\n' ' - id: foo\n' ).format(hook_disappearing.path, hook_disappearing.original_rev) cfg = tmpdir.join(C.CONFIG_FILE) cfg.write(contents) assert autoupdate(str(cfg), store, freeze=False, tags_only=False) == 1 assert cfg.read() == contents def test_autoupdate_local_hooks(in_git_dir, store): config = sample_local_config() add_config_to_repo('.', config) assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=False) == 0 new_config_writen = read_config('.') assert len(new_config_writen['repos']) == 1 assert new_config_writen['repos'][0] == config def test_autoupdate_local_hooks_with_out_of_date_repo( out_of_date, in_tmpdir, store, ): stale_config = make_config_from_repo( out_of_date.path, rev=out_of_date.original_rev, check=False, ) local_config = sample_local_config() config = {'repos': [local_config, stale_config]} write_config('.', config) assert autoupdate(C.CONFIG_FILE, store, freeze=False, tags_only=False) == 0 new_config_writen = read_config('.') assert len(new_config_writen['repos']) == 2 assert new_config_writen['repos'][0] == local_config def test_autoupdate_meta_hooks(tmpdir, store): cfg = tmpdir.join(C.CONFIG_FILE) cfg.write( 'repos:\n' '- repo: meta\n' ' hooks:\n' ' - id: check-useless-excludes\n', ) assert autoupdate(str(cfg), store, freeze=False, tags_only=True) == 0 assert cfg.read() == ( 'repos:\n' '- repo: meta\n' ' hooks:\n' ' - id: check-useless-excludes\n' ) def test_updates_old_format_to_new_format(tmpdir, capsys, store): cfg = tmpdir.join(C.CONFIG_FILE) cfg.write( '- repo: local\n' ' hooks:\n' ' - id: foo\n' ' name: foo\n' ' entry: ./bin/foo.sh\n' ' language: script\n', ) assert autoupdate(str(cfg), store, freeze=False, tags_only=True) == 0 contents = cfg.read() assert contents == ( 'repos:\n' '- repo: local\n' ' hooks:\n' ' - id: foo\n' ' name: foo\n' ' entry: ./bin/foo.sh\n' ' language: script\n' ) out, _ = capsys.readouterr() assert out == 'Configuration has been migrated.\n'
en
0.880524
# change the default branch to be not-master In $FUTURE_VERSION, hooks.yaml will no longer be supported. This asserts that when that day comes, pre-commit will be able to autoupdate despite not being able to read hooks.yaml in that repository. # Assume this is the revision the user's old repository was at # It will not update it, because the name doesn't match # definitely the version I want!\n' # These args are because reasons!\n' A best-effort attempt is made at updating rev without rewriting formatting. When the original formatting cannot be detected, this is abandoned. # A comment!\n' # frozen: v1.2.3'.format(tagged.head_rev) # if we un-freeze it should remove the frozen comment # add some commits after the tag
1.877319
2
03_Day_Operators/21.py
diegofregolente/30-Days-Of-Python
0
6630307
hours = float(input('Hours: ')) rate = float(input('Rate per hour: ')) pay = hours * rate print('Weekly earning is ', pay) # 21
hours = float(input('Hours: ')) rate = float(input('Rate per hour: ')) pay = hours * rate print('Weekly earning is ', pay) # 21
none
1
3.956808
4
weakened_algorithm/run_visualizations.py
jessicawang225/caltech-ee148-spring2020-hw02
0
6630308
<reponame>jessicawang225/caltech-ee148-spring2020-hw02<filename>weakened_algorithm/run_visualizations.py import json import numpy as np from PIL import Image, ImageDraw import os def draw(I, boxes): for box in boxes: draw = ImageDraw.Draw(I) # Draw bounding box in neon yellow top, left, bottom, right = box[:4] draw.rectangle([left, top, right, bottom], outline=(204, 255, 0)) del draw return I # set the path to the downloaded data: data_path = './data' # set a path for saving predictions: preds_path = './predictions' # set a path for saving visualizations: vis_path = './visualizations' # load splits: split_path = './splits' file_names_train = np.load(os.path.join(split_path, 'file_names_train.npy')) file_names_test = np.load(os.path.join(split_path, 'file_names_test.npy')) # get bounding boxes with open(os.path.join(preds_path, 'preds_train.json')) as f: bounding_boxes_train = json.load(f) with open(os.path.join(preds_path, 'preds_test.json')) as f: bounding_boxes_test = json.load(f) for i in range(len(file_names_train)): # read image using PIL: I = Image.open(os.path.join(data_path, file_names_train[i])) I = draw(I, bounding_boxes_train[file_names_train[i]]) I.save(os.path.join(vis_path, file_names_train[i])) for i in range(len(file_names_test)): # read image using PIL: I = Image.open(os.path.join(data_path, file_names_test[i])) I = draw(I, bounding_boxes_test[file_names_test[i]]) I.save(os.path.join(vis_path, file_names_test[i]))
import json import numpy as np from PIL import Image, ImageDraw import os def draw(I, boxes): for box in boxes: draw = ImageDraw.Draw(I) # Draw bounding box in neon yellow top, left, bottom, right = box[:4] draw.rectangle([left, top, right, bottom], outline=(204, 255, 0)) del draw return I # set the path to the downloaded data: data_path = './data' # set a path for saving predictions: preds_path = './predictions' # set a path for saving visualizations: vis_path = './visualizations' # load splits: split_path = './splits' file_names_train = np.load(os.path.join(split_path, 'file_names_train.npy')) file_names_test = np.load(os.path.join(split_path, 'file_names_test.npy')) # get bounding boxes with open(os.path.join(preds_path, 'preds_train.json')) as f: bounding_boxes_train = json.load(f) with open(os.path.join(preds_path, 'preds_test.json')) as f: bounding_boxes_test = json.load(f) for i in range(len(file_names_train)): # read image using PIL: I = Image.open(os.path.join(data_path, file_names_train[i])) I = draw(I, bounding_boxes_train[file_names_train[i]]) I.save(os.path.join(vis_path, file_names_train[i])) for i in range(len(file_names_test)): # read image using PIL: I = Image.open(os.path.join(data_path, file_names_test[i])) I = draw(I, bounding_boxes_test[file_names_test[i]]) I.save(os.path.join(vis_path, file_names_test[i]))
en
0.808476
# Draw bounding box in neon yellow # set the path to the downloaded data: # set a path for saving predictions: # set a path for saving visualizations: # load splits: # get bounding boxes # read image using PIL: # read image using PIL:
2.737702
3
tf-gnn-samples/utils/add_child_ids.py
tech-srl/bottleneck
56
6630309
<reponame>tech-srl/bottleneck<filename>tf-gnn-samples/utils/add_child_ids.py import pickle from argparse import ArgumentParser raw_keys = ['Child', 'NextToken', 'ComputedFrom', 'LastUse', 'LastWrite', 'LastLexicalUse', 'FormalArgName', 'GuardedBy', 'GuardedByNegation', 'UsesSubtoken'] if __name__ == '__main__': parser = ArgumentParser() parser.add_argument("--edges", dest="edges", required=True) args = parser.parse_args() with open(args.edges, 'rb') as file: raw_edges = pickle.load(file) parent_to_children = {} child_to_parent = {} for s, t in raw_edges['Child']: if not s in parent_to_children: parent_to_children[s] = [] parent_to_children[s].append(t) child_to_parent[t] = s cur = 0 next_map = {} for s, t in raw_edges['NextToken']: next_map[s] = t prev_map = {t:s for s,t in next_map.items()} def get_all_next(n): result = [] cur = n while cur in next_map: next_item = next_map[cur] result.append(next_item) cur = next_item return result def get_all_prev(n): result = [] cur = n while cur in prev_map: prev_item = prev_map[cur] result.append(prev_item) cur = prev_item return result nodes = child_to_parent.keys() left_nodes = list(nodes) parent_to_descendants = {} def get_parent_to_descendants(p): desc = set() for c in parent_to_children[p]: if c in parent_to_children: # if c is a parent itself desc.update(get_parent_to_descendants(c)) else: desc.add(c) return desc for p in parent_to_children.keys(): desc = get_parent_to_descendants(p) parent_to_descendants[p] = desc roots = set() for n in nodes: cur = n while cur in child_to_parent: cur = child_to_parent[cur] roots.add(cur) print(raw_edges)
import pickle from argparse import ArgumentParser raw_keys = ['Child', 'NextToken', 'ComputedFrom', 'LastUse', 'LastWrite', 'LastLexicalUse', 'FormalArgName', 'GuardedBy', 'GuardedByNegation', 'UsesSubtoken'] if __name__ == '__main__': parser = ArgumentParser() parser.add_argument("--edges", dest="edges", required=True) args = parser.parse_args() with open(args.edges, 'rb') as file: raw_edges = pickle.load(file) parent_to_children = {} child_to_parent = {} for s, t in raw_edges['Child']: if not s in parent_to_children: parent_to_children[s] = [] parent_to_children[s].append(t) child_to_parent[t] = s cur = 0 next_map = {} for s, t in raw_edges['NextToken']: next_map[s] = t prev_map = {t:s for s,t in next_map.items()} def get_all_next(n): result = [] cur = n while cur in next_map: next_item = next_map[cur] result.append(next_item) cur = next_item return result def get_all_prev(n): result = [] cur = n while cur in prev_map: prev_item = prev_map[cur] result.append(prev_item) cur = prev_item return result nodes = child_to_parent.keys() left_nodes = list(nodes) parent_to_descendants = {} def get_parent_to_descendants(p): desc = set() for c in parent_to_children[p]: if c in parent_to_children: # if c is a parent itself desc.update(get_parent_to_descendants(c)) else: desc.add(c) return desc for p in parent_to_children.keys(): desc = get_parent_to_descendants(p) parent_to_descendants[p] = desc roots = set() for n in nodes: cur = n while cur in child_to_parent: cur = child_to_parent[cur] roots.add(cur) print(raw_edges)
en
0.785429
# if c is a parent itself
2.711272
3
python/orthomcl/geneid2cluster.py
lotharwissler/bioinformatics
10
6630310
#!/usr/bin/python import os, sys, string from low import * from orthomcl import OrthoMCLCluster # ============================================================================= def usage(): print >> sys.stderr, "prints a mapping between each gene id and its cluster from orthomcl output\n" print >> sys.stderr, "usage: " + sys.argv[0] + " orthomcl.out" sys.exit(1) def plausi(): if len(sys.argv) != 2: usage() inFile = sys.argv[1] return inFile def main(): inFile = plausi() fo = open(inFile) for line in fo: o = OrthoMCLCluster(line.rstrip()) name = o.get_name() geneHash = o.get_gene_hash() for geneid, species in geneHash.iteritems(): print geneid + "\t" + name main()
#!/usr/bin/python import os, sys, string from low import * from orthomcl import OrthoMCLCluster # ============================================================================= def usage(): print >> sys.stderr, "prints a mapping between each gene id and its cluster from orthomcl output\n" print >> sys.stderr, "usage: " + sys.argv[0] + " orthomcl.out" sys.exit(1) def plausi(): if len(sys.argv) != 2: usage() inFile = sys.argv[1] return inFile def main(): inFile = plausi() fo = open(inFile) for line in fo: o = OrthoMCLCluster(line.rstrip()) name = o.get_name() geneHash = o.get_gene_hash() for geneid, species in geneHash.iteritems(): print geneid + "\t" + name main()
fr
0.317879
#!/usr/bin/python # =============================================================================
2.785269
3
src/spidery/spider/news/__init__.py
A2Media-id/spidery
0
6630311
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import logging import re import traceback from abc import abstractmethod, ABC from typing import List from bs4 import BeautifulSoup from spidery.spider.engine import BaseCrawl from spidery.spider.resource import DataNews, DataArticle class NewsEngine(BaseCrawl, ABC): _me = __file__ def __init__(self, **kwargs): super(NewsEngine, self).__init__(**kwargs) @staticmethod def _get_all_images(soup: BeautifulSoup) -> List: results = [] try: attrs = ['src', 'data-src', 'data-srcset'] datas = soup.find_all('img') or [] added = set() for i, im in enumerate(datas): default_text = im.get('alt') or im.text parent = im.parent if not default_text and parent: default_text = parent.string text = str(default_text).replace('\n', '').strip() for atr in attrs: if not im.get(atr): continue ims = str(im.get(atr)).split() for img in ims: if re.search(r"https?://([A-Za-z_0-9.-]+)(\/[^\s]+)?", img, re.IGNORECASE) and img not in added: image = re.sub(r"(,(w_\d+|ar_\d+:\d+)|\/w\d+$)", "", str(img).strip(), 0, re.IGNORECASE | re.VERBOSE) added.add(img) results.append((image, text)) except Exception as error: logging.error( ''.join(traceback.format_exception(etype=type(error), value=error, tb=error.__traceback__))) finally: return results @abstractmethod def get_detail(self, data: DataNews) -> DataArticle: pass @abstractmethod def get_latest(self) -> List[DataNews]: pass
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import logging import re import traceback from abc import abstractmethod, ABC from typing import List from bs4 import BeautifulSoup from spidery.spider.engine import BaseCrawl from spidery.spider.resource import DataNews, DataArticle class NewsEngine(BaseCrawl, ABC): _me = __file__ def __init__(self, **kwargs): super(NewsEngine, self).__init__(**kwargs) @staticmethod def _get_all_images(soup: BeautifulSoup) -> List: results = [] try: attrs = ['src', 'data-src', 'data-srcset'] datas = soup.find_all('img') or [] added = set() for i, im in enumerate(datas): default_text = im.get('alt') or im.text parent = im.parent if not default_text and parent: default_text = parent.string text = str(default_text).replace('\n', '').strip() for atr in attrs: if not im.get(atr): continue ims = str(im.get(atr)).split() for img in ims: if re.search(r"https?://([A-Za-z_0-9.-]+)(\/[^\s]+)?", img, re.IGNORECASE) and img not in added: image = re.sub(r"(,(w_\d+|ar_\d+:\d+)|\/w\d+$)", "", str(img).strip(), 0, re.IGNORECASE | re.VERBOSE) added.add(img) results.append((image, text)) except Exception as error: logging.error( ''.join(traceback.format_exception(etype=type(error), value=error, tb=error.__traceback__))) finally: return results @abstractmethod def get_detail(self, data: DataNews) -> DataArticle: pass @abstractmethod def get_latest(self) -> List[DataNews]: pass
en
0.308914
#!/usr/bin/env python3 # -*- coding: utf-8 -*-
2.445538
2
tests/test_edit_contact.py
AlreyQuin/python_training
0
6630312
# -*- coding: utf-8 -*- from model.contact import Contact import random def test_edit_name(app, db, json_contacts, check_ui): contact = json_contacts if len(db.get_contact_list()) == 0: app.contact.create(contact) old_contact = db.get_contact_list() c = random.choice(old_contact) app.contact.edit_contact_by_id(contact, c.id) new_contact = db.get_contact_list() assert len(old_contact) == len(new_contact) contact.id = c.id old_contact.remove(c) old_contact.append(contact) assert sorted(old_contact, key=Contact.id_or_max) == sorted(new_contact, key=Contact.id_or_max) if check_ui: assert sorted(new_contact, key=Contact.id_or_max) == sorted(app.contact.get_group_list(), key=Contact.id_or_max)
# -*- coding: utf-8 -*- from model.contact import Contact import random def test_edit_name(app, db, json_contacts, check_ui): contact = json_contacts if len(db.get_contact_list()) == 0: app.contact.create(contact) old_contact = db.get_contact_list() c = random.choice(old_contact) app.contact.edit_contact_by_id(contact, c.id) new_contact = db.get_contact_list() assert len(old_contact) == len(new_contact) contact.id = c.id old_contact.remove(c) old_contact.append(contact) assert sorted(old_contact, key=Contact.id_or_max) == sorted(new_contact, key=Contact.id_or_max) if check_ui: assert sorted(new_contact, key=Contact.id_or_max) == sorted(app.contact.get_group_list(), key=Contact.id_or_max)
en
0.769321
# -*- coding: utf-8 -*-
2.628039
3
mmtbx/conformation_dependent_library/multi_base_class.py
hbrunie/cctbx_project
2
6630313
<reponame>hbrunie/cctbx_project from __future__ import absolute_import, division, print_function from mmtbx.conformation_dependent_library.LinkedResidues import LinkedResidues from mmtbx.conformation_dependent_library.cdl_utils import \ get_c_ca_n from six.moves import range def calc_pseudorotation(t0,t1,t2,t3,t4): import math if t0 > 180.0: t0 = t0 - 360.0 if t1 > 180.0: t1 = t1 - 360.0 if t2 > 180.0: t2 = t2 - 360.0 #JC hack if t2 == 0.0: t2 = 0.1 #/JC if t3 > 180.0: t3 = t3 - 360.0 if t4 > 180.0: t4 = t4 - 360.0 taus = [t0, t1, t2, t3, t4] tanP = ((taus[4] + taus[1]) - (taus[3] + taus[0]))/(2 * taus[2] * (math.sin(36.0*math.pi/180.0) + math.sin(72.0*math.pi/180.0))) P = math.atan(tanP)*180.0/math.pi if taus[2] < 0: P = P + 180.0 elif tanP < 0: P = P + 360.0 #P = "%.1f" % P return P def _get_atoms(atom_group, atom_names): atoms, outl = get_c_ca_n(atom_group, atom_names) if atoms is None: for i in range(len(atom_names)): atom_names[i] = atom_names[i].replace("'", '*') atoms, outl = get_c_ca_n(atom_group, atom_names) return atoms def get_distance(ag1, ag2, an1, an2): atoms = _get_atoms(ag1, an1) + _get_atoms(ag2, an2) # for atom in atoms: print atom.quote() return atoms[0].distance(atoms[1]) def get_torsion(ag1, ag2, an1, an2, limits='-180-180'): from scitbx.math import dihedral_angle atoms = _get_atoms(ag1, an1) + _get_atoms(ag2, an2) omega = dihedral_angle(sites=[atom.xyz for atom in atoms], deg=True) if limits=='-180-180': if omega>180: print(omega, limits) assert 0 elif limits=='0-360': if omega<0: omega+=360 # for atom in atoms: print atom.quote() return omega class TwoNucleicResidues(LinkedResidues): def show(self): outl = "%sNucleicResidues" % self.length for residue in self: if residue is not None: outl += " %s(%s)" % (residue.resname, residue.resseq) else: outl += ' "%s"' % residue outl += " %s" % self.are_linked(return_value=True) if self.start is not None: outl += " start=T" if self.end is not None: outl += " end=T" return outl @staticmethod def get_o3prime_p(residue, return_subset=False): rc = get_c_ca_n(residue, atom_name_list=[' O3', ' P '], return_subset=return_subset) if rc[0] is None: rc = get_c_ca_n(residue, atom_name_list=[' O3*', ' P '], return_subset=return_subset) return rc def are_linked(self, return_value=False, use_distance_always=False, bond_cut_off=3.5, # Same as link_distance_cutoff of pdb_interpretation verbose=True, ): bond_cut_off *= bond_cut_off for i, residue in enumerate(self): if i==0: continue op1, outl1 = self.get_o3prime_p(residue, return_subset=False) # if self[i-1] is None: # place holder for omega CDL # return False op2, outl2 = self.get_o3prime_p(self[i-1], return_subset=False) # if ccn1 is None: # for line in outl1: # if line not in self.errors: # self.errors.append(line) # break # if ccn2 is None: # for line in outl2: # if line not in self.errors: # self.errors.append(line) # break p = op1[1] o3prime = op2[0] if p is None or o3prime is None: return False if self.bond_params_table is None: d2 = distance2(p,o3prime) if d2<bond_cut_off: bond=True else: bond=False else: bond=self.bond_params_table.lookup(p.i_seq, o3prime.i_seq) if not bond and use_distance_always: # needed for situations where atoms are added and the i_seq is updated if distance2(p,o3prime)<bond_cut_off: bond=True if not bond: break else: return True if return_value: return d2 return False def get_base_types(self): rc = [] for base in self: for atom in base.atoms(): if atom.name==' N9 ': rc.append('R') break else: rc.append('Y') return rc def get_id(self): outl = [] outl.append(self[0].parent().parent().id) outl.append(self[0].resname.strip()) outl.append(self[0].resseq.strip()) assert not self[0].parent().altloc outl.append(self[1].resname.strip()) outl.append(self[1].resseq.strip()) assert not self[1].parent().altloc return '_'.join(outl) def get_ntc_angles(self): angles = { 'd' :[[" C5'", " C4'", " C3'", " O3'"],[]], # delta0 'e' :[[" C4'", " C3'", " O3'" ], [" P "]], # epsilon 'z' :[[" C3'", " O3'"], [" P ", " O5'"]], # zeta 'a1':[[" O3'"], [" P ", " O5'", " C5'"]], # alpha 'b1':[[], [" P ", " O5'", " C5'", " C4'"]], # beta 'g1':[[], [" O5'", " C5'", " C4'", " C3'"]], # gamma 'd1':[[], [" C5'", " C4'", " C3'", " O3'"]], # delta1 } types = self.get_base_types() if types[0]=='R': angles['ch'] = [[" O4'", " C1'", " N9 ", " C4 "],[]] # chi0 N0 = ' N9 ' else: angles['ch'] = [[" O4'", " C1'", " N1 ", " C2 "],[]] # chi0 N0 = ' N1 ' if types[1]=='R': angles['ch1'] = [[], [" O4'", " C1'", " N9 ", " C4 "]] # chi1 N1 = ' N9 ' else: angles['ch1'] = [[], [" O4'", " C1'", " N1 ", " C2 "]] # chi1 N1 = ' N1 ' angles['NCCN'] = [[N0, " C1'"], [" C1'", N1]] rc = {} for angle, atom_names in angles.items(): rc[angle] = get_torsion(self[0], self[1], atom_names[0], atom_names[1], limits='0-360') rc['NN'] = get_distance(self[0], self[1], [N0], [N1]) rc['CC'] = get_distance(self[0], self[1], [" C1'"], [" C1'"]) # tau args1 = [] args2 = [] for atom_names in [ [" C4'", " O4'", " C1'", " C2'"], [" O4'", " C1'", " C2'", " C3'"], [" C1'", " C2'", " C3'", " C4'"], [" C2'", " C3'", " C4'", " O4'"], [" C3'", " C4'", " O4'", " C1'"], ]: args1.append(get_torsion(self[0], self[1], atom_names, [])) args2.append(get_torsion(self[0], self[1], [], atom_names)) rc['P'] = calc_pseudorotation(*tuple(args1)) rc['P1'] = calc_pseudorotation(*tuple(args2)) for label, item in rc.items(): # print ' %s : %0.2f' % (label, item) rc[label] = '%0.1f' % item rc['step_id'] = self.get_id() return rc def get_ntc_coordinates(self): query = {} for atom_key in ['C5pa', 'C4pa', 'O4pa', 'C3pa', 'O3pa', 'C2pa', 'C1pa', 'N19a', 'C24a', 'Pb', 'O5pb', 'C5pb', 'C4pb', 'O4pb', 'C3pb', 'O3pb', 'C2pb', 'C1pb', 'N19b', 'C24b', ]: if atom_key[-1]=='a': atom_group = self[0] elif atom_key[-1]=='b': atom_group = self[1] else: assert 0 if atom_key.find('P')>-1: names = [' P '] elif atom_key.find('N19')>-1: names = [' N1 ', ' N9 '] elif atom_key.find('C24')>-1: names = [' C2 ', ' C4 '] else: names = ['%4s' % atom_key[:-1].replace('p',"'")] for name in names: atom = atom_group.find_atom_by(name=name) if atom is None: atom = atom_group.find_atom_by(name=name.replace("'", '*')) if atom: break else: assert atom query[atom_key]= ['%s'%atom.xyz[0], '%s'%atom.xyz[1], '%s'%atom.xyz[2]] query['step_id'] = self.get_id() return query
from __future__ import absolute_import, division, print_function from mmtbx.conformation_dependent_library.LinkedResidues import LinkedResidues from mmtbx.conformation_dependent_library.cdl_utils import \ get_c_ca_n from six.moves import range def calc_pseudorotation(t0,t1,t2,t3,t4): import math if t0 > 180.0: t0 = t0 - 360.0 if t1 > 180.0: t1 = t1 - 360.0 if t2 > 180.0: t2 = t2 - 360.0 #JC hack if t2 == 0.0: t2 = 0.1 #/JC if t3 > 180.0: t3 = t3 - 360.0 if t4 > 180.0: t4 = t4 - 360.0 taus = [t0, t1, t2, t3, t4] tanP = ((taus[4] + taus[1]) - (taus[3] + taus[0]))/(2 * taus[2] * (math.sin(36.0*math.pi/180.0) + math.sin(72.0*math.pi/180.0))) P = math.atan(tanP)*180.0/math.pi if taus[2] < 0: P = P + 180.0 elif tanP < 0: P = P + 360.0 #P = "%.1f" % P return P def _get_atoms(atom_group, atom_names): atoms, outl = get_c_ca_n(atom_group, atom_names) if atoms is None: for i in range(len(atom_names)): atom_names[i] = atom_names[i].replace("'", '*') atoms, outl = get_c_ca_n(atom_group, atom_names) return atoms def get_distance(ag1, ag2, an1, an2): atoms = _get_atoms(ag1, an1) + _get_atoms(ag2, an2) # for atom in atoms: print atom.quote() return atoms[0].distance(atoms[1]) def get_torsion(ag1, ag2, an1, an2, limits='-180-180'): from scitbx.math import dihedral_angle atoms = _get_atoms(ag1, an1) + _get_atoms(ag2, an2) omega = dihedral_angle(sites=[atom.xyz for atom in atoms], deg=True) if limits=='-180-180': if omega>180: print(omega, limits) assert 0 elif limits=='0-360': if omega<0: omega+=360 # for atom in atoms: print atom.quote() return omega class TwoNucleicResidues(LinkedResidues): def show(self): outl = "%sNucleicResidues" % self.length for residue in self: if residue is not None: outl += " %s(%s)" % (residue.resname, residue.resseq) else: outl += ' "%s"' % residue outl += " %s" % self.are_linked(return_value=True) if self.start is not None: outl += " start=T" if self.end is not None: outl += " end=T" return outl @staticmethod def get_o3prime_p(residue, return_subset=False): rc = get_c_ca_n(residue, atom_name_list=[' O3', ' P '], return_subset=return_subset) if rc[0] is None: rc = get_c_ca_n(residue, atom_name_list=[' O3*', ' P '], return_subset=return_subset) return rc def are_linked(self, return_value=False, use_distance_always=False, bond_cut_off=3.5, # Same as link_distance_cutoff of pdb_interpretation verbose=True, ): bond_cut_off *= bond_cut_off for i, residue in enumerate(self): if i==0: continue op1, outl1 = self.get_o3prime_p(residue, return_subset=False) # if self[i-1] is None: # place holder for omega CDL # return False op2, outl2 = self.get_o3prime_p(self[i-1], return_subset=False) # if ccn1 is None: # for line in outl1: # if line not in self.errors: # self.errors.append(line) # break # if ccn2 is None: # for line in outl2: # if line not in self.errors: # self.errors.append(line) # break p = op1[1] o3prime = op2[0] if p is None or o3prime is None: return False if self.bond_params_table is None: d2 = distance2(p,o3prime) if d2<bond_cut_off: bond=True else: bond=False else: bond=self.bond_params_table.lookup(p.i_seq, o3prime.i_seq) if not bond and use_distance_always: # needed for situations where atoms are added and the i_seq is updated if distance2(p,o3prime)<bond_cut_off: bond=True if not bond: break else: return True if return_value: return d2 return False def get_base_types(self): rc = [] for base in self: for atom in base.atoms(): if atom.name==' N9 ': rc.append('R') break else: rc.append('Y') return rc def get_id(self): outl = [] outl.append(self[0].parent().parent().id) outl.append(self[0].resname.strip()) outl.append(self[0].resseq.strip()) assert not self[0].parent().altloc outl.append(self[1].resname.strip()) outl.append(self[1].resseq.strip()) assert not self[1].parent().altloc return '_'.join(outl) def get_ntc_angles(self): angles = { 'd' :[[" C5'", " C4'", " C3'", " O3'"],[]], # delta0 'e' :[[" C4'", " C3'", " O3'" ], [" P "]], # epsilon 'z' :[[" C3'", " O3'"], [" P ", " O5'"]], # zeta 'a1':[[" O3'"], [" P ", " O5'", " C5'"]], # alpha 'b1':[[], [" P ", " O5'", " C5'", " C4'"]], # beta 'g1':[[], [" O5'", " C5'", " C4'", " C3'"]], # gamma 'd1':[[], [" C5'", " C4'", " C3'", " O3'"]], # delta1 } types = self.get_base_types() if types[0]=='R': angles['ch'] = [[" O4'", " C1'", " N9 ", " C4 "],[]] # chi0 N0 = ' N9 ' else: angles['ch'] = [[" O4'", " C1'", " N1 ", " C2 "],[]] # chi0 N0 = ' N1 ' if types[1]=='R': angles['ch1'] = [[], [" O4'", " C1'", " N9 ", " C4 "]] # chi1 N1 = ' N9 ' else: angles['ch1'] = [[], [" O4'", " C1'", " N1 ", " C2 "]] # chi1 N1 = ' N1 ' angles['NCCN'] = [[N0, " C1'"], [" C1'", N1]] rc = {} for angle, atom_names in angles.items(): rc[angle] = get_torsion(self[0], self[1], atom_names[0], atom_names[1], limits='0-360') rc['NN'] = get_distance(self[0], self[1], [N0], [N1]) rc['CC'] = get_distance(self[0], self[1], [" C1'"], [" C1'"]) # tau args1 = [] args2 = [] for atom_names in [ [" C4'", " O4'", " C1'", " C2'"], [" O4'", " C1'", " C2'", " C3'"], [" C1'", " C2'", " C3'", " C4'"], [" C2'", " C3'", " C4'", " O4'"], [" C3'", " C4'", " O4'", " C1'"], ]: args1.append(get_torsion(self[0], self[1], atom_names, [])) args2.append(get_torsion(self[0], self[1], [], atom_names)) rc['P'] = calc_pseudorotation(*tuple(args1)) rc['P1'] = calc_pseudorotation(*tuple(args2)) for label, item in rc.items(): # print ' %s : %0.2f' % (label, item) rc[label] = '%0.1f' % item rc['step_id'] = self.get_id() return rc def get_ntc_coordinates(self): query = {} for atom_key in ['C5pa', 'C4pa', 'O4pa', 'C3pa', 'O3pa', 'C2pa', 'C1pa', 'N19a', 'C24a', 'Pb', 'O5pb', 'C5pb', 'C4pb', 'O4pb', 'C3pb', 'O3pb', 'C2pb', 'C1pb', 'N19b', 'C24b', ]: if atom_key[-1]=='a': atom_group = self[0] elif atom_key[-1]=='b': atom_group = self[1] else: assert 0 if atom_key.find('P')>-1: names = [' P '] elif atom_key.find('N19')>-1: names = [' N1 ', ' N9 '] elif atom_key.find('C24')>-1: names = [' C2 ', ' C4 '] else: names = ['%4s' % atom_key[:-1].replace('p',"'")] for name in names: atom = atom_group.find_atom_by(name=name) if atom is None: atom = atom_group.find_atom_by(name=name.replace("'", '*')) if atom: break else: assert atom query[atom_key]= ['%s'%atom.xyz[0], '%s'%atom.xyz[1], '%s'%atom.xyz[2]] query['step_id'] = self.get_id() return query
en
0.602065
#JC hack #/JC #P = "%.1f" % P # for atom in atoms: print atom.quote() # for atom in atoms: print atom.quote() # Same as link_distance_cutoff of pdb_interpretation # if self[i-1] is None: # place holder for omega CDL # return False # if ccn1 is None: # for line in outl1: # if line not in self.errors: # self.errors.append(line) # break # if ccn2 is None: # for line in outl2: # if line not in self.errors: # self.errors.append(line) # break # needed for situations where atoms are added and the i_seq is updated # delta0 # epsilon # zeta # alpha # beta # gamma # delta1 # chi0 # chi0 # chi1 # chi1 # tau # print ' %s : %0.2f' % (label, item)
1.843688
2
neutron_tempest_plugin/scenario/test_qos.py
cloudification-io/neutron-tempest-plugin
0
6630314
<gh_stars>0 # Copyright 2016 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import errno import socket import time from neutron_lib.services.qos import constants as qos_consts from oslo_log import log as logging from tempest.common import utils as tutils from tempest.lib import decorators from neutron_tempest_plugin.api import base as base_api from neutron_tempest_plugin.common import ssh from neutron_tempest_plugin.common import utils from neutron_tempest_plugin import config from neutron_tempest_plugin.scenario import base from neutron_tempest_plugin.scenario import constants from neutron_tempest_plugin.scenario import exceptions as sc_exceptions CONF = config.CONF LOG = logging.getLogger(__name__) def _try_connect(host_ip, port, socket_timeout): try: client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client_socket.connect((host_ip, port)) client_socket.settimeout(socket_timeout) return client_socket except socket.error as serr: if serr.errno == errno.ECONNREFUSED: raise sc_exceptions.SocketConnectionRefused(host=host_ip, port=port) else: raise def _connect_socket(host, port, socket_timeout): """Try to initiate a connection to a host using an ip address and a port. Trying couple of times until a timeout is reached in case the listening host is not ready yet. """ start = time.time() while True: try: return _try_connect(host, port, socket_timeout) except sc_exceptions.SocketConnectionRefused: if time.time() - start > constants.SOCKET_CONNECT_TIMEOUT: raise sc_exceptions.ConnectionTimeoutException(host=host, port=port) class QoSTestMixin(object): credentials = ['primary', 'admin'] force_tenant_isolation = False FILE_SIZE = 1024 * 1024 TOLERANCE_FACTOR = 1.5 BUFFER_SIZE = 512 COUNT = FILE_SIZE / BUFFER_SIZE LIMIT_BYTES_SEC = (constants.LIMIT_KILO_BITS_PER_SECOND * 1024 * TOLERANCE_FACTOR / 8.0) FILE_PATH = "/tmp/img" NC_PORT = 1234 FILE_DOWNLOAD_TIMEOUT = 120 def _create_file_for_bw_tests(self, ssh_client): cmd = ("(dd if=/dev/zero bs=%(bs)d count=%(count)d of=%(file_path)s) " % {'bs': self.BUFFER_SIZE, 'count': self.COUNT, 'file_path': self.FILE_PATH}) ssh_client.exec_command(cmd, timeout=5) cmd = "stat -c %%s %s" % self.FILE_PATH filesize = ssh_client.exec_command(cmd, timeout=5) if int(filesize.strip()) != self.FILE_SIZE: raise sc_exceptions.FileCreationFailedException( file=self.FILE_PATH) def _check_bw(self, ssh_client, host, port, expected_bw=LIMIT_BYTES_SEC): utils.kill_nc_process(ssh_client) cmd = ("(nc -ll -p %(port)d < %(file_path)s > /dev/null &)" % { 'port': port, 'file_path': self.FILE_PATH}) ssh_client.exec_command(cmd, timeout=5) # Open TCP socket to remote VM and download big file start_time = time.time() socket_timeout = self.FILE_SIZE * self.TOLERANCE_FACTOR / expected_bw client_socket = _connect_socket(host, port, socket_timeout) total_bytes_read = 0 try: while total_bytes_read < self.FILE_SIZE: data = client_socket.recv(self.BUFFER_SIZE) total_bytes_read += len(data) # Calculate and return actual BW + logging result time_elapsed = time.time() - start_time bytes_per_second = total_bytes_read / time_elapsed LOG.debug("time_elapsed = %(time_elapsed).16f, " "total_bytes_read = %(total_bytes_read)d, " "bytes_per_second = %(bytes_per_second)d", {'time_elapsed': time_elapsed, 'total_bytes_read': total_bytes_read, 'bytes_per_second': bytes_per_second}) return bytes_per_second <= expected_bw except socket.timeout: LOG.warning('Socket timeout while reading the remote file, bytes ' 'read: %s', total_bytes_read) utils.kill_nc_process(ssh_client) return False finally: client_socket.close() def _create_ssh_client(self): return ssh.Client(self.fip['floating_ip_address'], CONF.validation.image_ssh_user, pkey=self.keypair['private_key']) def _test_basic_resources(self): self.setup_network_and_server() self.check_connectivity(self.fip['floating_ip_address'], CONF.validation.image_ssh_user, self.keypair['private_key']) rulesets = [{'protocol': 'tcp', 'direction': 'ingress', 'port_range_min': self.NC_PORT, 'port_range_max': self.NC_PORT, 'remote_ip_prefix': '0.0.0.0/0'}] self.create_secgroup_rules(rulesets, self.security_groups[-1]['id']) def _create_qos_policy(self): policy = self.os_admin.network_client.create_qos_policy( name='test-policy', description='test-qos-policy', shared=True) return policy['policy']['id'] class QoSTest(QoSTestMixin, base.BaseTempestTestCase): @classmethod @tutils.requires_ext(extension="qos", service="network") @base_api.require_qos_rule_type(qos_consts.RULE_TYPE_BANDWIDTH_LIMIT) def resource_setup(cls): super(QoSTest, cls).resource_setup() @decorators.idempotent_id('00682a0c-b72e-11e8-b81e-8c16450ea513') def test_qos_basic_and_update(self): """This test covers both: 1) Basic QoS functionality This is a basic test that check that a QoS policy with a bandwidth limit rule is applied correctly by sending a file from the instance to the test node. Then calculating the bandwidth every ~1 sec by the number of bits received / elapsed time. 2) Update QoS policy Administrator has the ability to update existing QoS policy, this test is planned to verify that: - actual BW is affected as expected after updating QoS policy. Test scenario: 1) Associating QoS Policy with "Original_bandwidth" to the test node 2) BW validation - by downloading file on test node. ("Original_bandwidth" is expected) 3) Updating existing QoS Policy to a new BW value "Updated_bandwidth" 4) BW validation - by downloading file on test node. ("Updated_bandwidth" is expected) Note: There are two options to associate QoS policy to VM: "Neutron Port" or "Network", in this test both options are covered. """ # Setup resources self._test_basic_resources() ssh_client = self._create_ssh_client() # Create QoS policy bw_limit_policy_id = self._create_qos_policy() # As admin user create QoS rule rule_id = self.os_admin.network_client.create_bandwidth_limit_rule( policy_id=bw_limit_policy_id, max_kbps=constants.LIMIT_KILO_BITS_PER_SECOND, max_burst_kbps=constants.LIMIT_KILO_BITS_PER_SECOND)[ 'bandwidth_limit_rule']['id'] # Associate QoS to the network self.os_admin.network_client.update_network( self.network['id'], qos_policy_id=bw_limit_policy_id) # Create file on VM self._create_file_for_bw_tests(ssh_client) # Basic test, Check that actual BW while downloading file # is as expected (Original BW) utils.wait_until_true(lambda: self._check_bw( ssh_client, self.fip['floating_ip_address'], port=self.NC_PORT), timeout=self.FILE_DOWNLOAD_TIMEOUT, sleep=1) # As admin user update QoS rule self.os_admin.network_client.update_bandwidth_limit_rule( bw_limit_policy_id, rule_id, max_kbps=constants.LIMIT_KILO_BITS_PER_SECOND * 2, max_burst_kbps=constants.LIMIT_KILO_BITS_PER_SECOND * 2) # Check that actual BW while downloading file # is as expected (Update BW) utils.wait_until_true(lambda: self._check_bw( ssh_client, self.fip['floating_ip_address'], port=self.NC_PORT, expected_bw=QoSTest.LIMIT_BYTES_SEC * 2), timeout=self.FILE_DOWNLOAD_TIMEOUT, sleep=1) # Create a new QoS policy bw_limit_policy_id_new = self._create_qos_policy() # As admin user create a new QoS rule rule_id_new = self.os_admin.network_client.create_bandwidth_limit_rule( policy_id=bw_limit_policy_id_new, max_kbps=constants.LIMIT_KILO_BITS_PER_SECOND, max_burst_kbps=constants.LIMIT_KILO_BITS_PER_SECOND)[ 'bandwidth_limit_rule']['id'] # Associate a new QoS policy to Neutron port self.os_admin.network_client.update_port( self.port['id'], qos_policy_id=bw_limit_policy_id_new) # Check that actual BW while downloading file # is as expected (Original BW) utils.wait_until_true(lambda: self._check_bw( ssh_client, self.fip['floating_ip_address'], port=self.NC_PORT), timeout=self.FILE_DOWNLOAD_TIMEOUT, sleep=1) # As admin user update QoS rule self.os_admin.network_client.update_bandwidth_limit_rule( bw_limit_policy_id_new, rule_id_new, max_kbps=constants.LIMIT_KILO_BITS_PER_SECOND * 3, max_burst_kbps=constants.LIMIT_KILO_BITS_PER_SECOND * 3) # Check that actual BW while downloading file # is as expected (Update BW) utils.wait_until_true(lambda: self._check_bw( ssh_client, self.fip['floating_ip_address'], port=self.NC_PORT, expected_bw=QoSTest.LIMIT_BYTES_SEC * 3), timeout=self.FILE_DOWNLOAD_TIMEOUT, sleep=1)
