max_stars_repo_path
stringlengths
4
286
max_stars_repo_name
stringlengths
5
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.03M
content_cleaned
stringlengths
6
1.03M
language
stringclasses
111 values
language_score
float64
0.03
1
comments
stringlengths
0
556k
edu_score
float64
0.32
5.03
edu_int_score
int64
0
5
programmers/monthly_challenge/bit.py
mrbartrns/swacademy_structure
0
6630951
# 두개 이하로 다른 비트 def solution(numbers): answer = [] for number in numbers: if not (number & 1): answer.append(number + 1) else: idx = 1 while True: if not (number & (1 << idx)): number |= 1 << idx number ^= 1 << (idx - 1) answer.append(number) break idx += 1 return answer if __name__ == "__main__": numbers = [2, 7] print(solution(numbers))
# 두개 이하로 다른 비트 def solution(numbers): answer = [] for number in numbers: if not (number & 1): answer.append(number + 1) else: idx = 1 while True: if not (number & (1 << idx)): number |= 1 << idx number ^= 1 << (idx - 1) answer.append(number) break idx += 1 return answer if __name__ == "__main__": numbers = [2, 7] print(solution(numbers))
ko
1.00007
# 두개 이하로 다른 비트
3.436757
3
user/admin.py
simonprast/bestconnect-backend
0
6630952
<gh_stars>0 from django import forms from django.contrib import admin from django.contrib.auth.models import Group from django.contrib.auth.admin import UserAdmin as BaseUserAdmin from .models import EmailAddress, EmailToken, EmailTokenSpamBlock, PhoneNumber, SystemMessage, User class UserCreationForm(forms.ModelForm): """A form for creating new users. Includes all the required fields, plus a repeated password.""" password1 = forms.CharField(label='Password', widget=forms.PasswordInput) password2 = forms.CharField( label='Password confirmation', widget=forms.PasswordInput) class Meta: model = User fields = ('username',) def clean_password2(self): # Check that the two password entries match password1 = self.cleaned_data.get('password1') password2 = self.cleaned_data.get('password2') if password1 and password2 and password1 != password2: raise forms.ValidationError('Passwords don\'t match') return password2 def save(self, commit=True): # Save the provided password in hashed format user = super(UserCreationForm, self).save(commit=False) user.set_password(self.cleaned_data['<PASSWORD>']) if commit: user.save() return user class UserAdmin(BaseUserAdmin): # The custom form handling for creating a user add_form = UserCreationForm # The fields to be used in displaying the User model. # These override the definitions on the base UserAdmin # that reference specific fields on auth.User. list_display = ( 'id', 'first_name', 'last_name', 'get_main_email', 'is_active', 'is_admin', 'default_superuser' ) list_filter = ( 'is_active', 'is_admin', 'default_superuser' ) readonly_fields = ('is_admin', 'default_superuser', 'created_at') fieldsets = ( ( None, { 'fields': ( 'username', 'is_active', 'ban_reason' ) } ), ( 'Personal info', { 'fields': ( 'first_name', 'last_name' ) } ), ( 'Contact data anti-spam', { 'fields': ( 'last_phone_request', 'last_phone_code_request', 'last_email_request' ) } ), ( 'Permissions', { 'fields': ( 'utype', 'is_admin', 'default_superuser' ) } ), ( 'Meta', { 'fields': ( 'created_at', 'last_logout_all' ) } ) ) # add_fieldsets is not a standard ModelAdmin attribute. UserAdmin # overrides get_fieldsets to use this attribute when creating a user. add_fieldsets = ( ( None, { 'fields': ( 'username', 'utype', '<PASSWORD>', '<PASSWORD>' ) } ), ) search_fields = ( 'id', 'username', 'email' ) ordering = ( 'id', ) filter_horizontal = () def get_main_email(self, obj): return str(obj.primary_email) get_main_email.short_description = 'Main Email Address' get_main_email.admin_order_field = 'main_email_address' # Now register the new UserAdmin... admin.site.register(User, UserAdmin) # ... and, since we're not using Django's built-in permissions, # unregister the Group model from admin. admin.site.unregister(Group) class EmailAddressAdmin(admin.ModelAdmin): list_display = ( 'email_address', 'user', 'primary', 'verified' ) admin.site.register(EmailAddress, EmailAddressAdmin) class EmailTokenAdmin(admin.ModelAdmin): list_display = ( 'token', 'email_address', 'user', 'created_at' ) admin.site.register(EmailToken, EmailTokenAdmin) class EmailTokenSpamBlockAdmin(admin.ModelAdmin): list_display = ( 'email_address', 'last_email_code_request' ) admin.site.register(EmailTokenSpamBlock, EmailTokenSpamBlockAdmin) # Add PhoneNumberAdmin class PhoneNumberAdmin(admin.ModelAdmin): list_display = ( 'phone_number', 'user', 'primary', 'verified' ) admin.site.register(PhoneNumber, PhoneNumberAdmin) # Add SystemMessageAdmin class SystemMessageAdmin(admin.ModelAdmin): list_display = ( 'message', 'code', 'user', 'created_at' ) admin.site.register(SystemMessage, SystemMessageAdmin)
from django import forms from django.contrib import admin from django.contrib.auth.models import Group from django.contrib.auth.admin import UserAdmin as BaseUserAdmin from .models import EmailAddress, EmailToken, EmailTokenSpamBlock, PhoneNumber, SystemMessage, User class UserCreationForm(forms.ModelForm): """A form for creating new users. Includes all the required fields, plus a repeated password.""" password1 = forms.CharField(label='Password', widget=forms.PasswordInput) password2 = forms.CharField( label='Password confirmation', widget=forms.PasswordInput) class Meta: model = User fields = ('username',) def clean_password2(self): # Check that the two password entries match password1 = self.cleaned_data.get('password1') password2 = self.cleaned_data.get('password2') if password1 and password2 and password1 != password2: raise forms.ValidationError('Passwords don\'t match') return password2 def save(self, commit=True): # Save the provided password in hashed format user = super(UserCreationForm, self).save(commit=False) user.set_password(self.cleaned_data['<PASSWORD>']) if commit: user.save() return user class UserAdmin(BaseUserAdmin): # The custom form handling for creating a user add_form = UserCreationForm # The fields to be used in displaying the User model. # These override the definitions on the base UserAdmin # that reference specific fields on auth.User. list_display = ( 'id', 'first_name', 'last_name', 'get_main_email', 'is_active', 'is_admin', 'default_superuser' ) list_filter = ( 'is_active', 'is_admin', 'default_superuser' ) readonly_fields = ('is_admin', 'default_superuser', 'created_at') fieldsets = ( ( None, { 'fields': ( 'username', 'is_active', 'ban_reason' ) } ), ( 'Personal info', { 'fields': ( 'first_name', 'last_name' ) } ), ( 'Contact data anti-spam', { 'fields': ( 'last_phone_request', 'last_phone_code_request', 'last_email_request' ) } ), ( 'Permissions', { 'fields': ( 'utype', 'is_admin', 'default_superuser' ) } ), ( 'Meta', { 'fields': ( 'created_at', 'last_logout_all' ) } ) ) # add_fieldsets is not a standard ModelAdmin attribute. UserAdmin # overrides get_fieldsets to use this attribute when creating a user. add_fieldsets = ( ( None, { 'fields': ( 'username', 'utype', '<PASSWORD>', '<PASSWORD>' ) } ), ) search_fields = ( 'id', 'username', 'email' ) ordering = ( 'id', ) filter_horizontal = () def get_main_email(self, obj): return str(obj.primary_email) get_main_email.short_description = 'Main Email Address' get_main_email.admin_order_field = 'main_email_address' # Now register the new UserAdmin... admin.site.register(User, UserAdmin) # ... and, since we're not using Django's built-in permissions, # unregister the Group model from admin. admin.site.unregister(Group) class EmailAddressAdmin(admin.ModelAdmin): list_display = ( 'email_address', 'user', 'primary', 'verified' ) admin.site.register(EmailAddress, EmailAddressAdmin) class EmailTokenAdmin(admin.ModelAdmin): list_display = ( 'token', 'email_address', 'user', 'created_at' ) admin.site.register(EmailToken, EmailTokenAdmin) class EmailTokenSpamBlockAdmin(admin.ModelAdmin): list_display = ( 'email_address', 'last_email_code_request' ) admin.site.register(EmailTokenSpamBlock, EmailTokenSpamBlockAdmin) # Add PhoneNumberAdmin class PhoneNumberAdmin(admin.ModelAdmin): list_display = ( 'phone_number', 'user', 'primary', 'verified' ) admin.site.register(PhoneNumber, PhoneNumberAdmin) # Add SystemMessageAdmin class SystemMessageAdmin(admin.ModelAdmin): list_display = ( 'message', 'code', 'user', 'created_at' ) admin.site.register(SystemMessage, SystemMessageAdmin)
en
0.750688
A form for creating new users. Includes all the required fields, plus a repeated password. # Check that the two password entries match # Save the provided password in hashed format # The custom form handling for creating a user # The fields to be used in displaying the User model. # These override the definitions on the base UserAdmin # that reference specific fields on auth.User. # add_fieldsets is not a standard ModelAdmin attribute. UserAdmin # overrides get_fieldsets to use this attribute when creating a user. # Now register the new UserAdmin... # ... and, since we're not using Django's built-in permissions, # unregister the Group model from admin. # Add PhoneNumberAdmin # Add SystemMessageAdmin
2.64994
3
alchemyst/ui/routes.py
alexdmoss/alchemyst
0
6630953
import yaml import requests from datetime import datetime from flask import render_template, request, Response, send_from_directory from alchemyst import app, cache from alchemyst.ui.note import note_view from alchemyst.api.routes import note, notes, notes_by_category from alchemyst.api.notes import note_from_dict, notes_from_dicts from alchemyst.api.document import get_document with open('app-config.yaml') as app_cfg_file: app_cfg = yaml.load(app_cfg_file, Loader=yaml.FullLoader) layout = app_cfg['layout'] layout['year'] = datetime.now().year bucket = app_cfg['bucket'] @app.template_filter('display_document') def fetch_note_from_doc_id(id): return get_document(id) @app.route('/', methods=['GET']) @app.route('/home', methods=['GET']) def index(): return render_template('index.html', title='Home', layout=layout) @app.route('/contact', methods=['GET', 'POST']) def contact(): return render_template('contact.html', title='Contact', layout=layout) @app.route('/links', methods=['GET']) def links(): return render_template('links.html', title='Links', layout=layout) @app.route('/about', methods=['GET']) def about(): return render_template('about.html', title='About', layout=layout) @app.route('/privacy', methods=['GET']) def privacy(): return render_template('privacy.html', title='Privacy Notice', layout=layout) @app.route('/tags', methods=['GET']) def tags(): return render_template('tags.html', title='Tags', layout=layout) @app.route('/search', methods=['GET']) def search(): return render_template('search.html', title='Search', layout=layout) @app.route('/notes', methods=['GET']) @cache.cached() def display_notes(): url_path = request.path notes_as_dict = notes().get_json() notes_list = notes_from_dicts(notes_as_dict["notes"]) view = [note_view(note) for note in notes_list] return render_template('notes.html', notes=view, title='Notes', layout=layout, path=url_path) @app.route('/notes/<category>', methods=['GET']) @cache.cached() def display_notes_by_category(category): url_path = request.path notes_as_dict = notes_by_category(category).get_json() notes_list = notes_from_dicts(notes_as_dict["notes"]) view = [note_view(note) for note in notes_list] return render_template('notes.html', notes=view, title='Notes', layout=layout, path=url_path) @app.route('/note/<note_name>', methods=['GET']) @cache.cached() def display_note(note_name): note_as_dict = note(note_name).get_json() note_obj = note_from_dict(note_as_dict) view = note_view(note_obj) return render_template('note.html', note=view, title='Note', layout=layout) @app.route('/pdf/<category>/<pdf_file>', methods=['GET']) @cache.cached() def download_pdf(category, pdf_file): resp = requests.request( method=request.method, url=request.url.replace(request.host_url, f'https://storage.googleapis.com/{bucket}/'), headers={key: value for (key, value) in request.headers if key != 'Host'}, data=request.get_data(), cookies=request.cookies, allow_redirects=False) excluded_headers = ['content-encoding', 'content-length', 'transfer-encoding', 'connection'] headers = [(name, value) for (name, value) in resp.raw.headers.items() if name.lower() not in excluded_headers] response = Response(resp.content, resp.status_code, headers) return response @app.route('/robots.txt') @app.route('/favicon.ico') @app.route('/apple-touch-icon-precomposed.png') @app.route('/apple-touch-icon.png') def static_from_root(): return send_from_directory("static", request.path[1:])