# Copyright 2016 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import errno import socket import time from neutron_lib.services.qos import constants as qos_consts from oslo_log import log as logging from tempest.common import utils as tutils from tempest.lib import decorators from neutron_tempest_plugin.api import base as base_api from neutron_tempest_plugin.common import ssh from neutron_tempest_plugin.common import utils from neutron_tempest_plugin import config from neutron_tempest_plugin.scenario import base from neutron_tempest_plugin.scenario import constants from neutron_tempest_plugin.scenario import exceptions as sc_exceptions CONF = config.CONF LOG = logging.getLogger(__name__) def _try_connect(host_ip, port, socket_timeout): try: client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client_socket.connect((host_ip, port)) client_socket.settimeout(socket_timeout) return client_socket except socket.error as serr: if serr.errno == errno.ECONNREFUSED: raise sc_exceptions.SocketConnectionRefused(host=host_ip, port=port) else: raise def _connect_socket(host, port, socket_timeout): """Try to initiate a connection to a host using an ip address and a port. Trying couple of times until a timeout is reached in case the listening host is not ready yet. """ start = time.time() while True: try: return _try_connect(host, port, socket_timeout) except sc_exceptions.SocketConnectionRefused: if time.time() - start > constants.SOCKET_CONNECT_TIMEOUT: raise sc_exceptions.ConnectionTimeoutException(host=host, port=port) class QoSTestMixin(object): credentials = ['primary', 'admin'] force_tenant_isolation = False FILE_SIZE = 1024 * 1024 TOLERANCE_FACTOR = 1.5 BUFFER_SIZE = 512 COUNT = FILE_SIZE / BUFFER_SIZE LIMIT_BYTES_SEC = (constants.LIMIT_KILO_BITS_PER_SECOND * 1024 * TOLERANCE_FACTOR / 8.0) FILE_PATH = "/tmp/img" NC_PORT = 1234 FILE_DOWNLOAD_TIMEOUT = 120 def _create_file_for_bw_tests(self, ssh_client): cmd = ("(dd if=/dev/zero bs=%(bs)d count=%(count)d of=%(file_path)s) " % {'bs': self.BUFFER_SIZE, 'count': self.COUNT, 'file_path': self.FILE_PATH}) ssh_client.exec_command(cmd, timeout=5) cmd = "stat -c %%s %s" % self.FILE_PATH filesize = ssh_client.exec_command(cmd, timeout=5) if int(filesize.strip()) != self.FILE_SIZE: raise sc_exceptions.FileCreationFailedException( file=self.FILE_PATH) def _check_bw(self, ssh_client, host, port, expected_bw=LIMIT_BYTES_SEC): utils.kill_nc_process(ssh_client) cmd = ("(nc -ll -p %(port)d < %(file_path)s > /dev/null &)" % { 'port': port, 'file_path': self.FILE_PATH}) ssh_client.exec_command(cmd, timeout=5) # Open TCP socket to remote VM and download big file start_time = time.time() socket_timeout = self.FILE_SIZE * self.TOLERANCE_FACTOR / expected_bw client_socket = _connect_socket(host, port, socket_timeout) total_bytes_read = 0 try: while total_bytes_read < self.FILE_SIZE: data = client_socket.recv(self.BUFFER_SIZE) total_bytes_read += len(data) # Calculate and return actual BW + logging result time_elapsed = time.time() - start_time bytes_per_second = total_bytes_read / time_elapsed LOG.debug("time_elapsed = %(time_elapsed).16f, " "total_bytes_read = %(total_bytes_read)d, " "bytes_per_second = %(bytes_per_second)d", {'time_elapsed': time_elapsed, 'total_bytes_read': total_bytes_read, 'bytes_per_second': bytes_per_second}) return bytes_per_second <= expected_bw except socket.timeout: LOG.warning('Socket timeout while reading the remote file, bytes ' 'read: %s', total_bytes_read) utils.kill_nc_process(ssh_client) return False finally: client_socket.close() def _create_ssh_client(self): return ssh.Client(self.fip['floating_ip_address'], CONF.validation.image_ssh_user, pkey=self.keypair['private_key']) def _test_basic_resources(self): self.setup_network_and_server() self.check_connectivity(self.fip['floating_ip_address'], CONF.validation.image_ssh_user, self.keypair['private_key']) rulesets = [{'protocol': 'tcp', 'direction': 'ingress', 'port_range_min': self.NC_PORT, 'port_range_max': self.NC_PORT, 'remote_ip_prefix': '0.0.0.0/0'}] self.create_secgroup_rules(rulesets, self.security_groups[-1]['id']) def _create_qos_policy(self): policy = self.os_admin.network_client.create_qos_policy( name='test-policy', description='test-qos-policy', shared=True) return policy['policy']['id'] class QoSTest(QoSTestMixin, base.BaseTempestTestCase): @classmethod @tutils.requires_ext(extension="qos", service="network") @base_api.require_qos_rule_type(qos_consts.RULE_TYPE_BANDWIDTH_LIMIT) def resource_setup(cls): super(QoSTest, cls).resource_setup() @decorators.idempotent_id('00682a0c-b72e-11e8-b81e-8c16450ea513') def test_qos_basic_and_update(self): """This test covers both: 1) Basic QoS functionality This is a basic test that check that a QoS policy with a bandwidth limit rule is applied correctly by sending a file from the instance to the test node. Then calculating the bandwidth every ~1 sec by the number of bits received / elapsed time. 2) Update QoS policy Administrator has the ability to update existing QoS policy, this test is planned to verify that: - actual BW is affected as expected after updating QoS policy. Test scenario: 1) Associating QoS Policy with "Original_bandwidth" to the test node 2) BW validation - by downloading file on test node. ("Original_bandwidth" is expected) 3) Updating existing QoS Policy to a new BW value "Updated_bandwidth" 4) BW validation - by downloading file on test node. ("Updated_bandwidth" is expected) Note: There are two options to associate QoS policy to VM: "Neutron Port" or "Network", in this test both options are covered. """ # Setup resources self._test_basic_resources() ssh_client = self._create_ssh_client() # Create QoS policy bw_limit_policy_id = self._create_qos_policy() # As admin user create QoS rule rule_id = self.os_admin.network_client.create_bandwidth_limit_rule( policy_id=bw_limit_policy_id, max_kbps=constants.LIMIT_KILO_BITS_PER_SECOND, max_burst_kbps=constants.LIMIT_KILO_BITS_PER_SECOND)[ 'bandwidth_limit_rule']['id'] # Associate QoS to the network self.os_admin.network_client.update_network( self.network['id'], qos_policy_id=bw_limit_policy_id) # Create file on VM self._create_file_for_bw_tests(ssh_client) # Basic test, Check that actual BW while downloading file # is as expected (Original BW) utils.wait_until_true(lambda: self._check_bw( ssh_client, self.fip['floating_ip_address'], port=self.NC_PORT), timeout=self.FILE_DOWNLOAD_TIMEOUT, sleep=1) # As admin user update QoS rule self.os_admin.network_client.update_bandwidth_limit_rule( bw_limit_policy_id, rule_id, max_kbps=constants.LIMIT_KILO_BITS_PER_SECOND * 2, max_burst_kbps=constants.LIMIT_KILO_BITS_PER_SECOND * 2) # Check that actual BW while downloading file # is as expected (Update BW) utils.wait_until_true(lambda: self._check_bw( ssh_client, self.fip['floating_ip_address'], port=self.NC_PORT, expected_bw=QoSTest.LIMIT_BYTES_SEC * 2), timeout=self.FILE_DOWNLOAD_TIMEOUT, sleep=1) # Create a new QoS policy bw_limit_policy_id_new = self._create_qos_policy() # As admin user create a new QoS rule rule_id_new = self.os_admin.network_client.create_bandwidth_limit_rule( policy_id=bw_limit_policy_id_new, max_kbps=constants.LIMIT_KILO_BITS_PER_SECOND, max_burst_kbps=constants.LIMIT_KILO_BITS_PER_SECOND)[ 'bandwidth_limit_rule']['id'] # Associate a new QoS policy to Neutron port self.os_admin.network_client.update_port( self.port['id'], qos_policy_id=bw_limit_policy_id_new) # Check that actual BW while downloading file # is as expected (Original BW) utils.wait_until_true(lambda: self._check_bw( ssh_client, self.fip['floating_ip_address'], port=self.NC_PORT), timeout=self.FILE_DOWNLOAD_TIMEOUT, sleep=1) # As admin user update QoS rule self.os_admin.network_client.update_bandwidth_limit_rule( bw_limit_policy_id_new, rule_id_new, max_kbps=constants.LIMIT_KILO_BITS_PER_SECOND * 3, max_burst_kbps=constants.LIMIT_KILO_BITS_PER_SECOND * 3) # Check that actual BW while downloading file # is as expected (Update BW) utils.wait_until_true(lambda: self._check_bw( ssh_client, self.fip['floating_ip_address'], port=self.NC_PORT, expected_bw=QoSTest.LIMIT_BYTES_SEC * 3), timeout=self.FILE_DOWNLOAD_TIMEOUT, sleep=1)
en
0.887427
# Copyright 2016 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. Try to initiate a connection to a host using an ip address and a port. Trying couple of times until a timeout is reached in case the listening host is not ready yet. # Open TCP socket to remote VM and download big file # Calculate and return actual BW + logging result This test covers both: 1) Basic QoS functionality This is a basic test that check that a QoS policy with a bandwidth limit rule is applied correctly by sending a file from the instance to the test node. Then calculating the bandwidth every ~1 sec by the number of bits received / elapsed time. 2) Update QoS policy Administrator has the ability to update existing QoS policy, this test is planned to verify that: - actual BW is affected as expected after updating QoS policy. Test scenario: 1) Associating QoS Policy with "Original_bandwidth" to the test node 2) BW validation - by downloading file on test node. ("Original_bandwidth" is expected) 3) Updating existing QoS Policy to a new BW value "Updated_bandwidth" 4) BW validation - by downloading file on test node. ("Updated_bandwidth" is expected) Note: There are two options to associate QoS policy to VM: "Neutron Port" or "Network", in this test both options are covered. # Setup resources # Create QoS policy # As admin user create QoS rule # Associate QoS to the network # Create file on VM # Basic test, Check that actual BW while downloading file # is as expected (Original BW) # As admin user update QoS rule # Check that actual BW while downloading file # is as expected (Update BW) # Create a new QoS policy # As admin user create a new QoS rule # Associate a new QoS policy to Neutron port # Check that actual BW while downloading file # is as expected (Original BW) # As admin user update QoS rule # Check that actual BW while downloading file # is as expected (Update BW)
1.726985
2
teamanalysis/water_2018.py
yoojunwoong/miniproject_self
0
6630315
<filename>teamanalysis/water_2018.py import pandas as pd; import numpy as np; import json from confing.settings import DATA_DIRS df = pd.read_excel(DATA_DIRS[0] + '//health_2018.xlsx', engine='openpyxl'); dfh = df.copy(); # 행같은경우 1~18까지 데이터가 광역시별,도의 총통계로 되어있고, # 열같은경우 물과 관련된 특정 데이터를 추출해야하는데, 특정값을 몰라서 (colunm1~colunm4)로함 #dfc1 = dfc.loc[1:18,['colunm1','colunm2','colunm3','colunm4']]; dfh1 = dfh.loc[1:7,['시도','대형교통사고_사망자수','총인구수','일본뇌염_발생자수']]; dfh2 = dfh.loc[9:17,['시도','대형교통사고_사망자수','총인구수','일본뇌염_발생자수']]; #세종시에 데이터를 제외시키기 위해서, 세종시 위,아래 데이터(dfc1과 dfc2를 concat하였음) dfh3 = pd.concat([dfh1, dfh2], ignore_index=True,join='outer'); # 특정값(column1)에 대해서 NaN안 경우 값을 0.0으로하였음 dfh3['대형교통사고_사망자수'].replace(np.nan,0.0,inplace=True); #print(dfh3); #--------------------------------------------------------------------------------# df2 = pd.read_excel(DATA_DIRS[0] + '//water_2018.xlsx', engine='openpyxl'); #print(df2); dfw = df2.copy(); # 데이터를 가져올때, 수자원공사,세종시 데이터는 뺴고 가져옴 # 비교대상 ex)시설용량(㎥/일) 별 과망간산칼륨소비량(기준:10/ 단위:(mg/L)), # 잔류염소(기준:4/ 단위:(mg/L))으로진행 # 서울,부산,대구,인천,광주,대전,울산 class water: def p1(self,x): #<수도 사업자가 서울특별시인 지역에, 잔류염소의 평균값 구하기> dfw1 = dfw[dfw['수도사업자'].str.contains(x)]; dfwc1 = dfw1['시설용량(㎥/일)'] * dfw1['잔류염소(기준:4/ 단위:(mg/L))'] * 1000 ; dfwc2 = dfw1['시설용량(㎥/일)'].sum(); dfwc3 = dfwc1.sum(); dfwc4 = (dfwc3 / dfwc2) * 0.001 #2018년도의 서울특별시의 잔류염소 평균값 = 0.46615449~ return(print(dfwc4)); #람다를 써야하나..?ㅠ dataw = { '서울특별시' : [0.46615449628127115], '부산광역시' : [0.6888034488826325], '대구광역시' : [0.5711069651741293], '인천광역시' : [0.8074644634880428], '광주광역시' : [0.6113274336283185], '대전광역시' : [0.6110416666666666], '울산광역시' : [0.5801515151515151], }; dfwc2 = pd.DataFrame(dataw,['2018 광역시별 잔류염소']); dfwc3 = dfwc2.T; dfwc4 = dfwc3.reset_index(); #print(dfh3.head(7)); #print(dfwc4); dfco_18 = pd.concat([dfh3.head(7),dfwc4],ignore_index=False,join='inner',axis=1); as18 = dfco_18.drop('index', axis=1); print(as18); #concat,merge 해봤는데, 겹치는 부분이 안사라짐... # if __name__ == '__main__': # water().p1('서울특별시'); # water().p1('부산광역시'); # water().p1('대구광역시'); # water().p1('인천광역시'); # water().p1('광주광역시'); # water().p1('대전광역시'); # water().p1('울산광역시');
<filename>teamanalysis/water_2018.py import pandas as pd; import numpy as np; import json from confing.settings import DATA_DIRS df = pd.read_excel(DATA_DIRS[0] + '//health_2018.xlsx', engine='openpyxl'); dfh = df.copy(); # 행같은경우 1~18까지 데이터가 광역시별,도의 총통계로 되어있고, # 열같은경우 물과 관련된 특정 데이터를 추출해야하는데, 특정값을 몰라서 (colunm1~colunm4)로함 #dfc1 = dfc.loc[1:18,['colunm1','colunm2','colunm3','colunm4']]; dfh1 = dfh.loc[1:7,['시도','대형교통사고_사망자수','총인구수','일본뇌염_발생자수']]; dfh2 = dfh.loc[9:17,['시도','대형교통사고_사망자수','총인구수','일본뇌염_발생자수']]; #세종시에 데이터를 제외시키기 위해서, 세종시 위,아래 데이터(dfc1과 dfc2를 concat하였음) dfh3 = pd.concat([dfh1, dfh2], ignore_index=True,join='outer'); # 특정값(column1)에 대해서 NaN안 경우 값을 0.0으로하였음 dfh3['대형교통사고_사망자수'].replace(np.nan,0.0,inplace=True); #print(dfh3); #--------------------------------------------------------------------------------# df2 = pd.read_excel(DATA_DIRS[0] + '//water_2018.xlsx', engine='openpyxl'); #print(df2); dfw = df2.copy(); # 데이터를 가져올때, 수자원공사,세종시 데이터는 뺴고 가져옴 # 비교대상 ex)시설용량(㎥/일) 별 과망간산칼륨소비량(기준:10/ 단위:(mg/L)), # 잔류염소(기준:4/ 단위:(mg/L))으로진행 # 서울,부산,대구,인천,광주,대전,울산 class water: def p1(self,x): #<수도 사업자가 서울특별시인 지역에, 잔류염소의 평균값 구하기> dfw1 = dfw[dfw['수도사업자'].str.contains(x)]; dfwc1 = dfw1['시설용량(㎥/일)'] * dfw1['잔류염소(기준:4/ 단위:(mg/L))'] * 1000 ; dfwc2 = dfw1['시설용량(㎥/일)'].sum(); dfwc3 = dfwc1.sum(); dfwc4 = (dfwc3 / dfwc2) * 0.001 #2018년도의 서울특별시의 잔류염소 평균값 = 0.46615449~ return(print(dfwc4)); #람다를 써야하나..?ㅠ dataw = { '서울특별시' : [0.46615449628127115], '부산광역시' : [0.6888034488826325], '대구광역시' : [0.5711069651741293], '인천광역시' : [0.8074644634880428], '광주광역시' : [0.6113274336283185], '대전광역시' : [0.6110416666666666], '울산광역시' : [0.5801515151515151], }; dfwc2 = pd.DataFrame(dataw,['2018 광역시별 잔류염소']); dfwc3 = dfwc2.T; dfwc4 = dfwc3.reset_index(); #print(dfh3.head(7)); #print(dfwc4); dfco_18 = pd.concat([dfh3.head(7),dfwc4],ignore_index=False,join='inner',axis=1); as18 = dfco_18.drop('index', axis=1); print(as18); #concat,merge 해봤는데, 겹치는 부분이 안사라짐... # if __name__ == '__main__': # water().p1('서울특별시'); # water().p1('부산광역시'); # water().p1('대구광역시'); # water().p1('인천광역시'); # water().p1('광주광역시'); # water().p1('대전광역시'); # water().p1('울산광역시');
ko
0.896972
# 행같은경우 1~18까지 데이터가 광역시별,도의 총통계로 되어있고, # 열같은경우 물과 관련된 특정 데이터를 추출해야하는데, 특정값을 몰라서 (colunm1~colunm4)로함 #dfc1 = dfc.loc[1:18,['colunm1','colunm2','colunm3','colunm4']]; #세종시에 데이터를 제외시키기 위해서, 세종시 위,아래 데이터(dfc1과 dfc2를 concat하였음) # 특정값(column1)에 대해서 NaN안 경우 값을 0.0으로하였음 #print(dfh3); #--------------------------------------------------------------------------------# #print(df2); # 데이터를 가져올때, 수자원공사,세종시 데이터는 뺴고 가져옴 # 비교대상 ex)시설용량(㎥/일) 별 과망간산칼륨소비량(기준:10/ 단위:(mg/L)), # 잔류염소(기준:4/ 단위:(mg/L))으로진행 # 서울,부산,대구,인천,광주,대전,울산 #<수도 사업자가 서울특별시인 지역에, 잔류염소의 평균값 구하기> #2018년도의 서울특별시의 잔류염소 평균값 = 0.46615449~ #람다를 써야하나..?ㅠ #print(dfh3.head(7)); #print(dfwc4); #concat,merge 해봤는데, 겹치는 부분이 안사라짐... # if __name__ == '__main__': # water().p1('서울특별시'); # water().p1('부산광역시'); # water().p1('대구광역시'); # water().p1('인천광역시'); # water().p1('광주광역시'); # water().p1('대전광역시'); # water().p1('울산광역시');
2.415797
2
Codes/gracekoo/interview_6.py
liuxiaohui1221/algorithm
256
6630316
# -*- coding: utf-8 -*- # @Time: 2020/5/25 12:37 # @Author: GraceKoo # @File: interview_6.py # @Desc: https://www.nowcoder.com/practice/9f3231a991af4f55b95579b44b7a01ba?tpId=13&tqId=11159&tPage=1&rp=1&ru=/ta/ # coding-interviews&qru=/ta/coding-interviews/question-ranking class Solution: def minNumberInRotateArray(self, rotateArray): # write code here len_rotatearray = len(rotateArray) if len_rotatearray <= 1: return rotateArray left = 0 right = len_rotatearray - 1 while left < right: middle = (left + right) // 2 if rotateArray[middle] > rotateArray[right]: left = middle + 1 else: right = middle return rotateArray[left] so = Solution() print(so.minNumberInRotateArray([1, 2, 3, 4, 5, 6, 7])) print(so.minNumberInRotateArray([4, 5, 6, 7, 1, 2, 3])) print(so.minNumberInRotateArray([6, 7, 1, 2, 3, 4, 5]))
# -*- coding: utf-8 -*- # @Time: 2020/5/25 12:37 # @Author: GraceKoo # @File: interview_6.py # @Desc: https://www.nowcoder.com/practice/9f3231a991af4f55b95579b44b7a01ba?tpId=13&tqId=11159&tPage=1&rp=1&ru=/ta/ # coding-interviews&qru=/ta/coding-interviews/question-ranking class Solution: def minNumberInRotateArray(self, rotateArray): # write code here len_rotatearray = len(rotateArray) if len_rotatearray <= 1: return rotateArray left = 0 right = len_rotatearray - 1 while left < right: middle = (left + right) // 2 if rotateArray[middle] > rotateArray[right]: left = middle + 1 else: right = middle return rotateArray[left] so = Solution() print(so.minNumberInRotateArray([1, 2, 3, 4, 5, 6, 7])) print(so.minNumberInRotateArray([4, 5, 6, 7, 1, 2, 3])) print(so.minNumberInRotateArray([6, 7, 1, 2, 3, 4, 5]))
en
0.47457
# -*- coding: utf-8 -*- # @Time: 2020/5/25 12:37 # @Author: GraceKoo # @File: interview_6.py # @Desc: https://www.nowcoder.com/practice/9f3231a991af4f55b95579b44b7a01ba?tpId=13&tqId=11159&tPage=1&rp=1&ru=/ta/ # coding-interviews&qru=/ta/coding-interviews/question-ranking # write code here
3.527322
4
tests/languages/test_bengali.py
kevinbazira/revscoring
49
6630317
import pickle from pytest import mark from revscoring.datasources import revision_oriented from revscoring.dependencies import solve from revscoring.languages import bengali from .util import compare_extraction BAD = [ "magi", "মাগী", "বাল", "পর্নো", "পর্ণো", "বেশ্যা", "নষ্টা", "মগা", "আবাল", "পেনিস", "নিগ্রো", "পায়খান", "সেক্সি", "সেক্স", "চটি", ] INFORMAL = [ "কর", "করবি", "থাম", "হাহা", "হাহাহা", "হাহাহাহা", "lol", "লোল", "লুল", "ইউজার", "ইউজ", "ব্লা", "ব্লাব্লা", "জান", "বিশ্রী", "প্লিজ", "পেত্নী", ] OTHER = [ """ সত্যজিৎ রায় একজন ভারতীয় চলচ্চিত্র নির্মাতা ও বিংশ শতাব্দীর অন্যতম শ্রেষ্ঠ চলচ্চিত্র পরিচালক। কলকাতা শহরে সাহিত্য ও শিল্পের জগতে খ্যাতনামা এক বাঙালি পরিবারে তাঁর জন্ম হয়। তিনি কলকাতার প্রেসিডেন্সি কলেজ ও শান্তিনিকেতনে রবীন্দ্রনাথ ঠাকুরের প্রতিষ্ঠিত বিশ্বভারতী বিশ্ববিদ্যালয়ে পড়াশোনা করেন। সত্যজিতের কর্মজীবন একজন বাণিজ্যিক চিত্রকর হিসেবে শুরু হলেও প্রথমে কলকাতায় ফরাসী চলচ্চিত্র নির্মাতা জঁ রনোয়ারের সাথে সাক্ষাৎ ও পরে লন্ডন শহরে সফররত অবস্থায় ইতালীয় নব্য বাস্তবতাবাদী ছবি লাদ্রি দি বিচিক্লেত্তে. """ ] r_text = revision_oriented.revision.text @mark.nottravis def test_badwords(): compare_extraction(bengali.badwords.revision.datasources.matches, BAD, OTHER) assert bengali.badwords == pickle.loads(pickle.dumps(bengali.badwords)) @mark.nottravis def test_informals(): compare_extraction(bengali.informals.revision.datasources.matches, INFORMAL, OTHER) assert bengali.informals == pickle.loads(pickle.dumps(bengali.informals)) ''' def test_dictionary(): cache = {r_text: "দেখার পর তিনি worngly."} assert_equal(solve(bengali.dictionary.revision.datasources.dict_words, cache=cache), ['দেখার', 'পর', 'তিনি']) assert_equal(solve(bengali.dictionary.revision.datasources.non_dict_words, cache=cache), ["worngly"]) assert_equal(bengali.dictionary, pickle.loads(pickle.dumps(bengali.dictionary))) ''' @mark.nottravis def test_stopwords(): cache = {r_text: "আন চলচ্চিত্র."} assert (solve(bengali.stopwords.revision.datasources.stopwords, cache=cache) == ["আন"]) assert (solve(bengali.stopwords.revision.datasources.non_stopwords, cache=cache) == ['চলচ্চিত্র']) assert bengali.stopwords == pickle.loads(pickle.dumps(bengali.stopwords))
import pickle from pytest import mark from revscoring.datasources import revision_oriented from revscoring.dependencies import solve from revscoring.languages import bengali from .util import compare_extraction BAD = [ "magi", "মাগী", "বাল", "পর্নো", "পর্ণো", "বেশ্যা", "নষ্টা", "মগা", "আবাল", "পেনিস", "নিগ্রো", "পায়খান", "সেক্সি", "সেক্স", "চটি", ] INFORMAL = [ "কর", "করবি", "থাম", "হাহা", "হাহাহা", "হাহাহাহা", "lol", "লোল", "লুল", "ইউজার", "ইউজ", "ব্লা", "ব্লাব্লা", "জান", "বিশ্রী", "প্লিজ", "পেত্নী", ] OTHER = [ """ সত্যজিৎ রায় একজন ভারতীয় চলচ্চিত্র নির্মাতা ও বিংশ শতাব্দীর অন্যতম শ্রেষ্ঠ চলচ্চিত্র পরিচালক। কলকাতা শহরে সাহিত্য ও শিল্পের জগতে খ্যাতনামা এক বাঙালি পরিবারে তাঁর জন্ম হয়। তিনি কলকাতার প্রেসিডেন্সি কলেজ ও শান্তিনিকেতনে রবীন্দ্রনাথ ঠাকুরের প্রতিষ্ঠিত বিশ্বভারতী বিশ্ববিদ্যালয়ে পড়াশোনা করেন। সত্যজিতের কর্মজীবন একজন বাণিজ্যিক চিত্রকর হিসেবে শুরু হলেও প্রথমে কলকাতায় ফরাসী চলচ্চিত্র নির্মাতা জঁ রনোয়ারের সাথে সাক্ষাৎ ও পরে লন্ডন শহরে সফররত অবস্থায় ইতালীয় নব্য বাস্তবতাবাদী ছবি লাদ্রি দি বিচিক্লেত্তে. """ ] r_text = revision_oriented.revision.text @mark.nottravis def test_badwords(): compare_extraction(bengali.badwords.revision.datasources.matches, BAD, OTHER) assert bengali.badwords == pickle.loads(pickle.dumps(bengali.badwords)) @mark.nottravis def test_informals(): compare_extraction(bengali.informals.revision.datasources.matches, INFORMAL, OTHER) assert bengali.informals == pickle.loads(pickle.dumps(bengali.informals)) ''' def test_dictionary(): cache = {r_text: "দেখার পর তিনি worngly."} assert_equal(solve(bengali.dictionary.revision.datasources.dict_words, cache=cache), ['দেখার', 'পর', 'তিনি']) assert_equal(solve(bengali.dictionary.revision.datasources.non_dict_words, cache=cache), ["worngly"]) assert_equal(bengali.dictionary, pickle.loads(pickle.dumps(bengali.dictionary))) ''' @mark.nottravis def test_stopwords(): cache = {r_text: "আন চলচ্চিত্র."} assert (solve(bengali.stopwords.revision.datasources.stopwords, cache=cache) == ["আন"]) assert (solve(bengali.stopwords.revision.datasources.non_stopwords, cache=cache) == ['চলচ্চিত্র']) assert bengali.stopwords == pickle.loads(pickle.dumps(bengali.stopwords))
bn
0.986141
সত্যজিৎ রায় একজন ভারতীয় চলচ্চিত্র নির্মাতা ও বিংশ শতাব্দীর অন্যতম শ্রেষ্ঠ চলচ্চিত্র পরিচালক। কলকাতা শহরে সাহিত্য ও শিল্পের জগতে খ্যাতনামা এক বাঙালি পরিবারে তাঁর জন্ম হয়। তিনি কলকাতার প্রেসিডেন্সি কলেজ ও শান্তিনিকেতনে রবীন্দ্রনাথ ঠাকুরের প্রতিষ্ঠিত বিশ্বভারতী বিশ্ববিদ্যালয়ে পড়াশোনা করেন। সত্যজিতের কর্মজীবন একজন বাণিজ্যিক চিত্রকর হিসেবে শুরু হলেও প্রথমে কলকাতায় ফরাসী চলচ্চিত্র নির্মাতা জঁ রনোয়ারের সাথে সাক্ষাৎ ও পরে লন্ডন শহরে সফররত অবস্থায় ইতালীয় নব্য বাস্তবতাবাদী ছবি লাদ্রি দি বিচিক্লেত্তে. def test_dictionary(): cache = {r_text: "দেখার পর তিনি worngly."} assert_equal(solve(bengali.dictionary.revision.datasources.dict_words, cache=cache), ['দেখার', 'পর', 'তিনি']) assert_equal(solve(bengali.dictionary.revision.datasources.non_dict_words, cache=cache), ["worngly"]) assert_equal(bengali.dictionary, pickle.loads(pickle.dumps(bengali.dictionary)))
2.066974
2
sympy/assumptions/handlers/calculus.py
nashalex/sympy
8,323
6630318
""" This module contains query handlers responsible for calculus queries: infinitesimal, finite, etc. """ from sympy.assumptions import Q, ask from sympy.core import Add, Mul, Pow, Symbol from sympy.core.numbers import (ComplexInfinity, Exp1, GoldenRatio, ImaginaryUnit, Infinity, NaN, NegativeInfinity, Number, Pi, TribonacciConstant, E) from sympy.functions import cos, exp, log, sign, sin from sympy.logic.boolalg import conjuncts from ..predicates.calculus import (FinitePredicate, InfinitePredicate, PositiveInfinitePredicate, NegativeInfinitePredicate) # FinitePredicate @FinitePredicate.register(Symbol) # type: ignore def _(expr, assumptions): """ Handles Symbol. """ if expr.is_finite is not None: return expr.is_finite if Q.finite(expr) in conjuncts(assumptions): return True return None @FinitePredicate.register(Add) # type: ignore def _(expr, assumptions): """ Return True if expr is bounded, False if not and None if unknown. Truth Table: +-------+-----+-----------+-----------+ | | | | | | | B | U | ? | | | | | | +-------+-----+---+---+---+---+---+---+ | | | | | | | | | | | |'+'|'-'|'x'|'+'|'-'|'x'| | | | | | | | | | +-------+-----+---+---+---+---+---+---+ | | | | | | B | B | U | ? | | | | | | +---+---+-----+---+---+---+---+---+---+ | | | | | | | | | | | |'+'| | U | ? | ? | U | ? | ? | | | | | | | | | | | | +---+-----+---+---+---+---+---+---+ | | | | | | | | | | | U |'-'| | ? | U | ? | ? | U | ? | | | | | | | | | | | | +---+-----+---+---+---+---+---+---+ | | | | | | | |'x'| | ? | ? | | | | | | | +---+---+-----+---+---+---+---+---+---+ | | | | | | ? | | | ? | | | | | | +-------+-----+-----------+---+---+---+ * 'B' = Bounded * 'U' = Unbounded * '?' = unknown boundedness * '+' = positive sign * '-' = negative sign * 'x' = sign unknown * All Bounded -> True * 1 Unbounded and the rest Bounded -> False * >1 Unbounded, all with same known sign -> False * Any Unknown and unknown sign -> None * Else -> None When the signs are not the same you can have an undefined result as in oo - oo, hence 'bounded' is also undefined. """ sign = -1 # sign of unknown or infinite result = True for arg in expr.args: _bounded = ask(Q.finite(arg), assumptions) if _bounded: continue s = ask(Q.extended_positive(arg), assumptions) # if there has been more than one sign or if the sign of this arg # is None and Bounded is None or there was already # an unknown sign, return None if sign != -1 and s != sign or \ s is None and None in (_bounded, sign): return None else: sign = s # once False, do not change if result is not False: result = _bounded return result @FinitePredicate.register(Mul) # type: ignore def _(expr, assumptions): """ Return True if expr is bounded, False if not and None if unknown. Truth Table: +---+---+---+--------+ | | | | | | | B | U | ? | | | | | | +---+---+---+---+----+ | | | | | | | | | | s | /s | | | | | | | +---+---+---+---+----+ | | | | | | B | B | U | ? | | | | | | +---+---+---+---+----+ | | | | | | | U | | U | U | ? | | | | | | | +---+---+---+---+----+ | | | | | | ? | | | ? | | | | | | +---+---+---+---+----+ * B = Bounded * U = Unbounded * ? = unknown boundedness * s = signed (hence nonzero) * /s = not signed """ result = True for arg in expr.args: _bounded = ask(Q.finite(arg), assumptions) if _bounded: continue elif _bounded is None: if result is None: return None if ask(Q.extended_nonzero(arg), assumptions) is None: return None if result is not False: result = None else: result = False return result @FinitePredicate.register(Pow) # type: ignore def _(expr, assumptions): """ * Unbounded ** NonZero -> Unbounded * Bounded ** Bounded -> Bounded * Abs()<=1 ** Positive -> Bounded * Abs()>=1 ** Negative -> Bounded * Otherwise unknown """ if expr.base == E: return ask(Q.finite(expr.exp), assumptions) base_bounded = ask(Q.finite(expr.base), assumptions) exp_bounded = ask(Q.finite(expr.exp), assumptions) if base_bounded is None and exp_bounded is None: # Common Case return None if base_bounded is False and ask(Q.extended_nonzero(expr.exp), assumptions): return False if base_bounded and exp_bounded: return True if (abs(expr.base) <= 1) == True and ask(Q.extended_positive(expr.exp), assumptions): return True if (abs(expr.base) >= 1) == True and ask(Q.extended_negative(expr.exp), assumptions): return True if (abs(expr.base) >= 1) == True and exp_bounded is False: return False return None @FinitePredicate.register(exp) # type: ignore def _(expr, assumptions): return ask(Q.finite(expr.exp), assumptions) @FinitePredicate.register(log) # type: ignore def _(expr, assumptions): # After complex -> finite fact is registered to new assumption system, # querying Q.infinite may be removed. if ask(Q.infinite(expr.args[0]), assumptions): return False return ask(~Q.zero(expr.args[0]), assumptions) @FinitePredicate.register_many(cos, sin, Number, Pi, Exp1, GoldenRatio, # type: ignore TribonacciConstant, ImaginaryUnit, sign) def _(expr, assumptions): return True @FinitePredicate.register_many(ComplexInfinity, Infinity, NegativeInfinity) # type: ignore def _(expr, assumptions): return False @FinitePredicate.register(NaN) # type: ignore def _(expr, assumptions): return None # InfinitePredicate @InfinitePredicate.register_many(ComplexInfinity, Infinity, NegativeInfinity) # type: ignore def _(expr, assumptions): return True # PositiveInfinitePredicate @PositiveInfinitePredicate.register(Infinity) # type: ignore def _(expr, assumptions): return True @PositiveInfinitePredicate.register_many(NegativeInfinity, ComplexInfinity) # type: ignore def _(expr, assumptions): return False # NegativeInfinitePredicate @NegativeInfinitePredicate.register(NegativeInfinity) # type: ignore def _(expr, assumptions): return True @NegativeInfinitePredicate.register_many(Infinity, ComplexInfinity) # type: ignore def _(expr, assumptions): return False
""" This module contains query handlers responsible for calculus queries: infinitesimal, finite, etc. """ from sympy.assumptions import Q, ask from sympy.core import Add, Mul, Pow, Symbol from sympy.core.numbers import (ComplexInfinity, Exp1, GoldenRatio, ImaginaryUnit, Infinity, NaN, NegativeInfinity, Number, Pi, TribonacciConstant, E) from sympy.functions import cos, exp, log, sign, sin from sympy.logic.boolalg import conjuncts from ..predicates.calculus import (FinitePredicate, InfinitePredicate, PositiveInfinitePredicate, NegativeInfinitePredicate) # FinitePredicate @FinitePredicate.register(Symbol) # type: ignore def _(expr, assumptions): """ Handles Symbol. """ if expr.is_finite is not None: return expr.is_finite if Q.finite(expr) in conjuncts(assumptions): return True return None @FinitePredicate.register(Add) # type: ignore def _(expr, assumptions): """ Return True if expr is bounded, False if not and None if unknown. Truth Table: +-------+-----+-----------+-----------+ | | | | | | | B | U | ? | | | | | | +-------+-----+---+---+---+---+---+---+ | | | | | | | | | | | |'+'|'-'|'x'|'+'|'-'|'x'| | | | | | | | | | +-------+-----+---+---+---+---+---+---+ | | | | | | B | B | U | ? | | | | | | +---+---+-----+---+---+---+---+---+---+ | | | | | | | | | | | |'+'| | U | ? | ? | U | ? | ? | | | | | | | | | | | | +---+-----+---+---+---+---+---+---+ | | | | | | | | | | | U |'-'| | ? | U | ? | ? | U | ? | | | | | | | | | | | | +---+-----+---+---+---+---+---+---+ | | | | | | | |'x'| | ? | ? | | | | | | | +---+---+-----+---+---+---+---+---+---+ | | | | | | ? | | | ? | | | | | | +-------+-----+-----------+---+---+---+ * 'B' = Bounded * 'U' = Unbounded * '?' = unknown boundedness * '+' = positive sign * '-' = negative sign * 'x' = sign unknown * All Bounded -> True * 1 Unbounded and the rest Bounded -> False * >1 Unbounded, all with same known sign -> False * Any Unknown and unknown sign -> None * Else -> None When the signs are not the same you can have an undefined result as in oo - oo, hence 'bounded' is also undefined. """ sign = -1 # sign of unknown or infinite result = True for arg in expr.args: _bounded = ask(Q.finite(arg), assumptions) if _bounded: continue s = ask(Q.extended_positive(arg), assumptions) # if there has been more than one sign or if the sign of this arg # is None and Bounded is None or there was already # an unknown sign, return None if sign != -1 and s != sign or \ s is None and None in (_bounded, sign): return None else: sign = s # once False, do not change if result is not False: result = _bounded return result @FinitePredicate.register(Mul) # type: ignore def _(expr, assumptions): """ Return True if expr is bounded, False if not and None if unknown. Truth Table: +---+---+---+--------+ | | | | | | | B | U | ? | | | | | | +---+---+---+---+----+ | | | | | | | | | | s | /s | | | | | | | +---+---+---+---+----+ | | | | | | B | B | U | ? | | | | | | +---+---+---+---+----+ | | | | | | | U | | U | U | ? | | | | | | | +---+---+---+---+----+ | | | | | | ? | | | ? | | | | | | +---+---+---+---+----+ * B = Bounded * U = Unbounded * ? = unknown boundedness * s = signed (hence nonzero) * /s = not signed """ result = True for arg in expr.args: _bounded = ask(Q.finite(arg), assumptions) if _bounded: continue elif _bounded is None: if result is None: return None if ask(Q.extended_nonzero(arg), assumptions) is None: return None if result is not False: result = None else: result = False return result @FinitePredicate.register(Pow) # type: ignore def _(expr, assumptions): """ * Unbounded ** NonZero -> Unbounded * Bounded ** Bounded -> Bounded * Abs()<=1 ** Positive -> Bounded * Abs()>=1 ** Negative -> Bounded * Otherwise unknown """ if expr.base == E: return ask(Q.finite(expr.exp), assumptions) base_bounded = ask(Q.finite(expr.base), assumptions) exp_bounded = ask(Q.finite(expr.exp), assumptions) if base_bounded is None and exp_bounded is None: # Common Case return None if base_bounded is False and ask(Q.extended_nonzero(expr.exp), assumptions): return False if base_bounded and exp_bounded: return True if (abs(expr.base) <= 1) == True and ask(Q.extended_positive(expr.exp), assumptions): return True if (abs(expr.base) >= 1) == True and ask(Q.extended_negative(expr.exp), assumptions): return True if (abs(expr.base) >= 1) == True and exp_bounded is False: return False return None @FinitePredicate.register(exp) # type: ignore def _(expr, assumptions): return ask(Q.finite(expr.exp), assumptions) @FinitePredicate.register(log) # type: ignore def _(expr, assumptions): # After complex -> finite fact is registered to new assumption system, # querying Q.infinite may be removed. if ask(Q.infinite(expr.args[0]), assumptions): return False return ask(~Q.zero(expr.args[0]), assumptions) @FinitePredicate.register_many(cos, sin, Number, Pi, Exp1, GoldenRatio, # type: ignore TribonacciConstant, ImaginaryUnit, sign) def _(expr, assumptions): return True @FinitePredicate.register_many(ComplexInfinity, Infinity, NegativeInfinity) # type: ignore def _(expr, assumptions): return False @FinitePredicate.register(NaN) # type: ignore def _(expr, assumptions): return None # InfinitePredicate @InfinitePredicate.register_many(ComplexInfinity, Infinity, NegativeInfinity) # type: ignore def _(expr, assumptions): return True # PositiveInfinitePredicate @PositiveInfinitePredicate.register(Infinity) # type: ignore def _(expr, assumptions): return True @PositiveInfinitePredicate.register_many(NegativeInfinity, ComplexInfinity) # type: ignore def _(expr, assumptions): return False # NegativeInfinitePredicate @NegativeInfinitePredicate.register(NegativeInfinity) # type: ignore def _(expr, assumptions): return True @NegativeInfinitePredicate.register_many(Infinity, ComplexInfinity) # type: ignore def _(expr, assumptions): return False
en
0.740584
This module contains query handlers responsible for calculus queries: infinitesimal, finite, etc. # FinitePredicate # type: ignore Handles Symbol. # type: ignore Return True if expr is bounded, False if not and None if unknown. Truth Table: +-------+-----+-----------+-----------+ | | | | | | | B | U | ? | | | | | | +-------+-----+---+---+---+---+---+---+ | | | | | | | | | | | |'+'|'-'|'x'|'+'|'-'|'x'| | | | | | | | | | +-------+-----+---+---+---+---+---+---+ | | | | | | B | B | U | ? | | | | | | +---+---+-----+---+---+---+---+---+---+ | | | | | | | | | | | |'+'| | U | ? | ? | U | ? | ? | | | | | | | | | | | | +---+-----+---+---+---+---+---+---+ | | | | | | | | | | | U |'-'| | ? | U | ? | ? | U | ? | | | | | | | | | | | | +---+-----+---+---+---+---+---+---+ | | | | | | | |'x'| | ? | ? | | | | | | | +---+---+-----+---+---+---+---+---+---+ | | | | | | ? | | | ? | | | | | | +-------+-----+-----------+---+---+---+ * 'B' = Bounded * 'U' = Unbounded * '?' = unknown boundedness * '+' = positive sign * '-' = negative sign * 'x' = sign unknown * All Bounded -> True * 1 Unbounded and the rest Bounded -> False * >1 Unbounded, all with same known sign -> False * Any Unknown and unknown sign -> None * Else -> None When the signs are not the same you can have an undefined result as in oo - oo, hence 'bounded' is also undefined. # sign of unknown or infinite # if there has been more than one sign or if the sign of this arg # is None and Bounded is None or there was already # an unknown sign, return None # once False, do not change # type: ignore Return True if expr is bounded, False if not and None if unknown. Truth Table: +---+---+---+--------+ | | | | | | | B | U | ? | | | | | | +---+---+---+---+----+ | | | | | | | | | | s | /s | | | | | | | +---+---+---+---+----+ | | | | | | B | B | U | ? | | | | | | +---+---+---+---+----+ | | | | | | | U | | U | U | ? | | | | | | | +---+---+---+---+----+ | | | | | | ? | | | ? | | | | | | +---+---+---+---+----+ * B = Bounded * U = Unbounded * ? = unknown boundedness * s = signed (hence nonzero) * /s = not signed # type: ignore * Unbounded ** NonZero -> Unbounded * Bounded ** Bounded -> Bounded * Abs()<=1 ** Positive -> Bounded * Abs()>=1 ** Negative -> Bounded * Otherwise unknown # Common Case # type: ignore # type: ignore # After complex -> finite fact is registered to new assumption system, # querying Q.infinite may be removed. # type: ignore # type: ignore # type: ignore # InfinitePredicate # type: ignore # PositiveInfinitePredicate # type: ignore # type: ignore # NegativeInfinitePredicate # type: ignore # type: ignore
2.396347
2
CircuitPython_SharpDisplay_Displayio/code.py
albinger/Adafruit_Learning_System_Guides
0
6630319
<reponame>albinger/Adafruit_Learning_System_Guides<filename>CircuitPython_SharpDisplay_Displayio/code.py<gh_stars>0 # SPDX-FileCopyrightText: 2020 <NAME> for Adafruit Industries # SPDX-FileCopyrightText: 2020 <NAME> for Adafruit Industries # # SPDX-License-Identifier: MIT import random import time import adafruit_display_text.label from adafruit_bitmap_font import bitmap_font import board import displayio import framebufferio import sharpdisplay ## When making several changes, this ensures they aren't shown partially ## completed (except for the time to actually update the display) class BatchDisplayUpdate: def __init__(self, the_display): self.the_display = the_display self.auto_refresh = the_display.auto_refresh def __enter__(self): self.the_display.auto_refresh = False def __exit__(self, unused1, unused2, unused3): self.the_display.refresh() self.the_display.auto_refresh = self.auto_refresh # https://saytheirnames.com/ # real people, not just #hashtags names = [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ] # A function to choose "k" different items from the "population" list # We'll use it to select the names to display def sample(population, k): population = population[:] for _ in range(k): j = random.randint(0, len(population)-1) yield population[j] population[j] = population[-1] population.pop() # Initialize the display, cleaning up after a display from the previous run # if necessary displayio.release_displays() bus = board.SPI() framebuffer = sharpdisplay.SharpMemoryFramebuffer(bus, board.D6, 400, 240) display = framebufferio.FramebufferDisplay(framebuffer, auto_refresh = True) # Load our font font = bitmap_font.load_font("/GothamBlack-54.bdf") # Create a Group for the BLM text blm_group = displayio.Group() display.show(blm_group) # Create a 3 line set of text for BLM blm_font = [None, None, None] for line in range(3): label = adafruit_display_text.label.Label(font, color=0xFFFFFF) label.anchor_point = (0, 0) label.anchored_position = (8, line*84+8) blm_font[line] = label blm_group.append(label) # Get something on the display as soon as possible by loading # specific glyphs. font.load_glyphs(b"BLACK") blm_font[0].text = "BLACK" font.load_glyphs(b"ISEV") blm_font[1].text = "LIVES" font.load_glyphs(b"RMT") blm_font[2].text = "MATTER" font.load_glyphs(b"' DFGHJNOPQUWXYZabcdefghijklmnopqrstuvwxyz") # Create a 2 line set of font text for names names_font = [None, None] for line in range(2): label = adafruit_display_text.label.Label(font, color=0xFFFFFF) # Center each line horizontally, position vertically label.anchor_point = (0.5, 0) label.anchored_position = (200, line*84+42) names_font[line] = label # Create a Group for the name text name_group = displayio.Group() for line in names_font: name_group.append(line) # Repeatedly show the BLM slogan and then 5 names. while True: display.show(blm_group) # Show the BLM slogan with BatchDisplayUpdate(display): blm_font[1].color = blm_font[2].color = 0 # hide lines 2&3 time.sleep(1) with BatchDisplayUpdate(display): blm_font[1].color = 0xFFFFFF # show middle line blm_font[0].color = blm_font[2].color = 0 # hide lines 1&3 time.sleep(1) with BatchDisplayUpdate(display): blm_font[2].color = 0xFFFFFF # show last line blm_font[0].color = blm_font[1].color = 0 # hide lines 1&2 time.sleep(1) with BatchDisplayUpdate(display): for line in blm_font: line.color = 0xFFFFFF time.sleep(2) # Show 5 names display.show(name_group) for name in sample(names, 5): print(name) lines = name.split(" ") with BatchDisplayUpdate(display): for i in range(2): names_font[i].text = lines[i] # Due to a bug in adafruit_display_text, we need to reestablish # the position of the labels when updating them. # Once https://github.com/adafruit/Adafruit_CircuitPython_Display_Text/issues/82 # has been resolved, this code will no longer be necessary (but # will not be harmful either) names_font[i].anchor_point = (0.5, 0) names_font[i].anchored_position = (200, i*84+42) time.sleep(5) names_font[0].text = names_font[1].text = ""
# SPDX-FileCopyrightText: 2020 <NAME> for Adafruit Industries # SPDX-FileCopyrightText: 2020 <NAME> for Adafruit Industries # # SPDX-License-Identifier: MIT import random import time import adafruit_display_text.label from adafruit_bitmap_font import bitmap_font import board import displayio import framebufferio import sharpdisplay ## When making several changes, this ensures they aren't shown partially ## completed (except for the time to actually update the display) class BatchDisplayUpdate: def __init__(self, the_display): self.the_display = the_display self.auto_refresh = the_display.auto_refresh def __enter__(self): self.the_display.auto_refresh = False def __exit__(self, unused1, unused2, unused3): self.the_display.refresh() self.the_display.auto_refresh = self.auto_refresh # https://saytheirnames.com/ # real people, not just #hashtags names = [ "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", ] # A function to choose "k" different items from the "population" list # We'll use it to select the names to display def sample(population, k): population = population[:] for _ in range(k): j = random.randint(0, len(population)-1) yield population[j] population[j] = population[-1] population.pop() # Initialize the display, cleaning up after a display from the previous run # if necessary displayio.release_displays() bus = board.SPI() framebuffer = sharpdisplay.SharpMemoryFramebuffer(bus, board.D6, 400, 240) display = framebufferio.FramebufferDisplay(framebuffer, auto_refresh = True) # Load our font font = bitmap_font.load_font("/GothamBlack-54.bdf") # Create a Group for the BLM text blm_group = displayio.Group() display.show(blm_group) # Create a 3 line set of text for BLM blm_font = [None, None, None] for line in range(3): label = adafruit_display_text.label.Label(font, color=0xFFFFFF) label.anchor_point = (0, 0) label.anchored_position = (8, line*84+8) blm_font[line] = label blm_group.append(label) # Get something on the display as soon as possible by loading # specific glyphs. font.load_glyphs(b"BLACK") blm_font[0].text = "BLACK" font.load_glyphs(b"ISEV") blm_font[1].text = "LIVES" font.load_glyphs(b"RMT") blm_font[2].text = "MATTER" font.load_glyphs(b"' DFGHJNOPQUWXYZabcdefghijklmnopqrstuvwxyz") # Create a 2 line set of font text for names names_font = [None, None] for line in range(2): label = adafruit_display_text.label.Label(font, color=0xFFFFFF) # Center each line horizontally, position vertically label.anchor_point = (0.5, 0) label.anchored_position = (200, line*84+42) names_font[line] = label # Create a Group for the name text name_group = displayio.Group() for line in names_font: name_group.append(line) # Repeatedly show the BLM slogan and then 5 names. while True: display.show(blm_group) # Show the BLM slogan with BatchDisplayUpdate(display): blm_font[1].color = blm_font[2].color = 0 # hide lines 2&3 time.sleep(1) with BatchDisplayUpdate(display): blm_font[1].color = 0xFFFFFF # show middle line blm_font[0].color = blm_font[2].color = 0 # hide lines 1&3 time.sleep(1) with BatchDisplayUpdate(display): blm_font[2].color = 0xFFFFFF # show last line blm_font[0].color = blm_font[1].color = 0 # hide lines 1&2 time.sleep(1) with BatchDisplayUpdate(display): for line in blm_font: line.color = 0xFFFFFF time.sleep(2) # Show 5 names display.show(name_group) for name in sample(names, 5): print(name) lines = name.split(" ") with BatchDisplayUpdate(display): for i in range(2): names_font[i].text = lines[i] # Due to a bug in adafruit_display_text, we need to reestablish # the position of the labels when updating them. # Once https://github.com/adafruit/Adafruit_CircuitPython_Display_Text/issues/82 # has been resolved, this code will no longer be necessary (but # will not be harmful either) names_font[i].anchor_point = (0.5, 0) names_font[i].anchored_position = (200, i*84+42) time.sleep(5) names_font[0].text = names_font[1].text = ""
en
0.770719
# SPDX-FileCopyrightText: 2020 <NAME> for Adafruit Industries # SPDX-FileCopyrightText: 2020 <NAME> for Adafruit Industries # # SPDX-License-Identifier: MIT ## When making several changes, this ensures they aren't shown partially ## completed (except for the time to actually update the display) # https://saytheirnames.com/ # real people, not just #hashtags # A function to choose "k" different items from the "population" list # We'll use it to select the names to display # Initialize the display, cleaning up after a display from the previous run # if necessary # Load our font # Create a Group for the BLM text # Create a 3 line set of text for BLM # Get something on the display as soon as possible by loading # specific glyphs. # Create a 2 line set of font text for names # Center each line horizontally, position vertically # Create a Group for the name text # Repeatedly show the BLM slogan and then 5 names. # Show the BLM slogan # hide lines 2&3 # show middle line # hide lines 1&3 # show last line # hide lines 1&2 # Show 5 names # Due to a bug in adafruit_display_text, we need to reestablish # the position of the labels when updating them. # Once https://github.com/adafruit/Adafruit_CircuitPython_Display_Text/issues/82 # has been resolved, this code will no longer be necessary (but # will not be harmful either)
2.06433
2
ai_framework/ai_visualization/test_ai_demo.py
Scott-Morgan-Foundation/Highcliff-SDK
0
6630320
import time import unittest from ai_framework.ai_visualization import AIDemo from ai_framework.ai_actions import ActionStatus class TestAIDemo(unittest.TestCase): @classmethod def setUpClass(cls): demo_markdown_file_folder = '/Users/jerry/OneDrive/Documents/Obsidian Vault/' cls._ai_demo = AIDemo(demo_mode=True, markdown_folder=demo_markdown_file_folder) try: cls._ai_demo.reset_demo() pass except: pass def test_demo_goals(self): test_goals = [ {"goal_state": True} ] self._ai_demo.demo_goals(test_goals) self.assertTrue(True) def test_demo_diary_entry(self): # make the first diary entry goal = {"goal_state": True} world_state_before = [] world_state_after = [ {"condition_one": True} ] action_status = ActionStatus.SUCCESS diary_entry = { "my_goal": goal, "the_world_state_before": world_state_before, "my_plan": "plan", "action_status": action_status, "the_world_state_after": world_state_after } self._ai_demo.demo_diary_entry(diary_entry) # make the second diary entry world_state_before = [ {"condition_one": True} ] world_state_after = [ {"condition_one": True}, {"condition_two": True} ] diary_entry = { "my_goal": goal, "the_world_state_before": world_state_before, "my_plan": "plan", "action_status": action_status, "the_world_state_after": world_state_after } self._ai_demo.demo_diary_entry(diary_entry) # make the third diary entry world_state_before = [ {"condition_one": True}, {"condition_two": True} ] world_state_after = [ goal, {"condition_one": True}, {"condition_two": True} ] diary_entry = { "my_goal": goal, "the_world_state_before": world_state_before, "my_plan": "plan", "action_status": action_status, "the_world_state_after": world_state_after } self._ai_demo.demo_diary_entry(diary_entry) self.assertTrue(True) def test_multiple_diary_entries(self): for i in range(50): self.test_demo_diary_entry() self._ai_demo.retire_nodes() time.sleep(5) update = "[PlanStep(action=<__main__.AcmeTemperatureMonitor object at 0x7f76245a2a90>, services={})]" self._ai_demo.update_demo_goals(update) time.sleep(10) if __name__ == '__main__': unittest.main()
import time import unittest from ai_framework.ai_visualization import AIDemo from ai_framework.ai_actions import ActionStatus class TestAIDemo(unittest.TestCase): @classmethod def setUpClass(cls): demo_markdown_file_folder = '/Users/jerry/OneDrive/Documents/Obsidian Vault/' cls._ai_demo = AIDemo(demo_mode=True, markdown_folder=demo_markdown_file_folder) try: cls._ai_demo.reset_demo() pass except: pass def test_demo_goals(self): test_goals = [ {"goal_state": True} ] self._ai_demo.demo_goals(test_goals) self.assertTrue(True) def test_demo_diary_entry(self): # make the first diary entry goal = {"goal_state": True} world_state_before = [] world_state_after = [ {"condition_one": True} ] action_status = ActionStatus.SUCCESS diary_entry = { "my_goal": goal, "the_world_state_before": world_state_before, "my_plan": "plan", "action_status": action_status, "the_world_state_after": world_state_after } self._ai_demo.demo_diary_entry(diary_entry) # make the second diary entry world_state_before = [ {"condition_one": True} ] world_state_after = [ {"condition_one": True}, {"condition_two": True} ] diary_entry = { "my_goal": goal, "the_world_state_before": world_state_before, "my_plan": "plan", "action_status": action_status, "the_world_state_after": world_state_after } self._ai_demo.demo_diary_entry(diary_entry) # make the third diary entry world_state_before = [ {"condition_one": True}, {"condition_two": True} ] world_state_after = [ goal, {"condition_one": True}, {"condition_two": True} ] diary_entry = { "my_goal": goal, "the_world_state_before": world_state_before, "my_plan": "plan", "action_status": action_status, "the_world_state_after": world_state_after } self._ai_demo.demo_diary_entry(diary_entry) self.assertTrue(True) def test_multiple_diary_entries(self): for i in range(50): self.test_demo_diary_entry() self._ai_demo.retire_nodes() time.sleep(5) update = "[PlanStep(action=<__main__.AcmeTemperatureMonitor object at 0x7f76245a2a90>, services={})]" self._ai_demo.update_demo_goals(update) time.sleep(10) if __name__ == '__main__': unittest.main()
en
0.860858
# make the first diary entry # make the second diary entry # make the third diary entry
2.576413
3
handsdown/processors/rst.py
vemel/handsdown
47
6630321
<filename>handsdown/processors/rst.py """ # reStructuredText Docstring Processor Docstring processor for restructured text docstring format. Supported features: - `:param <name> <?type>: <?description>` directive is added to `Arguments` section - `:type: <?description>` directive transformed to `Type: <type>` - `:returns <?type>: <?description>` directive is added to `Returns` section - `:rtype: <?description>` directive transformed to `Type: <type>` - `:raises: <?description>` directive is added to `Raises` section - `.. seealso::` directive is added to `See also` section - `.. note::` directive is added to `Notes` section - `.. warning:: <version>` directive is added to `Warnings` section - `.. versionadded:: <version>` directive is formatted in Sphinx-style and added to `Notes` section - `.. versionchanged:: <version>` directive is formatted in Sphinx-style and added to `Notes` section - `.. deprecated::` directive is formatted in Sphinx-style and added to `Notes` section - `.. code-block::` directive is formatted as Markdown Python codeblock - `.. code-block:: <language>` directive is formatted as Markdown codeblock - `.. math::` directive is formatted as Markdown Python codeblock - `.. highlight::` directive is formatted as Markdown Python codeblock - `.. highlight:: <language>` directive is formatted as Markdown codeblock """ import re from handsdown.processors.base import BaseDocstringProcessor class RSTDocstringProcessor(BaseDocstringProcessor): """ Docstring processor for restructured text docstring format. """ _section_re = re.compile(r"^\.\. (?P<section>\S+)::(?: (?P<body>.*))?") line_re_map = ( # PEP 287 arg typed with description ( re.compile( r"^:(?P<section>param|parameter)\s+(?P<type>\w+)" r"\s+(?P<param>\w+)\s*:\s*(?P<desc>.+)$" ), "- `{param}` *{type}* - {desc}", ), # PEP 287 arg with description ( re.compile(r"^:(?P<section>param|parameter)\s+(?P<param>\w+)\s*:\s*(?P<desc>.+)$"), "- `{param}` - {desc}", ), # PEP 287 arg typed ( re.compile(r"^:(?P<section>param|parameter)\s+(?P<type>\w+)\s+(?P<param>\w+)\s*:$"), "- `{param}` *{type}*", ), # PEP 287 arg ( re.compile(r"^:(?P<section>param|parameter)\s+(?P<param>\w+)\s*:$"), "- `{param}`", ), # PEP 287 return (re.compile(r":(?P<section>returns?)\s*:\s*(?P<desc>.*)?$"), "{desc}"), # PEP 287 return typed (re.compile(r":(?P<section>returns?)\s+(?P<type>[^:]+):$"), "Type: *{type}*"), # PEP 287 return typed with description ( re.compile(r":(?P<section>returns?)\s+(?P<type>[^:]+)\s*:\s*(?P<desc>.+)$"), "Type: *{type}*\n{desc}", ), # PEP 287 rtype (re.compile(r":(?P<section>rtype)\s*:\s+(?P<type>[^:]+)$"), "Type: *{type}*"), # PEP 287 raises typed (re.compile(r":(?P<section>raises?)\s+(?P<type>\w+)\s*:$"), "- `{type}`"), # PEP 287 raises typed with description ( re.compile(r":(?P<section>raises?)\s+(?P<type>\w+)\s*:(?P<desc>.+)$"), "- `{type}` - {desc}", ), ) replace_map = { ":attr:`": "attribute `", ":data:`": "`", ":class:``~": "class ``", ":class:`~": "class `", ":class:`": "class `", ":exc:`": "exception `", } section_name_map = { "raise": "Raises", "raises": "Raises", "rtype": "Returns", "return": "Returns", "returns": "Returns", "param": "Arguments", "parameter": "Arguments", } section_directive_map = { "seealso": "See also", "note": "Notes", "warning": "Warnings", } version_directive_map = { "versionadded": "Added", "versionchanged": "Changed", "deprecated": "Deprecated", } def _parse_regular_line(self, line: str) -> None: section_match = self._section_re.match(line) if section_match: directive_name = section_match.groupdict()["section"] body = section_match.groupdict()["body"] if directive_name in self.section_directive_map: self.current_section_name = self.section_directive_map[directive_name] self._add_line("") if directive_name in self.version_directive_map: self.current_section_name = "Notes" line = self.version_directive_map[directive_name] if body: line = "{} in version {}".format(line, body) self._add_line("") self._add_line(line) return if directive_name in ("code-block", "math", "highlight"): self._in_codeblock = True self._in_indent_codeblock = True self._codeblock_indent = self._current_indent self._codeblock_lines_count = 0 self._add_block() self._add_line("") self._add_line("```{}".format(body or "python")) return if body is None: return line = body super()._parse_regular_line(line)
<filename>handsdown/processors/rst.py """ # reStructuredText Docstring Processor Docstring processor for restructured text docstring format. Supported features: - `:param <name> <?type>: <?description>` directive is added to `Arguments` section - `:type: <?description>` directive transformed to `Type: <type>` - `:returns <?type>: <?description>` directive is added to `Returns` section - `:rtype: <?description>` directive transformed to `Type: <type>` - `:raises: <?description>` directive is added to `Raises` section - `.. seealso::` directive is added to `See also` section - `.. note::` directive is added to `Notes` section - `.. warning:: <version>` directive is added to `Warnings` section - `.. versionadded:: <version>` directive is formatted in Sphinx-style and added to `Notes` section - `.. versionchanged:: <version>` directive is formatted in Sphinx-style and added to `Notes` section - `.. deprecated::` directive is formatted in Sphinx-style and added to `Notes` section - `.. code-block::` directive is formatted as Markdown Python codeblock - `.. code-block:: <language>` directive is formatted as Markdown codeblock - `.. math::` directive is formatted as Markdown Python codeblock - `.. highlight::` directive is formatted as Markdown Python codeblock - `.. highlight:: <language>` directive is formatted as Markdown codeblock """ import re from handsdown.processors.base import BaseDocstringProcessor class RSTDocstringProcessor(BaseDocstringProcessor): """ Docstring processor for restructured text docstring format. """ _section_re = re.compile(r"^\.\. (?P<section>\S+)::(?: (?P<body>.*))?") line_re_map = ( # PEP 287 arg typed with description ( re.compile( r"^:(?P<section>param|parameter)\s+(?P<type>\w+)" r"\s+(?P<param>\w+)\s*:\s*(?P<desc>.+)$" ), "- `{param}` *{type}* - {desc}", ), # PEP 287 arg with description ( re.compile(r"^:(?P<section>param|parameter)\s+(?P<param>\w+)\s*:\s*(?P<desc>.+)$"), "- `{param}` - {desc}", ), # PEP 287 arg typed ( re.compile(r"^:(?P<section>param|parameter)\s+(?P<type>\w+)\s+(?P<param>\w+)\s*:$"), "- `{param}` *{type}*", ), # PEP 287 arg ( re.compile(r"^:(?P<section>param|parameter)\s+(?P<param>\w+)\s*:$"), "- `{param}`", ), # PEP 287 return (re.compile(r":(?P<section>returns?)\s*:\s*(?P<desc>.*)?$"), "{desc}"), # PEP 287 return typed (re.compile(r":(?P<section>returns?)\s+(?P<type>[^:]+):$"), "Type: *{type}*"), # PEP 287 return typed with description ( re.compile(r":(?P<section>returns?)\s+(?P<type>[^:]+)\s*:\s*(?P<desc>.+)$"), "Type: *{type}*\n{desc}", ), # PEP 287 rtype (re.compile(r":(?P<section>rtype)\s*:\s+(?P<type>[^:]+)$"), "Type: *{type}*"), # PEP 287 raises typed (re.compile(r":(?P<section>raises?)\s+(?P<type>\w+)\s*:$"), "- `{type}`"), # PEP 287 raises typed with description ( re.compile(r":(?P<section>raises?)\s+(?P<type>\w+)\s*:(?P<desc>.+)$"), "- `{type}` - {desc}", ), ) replace_map = { ":attr:`": "attribute `", ":data:`": "`", ":class:``~": "class ``", ":class:`~": "class `", ":class:`": "class `", ":exc:`": "exception `", } section_name_map = { "raise": "Raises", "raises": "Raises", "rtype": "Returns", "return": "Returns", "returns": "Returns", "param": "Arguments", "parameter": "Arguments", } section_directive_map = { "seealso": "See also", "note": "Notes", "warning": "Warnings", } version_directive_map = { "versionadded": "Added", "versionchanged": "Changed", "deprecated": "Deprecated", } def _parse_regular_line(self, line: str) -> None: section_match = self._section_re.match(line) if section_match: directive_name = section_match.groupdict()["section"] body = section_match.groupdict()["body"] if directive_name in self.section_directive_map: self.current_section_name = self.section_directive_map[directive_name] self._add_line("") if directive_name in self.version_directive_map: self.current_section_name = "Notes" line = self.version_directive_map[directive_name] if body: line = "{} in version {}".format(line, body) self._add_line("") self._add_line(line) return if directive_name in ("code-block", "math", "highlight"): self._in_codeblock = True self._in_indent_codeblock = True self._codeblock_indent = self._current_indent self._codeblock_lines_count = 0 self._add_block() self._add_line("") self._add_line("```{}".format(body or "python")) return if body is None: return line = body super()._parse_regular_line(line)
en
0.763137
# reStructuredText Docstring Processor Docstring processor for restructured text docstring format. Supported features: - `:param <name> <?type>: <?description>` directive is added to `Arguments` section - `:type: <?description>` directive transformed to `Type: <type>` - `:returns <?type>: <?description>` directive is added to `Returns` section - `:rtype: <?description>` directive transformed to `Type: <type>` - `:raises: <?description>` directive is added to `Raises` section - `.. seealso::` directive is added to `See also` section - `.. note::` directive is added to `Notes` section - `.. warning:: <version>` directive is added to `Warnings` section - `.. versionadded:: <version>` directive is formatted in Sphinx-style and added to `Notes` section - `.. versionchanged:: <version>` directive is formatted in Sphinx-style and added to `Notes` section - `.. deprecated::` directive is formatted in Sphinx-style and added to `Notes` section - `.. code-block::` directive is formatted as Markdown Python codeblock - `.. code-block:: <language>` directive is formatted as Markdown codeblock - `.. math::` directive is formatted as Markdown Python codeblock - `.. highlight::` directive is formatted as Markdown Python codeblock - `.. highlight:: <language>` directive is formatted as Markdown codeblock Docstring processor for restructured text docstring format. # PEP 287 arg typed with description # PEP 287 arg with description # PEP 287 arg typed # PEP 287 arg # PEP 287 return # PEP 287 return typed # PEP 287 return typed with description # PEP 287 rtype # PEP 287 raises typed # PEP 287 raises typed with description
2.28147
2
figures/pipeline/loaders.py
groovetch/edx-figures
43
6630322
<reponame>groovetch/edx-figures """ """ from __future__ import absolute_import from figures.models import LearnerCourseGradeMetrics def save_learner_course_grades(site, date_for, course_enrollment, course_progress_details): """ ``course_progress_details`` data are the ``course_progress_details`` from the ``LearnerCourseGrades.course_progress method`` """ # details = course_progress['course_progress_details'] data = dict( points_possible=course_progress_details['points_possible'], points_earned=course_progress_details['points_earned'], sections_worked=course_progress_details['sections_worked'], sections_possible=course_progress_details['count'] ) obj, created = LearnerCourseGradeMetrics.objects.update_or_create( site=site, user=course_enrollment.user, course_id=str(course_enrollment.course_id), date_for=date_for, defaults=data) return obj, created
""" """ from __future__ import absolute_import from figures.models import LearnerCourseGradeMetrics def save_learner_course_grades(site, date_for, course_enrollment, course_progress_details): """ ``course_progress_details`` data are the ``course_progress_details`` from the ``LearnerCourseGrades.course_progress method`` """ # details = course_progress['course_progress_details'] data = dict( points_possible=course_progress_details['points_possible'], points_earned=course_progress_details['points_earned'], sections_worked=course_progress_details['sections_worked'], sections_possible=course_progress_details['count'] ) obj, created = LearnerCourseGradeMetrics.objects.update_or_create( site=site, user=course_enrollment.user, course_id=str(course_enrollment.course_id), date_for=date_for, defaults=data) return obj, created
en
0.536191
``course_progress_details`` data are the ``course_progress_details`` from the ``LearnerCourseGrades.course_progress method`` # details = course_progress['course_progress_details']
2.486479
2
Classification K-NN/Developing a K-NN (Nearest Neighbors) Classification Model.py
csitedexperts/DSML_MadeEasy
1
6630323
# Developing a K-NN (Nearest Neighbors) Classification Model # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('CompSurvey_Product1.csv') X = dataset.iloc[:, [1, 7]].values y = dataset.iloc[:, 8].values # Splitting the dataset into the Training set and Test set # Splitting the dataset4 into the Training set and Test set #from sklearn import cross_validation as cv ## cross_validation is deprecated since version 0.18. This module will be removed in 0.20. Use sklearn.model_selection.train_test_split instead. ## Source: https://stackoverflow.com/questions/53978901/importerror-cannot-import-name-cross-validation-from-sklearn from sklearn.model_selection import train_test_split # Splitting the data sets into Training and Test sets X_train, X_test = train_test_split(X, test_size = .2, random_state = 0) y_train, y_test = train_test_split(y, train_size = .8, random_state = 0) # Training => 80% ## Just keelping backup copies X_train0, X_test0 = X_train, X_test y_train0, y_test0 = y_train, y_test # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # Fitting K-NN to the Training set # The Classifier codes go here from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors = 3, metric = 'minkowski', p = 2) #classifier = KNeighborsClassifier(n_neighbors = 6) classifier.fit(X_train, y_train) # Predicting the Test set results y_pred = classifier.predict(X_test) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) # Visualising the Training set results from matplotlib.colors import ListedColormap X_set, y_set = X_train, y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('K-NN Plot for the Training dataset)') plt.xlabel('Education in Year') plt.ylabel('Annual Salary') plt.legend() plt.grid() plt.show() # Visualising the Test set results from matplotlib.colors import ListedColormap X_set, y_set = X_test, y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('K-NN for the Test dataset)') plt.xlabel('Education in Year') plt.ylabel('Annual Salary') plt.legend() plt.grid() plt.show()
# Developing a K-NN (Nearest Neighbors) Classification Model # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('CompSurvey_Product1.csv') X = dataset.iloc[:, [1, 7]].values y = dataset.iloc[:, 8].values # Splitting the dataset into the Training set and Test set # Splitting the dataset4 into the Training set and Test set #from sklearn import cross_validation as cv ## cross_validation is deprecated since version 0.18. This module will be removed in 0.20. Use sklearn.model_selection.train_test_split instead. ## Source: https://stackoverflow.com/questions/53978901/importerror-cannot-import-name-cross-validation-from-sklearn from sklearn.model_selection import train_test_split # Splitting the data sets into Training and Test sets X_train, X_test = train_test_split(X, test_size = .2, random_state = 0) y_train, y_test = train_test_split(y, train_size = .8, random_state = 0) # Training => 80% ## Just keelping backup copies X_train0, X_test0 = X_train, X_test y_train0, y_test0 = y_train, y_test # Feature Scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) # Fitting K-NN to the Training set # The Classifier codes go here from sklearn.neighbors import KNeighborsClassifier classifier = KNeighborsClassifier(n_neighbors = 3, metric = 'minkowski', p = 2) #classifier = KNeighborsClassifier(n_neighbors = 6) classifier.fit(X_train, y_train) # Predicting the Test set results y_pred = classifier.predict(X_test) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) # Visualising the Training set results from matplotlib.colors import ListedColormap X_set, y_set = X_train, y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('K-NN Plot for the Training dataset)') plt.xlabel('Education in Year') plt.ylabel('Annual Salary') plt.legend() plt.grid() plt.show() # Visualising the Test set results from matplotlib.colors import ListedColormap X_set, y_set = X_test, y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('K-NN for the Test dataset)') plt.xlabel('Education in Year') plt.ylabel('Annual Salary') plt.legend() plt.grid() plt.show()
en
0.737028
# Developing a K-NN (Nearest Neighbors) Classification Model # Importing the libraries # Importing the dataset # Splitting the dataset into the Training set and Test set # Splitting the dataset4 into the Training set and Test set #from sklearn import cross_validation as cv ## cross_validation is deprecated since version 0.18. This module will be removed in 0.20. Use sklearn.model_selection.train_test_split instead. ## Source: https://stackoverflow.com/questions/53978901/importerror-cannot-import-name-cross-validation-from-sklearn # Splitting the data sets into Training and Test sets # Training => 80% ## Just keelping backup copies # Feature Scaling # Fitting K-NN to the Training set # The Classifier codes go here #classifier = KNeighborsClassifier(n_neighbors = 6) # Predicting the Test set results # Making the Confusion Matrix # Visualising the Training set results # Visualising the Test set results
3.4564
3
huddlebot/settings/production.py
Hipo/huddlebot
0
6630324
<filename>huddlebot/settings/production.py<gh_stars>0 from huddlebot.settings.base import * # noqa import sentry_sdk from sentry_sdk.integrations.django import DjangoIntegration SECRET_KEY = secrets.SECRET_KEY DEBUG = False SERVER_URL = "http://huddlebot.hack.hipolabs.com" ALLOWED_HOSTS = [ 'localhost', '127.0.0.1', 'huddlebot.hack.hipolabs.com', ] DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': "huddlebot", 'USER': "huddlebot", 'PASSWORD': secrets.POSTGRES_PASSWORD, 'HOST': "hackdb.cmq91upkqjfq.us-east-1.rds.amazonaws.com", 'PORT': '5432', } } sentry_sdk.init( dsn=secrets.SENTRY_DSN, integrations=[DjangoIntegration()] )
<filename>huddlebot/settings/production.py<gh_stars>0 from huddlebot.settings.base import * # noqa import sentry_sdk from sentry_sdk.integrations.django import DjangoIntegration SECRET_KEY = secrets.SECRET_KEY DEBUG = False SERVER_URL = "http://huddlebot.hack.hipolabs.com" ALLOWED_HOSTS = [ 'localhost', '127.0.0.1', 'huddlebot.hack.hipolabs.com', ] DATABASES = { 'default': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': "huddlebot", 'USER': "huddlebot", 'PASSWORD': secrets.POSTGRES_PASSWORD, 'HOST': "hackdb.cmq91upkqjfq.us-east-1.rds.amazonaws.com", 'PORT': '5432', } } sentry_sdk.init( dsn=secrets.SENTRY_DSN, integrations=[DjangoIntegration()] )
none
1
1.542613
2
load_inputs/cobalt_spin_resolved.py
DanielaZahn/TTM_inputs_from_DFT_results
1
6630325
import scipy.constants as constants import numpy as np import re # required constants HARTREE_TO_EV = constants.physical_constants['joule-electron volt relationship'][0]\ /constants.physical_constants['joule-hartree relationship'][0] # conversion factor from Hartree to eV AVOGADROS_NUMBER = constants.Avogadro # particles/mol # material-specific data # read electronic DOS (preferably per unit cell, see unit cell volume) # units here: Hartree, states per Hartree per unit cell (is converted to eV below) e_dos_majo = np.loadtxt('inputs/Co_spinResolved_eDOS_majority.txt') e_dos_mino = np.loadtxt('inputs/Co_spinResolved_eDOS_minority.txt') # unit cell volume (or, if e_dos and v_dos are not given per unit cell, corresponding other volume) # Here, the unit cell volume is calculated from the molar volume. # Cobalt has a hcp structure and thus two atoms per (primitive) unit cell. # Therefore, a factor of 2 is necessary here to get the correct unit cell volume. molar_volume = 6.67e-6 # m^3/mol unit_cell_volume = molar_volume/AVOGADROS_NUMBER*2 # m^3 per unit cell # IMPORTANT: The volume of the variable "unit_cell_volume" has to match the units of the densities of states. # Otherwise the heat capacities and G_ep will be WRONG!! (by a factor) # For example, here e_dos and v_dos are in units of states per eV PER UNIT CELL and the corresponding volume # is the unit cell volume. # read Fermi energy (which is the same for both spin types of course) file = open('inputs/Co_spinResolved_eDOS_majority.txt') alltext = file.read() file.close() # find the line of the text file in which the Fermi energy is written index1 = alltext.find('Fermi energy') index2 = alltext[index1:].find('\n') # find the number in this line (which is the Fermi energy) fermi_energy = float(np.squeeze(re.findall('[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?',\ alltext[index1:index1+index2]))) # convert e_dos and fermi_energy from Hartree to eV e_dos_majo[:,0] = e_dos_majo[:,0]*HARTREE_TO_EV # energy needs to be in eV e_dos_mino[:,0] = e_dos_mino[:,0]*HARTREE_TO_EV # energy needs to be in eV fermi_energy=fermi_energy*HARTREE_TO_EV e_dos_majo[:,1] = e_dos_majo[:,1]/HARTREE_TO_EV # DOS needs to be in states per eV e_dos_mino[:,1] = e_dos_mino[:,1]/HARTREE_TO_EV # DOS needs to be in states per eV # load Eliashberg function eliashberg = np.loadtxt('inputs/Co_spinResolved_EliashbergFunction_majorityAndMinority.txt') # convert energy from Hartree to eV eliashberg[:,0] = eliashberg[:,0]*HARTREE_TO_EV # energy needs to be in eV # the second column (the Eliashberg function) has no units and therefore doesn't need to be converted # split into majority and minority Eliashberg function eliashberg_majo = eliashberg[:int(np.shape(eliashberg)[0]/2),:] eliashberg_mino = eliashberg[int(np.shape(eliashberg)[0]/2):,:] del eliashberg # load phonon density of states v_dos=np.loadtxt('inputs/Co_spinResolved_vDOS.txt') # convert energy from Hartree to eV v_dos[:,0] = v_dos[:,0]*HARTREE_TO_EV # energy needs to be in eV v_dos[:,1] = v_dos[:,1]/HARTREE_TO_EV # DOS needs to be in states per eV v_dos = v_dos[:,0:2] # optional double-check: integrating the phonon DOS has to yield 3 times the atoms per unit cell # (here: 2 atoms per unit cell / integral has to be 6) #print(np.trapz(v_dos[:,1],v_dos[:,0])) print('Material-specific data for cobalt has been loaded.')