import yaml import requests from datetime import datetime from flask import render_template, request, Response, send_from_directory from alchemyst import app, cache from alchemyst.ui.note import note_view from alchemyst.api.routes import note, notes, notes_by_category from alchemyst.api.notes import note_from_dict, notes_from_dicts from alchemyst.api.document import get_document with open('app-config.yaml') as app_cfg_file: app_cfg = yaml.load(app_cfg_file, Loader=yaml.FullLoader) layout = app_cfg['layout'] layout['year'] = datetime.now().year bucket = app_cfg['bucket'] @app.template_filter('display_document') def fetch_note_from_doc_id(id): return get_document(id) @app.route('/', methods=['GET']) @app.route('/home', methods=['GET']) def index(): return render_template('index.html', title='Home', layout=layout) @app.route('/contact', methods=['GET', 'POST']) def contact(): return render_template('contact.html', title='Contact', layout=layout) @app.route('/links', methods=['GET']) def links(): return render_template('links.html', title='Links', layout=layout) @app.route('/about', methods=['GET']) def about(): return render_template('about.html', title='About', layout=layout) @app.route('/privacy', methods=['GET']) def privacy(): return render_template('privacy.html', title='Privacy Notice', layout=layout) @app.route('/tags', methods=['GET']) def tags(): return render_template('tags.html', title='Tags', layout=layout) @app.route('/search', methods=['GET']) def search(): return render_template('search.html', title='Search', layout=layout) @app.route('/notes', methods=['GET']) @cache.cached() def display_notes(): url_path = request.path notes_as_dict = notes().get_json() notes_list = notes_from_dicts(notes_as_dict["notes"]) view = [note_view(note) for note in notes_list] return render_template('notes.html', notes=view, title='Notes', layout=layout, path=url_path) @app.route('/notes/<category>', methods=['GET']) @cache.cached() def display_notes_by_category(category): url_path = request.path notes_as_dict = notes_by_category(category).get_json() notes_list = notes_from_dicts(notes_as_dict["notes"]) view = [note_view(note) for note in notes_list] return render_template('notes.html', notes=view, title='Notes', layout=layout, path=url_path) @app.route('/note/<note_name>', methods=['GET']) @cache.cached() def display_note(note_name): note_as_dict = note(note_name).get_json() note_obj = note_from_dict(note_as_dict) view = note_view(note_obj) return render_template('note.html', note=view, title='Note', layout=layout) @app.route('/pdf/<category>/<pdf_file>', methods=['GET']) @cache.cached() def download_pdf(category, pdf_file): resp = requests.request( method=request.method, url=request.url.replace(request.host_url, f'https://storage.googleapis.com/{bucket}/'), headers={key: value for (key, value) in request.headers if key != 'Host'}, data=request.get_data(), cookies=request.cookies, allow_redirects=False) excluded_headers = ['content-encoding', 'content-length', 'transfer-encoding', 'connection'] headers = [(name, value) for (name, value) in resp.raw.headers.items() if name.lower() not in excluded_headers] response = Response(resp.content, resp.status_code, headers) return response @app.route('/robots.txt') @app.route('/favicon.ico') @app.route('/apple-touch-icon-precomposed.png') @app.route('/apple-touch-icon.png') def static_from_root(): return send_from_directory("static", request.path[1:])
none
1
2.194965
2
ABC/146/b.py
fumiyanll23/AtCoder
0
6630954
<filename>ABC/146/b.py def rot_n(s, n): answer = '' for letter in s: answer += chr(ord('A') + (ord(letter)-ord('A')+n) % 26) return answer ### https://qiita.com/TodayInsane/items/94f495db5ba143a8d3e0 N = int(input()) S = str(input()) print(rot_n(S, N))
<filename>ABC/146/b.py def rot_n(s, n): answer = '' for letter in s: answer += chr(ord('A') + (ord(letter)-ord('A')+n) % 26) return answer ### https://qiita.com/TodayInsane/items/94f495db5ba143a8d3e0 N = int(input()) S = str(input()) print(rot_n(S, N))
en
0.565759
### https://qiita.com/TodayInsane/items/94f495db5ba143a8d3e0
3.3019
3
dev/src/load/__init__.py
iamjli/AnswerALS_QTL
0
6630955
#!/usr/bin/env python3 __all__ = ["aals", "data", "hg38"] # module-wide singletons for accessing data from src.load.aals_data import aals from src.load.external_data import data from src.load.genome_data import hg38
#!/usr/bin/env python3 __all__ = ["aals", "data", "hg38"] # module-wide singletons for accessing data from src.load.aals_data import aals from src.load.external_data import data from src.load.genome_data import hg38
en
0.275299
#!/usr/bin/env python3 # module-wide singletons for accessing data
1.195293
1
gnome/hsctrl2gnome.py
LarsVomMars/hsctrl2X
1
6630956
<gh_stars>1-10 #!/bin/env python from gi import require_version require_version('Gtk', '3.0') require_version('AppIndicator3', '0.1') require_version('Notify', '0.7') from subprocess import check_output, CalledProcessError from gi.repository import Gtk, GLib, AppIndicator3, Notify Notify.init("headset-charge-notify") MAX_BATTERY_LIFE = 16 class Handler: notified = False charging = False charge_notify = Notify.Notification.new( "hsctrl2gnome", "Battery low", "dialog-warning" ) panel = None @staticmethod def get_battery(): try: return int(check_output(["headsetcontrol", "-b", "-c"])) except CalledProcessError: return -2 @staticmethod def update(_=None): battery = Handler.get_battery() battery_state = None if battery == -2: battery_state = "Off" elif battery == -1: battery_state = "Charging" Handler.notified = True Handler.charging = True elif 0 <= battery <= 100: Handler.charging = False battery_state = f"{battery}% (~{'{:.2f}'.format(round(battery * (MAX_BATTERY_LIFE / 100), 2))}h)" else: battery_state = "W8, what?" Handler.panel.set_label(battery_state, "100%") if 0 <= battery < 10 and not Handler.notified and not Handler.charging: Handler.charge_notify.set_timeout(0) Handler.charge_notify.show() Handler.notified = True return True Handler.panel = AppIndicator3.Indicator.new( "headset-charge", "audio-headset", AppIndicator3.IndicatorCategory.HARDWARE ) Handler.panel.set_status(AppIndicator3.IndicatorStatus.ACTIVE) menu = Gtk.Menu() Handler.panel.set_menu(menu) GLib.timeout_add(60000, Handler.update, None) Handler.update() Gtk.main()
#!/bin/env python from gi import require_version require_version('Gtk', '3.0') require_version('AppIndicator3', '0.1') require_version('Notify', '0.7') from subprocess import check_output, CalledProcessError from gi.repository import Gtk, GLib, AppIndicator3, Notify Notify.init("headset-charge-notify") MAX_BATTERY_LIFE = 16 class Handler: notified = False charging = False charge_notify = Notify.Notification.new( "hsctrl2gnome", "Battery low", "dialog-warning" ) panel = None @staticmethod def get_battery(): try: return int(check_output(["headsetcontrol", "-b", "-c"])) except CalledProcessError: return -2 @staticmethod def update(_=None): battery = Handler.get_battery() battery_state = None if battery == -2: battery_state = "Off" elif battery == -1: battery_state = "Charging" Handler.notified = True Handler.charging = True elif 0 <= battery <= 100: Handler.charging = False battery_state = f"{battery}% (~{'{:.2f}'.format(round(battery * (MAX_BATTERY_LIFE / 100), 2))}h)" else: battery_state = "W8, what?" Handler.panel.set_label(battery_state, "100%") if 0 <= battery < 10 and not Handler.notified and not Handler.charging: Handler.charge_notify.set_timeout(0) Handler.charge_notify.show() Handler.notified = True return True Handler.panel = AppIndicator3.Indicator.new( "headset-charge", "audio-headset", AppIndicator3.IndicatorCategory.HARDWARE ) Handler.panel.set_status(AppIndicator3.IndicatorStatus.ACTIVE) menu = Gtk.Menu() Handler.panel.set_menu(menu) GLib.timeout_add(60000, Handler.update, None) Handler.update() Gtk.main()
ru
0.206726
#!/bin/env python
2.438191
2
scrape/scrape_history.py
MOOC-Learner-Project/MOOC-Learner-BigQuery-Data-Science-Analytics
0
6630957
<gh_stars>0 import pandas as pd import pickle from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import Select from selenium.common.exceptions import StaleElementReferenceException, NoSuchElementException, NoSuchWindowException, InvalidElementStateException, UnexpectedAlertPresentException from selenium.webdriver.common.by import By import sys from threading import Thread import time import login_cred import problem_params course_info = { '2017' : ['Name', 'Offering', 'URL'], } yr = sys.argv[1] unit = int(sys.argv[2]) pb = int(sys.argv[3]) i = int(sys.argv[4]) #sys.argv[5] is 'reload', giving option to restart scraping from a later index tmpName = '../../data/pickle/{}_unit{}_pb{}_history.pkl'.format(yr, unit, pb) # points to data dirs with csvs of usernames unameData = 'u_data/{}_name_id.csv'.format(yr) cnum, tnum, unit_url = course_info[yr][0], course_info[yr][1], course_info[yr][2] urls = { 1 : '{}{}{}'.format(unit_url, cnum, tnum), } pset1 = problem_params.pset1 pset2 = problem_params.pset2 pset3 = problem_params.pset3 pset4 = problem_params.pset4 pset5 = problem_params.pset5 url = urls[unit] # url for unit pset # get problem tab webpage id and problem id (tab_id, problem_id) = eval('pset{}'.format(unit))[pb] # get button, modal, and form history webpage ids button_id = '{}_history_trig'.format(problem_id) modal_id = '{}_history_student_username'.format(problem_id) form_history_id = '{}_history_text'.format(problem_id) # get usernames zusernames = pd.read_csv(unameData) usernames = list(map(str, zusernames.username)) user_ids = list(map(str, zusernames.user_id)) results = {} # command line option to reload - start from particular index if sys.argv[5] == 'reload': with open(tmpName, "rb") as f: i, results = pickle.load(f) browsers = [] browserIdx = 0 def addBrowser(): path_to_chromedriver = 'chromedriver' # change path as needed browser = webdriver.Chrome(executable_path = path_to_chromedriver) browser.get(url) # send browser to correct page for unit pset browser.find_element_by_id("login-email").send_keys(login_cred.login_u); browser.find_element_by_id("login-password").send_keys(<PASSWORD>); browser.find_element_by_id("login-password").send_keys(Keys.ENTER); time.sleep(15) # wait for problem page to load # once on page for pset, navigate to problem tab tab = browser.find_element_by_id(tab_id) tab.click(); time.sleep(2) # click button to view submission history button = browser.find_element_by_id(button_id) button.click(); time.sleep(2) browsers.append(browser) def killBrowser(bIdx): browsers[bIdx].quit() if bIdx + 2 > len(browsers): print("adding two browsers") Thread(target = addBrowser).start() Thread(target = addBrowser).start() Thread(target = addBrowser).start() time.sleep(15) return bIdx + 1 addBrowser() addBrowser() new_window = True while i < len(usernames): u, u_id = usernames[i], user_ids[i] print("%i, %s of %i" % (i, u, len(usernames))) browser = browsers[browserIdx] try: # enter the username in the form and hit enter modal = browser.find_element_by_id(modal_id) modal.clear(); # clears the last username modal.send_keys(u); modal.send_keys(Keys.ENTER); time.sleep(10) submissionsElt = browser.find_element_by_id(form_history_id) except (StaleElementReferenceException, InvalidElementStateException, NoSuchElementException) as e: browserIdx = killBrowser(browserIdx) print("caught exception, retrying...") print(e) continue try: # get submission history from form HTML response = submissionsElt.get_attribute("innerHTML") except UnexpectedAlertPresentException as e: response = '' browserIdx = killBrowser(browserIdx) # save response and write to file only if attempted if 'attempts' in response: results[u_id] = response with open(tmpName, "wb") as f: pickle.dump((i, results), f) print("Wrote response for user {} ({}).".format(u, u_id)) else: print("{} ({}) did not attempt".format(u, u_id)) i += 1 for bi in range(len(browsers)): browsers[bi].quit()
import pandas as pd import pickle from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.support.ui import Select from selenium.common.exceptions import StaleElementReferenceException, NoSuchElementException, NoSuchWindowException, InvalidElementStateException, UnexpectedAlertPresentException from selenium.webdriver.common.by import By import sys from threading import Thread import time import login_cred import problem_params course_info = { '2017' : ['Name', 'Offering', 'URL'], } yr = sys.argv[1] unit = int(sys.argv[2]) pb = int(sys.argv[3]) i = int(sys.argv[4]) #sys.argv[5] is 'reload', giving option to restart scraping from a later index tmpName = '../../data/pickle/{}_unit{}_pb{}_history.pkl'.format(yr, unit, pb) # points to data dirs with csvs of usernames unameData = 'u_data/{}_name_id.csv'.format(yr) cnum, tnum, unit_url = course_info[yr][0], course_info[yr][1], course_info[yr][2] urls = { 1 : '{}{}{}'.format(unit_url, cnum, tnum), } pset1 = problem_params.pset1 pset2 = problem_params.pset2 pset3 = problem_params.pset3 pset4 = problem_params.pset4 pset5 = problem_params.pset5 url = urls[unit] # url for unit pset # get problem tab webpage id and problem id (tab_id, problem_id) = eval('pset{}'.format(unit))[pb] # get button, modal, and form history webpage ids button_id = '{}_history_trig'.format(problem_id) modal_id = '{}_history_student_username'.format(problem_id) form_history_id = '{}_history_text'.format(problem_id) # get usernames zusernames = pd.read_csv(unameData) usernames = list(map(str, zusernames.username)) user_ids = list(map(str, zusernames.user_id)) results = {} # command line option to reload - start from particular index if sys.argv[5] == 'reload': with open(tmpName, "rb") as f: i, results = pickle.load(f) browsers = [] browserIdx = 0 def addBrowser(): path_to_chromedriver = 'chromedriver' # change path as needed browser = webdriver.Chrome(executable_path = path_to_chromedriver) browser.get(url) # send browser to correct page for unit pset browser.find_element_by_id("login-email").send_keys(login_cred.login_u); browser.find_element_by_id("login-password").send_keys(<PASSWORD>); browser.find_element_by_id("login-password").send_keys(Keys.ENTER); time.sleep(15) # wait for problem page to load # once on page for pset, navigate to problem tab tab = browser.find_element_by_id(tab_id) tab.click(); time.sleep(2) # click button to view submission history button = browser.find_element_by_id(button_id) button.click(); time.sleep(2) browsers.append(browser) def killBrowser(bIdx): browsers[bIdx].quit() if bIdx + 2 > len(browsers): print("adding two browsers") Thread(target = addBrowser).start() Thread(target = addBrowser).start() Thread(target = addBrowser).start() time.sleep(15) return bIdx + 1 addBrowser() addBrowser() new_window = True while i < len(usernames): u, u_id = usernames[i], user_ids[i] print("%i, %s of %i" % (i, u, len(usernames))) browser = browsers[browserIdx] try: # enter the username in the form and hit enter modal = browser.find_element_by_id(modal_id) modal.clear(); # clears the last username modal.send_keys(u); modal.send_keys(Keys.ENTER); time.sleep(10) submissionsElt = browser.find_element_by_id(form_history_id) except (StaleElementReferenceException, InvalidElementStateException, NoSuchElementException) as e: browserIdx = killBrowser(browserIdx) print("caught exception, retrying...") print(e) continue try: # get submission history from form HTML response = submissionsElt.get_attribute("innerHTML") except UnexpectedAlertPresentException as e: response = '' browserIdx = killBrowser(browserIdx) # save response and write to file only if attempted if 'attempts' in response: results[u_id] = response with open(tmpName, "wb") as f: pickle.dump((i, results), f) print("Wrote response for user {} ({}).".format(u, u_id)) else: print("{} ({}) did not attempt".format(u, u_id)) i += 1 for bi in range(len(browsers)): browsers[bi].quit()
en
0.841441
#sys.argv[5] is 'reload', giving option to restart scraping from a later index # points to data dirs with csvs of usernames # url for unit pset # get problem tab webpage id and problem id # get button, modal, and form history webpage ids # get usernames # command line option to reload - start from particular index # change path as needed # send browser to correct page for unit pset # wait for problem page to load # once on page for pset, navigate to problem tab # click button to view submission history # enter the username in the form and hit enter # clears the last username # get submission history from form HTML # save response and write to file only if attempted
2.440285
2
packages/conan/recipes/python/test_package/testpy.py
boberfly/aswf-docker
3
6630958
<filename>packages/conan/recipes/python/test_package/testpy.py import sys print(sys.version_info) print(sys.path)
<filename>packages/conan/recipes/python/test_package/testpy.py import sys print(sys.version_info) print(sys.path)
none
1
1.134171
1
python/raft/setup.py
kaatish/raft
0
6630959
# # Copyright (c) 2020-2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy import os import shutil import sys import sysconfig # Must import in this order: # setuptools -> Cython.Distutils.build_ext -> setuptools.command.build_ext # Otherwise, setuptools.command.build_ext ends up inheriting from # Cython.Distutils.old_build_ext which we do not want import setuptools try: from Cython.Distutils.build_ext import new_build_ext as _build_ext except ImportError: from setuptools.command.build_ext import build_ext as _build_ext from distutils.sysconfig import get_python_lib import setuptools.command.build_ext from setuptools import find_packages, setup from setuptools.extension import Extension from setuputils import clean_folder from setuputils import get_environment_option from setuputils import get_cli_option from pathlib import Path import versioneer ############################################################################## # - Dependencies include and lib folder setup -------------------------------- install_requires = [ 'cython' ] cuda_home = get_environment_option("CUDA_HOME") clean_artifacts = get_cli_option('clean') single_gpu_build = get_cli_option('--singlegpu') if not cuda_home: cuda_home = ( os.popen('echo "$(dirname $(dirname $(which nvcc)))"').read().strip() ) print("-- Using nvcc to detect CUDA, found at " + str(cuda_home)) cuda_include_dir = os.path.join(cuda_home, "include") cuda_lib_dir = os.path.join(cuda_home, "lib64") ############################################################################## # - Clean target ------------------------------------------------------------- if clean_artifacts: print("-- Cleaning all Python and Cython build artifacts...") try: setup_file_path = str(Path(__file__).parent.absolute()) shutil.rmtree(setup_file_path + '/.pytest_cache', ignore_errors=True) shutil.rmtree(setup_file_path + '/_external_repositories', ignore_errors=True) shutil.rmtree(setup_file_path + '/raft.egg-info', ignore_errors=True) shutil.rmtree(setup_file_path + '/__pycache__', ignore_errors=True) clean_folder(setup_file_path + '/raft') shutil.rmtree(setup_file_path + '/build') except IOError: pass # need to terminate script so cythonizing doesn't get triggered after # cleanup unintendedly sys.argv.remove("clean") if "--all" in sys.argv: sys.argv.remove("--all") if len(sys.argv) == 1: sys.exit(0) ############################################################################## # - Cython extensions build and parameters ----------------------------------- libs = ['cudart', "nccl", "cusolver", "cusparse", "cublas"] include_dirs = [cuda_include_dir, numpy.get_include(), "../../cpp/include/", os.path.dirname(sysconfig.get_path("include"))] extensions = [ Extension("*", sources=["raft/**/*.pyx"], include_dirs=include_dirs, library_dirs=[get_python_lib()], runtime_library_dirs=[cuda_lib_dir, os.path.join(os.sys.prefix, "lib")], libraries=libs, language='c++', extra_compile_args=['-std=c++17']) ] class build_ext_no_debug(_build_ext): def build_extensions(self): def remove_flags(compiler, *flags): for flag in flags: try: compiler.compiler_so = list( filter((flag).__ne__, compiler.compiler_so) ) except Exception: pass # Full optimization self.compiler.compiler_so.append("-O3") # Ignore deprecation declaration warnings self.compiler.compiler_so.append("-Wno-deprecated-declarations") # No debug symbols, full optimization, no '-Wstrict-prototypes' warning remove_flags( self.compiler, "-g", "-G", "-O1", "-O2", "-Wstrict-prototypes" ) super().build_extensions() def finalize_options(self): if self.distribution.ext_modules: # Delay import this to allow for Cython-less installs from Cython.Build.Dependencies import cythonize nthreads = getattr(self, "parallel", None) # -j option in Py3.5+ nthreads = int(nthreads) if nthreads else None self.distribution.ext_modules = cythonize( self.distribution.ext_modules, nthreads=nthreads, force=self.force, gdb_debug=False, compiler_directives=dict( profile=False, language_level=3, embedsignature=True ), ) # Skip calling super() and jump straight to setuptools setuptools.command.build_ext.build_ext.finalize_options(self) cmdclass = dict() cmdclass.update(versioneer.get_cmdclass()) cmdclass["build_ext"] = build_ext_no_debug ############################################################################## # - Python package generation ------------------------------------------------ setup(name='raft', description="RAPIDS Analytics Frameworks Toolset", version=versioneer.get_version(), classifiers=[ "Intended Audience :: Developers", "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7" ], author="<NAME>", setup_requires=['cython'], ext_modules=extensions, package_data=dict.fromkeys( find_packages(include=["raft.dask.common", "raft.dask.common.includes", "raft.common", "raft.common.includes"]), ["*.hpp", "*.pxd"], ), packages=find_packages(include=['raft', 'raft.