import scipy.constants as constants import numpy as np import re # required constants HARTREE_TO_EV = constants.physical_constants['joule-electron volt relationship'][0]\ /constants.physical_constants['joule-hartree relationship'][0] # conversion factor from Hartree to eV AVOGADROS_NUMBER = constants.Avogadro # particles/mol # material-specific data # read electronic DOS (preferably per unit cell, see unit cell volume) # units here: Hartree, states per Hartree per unit cell (is converted to eV below) e_dos_majo = np.loadtxt('inputs/Co_spinResolved_eDOS_majority.txt') e_dos_mino = np.loadtxt('inputs/Co_spinResolved_eDOS_minority.txt') # unit cell volume (or, if e_dos and v_dos are not given per unit cell, corresponding other volume) # Here, the unit cell volume is calculated from the molar volume. # Cobalt has a hcp structure and thus two atoms per (primitive) unit cell. # Therefore, a factor of 2 is necessary here to get the correct unit cell volume. molar_volume = 6.67e-6 # m^3/mol unit_cell_volume = molar_volume/AVOGADROS_NUMBER*2 # m^3 per unit cell # IMPORTANT: The volume of the variable "unit_cell_volume" has to match the units of the densities of states. # Otherwise the heat capacities and G_ep will be WRONG!! (by a factor) # For example, here e_dos and v_dos are in units of states per eV PER UNIT CELL and the corresponding volume # is the unit cell volume. # read Fermi energy (which is the same for both spin types of course) file = open('inputs/Co_spinResolved_eDOS_majority.txt') alltext = file.read() file.close() # find the line of the text file in which the Fermi energy is written index1 = alltext.find('Fermi energy') index2 = alltext[index1:].find('\n') # find the number in this line (which is the Fermi energy) fermi_energy = float(np.squeeze(re.findall('[-+]?[.]?[\d]+(?:,\d\d\d)*[\.]?\d*(?:[eE][-+]?\d+)?',\ alltext[index1:index1+index2]))) # convert e_dos and fermi_energy from Hartree to eV e_dos_majo[:,0] = e_dos_majo[:,0]*HARTREE_TO_EV # energy needs to be in eV e_dos_mino[:,0] = e_dos_mino[:,0]*HARTREE_TO_EV # energy needs to be in eV fermi_energy=fermi_energy*HARTREE_TO_EV e_dos_majo[:,1] = e_dos_majo[:,1]/HARTREE_TO_EV # DOS needs to be in states per eV e_dos_mino[:,1] = e_dos_mino[:,1]/HARTREE_TO_EV # DOS needs to be in states per eV # load Eliashberg function eliashberg = np.loadtxt('inputs/Co_spinResolved_EliashbergFunction_majorityAndMinority.txt') # convert energy from Hartree to eV eliashberg[:,0] = eliashberg[:,0]*HARTREE_TO_EV # energy needs to be in eV # the second column (the Eliashberg function) has no units and therefore doesn't need to be converted # split into majority and minority Eliashberg function eliashberg_majo = eliashberg[:int(np.shape(eliashberg)[0]/2),:] eliashberg_mino = eliashberg[int(np.shape(eliashberg)[0]/2):,:] del eliashberg # load phonon density of states v_dos=np.loadtxt('inputs/Co_spinResolved_vDOS.txt') # convert energy from Hartree to eV v_dos[:,0] = v_dos[:,0]*HARTREE_TO_EV # energy needs to be in eV v_dos[:,1] = v_dos[:,1]/HARTREE_TO_EV # DOS needs to be in states per eV v_dos = v_dos[:,0:2] # optional double-check: integrating the phonon DOS has to yield 3 times the atoms per unit cell # (here: 2 atoms per unit cell / integral has to be 6) #print(np.trapz(v_dos[:,1],v_dos[:,0])) print('Material-specific data for cobalt has been loaded.')
en
0.823925
# required constants # conversion factor from Hartree to eV # particles/mol # material-specific data # read electronic DOS (preferably per unit cell, see unit cell volume) # units here: Hartree, states per Hartree per unit cell (is converted to eV below) # unit cell volume (or, if e_dos and v_dos are not given per unit cell, corresponding other volume) # Here, the unit cell volume is calculated from the molar volume. # Cobalt has a hcp structure and thus two atoms per (primitive) unit cell. # Therefore, a factor of 2 is necessary here to get the correct unit cell volume. # m^3/mol # m^3 per unit cell # IMPORTANT: The volume of the variable "unit_cell_volume" has to match the units of the densities of states. # Otherwise the heat capacities and G_ep will be WRONG!! (by a factor) # For example, here e_dos and v_dos are in units of states per eV PER UNIT CELL and the corresponding volume # is the unit cell volume. # read Fermi energy (which is the same for both spin types of course) # find the line of the text file in which the Fermi energy is written # find the number in this line (which is the Fermi energy) # convert e_dos and fermi_energy from Hartree to eV # energy needs to be in eV # energy needs to be in eV # DOS needs to be in states per eV # DOS needs to be in states per eV # load Eliashberg function # convert energy from Hartree to eV # energy needs to be in eV # the second column (the Eliashberg function) has no units and therefore doesn't need to be converted # split into majority and minority Eliashberg function # load phonon density of states # convert energy from Hartree to eV # energy needs to be in eV # DOS needs to be in states per eV # optional double-check: integrating the phonon DOS has to yield 3 times the atoms per unit cell # (here: 2 atoms per unit cell / integral has to be 6) #print(np.trapz(v_dos[:,1],v_dos[:,0]))
2.781754
3
scripts/tests/sample_module/sample3.py
pv/pydocweb
2
6630326
<filename>scripts/tests/sample_module/sample3.py func0 = lambda x: x func0.__name__ = "func0" class Cls4(object): func1 = lambda x: x func1.__name__ = "func1" func2 = lambda x: x func2.__name__ = "func2"
<filename>scripts/tests/sample_module/sample3.py func0 = lambda x: x func0.__name__ = "func0" class Cls4(object): func1 = lambda x: x func1.__name__ = "func1" func2 = lambda x: x func2.__name__ = "func2"
none
1
2.026446
2
GenomicConsensus/__init__.py
PacificBiosciences/GenomicConsensus
96
6630327
<reponame>PacificBiosciences/GenomicConsensus # Author: <NAME>, <NAME> from __future__ import absolute_import, division, print_function __VERSION__ = '2.3.3' # don't forget to update setup.py and doc/conf.py too
# Author: <NAME>, <NAME> from __future__ import absolute_import, division, print_function __VERSION__ = '2.3.3' # don't forget to update setup.py and doc/conf.py too
en
0.915611
# Author: <NAME>, <NAME> # don't forget to update setup.py and doc/conf.py too
0.934117
1
tools/dns-sync/tests/test_audit_log_loop.py
ruchirjain86/professional-services
2,116
6630328
<filename>tools/dns-sync/tests/test_audit_log_loop.py # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import datetime import json import logging import unittest from google.cloud.datastore import Entity from google.cloud.datastore.client import Client import mock import webapp2 import common from dns_sync import api from dns_sync import audit_log from dns_sync import auth from dns_sync import main class TestHandlers(unittest.TestCase): def setUp(self): logging.basicConfig(level=logging.DEBUG) def test_audit_log_loop_start(self): """Test that we can start the audit loop.""" url = '/start_audit_log_loop' request = webapp2.Request.blank(url) request.method = 'POST' request.headers['content-type'] = 'application/json' data_files = common.read_data_files([ 'tests/data/monitoring.v3.json', 'tests/data/audit-log-start-metric-list.json', 'tests/data/audit-log-start-metric-create.json', 'tests/data/compute.v1.json', 'tests/data/audit-log-resource-get.json', 'tests/data/audit-log-start-resource-insert.json' ]) success = {'status': '200'} not_found = {'status': '404'} metrics_mock_http = common.LoggingHttpMockSequence( [(success, '{"access_token":"token","expires_in":3600}'), (success, data_files['monitoring.v3.json']), (success, data_files['audit-log-start-metric-list.json']), (success, data_files['audit-log-start-metric-create.json'])]) api.Clients.metrics.http = metrics_mock_http api.Clients.metrics.cache_discovery = False compute_mock_http = common.LoggingHttpMockSequence( [(success, '{"access_token":"token","expires_in":3600}'), (success, data_files['compute.v1.json']), (not_found, ''), (success, data_files['audit-log-start-resource-insert.json'])]) api.Clients.compute.http = compute_mock_http api.Clients.compute.cache_discovery = False mock_datastore = mock.Mock(spec=Client) mock_datastore.project = 'project-1' entity = mock.MagicMock(spec=Entity) mock_datastore.get.side_effect = [entity, common.config_entity()] api.CLIENTS.datastore = mock_datastore dns_sync_app = main.DnsSyncApplication() response = request.get_response(dns_sync_app) self.assertEquals(response.status_int, 200) def test_audit_log_loop_stop(self): """Test we can stop the audit loop.""" url = '/stop_audit_log_loop' request = webapp2.Request.blank(url) request.method = 'POST' request.headers['content-type'] = 'application/json' data_files = common.read_data_files([ 'tests/data/monitoring.v3.json', 'tests/data/audit-log-stop-metric-list.json', 'tests/data/compute.v1.json', 'tests/data/audit-log-resource-get.json', 'tests/data/audit-log-stop-resource-delete.json' ]) success = {'status': '200'} metrics_mock_http = common.LoggingHttpMockSequence( [(success, '{"access_token":"token","expires_in":3600}'), (success, data_files['monitoring.v3.json']), (success, data_files['audit-log-stop-metric-list.json'])]) api.Clients.metrics.http = metrics_mock_http api.Clients.metrics.cache_discovery = False compute_mock_http = common.LoggingHttpMockSequence( [(success, '{"access_token":"token","expires_in":3600}'), (success, data_files['compute.v1.json']), (success, data_files['audit-log-resource-get.json']), (success, data_files['audit-log-stop-resource-delete.json'])]) api.Clients.compute.http = compute_mock_http api.Clients.compute.cache_discovery = False mock_datastore = mock.Mock(spec=Client) mock_datastore.project = 'project-1' entity = dict() mock_datastore.get.side_effect = [entity, common.config_entity()] api.CLIENTS.datastore = mock_datastore dns_sync_app = main.DnsSyncApplication() response = request.get_response(dns_sync_app) self.assertEquals(response.status_int, 200) def test_audit_log_loop_event(self): """Test receiving an audit loop event.""" url = '/push_notification?secret={}'.format('my-test-secret-key') request = webapp2.Request.blank(url) request.method = 'POST' request.headers['content-type'] = 'application/json' data_files = common.read_data_files([ 'tests/data/audit-log-loop-message.json', 'tests/data/compute.v1.json', 'tests/data/audit-log-loop-compute-operation.json', 'tests/data/audit-log-resource-get.json', 'tests/data/monitoring.v3.json', 'tests/data/dns.v1.json', 'tests/data/dns-zone-response.json', 'tests/data/instance-creation-dns-pending-operation.json', 'tests/data/instance-creation-dns-done-operation.json', 'tests/data/instance-creation-dns-record-set-response.json' ]) data = base64.encodestring(data_files[ 'audit-log-loop-message.json']) post = { 'message': { 'data': data, 'attributes': { 'compute.googleapis.com/resource_id': '18082097775580039429', 'compute.googleapis.com/resource_name': 'dns-sync-test', 'compute.googleapis.com/resource_type': 'instance', 'compute.googleapis.com/resource_zone': 'us-central1-a', 'logging.googleapis.com/timestamp': '2016-04-03T23: 06: 31.17867Z' }, 'message_id': '29119446125187' }, 'subscription': 'projects/project-1/subscriptions/gae-push' } request.body = json.dumps(post) success = {'status': '200'} compute_mock_http = common.LoggingHttpMockSequence( [(success, '{"access_token":"token","expires_in":3600}'), (success, data_files['compute.v1.json']), (success, data_files['audit-log-loop-compute-operation.json']), (success, data_files['audit-log-resource-get.json']), # stop instance (success, data_files['audit-log-loop-compute-operation.json'])]) api.Clients.compute.http = compute_mock_http api.Clients.compute.cache_discovery = False metrics_mock_http = common.LoggingHttpMockSequence( [(success, '{"access_token":"token","expires_in":3600}'), (success, data_files['monitoring.v3.json']), # timeseries.write (success, '{}')]) api.Clients.metrics.http = metrics_mock_http api.Clients.metrics.cache_discovery = False mock_dns = mock.MagicMock() mock_dns.changes().get().execute.return_value = {'status': 'done'} api.Clients.dns = mock_dns mock_datastore = mock.Mock(spec=Client) mock_datastore.project = 'project-1' now = audit_log.utcnow() last_call_time = now - datetime.timedelta(0, 30) entity = Entity() entity.update({'running': True, 'last_call': 'start', 'last_call_time': last_call_time, 'last_call_event_received': False}) mock_datastore.get.side_effect = [common.config_entity(), entity] api.CLIENTS.datastore = mock_datastore dns_sync_app = main.DnsSyncApplication() auth.AdminRequestHandler.SKIP_AUTHENTICATION = True # Get a response for that request. response = request.get_response(dns_sync_app) self.assertEquals(response.status_int, 200)
<filename>tools/dns-sync/tests/test_audit_log_loop.py # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import datetime import json import logging import unittest from google.cloud.datastore import Entity from google.cloud.datastore.client import Client import mock import webapp2 import common from dns_sync import api from dns_sync import audit_log from dns_sync import auth from dns_sync import main class TestHandlers(unittest.TestCase): def setUp(self): logging.basicConfig(level=logging.DEBUG) def test_audit_log_loop_start(self): """Test that we can start the audit loop.""" url = '/start_audit_log_loop' request = webapp2.Request.blank(url) request.method = 'POST' request.headers['content-type'] = 'application/json' data_files = common.read_data_files([ 'tests/data/monitoring.v3.json', 'tests/data/audit-log-start-metric-list.json', 'tests/data/audit-log-start-metric-create.json', 'tests/data/compute.v1.json', 'tests/data/audit-log-resource-get.json', 'tests/data/audit-log-start-resource-insert.json' ]) success = {'status': '200'} not_found = {'status': '404'} metrics_mock_http = common.LoggingHttpMockSequence( [(success, '{"access_token":"token","expires_in":3600}'), (success, data_files['monitoring.v3.json']), (success, data_files['audit-log-start-metric-list.json']), (success, data_files['audit-log-start-metric-create.json'])]) api.Clients.metrics.http = metrics_mock_http api.Clients.metrics.cache_discovery = False compute_mock_http = common.LoggingHttpMockSequence( [(success, '{"access_token":"token","expires_in":3600}'), (success, data_files['compute.v1.json']), (not_found, ''), (success, data_files['audit-log-start-resource-insert.json'])]) api.Clients.compute.http = compute_mock_http api.Clients.compute.cache_discovery = False mock_datastore = mock.Mock(spec=Client) mock_datastore.project = 'project-1' entity = mock.MagicMock(spec=Entity) mock_datastore.get.side_effect = [entity, common.config_entity()] api.CLIENTS.datastore = mock_datastore dns_sync_app = main.DnsSyncApplication() response = request.get_response(dns_sync_app) self.assertEquals(response.status_int, 200) def test_audit_log_loop_stop(self): """Test we can stop the audit loop.""" url = '/stop_audit_log_loop' request = webapp2.Request.blank(url) request.method = 'POST' request.headers['content-type'] = 'application/json' data_files = common.read_data_files([ 'tests/data/monitoring.v3.json', 'tests/data/audit-log-stop-metric-list.json', 'tests/data/compute.v1.json', 'tests/data/audit-log-resource-get.json', 'tests/data/audit-log-stop-resource-delete.json' ]) success = {'status': '200'} metrics_mock_http = common.LoggingHttpMockSequence( [(success, '{"access_token":"token","expires_in":3600}'), (success, data_files['monitoring.v3.json']), (success, data_files['audit-log-stop-metric-list.json'])]) api.Clients.metrics.http = metrics_mock_http api.Clients.metrics.cache_discovery = False compute_mock_http = common.LoggingHttpMockSequence( [(success, '{"access_token":"token","expires_in":3600}'), (success, data_files['compute.v1.json']), (success, data_files['audit-log-resource-get.json']), (success, data_files['audit-log-stop-resource-delete.json'])]) api.Clients.compute.http = compute_mock_http api.Clients.compute.cache_discovery = False mock_datastore = mock.Mock(spec=Client) mock_datastore.project = 'project-1' entity = dict() mock_datastore.get.side_effect = [entity, common.config_entity()] api.CLIENTS.datastore = mock_datastore dns_sync_app = main.DnsSyncApplication() response = request.get_response(dns_sync_app) self.assertEquals(response.status_int, 200) def test_audit_log_loop_event(self): """Test receiving an audit loop event.""" url = '/push_notification?secret={}'.format('my-test-secret-key') request = webapp2.Request.blank(url) request.method = 'POST' request.headers['content-type'] = 'application/json' data_files = common.read_data_files([ 'tests/data/audit-log-loop-message.json', 'tests/data/compute.v1.json', 'tests/data/audit-log-loop-compute-operation.json', 'tests/data/audit-log-resource-get.json', 'tests/data/monitoring.v3.json', 'tests/data/dns.v1.json', 'tests/data/dns-zone-response.json', 'tests/data/instance-creation-dns-pending-operation.json', 'tests/data/instance-creation-dns-done-operation.json', 'tests/data/instance-creation-dns-record-set-response.json' ]) data = base64.encodestring(data_files[ 'audit-log-loop-message.json']) post = { 'message': { 'data': data, 'attributes': { 'compute.googleapis.com/resource_id': '18082097775580039429', 'compute.googleapis.com/resource_name': 'dns-sync-test', 'compute.googleapis.com/resource_type': 'instance', 'compute.googleapis.com/resource_zone': 'us-central1-a', 'logging.googleapis.com/timestamp': '2016-04-03T23: 06: 31.17867Z' }, 'message_id': '29119446125187' }, 'subscription': 'projects/project-1/subscriptions/gae-push' } request.body = json.dumps(post) success = {'status': '200'} compute_mock_http = common.LoggingHttpMockSequence( [(success, '{"access_token":"token","expires_in":3600}'), (success, data_files['compute.v1.json']), (success, data_files['audit-log-loop-compute-operation.json']), (success, data_files['audit-log-resource-get.json']), # stop instance (success, data_files['audit-log-loop-compute-operation.json'])]) api.Clients.compute.http = compute_mock_http api.Clients.compute.cache_discovery = False metrics_mock_http = common.LoggingHttpMockSequence( [(success, '{"access_token":"token","expires_in":3600}'), (success, data_files['monitoring.v3.json']), # timeseries.write (success, '{}')]) api.Clients.metrics.http = metrics_mock_http api.Clients.metrics.cache_discovery = False mock_dns = mock.MagicMock() mock_dns.changes().get().execute.return_value = {'status': 'done'} api.Clients.dns = mock_dns mock_datastore = mock.Mock(spec=Client) mock_datastore.project = 'project-1' now = audit_log.utcnow() last_call_time = now - datetime.timedelta(0, 30) entity = Entity() entity.update({'running': True, 'last_call': 'start', 'last_call_time': last_call_time, 'last_call_event_received': False}) mock_datastore.get.side_effect = [common.config_entity(), entity] api.CLIENTS.datastore = mock_datastore dns_sync_app = main.DnsSyncApplication() auth.AdminRequestHandler.SKIP_AUTHENTICATION = True # Get a response for that request. response = request.get_response(dns_sync_app) self.assertEquals(response.status_int, 200)
en
0.853432
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Test that we can start the audit loop. Test we can stop the audit loop. Test receiving an audit loop event. # stop instance # timeseries.write # Get a response for that request.
2.205751
2
listings/chap10/listing_10_4_dummy_variables.py
unixime/fight-churn
0
6630329
<gh_stars>0 import pandas as pd from listing_10_3_grouped_category_cohorts import group_category_column def dummy_variables(data_set_path, groups={},current=False): raw_data = pd.read_csv(data_set_path, index_col=[0, 1]) for cat in groups.keys(): group_category_column(raw_data,cat,groups[cat]) data_w_dummies = pd.get_dummies(raw_data,dummy_na=True) data_w_dummies.to_csv(data_set_path.replace('.csv', '_xgbdummies.csv')) new_cols = sorted(list(set(data_w_dummies.columns).difference(set(raw_data.columns)))) cat_cols = sorted(list(set(raw_data.columns).difference(set(data_w_dummies.columns)))) dummy_col_df = pd.DataFrame(new_cols,index=new_cols,columns=['metrics']) dummy_col_df.to_csv(data_set_path.replace('.csv', '_dummies_groupmets.csv')) if not current: new_cols.append('is_churn') dummies_only = data_w_dummies[new_cols] save_path = data_set_path.replace('.csv', '_dummies_groupscore.csv') print('Saved dummy variable (only) dataset ' + save_path) dummies_only.to_csv(save_path) raw_data.drop(cat_cols,axis=1,inplace=True) save_path = data_set_path.replace('.csv', '_nocat.csv') print('Saved no category dataset ' + save_path) raw_data.to_csv(save_path)
import pandas as pd from listing_10_3_grouped_category_cohorts import group_category_column def dummy_variables(data_set_path, groups={},current=False): raw_data = pd.read_csv(data_set_path, index_col=[0, 1]) for cat in groups.keys(): group_category_column(raw_data,cat,groups[cat]) data_w_dummies = pd.get_dummies(raw_data,dummy_na=True) data_w_dummies.to_csv(data_set_path.replace('.csv', '_xgbdummies.csv')) new_cols = sorted(list(set(data_w_dummies.columns).difference(set(raw_data.columns)))) cat_cols = sorted(list(set(raw_data.columns).difference(set(data_w_dummies.columns)))) dummy_col_df = pd.DataFrame(new_cols,index=new_cols,columns=['metrics']) dummy_col_df.to_csv(data_set_path.replace('.csv', '_dummies_groupmets.csv')) if not current: new_cols.append('is_churn') dummies_only = data_w_dummies[new_cols] save_path = data_set_path.replace('.csv', '_dummies_groupscore.csv') print('Saved dummy variable (only) dataset ' + save_path) dummies_only.to_csv(save_path) raw_data.drop(cat_cols,axis=1,inplace=True) save_path = data_set_path.replace('.csv', '_nocat.csv') print('Saved no category dataset ' + save_path) raw_data.to_csv(save_path)
none
1
2.886543
3
tools/dump_bytecode.py
wenq1/duktape
34
6630330
#!/usr/bin/env python2 # # Utility to dump bytecode into a human readable form. # import os import sys import struct import optparse def decode_string(buf, off): strlen, = struct.unpack('>L', buf[off:off+4]) off += 4 strdata = buf[off:off+strlen] off += strlen return off, strdata def sanitize_string(val): # Don't try to UTF-8 decode, just escape non-printable ASCII. def f(c): if ord(c) < 0x20 or ord(c) > 0x7e or c in '\'"': return '\\x%02x' % ord(c) else: return c return "'" + ''.join(map(f, val)) + "'" def decode_sanitize_string(buf, off): off, val = decode_string(buf, off) return off, sanitize_string(val) def dump_function(buf, off, ind): count_inst, count_const, count_funcs = struct.unpack('>LLL', buf[off:off+12]) off += 12 print('%sInstructions: %d' % (ind, count_inst)) print('%sConstants: %d' % (ind, count_const)) print('%sInner functions: %d' % (ind, count_funcs)) # Line numbers present, assuming debugger support; otherwise 0. nregs, nargs, start_line, end_line = struct.unpack('>HHLL', buf[off:off+12]) off += 12 print('%sNregs: %d' % (ind, nregs)) print('%sNargs: %d' % (ind, nargs)) print('%sStart line number: %d' % (ind, start_line)) print('%sEnd line number: %d' % (ind, end_line)) compfunc_flags, = struct.unpack('>L', buf[off:off+4]) off += 4 print('%sduk_hcompiledfunction flags: 0x%08x' % (ind, compfunc_flags)) for i in xrange(count_inst): ins, = struct.unpack('>L', buf[off:off+4]) off += 4 print('%s %06d: %08lx' % (ind, i, ins)) print('%sConstants:' % ind) for i in xrange(count_const): const_type, = struct.unpack('B', buf[off:off+1]) off += 1 if const_type == 0x00: off, strdata = decode_sanitize_string(buf, off) print('%s %06d: %s' % (ind, i, strdata)) elif const_type == 0x01: num, = struct.unpack('>d', buf[off:off+8]) off += 8 print('%s %06d: %f' % (ind, i, num)) else: raise Exception('invalid constant type: %d' % const_type) for i in xrange(count_funcs): print('%sInner function %d:' % (ind, i)) off = dump_function(buf, off, ind + ' ') val, = struct.unpack('>L', buf[off:off+4]) off += 4 print('%s.length: %d' % (ind, val)) off, val = decode_sanitize_string(buf, off) print('%s.name: %s' % (ind, val)) off, val = decode_sanitize_string(buf, off) print('%s.fileName: %s' % (ind, val)) off, val = decode_string(buf, off) # actually a buffer print('%s._Pc2line: %s' % (ind, val.encode('hex'))) while True: off, name = decode_string(buf, off) if name == '': break name = sanitize_string(name) val, = struct.unpack('>L', buf[off:off+4]) off += 4 print('%s_Varmap[%s] = %d' % (ind, name, val)) num_formals, = struct.unpack('>L', buf[off:off+4]) off += 4 if num_formals != 0xffffffff: print('%s_Formals: %d formal arguments' % (ind, num_formals)) for idx in xrange(num_formals): off, name = decode_string(buf, off) name = sanitize_string(name) print('%s_Formals[%d] = %s' % (ind, idx, name)) else: print('%s_Formals: absent' % ind) return off def dump_bytecode(buf, off, ind): sig, = struct.unpack('B', buf[off:off+1]) print('%sSignature byte: 0x%02x' % (ind, sig)) off += 1 if sig == 0xff: raise Exception('pre-Duktape 2.2 0xFF signature byte (signature byte is 0xBF since Duktape 2.2)') if sig != 0xbf: raise Exception('invalid signature byte: %d' % sig) off = dump_function(buf, off, ind + ' ') return off def main(): parser = optparse.OptionParser() parser.add_option('--hex-decode', dest='hex_decode', default=False, action='store_true', help='Input file is ASCII hex encoded, decode before dump') (opts, args) = parser.parse_args() with open(args[0], 'rb') as f: d = f.read() if opts.hex_decode: d = d.strip() d = d.decode('hex') dump_bytecode(d, 0, '') if __name__ == '__main__': main()
#!/usr/bin/env python2 # # Utility to dump bytecode into a human readable form. # import os import sys import struct import optparse def decode_string(buf, off): strlen, = struct.unpack('>L', buf[off:off+4]) off += 4 strdata = buf[off:off+strlen] off += strlen return off, strdata def sanitize_string(val): # Don't try to UTF-8 decode, just escape non-printable ASCII. def f(c): if ord(c) < 0x20 or ord(c) > 0x7e or c in '\'"': return '\\x%02x' % ord(c) else: return c return "'" + ''.join(map(f, val)) + "'" def decode_sanitize_string(buf, off): off, val = decode_string(buf, off) return off, sanitize_string(val) def dump_function(buf, off, ind): count_inst, count_const, count_funcs = struct.unpack('>LLL', buf[off:off+12]) off += 12 print('%sInstructions: %d' % (ind, count_inst)) print('%sConstants: %d' % (ind, count_const)) print('%sInner functions: %d' % (ind, count_funcs)) # Line numbers present, assuming debugger support; otherwise 0. nregs, nargs, start_line, end_line = struct.unpack('>HHLL', buf[off:off+12]) off += 12 print('%sNregs: %d' % (ind, nregs)) print('%sNargs: %d' % (ind, nargs)) print('%sStart line number: %d' % (ind, start_line)) print('%sEnd line number: %d' % (ind, end_line)) compfunc_flags, = struct.unpack('>L', buf[off:off+4]) off += 4 print('%sduk_hcompiledfunction flags: 0x%08x' % (ind, compfunc_flags)) for i in xrange(count_inst): ins, = struct.unpack('>L', buf[off:off+4]) off += 4 print('%s %06d: %08lx' % (ind, i, ins)) print('%sConstants:' % ind) for i in xrange(count_const): const_type, = struct.unpack('B', buf[off:off+1]) off += 1 if const_type == 0x00: off, strdata = decode_sanitize_string(buf, off) print('%s %06d: %s' % (ind, i, strdata)) elif const_type == 0x01: num, = struct.unpack('>d', buf[off:off+8]) off += 8 print('%s %06d: %f' % (ind, i, num)) else: raise Exception('invalid constant type: %d' % const_type) for i in xrange(count_funcs): print('%sInner function %d:' % (ind, i)) off = dump_function(buf, off, ind + ' ') val, = struct.unpack('>L', buf[off:off+4]) off += 4 print('%s.length: %d' % (ind, val)) off, val = decode_sanitize_string(buf, off) print('%s.name: %s' % (ind, val)) off, val = decode_sanitize_string(buf, off) print('%s.fileName: %s' % (ind, val)) off, val = decode_string(buf, off) # actually a buffer print('%s._Pc2line: %s' % (ind, val.encode('hex'))) while True: off, name = decode_string(buf, off) if name == '': break name = sanitize_string(name) val, = struct.unpack('>L', buf[off:off+4]) off += 4 print('%s_Varmap[%s] = %d' % (ind, name, val)) num_formals, = struct.unpack('>L', buf[off:off+4]) off += 4 if num_formals != 0xffffffff: print('%s_Formals: %d formal arguments' % (ind, num_formals)) for idx in xrange(num_formals): off, name = decode_string(buf, off) name = sanitize_string(name) print('%s_Formals[%d] = %s' % (ind, idx, name)) else: print('%s_Formals: absent' % ind) return off def dump_bytecode(buf, off, ind): sig, = struct.unpack('B', buf[off:off+1]) print('%sSignature byte: 0x%02x' % (ind, sig)) off += 1 if sig == 0xff: raise Exception('pre-Duktape 2.2 0xFF signature byte (signature byte is 0xBF since Duktape 2.2)') if sig != 0xbf: raise Exception('invalid signature byte: %d' % sig) off = dump_function(buf, off, ind + ' ') return off def main(): parser = optparse.OptionParser() parser.add_option('--hex-decode', dest='hex_decode', default=False, action='store_true', help='Input file is ASCII hex encoded, decode before dump') (opts, args) = parser.parse_args() with open(args[0], 'rb') as f: d = f.read() if opts.hex_decode: d = d.strip() d = d.decode('hex') dump_bytecode(d, 0, '') if __name__ == '__main__': main()
en
0.722434
#!/usr/bin/env python2 # # Utility to dump bytecode into a human readable form. # # Don't try to UTF-8 decode, just escape non-printable ASCII. # Line numbers present, assuming debugger support; otherwise 0. # actually a buffer
3.089229
3
image_vision/plugins/mdi/area.py
IvanKosik/ImageVision
0
6630331
from core import Plugin from plugins.window import MainWindowPlugin from extensions.mdi import MdiArea class MdiAreaPlugin(Plugin): def __init__(self, main_window_plugin: MainWindowPlugin): super().__init__() self.main_window = main_window_plugin.main_window self.mdi_area = MdiArea() def _install(self): self.main_window.setCentralWidget(self.mdi_area) def _remove(self): self.main_window.setCentralWidget(None)
from core import Plugin from plugins.window import MainWindowPlugin from extensions.mdi import MdiArea class MdiAreaPlugin(Plugin): def __init__(self, main_window_plugin: MainWindowPlugin): super().__init__() self.main_window = main_window_plugin.main_window self.mdi_area = MdiArea() def _install(self): self.main_window.setCentralWidget(self.mdi_area) def _remove(self): self.main_window.setCentralWidget(None)
none
1
1.783319
2
cmds/information.py
hacknorris-aka-penguin/discord-tux
0
6630332
import discord from discord.ext import commands class information(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command() async def neofetch(self, ctx): await ctx.send( f"```fix\n /--\ OS NAME : {ctx.guild.name}\n -- \--/ -- \n / \ STORAGE : {ctx.guild.member_count} users \n | | \n /--\ /--\ INSTALLATION DATE : {ctx.guild.created_at}\n \--/ \--/ \n \ / DIRECTORIES : {len(ctx.guild.channels)} \n ---------- ```" ) @commands.command() async def echo(self, ctx, *, arg): await ctx.send(f"{arg}") @commands.command() async def ping(self, ctx): replytime = bot.latency * 1000 await ctx.send(f'Hi! I answered in {replytime} ms!') @commands.command() async def whoami(self, ctx): await ctx.send(f'```{ctx.author}```') return @commands.command() async def whois(self, ctx, member: discord.Member): await ctx.send(f"```{member.name}#{member.discriminator}```") @commands.command() async def time(self, ctx): now = datetime.now() now2 = now.timestamp() await ctx.send(f"`now? its `<t:{round(now2)}:T>") @commands.command() async def id(self, ctx, member: discord.Member): id = member.id await ctx.send(f"```{id}```") @commands.command() async def stat(self, ctx, member: discord.Member = None): if member == None: await ctx.send(f"```{ctx.message.author.status}```") else: await ctx.send(f"```{member.status}```") def setup(bot): bot.add_cog(information(bot))
import discord from discord.ext import commands class information(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command() async def neofetch(self, ctx): await ctx.send( f"```fix\n /--\ OS NAME : {ctx.guild.name}\n -- \--/ -- \n / \ STORAGE : {ctx.guild.member_count} users \n | | \n /--\ /--\ INSTALLATION DATE : {ctx.guild.created_at}\n \--/ \--/ \n \ / DIRECTORIES : {len(ctx.guild.channels)} \n ---------- ```" ) @commands.command() async def echo(self, ctx, *, arg): await ctx.send(f"{arg}") @commands.command() async def ping(self, ctx): replytime = bot.latency * 1000 await ctx.send(f'Hi! I answered in {replytime} ms!') @commands.command() async def whoami(self, ctx): await ctx.send(f'```{ctx.author}```') return @commands.command() async def whois(self, ctx, member: discord.Member): await ctx.send(f"```{member.name}#{member.discriminator}```") @commands.command() async def time(self, ctx): now = datetime.now() now2 = now.timestamp() await ctx.send(f"`now? its `<t:{round(now2)}:T>") @commands.command() async def id(self, ctx, member: discord.Member): id = member.id await ctx.send(f"```{id}```") @commands.command() async def stat(self, ctx, member: discord.Member = None): if member == None: await ctx.send(f"```{ctx.message.author.status}```") else: await ctx.send(f"```{member.status}```") def setup(bot): bot.add_cog(information(bot))
en
0.22457
#{member.discriminator}```")
2.712462
3
src/hello.py
JunyaKaneko/github-actions-hello-world
0
6630333
def hello(name): return 'Hello, {}'.format(name)
def hello(name): return 'Hello, {}'.format(name)
none
1
2.071803
2
api/admin.py
razin92/payme
1
6630334
from django.contrib import admin from .models import Transaction, BasicAuth # Register your models here. admin.site.register(Transaction) admin.site.register(BasicAuth)
from django.contrib import admin from .models import Transaction, BasicAuth # Register your models here. admin.site.register(Transaction) admin.site.register(BasicAuth)