*']), install_requires=install_requires, license="Apache", cmdclass=cmdclass, zip_safe=False )
# # Copyright (c) 2020-2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy import os import shutil import sys import sysconfig # Must import in this order: # setuptools -> Cython.Distutils.build_ext -> setuptools.command.build_ext # Otherwise, setuptools.command.build_ext ends up inheriting from # Cython.Distutils.old_build_ext which we do not want import setuptools try: from Cython.Distutils.build_ext import new_build_ext as _build_ext except ImportError: from setuptools.command.build_ext import build_ext as _build_ext from distutils.sysconfig import get_python_lib import setuptools.command.build_ext from setuptools import find_packages, setup from setuptools.extension import Extension from setuputils import clean_folder from setuputils import get_environment_option from setuputils import get_cli_option from pathlib import Path import versioneer ############################################################################## # - Dependencies include and lib folder setup -------------------------------- install_requires = [ 'cython' ] cuda_home = get_environment_option("CUDA_HOME") clean_artifacts = get_cli_option('clean') single_gpu_build = get_cli_option('--singlegpu') if not cuda_home: cuda_home = ( os.popen('echo "$(dirname $(dirname $(which nvcc)))"').read().strip() ) print("-- Using nvcc to detect CUDA, found at " + str(cuda_home)) cuda_include_dir = os.path.join(cuda_home, "include") cuda_lib_dir = os.path.join(cuda_home, "lib64") ############################################################################## # - Clean target ------------------------------------------------------------- if clean_artifacts: print("-- Cleaning all Python and Cython build artifacts...") try: setup_file_path = str(Path(__file__).parent.absolute()) shutil.rmtree(setup_file_path + '/.pytest_cache', ignore_errors=True) shutil.rmtree(setup_file_path + '/_external_repositories', ignore_errors=True) shutil.rmtree(setup_file_path + '/raft.egg-info', ignore_errors=True) shutil.rmtree(setup_file_path + '/__pycache__', ignore_errors=True) clean_folder(setup_file_path + '/raft') shutil.rmtree(setup_file_path + '/build') except IOError: pass # need to terminate script so cythonizing doesn't get triggered after # cleanup unintendedly sys.argv.remove("clean") if "--all" in sys.argv: sys.argv.remove("--all") if len(sys.argv) == 1: sys.exit(0) ############################################################################## # - Cython extensions build and parameters ----------------------------------- libs = ['cudart', "nccl", "cusolver", "cusparse", "cublas"] include_dirs = [cuda_include_dir, numpy.get_include(), "../../cpp/include/", os.path.dirname(sysconfig.get_path("include"))] extensions = [ Extension("*", sources=["raft/**/*.pyx"], include_dirs=include_dirs, library_dirs=[get_python_lib()], runtime_library_dirs=[cuda_lib_dir, os.path.join(os.sys.prefix, "lib")], libraries=libs, language='c++', extra_compile_args=['-std=c++17']) ] class build_ext_no_debug(_build_ext): def build_extensions(self): def remove_flags(compiler, *flags): for flag in flags: try: compiler.compiler_so = list( filter((flag).__ne__, compiler.compiler_so) ) except Exception: pass # Full optimization self.compiler.compiler_so.append("-O3") # Ignore deprecation declaration warnings self.compiler.compiler_so.append("-Wno-deprecated-declarations") # No debug symbols, full optimization, no '-Wstrict-prototypes' warning remove_flags( self.compiler, "-g", "-G", "-O1", "-O2", "-Wstrict-prototypes" ) super().build_extensions() def finalize_options(self): if self.distribution.ext_modules: # Delay import this to allow for Cython-less installs from Cython.Build.Dependencies import cythonize nthreads = getattr(self, "parallel", None) # -j option in Py3.5+ nthreads = int(nthreads) if nthreads else None self.distribution.ext_modules = cythonize( self.distribution.ext_modules, nthreads=nthreads, force=self.force, gdb_debug=False, compiler_directives=dict( profile=False, language_level=3, embedsignature=True ), ) # Skip calling super() and jump straight to setuptools setuptools.command.build_ext.build_ext.finalize_options(self) cmdclass = dict() cmdclass.update(versioneer.get_cmdclass()) cmdclass["build_ext"] = build_ext_no_debug ############################################################################## # - Python package generation ------------------------------------------------ setup(name='raft', description="RAPIDS Analytics Frameworks Toolset", version=versioneer.get_version(), classifiers=[ "Intended Audience :: Developers", "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7" ], author="<NAME>", setup_requires=['cython'], ext_modules=extensions, package_data=dict.fromkeys( find_packages(include=["raft.dask.common", "raft.dask.common.includes", "raft.common", "raft.common.includes"]), ["*.hpp", "*.pxd"], ), packages=find_packages(include=['raft', 'raft.*']), install_requires=install_requires, license="Apache", cmdclass=cmdclass, zip_safe=False )
en
0.497851
# # Copyright (c) 2020-2022, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Must import in this order: # setuptools -> Cython.Distutils.build_ext -> setuptools.command.build_ext # Otherwise, setuptools.command.build_ext ends up inheriting from # Cython.Distutils.old_build_ext which we do not want ############################################################################## # - Dependencies include and lib folder setup -------------------------------- ############################################################################## # - Clean target ------------------------------------------------------------- # need to terminate script so cythonizing doesn't get triggered after # cleanup unintendedly ############################################################################## # - Cython extensions build and parameters ----------------------------------- # Full optimization # Ignore deprecation declaration warnings # No debug symbols, full optimization, no '-Wstrict-prototypes' warning # Delay import this to allow for Cython-less installs # -j option in Py3.5+ # Skip calling super() and jump straight to setuptools ############################################################################## # - Python package generation ------------------------------------------------
1.401652
1
translation.py
navaneethrkrishna007/Rex-TelegramOrgRoBot
0
6630960
<reponame>navaneethrkrishna007/Rex-TelegramOrgRoBot class Translation(object): START_TEXT = """Hi! Hai Iam a Simple My.telegram.org Bot. To Get API ID & API HASH Enter your Telegram Phone Number With Country Code. 🤖 𝙱𝚘𝚝 𝚄𝚙𝚍𝚊𝚝𝚎𝚜 : @Madez_Offical Click /Start To Restart The Progress""" AFTER_RECVD_CODE_TEXT = """I see! Now please send the Telegram code that you received from Telegram! This code is only used for the purpose of getting the APP ID from my.telegram.org Click /Start To Restart The Progress""" BEFORE_SUCC_LOGIN = "recieved code. Scarpping web page ..." ERRED_PAGE = "something wrongings. failed to get app id. \n\n@Rex_Bots_Support\n\nHow Get Api Code For Website" CANCELLED_MESG = "Bye! Please re /start the bot conversation" IN_VALID_CODE_PVDED = "Send me the code that you received from Telegram" IN_VALID_PHNO_PVDED = "Hey, Send me your Phone Number"
class Translation(object): START_TEXT = """Hi! Hai Iam a Simple My.telegram.org Bot. To Get API ID & API HASH Enter your Telegram Phone Number With Country Code. 🤖 𝙱𝚘𝚝 𝚄𝚙𝚍𝚊𝚝𝚎𝚜 : @Madez_Offical Click /Start To Restart The Progress""" AFTER_RECVD_CODE_TEXT = """I see! Now please send the Telegram code that you received from Telegram! This code is only used for the purpose of getting the APP ID from my.telegram.org Click /Start To Restart The Progress""" BEFORE_SUCC_LOGIN = "recieved code. Scarpping web page ..." ERRED_PAGE = "something wrongings. failed to get app id. \n\n@Rex_Bots_Support\n\nHow Get Api Code For Website" CANCELLED_MESG = "Bye! Please re /start the bot conversation" IN_VALID_CODE_PVDED = "Send me the code that you received from Telegram" IN_VALID_PHNO_PVDED = "Hey, Send me your Phone Number"
en
0.693052
Hi! Hai Iam a Simple My.telegram.org Bot. To Get API ID & API HASH Enter your Telegram Phone Number With Country Code. 🤖 𝙱𝚘𝚝 𝚄𝚙𝚍𝚊𝚝𝚎𝚜 : @Madez_Offical Click /Start To Restart The Progress I see! Now please send the Telegram code that you received from Telegram! This code is only used for the purpose of getting the APP ID from my.telegram.org Click /Start To Restart The Progress
2.945044
3
migrations/versions/ccd22863e633_create_seft_instrument_table.py
ONSdigital/ras-collection-instrument
2
6630961
"""create seft instrument table Revision ID: <KEY> Revises: 72912058602c Create Date: 2018-02-20 13:22:14.773113 """ import sqlalchemy as sa from alembic import op from application.models import GUID # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "72912058602c" branch_labels = None depends_on = None def upgrade(): conn = op.get_bind() sql_query = "ALTER TABLE ras_ci.instrument ADD CONSTRAINT U_instrument_id UNIQUE(instrument_id)" conn.execute(sql_query) op.create_table( "seft_instrument", sa.Column("id", sa.Integer, primary_key=True), sa.Column("data", sa.LargeBinary), sa.Column("len", sa.Integer), sa.Column("file_name", sa.String(32)), sa.Column("instrument_id", GUID), sa.ForeignKeyConstraint(["instrument_id"], ["ras_ci.instrument.instrument_id"]), schema="ras_ci", ) sql_query = ( "INSERT INTO ras_ci.seft_instrument (instrument_id, data, file_name, len) " "SELECT instrument_id, data, file_name, len FROM ras_ci.instrument" ) conn.execute(sql_query) op.drop_column("instrument", "file_name", schema="ras_ci") op.drop_column("instrument", "data", schema="ras_ci") op.drop_column("instrument", "len", schema="ras_ci") op.add_column("instrument", sa.Column("type", sa.String(8)), schema="ras_ci") sql_query = "UPDATE ras_ci.instrument SET type = 'SEFT'" conn.execute(sql_query) def downgrade(): pass
"""create seft instrument table Revision ID: <KEY> Revises: 72912058602c Create Date: 2018-02-20 13:22:14.773113 """ import sqlalchemy as sa from alembic import op from application.models import GUID # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "72912058602c" branch_labels = None depends_on = None def upgrade(): conn = op.get_bind() sql_query = "ALTER TABLE ras_ci.instrument ADD CONSTRAINT U_instrument_id UNIQUE(instrument_id)" conn.execute(sql_query) op.create_table( "seft_instrument", sa.Column("id", sa.Integer, primary_key=True), sa.Column("data", sa.LargeBinary), sa.Column("len", sa.Integer), sa.Column("file_name", sa.String(32)), sa.Column("instrument_id", GUID), sa.ForeignKeyConstraint(["instrument_id"], ["ras_ci.instrument.instrument_id"]), schema="ras_ci", ) sql_query = ( "INSERT INTO ras_ci.seft_instrument (instrument_id, data, file_name, len) " "SELECT instrument_id, data, file_name, len FROM ras_ci.instrument" ) conn.execute(sql_query) op.drop_column("instrument", "file_name", schema="ras_ci") op.drop_column("instrument", "data", schema="ras_ci") op.drop_column("instrument", "len", schema="ras_ci") op.add_column("instrument", sa.Column("type", sa.String(8)), schema="ras_ci") sql_query = "UPDATE ras_ci.instrument SET type = 'SEFT'" conn.execute(sql_query) def downgrade(): pass
en
0.378338
create seft instrument table Revision ID: <KEY> Revises: 72912058602c Create Date: 2018-02-20 13:22:14.773113 # revision identifiers, used by Alembic.