en
0.968259
# Register your models here.
1.418075
1
smt/applications/ego.py
Laurentww/smt
0
6630335
<gh_stars>0 """ Authors: <NAME>, <NAME>, <NAME>, <NAME> <<EMAIL>> This package is distributed under New BSD license. """ import numpy as np from types import FunctionType from scipy.stats import norm from scipy.optimize import minimize from smt.utils.options_dictionary import OptionsDictionary from smt.applications.application import SurrogateBasedApplication from smt.applications.mixed_integer import ( MixedIntegerContext, GOWER, HOMO_GAUSSIAN, FULL_GAUSSIAN, ) from smt.utils.misc import compute_rms_error from smt.surrogate_models import KPLS, KRG, KPLSK, MGP, GEKPLS from smt.sampling_methods import LHS class Evaluator(object): """ An interface for evaluation of a function at x points (nsamples of dimension nx). User can derive this interface and override the run() method to implement custom multiprocessing. """ def run(self, fun, x): """ Evaluates fun at x. Parameters --------- fun : function to evaluate: (nsamples, nx) -> (nsample, 1) x : np.ndarray[nsamples, nx] nsamples points of nx dimensions. Returns ------- np.ndarray[nsample, 1] fun evaluations at the nsamples points. """ return fun(x) class EGO(SurrogateBasedApplication): def _initialize(self): super(EGO, self)._initialize() declare = self.options.declare declare("fun", None, types=FunctionType, desc="Function to minimize") declare( "criterion", "EI", types=str, values=["EI", "SBO", "LCB"], desc="criterion for next evaluation point determination: Expected Improvement, \ Surrogate-Based Optimization or Lower Confidence Bound", ) declare("n_iter", None, types=int, desc="Number of optimizer steps") declare( "n_max_optim", 20, types=int, desc="Maximum number of internal optimizations", ) declare("n_start", 20, types=int, desc="Number of optimization start points") declare( "n_parallel", 1, types=int, desc="Number of parallel samples to compute using qEI criterion", ) declare( "qEI", "KBLB", types=str, values=["KB", "KBLB", "KBUB", "KBRand", "CLmin"], desc="Approximated q-EI maximization strategy", ) declare( "evaluator", default=Evaluator(), types=Evaluator, desc="Object used to run function fun to optimize at x points (nsamples, nxdim)", ) declare( "n_doe", None, types=int, desc="Number of points of the initial LHS doe, only used if xdoe is not given", ) declare("xdoe", None, types=np.ndarray, desc="Initial doe inputs") declare("ydoe", None, types=np.ndarray, desc="Initial doe outputs") declare("xlimits", None, types=np.ndarray, desc="Bounds of function fun inputs") declare("verbose", False, types=bool, desc="Print computation information") declare( "enable_tunneling", False, types=bool, desc="Enable the penalization of points that have been already evaluated in EI criterion", ) declare( "categorical_kernel", None, types=str, values=[GOWER, HOMO_GAUSSIAN, FULL_GAUSSIAN], desc="The kernel to use for categorical inputs. Only for non continuous Kriging.", ) declare( "surrogate", KRG(print_global=False), types=(KRG, KPLS, KPLSK, GEKPLS, MGP), desc="SMT kriging-based surrogate model used internaly", ) declare( "xtypes", None, types=list, desc="x type specifications: either FLOAT for continuous, INT for integer " "or (ENUM n) for categorical doimension with n levels", ) self.options.declare( "random_state", types=(type(None), int, np.random.RandomState), desc="Numpy RandomState object or seed number which controls random draws", ) def optimize(self, fun): """ Optimizes fun Parameters ---------- fun: function to optimize: ndarray[n, nx] or ndarray[n] -> ndarray[n, 1] Returns ------- [nx, 1]: x optimum [1, 1]: y optimum int: index of optimum in data arrays [ndoe + n_iter, nx]: coord-x data [ndoe + n_iter, 1]: coord-y data """ x_data, y_data = self._setup_optimizer(fun) n_iter = self.options["n_iter"] n_parallel = self.options["n_parallel"] for k in range(n_iter): # Virtual enrichement loop for p in range(n_parallel): # find next best x-coord point to evaluate x_et_k, success = self._find_best_point( x_data, y_data, self.options["enable_tunneling"] ) if not success: self.log( "Internal optimization failed at EGO iter = {}.{}".format(k, p) ) break elif success: self.log( "Internal optimization succeeded at EGO iter = {}.{}".format( k, p ) ) # Set temporaly the y-coord point based on the kriging prediction y_et_k = self._get_virtual_point(np.atleast_2d(x_et_k), y_data) # Update y_data with predicted value y_data = y_data.reshape(y_data.shape[0], self.gpr.ny) y_data = np.vstack((y_data, y_et_k)) x_data = np.atleast_2d(np.append(x_data, x_et_k, axis=0)) # Compute the real values of y_data x_to_compute = np.atleast_2d(x_data[-n_parallel:]) if self.mixint and self.options["categorical_kernel"] is None: x_to_compute = self.mixint.fold_with_enum_index(x_to_compute) y = self._evaluator.run(fun, x_to_compute) y_data[-n_parallel:] = y # Find the optimal point ind_best = np.argmin(y_data if y_data.ndim == 1 else y_data[:, 0]) x_opt = x_data[ind_best] y_opt = y_data[ind_best] if self.mixint and self.options["categorical_kernel"] is None: x_opt = self.mixint.fold_with_enum_index(x_opt)[0] return x_opt, y_opt, ind_best, x_data, y_data def log(self, msg): if self.options["verbose"]: print(msg) def EI(self, points, y_data, enable_tunneling=False, x_data=None): """Expected improvement""" f_min = np.min(y_data) pred = self.gpr.predict_values(points) sig = np.sqrt(self.gpr.predict_variances(points)) args0 = (f_min - pred) / sig args1 = (f_min - pred) * norm.cdf(args0) args2 = sig * norm.pdf(args0) if sig.size == 1 and sig == 0.0: # can be use only if one point is computed return 0.0 ei = args1 + args2 # penalize the points already evaluated with tunneling if enable_tunneling: for i in range(len(points)): p = np.atleast_2d(points[i]) EIp = self.EI(p, y_data, enable_tunneling=False) for x in x_data: x = np.atleast_2d(x) # if np.abs(p-x)<1: # ei[i]=ei[i]*np.reciprocal(1+100*np.exp(-np.reciprocal(1-np.square(p-x)))) pena = ( EIp - self.EI(x, y_data, enable_tunneling=False) ) / np.power(np.linalg.norm(p - x), 4) if pena > 0: ei[i] = ei[i] - pena ei[i] = max(ei[i], 0) return ei def SBO(self, point): """Surrogate based optimization: min the surrogate model by suing the mean mu""" res = self.gpr.predict_values(point) return res def LCB(self, point): """Lower confidence bound optimization: minimize by using mu - 3*sigma""" pred = self.gpr.predict_values(point) var = self.gpr.predict_variances(point) res = pred - 3.0 * np.sqrt(var) return res def _setup_optimizer(self, fun): """ Instanciate internal surrogate used for optimization and setup function evaluator wrt options Parameters ---------- fun: function to optimize: ndarray[n, nx] or ndarray[n] -> ndarray[n, 1] Returns ------- ndarray: initial coord-x doe ndarray: initial coord-y doe = fun(xdoe) """ # Set the model self.gpr = self.options["surrogate"] self.xlimits = self.options["xlimits"] # Handle mixed integer optimization xtypes = self.options["xtypes"] if self.options["categorical_kernel"] is not None: work_in_folded_space = True else: work_in_folded_space = False if xtypes: self.categorical_kernel = self.options["categorical_kernel"] self.mixint = MixedIntegerContext( xtypes, self.xlimits, work_in_folded_space=work_in_folded_space, categorical_kernel=self.options["categorical_kernel"], ) self.gpr = self.mixint.build_surrogate_model(self.gpr) self._sampling = self.mixint.build_sampling_method( LHS, criterion="ese", random_state=self.options["random_state"], output_in_folded_space=work_in_folded_space, ) else: self.mixint = None self._sampling = LHS( xlimits=self.xlimits, criterion="ese", random_state=self.options["random_state"], ) # Build DOE self._evaluator = self.options["evaluator"] xdoe = self.options["xdoe"] if xdoe is None: self.log("Build initial DOE with LHS") n_doe = self.options["n_doe"] x_doe = self._sampling(n_doe) else: self.log("Initial DOE given") x_doe = np.atleast_2d(xdoe) if self.mixint and self.options["categorical_kernel"] is None: x_doe = self.mixint.unfold_with_enum_mask(x_doe) ydoe = self.options["ydoe"] if ydoe is None: y_doe = self._evaluator.run(fun, x_doe) else: # to save time if y_doe is already given to EGO y_doe = ydoe return x_doe, y_doe def _find_best_point(self, x_data=None, y_data=None, enable_tunneling=False): """ Function that analyse a set of x_data and y_data and give back the more interesting point to evaluates according to the selected criterion Parameters ---------- x_data: ndarray(n_points, nx) y_data: ndarray(n_points, 1) Returns ------- ndarray(nx, 1): the next best point to evaluate boolean: success flag """ self.gpr.set_training_values(x_data, y_data) if self.gpr.supports["training_derivatives"]: for kx in range(self.gpr.nx): self.gpr.set_training_derivatives( x_data, y_data[:, 1 + kx].reshape((y_data.shape[0], 1)), kx ) self.gpr.train() criterion = self.options["criterion"] n_start = self.options["n_start"] n_max_optim = self.options["n_max_optim"] if self.mixint: bounds = self.mixint.get_unfolded_xlimits() else: bounds = self.xlimits if criterion == "EI": self.obj_k = lambda x: -self.EI( np.atleast_2d(x), y_data, enable_tunneling, x_data ) elif criterion == "SBO": self.obj_k = lambda x: self.SBO(np.atleast_2d(x)) elif criterion == "LCB": self.obj_k = lambda x: self.LCB(np.atleast_2d(x)) success = False n_optim = 1 # in order to have some success optimizations with SLSQP while not success and n_optim <= n_max_optim: opt_all = [] x_start = self._sampling(n_start) for ii in range(n_start): try: opt_all.append( minimize( lambda x: float(np.array(self.obj_k(x)).flat[0]), x_start[ii, :], method="SLSQP", bounds=bounds, options={"maxiter": 200}, ) ) except ValueError: # in case "x0 violates bound constraints" error print("warning: `x0` violates bound constraints") print("x0={}".format(x_start[ii, :])) print("bounds={}".format(bounds)) opt_all.append({"success": False}) opt_all = np.asarray(opt_all) opt_success = opt_all[[opt_i["success"] for opt_i in opt_all]] obj_success = np.array([opt_i["fun"] for opt_i in opt_success]) success = obj_success.size != 0 if not success: self.log("New start point for the internal optimization") n_optim += 1 if n_optim >= n_max_optim: # self.log("Internal optimization failed at EGO iter = {}".format(k)) return np.atleast_2d(0), False ind_min = np.argmin(obj_success) opt = opt_success[ind_min] x_et_k = np.atleast_2d(opt["x"]) return x_et_k, True def _get_virtual_point(self, x, y_data): """ Depending on the qEI attribute return a predicted value at given point x Parameters ---------- x: ndarray(1, 1) the x-coord point where to forecast the y-coord virtual point y_data: current y evaluation list only used when qEI is CLmin Returns ------- ndarray(1, 1): the so-called virtual y-coord point """ qEI = self.options["qEI"] if qEI == "CLmin": return np.min(y_data) if qEI == "KB": return self.gpr.predict_values(x) if qEI == "KBUB": conf = 3.0 if qEI == "KBLB": conf = -3.0 if qEI == "KBRand": conf = np.random.randn() pred = self.gpr.predict_values(x) var = self.gpr.predict_variances(x) return pred + conf * np.sqrt(var)
""" Authors: <NAME>, <NAME>, <NAME>, <NAME> <<EMAIL>> This package is distributed under New BSD license. """ import numpy as np from types import FunctionType from scipy.stats import norm from scipy.optimize import minimize from smt.utils.options_dictionary import OptionsDictionary from smt.applications.application import SurrogateBasedApplication from smt.applications.mixed_integer import ( MixedIntegerContext, GOWER, HOMO_GAUSSIAN, FULL_GAUSSIAN, ) from smt.utils.misc import compute_rms_error from smt.surrogate_models import KPLS, KRG, KPLSK, MGP, GEKPLS from smt.sampling_methods import LHS class Evaluator(object): """ An interface for evaluation of a function at x points (nsamples of dimension nx). User can derive this interface and override the run() method to implement custom multiprocessing. """ def run(self, fun, x): """ Evaluates fun at x. Parameters --------- fun : function to evaluate: (nsamples, nx) -> (nsample, 1) x : np.ndarray[nsamples, nx] nsamples points of nx dimensions. Returns ------- np.ndarray[nsample, 1] fun evaluations at the nsamples points. """ return fun(x) class EGO(SurrogateBasedApplication): def _initialize(self): super(EGO, self)._initialize() declare = self.options.declare declare("fun", None, types=FunctionType, desc="Function to minimize") declare( "criterion", "EI", types=str, values=["EI", "SBO", "LCB"], desc="criterion for next evaluation point determination: Expected Improvement, \ Surrogate-Based Optimization or Lower Confidence Bound", ) declare("n_iter", None, types=int, desc="Number of optimizer steps") declare( "n_max_optim", 20, types=int, desc="Maximum number of internal optimizations", ) declare("n_start", 20, types=int, desc="Number of optimization start points") declare( "n_parallel", 1, types=int, desc="Number of parallel samples to compute using qEI criterion", ) declare( "qEI", "KBLB", types=str, values=["KB", "KBLB", "KBUB", "KBRand", "CLmin"], desc="Approximated q-EI maximization strategy", ) declare( "evaluator", default=Evaluator(), types=Evaluator, desc="Object used to run function fun to optimize at x points (nsamples, nxdim)", ) declare( "n_doe", None, types=int, desc="Number of points of the initial LHS doe, only used if xdoe is not given", ) declare("xdoe", None, types=np.ndarray, desc="Initial doe inputs") declare("ydoe", None, types=np.ndarray, desc="Initial doe outputs") declare("xlimits", None, types=np.ndarray, desc="Bounds of function fun inputs") declare("verbose", False, types=bool, desc="Print computation information") declare( "enable_tunneling", False, types=bool, desc="Enable the penalization of points that have been already evaluated in EI criterion", ) declare( "categorical_kernel", None, types=str, values=[GOWER, HOMO_GAUSSIAN, FULL_GAUSSIAN], desc="The kernel to use for categorical inputs. Only for non continuous Kriging.", ) declare( "surrogate", KRG(print_global=False), types=(KRG, KPLS, KPLSK, GEKPLS, MGP), desc="SMT kriging-based surrogate model used internaly", ) declare( "xtypes", None, types=list, desc="x type specifications: either FLOAT for continuous, INT for integer " "or (ENUM n) for categorical doimension with n levels", ) self.options.declare( "random_state", types=(type(None), int, np.random.RandomState), desc="Numpy RandomState object or seed number which controls random draws", ) def optimize(self, fun): """ Optimizes fun Parameters ---------- fun: function to optimize: ndarray[n, nx] or ndarray[n] -> ndarray[n, 1] Returns ------- [nx, 1]: x optimum [1, 1]: y optimum int: index of optimum in data arrays [ndoe + n_iter, nx]: coord-x data [ndoe + n_iter, 1]: coord-y data """ x_data, y_data = self._setup_optimizer(fun) n_iter = self.options["n_iter"] n_parallel = self.options["n_parallel"] for k in range(n_iter): # Virtual enrichement loop for p in range(n_parallel): # find next best x-coord point to evaluate x_et_k, success = self._find_best_point( x_data, y_data, self.options["enable_tunneling"] ) if not success: self.log( "Internal optimization failed at EGO iter = {}.{}".format(k, p) ) break elif success: self.log( "Internal optimization succeeded at EGO iter = {}.{}".format( k, p ) ) # Set temporaly the y-coord point based on the kriging prediction y_et_k = self._get_virtual_point(np.atleast_2d(x_et_k), y_data) # Update y_data with predicted value y_data = y_data.reshape(y_data.shape[0], self.gpr.ny) y_data = np.vstack((y_data, y_et_k)) x_data = np.atleast_2d(np.append(x_data, x_et_k, axis=0)) # Compute the real values of y_data x_to_compute = np.atleast_2d(x_data[-n_parallel:]) if self.mixint and self.options["categorical_kernel"] is None: x_to_compute = self.mixint.fold_with_enum_index(x_to_compute) y = self._evaluator.run(fun, x_to_compute) y_data[-n_parallel:] = y # Find the optimal point ind_best = np.argmin(y_data if y_data.ndim == 1 else y_data[:, 0]) x_opt = x_data[ind_best] y_opt = y_data[ind_best] if self.mixint and self.options["categorical_kernel"] is None: x_opt = self.mixint.fold_with_enum_index(x_opt)[0] return x_opt, y_opt, ind_best, x_data, y_data def log(self, msg): if self.options["verbose"]: print(msg) def EI(self, points, y_data, enable_tunneling=False, x_data=None): """Expected improvement""" f_min = np.min(y_data) pred = self.gpr.predict_values(points) sig = np.sqrt(self.gpr.predict_variances(points)) args0 = (f_min - pred) / sig args1 = (f_min - pred) * norm.cdf(args0) args2 = sig * norm.pdf(args0) if sig.size == 1 and sig == 0.0: # can be use only if one point is computed return 0.0 ei = args1 + args2 # penalize the points already evaluated with tunneling if enable_tunneling: for i in range(len(points)): p = np.atleast_2d(points[i]) EIp = self.EI(p, y_data, enable_tunneling=False) for x in x_data: x = np.atleast_2d(x) # if np.abs(p-x)<1: # ei[i]=ei[i]*np.reciprocal(1+100*np.exp(-np.reciprocal(1-np.square(p-x)))) pena = ( EIp - self.EI(x, y_data, enable_tunneling=False) ) / np.power(np.linalg.norm(p - x), 4) if pena > 0: ei[i] = ei[i] - pena ei[i] = max(ei[i], 0) return ei def SBO(self, point): """Surrogate based optimization: min the surrogate model by suing the mean mu""" res = self.gpr.predict_values(point) return res def LCB(self, point): """Lower confidence bound optimization: minimize by using mu - 3*sigma""" pred = self.gpr.predict_values(point) var = self.gpr.predict_variances(point) res = pred - 3.0 * np.sqrt(var) return res def _setup_optimizer(self, fun): """ Instanciate internal surrogate used for optimization and setup function evaluator wrt options Parameters ---------- fun: function to optimize: ndarray[n, nx] or ndarray[n] -> ndarray[n, 1] Returns ------- ndarray: initial coord-x doe ndarray: initial coord-y doe = fun(xdoe) """ # Set the model self.gpr = self.options["surrogate"] self.xlimits = self.options["xlimits"] # Handle mixed integer optimization xtypes = self.options["xtypes"] if self.options["categorical_kernel"] is not None: work_in_folded_space = True else: work_in_folded_space = False if xtypes: self.categorical_kernel = self.options["categorical_kernel"] self.mixint = MixedIntegerContext( xtypes, self.xlimits, work_in_folded_space=work_in_folded_space, categorical_kernel=self.options["categorical_kernel"], ) self.gpr = self.mixint.build_surrogate_model(self.gpr) self._sampling = self.mixint.build_sampling_method( LHS, criterion="ese", random_state=self.options["random_state"], output_in_folded_space=work_in_folded_space, ) else: self.mixint = None self._sampling = LHS( xlimits=self.xlimits, criterion="ese", random_state=self.options["random_state"], ) # Build DOE self._evaluator = self.options["evaluator"] xdoe = self.options["xdoe"] if xdoe is None: self.log("Build initial DOE with LHS") n_doe = self.options["n_doe"] x_doe = self._sampling(n_doe) else: self.log("Initial DOE given") x_doe = np.atleast_2d(xdoe) if self.mixint and self.options["categorical_kernel"] is None: x_doe = self.mixint.unfold_with_enum_mask(x_doe) ydoe = self.options["ydoe"] if ydoe is None: y_doe = self._evaluator.run(fun, x_doe) else: # to save time if y_doe is already given to EGO y_doe = ydoe return x_doe, y_doe def _find_best_point(self, x_data=None, y_data=None, enable_tunneling=False): """ Function that analyse a set of x_data and y_data and give back the more interesting point to evaluates according to the selected criterion Parameters ---------- x_data: ndarray(n_points, nx) y_data: ndarray(n_points, 1) Returns ------- ndarray(nx, 1): the next best point to evaluate boolean: success flag """ self.gpr.set_training_values(x_data, y_data) if self.gpr.supports["training_derivatives"]: for kx in range(self.gpr.nx): self.gpr.set_training_derivatives( x_data, y_data[:, 1 + kx].reshape((y_data.shape[0], 1)), kx ) self.gpr.train() criterion = self.options["criterion"] n_start = self.options["n_start"] n_max_optim = self.options["n_max_optim"] if self.mixint: bounds = self.mixint.get_unfolded_xlimits() else: bounds = self.xlimits if criterion == "EI": self.obj_k = lambda x: -self.EI( np.atleast_2d(x), y_data, enable_tunneling, x_data ) elif criterion == "SBO": self.obj_k = lambda x: self.SBO(np.atleast_2d(x)) elif criterion == "LCB": self.obj_k = lambda x: self.LCB(np.atleast_2d(x)) success = False n_optim = 1 # in order to have some success optimizations with SLSQP while not success and n_optim <= n_max_optim: opt_all = [] x_start = self._sampling(n_start) for ii in range(n_start): try: opt_all.append( minimize( lambda x: float(np.array(self.obj_k(x)).flat[0]), x_start[ii, :], method="SLSQP", bounds=bounds, options={"maxiter": 200}, ) ) except ValueError: # in case "x0 violates bound constraints" error print("warning: `x0` violates bound constraints") print("x0={}".format(x_start[ii, :])) print("bounds={}".format(bounds)) opt_all.append({"success": False}) opt_all = np.asarray(opt_all) opt_success = opt_all[[opt_i["success"] for opt_i in opt_all]] obj_success = np.array([opt_i["fun"] for opt_i in opt_success]) success = obj_success.size != 0 if not success: self.log("New start point for the internal optimization") n_optim += 1 if n_optim >= n_max_optim: # self.log("Internal optimization failed at EGO iter = {}".format(k)) return np.atleast_2d(0), False ind_min = np.argmin(obj_success) opt = opt_success[ind_min] x_et_k = np.atleast_2d(opt["x"]) return x_et_k, True def _get_virtual_point(self, x, y_data): """ Depending on the qEI attribute return a predicted value at given point x Parameters ---------- x: ndarray(1, 1) the x-coord point where to forecast the y-coord virtual point y_data: current y evaluation list only used when qEI is CLmin Returns ------- ndarray(1, 1): the so-called virtual y-coord point """ qEI = self.options["qEI"] if qEI == "CLmin": return np.min(y_data) if qEI == "KB": return self.gpr.predict_values(x) if qEI == "KBUB": conf = 3.0 if qEI == "KBLB": conf = -3.0 if qEI == "KBRand": conf = np.random.randn() pred = self.gpr.predict_values(x) var = self.gpr.predict_variances(x) return pred + conf * np.sqrt(var)
en
0.590099
Authors: <NAME>, <NAME>, <NAME>, <NAME> <<EMAIL>> This package is distributed under New BSD license. An interface for evaluation of a function at x points (nsamples of dimension nx). User can derive this interface and override the run() method to implement custom multiprocessing. Evaluates fun at x. Parameters --------- fun : function to evaluate: (nsamples, nx) -> (nsample, 1) x : np.ndarray[nsamples, nx] nsamples points of nx dimensions. Returns ------- np.ndarray[nsample, 1] fun evaluations at the nsamples points. Optimizes fun Parameters ---------- fun: function to optimize: ndarray[n, nx] or ndarray[n] -> ndarray[n, 1] Returns ------- [nx, 1]: x optimum [1, 1]: y optimum int: index of optimum in data arrays [ndoe + n_iter, nx]: coord-x data [ndoe + n_iter, 1]: coord-y data # Virtual enrichement loop # find next best x-coord point to evaluate # Set temporaly the y-coord point based on the kriging prediction # Update y_data with predicted value # Compute the real values of y_data # Find the optimal point Expected improvement # can be use only if one point is computed # penalize the points already evaluated with tunneling # if np.abs(p-x)<1: # ei[i]=ei[i]*np.reciprocal(1+100*np.exp(-np.reciprocal(1-np.square(p-x)))) Surrogate based optimization: min the surrogate model by suing the mean mu Lower confidence bound optimization: minimize by using mu - 3*sigma Instanciate internal surrogate used for optimization and setup function evaluator wrt options Parameters ---------- fun: function to optimize: ndarray[n, nx] or ndarray[n] -> ndarray[n, 1] Returns ------- ndarray: initial coord-x doe ndarray: initial coord-y doe = fun(xdoe) # Set the model # Handle mixed integer optimization # Build DOE # to save time if y_doe is already given to EGO Function that analyse a set of x_data and y_data and give back the more interesting point to evaluates according to the selected criterion Parameters ---------- x_data: ndarray(n_points, nx) y_data: ndarray(n_points, 1) Returns ------- ndarray(nx, 1): the next best point to evaluate boolean: success flag # in order to have some success optimizations with SLSQP # in case "x0 violates bound constraints" error # self.log("Internal optimization failed at EGO iter = {}".format(k)) Depending on the qEI attribute return a predicted value at given point x Parameters ---------- x: ndarray(1, 1) the x-coord point where to forecast the y-coord virtual point y_data: current y evaluation list only used when qEI is CLmin Returns ------- ndarray(1, 1): the so-called virtual y-coord point
2.015591
2
P3-Capstone/ros/src/twist_controller/twist_controller.py
lucasosouza/udacity-carnd-term3
0
6630336
<reponame>lucasosouza/udacity-carnd-term3<filename>P3-Capstone/ros/src/twist_controller/twist_controller.py import rospy from yaw_controller import YawController from pid import PID GAS_DENSITY = 2.858 ONE_MPH = 0.44704 class Controller(object): def __init__(self, *args, **kwargs): # TODO: Implement vehicle_mass = kwargs['vehicle_mass'] fuel_capacity = kwargs['fuel_capacity'] decel_limit = kwargs['decel_limit'] accel_limit = kwargs['accel_limit'] wheel_radius = kwargs['wheel_radius'] wheel_base = kwargs['wheel_base'] steer_ratio = kwargs['steer_ratio'] max_lat_accel = kwargs['max_lat_accel'] max_steer_angle = kwargs['max_steer_angle'] min_speed = kwargs['min_speed'] linear_p_term = kwargs['linear_p_term'] linear_i_term = kwargs['linear_i_term'] linear_d_term = kwargs['linear_d_term'] # Calculate required braking torque according to vehicle dynamics? _total_vehicle_mass = vehicle_mass + fuel_capacity * GAS_DENSITY # Use F = ma to calculate the # F_max = m * a_max # T_max = F_max * r = m * r * a_max # Assume all CoFs (Coefficient of Frictions) are 1 self._brake_torque_base = _total_vehicle_mass * wheel_radius self.yaw_controller = YawController(wheel_base, steer_ratio, min_speed, max_lat_accel, max_steer_angle) # Tune the parameters in dbw_node self.linear_pid = PID(linear_p_term, linear_i_term, linear_d_term, decel_limit, accel_limit) self._now = None def reset(self): """ Reset PID when dbw_enable event is disabled :return: """ self.linear_pid.reset() self._now = None def control(self, *args, **kwargs): # TODO: Change the arg, kwarg list to suit your needs # Return throttle, brake, steer linear_velocity_setpoint = kwargs['linear_velocity_setpoint'] angular_velocity_setpoint = kwargs['angular_velocity_setpoint'] current_linear_velocity = kwargs['current_linear_velocity'] # Sample time interval: timestamp = rospy.get_time() if not self._now: _sample_time = 0.02 # 50 Hz else: _sample_time = timestamp - self._now self._now = timestamp _error = linear_velocity_setpoint - current_linear_velocity _control_correction = self.linear_pid.step(_error, _sample_time) throttle = 0 brake = 0 if _control_correction > 0: throttle = _control_correction else: brake = -1.0 * self._brake_torque_base * _control_correction # Steer and steer ratio steering = self.yaw_controller.get_steering(linear_velocity_setpoint, angular_velocity_setpoint, current_linear_velocity) return throttle, brake, steering
import rospy from yaw_controller import YawController from pid import PID GAS_DENSITY = 2.858 ONE_MPH = 0.44704 class Controller(object): def __init__(self, *args, **kwargs): # TODO: Implement vehicle_mass = kwargs['vehicle_mass'] fuel_capacity = kwargs['fuel_capacity'] decel_limit = kwargs['decel_limit'] accel_limit = kwargs['accel_limit'] wheel_radius = kwargs['wheel_radius'] wheel_base = kwargs['wheel_base'] steer_ratio = kwargs['steer_ratio'] max_lat_accel = kwargs['max_lat_accel'] max_steer_angle = kwargs['max_steer_angle'] min_speed = kwargs['min_speed'] linear_p_term = kwargs['linear_p_term'] linear_i_term = kwargs['linear_i_term'] linear_d_term = kwargs['linear_d_term'] # Calculate required braking torque according to vehicle dynamics? _total_vehicle_mass = vehicle_mass + fuel_capacity * GAS_DENSITY # Use F = ma to calculate the # F_max = m * a_max # T_max = F_max * r = m * r * a_max # Assume all CoFs (Coefficient of Frictions) are 1 self._brake_torque_base = _total_vehicle_mass * wheel_radius self.yaw_controller = YawController(wheel_base, steer_ratio, min_speed, max_lat_accel, max_steer_angle) # Tune the parameters in dbw_node self.linear_pid = PID(linear_p_term, linear_i_term, linear_d_term, decel_limit, accel_limit) self._now = None def reset(self): """ Reset PID when dbw_enable event is disabled :return: """ self.linear_pid.reset() self._now = None def control(self, *args, **kwargs): # TODO: Change the arg, kwarg list to suit your needs # Return throttle, brake, steer linear_velocity_setpoint = kwargs['linear_velocity_setpoint'] angular_velocity_setpoint = kwargs['angular_velocity_setpoint'] current_linear_velocity = kwargs['current_linear_velocity'] # Sample time interval: timestamp = rospy.get_time() if not self._now: _sample_time = 0.02 # 50 Hz else: _sample_time = timestamp - self._now self._now = timestamp _error = linear_velocity_setpoint - current_linear_velocity _control_correction = self.linear_pid.step(_error, _sample_time) throttle = 0 brake = 0 if _control_correction > 0: throttle = _control_correction else: brake = -1.0 * self._brake_torque_base * _control_correction # Steer and steer ratio steering = self.yaw_controller.get_steering(linear_velocity_setpoint, angular_velocity_setpoint, current_linear_velocity) return throttle, brake, steering
en
0.740757
# TODO: Implement # Calculate required braking torque according to vehicle dynamics? # Use F = ma to calculate the # F_max = m * a_max # T_max = F_max * r = m * r * a_max # Assume all CoFs (Coefficient of Frictions) are 1 # Tune the parameters in dbw_node Reset PID when dbw_enable event is disabled :return: # TODO: Change the arg, kwarg list to suit your needs # Return throttle, brake, steer # Sample time interval: # 50 Hz # Steer and steer ratio
2.775981
3
datahub/search/test/search_support/simplemodel/signals.py
Staberinde/data-hub-api
6
6630337
<gh_stars>1-10 from django.db.models.signals import post_delete, pre_delete from datahub.search.signals import SignalReceiver from datahub.search.test.search_support.models import SimpleModel as DBSimpleModel def dummy_on_delete_callback(instance): """ Function called on_delete and deliberately empty. It can be used to check if/when it's called. """ receivers = ( SignalReceiver(post_delete, DBSimpleModel, dummy_on_delete_callback), SignalReceiver(pre_delete, DBSimpleModel, dummy_on_delete_callback), )
from django.db.models.signals import post_delete, pre_delete from datahub.search.signals import SignalReceiver from datahub.search.test.search_support.models import SimpleModel as DBSimpleModel def dummy_on_delete_callback(instance): """ Function called on_delete and deliberately empty. It can be used to check if/when it's called. """ receivers = ( SignalReceiver(post_delete, DBSimpleModel, dummy_on_delete_callback), SignalReceiver(pre_delete, DBSimpleModel, dummy_on_delete_callback), )
en
0.97116
Function called on_delete and deliberately empty. It can be used to check if/when it's called.
2.07657
2
checkov/terraform/checks/resource/aws/IAMRoleAllowAssumeFromAccount.py
people-ai/checkov
1
6630338
from checkov.common.models.enums import CheckResult, CheckCategories from checkov.terraform.checks.resource.base_resource_check import BaseResourceCheck import json import re class IAMRoleAllowAssumeFromAccount(BaseResourceCheck): def __init__(self): name = "Ensure IAM role allows only specific principals in account to assume it" id = "CKV_AWS_61" supported_resources = ['aws_iam_role'] categories = [CheckCategories.IAM] super().__init__(name=name, id=id, categories=categories, supported_resources=supported_resources) def scan_resource_conf(self, conf): if isinstance(conf['assume_role_policy'][0], str): try: assume_role_block = json.loads(conf['assume_role_policy'][0]) if 'Statement' in assume_role_block.keys(): if 'Principal' in assume_role_block['Statement'][0]: if 'AWS' in assume_role_block['Statement'][0]['Principal']: account_access = re.compile('\d{12}|arn:aws:iam::\d{12}:root') if re.match(account_access, assume_role_block['Statement'][0]['Principal']['AWS']): return CheckResult.FAILED except: pass return CheckResult.PASSED check = IAMRoleAllowAssumeFromAccount()
from checkov.common.models.enums import CheckResult, CheckCategories from checkov.terraform.checks.resource.base_resource_check import BaseResourceCheck import json import re class IAMRoleAllowAssumeFromAccount(BaseResourceCheck): def __init__(self): name = "Ensure IAM role allows only specific principals in account to assume it" id = "CKV_AWS_61" supported_resources = ['aws_iam_role'] categories = [CheckCategories.IAM] super().__init__(name=name, id=id, categories=categories, supported_resources=supported_resources) def scan_resource_conf(self, conf): if isinstance(conf['assume_role_policy'][0], str): try: assume_role_block = json.loads(conf['assume_role_policy'][0]) if 'Statement' in assume_role_block.keys(): if 'Principal' in assume_role_block['Statement'][0]: if 'AWS' in assume_role_block['Statement'][0]['Principal']: account_access = re.compile('\d{12}|arn:aws:iam::\d{12}:root') if re.match(account_access, assume_role_block['Statement'][0]['Principal']['AWS']): return CheckResult.FAILED except: pass return CheckResult.PASSED check = IAMRoleAllowAssumeFromAccount()
none
1
2.163262
2
deepscreening/chemvae.py
iwasakishuto/DeepScreening
8
6630339
<gh_stars>1-10 # coding: utf-8 import os import re import argparse import warnings import numpy as np from keras.layers import (Layer, Input, Lambda, Dense, Flatten, RepeatVector, Dropout, Concatenate, Convolution1D, GRU, BatchNormalization) from keras.models import load_model, Model from keras import losses from keras import backend as K from .utils import load_params from .utils import update_params class ChemVAE(Model): def __init__(self, params=None, x_train_data={}, y_train_data={}, **kwargs): if params is None or isinstance(params, str): params = load_params(path=params, name="chemvae") params.update(kwargs) params = self._update_params(params, x_train_data, y_train_data) # Build the respective models. encoder = load_encoder(params=params) decoder = load_decoder(params=params) property_predictor = load_property_predictor(params=params) # Integrates everything. x_in = encoder.input z_mean, z_log_var, z = encoder(x_in) reconstructed = decoder(z) predictions = property_predictor(z) if isinstance(predictions, list): outputs = [Lambda(identity, name=re.sub(r"^.*\/(.+_property_)output\/.*$", r"\1pred", pred.name))(pred) for pred in predictions] outputs.append(reconstructed) else: predictions = Lambda(identity, name=re.sub(r"^.*\/(.+_property_)output\/.*$", r"\1pred", predictions[0].name))(predictions) outputs = [predictions, reconstructed] super().__init__(inputs=x_in, outputs=outputs, name="ChemVAE") # Memorize. self.encoder = encoder self.decoder = decoder self.property_predictor = property_predictor # Add losses. self._add_losses(z_mean=z_mean, z_log_var=z_log_var, params=params) self.params = params def _update_params(self, params, x_train_data={}, y_train_data={}): if "input_mol_SMILES" in x_train_data: x_train_input = x_train_data.get("input_mol_SMILES") num_tranin, max_chem_len, num_chars = x_train_input.shape params = update_params(params, max_chem_len=max_chem_len, num_chars=num_chars) if "reg_property_pred" in y_train_data: y_train_reg = y_train_data.get("reg_property_pred") num_train, num_reg_prop_tasks = y_train_reg.shape params = update_params(params, num_reg_prop_tasks=num_reg_prop_tasks) if "logit_property_pred" in y_train_data: y_train_logit = y_train_data.get("logit_property_pred") num_train, num_logit_prop_tasks = y_train_logit.shape params = update_params(params, num_logit_prop_tasks=num_logit_prop_tasks) return params def _add_losses(self, z_mean, z_log_var, params={}): kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var) kl_loss = K.sum(kl_loss, axis=-1) kl_loss *= -0.5 kl_loss /= params.get("max_chem_len", 1)*params.get("num_chars", 1) self.add_loss(K.mean(kl_loss)) def fit(self, x_train_data={}, y_train_data={}, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, max_queue_size=10, workers=1, use_multiprocessing=False, **kwargs): y_train_data["decoder"] = x_train_data.get("input_mol_SMILES") if validation_data is not None: x_val_data, y_val_data = validation_data y_val_data["decoder"] = x_val_data.get("input_mol_SMILES") validation_data = (x_val_data, y_val_data) return super().fit(x=x_train_data, y=y_train_data, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_split=validation_split, validation_data=validation_data, shuffle=shuffle, class_weight=class_weight, sample_weight=sample_weight, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, validation_freq=validation_freq, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, **kwargs) # ============================= # Lambda layer # ============================= def identity(x): return K.identity(x) def sampling(args): """ reparameterization trick instead of sampling from Q(z|X), sample epsilon = N(0,I) z = z_mean + sqrt(var) * epsilon ~~~ @params args (tensor): mean and log of variance of Q(z|X) @return z (tensor): sampled latent vector """ z_mean, z_log_var = args batch = K.shape(z_mean)[0] dim = K.int_shape(z_mean)[1] # by default, random_normal has mean = 0 and std = 1.0 epsilon = K.random_normal(shape=(batch, dim)) z_rand = z_mean + K.exp(0.5 * z_log_var)*epsilon return K.in_train_phase(z_rand, z_mean) # ============================= # Encoder # ============================= def encoder_model(params={}, **kwargs): params.update(kwargs) max_chem_len = params.get("max_chem_len") num_chars = params.get("num_chars") # zinc.yml if (max_chem_len is None) or (num_chars is None): raise ValueError("You should define `max_chem_len` and `num_chars` in parameter file.") x_in = Input(shape=(max_chem_len, num_chars), name="input_mol_SMILES") # Convolutional num_conv_layers = params.get("num_conv_layers", 4) conv_dim_depth = params.get("conv_dim_depth", 8) conv_dim_width = params.get("conv_dim_width", 8) conv_depth_gf = params.get("conv_depth_gf", 1.15875438383) conv_width_gf = params.get("conv_width_gf", 1.1758149644) conv_activation = params.get("conv_activation", "tanh") conv_dropout_rate = params.get("conv_dropout_rate", 0.0) is_batchnorm_conv = params.get("is_batchnorm_conv", True) x = x_in for j in range(num_conv_layers): x = Convolution1D(filters=int(conv_dim_depth * conv_depth_gf**j), kernel_size=int(conv_dim_width * conv_width_gf**j), activation=conv_activation, name=f"encoder_conv{j}")(x) if conv_dropout_rate > 0: x = Dropout(rate=conv_dropout_rate, name=f"encoder_conv_dropout{j}")(x) if is_batchnorm_conv: x = BatchNormalization(axis=-1, name=f"encoder_conv_norm{j}")(x) x = Flatten()(x) # Middle layers num_dense_layers = params.get("num_dense_layers", 1) latent_space_dim = params.get("latent space_dim", 128) latent_space_dim_gf = params.get("latent_space_dim_gf", 1.4928245388) dense_activation = params.get("dense_activation", "tanh") dense_dropout_rate = params.get("dense_dropout_rate", 0.0) is_batchnorm_dense = params.get("is_batchnorm_dense", True) for j in range(num_dense_layers): x = Dense(units=int(latent_space_dim * latent_space_dim_gf**(num_dense_layers-j-1)), activation=dense_activation, name=f'encoder_dense{j}')(x) if dense_dropout_rate > 0: x = Dropout(rate=dense_dropout_rate, name=f"encoder_dense_dropout{j}")(x) if is_batchnorm_dense: x = BatchNormalization(axis=-1, name=f"encoder_dense_norm{j}")(x) z_mean = Dense(latent_space_dim, name="latent_mean")(x) z_log_var = Dense(latent_space_dim, name="latent_log_var")(x) z = Lambda(function=sampling, output_shape=(latent_space_dim,), name="encoder_output")([z_mean, z_log_var]) return Model(x_in, [z_mean, z_log_var, z], name="encoder") def load_encoder(params={}, **kwargs): if "encoder_weights_path" in params: path = params.get("encoder_weights_path") return load_model(path) else: return encoder_model(params, **kwargs) # ============================= # Decoder # ============================= def decoder_model(params={}, add_loss=False, **kwargs): params.update(kwargs) max_chem_len = params.get("max_chem_len") num_chars = params.get("num_chars", 35) # zinc.yml latent_space_dim = params.get("latent space_dim", 128) z_in = Input(shape=(latent_space_dim,), name="decoder_input") # Middle layers num_dense_layers = params.get("num_dense_layers", 1) latent_space_dim = params.get("latent space_dim", 128) latent_space_dim_gf = params.get("latent_space_dim_gf", 1.4928245388) dense_activation = params.get("dense_activation", "tanh") is_batchnorm_dense = params.get("is_batchnorm_dense", True) dense_dropout_rate = params.get("dense_dropout_rate", 0.0) z = z_in for j in range(num_dense_layers): z = Dense(units=int(latent_space_dim*latent_space_dim_gf**j), activation=dense_activation, name=f"decoder_dense{j}")(z) if dense_dropout_rate > 0: z = Dropout(rate=dense_dropout_rate, name=f"decoder_dense_dropout{j}")(z) if is_batchnorm_dense: z = BatchNormalization(axis=-1, name=f"decoder_dense_norm{j}")(z) # Necessary for using GRU vectors z_reps = RepeatVector(max_chem_len)(z) num_gru_layers = params.get("num_gru_layers", 3) gru_dim = params.get("gru_dim", 36) gru_activation = params.get("gru_activation", "tanh") gru_dropout_rate = params.get("gru_dropout_rate", 0.0) is_batchnorm_gru = params.get("is_batchnorm_gru", True) # Encoder parts using GRUs x = z_reps if num_gru_layers > 1: for j in range(num_gru_layers-1): x_dec = GRU(units=gru_dim, return_sequences=True, activation=gru_activation, name=f"decoder_gru{j}")(x) if gru_dropout_rate > 0: x = Dropout(rate=gru_dropout_rate, name=f"decoder_gru_dropout{j}")(x) if is_batchnorm_gru: x = BatchNormalization(axis=-1, name=f"decoder_gru_norm{j}")(x) x_out = GRU(units=num_chars, return_sequences=True, activation='softmax', name='decoder_gru_final')(x) return Model(z_in, x_out, name="decoder") def load_decoder(params={}, **kwargs): if "decoder_weights_path" in params: path = params.get("decoder_weights_path") return load_model(path) else: return decoder_model(params, **kwargs) # ==================== # Property Prediction # ==================== def property_predictor_model(params={}, **kwargs): params.update(kwargs) num_prov_layers = params.get("num_prov_layers", 3) latent_space_dim = params.get("latent space_dim", 128) prop_hidden_dim = params.get("prop_hidden_dim", 36) prop_hidden_dim_gf = params.get("prop_hidden_dim_gf", 0.8) prop_pred_activation = params.get("prop_pred_activation", "tanh") prop_pred_dropout_rate = params.get("prop_pred_dropout_rate", 0.0) is_batchnorm_prop = params.get("is_batchnorm_prop", True) x_in = Input(shape=(latent_space_dim,), name='prop_pred_input') x = x_in for j in range(num_prov_layers): x = Dense(units=int(prop_hidden_dim * prop_hidden_dim_gf**j), activation=prop_pred_activation, name=f"property_predictor_dense{j}")(x) if prop_pred_dropout_rate > 0: x = Dropout(rate=prop_pred_dropout_rate, name=f"property_predictor_dropout{j}")(x) if is_batchnorm_prop: x = BatchNormalization(axis=-1, name=f"property_predictor_norm{j}")(x) num_reg_prop_tasks = params.get("num_reg_prop_tasks", 0) num_logit_prop_tasks = params.get("num_logit_prop_tasks", 0) if num_reg_prop_tasks+num_logit_prop_tasks==0: raise ValueError("You must specify either 'regression tasks' and/or " + \ "'logistic tasks' for property prediction.") # for regression tasks outputs = [] if num_reg_prop_tasks > 0: reg_prop_pred = Dense(units=num_reg_prop_tasks, activation='linear', name='reg_property_output')(x) outputs.append(reg_prop_pred) # for logistic tasks if num_logit_prop_tasks > 0: logit_prop_pred = Dense(units=num_logit_prop_tasks, activation='sigmoid', name='logit_property_output')(x) outputs.append(logit_prop_pred) return Model(inputs=x_in, outputs=outputs, name="property_predictor") def load_property_predictor(params={}, **kwargs): if "property_pred_weights_path" in params: path = params.get("property_pred_weights_path") return load_model(path) else: return property_predictor_model(params, **kwargs)