1.543696
2
backend/pose_estimation_consumer_sync.py
j4qfrost/pose-estimation-stream
0
6630962
import subprocess, sys, time, os import json, numpy import cv2 from twitchstream.outputvideo import TwitchBufferedOutputStream from pose_estimation import PoseProcessor # import tensorflow as tf import torch import posenet FFMPEG= 'ffmpeg' FFPROBE = 'ffprobe' def get_stream_resolution(stream_name): metadata = {} while 'streams' not in metadata: info = subprocess.run([FFPROBE, '-v', 'quiet', '-print_format', 'json', '-show_format', '-show_streams', stream_name], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out = info.stdout if out: metadata = json.loads(out.decode('utf-8')) time.sleep(1) print('Grabbed resolution!') return metadata['streams'][0]['width'], metadata['streams'][0]['height'] def get_frame_from_stream(resolution, pipe): width, height = resolution raw_image = pipe.stdout.read(width * height * 3) # read 432*240*3 bytes (= 1 frame) if len(raw_image) == 0: return None return numpy.frombuffer(raw_image, dtype=numpy.uint8).reshape((height, width, 3)) def loop_send_frame(streamkey, resolution, stream, pose_processor): width, height = resolution try: # config = tf.ConfigProto() # config.intra_op_parallelism_threads = 4 # config.inter_op_parallelism_threads = 4 with TwitchBufferedOutputStream( twitch_stream_key=streamkey, width=width, height=height, fps=30., enable_audio=False, verbose=True) as videostream: # with tf.Session(config=config) as sess: # model_cfg, model_outputs = posenet.load_model(3, sess) # frame = tf.placeholder(tf.uint8, shape=(height, width, 3)) # input_image = tf.placeholder(tf.uint8, shape=(1, height + 1, width + 1, 3)) # while True: # frame = get_frame_from_stream(resolution, stream) # if frame is not None: # start = time.time() # output_stride = model_cfg['output_stride'] # input_image, frame, output_scale = posenet.process_input( # frame, output_stride=output_stride) # heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = sess.run( # model_outputs, # feed_dict={'image:0': input_image} # ) # pose_scores, keypoint_scores, keypoint_coords = posenet.decode_multiple_poses( # heatmaps_result.squeeze(axis=0), # offsets_result.squeeze(axis=0), # displacement_fwd_result.squeeze(axis=0), # displacement_bwd_result.squeeze(axis=0), # output_stride=output_stride, # max_pose_detections=1, min_pose_score=0.10) # keypoint_coords *= output_scale # frame = posenet.draw_skel_and_kp( # frame, pose_scores, keypoint_scores, keypoint_coords, # min_pose_score=0.10, min_part_score=0.10) # videostream.send_video_frame(frame) # print(time.time() - start) model = posenet.load_model(101) model = model.cuda() output_stride = model.output_stride while True: frame = get_frame_from_stream(resolution, stream) input_image, frame, output_scale = posenet.process_input( frame, output_stride=output_stride) with torch.no_grad(): input_image = torch.Tensor(input_image).cuda() heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = model(input_image) pose_scores, keypoint_scores, keypoint_coords = posenet.decode_multiple_poses( heatmaps_result.squeeze(0), offsets_result.squeeze(0), displacement_fwd_result.squeeze(0), displacement_bwd_result.squeeze(0), output_stride=output_stride, max_pose_detections=1, min_pose_score=0.1) keypoint_coords *= output_scale # TODO this isn't particularly fast, use GL for drawing and display someday... frame = 255 - posenet.draw_skel_and_kp( frame, pose_scores, keypoint_scores, keypoint_coords, min_pose_score=0.1, min_part_score=0.1) videostream.send_video_frame(frame) # save_image(frame) except Exception as e: raise def save_image(img): cv2.imwrite('test.jpg', img) def main(stream_name): print('Starting program...') # stream_name = argv[1] pose_processor = PoseProcessor('tf') resolution = get_stream_resolution(stream_name) stream = subprocess.Popen([FFMPEG, '-i', stream_name, '-loglevel', 'quiet', # no text output '-c:v', 'h264_nvenc', '-an', # disable audio '-f', 'image2pipe', '-pix_fmt', 'yuv420p', '-vcodec', 'rawvideo', '-'], stdout = subprocess.PIPE, stderr=subprocess.PIPE) loop_send_frame('live_173288790_pEOfgLFUAfocVRZdAQ1D8bUubjL4OY', resolution, stream, pose_processor) # while True: # frame = get_frame_from_stream(resolution, stream) # frame = pose_estimation.process_pose_frame(frame) # if frame is not None: # L.put(frame) if __name__ == '__main__': main(sys.argv[1])
import subprocess, sys, time, os import json, numpy import cv2 from twitchstream.outputvideo import TwitchBufferedOutputStream from pose_estimation import PoseProcessor # import tensorflow as tf import torch import posenet FFMPEG= 'ffmpeg' FFPROBE = 'ffprobe' def get_stream_resolution(stream_name): metadata = {} while 'streams' not in metadata: info = subprocess.run([FFPROBE, '-v', 'quiet', '-print_format', 'json', '-show_format', '-show_streams', stream_name], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out = info.stdout if out: metadata = json.loads(out.decode('utf-8')) time.sleep(1) print('Grabbed resolution!') return metadata['streams'][0]['width'], metadata['streams'][0]['height'] def get_frame_from_stream(resolution, pipe): width, height = resolution raw_image = pipe.stdout.read(width * height * 3) # read 432*240*3 bytes (= 1 frame) if len(raw_image) == 0: return None return numpy.frombuffer(raw_image, dtype=numpy.uint8).reshape((height, width, 3)) def loop_send_frame(streamkey, resolution, stream, pose_processor): width, height = resolution try: # config = tf.ConfigProto() # config.intra_op_parallelism_threads = 4 # config.inter_op_parallelism_threads = 4 with TwitchBufferedOutputStream( twitch_stream_key=streamkey, width=width, height=height, fps=30., enable_audio=False, verbose=True) as videostream: # with tf.Session(config=config) as sess: # model_cfg, model_outputs = posenet.load_model(3, sess) # frame = tf.placeholder(tf.uint8, shape=(height, width, 3)) # input_image = tf.placeholder(tf.uint8, shape=(1, height + 1, width + 1, 3)) # while True: # frame = get_frame_from_stream(resolution, stream) # if frame is not None: # start = time.time() # output_stride = model_cfg['output_stride'] # input_image, frame, output_scale = posenet.process_input( # frame, output_stride=output_stride) # heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = sess.run( # model_outputs, # feed_dict={'image:0': input_image} # ) # pose_scores, keypoint_scores, keypoint_coords = posenet.decode_multiple_poses( # heatmaps_result.squeeze(axis=0), # offsets_result.squeeze(axis=0), # displacement_fwd_result.squeeze(axis=0), # displacement_bwd_result.squeeze(axis=0), # output_stride=output_stride, # max_pose_detections=1, min_pose_score=0.10) # keypoint_coords *= output_scale # frame = posenet.draw_skel_and_kp( # frame, pose_scores, keypoint_scores, keypoint_coords, # min_pose_score=0.10, min_part_score=0.10) # videostream.send_video_frame(frame) # print(time.time() - start) model = posenet.load_model(101) model = model.cuda() output_stride = model.output_stride while True: frame = get_frame_from_stream(resolution, stream) input_image, frame, output_scale = posenet.process_input( frame, output_stride=output_stride) with torch.no_grad(): input_image = torch.Tensor(input_image).cuda() heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = model(input_image) pose_scores, keypoint_scores, keypoint_coords = posenet.decode_multiple_poses( heatmaps_result.squeeze(0), offsets_result.squeeze(0), displacement_fwd_result.squeeze(0), displacement_bwd_result.squeeze(0), output_stride=output_stride, max_pose_detections=1, min_pose_score=0.1) keypoint_coords *= output_scale # TODO this isn't particularly fast, use GL for drawing and display someday... frame = 255 - posenet.draw_skel_and_kp( frame, pose_scores, keypoint_scores, keypoint_coords, min_pose_score=0.1, min_part_score=0.1) videostream.send_video_frame(frame) # save_image(frame) except Exception as e: raise def save_image(img): cv2.imwrite('test.jpg', img) def main(stream_name): print('Starting program...') # stream_name = argv[1] pose_processor = PoseProcessor('tf') resolution = get_stream_resolution(stream_name) stream = subprocess.Popen([FFMPEG, '-i', stream_name, '-loglevel', 'quiet', # no text output '-c:v', 'h264_nvenc', '-an', # disable audio '-f', 'image2pipe', '-pix_fmt', 'yuv420p', '-vcodec', 'rawvideo', '-'], stdout = subprocess.PIPE, stderr=subprocess.PIPE) loop_send_frame('live_173288790_pEOfgLFUAfocVRZdAQ1D8bUubjL4OY', resolution, stream, pose_processor) # while True: # frame = get_frame_from_stream(resolution, stream) # frame = pose_estimation.process_pose_frame(frame) # if frame is not None: # L.put(frame) if __name__ == '__main__': main(sys.argv[1])
en
0.444499
# import tensorflow as tf # read 432*240*3 bytes (= 1 frame) # config = tf.ConfigProto() # config.intra_op_parallelism_threads = 4 # config.inter_op_parallelism_threads = 4 # with tf.Session(config=config) as sess: # model_cfg, model_outputs = posenet.load_model(3, sess) # frame = tf.placeholder(tf.uint8, shape=(height, width, 3)) # input_image = tf.placeholder(tf.uint8, shape=(1, height + 1, width + 1, 3)) # while True: # frame = get_frame_from_stream(resolution, stream) # if frame is not None: # start = time.time() # output_stride = model_cfg['output_stride'] # input_image, frame, output_scale = posenet.process_input( # frame, output_stride=output_stride) # heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = sess.run( # model_outputs, # feed_dict={'image:0': input_image} # ) # pose_scores, keypoint_scores, keypoint_coords = posenet.decode_multiple_poses( # heatmaps_result.squeeze(axis=0), # offsets_result.squeeze(axis=0), # displacement_fwd_result.squeeze(axis=0), # displacement_bwd_result.squeeze(axis=0), # output_stride=output_stride, # max_pose_detections=1, min_pose_score=0.10) # keypoint_coords *= output_scale # frame = posenet.draw_skel_and_kp( # frame, pose_scores, keypoint_scores, keypoint_coords, # min_pose_score=0.10, min_part_score=0.10) # videostream.send_video_frame(frame) # print(time.time() - start) # TODO this isn't particularly fast, use GL for drawing and display someday... # save_image(frame) # stream_name = argv[1] # no text output # disable audio # while True: # frame = get_frame_from_stream(resolution, stream) # frame = pose_estimation.process_pose_frame(frame) # if frame is not None: # L.put(frame)
2.253386
2
FeatureMapVisualizer/visualizer.py
lukysummer/FeatureVisualizer
1
6630963
<filename>FeatureMapVisualizer/visualizer.py import os import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as mcolors from collections import Counter import cv2 from PIL import Image, ImageFile import torch import torchvision import torch.nn.functional as F from torch import nn, optim from torchvision import datasets, transforms, models from torch.utils.data import DataLoader, Dataset from torch.autograd import Variable from .save_features import SaveFeatures class FeatureMapVisualizer(): def __init__(self, model, model_type="resnet", ec=False, use_cuda=True): ''' ### Feature Map Visualization class: ### Contains various functions for visualization methods using convolutional feature maps || PARAMETERS || model : (PyTorch model) model_type : (str) must be "resnet" or "vgg" ec : (bool) True if using encoder, False if using the whole model (encoder + classifier) ''' assert model_type in ["resnet", "vgg"], 'mode_type must be either "resnet" or "vgg"!' self.model = model.eval().cuda() if use_cuda else model.eval() for p in self.model.parameters(): p.requires_grad=False self.model_type = model_type self.ec = ec self.use_cuda = use_cuda def register_hook(self, layer): ''' Register hook in the requested layer ''' if self.model_type == "vgg": conv_layers = [c for c in list(self.model.children())[0] if isinstance(c, nn.Conv2d)] activations = SaveFeatures(conv_layers[layer]) # register hook elif self.model_type == "resnet": if self.ec: activations = SaveFeatures(self.model[-2][-2]) else: activations = SaveFeatures(self.model.layer4[layer]) return activations def find_unique_filters(self, layer, train_dir, classes, n_imgs_dict, n_each_img=25, n_each_class=25): ''' Find indices of feature maps that are activated the most when the model sees images of a particular class, so we can focus on those feature maps when visualizing. || PARAMETERS || layer : (int) if using last convolutional layer, use -2 for resnet & 12 for vgg16 train_dir : (str) address of the folder that contains training data including "/" at the