# coding: utf-8 import os import re import argparse import warnings import numpy as np from keras.layers import (Layer, Input, Lambda, Dense, Flatten, RepeatVector, Dropout, Concatenate, Convolution1D, GRU, BatchNormalization) from keras.models import load_model, Model from keras import losses from keras import backend as K from .utils import load_params from .utils import update_params class ChemVAE(Model): def __init__(self, params=None, x_train_data={}, y_train_data={}, **kwargs): if params is None or isinstance(params, str): params = load_params(path=params, name="chemvae") params.update(kwargs) params = self._update_params(params, x_train_data, y_train_data) # Build the respective models. encoder = load_encoder(params=params) decoder = load_decoder(params=params) property_predictor = load_property_predictor(params=params) # Integrates everything. x_in = encoder.input z_mean, z_log_var, z = encoder(x_in) reconstructed = decoder(z) predictions = property_predictor(z) if isinstance(predictions, list): outputs = [Lambda(identity, name=re.sub(r"^.*\/(.+_property_)output\/.*$", r"\1pred", pred.name))(pred) for pred in predictions] outputs.append(reconstructed) else: predictions = Lambda(identity, name=re.sub(r"^.*\/(.+_property_)output\/.*$", r"\1pred", predictions[0].name))(predictions) outputs = [predictions, reconstructed] super().__init__(inputs=x_in, outputs=outputs, name="ChemVAE") # Memorize. self.encoder = encoder self.decoder = decoder self.property_predictor = property_predictor # Add losses. self._add_losses(z_mean=z_mean, z_log_var=z_log_var, params=params) self.params = params def _update_params(self, params, x_train_data={}, y_train_data={}): if "input_mol_SMILES" in x_train_data: x_train_input = x_train_data.get("input_mol_SMILES") num_tranin, max_chem_len, num_chars = x_train_input.shape params = update_params(params, max_chem_len=max_chem_len, num_chars=num_chars) if "reg_property_pred" in y_train_data: y_train_reg = y_train_data.get("reg_property_pred") num_train, num_reg_prop_tasks = y_train_reg.shape params = update_params(params, num_reg_prop_tasks=num_reg_prop_tasks) if "logit_property_pred" in y_train_data: y_train_logit = y_train_data.get("logit_property_pred") num_train, num_logit_prop_tasks = y_train_logit.shape params = update_params(params, num_logit_prop_tasks=num_logit_prop_tasks) return params def _add_losses(self, z_mean, z_log_var, params={}): kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var) kl_loss = K.sum(kl_loss, axis=-1) kl_loss *= -0.5 kl_loss /= params.get("max_chem_len", 1)*params.get("num_chars", 1) self.add_loss(K.mean(kl_loss)) def fit(self, x_train_data={}, y_train_data={}, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, max_queue_size=10, workers=1, use_multiprocessing=False, **kwargs): y_train_data["decoder"] = x_train_data.get("input_mol_SMILES") if validation_data is not None: x_val_data, y_val_data = validation_data y_val_data["decoder"] = x_val_data.get("input_mol_SMILES") validation_data = (x_val_data, y_val_data) return super().fit(x=x_train_data, y=y_train_data, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_split=validation_split, validation_data=validation_data, shuffle=shuffle, class_weight=class_weight, sample_weight=sample_weight, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, validation_freq=validation_freq, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, **kwargs) # ============================= # Lambda layer # ============================= def identity(x): return K.identity(x) def sampling(args): """ reparameterization trick instead of sampling from Q(z|X), sample epsilon = N(0,I) z = z_mean + sqrt(var) * epsilon ~~~ @params args (tensor): mean and log of variance of Q(z|X) @return z (tensor): sampled latent vector """ z_mean, z_log_var = args batch = K.shape(z_mean)[0] dim = K.int_shape(z_mean)[1] # by default, random_normal has mean = 0 and std = 1.0 epsilon = K.random_normal(shape=(batch, dim)) z_rand = z_mean + K.exp(0.5 * z_log_var)*epsilon return K.in_train_phase(z_rand, z_mean) # ============================= # Encoder # ============================= def encoder_model(params={}, **kwargs): params.update(kwargs) max_chem_len = params.get("max_chem_len") num_chars = params.get("num_chars") # zinc.yml if (max_chem_len is None) or (num_chars is None): raise ValueError("You should define `max_chem_len` and `num_chars` in parameter file.") x_in = Input(shape=(max_chem_len, num_chars), name="input_mol_SMILES") # Convolutional num_conv_layers = params.get("num_conv_layers", 4) conv_dim_depth = params.get("conv_dim_depth", 8) conv_dim_width = params.get("conv_dim_width", 8) conv_depth_gf = params.get("conv_depth_gf", 1.15875438383) conv_width_gf = params.get("conv_width_gf", 1.1758149644) conv_activation = params.get("conv_activation", "tanh") conv_dropout_rate = params.get("conv_dropout_rate", 0.0) is_batchnorm_conv = params.get("is_batchnorm_conv", True) x = x_in for j in range(num_conv_layers): x = Convolution1D(filters=int(conv_dim_depth * conv_depth_gf**j), kernel_size=int(conv_dim_width * conv_width_gf**j), activation=conv_activation, name=f"encoder_conv{j}")(x) if conv_dropout_rate > 0: x = Dropout(rate=conv_dropout_rate, name=f"encoder_conv_dropout{j}")(x) if is_batchnorm_conv: x = BatchNormalization(axis=-1, name=f"encoder_conv_norm{j}")(x) x = Flatten()(x) # Middle layers num_dense_layers = params.get("num_dense_layers", 1) latent_space_dim = params.get("latent space_dim", 128) latent_space_dim_gf = params.get("latent_space_dim_gf", 1.4928245388) dense_activation = params.get("dense_activation", "tanh") dense_dropout_rate = params.get("dense_dropout_rate", 0.0) is_batchnorm_dense = params.get("is_batchnorm_dense", True) for j in range(num_dense_layers): x = Dense(units=int(latent_space_dim * latent_space_dim_gf**(num_dense_layers-j-1)), activation=dense_activation, name=f'encoder_dense{j}')(x) if dense_dropout_rate > 0: x = Dropout(rate=dense_dropout_rate, name=f"encoder_dense_dropout{j}")(x) if is_batchnorm_dense: x = BatchNormalization(axis=-1, name=f"encoder_dense_norm{j}")(x) z_mean = Dense(latent_space_dim, name="latent_mean")(x) z_log_var = Dense(latent_space_dim, name="latent_log_var")(x) z = Lambda(function=sampling, output_shape=(latent_space_dim,), name="encoder_output")([z_mean, z_log_var]) return Model(x_in, [z_mean, z_log_var, z], name="encoder") def load_encoder(params={}, **kwargs): if "encoder_weights_path" in params: path = params.get("encoder_weights_path") return load_model(path) else: return encoder_model(params, **kwargs) # ============================= # Decoder # ============================= def decoder_model(params={}, add_loss=False, **kwargs): params.update(kwargs) max_chem_len = params.get("max_chem_len") num_chars = params.get("num_chars", 35) # zinc.yml latent_space_dim = params.get("latent space_dim", 128) z_in = Input(shape=(latent_space_dim,), name="decoder_input") # Middle layers num_dense_layers = params.get("num_dense_layers", 1) latent_space_dim = params.get("latent space_dim", 128) latent_space_dim_gf = params.get("latent_space_dim_gf", 1.4928245388) dense_activation = params.get("dense_activation", "tanh") is_batchnorm_dense = params.get("is_batchnorm_dense", True) dense_dropout_rate = params.get("dense_dropout_rate", 0.0) z = z_in for j in range(num_dense_layers): z = Dense(units=int(latent_space_dim*latent_space_dim_gf**j), activation=dense_activation, name=f"decoder_dense{j}")(z) if dense_dropout_rate > 0: z = Dropout(rate=dense_dropout_rate, name=f"decoder_dense_dropout{j}")(z) if is_batchnorm_dense: z = BatchNormalization(axis=-1, name=f"decoder_dense_norm{j}")(z) # Necessary for using GRU vectors z_reps = RepeatVector(max_chem_len)(z) num_gru_layers = params.get("num_gru_layers", 3) gru_dim = params.get("gru_dim", 36) gru_activation = params.get("gru_activation", "tanh") gru_dropout_rate = params.get("gru_dropout_rate", 0.0) is_batchnorm_gru = params.get("is_batchnorm_gru", True) # Encoder parts using GRUs x = z_reps if num_gru_layers > 1: for j in range(num_gru_layers-1): x_dec = GRU(units=gru_dim, return_sequences=True, activation=gru_activation, name=f"decoder_gru{j}")(x) if gru_dropout_rate > 0: x = Dropout(rate=gru_dropout_rate, name=f"decoder_gru_dropout{j}")(x) if is_batchnorm_gru: x = BatchNormalization(axis=-1, name=f"decoder_gru_norm{j}")(x) x_out = GRU(units=num_chars, return_sequences=True, activation='softmax', name='decoder_gru_final')(x) return Model(z_in, x_out, name="decoder") def load_decoder(params={}, **kwargs): if "decoder_weights_path" in params: path = params.get("decoder_weights_path") return load_model(path) else: return decoder_model(params, **kwargs) # ==================== # Property Prediction # ==================== def property_predictor_model(params={}, **kwargs): params.update(kwargs) num_prov_layers = params.get("num_prov_layers", 3) latent_space_dim = params.get("latent space_dim", 128) prop_hidden_dim = params.get("prop_hidden_dim", 36) prop_hidden_dim_gf = params.get("prop_hidden_dim_gf", 0.8) prop_pred_activation = params.get("prop_pred_activation", "tanh") prop_pred_dropout_rate = params.get("prop_pred_dropout_rate", 0.0) is_batchnorm_prop = params.get("is_batchnorm_prop", True) x_in = Input(shape=(latent_space_dim,), name='prop_pred_input') x = x_in for j in range(num_prov_layers): x = Dense(units=int(prop_hidden_dim * prop_hidden_dim_gf**j), activation=prop_pred_activation, name=f"property_predictor_dense{j}")(x) if prop_pred_dropout_rate > 0: x = Dropout(rate=prop_pred_dropout_rate, name=f"property_predictor_dropout{j}")(x) if is_batchnorm_prop: x = BatchNormalization(axis=-1, name=f"property_predictor_norm{j}")(x) num_reg_prop_tasks = params.get("num_reg_prop_tasks", 0) num_logit_prop_tasks = params.get("num_logit_prop_tasks", 0) if num_reg_prop_tasks+num_logit_prop_tasks==0: raise ValueError("You must specify either 'regression tasks' and/or " + \ "'logistic tasks' for property prediction.") # for regression tasks outputs = [] if num_reg_prop_tasks > 0: reg_prop_pred = Dense(units=num_reg_prop_tasks, activation='linear', name='reg_property_output')(x) outputs.append(reg_prop_pred) # for logistic tasks if num_logit_prop_tasks > 0: logit_prop_pred = Dense(units=num_logit_prop_tasks, activation='sigmoid', name='logit_property_output')(x) outputs.append(logit_prop_pred) return Model(inputs=x_in, outputs=outputs, name="property_predictor") def load_property_predictor(params={}, **kwargs): if "property_pred_weights_path" in params: path = params.get("property_pred_weights_path") return load_model(path) else: return property_predictor_model(params, **kwargs)
en
0.633429
# coding: utf-8 # Build the respective models. # Integrates everything. # Memorize. # Add losses. # ============================= # Lambda layer # ============================= reparameterization trick instead of sampling from Q(z|X), sample epsilon = N(0,I) z = z_mean + sqrt(var) * epsilon ~~~ @params args (tensor): mean and log of variance of Q(z|X) @return z (tensor): sampled latent vector # by default, random_normal has mean = 0 and std = 1.0 # ============================= # Encoder # ============================= # zinc.yml # Convolutional # Middle layers # ============================= # Decoder # ============================= # zinc.yml # Middle layers # Necessary for using GRU vectors # Encoder parts using GRUs # ==================== # Property Prediction # ==================== # for regression tasks # for logistic tasks
2.246013
2
tests/test_basic.py
cunni/pyspherepack
1
6630340
import pytest from pyspherepack import Box import numpy as np # set up a module scoped box so that the test box (and really the pack()) is only instantiated once. @pytest.fixture(scope="module") def box_11packed(): b = Box(11,n_iters=50000) b.pack() return b def test_box_instance(): # create Box b = Box(41) # 41 balls assert True def test_pack_two(): # create Box b = Box(2,n_iters=10000) b.pack() assert np.isclose(b.ball_radius(),np.sqrt(2)/2,.01) def test_density(box_11packed): assert box_11packed.density() > 60 # permissive, just to make sure def test_radius(box_11packed): assert box_11packed.ball_radius() > 0.15 # permissive, just to make sure
import pytest from pyspherepack import Box import numpy as np # set up a module scoped box so that the test box (and really the pack()) is only instantiated once. @pytest.fixture(scope="module") def box_11packed(): b = Box(11,n_iters=50000) b.pack() return b def test_box_instance(): # create Box b = Box(41) # 41 balls assert True def test_pack_two(): # create Box b = Box(2,n_iters=10000) b.pack() assert np.isclose(b.ball_radius(),np.sqrt(2)/2,.01) def test_density(box_11packed): assert box_11packed.density() > 60 # permissive, just to make sure def test_radius(box_11packed): assert box_11packed.ball_radius() > 0.15 # permissive, just to make sure
en
0.90452
# set up a module scoped box so that the test box (and really the pack()) is only instantiated once. # create Box # 41 balls # create Box # permissive, just to make sure # permissive, just to make sure
2.353528
2
Packs/SentinelOne/Integrations/SentinelOne-V2/SentinelOne-V2.py
cbrake1/content
1
6630341
<gh_stars>1-10 from typing import Callable import demistomock as demisto from CommonServerPython import * ''' IMPORTS ''' import json import requests import traceback from dateutil.parser import parse # Disable insecure warnings requests.packages.urllib3.disable_warnings() ''' GLOBALS ''' IS_VERSION_2_1: bool ''' HELPER FUNCTIONS ''' def get_threats_outputs(threats, rank: int = 0): for threat in threats: threat_rank = int(threat.get('rank') or 0) if IS_VERSION_2_1 or threat_rank >= rank: threat_info = threat.get('threatInfo', {}) if IS_VERSION_2_1 else threat agent_realtime_info = threat.get('agentRealtimeInfo', {}) if IS_VERSION_2_1 else threat entry = { 'ID': threat.get('id'), 'AgentComputerName': agent_realtime_info.get('agentComputerName'), 'CreatedDate': threat_info.get('createdAt'), 'SiteID': agent_realtime_info.get('siteId'), 'SiteName': agent_realtime_info.get('siteName'), 'Classification': threat_info.get('classification'), 'ClassificationSource': threat_info.get('classificationSource'), 'MitigationStatus': threat_info.get('mitigationStatus'), 'AgentID': agent_realtime_info.get('agentId'), 'ConfidenceLevel': threat_info.get('confidenceLevel'), 'FileContentHash': threat_info.get('sha1') if IS_VERSION_2_1 else threat_info.get('fileContentHash'), 'ThreatName': threat_info.get('threatName'), 'FileSha256': threat_info.get('fileSha256'), 'AgentOsType': agent_realtime_info.get('agentOsType'), 'FilePath': threat_info.get('filePath'), 'Username': threat_info.get('processUser') if IS_VERSION_2_1 else threat_info.get('username'), 'Description': threat_info.get('description'), # Only available in 2.0 'FileDisplayName': threat.get('fileDisplayName'), # Only available in 2.0 'Rank': threat_info.get('rank'), # Only available in 2.0 'MarkedAsBenign': threat_info.get('markedAsBenign'), # Only available in 2.0 'InQuarantine': threat_info.get('inQuarantine'), # Only available in 2.0 'FileMaliciousContent': threat_info.get('fileMaliciousContent'), # Only available in 2.0 } remove_nulls_from_dictionary(entry) yield entry def get_agents_outputs(agents): for agent in agents: entry = { 'ID': agent.get('id'), 'NetworkStatus': agent.get('networkStatus'), 'AgentVersion': agent.get('agentVersion'), 'IsDecommissioned': agent.get('isDecommissioned'), 'IsActive': agent.get('isActive'), 'LastActiveDate': agent.get('lastActiveDate'), 'RegisteredAt': agent.get('registeredAt'), 'ExternalIP': agent.get('externalIp'), 'ThreatCount': agent.get('activeThreats'), 'EncryptedApplications': agent.get('encryptedApplications'), 'OSName': agent.get('osName'), 'ComputerName': agent.get('computerName'), 'Domain': agent.get('domain'), 'CreatedAt': agent.get('createdAt'), 'SiteName': agent.get('siteName'), } remove_nulls_from_dictionary(entry) yield entry class Client(BaseClient): """ Client will implement the service API, and should not contain any Demisto logic. Should only do requests and return data. """ def get_activities_request(self, created_after: str = None, user_emails: str = None, group_ids=None, created_until: str = None, activities_ids=None, include_hidden: str = None, created_before: str = None, threats_ids=None, activity_types=None, user_ids=None, created_from: str = None, created_between: str = None, agent_ids=None, limit: str = '50'): params = assign_params( created_at__gt=created_after, userEmails=user_emails, groupIds=argToList(group_ids), created_at__lte=created_until, ids=argToList(activities_ids), includeHidden=include_hidden, created_at__lt=created_before, threatIds=argToList(threats_ids), activityTypes=argToList(activity_types), userIds=argToList(user_ids), created_at__gte=created_from, createdAt_between=created_between, agentIds=argToList(agent_ids), limit=int(limit), ) response = self._http_request(method='GET', url_suffix='activities', params=params) return response.get('data', {}) def get_threats_request(self, content_hash=None, mitigation_status=None, created_before=None, created_after=None, created_until=None, created_from=None, resolved='false', display_name=None, query=None, threat_ids=None, limit=20, classifications=None): keys_to_ignore = ['displayName__like' if IS_VERSION_2_1 else 'displayName'] params = assign_params( contentHashes=argToList(content_hash), mitigationStatuses=argToList(mitigation_status), createdAt__lt=created_before, createdAt__gt=created_after, createdAt__lte=created_until, createdAt__gte=created_from, resolved=argToBoolean(resolved), displayName__like=display_name, displayName=display_name, query=query, ids=argToList(threat_ids), limit=int(limit), classifications=argToList(classifications), keys_to_ignore=keys_to_ignore, ) response = self._http_request(method='GET', url_suffix='threats', params=params) return response.get('data', {}) def mark_as_threat_request(self, threat_ids, target_scope): endpoint_url = 'threats/mark-as-threat' payload = { "filter": { "ids": threat_ids }, "data": { "targetScope": target_scope } } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def mitigate_threat_request(self, threat_ids, action): endpoint_url = f'threats/mitigate/{action}' payload = { "filter": { "ids": threat_ids } } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def resolve_threat_request(self, threat_ids): endpoint_url = 'threats/mark-as-resolved' payload = { "filter": { "ids": threat_ids } } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def get_groups_request(self, params: dict): response = self._http_request(method='GET', url_suffix='groups', params=params) return response.get('data', {}) def delete_group_request(self, group_id=None): endpoint_url = f'groups/{group_id}' response = self._http_request(method='DELETE', url_suffix=endpoint_url) return response.get('data', {}) def get_sites_request(self, params): response = self._http_request(method='GET', url_suffix='sites', params=params) return response.get('data', {}) def move_agent_request(self, group_id, agents_id): endpoint_url = f'groups/{group_id}/move-agents' payload = { "filter": { "ids": agents_id } } response = self._http_request(method='PUT', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def get_agent_processes_request(self, agents_ids=None): """ [DEPRECATED BY SentinelOne] Returns empty array. To get processes of an Agent, see Applications. """ endpoint_url = 'agents/processes' params = { 'ids': agents_ids } response = self._http_request(method='GET', url_suffix=endpoint_url, params=params) return response.get('data', {}) def get_site_request(self, site_id): endpoint_url = f'sites/{site_id}' response = self._http_request(method='GET', url_suffix=endpoint_url) return response.get('data', {}) def reactivate_site_request(self, site_id): endpoint_url = f'sites/{site_id}/reactivate' response = self._http_request(method='PUT', url_suffix=endpoint_url) return response.get('data', {}) def get_threat_summary_request(self, site_ids=None, group_ids=None): endpoint_url = 'private/threats/summary' params = { "siteIds": site_ids, "groupIds": group_ids } response = self._http_request(method='GET', url_suffix=endpoint_url, params=params) return response.get('data', {}) def list_agents_request(self, params: dict): response = self._http_request(method='GET', url_suffix='agents', params=params) return response.get('data', {}) def get_agent_request(self, agent_ids): params = { "ids": agent_ids } response = self._http_request(method='GET', url_suffix='agents', params=params) return response.get('data', {}) def connect_to_network_request(self, agent_ids): endpoint_url = 'agents/actions/connect' payload = { 'filter': { 'ids': agent_ids } } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def disconnect_from_network_request(self, agents_id): endpoint_url = 'agents/actions/disconnect' payload = { 'filter': { 'ids': agents_id } } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def broadcast_message_request(self, message, filters): endpoint_url = 'agents/actions/broadcast' payload = { 'data': { 'message': message }, 'filter': filters } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def uninstall_agent_request(self, query, agent_id=None, group_id=None): endpoint_url = 'agents/actions/uninstall' payload = { 'filter': assign_params( query=query, ids=agent_id, groupIds=group_id, ) } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def shutdown_agents_request(self, query, agent_id=None, group_id=None): endpoint_url = 'agents/actions/shutdown' payload = { 'filter': assign_params( query=query, ids=agent_id, groupIds=group_id ) } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def create_query_request(self, query, from_date, to_date): endpoint_url = 'dv/init-query' payload = { 'query': query, 'fromDate': from_date, 'toDate': to_date } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}).get('queryId') def get_events_request(self, query_id=None, limit=None): endpoint_url = 'dv/events' params = { 'query_id': query_id, 'limit': limit } response = self._http_request(method='GET', url_suffix=endpoint_url, params=params) return response.get('data', {}) def get_processes_request(self, query_id=None, limit=None): endpoint_url = 'dv/events/process' params = { 'query_id': query_id, 'limit': limit } response = self._http_request(method='GET', url_suffix=endpoint_url, params=params) return response.get('data', {}) def get_hash_reputation_request(self, hash_): endpoint_url = f'hashes/{hash_}/reputation' response = self._http_request(method='GET', url_suffix=endpoint_url) return response def get_hash_classification_request(self, hash_): """ [DEPRECATED by S1] IN BOTH 2.0 and 2.1 """ endpoint_url = f'hashes/{hash_}/classification' response = self._http_request(method='GET', url_suffix=endpoint_url) return response def get_exclusions_request(self, item_ids=None, os_types=None, exclusion_type: str = None, limit: int = 10): endpoint_url = 'exclusions' params = { "ids": item_ids, "osTypes": os_types, "type": exclusion_type, "limit": limit } response = self._http_request(method='GET', url_suffix=endpoint_url, params=params) return response.get('data', {}) def create_exclusion_item_request(self, exclusion_type, exclusion_value, os_type, description=None, exclusion_mode=None, path_exclusion_type=None, group_ids=None, site_ids=None): payload = { "filter": { "groupIds": group_ids, "siteIds": site_ids }, "data": assign_params( type=exclusion_type, value=exclusion_value, osType=os_type, description=description, mode=exclusion_mode, pathExclusionType=path_exclusion_type ) } response = self._http_request(method='POST', url_suffix='exclusions', json_data=payload) if 'data' in response: return response.get('data')[0] return {} ''' COMMANDS + REQUESTS FUNCTIONS ''' def test_module(client: Client, is_fetch: bool, first_fetch: str = None): """ Performs basic get request to verify connection and creds. """ if is_fetch: last_fetch = date_to_timestamp(dateparser.parse(first_fetch, settings={'TIMEZONE': 'UTC'})) last_fetch_date_string = timestamp_to_datestring(last_fetch, '%Y-%m-%dT%H:%M:%S.%fZ') client.get_threats_request(limit=1, created_after=last_fetch_date_string) else: client._http_request(method='GET', url_suffix='activities/types') return 'ok' def get_activities_command(client: Client, args: dict) -> CommandResults: """ Get a list of activities. """ context_entries = [] headers = ['ID', 'PrimaryDescription', 'Data', 'UserID', 'CreatedAt', 'ThreatID', 'UpdatedAt'] activities = client.get_activities_request(**args) for activity in activities: context_entries.append({ 'Hash': activity.get('hash'), 'ActivityType': activity.get('activityType'), 'OsFamily': activity.get('osFamily'), 'PrimaryDescription': activity.get('primaryDescription'), 'Comments': activity.get('comments'), 'AgentUpdatedVersion': activity.get('agentUpdatedVersion'), 'UserID': activity.get('userId'), 'ID': activity.get('id'), 'Data': activity.get('data'), 'CreatedAt': activity.get('createdAt'), 'SecondaryDescription': activity.get('secondaryDescription'), 'ThreatID': activity.get('threatId'), 'GroupID': activity.get('groupId'), 'UpdatedAt': activity.get('updatedAt'), 'Description': activity.get('description'), 'AgentID': activity.get('agentId'), 'SiteID': activity.get('siteId'), }) return CommandResults( readable_output=tableToMarkdown('Sentinel One Activities', context_entries, headers=headers, removeNull=True, headerTransform=pascalToSpace), outputs_prefix='SentinelOne.Activity', outputs_key_field='ID', outputs=context_entries, raw_response=activities) def get_groups_command(client: Client, args: dict) -> CommandResults: """ Gets the group data. """ headers = ['id', 'name', 'type', 'creator', 'creatorId', 'createdAt', 'rank'] query_params = assign_params( type=args.get('group_type'), id=args.get('id'), groupIds=argToList(args.get('group_ids')), isDefault=args.get('is_default'), name=args.get('name'), query=args.get('query'), rank=args.get('rank'), limit=int(args.get('limit', 50)), ) groups = client.get_groups_request(query_params) return CommandResults( readable_output=tableToMarkdown('Sentinel One Groups', groups, headers, headerTransform=pascalToSpace, removeNull=True), outputs_prefix='SentinelOne.Group', outputs_key_field='ID', outputs=groups, raw_response=groups) def delete_group(client: Client, args: dict) -> str: """ Deletes a group by ID. """ group_id = args.get('group_id') response = client.delete_group_request(group_id) if response.get('success'): return f'Group: {group_id} was deleted successfully' return f'The deletion of group: {group_id} has failed' def move_agent_to_group_command(client: Client, args: dict) -> CommandResults: """ Move agents to a new group. """ group_id = args.get('group_id') agents_id = argToList(args.get('agents_ids', [])) agents_groups = client.move_agent_request(group_id, agents_id) # Parse response into context & content entries if agents_groups.get('agentsMoved') and int(agents_groups.get('agentsMoved')) > 0: agents_moved = True else: agents_moved = False date_time_utc = datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ') context_entries = { 'Date': date_time_utc, 'AgentsMoved': agents_groups.get('agentsMoved'), 'AffectedAgents': agents_moved, } return CommandResults( readable_output=tableToMarkdown(f'Sentinel One - Moved Agents\nTotal of: {agents_groups.get("AgentsMoved", 0)}' f'agents were Moved successfully', context_entries, removeNull=True), outputs_prefix='SentinelOne.Agent', outputs_key_field='Date', outputs=context_entries, raw_response=agents_groups) def get_agent_processes(client: Client, args: dict): """ Retrieve running processes for a specific agent. Note: This feature is obsolete and an empty array will always be returned """ headers = ['ProcessName', 'StartTime', 'Pid', 'MemoryUsage', 'CpuUsage', 'ExecutablePath'] contents = [] context = {} agents_ids = args.get('agents_ids') processes = client.get_agent_processes_request(agents_ids) if processes: for process in processes: contents.append({ 'ProcessName': process.get('processName'), 'CpuUsage': process.get('cpuUsage'), 'MemoryUsage': process.get('memoryUsage'), 'StartTime': process.get('startTime'), 'ExecutablePath': process.get('executablePath'), 'Pid': process.get('pid'), }) context['SentinelOne.Agent(val.Pid && val.Pid === obj.Pid)'] = processes demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': contents, 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Sentinel One Agent Processes', contents, headers, removeNull=True), 'EntryContext': context }) def get_threats_command(client: Client, args: dict) -> CommandResults: """ Gets a list of threats. Rank only relevant for API version 2.0 """ headers = ['ID', 'AgentComputerName', 'CreatedDate', 'SiteID', 'SiteName', 'Classification', 'MitigationStatus', 'ConfidenceLevel' if IS_VERSION_2_1 else 'Rank', 'AgentID', 'FileContentHash', 'MarkedAsBenign'] threats = client.get_threats_request(**args) outputs = list(get_threats_outputs(threats, int(args.get('rank', 0)))) if threats else None return CommandResults( readable_output=tableToMarkdown( 'Sentinel One - Getting Threat List', outputs, metadata='Provides summary information and details for all the threats that matched your search criteria.', headers=headers, headerTransform=pascalToSpace, removeNull=True), outputs_prefix='SentinelOne.Threat', outputs_key_field='ID', outputs=outputs, raw_response=threats) def get_hash_command(client: Client, args: dict) -> CommandResults: """ Get hash reputation. Removed hash classification since SentinelOne has deprecated it - Breaking BC. """ hash_ = args.get('hash') type_ = get_hash_type(hash_) if type_ == 'Unknown': raise DemistoException('Enter a valid hash format.') hash_reputation = client.get_hash_reputation_request(hash_) reputation = hash_reputation.get('data', {}) contents = { 'Rank': reputation.get('rank'), 'Hash': hash_, } return CommandResults( readable_output=tableToMarkdown('Sentinel One - Hash Reputation\nProvides hash reputation (rank from 0 to 10):', contents, removeNull=True), outputs_prefix='SentinelOne.Hash', outputs_key_field='Hash', outputs=contents, raw_response=hash_reputation) def mark_as_threat_command(client: Client, args: dict) -> CommandResults: """ Mark suspicious threats as threats. Relevant for API version 2.0 """ context_entries = [] threat_ids = argToList(args.get('threat_ids')) target_scope = args.get('target_scope') # Make request and get raw response affected_threats = client.mark_as_threat_request(threat_ids, target_scope) # Parse response into context & content entries if affected_threats.get('affected') and int(affected_threats.get('affected')) > 0: title = f'Total of {affected_threats.get("affected")} provided threats were marked successfully' affected = True else: affected = False title = 'No threats were marked' for threat_id in threat_ids: context_entries.append({ 'MarkedAsThreat': affected, 'ID': threat_id, }) return CommandResults( readable_output=tableToMarkdown('Sentinel One - Marking suspicious threats as threats \n' + title, context_entries, headerTransform=pascalToSpace, removeNull=True), outputs_prefix='SentinelOne.Threat', outputs_key_field='ID', outputs=context_entries, raw_response=affected_threats) def mitigate_threat_command(client: Client, args: dict) -> CommandResults: """ Apply a mitigation action to a group of threats. Relevant for API version 2.0 """ contents = [] context_entries = [] # Get arguments threat_ids = argToList(args.get('threat_ids')) action = args.get('action') # Make request and get raw response mitigated_threats = client.mitigate_threat_request(threat_ids, action) # Parse response into context & content entries if mitigated_threats.get('affected') and int(mitigated_threats.get('affected')) > 0: mitigated = True meta = f'Total of {mitigated_threats.get("affected")} provided threats were mitigated successfully' else: mitigated = False meta = 'No threats were mitigated' for threat_id in threat_ids: contents.append({ 'Mitigated': mitigated, 'ID': threat_id, 'Mitigation Action': action, }) context_entries.append({ 'Mitigated': mitigated, 'ID': threat_id, 'Mitigation': { 'Action': action }, }) return CommandResults( readable_output=tableToMarkdown('Sentinel One - Mitigating threats', contents, metadata=meta, removeNull=True), outputs_prefix='SentinelOne.Threat', outputs_key_field='ID', outputs=context_entries, raw_response=mitigated_threats) def resolve_threat_command(client: Client, args: dict) -> CommandResults: """ Mark threats as resolved """ context_entries = [] threat_ids = argToList(args.get('threat_ids')) # Make request and get raw response resolved_threats = client.resolve_threat_request(threat_ids) # Parse response into context & content entries if resolved_threats.get('affected') and int(resolved_threats.get('affected')) > 0: resolved = True title = f'Total of {resolved_threats.get("affected")} provided threats were resolved successfully' else: resolved = False title = 'No threats were resolved' for threat_id in threat_ids: context_entries.append({ 'Resolved': resolved, 'ID': threat_id, }) return CommandResults( readable_output=tableToMarkdown('Sentinel One - Resolving threats\n' + title, context_entries, removeNull=True), outputs_prefix='SentinelOne.Threat', outputs_key_field='ID', outputs=context_entries, raw_response=resolved_threats) def get_white_list_command(client: Client, args: dict) -> CommandResults: """ List all white items matching the input filter """ context_entries = [] # Get arguments item_ids = argToList(args.get('item_ids', [])) os_types = argToList(args.get('os_types', [])) exclusion_type = args.get('exclusion_type') limit = int(args.get('limit', 10)) # Make request and get raw response exclusion_items = client.get_exclusions_request(item_ids, os_types, exclusion_type, limit) # Parse response into context & content entries for exclusion_item in exclusion_items: context_entries.append({ 'ID': exclusion_item.get('id'), 'Type': exclusion_item.get('type'), 'CreatedAt': exclusion_item.get('createdAt'), 'Value': exclusion_item.get('value'), 'Source': exclusion_item.get('source'), 'UserID': exclusion_item.get('userId'), 'UpdatedAt': exclusion_item.get('updatedAt'), 'OsType': exclusion_item.get('osType'), 'UserName': exclusion_item.get('userName'), 'Mode': exclusion_item.get('mode'), }) return CommandResults( readable_output=tableToMarkdown('Sentinel One - Listing exclusion items', context_entries, removeNull=True, metadata='Provides summary information and details for all the exclusion items' ' that matched your search criteria.'), outputs_prefix='SentinelOne.Exclusions', outputs_key_field='ID', outputs=context_entries, raw_response=exclusion_items) def create_white_item_command(client: Client, args: dict): """ Create white item. """ context_entries = [] title = '' group_ids = argToList(args.get('group_ids', [])) site_ids = argToList(args.get('site_ids', [])) exclusion_type = args.get('exclusion_type') exclusion_value = args.get('exclusion_value') os_type = args.get('os_type') description = args.get('description') exclusion_mode = args.get('exclusion_mode') path_exclusion_type = args.get('path_exclusion_type') if not (group_ids or site_ids): raise DemistoException("You must provide either group_ids or site_ids.") # Make request and get raw response new_item = client.create_exclusion_item_request(exclusion_type, exclusion_value, os_type, description, exclusion_mode, path_exclusion_type, group_ids, site_ids) # Parse response into context & content entries if new_item: title = 'Sentinel One - Adding an exclusion item \n' + \ 'The provided item was successfully added to the exclusion list' context_entries.append({ 'ID': new_item.get('id'), 'Type': new_item.get('type'), 'CreatedAt': new_item.get('createdAt'), }) return CommandResults( readable_output=tableToMarkdown(title, context_entries, removeNull=True, headerTransform=pascalToSpace), outputs_prefix='SentinelOne.Exclusion', outputs_key_field='ID', outputs=context_entries, raw_response=new_item) def get_sites_command(client: Client, args: dict) -> CommandResults: """ List all sites with filtering options """ context_entries = [] query_params = assign_params( updatedAt=args.get('updated_at'), query=args.get('query'), siteType=args.get('site_type'), features=args.get('features'), state=args.get('state'), suite=args.get('suite'), # HTTP 500 - server internal error when passing admin_only. adminOnly=argToBoolean(args.get('admin_only')) if args.get('admin_only') else None, accountId=args.get('account_id'), name=args.get('site_name'), createdAt=args.get('created_at'), limit=int(args.get('limit', 50)), siteIds=argToList(args.get('site_ids')), ) # Make request and get raw response raw_response = client.get_sites_request(query_params) sites, all_sites = raw_response.get('sites'), raw_response.get('allSites') # Parse response into context & content entries for site in sites: context_entries.append({ 'ID': site.get('id'), 'Creator': site.get('creator'), 'Name': site.get('name'), 'Type': site.get('siteType'), 'AccountName': site.get('accountName'), 'State': site.get('state'), 'HealthStatus': site.get('healthStatus'), 'Suite': site.get('suite'), 'CreatedAt': site.get('createdAt'), 'Expiration': site.get('expiration'), 'UnlimitedLicenses': site.get('unlimitedLicenses'), 'TotalLicenses': all_sites.get('totalLicenses'), 'ActiveLicenses': all_sites.get('activeLicenses'), }) return CommandResults( readable_output=tableToMarkdown('Sentinel One - Getting List of Sites', context_entries, removeNull=True, metadata='Provides summary information and details for all sites that matched ' 'your search criteria.', headerTransform=pascalToSpace), outputs_prefix='SentinelOne.Site', outputs_key_field='ID', outputs=context_entries, raw_response=raw_response) def get_site_command(client: Client, args: dict) -> CommandResults: """ Get a specific site by ID """ # Init main vars context_entries = [] # Get arguments site_id = args.get('site_id') # Make request and get raw response site = client.get_site_request(site_id) # Parse response into context & content entries if site: context_entries.append({ 'ID': site.get('id'), 'Creator': site.get('creator'), 'Name': site.get('name'), 'Type': site.get('siteType'), 'AccountName': site.get('accountName'), 'State': site.get('state'), 'HealthStatus': site.get('healthStatus'), 'Suite': site.get('suite'), 'CreatedAt': site.get('createdAt'), 'Expiration': site.get('expiration'), 'UnlimitedLicenses': site.get('unlimitedLicenses'), 'TotalLicenses': site.get('totalLicenses'), 'ActiveLicenses': site.get('activeLicenses'), 'AccountID': site.get('accountId'), 'IsDefault': site.get('isDefault'), }) return CommandResults( readable_output=tableToMarkdown(f'Sentinel One - Summary About Site: {site_id}', context_entries, removeNull=True, metadata='Provides summary information and details for specific site ID', headerTransform=pascalToSpace), outputs_prefix='SentinelOne.Site', outputs_key_field='ID', outputs=context_entries, raw_response=site) def reactivate_site_command(client: Client, args: dict) -> CommandResults: """ Reactivate specific site by ID """ # Init main vars context = {} # Get arguments site_id = args.get('site_id') # Make request and get raw response site = client.reactivate_site_request(site_id) # Parse response into context & content entries if site: context = { 'ID': site.get('id'), 'Reactivated': site.get('success'), } return CommandResults( readable_output=tableToMarkdown(f'Sentinel One - Reactivated Site: {site_id}', context, removeNull=True), outputs_prefix='SentinelOne.Site', outputs_key_field='ID', outputs=context, raw_response=site) def get_threat_summary_command(client: Client, args: dict) -> CommandResults: """ Get dashboard threat summary """ # Init main vars context_entries = {} site_ids = argToList(args.get('site_ids')) group_ids = argToList(args.get('group_ids')) # Make request and get raw response threat_summary = client.get_threat_summary_request(site_ids, group_ids) # Parse response into context & content entries if threat_summary: context_entries = { 'InProgress': threat_summary.get('inProgress'), 'MaliciousNotResolved': threat_summary.get('maliciousNotResolved'), 'NotMitigated': threat_summary.get('notMitigated'), 'NotMitigatedNotResolved': threat_summary.get('notMitigatedNotResolved'), 'NotResolved': threat_summary.get('notResolved'), 'Resolved': threat_summary.get('resolved'), 'SuspiciousNotMitigatedNotResolved': threat_summary.get('suspiciousNotMitigatedNotResolved'), 'SuspiciousNotResolved': threat_summary.get('suspiciousNotResolved'), 'Total': threat_summary.get('total'), } return CommandResults( readable_output=tableToMarkdown('Sentinel One - Dashboard Threat Summary', context_entries, removeNull=True, headerTransform=pascalToSpace), outputs_prefix='SentinelOne.Threat', outputs_key_field='ID', outputs=context_entries, raw_response=threat_summary) # Agents Commands def list_agents_command(client: Client, args: dict) -> CommandResults: """ List all agents matching the input filter """ # Get arguments query_params = assign_params( active_threats=args.get('min_active_threats'), computer_name=args.get('computer_name'), scan_status=args.get('scan_status'), os_type=args.get('os_type'), created_at=args.get('created_at'), limit=int(args.get('limit', 10)), ) # Make request and get raw response agents = client.list_agents_request(query_params) # Parse response into context & content entries context_entries = list(get_agents_outputs(agents)) if agents else None return CommandResults( readable_output=tableToMarkdown('Sentinel One - List of Agents', context_entries, headerTransform=pascalToSpace, removeNull=True, metadata='Provides summary information and details for all' ' the