end e.g. "train_data/" classes : (list of strs) list containing (at least two) class names in string e.g. ["cat", "dog"] n_imgs_dict : (dict) key : class name (str), value : # of training images for that class (int) e.g. {"dog":955, "cat":1857} n_each_img : (int) # of top feature maps to save for EACH IMAGE n_each_class : (int) # of top feature maps to save for EACH CLASS ''' cls_dirs = [train_dir + cls for cls in classes] top_feature_maps_dict_each_image = {} # dict to save top feature maps for ALL images for each class n_maps_last_layer = 2048 if self.model_type=="resnet" else 512 ########## Top Feature maps for EACH IMAGE ########## for dir in cls_dirs: # iterate over class top_filters = [] ### for EACH IMAGE of the class ### for img_path in os.listdir(dir): ### Save activations of ALL feature maps for the image ### activations_list = self.one_image_N_top_feature_maps(layer, os.path.join(dir, img_path), plot=False, print_logits=False) ### Add top n_each_img most activated feature maps of the image to the "top filters" list ### top_filters.extend(list(activations_list.detach().cpu().numpy().argsort()[::-1][:n_each_img])) cls = dir.split("/")[-1] # class name ### Add the aggregated list of the class to the dict ### top_feature_maps_dict_each_image[cls] = top_filters print(cls + " done.") ########## Top Feature maps for EACH CLASS ########## top_feature_map_dict_each_class = {} # dict to save top feature maps for each class for cls in classes: ### Count the feature maps appearing in each class's aggregated list of top feature maps for ALL images ### frequency_counters = Counter(top_feature_maps_dict_each_image[cls]) ### Calculate the frequency ratio for each feature map frequency_ratios = [frequency_counters[i]/n_imgs_dict[cls] if i in frequency_counters.keys() else 0. for i in range(n_maps_last_layer)] ### Add top n_each_class most frequent feature maps of the class to the dict ### top_feature_map_dict_each_class[cls] = np.argsort(frequency_ratios)[::-1][:n_each_class] ### Eliminate feature maps that exist in more than one classes' top feature map lists ### unique_top_feature_map_dict_each_class = {} for cls in classes: dict_without_this_class = {key:list(val) for key, val in top_feature_map_dict_each_class.items() if key != cls} if len(classes) > 2: unique_top_feature_map_dict_each_class[cls] = [map for map in top_feature_map_dict_each_class[cls] if map not in set(sum(dict_without_this_class.values(), []))] elif len(classes) == 2: unique_top_feature_map_dict_each_class[cls] = [map for map in top_feature_map_dict_each_class[cls] if map not in list(dict_without_this_class.values())[0]] print("# of top feature maps:", {key:len(val) for key, val in unique_top_feature_map_dict_each_class.items()}) return unique_top_feature_map_dict_each_class def visualize_patterns(self, layer, filter_n, init_size=33, lr=0.2, opt_steps=20, upscaling_steps=20, upscaling_factor=1.2, print_loss=False, plot=False): ''' ### VISUALIZATION #1 : ### Visualize patterns captured by a single feature map || PARAMETERS || layer : (int) index of the convolutional layer to investigate feature maps *For the last convolutional layer, use -2 for resent50 & 12 for vgg16 filter_n : (int) index of the feature map to investigate in the layer init_size : (int) intial length of the square random image lr : (float) learning rate for pixel optimization opt_steps : (int) number of optimization steps upscaling_steps : (int) # of upscaling steps upscaling_factor : (float) >1, upscale factor print_loss : (bool) if True, log info at each optimizing iteration *if activation: 0 for all iterations, there's a problem plot : (bool) if True, plot the generated image at each optimizing iteration ''' activations = self.register_hook(layer) ### Generate a random image ### img = np.uint8(np.random.uniform(150, 180, (init_size, init_size, 3)))/255 sz = init_size if print_loss: plt.imshow(img) plt.title("original random image") plt.show() ### Upscale the image (upscaling_steps) times ### for upscale_i in range(upscaling_steps): ### Attach graients to the optimized image ### img_var = torch.autograd.Variable(torch.Tensor(img.transpose((2,0,1))).cuda().unsqueeze(0), requires_grad=True) ### Define Optimizer to update the image pixels ### optimizer = torch.optim.Adam([img_var], lr=lr, weight_decay=1e-6) ### Update the image's pixel values for (opt_steps) times ### for n in range(opt_steps): optimizer.zero_grad() ### Pass the image through the model ### # Use sigmoid to restrict the image pixels between 0 and 1. # Without sigmoid, the pixels can become negative. self.model(torch.sigmoid(img_var)) ### Maximize the activation of the (filter_n)th feature map of the requested layer ### loss = -activations.features[0, filter_n].mean() if plot: plt.imshow(activations.features[0, filter_n].detach().cpu().numpy(), cmap="gray") plt.show() if print_loss: print("whole layer shape:", activations.features.shape) # [1, n_filter, intermediate_H, intermediate_W] print("intermediate feature shape:", activations.features[0, filter_n].shape) print("parameters shape:", activations.params.shape) print("activation:", activations.features[0, filter_n].mean().item()) loss.backward() optimizer.step() if print_loss: print() if upscale_i < upscaling_steps - 1: img = img_var.detach().cpu().numpy()[0].transpose(1,2,0) ### Scale the optimized image up ### sz = int(upscaling_factor * sz) # calculate new image size img = cv2.resize(img, (sz, sz), interpolation = cv2.INTER_CUBIC) else: ### for the last iteration, convert img_var into a numpy array ### img = torch.sigmoid(img_var).detach().cpu().numpy()[0].transpose(1,2,0) ### Remove hook ### activations.close() ### Save the generated image ### img_name = "layer_"+str(layer)+"_filter_"+str(filter)+".jpg" plt.imsave(img_name, img) return img, img_name def make_img_var(self, img_path): ''' Given a path to an image (str), convert the image into a PyTorch variable ''' img = Image.open(img_path).convert('RGB') transform = transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()]) img = transform(img)[:3, :, :].unsqueeze(0) img_var = torch.autograd.Variable(img.cuda(), requires_grad=True) if self.use_cuda else torch.autograd.Variable(img, requires_grad=True) return img, img_var def one_image_N_top_feature_maps(self, layer, img_path, plot=True, n=100, n_plots_horiz=10, n_plots_vert=10, plot_h=50, plot_w=50, print_logits=False, imagenet=False, plot_overlay=True, n_top_classes=5): ''' ### VISUALIZATION #2 : ### 1. Find top n feature maps for a single image. 2. Highlight each top feature map's most attended regions of the image by overlaying its activation map on top of the image. || PARAMETERS || layer : (int) index of the convolutional layer to investigate feature maps *For the LAST convolutional layer, use -2 for resent50 & 12 for vgg16 img_path : (str) path to the image to investigate plot : (bool) if True, plot the top N feature maps' activation maps on the image /// MUST BE : n_plots_horiz * n_plots_vert = n /// n : (int) # of top feature maps to plot n_plots_horiz : (int) # of feature maps to plot horizontally n_plots_vert : (int) # of feature maps to plot vertically /// It's recommended that (n_plots_horiz/n_plots_vert) = (plot_h/plot_w) /// plot_h : (int) height of the plot plot_w : (int) width of the plot print_logits : (bool) if True, print model logits (outputs) for the image imagenet : (bool) if True, print_logits will print the logits for corresponding imagenet labels plot_overlay : (bool) if True, overlay the top feature map on top of the image and plot the overlaid image if False, plot the original feature map only ''' activations = self.register_hook(layer) ### Convert the image into a pytorch variable ### img, img_var = self.make_img_var(img_path) ### Pass the image through the model ### logits = self.model(img_var) ### Save the activations of ALL feature maps in the requested convolutional layer ### activations_list = activations.features[0].mean((1,2)).detach().cpu() ### Save only the top N most activated feature maps, in order of largest to smallest activations ### topN_activated_feature_maps = np.array(activations_list).argsort()[::-1][:n] if plot: assert n_plots_horiz*n_plots_vert==n, "n_plots_horiz*n_plots_vert must be equal to n!" ### Show the input image ### plt.imshow(np.transpose(img.squeeze(0).numpy(), (1,2,0))) plt.title("original image") plt.show() ### Print model outputs (logits) ### if print_logits: if imagenet: ### Download imagenet labels ### from urllib.request import urlretrieve os.makedirs("attention_data", exist_ok=True) if not os.path.isfile("attention_data/ilsvrc2012_wordnet_lemmas.txt"): urlretrieve("https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt", "attention_data/ilsvrc2012_wordnet_lemmas.txt") if not os.path.isfile("attention_data/ViT-B_16-224.npz"): urlretrieve("https://storage.googleapis.com/vit_models/imagenet21k+imagenet2012/ViT-B_16-224.npz", "attention_data/ViT-B_16-224.npz") imagenet_labels = dict(enumerate(open('attention_data/ilsvrc2012_wordnet_lemmas.txt'))) probs = torch.nn.Softmax(dim=-1)(logits) top = torch.argsort(probs, dim=-1, descending=True) for idx in top[0, :n_top_classes]: print(f'{probs[0, idx.item()]:.5f} : {imagenet_labels[idx.item()]}', end='') else: print("prediction: ", logits) plt.figure(figsize=(plot_w, plot_h)) for top_i in range(n): plt.subplot(n_plots_horiz, n_plots_vert, top_i+1) plt.title("layer "+str(layer)+" filter "+str(topN_activated_feature_maps[top_i])) if plot_overlay: ### Upscale the feature maps to match the image size ### img_dim = img.size(-1) mask = np.array(cv2.resize(activations.features[0, topN_activated_feature_maps[top_i]].detach().cpu().numpy(), (img_dim,img_dim))) if self.model_type == "resnet": mask = mask*2 ### double the mask signal for resnet50 ### Overlay the mask on top of the image ### overlay = np.array([ch * mask for ch in img.detach().cpu().squeeze(0).numpy()]) plt.imshow(np.transpose(np.clip(overlay,0,1), (1,2,0)), cmap="gray") else: mask = activations.features[0, topN_activated_feature_maps[top_i]].detach().cpu().numpy() plt.imshow(mask, cmap="gray") plt.show() ### Plot a line plot of average activations of ALL feature maps ### if plot: plt.plot(activations_list) plt.xlabel("filter in layer "+str(layer)) plt.ylabel("mean activation") plt.show() ### Return the activations of ALL feature maps in the requested convolutional layer ### return activations_list def one_feature_map_N_images(self, layer, dataloader, filter_idx, plot=True, max_n_imgs_to_plot=100, plot_overlay=True, normalize=True, folder="", class_name=""): ''' ### VISUALIZATION #3 : ### Given the index of the feature map to investigate (filter_idx), plot its activation map for images in the dataloader. || PARAMETERS || layer : (int) index of the convolutional layer to investigate feature maps *For the last convolutional layer, use -2 for resent50 & 12 for vgg16 dataloader : (torch.utils.data.dataloader object) dataloader containing images to plot (usually images of a single class) filter_idx : (int) index of the feature map to investigate in the layer plot : (bool) if True, plot the feature maps' activation maps on images in the dataloader max_n_imgs_to_plot : (int) maximum number of images to plot plot_overlay : (bool) if True, overlay the top feature map on top of the image and plot the overlaid image if False, plot the original feature map only normalize : (bool) if True, normalize the mask feature map by dividing by maximum value folder : (str) name of the folder to save images (only if you want to save the visualizations) class_name : (str) name of the class the images belong to ''' activations = self.register_hook(layer) mean_activations_list = [] if plot: n_imgs = len(dataloader.dataset) if plot_all else int(len(dataloader.dataset)/2) n_plots_vert, n_plots_horiz = 10, 2*(int(n_imgs/10)+1) plot_w, plot_h = 50, (50*n_plots_horiz/10) + 1 plt.figure(figsize=(plot_w, plot_h)) plot_i = 1 for batch_i, (img_batch, _) in enumerate(dataloader): if (plot is False) or (plot_all is True) or (batch_i%2 != 0): # only do odd batch (not enough RAM) b = img_batch.size(0) if self.use_cuda: img_batch = img_batch.cuda() ### Pass the batch of images through the model ### self.model(img_batch) ### Save only the requested feature map's activation for the images ### feat = activations.features[:, filter_idx] for img_i in range(b): ### Compute the average of the 7x7 activation map ### mean_activation = feat[img_i].mean((0,1)).item() mean_activations_list.append(mean_activation) if plot: plt.subplot(n_plots_horiz, n_plots_vert, plot_i) plt.imshow(np.transpose(img_batch[img_i].detach().cpu().numpy(), (1,2,0))) plot_i += 1 plt.subplot(n_plots_horiz, n_plots_vert, plot_i) plt.title(str(mean_activation), fontdict={'fontsize':20}) ### Upscale the feature maps to match the image size ### img_dim = img_batch[img_i].size(-1) mask = np.array(cv2.resize(feat[img_i].detach().cpu().numpy(), (img_dim, img_dim))) plt.axis("off") if plot_overlay: if self.model_type == "resnet": mask = mask*2 ### double the mask signal for resnet50 else: if normalize: mask = mask/mask.max() ### Overlay the mask on top of the image ### overlay = np.array([ch * mask for ch in img_batch[img_i].detach().cpu().squeeze(0).numpy()]) plt.imshow(np.transpose(np.clip(overlay, 0, 1), (1,2,0)), cmap="gray") ### Save the masked images ### if folder: if not os.path.exists(folder): os.makedirs(folder) if not os.path.exists(folder+ "/masked_" + class_name): os.makedirs(folder+ "/masked_" + class_name) plt.imsave(folder + "/masked_" + class_name + "_" + str(plot_i) + ".jpg", np.transpose(np.clip(overlay, 0, 1), (1,2,0))) else: plt.imshow(mask, cmap="gray") plot_i += 1 if plot: plt.show() return mean_activations_list def M_feature_maps_N_images(self, layer, dataloader, filter_idxs, plot=True, max_n_imgs_to_plot=100, plot_overlay=True): ''' ### VISUALIZATION #4 : ### Given the indices of MULTIPLE feature maps to investigate (filter_idxs), plot the SUM of their activation maps (one on top of each other) for images in the dataloader. || PARAMETERS || layer : (int) index of the convolutional layer to investigate feature maps *For the last convolutional layer, use -2 for resent50 & 12 for vgg16 dataloader : (torch.utils.data.dataloader object) dataloader containing images to plot (usually images of a single class) filter_idxs : (list of ints) index of the feature map to investigate in the layer plot : (bool) if True, plot the feature maps' activation maps on images in the dataloader max_n_imgs_to_plot : (int) maximum number of images to plot plot_overlay : (bool) if True, overlay the top feature map on top of the image and plot the overlaid image if False, plot the original feature map only ''' activations = self.register_hook(layer) mean_activations_list = [] if plot: n_imgs = min(len(dataloader.dataset), max_n_imgs_to_plot) n_plots_vert, n_plots_horiz = 10, 2*(int(n_imgs/10)+1) plot_w, plot_h = 50, (50*n_plots_horiz/10) + 1 plt.figure(figsize=(plot_w, plot_h)) plot_i = 1 save_i = 1 for batch_i, (img, _) in enumerate(dataloader): if (plot is False) or (plot_all is True) or (batch_i%2 != 0): # only do odd batch (not enough RAM) b = img.size(0) if self.use_cuda: img = img.cuda() self.model(img) for img_i in range(b): mask = np.zeros((224,224)) mean_activation = 0 for filter_idx in filter_idxs: feat = activations.features[:, filter_idx] mask += np.array(cv2.resize(feat[img_i].detach().cpu().numpy(), (224, 224))) mean_activation += feat[img_i].mean((0,1)).item() mean_activations_list.append(mean_activation) overlay = np.array([ch * np.clip(mask, 0, 1) for ch in img[img_i].detach().cpu().squeeze(0).numpy()]) plt.imsave("masked_with_gun_filters/knife/masked_{}.jpg".format(save_i), np.transpose(np.clip(overlay, 0, 1))) save_i+=1 if plot: plt.subplot(n_plots_horiz, n_plots_vert, plot_i) plt.imshow(np.transpose(img[img_i].detach().cpu().numpy(), (1,2,0))) plot_i += 1 plt.subplot(n_plots_horiz, n_plots_vert, plot_i) plt.title(str(mean_activation), fontdict={'fontsize':20}) plt.axis("off") if plot_overlay: #overlay = np.array([ch * np.clip(mask, 0, 1) for ch in img[img_i].detach().cpu().squeeze(0).numpy()]) plt.imshow(np.transpose(np.clip(overlay, 0, 1), (1,2,0)), cmap="gray") plt.imsave("benign_inch/masked_{}.jpg".format(plot_i), np.transpose(np.clip(overlay, 0, 1))) else: plt.imshow(mask, cmap="gray") plot_i += 1 if plot: plt.show() return mean_activations_list def sum_top_feature_maps_by_class(self, layer, transform, img_dir, top_feature_maps_dict=None, training_imgs_dir=None, classes=None, n_imgs_dict=None, plot=True, colours=[c[4:] for c in list(mcolors.TABLEAU_COLORS)]*1000): ''' ### Visualization #5 ### Plot the SUM of activations of each class's top feature maps for each image, for all classes in the same plot || PARAMETERS || layer : (int) if using last convolutional layer, use -2 for resnet & 12 for vgg16 transform : (torchvision.transforms object) transform to be applied to each test image img_dir : (str) address of the folder containing image folders *Image folders' names must be the same as target class names. /// You MUST either pass `top_feature_maps_dict` or ALL of `train_dir`, `classes`, and `n_imgs_dict`. /// top_feature_maps_dict : (dict) (key, value)=(class name, list of top feature maps for that class) e.g. {"cat":[1,3,5], "dog":[2,4,8]} train_dir : (str) address of the folder that contains training data including "/" at the end e.g. "train_data/" classes : (list of strs) list containing (at least two) class names in string e.g. ["cat", "dog"] n_imgs_dict : (dict) key : class name (str), value : # of training images for that class (int) e.g. {"dog":955, "cat":1857} plot : (bool) show plots if True ''' if top_feature_maps_dict is None: top_feature_maps_dict = self.find_unique_filters(layer=layer, train_dir=training_imgs_dir, classes=classes, n_imgs_dict=n_imgs_dict) sum_dicts_dict = {} # will become a dict of dicts classes = os.listdir(img_dir) for cls_i, cls in enumerate(classes): sum_lists_dict = {_cls:[] for _cls in top_feature_maps_dict.keys()} for img_path in os.listdir(os.path.join(img_dir, cls)): # read in the image and transform it into a torch tensor full_img_path = os.path.join(img_dir, cls, img_path) img = Image.open(full_img_path).convert('RGB') img_var = transform(img)[:3, :, :].unsqueeze(0).cuda() # compute the activations of all feature maps for the image activations_list = self.one_image_N_top_feature_maps(layer, img_path=full_img_path, plot=False) # save the sum of only the class top feature maps' activations for each class for top_feature_map_cls in top_feature_maps_dict.keys(): sum_lists_dict[top_feature_map_cls].append(sum(activations_list[top_feature_maps_dict[top_feature_map_cls]])) for top_feature_map_cls in top_feature_maps_dict.keys(): sum_dicts_dict[cls] = sum_lists_dict if plot: c = {cls:colour for cls, colour in zip(classes, colours)} for top_feature_map_cls in top_feature_maps_dict.keys(): plt.figure(figsize=(10,7)) for cls in classes: plt.plot(sum_dicts_dict[cls][top_feature_map_cls], marker=".", color=c[cls]) plt.title(top_feature_map_cls+" activations") plt.legend(classes) plt.show() return sum_dicts_dict
<filename>FeatureMapVisualizer/visualizer.py import os import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as mcolors from collections import Counter import cv2 from PIL import Image, ImageFile import torch import torchvision import torch.nn.functional as F from torch import nn, optim from torchvision import datasets, transforms, models from torch.utils.data import DataLoader, Dataset from torch.autograd import Variable from .save_features import SaveFeatures class FeatureMapVisualizer(): def __init__(self, model, model_type="resnet", ec=False, use_cuda=True): ''' ### Feature Map Visualization class: ### Contains various functions for visualization methods using convolutional feature maps || PARAMETERS || model : (PyTorch model) model_type : (str) must be "resnet" or "vgg" ec : (bool) True if using encoder, False if using the whole model (encoder + classifier) ''' assert model_type in ["resnet", "vgg"], 'mode_type must be either "resnet" or "vgg"!' self.model = model.eval().cuda() if use_cuda else model.eval() for p in self.model.parameters(): p.requires_grad=False self.model_type = model_type self.ec = ec self.use_cuda = use_cuda def register_hook(self, layer): ''' Register hook in the requested layer ''' if self.model_type == "vgg": conv_layers = [c for c in list(self.model.children())[0] if isinstance(c, nn.Conv2d)] activations = SaveFeatures(conv_layers[layer]) # register hook elif self.model_type == "resnet": if self.ec: activations = SaveFeatures(self.model[-2][-2]) else: activations = SaveFeatures(self.model.layer4[layer]) return activations def find_unique_filters(self, layer, train_dir, classes, n_imgs_dict, n_each_img=25, n_each_class=25): ''' Find indices of feature maps that are activated the most when the model sees images of a particular class, so we can focus on those feature maps when visualizing. || PARAMETERS || layer : (int) if using last convolutional layer, use -2 for resnet & 12 for vgg16 train_dir : (str) address of the folder that contains training data including "/" at the end e.g. "train_data/" classes : (list of strs) list containing (at least two) class names in string e.g. ["cat", "dog"] n_imgs_dict : (dict) key : class name (str), value : # of training images for that class (int) e.g. {"dog":955, "cat":1857} n_each_img : (int) # of top feature maps to save for EACH IMAGE n_each_class : (int) # of top feature maps to save for EACH CLASS ''' cls_dirs = [train_dir + cls for cls in classes] top_feature_maps_dict_each_image = {} # dict to save top feature maps for ALL images for each class n_maps_last_layer = 2048 if self.model_type=="resnet" else 512 ########## Top Feature maps for EACH IMAGE ########## for dir in cls_dirs: # iterate over class top_filters = [] ### for EACH IMAGE of the class ### for img_path in os.listdir(dir): ### Save activations of ALL feature maps for the image ### activations_list = self.one_image_N_top_feature_maps(layer, os.path.join(dir, img_path), plot=False, print_logits=False) ### Add top n_each_img most activated feature maps of the image to the "top filters" list ### top_filters.extend(list(activations_list.detach().cpu().numpy().argsort()[::-1][:n_each_img])) cls = dir.split("/")[-1] # class name ### Add the aggregated list of the class to the dict ### top_feature_maps_dict_each_image[cls] = top_filters print(cls + " done.") ########## Top Feature maps for EACH CLASS ########## top_feature_map_dict_each_class = {} # dict to save top feature maps for each class for cls in classes: ### Count the feature maps appearing in each class's aggregated list of top feature maps for ALL images ### frequency_counters = Counter(top_feature_maps_dict_each_image[cls]) ### Calculate the frequency ratio for each feature map frequency_ratios = [frequency_counters[i]/n_imgs_dict[cls] if i in frequency_counters.keys() else 0. for i in range(n_maps_last_layer)] ### Add top n_each_class most frequent feature maps of the class to the dict ### top_feature_map_dict_each_class[cls] = np.argsort(frequency_ratios)[::-1][:n_each_class] ### Eliminate feature maps that exist in more than one classes' top feature map lists ### unique_top_feature_map_dict_each_class = {} for cls in classes: dict_without_this_class = {key:list(val) for key, val in top_feature_map_dict_each_class.items() if key != cls} if len(classes) > 2: unique_top_feature_map_dict_each_class[cls] = [map for map in top_feature_map_dict_each_class[cls] if map not in set(sum(dict_without_this_class.values(), []))] elif len(classes) == 2: unique_top_feature_map_dict_each_class[cls] = [map for map in top_feature_map_dict_each_class[cls] if map not in list(dict_without_this_class.values())[0]] print("# of top feature maps:", {key:len(val) for key, val in unique_top_feature_map_dict_each_class.items()}) return unique_top_feature_map_dict_each_class def visualize_patterns(self, layer, filter_n, init_size=33, lr=0.2, opt_steps=20, upscaling_steps=20, upscaling_factor=1.2, print_loss=False, plot=False): ''' ### VISUALIZATION #1 : ### Visualize patterns captured by a single feature map || PARAMETERS || layer : (int) index of the convolutional layer to investigate feature maps *For the last convolutional layer, use -2 for resent50 & 12 for vgg16 filter_n : (int) index of the feature map to investigate in the layer init_size : (int) intial length of the square random image lr : (float) learning rate for pixel optimization opt_steps : (int) number of optimization steps upscaling_steps : (int) # of upscaling steps upscaling_factor : (float) >1, upscale factor print_loss : (bool) if True, log info at each optimizing iteration *if activation: 0 for all iterations, there's a problem plot : (bool) if True, plot the generated image at each