agents that matched your search criteria'), outputs_prefix='SentinelOne.Agents', outputs_key_field='ID', outputs=context_entries, raw_response=agents) def get_agent_command(client: Client, args: dict) -> CommandResults: """ Get single agent via ID """ # Get arguments agent_ids = argToList(args.get('agent_id')) # Make request and get raw response agents = client.get_agent_request(agent_ids) # Parse response into context & content entries context_entries = list(get_agents_outputs(agents)) if agents else None return CommandResults( readable_output=tableToMarkdown('Sentinel One - Get Agent Details', context_entries, headerTransform=pascalToSpace, removeNull=True), outputs_prefix='SentinelOne.Agent', outputs_key_field='ID', outputs=context_entries, raw_response=agents) def connect_agent_to_network(client: Client, args: dict) -> Union[CommandResults, str]: """ Sends a "connect to network" command to all agents matching the input filter. """ agent_ids = argToList(args.get('agent_id')) # Make request and get raw response raw_response = client.connect_to_network_request(agent_ids) agents_affected = raw_response.get('affected', 0) # Parse response into context & content entries if agents_affected > 0: agents = client.list_agents_request({'ids': agent_ids}) contents = [{ 'NetworkStatus': agent.get('networkStatus'), 'ID': agent.get('id') } for agent in agents] return CommandResults( readable_output=f'{agents_affected} agent(s) successfully connected to the network.', outputs_prefix='SentinelOne.Agent', outputs_key_field='ID', outputs=contents, raw_response=raw_response) return 'No agents were connected to the network.' def disconnect_agent_from_network(client: Client, args: dict) -> Union[CommandResults, str]: """ Sends a "disconnect from network" command to all agents matching the input filter. """ agent_ids = argToList(args.get('agent_id')) # Make request and get raw response raw_response = client.disconnect_from_network_request(agent_ids) agents_affected = raw_response.get('affected', 0) if agents_affected > 0: agents = client.list_agents_request({'ids': agent_ids}) contents = [{ 'NetworkStatus': agent.get('networkStatus'), 'ID': agent.get('id') } for agent in agents] return CommandResults( readable_output=f'{agents_affected} agent(s) successfully disconnected from the network.', outputs_prefix='SentinelOne.Agent', outputs_key_field='ID', outputs=contents, raw_response=raw_response) return 'No agents were disconnected from the network.' def broadcast_message(client: Client, args: dict) -> str: """ Broadcasts a message to all agents matching the input filter. """ message = args.get('message') filters = assign_params( isActive=argToBoolean(args.get('active_agent', 'false')), groupIds=argToList(args.get('group_id')), ids=argToList(args.get('agent_id')), domains=argToList(args.get('domain')), ) response = client.broadcast_message_request(message, filters) agents_affected = response.get('affected', 0) if agents_affected > 0: return 'The message was successfully delivered to the agent(s)' return 'No messages were sent. Verify that the inputs are correct.' def shutdown_agents(client: Client, args: dict) -> str: """ Sends a shutdown command to all agents matching the input filter """ query = args.get('query', '') agent_id = argToList(args.get('agent_id')) group_id = argToList(args.get('group_id')) if not (agent_id or group_id): raise DemistoException('Expecting at least one of the following arguments to filter by: agent_id, group_id.') response = client.shutdown_agents_request(query, agent_id, group_id) affected_agents = response.get('affected', 0) if affected_agents > 0: return f'Shutting down {affected_agents} agent(s).' return 'No agents were shutdown.' def uninstall_agent(client: Client, args: dict) -> str: """ Sends an uninstall command to all agents matching the input filter. """ query = args.get('query', '') agent_id = argToList(args.get('agent_id')) group_id = argToList(args.get('group_id')) if not (agent_id or group_id): raise DemistoException('Expecting at least one of the following arguments to filter by: agent_id, group_id.') response = client.uninstall_agent_request(query, agent_id, group_id) affected_agents = response.get('affected', 0) if affected_agents > 0: return f'Uninstall was sent to {affected_agents} agent(s).' return 'No agents were affected.' # Event Commands def create_query(client: Client, args: dict) -> CommandResults: query = args.get('query') from_date = args.get('from_date') to_date = args.get('to_date') query_id = client.create_query_request(query, from_date, to_date) context_entries = { 'Query': query, 'FromDate': from_date, 'ToDate': to_date, 'QueryID': query_id, } return CommandResults( readable_output=f'The query ID is {query_id}', outputs_prefix='SentinelOne.Query', outputs_key_field='QueryID', outputs=context_entries, raw_response=query_id) def get_events(client: Client, args: dict) -> Union[CommandResults, str]: """ Get all Deep Visibility events from query """ contents = [] event_standards = [] query_id = args.get('query_id') limit = int(args.get('limit', 50)) events = client.get_events_request(query_id, limit) for event in events: contents.append({ 'EventType': event.get('eventType'), 'Endpoint': event.get('agentName'), 'SiteName': event.get('siteName'), 'User': event.get('user'), 'Time': event.get('processStartTime'), 'AgentOS': event.get('agentOs'), 'ProcessID': event.get('pid'), 'ProcessUID': event.get('srcProcUid') if IS_VERSION_2_1 else event.get('processUniqueKey'), 'ProcessName': event.get('processName'), 'MD5': event.get('md5'), 'SHA256': event.get('sha256'), }) event_standards.append({ 'Type': event.get('eventType'), 'Name': event.get('processName'), 'ID': event.get('pid'), }) context = { 'SentinelOne.Event(val.ProcessID && val.ProcessID === obj.ProcessID)': contents, 'Event(val.ID && val.ID === obj.ID)': event_standards } return CommandResults( readable_output=tableToMarkdown('SentinelOne Events', contents, removeNull=True), outputs=context, raw_response=events) def get_processes(client: Client, args: dict) -> CommandResults: """ Get Deep Visibility events from query by event type - process """ contents = [] query_id = args.get('query_id') limit = int(args.get('limit', 50)) processes = client.get_processes_request(query_id, limit) for process in processes: contents.append({ 'EventType': process.get('eventType'), 'Endpoint': process.get('agentName'), 'SiteName': process.get('siteName'), 'User': process.get('user'), 'Time': process.get('processStartTime'), 'ParentProcessID': process.get('parentPid'), 'ParentProcessUID': process.get('parentProcessUniqueKey'), 'ParentProcessName': process.get('parentProcessName'), 'ProcessID': process.get('pid'), 'ProcessUID': process.get('srcProcUid') if IS_VERSION_2_1 else process.get('processUniqueKey'), 'ProcessName': process.get('processName'), 'ProcessDisplayName': process.get('processDisplayName'), 'SHA1': process.get('processImageSha1Hash'), 'CMD': process.get('"processCmd'), 'SubsystemType': process.get('processSubSystem'), 'IntegrityLevel': process.get('processIntegrityLevel'), 'ParentProcessStartTime': process.get('parentProcessStartTime'), }) return CommandResults( readable_output=tableToMarkdown('SentinelOne Processes', contents, removeNull=True), outputs_prefix='SentinelOne.Event', outputs_key_field='ProcessID', outputs=contents, raw_response=processes) def fetch_incidents(client: Client, fetch_limit: int, first_fetch: str, fetch_threat_rank: int): last_run = demisto.getLastRun() last_fetch = last_run.get('time') # handle first time fetch if last_fetch is None: last_fetch = date_to_timestamp(dateparser.parse(first_fetch, settings={'TIMEZONE': 'UTC'})) current_fetch = last_fetch incidents = [] last_fetch_date_string = timestamp_to_datestring(last_fetch, '%Y-%m-%dT%H:%M:%S.%fZ') threats = client.get_threats_request(limit=fetch_limit, created_after=last_fetch_date_string) for threat in threats: rank = threat.get('rank') try: rank = int(rank) except TypeError: rank = 0 # If no fetch threat rank is provided, bring everything, else only fetch above the threshold if IS_VERSION_2_1 or rank >= fetch_threat_rank: incident = threat_to_incident(threat) date_occurred_dt = parse(incident['occurred']) incident_date = date_to_timestamp(date_occurred_dt, '%Y-%m-%dT%H:%M:%S.%fZ') if incident_date > last_fetch: incidents.append(incident) if incident_date > current_fetch: current_fetch = incident_date demisto.setLastRun({'time': current_fetch}) demisto.incidents(incidents) def threat_to_incident(threat) -> dict: threat_info = threat.get('threatInfo', {}) if IS_VERSION_2_1 else threat incident = { 'name': f'Sentinel One Threat: {threat_info.get("classification", "Not classified")}', 'occurred': threat_info.get('createdAt'), 'rawJSON': json.dumps(threat)} return incident def main(): """ PARSE INTEGRATION PARAMETERS """ global IS_VERSION_2_1 params = demisto.params() token = params.get('token') api_version = params.get('api_version', '2.1') server = params.get('url').rstrip('/') base_url = urljoin(server, f'/web/api/v{api_version}/') use_ssl = not params.get('insecure', False) proxy = params.get('proxy', False) IS_VERSION_2_1 = api_version == '2.1' first_fetch_time = params.get('fetch_time', '3 days') fetch_threat_rank = int(params.get('fetch_threat_rank', 0)) fetch_limit = int(params.get('fetch_limit', 10)) headers = { 'Authorization': 'ApiToken ' + token if token else 'ApiToken', 'Content-Type': 'application/json', 'Accept': 'application/json' } commands: Dict[str, Dict[str, Callable]] = { 'common': { 'sentinelone-get-activities': get_activities_command, 'sentinelone-get-threats': get_threats_command, 'sentinelone-mitigate-threat': mitigate_threat_command, 'sentinelone-get-hash': get_hash_command, 'sentinelone-get-white-list': get_white_list_command, 'sentinelone-create-white-list-item': create_white_item_command, 'sentinelone-get-sites': get_sites_command, 'sentinelone-get-site': get_site_command, 'sentinelone-reactivate-site': reactivate_site_command, 'sentinelone-list-agents': list_agents_command, 'sentinelone-get-agent': get_agent_command, 'sentinelone-get-groups': get_groups_command, 'sentinelone-move-agent': move_agent_to_group_command, 'sentinelone-delete-group': delete_group, 'sentinelone-connect-agent': connect_agent_to_network, 'sentinelone-disconnect-agent': disconnect_agent_from_network, 'sentinelone-broadcast-message': broadcast_message, 'sentinelone-get-events': get_events, 'sentinelone-create-query': create_query, 'sentinelone-get-processes': get_processes, 'sentinelone-shutdown-agent': shutdown_agents, 'sentinelone-uninstall-agent': uninstall_agent, }, '2.0': { 'sentinelone-mark-as-threat': mark_as_threat_command, 'sentinelone-resolve-threat': resolve_threat_command, 'sentinelone-agent-processes': get_agent_processes, }, '2.1': { 'sentinelone-threat-summary': get_threat_summary_command, }, } ''' COMMANDS MANAGER / SWITCH PANEL ''' demisto.info(f'Command being called is {demisto.command()}') command = demisto.command() try: client = Client( base_url=base_url, verify=use_ssl, headers=headers, proxy=proxy, ) if command == 'test-module': return_results(test_module(client, params.get('isFetch'), first_fetch_time)) if command == 'fetch-incidents': fetch_incidents(client, fetch_limit, first_fetch_time, fetch_threat_rank) else: if command in commands['common']: return_results(commands['common'][command](client, demisto.args())) elif command in commands[api_version]: return_results(commands[api_version][command](client, demisto.args())) else: raise NotImplementedError(f'The {command} command is not supported for API version {api_version}') except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {command} command.\nError:\n{str(e)}') if __name__ in ['__main__', 'builtin', 'builtins']: main()
from typing import Callable import demistomock as demisto from CommonServerPython import * ''' IMPORTS ''' import json import requests import traceback from dateutil.parser import parse # Disable insecure warnings requests.packages.urllib3.disable_warnings() ''' GLOBALS ''' IS_VERSION_2_1: bool ''' HELPER FUNCTIONS ''' def get_threats_outputs(threats, rank: int = 0): for threat in threats: threat_rank = int(threat.get('rank') or 0) if IS_VERSION_2_1 or threat_rank >= rank: threat_info = threat.get('threatInfo', {}) if IS_VERSION_2_1 else threat agent_realtime_info = threat.get('agentRealtimeInfo', {}) if IS_VERSION_2_1 else threat entry = { 'ID': threat.get('id'), 'AgentComputerName': agent_realtime_info.get('agentComputerName'), 'CreatedDate': threat_info.get('createdAt'), 'SiteID': agent_realtime_info.get('siteId'), 'SiteName': agent_realtime_info.get('siteName'), 'Classification': threat_info.get('classification'), 'ClassificationSource': threat_info.get('classificationSource'), 'MitigationStatus': threat_info.get('mitigationStatus'), 'AgentID': agent_realtime_info.get('agentId'), 'ConfidenceLevel': threat_info.get('confidenceLevel'), 'FileContentHash': threat_info.get('sha1') if IS_VERSION_2_1 else threat_info.get('fileContentHash'), 'ThreatName': threat_info.get('threatName'), 'FileSha256': threat_info.get('fileSha256'), 'AgentOsType': agent_realtime_info.get('agentOsType'), 'FilePath': threat_info.get('filePath'), 'Username': threat_info.get('processUser') if IS_VERSION_2_1 else threat_info.get('username'), 'Description': threat_info.get('description'), # Only available in 2.0 'FileDisplayName': threat.get('fileDisplayName'), # Only available in 2.0 'Rank': threat_info.get('rank'), # Only available in 2.0 'MarkedAsBenign': threat_info.get('markedAsBenign'), # Only available in 2.0 'InQuarantine': threat_info.get('inQuarantine'), # Only available in 2.0 'FileMaliciousContent': threat_info.get('fileMaliciousContent'), # Only available in 2.0 } remove_nulls_from_dictionary(entry) yield entry def get_agents_outputs(agents): for agent in agents: entry = { 'ID': agent.get('id'), 'NetworkStatus': agent.get('networkStatus'), 'AgentVersion': agent.get('agentVersion'), 'IsDecommissioned': agent.get('isDecommissioned'), 'IsActive': agent.get('isActive'), 'LastActiveDate': agent.get('lastActiveDate'), 'RegisteredAt': agent.get('registeredAt'), 'ExternalIP': agent.get('externalIp'), 'ThreatCount': agent.get('activeThreats'), 'EncryptedApplications': agent.get('encryptedApplications'), 'OSName': agent.get('osName'), 'ComputerName': agent.get('computerName'), 'Domain': agent.get('domain'), 'CreatedAt': agent.get('createdAt'), 'SiteName': agent.get('siteName'), } remove_nulls_from_dictionary(entry) yield entry class Client(BaseClient): """ Client will implement the service API, and should not contain any Demisto logic. Should only do requests and return data. """ def get_activities_request(self, created_after: str = None, user_emails: str = None, group_ids=None, created_until: str = None, activities_ids=None, include_hidden: str = None, created_before: str = None, threats_ids=None, activity_types=None, user_ids=None, created_from: str = None, created_between: str = None, agent_ids=None, limit: str = '50'): params = assign_params( created_at__gt=created_after, userEmails=user_emails, groupIds=argToList(group_ids), created_at__lte=created_until, ids=argToList(activities_ids), includeHidden=include_hidden, created_at__lt=created_before, threatIds=argToList(threats_ids), activityTypes=argToList(activity_types), userIds=argToList(user_ids), created_at__gte=created_from, createdAt_between=created_between, agentIds=argToList(agent_ids), limit=int(limit), ) response = self._http_request(method='GET', url_suffix='activities', params=params) return response.get('data', {}) def get_threats_request(self, content_hash=None, mitigation_status=None, created_before=None, created_after=None, created_until=None, created_from=None, resolved='false', display_name=None, query=None, threat_ids=None, limit=20, classifications=None): keys_to_ignore = ['displayName__like' if IS_VERSION_2_1 else 'displayName'] params = assign_params( contentHashes=argToList(content_hash), mitigationStatuses=argToList(mitigation_status), createdAt__lt=created_before, createdAt__gt=created_after, createdAt__lte=created_until, createdAt__gte=created_from, resolved=argToBoolean(resolved), displayName__like=display_name, displayName=display_name, query=query, ids=argToList(threat_ids), limit=int(limit), classifications=argToList(classifications), keys_to_ignore=keys_to_ignore, ) response = self._http_request(method='GET', url_suffix='threats', params=params) return response.get('data', {}) def mark_as_threat_request(self, threat_ids, target_scope): endpoint_url = 'threats/mark-as-threat' payload = { "filter": { "ids": threat_ids }, "data": { "targetScope": target_scope } } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def mitigate_threat_request(self, threat_ids, action): endpoint_url = f'threats/mitigate/{action}' payload = { "filter": { "ids": threat_ids } } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def resolve_threat_request(self, threat_ids): endpoint_url = 'threats/mark-as-resolved' payload = { "filter": { "ids": threat_ids } } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def get_groups_request(self, params: dict): response = self._http_request(method='GET', url_suffix='groups', params=params) return response.get('data', {}) def delete_group_request(self, group_id=None): endpoint_url = f'groups/{group_id}' response = self._http_request(method='DELETE', url_suffix=endpoint_url) return response.get('data', {}) def get_sites_request(self, params): response = self._http_request(method='GET', url_suffix='sites', params=params) return response.get('data', {}) def move_agent_request(self, group_id, agents_id): endpoint_url = f'groups/{group_id}/move-agents' payload = { "filter": { "ids": agents_id } } response = self._http_request(method='PUT', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def get_agent_processes_request(self, agents_ids=None): """ [DEPRECATED BY SentinelOne] Returns empty array. To get processes of an Agent, see Applications. """ endpoint_url = 'agents/processes' params = { 'ids': agents_ids } response = self._http_request(method='GET', url_suffix=endpoint_url, params=params) return response.get('data', {}) def get_site_request(self, site_id): endpoint_url = f'sites/{site_id}' response = self._http_request(method='GET', url_suffix=endpoint_url) return response.get('data', {}) def reactivate_site_request(self, site_id): endpoint_url = f'sites/{site_id}/reactivate' response = self._http_request(method='PUT', url_suffix=endpoint_url) return response.get('data', {}) def get_threat_summary_request(self, site_ids=None, group_ids=None): endpoint_url = 'private/threats/summary' params = { "siteIds": site_ids, "groupIds": group_ids } response = self._http_request(method='GET', url_suffix=endpoint_url, params=params) return response.get('data', {}) def list_agents_request(self, params: dict): response = self._http_request(method='GET', url_suffix='agents', params=params) return response.get('data', {}) def get_agent_request(self, agent_ids): params = { "ids": agent_ids } response = self._http_request(method='GET', url_suffix='agents', params=params) return response.get('data', {}) def connect_to_network_request(self, agent_ids): endpoint_url = 'agents/actions/connect' payload = { 'filter': { 'ids': agent_ids } } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def disconnect_from_network_request(self, agents_id): endpoint_url = 'agents/actions/disconnect' payload = { 'filter': { 'ids': agents_id } } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def broadcast_message_request(self, message, filters): endpoint_url = 'agents/actions/broadcast' payload = { 'data': { 'message': message }, 'filter': filters } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def uninstall_agent_request(self, query, agent_id=None, group_id=None): endpoint_url = 'agents/actions/uninstall' payload = { 'filter': assign_params( query=query, ids=agent_id, groupIds=group_id, ) } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def shutdown_agents_request(self, query, agent_id=None, group_id=None): endpoint_url = 'agents/actions/shutdown' payload = { 'filter': assign_params( query=query, ids=agent_id, groupIds=group_id ) } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}) def create_query_request(self, query, from_date, to_date): endpoint_url = 'dv/init-query' payload = { 'query': query, 'fromDate': from_date, 'toDate': to_date } response = self._http_request(method='POST', url_suffix=endpoint_url, json_data=payload) return response.get('data', {}).get('queryId') def get_events_request(self, query_id=None, limit=None): endpoint_url = 'dv/events' params = { 'query_id': query_id, 'limit': limit } response = self._http_request(method='GET', url_suffix=endpoint_url, params=params) return response.get('data', {}) def get_processes_request(self, query_id=None, limit=None): endpoint_url = 'dv/events/process' params = { 'query_id': query_id, 'limit': limit } response = self._http_request(method='GET', url_suffix=endpoint_url, params=params) return response.get('data', {}) def get_hash_reputation_request(self, hash_): endpoint_url = f'hashes/{hash_}/reputation' response = self._http_request(method='GET', url_suffix=endpoint_url) return response def get_hash_classification_request(self, hash_): """ [DEPRECATED by S1] IN BOTH 2.0 and 2.1 """ endpoint_url = f'hashes/{hash_}/classification' response = self._http_request(method='GET', url_suffix=endpoint_url) return response def get_exclusions_request(self, item_ids=None, os_types=None, exclusion_type: str = None, limit: int = 10): endpoint_url = 'exclusions' params = { "ids": item_ids, "osTypes": os_types, "type": exclusion_type, "limit": limit } response = self._http_request(method='GET', url_suffix=endpoint_url, params=params) return response.get('data', {}) def create_exclusion_item_request(self, exclusion_type, exclusion_value, os_type, description=None, exclusion_mode=None, path_exclusion_type=None, group_ids=None, site_ids=None): payload = { "filter": { "groupIds": group_ids, "siteIds": site_ids }, "data": assign_params( type=exclusion_type, value=exclusion_value, osType=os_type, description=description, mode=exclusion_mode, pathExclusionType=path_exclusion_type ) } response = self._http_request(method='POST', url_suffix='exclusions', json_data=payload) if 'data' in response: return response.get('data')[0] return {} ''' COMMANDS + REQUESTS FUNCTIONS ''' def test_module(client: Client, is_fetch: bool, first_fetch: str = None): """ Performs basic get request to verify connection and creds. """ if is_fetch: last_fetch = date_to_timestamp(dateparser.parse(first_fetch, settings={'TIMEZONE': 'UTC'})) last_fetch_date_string = timestamp_to_datestring(last_fetch, '%Y-%m-%dT%H:%M:%S.%fZ') client.get_threats_request(limit=1, created_after=last_fetch_date_string) else: client._http_request(method='GET', url_suffix='activities/types') return 'ok' def get_activities_command(client: Client, args: dict) -> CommandResults: """ Get a list of activities. """ context_entries = [] headers = ['ID', 'PrimaryDescription', 'Data', 'UserID', 'CreatedAt', 'ThreatID', 'UpdatedAt'] activities = client.get_activities_request(**args) for activity in activities: context_entries.append({ 'Hash': activity.get('hash'), 'ActivityType': activity.get('activityType'), 'OsFamily': activity.get('osFamily'), 'PrimaryDescription': activity.get('primaryDescription'), 'Comments': activity.get('comments'), 'AgentUpdatedVersion': activity.get('agentUpdatedVersion'), 'UserID': activity.get('userId'), 'ID': activity.get('id'), 'Data': activity.get('data'), 'CreatedAt': activity.get('createdAt'), 'SecondaryDescription': activity.get('secondaryDescription'), 'ThreatID': activity.get('threatId'), 'GroupID': activity.get('groupId'), 'UpdatedAt': activity.get('updatedAt'), 'Description': activity.get('description'), 'AgentID': activity.get('agentId'), 'SiteID': activity.get('siteId'), }) return CommandResults( readable_output=tableToMarkdown('Sentinel One Activities', context_entries, headers=headers, removeNull=True, headerTransform=pascalToSpace), outputs_prefix='SentinelOne.Activity', outputs_key_field='ID', outputs=context_entries, raw_response=activities) def get_groups_command(client: Client, args: dict) -> CommandResults: """ Gets the group data. """ headers = ['id', 'name', 'type', 'creator', 'creatorId', 'createdAt', 'rank'] query_params = assign_params( type=args.get('group_type'), id=args.get('id'), groupIds=argToList(args.get('group_ids')), isDefault=args.get('is_default'), name=args.get('name'), query=args.get('query'), rank=args.get('rank'), limit=int(args.get('limit', 50)), ) groups = client.get_groups_request(query_params) return CommandResults( readable_output=tableToMarkdown('Sentinel One Groups', groups, headers, headerTransform=pascalToSpace, removeNull=True), outputs_prefix='SentinelOne.Group', outputs_key_field='ID', outputs=groups, raw_response=groups) def delete_group(client: Client, args: dict) -> str: """ Deletes a group by ID. """ group_id = args.get('group_id') response = client.delete_group_request(group_id) if response.get('success'): return f'Group: {group_id} was deleted successfully' return f'The deletion of group: {group_id} has failed' def move_agent_to_group_command(client: Client, args: dict) -> CommandResults: """ Move agents to a new group. """ group_id = args.get('group_id') agents_id = argToList(args.get('agents_ids', [])) agents_groups = client.move_agent_request(group_id, agents_id) # Parse response into context & content entries if agents_groups.get('agentsMoved') and int(agents_groups.get('agentsMoved')) > 0: agents_moved = True else: agents_moved = False date_time_utc = datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ') context_entries = { 'Date': date_time_utc, 'AgentsMoved': agents_groups.get('agentsMoved'), 'AffectedAgents': agents_moved, } return CommandResults( readable_output=tableToMarkdown(f'Sentinel One - Moved Agents\nTotal of: {agents_groups.get("AgentsMoved", 0)}' f'agents were Moved successfully', context_entries, removeNull=True), outputs_prefix='SentinelOne.Agent', outputs_key_field='Date', outputs=context_entries, raw_response=agents_groups) def get_agent_processes(client: Client, args: dict): """ Retrieve running processes for a specific agent. Note: This feature is obsolete and an empty array will always be returned """ headers = ['ProcessName', 'StartTime', 'Pid', 'MemoryUsage', 'CpuUsage', 'ExecutablePath'] contents = [] context = {} agents_ids = args.get('agents_ids') processes = client.get_agent_processes_request(agents_ids) if processes: for process in processes: contents.append({ 'ProcessName': process.get('processName'), 'CpuUsage': process.get('cpuUsage'), 'MemoryUsage': process.get('memoryUsage'), 'StartTime': process.get('startTime'), 'ExecutablePath': process.get('executablePath'), 'Pid': process.get('pid'), }) context['SentinelOne.Agent(val.Pid && val.Pid === obj.Pid)'] = processes demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': contents, 'ReadableContentsFormat': formats['markdown'], 'HumanReadable': tableToMarkdown('Sentinel One Agent Processes', contents, headers, removeNull=True), 'EntryContext': context }) def get_threats_command(client: Client, args: dict) -> CommandResults: """ Gets a list of threats. Rank only relevant for API version 2.0 """ headers = ['ID', 'AgentComputerName', 'CreatedDate', 'SiteID', 'SiteName', 'Classification', 'MitigationStatus', 'ConfidenceLevel' if IS_VERSION_2_1 else 'Rank', 'AgentID', 'FileContentHash', 'MarkedAsBenign'] threats = client.get_threats_request(**args) outputs = list(get_threats_outputs(threats, int(args.get('rank', 0)))) if threats else None return CommandResults( readable_output=tableToMarkdown( 'Sentinel One - Getting Threat List', outputs, metadata='Provides summary information and details for all the threats that matched your search criteria.', headers=headers, headerTransform=pascalToSpace, removeNull=True), outputs_prefix='SentinelOne.Threat', outputs_key_field='ID', outputs=outputs, raw_response=threats) def get_hash_command(client: Client, args: dict) -> CommandResults: """ Get hash reputation. Removed hash classification since SentinelOne has deprecated it - Breaking BC. """ hash_ = args.get('hash') type_ = get_hash_type(hash_) if type_ == 'Unknown': raise DemistoException('Enter a valid hash format.') hash_reputation = client.get_hash_reputation_request(hash_) reputation = hash_reputation.get('data', {}) contents = { 'Rank': reputation.get('rank'), 'Hash': hash_, } return CommandResults( readable_output=tableToMarkdown('Sentinel One - Hash Reputation\nProvides hash reputation (rank from 0 to 10):', contents, removeNull=True), outputs_prefix='SentinelOne.Hash', outputs_key_field='Hash', outputs=contents, raw_response=hash_reputation) def mark_as_threat_command(client: Client, args: dict) -> CommandResults: """ Mark suspicious threats as threats. Relevant for API version 2.0 """ context_entries = [] threat_ids = argToList(args.get('threat_ids')) target_scope = args.get('target_scope') # Make request and get raw response affected_threats = client.mark_as_threat_request(threat_ids, target_scope) # Parse response into context & content entries if affected_threats.get('affected') and int(affected_threats.get('affected')) > 0: title = f'Total of {affected_threats.get("affected")} provided threats were marked successfully' affected = True else: affected = False title = 'No threats were marked' for threat_id in threat_ids: context_entries.append({ 'MarkedAsThreat': affected, 'ID': threat_id, }) return CommandResults( readable_output=tableToMarkdown('Sentinel One - Marking suspicious threats as threats \n' + title, context_entries, headerTransform=pascalToSpace, removeNull=True), outputs_prefix='SentinelOne.Threat', outputs_key_field='ID', outputs=context_entries, raw_response=affected_threats) def mitigate_threat_command(client: Client, args: dict) -> CommandResults: """ Apply a mitigation action to a group of threats. Relevant for API version 2.0 """ contents = [] context_entries = [] # Get arguments threat_ids = argToList(args.get('threat_ids')) action = args.get('action') # Make request and get raw response mitigated_threats = client.mitigate_threat_request(threat_ids, action) # Parse response into context & content entries if mitigated_threats.get('affected') and int(mitigated_threats.get('affected')) > 0: mitigated = True meta = f'Total of {mitigated_threats.get("affected")} provided threats were mitigated successfully' else: mitigated = False meta = 'No threats were mitigated' for threat_id in threat_ids: contents.append({ 'Mitigated': mitigated, 'ID': threat_id, 'Mitigation Action': action, }) context_entries.append({ 'Mitigated': mitigated, 'ID': threat_id, 'Mitigation': { 'Action': action }, }) return CommandResults( readable_output=tableToMarkdown('Sentinel One - Mitigating threats', contents, metadata=meta, removeNull=True), outputs_prefix='SentinelOne.Threat', outputs_key_field='ID', outputs=context_entries, raw_response=mitigated_threats) def resolve_threat_command(client: Client, args: dict) -> CommandResults: """ Mark threats as resolved """ context_entries = [] threat_ids = argToList(args.get('threat_ids')) # Make request and get raw response resolved_threats = client.resolve_threat_request(threat_ids) # Parse response into context & content entries if resolved_threats.get('affected') and int(resolved_threats.get('affected')) > 0: resolved = True title = f'Total of {resolved_threats.get("affected")} provided threats were resolved successfully' else: resolved = False title = 'No threats were resolved' for threat_id in threat_ids: context_entries.append({ 'Resolved': resolved, 'ID': threat_id, }) return CommandResults( readable_output=tableToMarkdown('Sentinel One - Resolving threats\n' + title, context_entries, removeNull=True), outputs_prefix='SentinelOne.Threat', outputs_key_field='ID', outputs=context_entries, raw_response=resolved_threats) def get_white_list_command(client: Client, args: dict) -> CommandResults: """ List all white items matching the input filter """ context_entries = [] # Get arguments item_ids = argToList(args.get('item_ids', [])) os_types = argToList(args.get('os_types', [])) exclusion_type = args.get('exclusion_type') limit = int(args.get('limit', 10)) # Make request and get raw response exclusion_items = client.get_exclusions_request(item_ids, os_types, exclusion_type, limit) # Parse response into context & content entries for exclusion_item in exclusion_items: context_entries.append({ 'ID': exclusion_item.get('id'), 'Type': exclusion_item.get('type'), 'CreatedAt': exclusion_item.get('createdAt'), 'Value': exclusion_item.get('value'), 'Source': exclusion_item.get('source'), 'UserID': exclusion_item.get('userId'), 'UpdatedAt': exclusion_item.get('updatedAt'), 'OsType': exclusion_item.get('osType'), 'UserName': exclusion_item.get('userName'), 'Mode': exclusion_item.get('mode'), }) return CommandResults( readable_output=tableToMarkdown('Sentinel One - Listing exclusion items', context_entries, removeNull=True, metadata='Provides summary information and details for all the exclusion items' ' that matched your search criteria.'), outputs_prefix='SentinelOne.Exclusions', outputs_key_field='ID', outputs=context_entries, raw_response=exclusion_items) def create_white_item_command(client: Client, args: dict): """ Create white item. """ context_entries = [] title = '' group_ids = argToList(args.get('group_ids', [])) site_ids = argToList(args.get('site_ids', [])) exclusion_type = args.get('exclusion_type') exclusion_value = args.get('exclusion_value') os_type = args.get('os_type') description = args.get('description') exclusion_mode = args.get('exclusion_mode') path_exclusion_type = args.get('path_exclusion_type') if not (group_ids or site_ids): raise DemistoException("You must provide either group_ids or site_ids.") # Make request and get raw response new_item = client.create_exclusion_item_request(exclusion_type, exclusion_value, os_type, description, exclusion_mode, path_exclusion_type, group_ids, site_ids) # Parse response into context & content entries if new_item: title = 'Sentinel One - Adding an exclusion item \n' + \ 'The provided item was successfully added to the exclusion list' context_entries.append({ 'ID': new_item.get('id'), 'Type': new_item.get('type'), 'CreatedAt': new_item.get('createdAt'), }) return CommandResults( readable_output=tableToMarkdown(title, context_entries, removeNull=True, headerTransform=pascalToSpace), outputs_prefix='SentinelOne.Exclusion', outputs_key_field='ID', outputs=context_entries, raw_response=new_item) def get_sites_command(client: Client, args: dict) -> CommandResults: """ List all sites with filtering options """ context_entries = [] query_params = assign_params( updatedAt=args.get('updated_at'), query=args.get('query'), siteType=args.get('site_type'), features=args.get('features'), state=args.get('state'), suite=args.get('suite'), # HTTP 500 - server internal error when passing admin_only. adminOnly=argToBoolean(args.get('admin_only')) if args.get('admin_only') else None, accountId=args.get('account_id'), name=args.get('site_name'), createdAt=args.get('created_at'), limit=int(args.get('limit', 50)), siteIds=argToList(args.get('site_ids')), ) # Make request and get raw response raw_response = client.get_sites_request(query_params) sites, all_sites = raw_response.get('sites'), raw_response.get('allSites') # Parse response into context & content entries for site in sites: context_entries.append({ 'ID': site.get('id'), 'Creator': site.get('creator'), 'Name': site.get('name'), 'Type': site.get('siteType'), 'AccountName': site.get('accountName'), 'State': site.get('state'), 'HealthStatus': site.get('healthStatus'), 'Suite': site.get('suite'), 'CreatedAt': site.get('createdAt'), 'Expiration': site.get('expiration'), 'UnlimitedLicenses': site.get('unlimitedLicenses'), 'TotalLicenses': all_sites.get('totalLicenses'), 'ActiveLicenses': all_sites.get('activeLicenses'), }) return CommandResults( readable_output=tableToMarkdown('Sentinel One - Getting List of Sites', context_entries, removeNull=True, metadata='Provides summary information and details for all sites that matched ' 'your search criteria.', headerTransform=pascalToSpace), outputs_prefix='SentinelOne.Site', outputs_key_field='ID', outputs=context_entries, raw_response=raw_response) def get_site_command(client: Client, args: dict) -> CommandResults: """ Get a specific site by ID """ # Init main vars context_entries = [] # Get arguments site_id = args.get('site_id') # Make request and get raw response site = client.get_site_request(site_id) # Parse response into context & content entries if site: context_entries.append({ 'ID': site.get('id'), 'Creator': site.get('creator'), 'Name': site.get('name'), 'Type': site.get('siteType'), 'AccountName': site.get('accountName'), 'State': site.get('state'), 'HealthStatus': site.get('healthStatus'), 'Suite': site.get('suite'), 'CreatedAt': site.get('createdAt'), 'Expiration': site.get('expiration'), 'UnlimitedLicenses': site.get('unlimitedLicenses'), 'TotalLicenses': site.get('totalLicenses'), 'ActiveLicenses': site.get('activeLicenses'), 'AccountID': site.get('accountId'), 'IsDefault': site.get('isDefault'), }) return CommandResults( readable_output=tableToMarkdown(f'Sentinel One - Summary About Site: {site_id}', context_entries, removeNull=True, metadata='Provides summary information and details for specific site ID', headerTransform=pascalToSpace), outputs_prefix='SentinelOne.Site', outputs_key_field='ID', outputs=context_entries, raw_response=site) def reactivate_site_command(client: Client, args: dict) -> CommandResults: """ Reactivate specific site by ID """ # Init main vars context = {} # Get arguments site_id = args.get('site_id') # Make request and get raw response site = client.reactivate_site_request(site_id) # Parse response into context & content entries if site: context = { 'ID': site.get('id'), 'Reactivated': site.get('success'), } return CommandResults( readable_output=tableToMarkdown(f'Sentinel One - Reactivated Site: {site_id}', context, removeNull=True), outputs_prefix='SentinelOne.Site', outputs_key_field='ID', outputs=context, raw_response=site) def get_threat_summary_command(client: Client, args: dict) -> CommandResults: """ Get dashboard threat summary """ # Init main vars context_entries = {} site_ids = argToList(args.get('site_ids')) group_ids = argToList(args.get('group_ids')) # Make request and get raw response threat_summary = client.get_threat_summary_request(site_ids, group_ids) # Parse response into context & content entries if threat_summary: context_entries = { 'InProgress': threat_summary.get('inProgress'), 'MaliciousNotResolved': threat_summary.get('maliciousNotResolved'), 'NotMitigated': threat_summary.get('notMitigated'), 'NotMitigatedNotResolved': threat_summary.get('notMitigatedNotResolved'), 'NotResolved': threat_summary.get('notResolved'), 'Resolved': threat_summary.get('resolved'), 'SuspiciousNotMitigatedNotResolved': threat_summary.get('suspiciousNotMitigatedNotResolved'), 'SuspiciousNotResolved': threat_summary.get('suspiciousNotResolved'), 'Total': threat_summary.get('total'), } return CommandResults( readable_output=tableToMarkdown('Sentinel One - Dashboard Threat Summary', context_entries, removeNull=True, headerTransform=pascalToSpace), outputs_prefix='SentinelOne.Threat', outputs_key_field='ID', outputs=context_entries, raw_response=threat_summary) # Agents Commands def list_agents_command(client: Client, args: dict) -> CommandResults: """ List all agents matching the input filter """ # Get arguments query_params = assign_params( active_threats=args.get('min_active_threats'), computer_name=args.get('computer_name'), scan_status=args.get('scan_status'), os_type=args.get('os_type'), created_at=args.get('created_at'), limit=int(args.get('limit', 10)), ) # Make request and get raw response agents = client.list_agents_request(query_params) # Parse response into context & content entries context_entries = list(get_agents_outputs(agents)) if agents else None return CommandResults( readable_output=tableToMarkdown('Sentinel One - List of Agents', context_entries, headerTransform=pascalToSpace, removeNull=True, metadata='Provides summary information and details for all' ' the agents that matched your search criteria'), outputs_prefix='SentinelOne.Agents', outputs_key_field='ID', outputs=context_entries, raw_response=agents) def get_agent_command(client: Client, args: dict) -> CommandResults: """ Get single agent via ID """ # Get arguments agent_ids = argToList(args.get('agent_id')) # Make request and get raw response agents = client.get_agent_request(agent_ids) # Parse response into context & content entries context_entries = list(get_agents_outputs(agents)) if agents else None return CommandResults( readable_output=tableToMarkdown('Sentinel One - Get Agent Details', context_entries, headerTransform=pascalToSpace, removeNull=True), outputs_prefix='SentinelOne.Agent', outputs_key_field='ID', outputs=context_entries, raw_response=agents) def connect_agent_to_network(client: Client, args: dict) -> Union[CommandResults, str]: """ Sends a "connect to network" command to all agents matching the input filter. """ agent_ids = argToList(args.get('agent_id')) # Make request and get raw response raw_response = client.connect_to_network_request(agent_ids) agents_affected = raw_response.get('affected', 0) # Parse response into context & content entries if agents_affected > 0: agents = client.list_agents_request({'ids': agent_ids}) contents = [{ 'NetworkStatus': agent.get('networkStatus'), 'ID': agent.get('id') } for agent in agents] return CommandResults( readable_output=f'{agents_affected} agent(s) successfully connected to the network.', outputs_prefix='SentinelOne.Agent', outputs_key_field='ID', outputs=contents, raw_response=raw_response) return 'No agents were connected to the network.' def disconnect_agent_from_network(client: Client, args: dict) -> Union[CommandResults, str]: """ Sends a "disconnect from network" command to all agents matching the input filter. """ agent_ids = argToList(args.get('agent_id')) # Make request and get raw response raw_response = client.disconnect_from_network_request(agent_ids) agents_affected = raw_response.get('affected', 0) if agents_affected > 0: agents = client.list_agents_request({'ids': agent_ids}) contents = [{ 'NetworkStatus': agent.get('networkStatus'), 'ID': agent.get('id') } for agent in agents] return CommandResults( readable_output=f'{agents_affected} agent(s) successfully disconnected from the network.', outputs_prefix='SentinelOne.Agent', outputs_key_field='ID', outputs=contents, raw_response=raw_response) return 'No agents were disconnected from the network.' def broadcast_message(client: Client, args: dict) -> str: """ Broadcasts a message to all agents matching the input filter. """ message = args.get('message') filters = assign_params( isActive=argToBoolean(args.get('active_agent', 'false')), groupIds=argToList(args.get('group_id')), ids=argToList(args.get('agent_id')), domains=argToList(args.get('domain')), ) response = client.broadcast_message_request(message, filters) agents_affected = response.get('affected', 0) if agents_affected > 0: return 'The message was successfully delivered to the agent(s)' return 'No messages were sent. Verify that the inputs are correct.' def shutdown_agents(client: Client, args: dict) -> str: """ Sends a shutdown command to all agents matching the input filter """ query = args.get('query', '') agent_id = argToList(args.get('agent_id')) group_id = argToList(args.get('group_id')) if not (agent_id or group_id): raise DemistoException('Expecting at least one of the following arguments to filter by: agent_id, group_id.') response = client.shutdown_agents_request(query, agent_id, group_id) affected_agents = response.get('affected', 0) if affected_agents > 0: return f'Shutting down {affected_agents} agent(s).' return 'No agents were shutdown.' def uninstall_agent(client: Client, args: dict) -> str: """ Sends an uninstall command to all agents matching the input filter. """ query = args.get('query', '') agent_id = argToList(args.get('agent_id')) group_id = argToList(args.get('group_id')) if not (agent_id or group_id): raise DemistoException('Expecting at least one of the following arguments to filter by: agent_id, group_id.') response = client.uninstall_agent_request(query, agent_id, group_id) affected_agents = response.get('affected', 0) if affected_agents > 0: return f'Uninstall was sent to {affected_agents} agent(s).' return 'No agents were affected.' # Event Commands def create_query(client: Client, args: dict) -> CommandResults: query = args.get('query') from_date = args.get('from_date') to_date = args.get('to_date') query_id = client.create_query_request(query, from_date, to_date) context_entries = { 'Query': query, 'FromDate': from_date, 'ToDate': to_date, 'QueryID': query_id, } return CommandResults( readable_output=f'The query ID is {query_id}', outputs_prefix='SentinelOne.Query', outputs_key_field='QueryID', outputs=context_entries, raw_response=query_id) def get_events(client: Client, args: dict) -> Union[CommandResults, str]: """ Get all Deep Visibility events from query """ contents = [] event_standards = [] query_id = args.get('query_id') limit = int(args.get('limit', 50)) events = client.get_events_request(query_id, limit) for event in events: contents.append({ 'EventType': event.get('eventType'), 'Endpoint': event.get('agentName'), 'SiteName': event.get('siteName'), 'User': event.get('user'), 'Time': event.get('processStartTime'), 'AgentOS': event.get('agentOs'), 'ProcessID': event.get('pid'), 'ProcessUID': event.get('srcProcUid') if IS_VERSION_2_1 else event.get('processUniqueKey'), 'ProcessName': event.get('processName'), 'MD5': event.get('md5'), 'SHA256': event.get('sha256'), }) event_standards.append({ 'Type': event.get('eventType'), 'Name': event.get('processName'), 'ID': event.get('pid'), }) context = { 'SentinelOne.Event(val.ProcessID && val.ProcessID === obj.ProcessID)': contents, 'Event(val.ID && val.ID === obj.ID)': event_standards } return CommandResults( readable_output=tableToMarkdown('SentinelOne Events', contents, removeNull=True), outputs=context, raw_response=events) def get_processes(client: Client, args: dict) -> CommandResults: """ Get Deep Visibility events from query by event type - process """ contents = [] query_id = args.get('query_id') limit = int(args.get('limit', 50)) processes = client.get_processes_request(query_id, limit) for process in processes: contents.append({ 'EventType': process.get('eventType'), 'Endpoint': process.get('agentName'), 'SiteName': process.get('siteName'), 'User': process.get('user'), 'Time': process.get('processStartTime'), 'ParentProcessID': process.get('parentPid'), 'ParentProcessUID': process.get('parentProcessUniqueKey'), 'ParentProcessName': process.get('parentProcessName'), 'ProcessID': process.get('pid'), 'ProcessUID': process.get('srcProcUid') if IS_VERSION_2_1 else process.get('processUniqueKey'), 'ProcessName': process.get('processName'), 'ProcessDisplayName': process.get('processDisplayName'), 'SHA1': process.get('processImageSha1Hash'), 'CMD': process.get('"processCmd'), 'SubsystemType': process.get('processSubSystem'), 'IntegrityLevel': process.get('processIntegrityLevel'), 'ParentProcessStartTime': process.get('parentProcessStartTime'), }) return CommandResults( readable_output=tableToMarkdown('SentinelOne Processes', contents, removeNull=True), outputs_prefix='SentinelOne.Event', outputs_key_field='ProcessID', outputs=contents, raw_response=processes) def fetch_incidents(client: Client, fetch_limit: int, first_fetch: str, fetch_threat_rank: int): last_run = demisto.getLastRun() last_fetch = last_run.get('time') # handle first time fetch if last_fetch is None: last_fetch = date_to_timestamp(dateparser.parse(first_fetch, settings={'TIMEZONE': 'UTC'})) current_fetch = last_fetch incidents = [] last_fetch_date_string = timestamp_to_datestring(last_fetch, '%Y-%m-%dT%H:%M:%S.%fZ') threats = client.get_threats_request(limit=fetch_limit, created_after=last_fetch_date_string) for threat in threats: rank = threat.get('rank') try: rank = int(rank) except TypeError: rank = 0 # If no fetch threat rank is provided, bring everything, else only fetch above the threshold if IS_VERSION_2_1 or rank >= fetch_threat_rank: incident = threat_to_incident(threat) date_occurred_dt = parse(incident['occurred']) incident_date = date_to_timestamp(date_occurred_dt, '%Y-%m-%dT%H:%M:%S.%fZ') if incident_date > last_fetch: incidents.append(incident) if incident_date > current_fetch: current_fetch = incident_date demisto.setLastRun({'time': current_fetch}) demisto.incidents(incidents) def threat_to_incident(threat) -> dict: threat_info = threat.get('threatInfo', {}) if IS_VERSION_2_1 else threat incident = { 'name': f'Sentinel One Threat: {threat_info.get("classification", "Not classified")}', 'occurred': threat_info.get('createdAt'), 'rawJSON': json.dumps(threat)} return incident def main(): """ PARSE INTEGRATION PARAMETERS """ global IS_VERSION_2_1 params = demisto.params() token = params.get('token') api_version = params.get('api_version', '2.1') server = params.get('url').rstrip('/') base_url = urljoin(server, f'/web/api/v{api_version}/') use_ssl = not params.get('insecure', False) proxy = params.get('proxy', False) IS_VERSION_2_1 = api_version == '2.1' first_fetch_time = params.get('fetch_time', '3 days') fetch_threat_rank = int(params.get('fetch_threat_rank', 0)) fetch_limit = int(params.get('fetch_limit', 10)) headers = { 'Authorization': 'ApiToken ' + token if token else 'ApiToken', 'Content-Type': 'application/json', 'Accept': 'application/json' } commands: Dict[str, Dict[str, Callable]] = { 'common': { 'sentinelone-get-activities': get_activities_command, 'sentinelone-get-threats': get_threats_command, 'sentinelone-mitigate-threat': mitigate_threat_command, 'sentinelone-get-hash': get_hash_command, 'sentinelone-get-white-list': get_white_list_command, 'sentinelone-create-white-list-item': create_white_item_command, 'sentinelone-get-sites': get_sites_command, 'sentinelone-get-site': get_site_command, 'sentinelone-reactivate-site': reactivate_site_command, 'sentinelone-list-agents': list_agents_command, 'sentinelone-get-agent': get_agent_command, 'sentinelone-get-groups': get_groups_command, 'sentinelone-move-agent': move_agent_to_group_command, 'sentinelone-delete-group': delete_group, 'sentinelone-connect-agent': connect_agent_to_network, 'sentinelone-disconnect-agent': disconnect_agent_from_network, 'sentinelone-broadcast-message': broadcast_message, 'sentinelone-get-events': get_events, 'sentinelone-create-query': create_query, 'sentinelone-get-processes': get_processes, 'sentinelone-shutdown-agent': shutdown_agents, 'sentinelone-uninstall-agent': uninstall_agent, }, '2.0': { 'sentinelone-mark-as-threat': mark_as_threat_command, 'sentinelone-resolve-threat': resolve_threat_command, 'sentinelone-agent-processes': get_agent_processes, }, '2.1': { 'sentinelone-threat-summary': get_threat_summary_command, }, } ''' COMMANDS MANAGER / SWITCH PANEL ''' demisto.info(f'Command being called is {demisto.command()}') command = demisto.command() try: client = Client( base_url=base_url, verify=use_ssl, headers=headers, proxy=proxy, ) if command == 'test-module': return_results(test_module(client, params.get('isFetch'), first_fetch_time)) if command == 'fetch-incidents': fetch_incidents(client, fetch_limit, first_fetch_time, fetch_threat_rank) else: if command in commands['common']: return_results(commands['common'][command](client, demisto.args())) elif command in commands[api_version]: return_results(commands[api_version][command](client, demisto.args())) else: raise NotImplementedError(f'The {command} command is not supported for API version {api_version}') except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {command} command.\nError:\n{str(e)}') if __name__ in ['__main__', 'builtin', 'builtins']: main()
en
0.766639
IMPORTS # Disable insecure warnings GLOBALS HELPER FUNCTIONS # Only available in 2.0 # Only available in 2.0 # Only available in 2.0 # Only available in 2.0 # Only available in 2.0 # Only available in 2.0 Client will implement the service API, and should not contain any Demisto logic. Should only do requests and return data. [DEPRECATED BY SentinelOne] Returns empty array. To get processes of an Agent, see Applications. [DEPRECATED by S1] IN BOTH 2.0 and 2.1 COMMANDS + REQUESTS FUNCTIONS Performs basic get request to verify connection and creds. Get a list of activities. Gets the group data. Deletes a group by ID. Move agents to a new group. # Parse response into context & content entries Retrieve running processes for a specific agent. Note: This feature is obsolete and an empty array will always be returned Gets a list of threats. Rank only relevant for API version 2.0 Get hash reputation. Removed hash classification since SentinelOne has deprecated it - Breaking BC. Mark suspicious threats as threats. Relevant for API version 2.0 # Make request and get raw response # Parse response into context & content entries Apply a mitigation action to a group of threats. Relevant for API version 2.0 # Get arguments # Make request and get raw response # Parse response into context & content entries Mark threats as resolved # Make request and get raw response # Parse response into context & content entries List all white items matching the input filter # Get arguments # Make request and get raw response # Parse response into context & content entries Create white item. # Make request and get raw response # Parse response into context & content entries List all sites with filtering options # HTTP 500 - server internal error when passing admin_only. # Make request and get raw response # Parse response into context & content entries Get a specific site by ID # Init main vars # Get arguments # Make request and get raw response # Parse response into context & content entries Reactivate specific site by ID # Init main vars # Get arguments # Make request and get raw response # Parse response into context & content entries Get dashboard threat summary # Init main vars # Make request and get raw response # Parse response into context & content entries # Agents Commands List all agents matching the input filter # Get arguments # Make request and get raw response # Parse response into context & content entries Get single agent via ID # Get arguments # Make request and get raw response # Parse response into context & content entries Sends a "connect to network" command to all agents matching the input filter. # Make request and get raw response # Parse response into context & content entries Sends a "disconnect from network" command to all agents matching the input filter. # Make request and get raw response Broadcasts a message to all agents matching the input filter. Sends a shutdown command to all agents matching the input filter Sends an uninstall command to all agents matching the input filter. # Event Commands Get all Deep Visibility events from query Get Deep Visibility events from query by event type - process # handle first time fetch # If no fetch threat rank is provided, bring everything, else only fetch above the threshold PARSE INTEGRATION PARAMETERS COMMANDS MANAGER / SWITCH PANEL # print the traceback
2.16795
2
src/sentry/incidents/endpoints/organization_alert_rule_trigger_action_details.py
pombredanne/django-sentry
0
6630342
from __future__ import absolute_import from rest_framework import status from rest_framework.response import Response from sentry.api.serializers import serialize from sentry.incidents.endpoints.bases import OrganizationAlertRuleTriggerActionEndpoint from sentry.incidents.endpoints.serializers import AlertRuleTriggerActionSerializer from sentry.incidents.logic import delete_alert_rule_trigger_action, InvalidTriggerActionError class OrganizationAlertRuleTriggerActionDetailsEndpoint(OrganizationAlertRuleTriggerActionEndpoint): def get(self, request, organization, alert_rule, alert_rule_trigger, alert_rule_trigger_action): """ Fetch an alert rule trigger action. ``````````````````````````````````` :auth: required """ data = serialize(alert_rule_trigger_action, request.user) return Response(data) def put(self, request, organization, alert_rule, alert_rule_trigger, alert_rule_trigger_action): serializer = AlertRuleTriggerActionSerializer( context={ "organization": organization, "alert_rule": alert_rule, "alert_rule_trigger": alert_rule_trigger, "access": request.access, }, instance=alert_rule_trigger_action, data=request.data, ) if serializer.is_valid(): try: alert_rule_trigger_action = serializer.save() except InvalidTriggerActionError as e: return Response(e.message, status=status.HTTP_400_BAD_REQUEST) return Response( serialize(alert_rule_trigger_action, request.user), status=status.HTTP_200_OK ) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete( self, request, organization, alert_rule, alert_rule_trigger, alert_rule_trigger_action ): delete_alert_rule_trigger_action(alert_rule_trigger_action) return Response(status=status.HTTP_204_NO_CONTENT)
from __future__ import absolute_import from rest_framework import status from rest_framework.response import Response from sentry.api.serializers import serialize from sentry.incidents.endpoints.bases import OrganizationAlertRuleTriggerActionEndpoint from sentry.incidents.endpoints.serializers import AlertRuleTriggerActionSerializer from sentry.incidents.logic import delete_alert_rule_trigger_action, InvalidTriggerActionError class OrganizationAlertRuleTriggerActionDetailsEndpoint(OrganizationAlertRuleTriggerActionEndpoint): def get(self, request, organization, alert_rule, alert_rule_trigger, alert_rule_trigger_action): """ Fetch an alert rule trigger action. ``````````````````````````````````` :auth: required """ data = serialize(alert_rule_trigger_action, request.user) return Response(data) def put(self, request, organization, alert_rule, alert_rule_trigger, alert_rule_trigger_action): serializer = AlertRuleTriggerActionSerializer( context={ "organization": organization, "alert_rule": alert_rule, "alert_rule_trigger": alert_rule_trigger, "access": request.access, }, instance=alert_rule_trigger_action, data=request.data, ) if serializer.is_valid(): try: alert_rule_trigger_action = serializer.save() except InvalidTriggerActionError as e: return Response(e.message, status=status.HTTP_400_BAD_REQUEST) return Response( serialize(alert_rule_trigger_action, request.user), status=status.HTTP_200_OK ) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete( self, request, organization, alert_rule, alert_rule_trigger, alert_rule_trigger_action ): delete_alert_rule_trigger_action(alert_rule_trigger_action) return Response(status=status.HTTP_204_NO_CONTENT)
en
0.946024
Fetch an alert rule trigger action. ``````````````````````````````````` :auth: required
2.097556
2
Authentication.py
Snowbell92/funlearn
0
6630343
from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QPushButton, QLineEdit, QMessageBox from PyQt5 import QtCore, QtGui, QtWidgets import sys import tkinter as tk from StartingPage import StartingPage import mysql.connector class App(QWidget): trial = 0 UID = None username = None def __init__(self): super().__init__() ''' root = tk.Tk() self.width = root.winfo_screenwidth() self.height = root.winfo_screenheight() ''' self.width = 700 self.height = 720 self.left = 500 self.top = 50 # print(self.width, self.height) self.title = 'Sign Up/Sign In' self.initUI() def initUI(self): horUnit = int(self.width / 12) verUnit = int(self.height / 12) self.setWindowTitle(self.title) self.setGeometry(self.left, self.top, self.width, self.height) self.setStyleSheet("background-color: rgb(54, 75, 109);"); self.lbl_heading = QLabel("USER AUTHENTICATION", self) self.lbl_heading.setStyleSheet("font-size: 22px; font-weight: bold; color: white;") self.lbl_heading.setGeometry(3.5 * horUnit, 1 * verUnit, 4.5 * horUnit, 0.6 * verUnit) self.lbl_username = QLabel("Username", self) self.lbl_username.setStyleSheet("font-size: 16px; font-weight: bold; color: white;") self.lbl_username.setGeometry(1 * horUnit, 3 * verUnit, 1.5 * horUnit, 0.6 * verUnit) self.txt_username = QLineEdit(self) self.txt_username.setPlaceholderText("username") self.txt_username.setStyleSheet("background-color: white") self.txt_username.setGeometry(3.5 * horUnit, 3 * verUnit, 7 * horUnit, 0.6 * verUnit) self.lbl_pwd = QLabel("Password", self) self.lbl_pwd.setStyleSheet("font-size: 16px; font-weight: bold; color: white;") self.lbl_pwd.setGeometry(1 * horUnit, 4.5 * verUnit, 1.5 * horUnit, 0.6 * verUnit) self.txt_pwd = QLineEdit(self) self.txt_pwd.setPlaceholderText("Password") self.txt_pwd.setEchoMode(QLineEdit.Password) self.txt_pwd.setStyleSheet("background-color: white") self.txt_pwd.setGeometry(3.5 * horUnit, 4.5 * verUnit, 7 * horUnit, 0.6 * verUnit) self.btn_signUp = QPushButton('Sign Up', self) self.btn_signUp.setStyleSheet("background-color: lightgray; font-size: 16px; font-weight: bold;") self.btn_signUp.setGeometry(5 * horUnit, 8 * verUnit, 1.5 * horUnit, 0.6 * verUnit) self.btn_signUp.clicked.connect(self.on_click_signUp) self.btn_signIn = QPushButton('Sign In', self) self.btn_signIn.setStyleSheet("background-color: lightgray; font-size: 16px; font-weight: bold;") self.btn_signIn.setGeometry(8 * horUnit, 8 * verUnit, 1.5 * horUnit, 0.6 * verUnit) self.btn_signIn.clicked.connect(self.on_click_signIn) self.btn_reset = QPushButton('Reset', self) self.btn_reset.setStyleSheet("background-color: lightgray; font-size: 16px; font-weight: bold;") self.btn_reset.setGeometry(2 * horUnit, 8 * verUnit, 1.5 * horUnit, 0.6 * verUnit) self.btn_reset.hide() self.btn_reset.clicked.connect(self.on_click_reset) self.lbl_reset = QLabel("Want to reset password?", self) self.lbl_reset.setGeometry(2 * horUnit, 6.5 * verUnit, 5 * horUnit, 0.5 * verUnit) self.lbl_reset.hide() self.lbl_reset.setStyleSheet("font-size: 18px; font-weight: bold; color: lightgray; color: blue;") self.lbl_error = QLabel("Wrong Password. Try again!", self) self.lbl_error.setGeometry(4 * horUnit, 5.5 * verUnit, 5 * horUnit, 0.5 * verUnit) self.lbl_error.hide() self.lbl_error.setStyleSheet("font-size: 18px; font-weight: bold; color: lightgray; color: red;") self.show() def on_click_signUp(self): self.storeIntoDatabase() messageBox = QtWidgets.QMessageBox() messageBox.setIcon(QtWidgets.QMessageBox.Information) messageBox.setWindowTitle("Sign Up") messageBox.setText("Sign Up Successful!") messageBox.setStandardButtons(QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Close) messageBox.exec_() self.loadStartingPage() def on_click_signIn(self): App.trial += 1 self.lbl_error.hide() mydb = mysql.connector.connect( host="localhost", user="root", # passwd="<PASSWORD>", database="spl" ) mycursor = mydb.cursor() mycursor.execute("SELECT username, password FROM User") myresult = mycursor.fetchall() mycursor.close() mydb.close() name = self.txt_username.text() pwd = self.txt_pwd.text() print(name, " ", pwd, " ", App.trial) flag = False for row in myresult: if name == row[0] and pwd == row[1]: flag = True self.loadStartingPage() break; elif name == row[0] and App.trial >= 5: App.username = name self.txt_pwd.setText(""); self.lbl_reset.show() self.btn_reset.show() # elif flag == False: # self.lbl_error.show() if flag == False: self.lbl_error.show() def on_click_reset(self): App.trial = 0 self.lbl_error.hide() mydb = mysql.connector.connect( host='localhost', user="root", # passwd = "<PASSWORD>", database="spl" ) myCursor = mydb.cursor(buffered=True) # name = self.txt_username.text() pwd = self.txt_pwd.text() # print(name, " ", pwd) sql = "UPDATE User SET password = %s WHERE username = %s" val = (pwd, App.username) myCursor.execute(sql, val) mydb.commit() # print(myCursor.rowcount, "record inserted.") myCursor.close() mydb.close() if self.txt_pwd.text() != "": messageBox = QtWidgets.QMessageBox() messageBox.setIcon(QtWidgets.QMessageBox.Information) messageBox.setWindowTitle("Password Reset") messageBox.setText("Password Reset Successful!") messageBox.setStandardButtons(QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Close) messageBox.exec_() self.loadStartingPage() else: messageBox = QtWidgets.QMessageBox() messageBox.setIcon(QtWidgets.QMessageBox.Information) messageBox.setWindowTitle("Input Not Found") messageBox.setText("Please fill up the password field.") messageBox.setStandardButtons(QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Close) messageBox.exec_() def storeIntoDatabase(self): mydb = mysql.connector.connect( host='localhost', user="root", # passwd = "<PASSWORD>", database="spl" ) myCursor = mydb.cursor(buffered=True) name = self.txt_username.text() pwd = self.txt_pwd.text() print(name, " ", pwd) sql = "INSERT INTO User (username, password) VALUES (%s, %s)" val = (name, pwd) myCursor.execute(sql, val) mydb.commit() # print(myCursor.rowcount, "record inserted.") myCursor.close() mydb.close() def loadStartingPage(self): name = self.txt_username.text() pwd = self.txt_pwd.text() print(name, " ", pwd) self.start = StartingPage() self.start.show() if __name__ == '__main__': app = QApplication(sys.argv) obj = App() sys.exit(app.exec_())
from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QPushButton, QLineEdit, QMessageBox from PyQt5 import QtCore, QtGui, QtWidgets import sys import tkinter as tk from StartingPage import StartingPage import mysql.connector class App(QWidget): trial = 0 UID = None username = None def __init__(self): super().__init__() ''' root = tk.Tk() self.width = root.winfo_screenwidth() self.height = root.winfo_screenheight() ''' self.width = 700 self.height = 720 self.left = 500 self.top = 50 # print(self.width, self.height) self.title = 'Sign Up/Sign In' self.initUI() def initUI(self): horUnit = int(self.width / 12) verUnit = int(self.height / 12) self.setWindowTitle(self.title) self.setGeometry(self.left, self.top, self.width, self.height) self.setStyleSheet("background-color: rgb(54, 75, 109);"); self.lbl_heading = QLabel("USER AUTHENTICATION", self) self.lbl_heading.setStyleSheet("font-size: 22px; font-weight: bold; color: white;") self.lbl_heading.setGeometry(3.5 * horUnit, 1 * verUnit, 4.5 * horUnit, 0.6 * verUnit) self.lbl_username = QLabel("Username", self) self.lbl_username.setStyleSheet("font-size: 16px; font-weight: bold; color: white;") self.lbl_username.setGeometry(1 * horUnit, 3 * verUnit, 1.5 * horUnit, 0.6 * verUnit) self.txt_username = QLineEdit(self) self.txt_username.setPlaceholderText("username") self.txt_username.setStyleSheet("background-color: white") self.txt_username.setGeometry(3.5 * horUnit, 3 * verUnit, 7 * horUnit, 0.6 * verUnit) self.lbl_pwd = QLabel("Password", self) self.lbl_pwd.setStyleSheet("font-size: 16px; font-weight: bold; color: white;") self.lbl_pwd.setGeometry(1 * horUnit, 4.5 * verUnit, 1.5 * horUnit, 0.6 * verUnit) self.txt_pwd = QLineEdit(self) self.txt_pwd.setPlaceholderText("Password") self.txt_pwd.setEchoMode(QLineEdit.Password) self.txt_pwd.setStyleSheet("background-color: white") self.txt_pwd.setGeometry(3.5 * horUnit, 4.5 * verUnit, 7 * horUnit, 0.6 * verUnit) self.btn_signUp = QPushButton('Sign Up', self) self.btn_signUp.setStyleSheet("background-color: lightgray; font-size: 16px; font-weight: bold;") self.btn_signUp.setGeometry(5 * horUnit, 8 * verUnit, 1.5 * horUnit, 0.6 * verUnit) self.btn_signUp.clicked.connect(self.on_click_signUp) self.btn_signIn = QPushButton('Sign In', self) self.btn_signIn.setStyleSheet("background-color: lightgray; font-size: 16px; font-weight: bold;") self.btn_signIn.setGeometry(8 * horUnit, 8 * verUnit, 1.5 * horUnit, 0.6 * verUnit) self.btn_signIn.clicked.connect(self.on_click_signIn) self.btn_reset = QPushButton('Reset', self) self.btn_reset.setStyleSheet("background-color: lightgray; font-size: 16px; font-weight: bold;") self.btn_reset.setGeometry(2 * horUnit, 8 * verUnit, 1.5 * horUnit, 0.6 * verUnit) self.btn_reset.hide() self.btn_reset.clicked.connect(self.on_click_reset) self.lbl_reset = QLabel("Want to reset password?", self) self.lbl_reset.setGeometry(2 * horUnit, 6.5 * verUnit, 5 * horUnit, 0.5 * verUnit) self.lbl_reset.hide() self.lbl_reset.setStyleSheet("font-size: 18px; font-weight: bold; color: lightgray; color: blue;") self.lbl_error = QLabel("Wrong Password. Try again!", self) self.lbl_error.setGeometry(4 * horUnit, 5.5 * verUnit, 5 * horUnit, 0.5 * verUnit) self.lbl_error.hide() self.lbl_error.setStyleSheet("font-size: 18px; font-weight: bold; color: lightgray; color: red;") self.show() def on_click_signUp(self): self.storeIntoDatabase() messageBox = QtWidgets.QMessageBox() messageBox.setIcon(QtWidgets.QMessageBox.Information) messageBox.setWindowTitle("Sign Up") messageBox.setText("Sign Up Successful!") messageBox.setStandardButtons(QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Close) messageBox.exec_() self.loadStartingPage() def on_click_signIn(self): App.trial += 1 self.lbl_error.hide() mydb = mysql.connector.connect( host="localhost", user="root", # passwd="<PASSWORD>", database="spl" ) mycursor = mydb.cursor() mycursor.execute("SELECT username, password FROM User") myresult = mycursor.fetchall() mycursor.close() mydb.close() name = self.txt_username.text() pwd = self.txt_pwd.text() print(name, " ", pwd, " ", App.trial) flag = False for row in myresult: if name == row[0] and pwd == row[1]: flag = True self.loadStartingPage() break; elif name == row[0] and App.trial >= 5: App.username = name self.txt_pwd.setText(""); self.lbl_reset.show() self.btn_reset.show() # elif flag == False: # self.lbl_error.show() if flag == False: self.lbl_error.show() def on_click_reset(self): App.trial = 0 self.lbl_error.hide() mydb = mysql.connector.connect( host='localhost', user="root", # passwd = "<PASSWORD>", database="spl" ) myCursor = mydb.cursor(buffered=True) # name = self.txt_username.text() pwd = self.txt_pwd.text() # print(name, " ", pwd) sql = "UPDATE User SET password = %s WHERE username = %s" val = (pwd, App.username) myCursor.execute(sql, val) mydb.commit() # print(myCursor.rowcount, "record inserted.") myCursor.close() mydb.close() if self.txt_pwd.text() != "": messageBox = QtWidgets.QMessageBox() messageBox.setIcon(QtWidgets.QMessageBox.Information) messageBox.setWindowTitle("Password Reset") messageBox.setText("Password Reset Successful!") messageBox.setStandardButtons(QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Close) messageBox.exec_() self.loadStartingPage() else: messageBox = QtWidgets.QMessageBox() messageBox.setIcon(QtWidgets.QMessageBox.Information) messageBox.setWindowTitle("Input Not Found") messageBox.setText("Please fill up the password field.") messageBox.setStandardButtons(QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Close) messageBox.exec_() def storeIntoDatabase(self): mydb = mysql.connector.connect( host='localhost', user="root", # passwd = "<PASSWORD>", database="spl" ) myCursor = mydb.cursor(buffered=True) name = self.txt_username.text() pwd = self.txt_pwd.text() print(name, " ", pwd) sql = "INSERT INTO User (username, password) VALUES (%s, %s)" val = (name, pwd) myCursor.execute(sql, val) mydb.commit() # print(myCursor.rowcount, "record inserted.") myCursor.close() mydb.close() def loadStartingPage(self): name = self.txt_username.text() pwd = self.txt_pwd.text() print(name, " ", pwd) self.start = StartingPage() self.start.show() if __name__ == '__main__': app = QApplication(sys.argv) obj = App() sys.exit(app.exec_())
en
0.340878
root = tk.Tk() self.width = root.winfo_screenwidth() self.height = root.winfo_screenheight() # print(self.width, self.height) # passwd="<PASSWORD>", # elif flag == False: # self.lbl_error.show() # passwd = "<PASSWORD>", # name = self.txt_username.text() # print(name, " ", pwd) # print(myCursor.rowcount, "record inserted.") # passwd = "<PASSWORD>", # print(myCursor.rowcount, "record inserted.")
2.732009
3
example/benchmark/ijson_pubsub/client.py
kokizzu/ijson
117
6630344
<filename>example/benchmark/ijson_pubsub/client.py<gh_stars>100-1000 import sys from requests import Session queue = sys.argv[1] if len(sys.argv) > 1 else '/sum' s = Session() while True: s.post(f'http://localhost:8001' + queue, json={'a': 5, 'b': 8}, headers={'Type': 'pub'})
<filename>example/benchmark/ijson_pubsub/client.py<gh_stars>100-1000 import sys from requests import Session queue = sys.argv[1] if len(sys.argv) > 1 else '/sum' s = Session() while True: s.post(f'http://localhost:8001' + queue, json={'a': 5, 'b': 8}, headers={'Type': 'pub'})
none
1
2.271245
2
bukiyipmodtest.py
NtateLephadi/csc1015f_assignment_4
0
6630345
# test program for Bukiyip calculations import bukiyip print('**** Bukiyip test program ****') print('Available commands:') print('d <number> : convert given decimal number to base-3.') print('b <number> : convert given base-3 number to decimal.') print('a <number> <number> : add the given base-3 numbers.') print('m <number> <number> : multiply the given base-3 numbers.') print('q : quit') print() while True: choice = input ("Enter a command:\n") action = choice[:1] if action == 'q': break elif action == 'b' or action == 'd': num = int(choice[2:]) if action == 'b': print(bukiyip.bukiyip_to_decimal (num)) else: print(bukiyip.decimal_to_bukiyip(num)) elif action == 'a' or action == 'm': num1, num2 = map (int, choice[2:].split(" ")) if action == 'a': print(bukiyip.bukiyip_add (num1, num2)) else: print(bukiyip.bukiyip_multiply (num1, num2))
# test program for Bukiyip calculations import bukiyip print('**** Bukiyip test program ****') print('Available commands:') print('d <number> : convert given decimal number to base-3.') print('b <number> : convert given base-3 number to decimal.') print('a <number> <number> : add the given base-3 numbers.') print('m <number> <number> : multiply the given base-3 numbers.') print('q : quit') print() while True: choice = input ("Enter a command:\n") action = choice[:1] if action == 'q': break elif action == 'b' or action == 'd': num = int(choice[2:]) if action == 'b': print(bukiyip.bukiyip_to_decimal (num)) else: print(bukiyip.decimal_to_bukiyip(num)) elif action == 'a' or action == 'm': num1, num2 = map (int, choice[2:].split(" ")) if action == 'a': print(bukiyip.bukiyip_add (num1, num2)) else: print(bukiyip.bukiyip_multiply (num1, num2))
en
0.788313
# test program for Bukiyip calculations
4.126408
4
reduceccd/__init__.py
jselsing/reduceccd
6
6630346
from .reduceccd import *
from .reduceccd import *
none
1
1.028683
1
predico/sample/tour/current_request.py
pauleveritt/predico
0
6630347
from dataclasses import dataclass from predico import registry from predico.sample import servicemanager, setup, Article from predico.services.request.base_request import Request @registry.view( resource=Article, template_string='<h1>{v.name}: {v.request.resource.title}</h1>' ) @dataclass class ArticleView: request: Request name: str = 'Article View' if __name__ == '__main__': setup() request_service = servicemanager.services['request'] request = request_service.make_request('more/index') output = request.render() print(output)
from dataclasses import dataclass from predico import registry from predico.sample import servicemanager, setup, Article from predico.services.request.base_request import Request @registry.view( resource=Article, template_string='<h1>{v.name}: {v.request.resource.title}</h1>' ) @dataclass class ArticleView: request: Request name: str = 'Article View' if __name__ == '__main__': setup() request_service = servicemanager.services['request'] request = request_service.make_request('more/index') output = request.render() print(output)
none
1
2.158318
2
pyDMPC/ControlFramework/Inits/Init_Geo.py
RWTH-EBC/pyDMPC
15
6630348
# Global paths glob_lib_paths = [r'C:\Git\pyDMPC\pyDMPC\ModelicaModels\ModelicaModels', r'C:\Git\modelica-buildings\Buildings', r'C:\Git\AixLib\AixLib'] glob_res_path = r'C:\TEMP\Dymola' glob_dym_path = r'C:\Program Files\Dymola 2018 FD01\Modelica\Library\python_interface\dymola.egg' # Working directory import time timestr = time.strftime("%Y%m%d_%H%M%S") name_wkdir = r'pyDMPC_' + 'wkdir' + timestr # Controlled system contr_sys_typ = "Modelica" ads_id = '5.59.199.202.1.1' ads_port = 851 name_fmu = 'pyDMPCFMU_Geo.fmu' orig_fmu_path = glob_res_path + '\\' + name_fmu dest_fmu_path = glob_res_path + '\\' + name_wkdir + '\\' + name_fmu time_incr = 120 # States inputs = [] input_names = [] traj_points = [] input_variables = [] commands = [] command_variables = [] output_names = [] set_points = [] state_var_names = [] model_state_var_names = [] traj_var = [] # Times start = [] stop = [] incr = [] opt_time = [] samp_time = [] # Paths lib_paths = [] res_path = [] dym_path = [] mod_path = [] command_names = [] # Modifiers cost_fac = [] # Variation min_var = [] max_var = [] inc_var = [] # Subsystem Config model_type = [] name = [] sys_id = [] ups_neigh = [] downs_neigh = [] par_neigh = [] # Subsystems sys_id.append(0) name.append("Field") model_type.append("Modelica") ups_neigh.append(1) downs_neigh.append(None) par_neigh.append(None) input_names.append(["returnTemperature.T"]) input_variables.append(["external"]) inputs.append([]) output_names.append(["returnTemperature.T"]) set_points.append([287]) state_var_names.append(["supplyTemperatureMeas"]) model_state_var_names.append(["vol.T_start"]) start.append(0.) stop.append(3600.0*24*365.25*3) incr.append(3600.) opt_time.append(10800) samp_time.append(10) lib_paths.append(glob_lib_paths) res_path.append(glob_res_path + "\\" + name_wkdir) dym_path.append(glob_dym_path) mod_path.append(r'ModelicaModels.SubsystemModels.DetailedModels.Geo.Field') command_names.append(["heatShare"]) command_variables.append(["decisionVariables.table[1,2]"]) commands.append(range(0,105,5)) traj_points.append(range(278,310,1)) traj_var.append(["supplyTemperature.T"]) cost_fac.append([0.0, 0.0, 1.0]) sys_id.append(1) name.append("Building") model_type.append("Modelica") ups_neigh.append(None) downs_neigh.append([0]) par_neigh.append(None) input_names.append(["supplyTemperature.T"]) input_variables.append([r"variation.table[1,2]"]) inputs.append(range(280,310,5)) output_names.append(["returnTemperature"]) set_points.append([287]) state_var_names.append(["sine.y"]) model_state_var_names.append(["const.k"]) start.append(0.) stop.append(7200.) incr.append(10.) opt_time.append(600) samp_time.append(10) lib_paths.append(glob_lib_paths) res_path.append(glob_res_path + "\\" + name_wkdir) dym_path.append(glob_dym_path) mod_path.append(r'ModelicaModels.SubsystemModels.DetailedModels.Geo.Building') command_names.append([]) command_variables.append(["decisionVariables.table[1,2]"]) commands.append(range(0,105,5)) traj_points.append([]) traj_var.append([]) cost_fac.append([-0.01, 1.0, 0.0])
# Global paths glob_lib_paths = [r'C:\Git\pyDMPC\pyDMPC\ModelicaModels\ModelicaModels', r'C:\Git\modelica-buildings\Buildings', r'C:\Git\AixLib\AixLib'] glob_res_path = r'C:\TEMP\Dymola' glob_dym_path = r'C:\Program Files\Dymola 2018 FD01\Modelica\Library\python_interface\dymola.egg' # Working directory import time timestr = time.strftime("%Y%m%d_%H%M%S") name_wkdir = r'pyDMPC_' + 'wkdir' + timestr # Controlled system contr_sys_typ = "Modelica" ads_id = '5.59.199.202.1.1' ads_port = 851 name_fmu = 'pyDMPCFMU_Geo.fmu' orig_fmu_path = glob_res_path + '\\' + name_fmu dest_fmu_path = glob_res_path + '\\' + name_wkdir + '\\' + name_fmu time_incr = 120 # States inputs = [] input_names = [] traj_points = [] input_variables = [] commands = [] command_variables = [] output_names = [] set_points = [] state_var_names = [] model_state_var_names = [] traj_var = [] # Times start = [] stop = [] incr = [] opt_time = [] samp_time = [] # Paths lib_paths = [] res_path = [] dym_path = [] mod_path = [] command_names = [] # Modifiers cost_fac = [] # Variation min_var = [] max_var = [] inc_var = [] # Subsystem Config model_type = [] name = [] sys_id = [] ups_neigh = [] downs_neigh = [] par_neigh = [] # Subsystems sys_id.append(0) name.append("Field") model_type.append("Modelica") ups_neigh.append(1) downs_neigh.append(None) par_neigh.append(None) input_names.append(["returnTemperature.T"]) input_variables.append(["external"]) inputs.append([]) output_names.append(["returnTemperature.T"]) set_points.append([287]) state_var_names.append(["supplyTemperatureMeas"]) model_state_var_names.append(["vol.T_start"]) start.append(0.) stop.append(3600.0*24*365.25*3) incr.append(3600.) opt_time.append(10800) samp_time.append(10) lib_paths.append(glob_lib_paths) res_path.append(glob_res_path + "\\" + name_wkdir) dym_path.append(glob_dym_path) mod_path.append(r'ModelicaModels.SubsystemModels.DetailedModels.Geo.Field') command_names.append(["heatShare"]) command_variables.append(["decisionVariables.table[1,2]"]) commands.append(range(0,105,5)) traj_points.append(range(278,310,1)) traj_var.append(["supplyTemperature.T"]) cost_fac.append([0.0, 0.0, 1.0]) sys_id.append(1) name.append("Building") model_type.append("Modelica") ups_neigh.append(None) downs_neigh.append([0]) par_neigh.append(None) input_names.append(["supplyTemperature.T"]) input_variables.append([r"variation.table[1,2]"]) inputs.append(range(280,310,5)) output_names.append(["returnTemperature"]) set_points.append([287]) state_var_names.append(["sine.y"]) model_state_var_names.append(["const.k"]) start.append(0.) stop.append(7200.) incr.append(10.) opt_time.append(600) samp_time.append(10) lib_paths.append(glob_lib_paths) res_path.append(glob_res_path + "\\" + name_wkdir) dym_path.append(glob_dym_path) mod_path.append(r'ModelicaModels.SubsystemModels.DetailedModels.Geo.Building') command_names.append([]) command_variables.append(["decisionVariables.table[1,2]"]) commands.append(range(0,105,5)) traj_points.append([]) traj_var.append([]) cost_fac.append([-0.01, 1.0, 0.0])
en
0.549123
# Global paths # Working directory # Controlled system # States # Times # Paths # Modifiers # Variation # Subsystem Config # Subsystems
1.57012
2
app/mxcache.py
spacedogXYZ/email-validator
3
6630349
import flanker.addresslib from flanker.addresslib.drivers.redis_driver import RedisCache import redis import collections import dnsq class MxCache(object): def __init__(self, app=None): self.app = app if app is not None: self.init_app(app) def init_app(self, app): if 'REDIS_URL' in app.config: cache = RedisCache() cache.r = redis.StrictRedis.from_url(app.config.get('REDIS_URL')) else: cache = collections.defaultdict(str) self._cache = cache # cache mail server responses flanker.addresslib.set_mx_cache(self._cache) # set custom DNS timeout dnsq.DNS_LIFETIME_TIMEOUT_SECONDS = app.config.get('DNS_TIMEOUT') app.mxcache = self def redis_conn(self): if hasattr(self._cache, 'r'): return self._cache.r else: return self._cache
import flanker.addresslib from flanker.addresslib.drivers.redis_driver import RedisCache import redis import collections import dnsq class MxCache(object): def __init__(self, app=None): self.app = app if app is not None: self.init_app(app) def init_app(self, app): if 'REDIS_URL' in app.config: cache = RedisCache() cache.r = redis.StrictRedis.from_url(app.config.get('REDIS_URL')) else: cache = collections.defaultdict(str) self._cache = cache # cache mail server responses flanker.addresslib.set_mx_cache(self._cache) # set custom DNS timeout dnsq.DNS_LIFETIME_TIMEOUT_SECONDS = app.config.get('DNS_TIMEOUT') app.mxcache = self def redis_conn(self): if hasattr(self._cache, 'r'): return self._cache.r else: return self._cache
en
0.472869
# cache mail server responses # set custom DNS timeout
2.471929
2
tvof/text_search/migrations/0002_auto_20181118_2039.py
kingsdigitallab/tvof-django
0
6630350
<filename>tvof/text_search/migrations/0002_auto_20181118_2039.py # -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2018-11-18 20:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('text_search', '0001_initial'), ] operations = [ migrations.AddField( model_name='annotatedtoken', name='is_rubric', field=models.BooleanField(default=False), ), migrations.AddField( model_name='annotatedtoken', name='manuscript', field=models.CharField(default='unspecified', max_length=30), ), migrations.AddField( model_name='annotatedtoken', name='section_name', field=models.CharField(default='unspecified', max_length=100), ), migrations.AlterField( model_name='annotatedtoken', name='location', field=models.CharField(help_text='location id for the seg comprising this token', max_length=20), ), migrations.AlterField( model_name='annotatedtoken', name='pos', field=models.CharField(help_text='part of speech', max_length=30), ), ]
<filename>tvof/text_search/migrations/0002_auto_20181118_2039.py # -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2018-11-18 20:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('text_search', '0001_initial'), ] operations = [ migrations.AddField( model_name='annotatedtoken', name='is_rubric', field=models.BooleanField(default=False), ), migrations.AddField( model_name='annotatedtoken', name='manuscript', field=models.CharField(default='unspecified', max_length=30), ), migrations.AddField( model_name='annotatedtoken', name='section_name', field=models.CharField(default='unspecified', max_length=100), ), migrations.AlterField( model_name='annotatedtoken', name='location', field=models.CharField(help_text='location id for the seg comprising this token', max_length=20), ), migrations.AlterField( model_name='annotatedtoken', name='pos', field=models.CharField(help_text='part of speech', max_length=30), ), ]
en
0.67158
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2018-11-18 20:39
1.634945
2