optimizing iteration ''' activations = self.register_hook(layer) ### Generate a random image ### img = np.uint8(np.random.uniform(150, 180, (init_size, init_size, 3)))/255 sz = init_size if print_loss: plt.imshow(img) plt.title("original random image") plt.show() ### Upscale the image (upscaling_steps) times ### for upscale_i in range(upscaling_steps): ### Attach graients to the optimized image ### img_var = torch.autograd.Variable(torch.Tensor(img.transpose((2,0,1))).cuda().unsqueeze(0), requires_grad=True) ### Define Optimizer to update the image pixels ### optimizer = torch.optim.Adam([img_var], lr=lr, weight_decay=1e-6) ### Update the image's pixel values for (opt_steps) times ### for n in range(opt_steps): optimizer.zero_grad() ### Pass the image through the model ### # Use sigmoid to restrict the image pixels between 0 and 1. # Without sigmoid, the pixels can become negative. self.model(torch.sigmoid(img_var)) ### Maximize the activation of the (filter_n)th feature map of the requested layer ### loss = -activations.features[0, filter_n].mean() if plot: plt.imshow(activations.features[0, filter_n].detach().cpu().numpy(), cmap="gray") plt.show() if print_loss: print("whole layer shape:", activations.features.shape) # [1, n_filter, intermediate_H, intermediate_W] print("intermediate feature shape:", activations.features[0, filter_n].shape) print("parameters shape:", activations.params.shape) print("activation:", activations.features[0, filter_n].mean().item()) loss.backward() optimizer.step() if print_loss: print() if upscale_i < upscaling_steps - 1: img = img_var.detach().cpu().numpy()[0].transpose(1,2,0) ### Scale the optimized image up ### sz = int(upscaling_factor * sz) # calculate new image size img = cv2.resize(img, (sz, sz), interpolation = cv2.INTER_CUBIC) else: ### for the last iteration, convert img_var into a numpy array ### img = torch.sigmoid(img_var).detach().cpu().numpy()[0].transpose(1,2,0) ### Remove hook ### activations.close() ### Save the generated image ### img_name = "layer_"+str(layer)+"_filter_"+str(filter)+".jpg" plt.imsave(img_name, img) return img, img_name def make_img_var(self, img_path): ''' Given a path to an image (str), convert the image into a PyTorch variable ''' img = Image.open(img_path).convert('RGB') transform = transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()]) img = transform(img)[:3, :, :].unsqueeze(0) img_var = torch.autograd.Variable(img.cuda(), requires_grad=True) if self.use_cuda else torch.autograd.Variable(img, requires_grad=True) return img, img_var def one_image_N_top_feature_maps(self, layer, img_path, plot=True, n=100, n_plots_horiz=10, n_plots_vert=10, plot_h=50, plot_w=50, print_logits=False, imagenet=False, plot_overlay=True, n_top_classes=5): ''' ### VISUALIZATION #2 : ### 1. Find top n feature maps for a single image. 2. Highlight each top feature map's most attended regions of the image by overlaying its activation map on top of the image. || PARAMETERS || layer : (int) index of the convolutional layer to investigate feature maps *For the LAST convolutional layer, use -2 for resent50 & 12 for vgg16 img_path : (str) path to the image to investigate plot : (bool) if True, plot the top N feature maps' activation maps on the image /// MUST BE : n_plots_horiz * n_plots_vert = n /// n : (int) # of top feature maps to plot n_plots_horiz : (int) # of feature maps to plot horizontally n_plots_vert : (int) # of feature maps to plot vertically /// It's recommended that (n_plots_horiz/n_plots_vert) = (plot_h/plot_w) /// plot_h : (int) height of the plot plot_w : (int) width of the plot print_logits : (bool) if True, print model logits (outputs) for the image imagenet : (bool) if True, print_logits will print the logits for corresponding imagenet labels plot_overlay : (bool) if True, overlay the top feature map on top of the image and plot the overlaid image if False, plot the original feature map only ''' activations = self.register_hook(layer) ### Convert the image into a pytorch variable ### img, img_var = self.make_img_var(img_path) ### Pass the image through the model ### logits = self.model(img_var) ### Save the activations of ALL feature maps in the requested convolutional layer ### activations_list = activations.features[0].mean((1,2)).detach().cpu() ### Save only the top N most activated feature maps, in order of largest to smallest activations ### topN_activated_feature_maps = np.array(activations_list).argsort()[::-1][:n] if plot: assert n_plots_horiz*n_plots_vert==n, "n_plots_horiz*n_plots_vert must be equal to n!" ### Show the input image ### plt.imshow(np.transpose(img.squeeze(0).numpy(), (1,2,0))) plt.title("original image") plt.show() ### Print model outputs (logits) ### if print_logits: if imagenet: ### Download imagenet labels ### from urllib.request import urlretrieve os.makedirs("attention_data", exist_ok=True) if not os.path.isfile("attention_data/ilsvrc2012_wordnet_lemmas.txt"): urlretrieve("https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt", "attention_data/ilsvrc2012_wordnet_lemmas.txt") if not os.path.isfile("attention_data/ViT-B_16-224.npz"): urlretrieve("https://storage.googleapis.com/vit_models/imagenet21k+imagenet2012/ViT-B_16-224.npz", "attention_data/ViT-B_16-224.npz") imagenet_labels = dict(enumerate(open('attention_data/ilsvrc2012_wordnet_lemmas.txt'))) probs = torch.nn.Softmax(dim=-1)(logits) top = torch.argsort(probs, dim=-1, descending=True) for idx in top[0, :n_top_classes]: print(f'{probs[0, idx.item()]:.5f} : {imagenet_labels[idx.item()]}', end='') else: print("prediction: ", logits) plt.figure(figsize=(plot_w, plot_h)) for top_i in range(n): plt.subplot(n_plots_horiz, n_plots_vert, top_i+1) plt.title("layer "+str(layer)+" filter "+str(topN_activated_feature_maps[top_i])) if plot_overlay: ### Upscale the feature maps to match the image size ### img_dim = img.size(-1) mask = np.array(cv2.resize(activations.features[0, topN_activated_feature_maps[top_i]].detach().cpu().numpy(), (img_dim,img_dim))) if self.model_type == "resnet": mask = mask*2 ### double the mask signal for resnet50 ### Overlay the mask on top of the image ### overlay = np.array([ch * mask for ch in img.detach().cpu().squeeze(0).numpy()]) plt.imshow(np.transpose(np.clip(overlay,0,1), (1,2,0)), cmap="gray") else: mask = activations.features[0, topN_activated_feature_maps[top_i]].detach().cpu().numpy() plt.imshow(mask, cmap="gray") plt.show() ### Plot a line plot of average activations of ALL feature maps ### if plot: plt.plot(activations_list) plt.xlabel("filter in layer "+str(layer)) plt.ylabel("mean activation") plt.show() ### Return the activations of ALL feature maps in the requested convolutional layer ### return activations_list def one_feature_map_N_images(self, layer, dataloader, filter_idx, plot=True, max_n_imgs_to_plot=100, plot_overlay=True, normalize=True, folder="", class_name=""): ''' ### VISUALIZATION #3 : ### Given the index of the feature map to investigate (filter_idx), plot its activation map for images in the dataloader. || PARAMETERS || layer : (int) index of the convolutional layer to investigate feature maps *For the last convolutional layer, use -2 for resent50 & 12 for vgg16 dataloader : (torch.utils.data.dataloader object) dataloader containing images to plot (usually images of a single class) filter_idx : (int) index of the feature map to investigate in the layer plot : (bool) if True, plot the feature maps' activation maps on images in the dataloader max_n_imgs_to_plot : (int) maximum number of images to plot plot_overlay : (bool) if True, overlay the top feature map on top of the image and plot the overlaid image if False, plot the original feature map only normalize : (bool) if True, normalize the mask feature map by dividing by maximum value folder : (str) name of the folder to save images (only if you want to save the visualizations) class_name : (str) name of the class the images belong to ''' activations = self.register_hook(layer) mean_activations_list = [] if plot: n_imgs = len(dataloader.dataset) if plot_all else int(len(dataloader.dataset)/2) n_plots_vert, n_plots_horiz = 10, 2*(int(n_imgs/10)+1) plot_w, plot_h = 50, (50*n_plots_horiz/10) + 1 plt.figure(figsize=(plot_w, plot_h)) plot_i = 1 for batch_i, (img_batch, _) in enumerate(dataloader): if (plot is False) or (plot_all is True) or (batch_i%2 != 0): # only do odd batch (not enough RAM) b = img_batch.size(0) if self.use_cuda: img_batch = img_batch.cuda() ### Pass the batch of images through the model ### self.model(img_batch) ### Save only the requested feature map's activation for the images ### feat = activations.features[:, filter_idx] for img_i in range(b): ### Compute the average of the 7x7 activation map ### mean_activation = feat[img_i].mean((0,1)).item() mean_activations_list.append(mean_activation) if plot: plt.subplot(n_plots_horiz, n_plots_vert, plot_i) plt.imshow(np.transpose(img_batch[img_i].detach().cpu().numpy(), (1,2,0))) plot_i += 1 plt.subplot(n_plots_horiz, n_plots_vert, plot_i) plt.title(str(mean_activation), fontdict={'fontsize':20}) ### Upscale the feature maps to match the image size ### img_dim = img_batch[img_i].size(-1) mask = np.array(cv2.resize(feat[img_i].detach().cpu().numpy(), (img_dim, img_dim))) plt.axis("off") if plot_overlay: if self.model_type == "resnet": mask = mask*2 ### double the mask signal for resnet50 else: if normalize: mask = mask/mask.max() ### Overlay the mask on top of the image ### overlay = np.array([ch * mask for ch in img_batch[img_i].detach().cpu().squeeze(0).numpy()]) plt.imshow(np.transpose(np.clip(overlay, 0, 1), (1,2,0)), cmap="gray") ### Save the masked images ### if folder: if not os.path.exists(folder): os.makedirs(folder) if not os.path.exists(folder+ "/masked_" + class_name): os.makedirs(folder+ "/masked_" + class_name) plt.imsave(folder + "/masked_" + class_name + "_" + str(plot_i) + ".jpg", np.transpose(np.clip(overlay, 0, 1), (1,2,0))) else: plt.imshow(mask, cmap="gray") plot_i += 1 if plot: plt.show() return mean_activations_list def M_feature_maps_N_images(self, layer, dataloader, filter_idxs, plot=True, max_n_imgs_to_plot=100, plot_overlay=True): ''' ### VISUALIZATION #4 : ### Given the indices of MULTIPLE feature maps to investigate (filter_idxs), plot the SUM of their activation maps (one on top of each other) for images in the dataloader. || PARAMETERS || layer : (int) index of the convolutional layer to investigate feature maps *For the last convolutional layer, use -2 for resent50 & 12 for vgg16 dataloader : (torch.utils.data.dataloader object) dataloader containing images to plot (usually images of a single class) filter_idxs : (list of ints) index of the feature map to investigate in the layer plot : (bool) if True, plot the feature maps' activation maps on images in the dataloader max_n_imgs_to_plot : (int) maximum number of images to plot plot_overlay : (bool) if True, overlay the top feature map on top of the image and plot the overlaid image if False, plot the original feature map only ''' activations = self.register_hook(layer) mean_activations_list = [] if plot: n_imgs = min(len(dataloader.dataset), max_n_imgs_to_plot) n_plots_vert, n_plots_horiz = 10, 2*(int(n_imgs/10)+1) plot_w, plot_h = 50, (50*n_plots_horiz/10) + 1 plt.figure(figsize=(plot_w, plot_h)) plot_i = 1 save_i = 1 for batch_i, (img, _) in enumerate(dataloader): if (plot is False) or (plot_all is True) or (batch_i%2 != 0): # only do odd batch (not enough RAM) b = img.size(0) if self.use_cuda: img = img.cuda() self.model(img) for img_i in range(b): mask = np.zeros((224,224)) mean_activation = 0 for filter_idx in filter_idxs: feat = activations.features[:, filter_idx] mask += np.array(cv2.resize(feat[img_i].detach().cpu().numpy(), (224, 224))) mean_activation += feat[img_i].mean((0,1)).item() mean_activations_list.append(mean_activation) overlay = np.array([ch * np.clip(mask, 0, 1) for ch in img[img_i].detach().cpu().squeeze(0).numpy()]) plt.imsave("masked_with_gun_filters/knife/masked_{}.jpg".format(save_i), np.transpose(np.clip(overlay, 0, 1))) save_i+=1 if plot: plt.subplot(n_plots_horiz, n_plots_vert, plot_i) plt.imshow(np.transpose(img[img_i].detach().cpu().numpy(), (1,2,0))) plot_i += 1 plt.subplot(n_plots_horiz, n_plots_vert, plot_i) plt.title(str(mean_activation), fontdict={'fontsize':20}) plt.axis("off") if plot_overlay: #overlay = np.array([ch * np.clip(mask, 0, 1) for ch in img[img_i].detach().cpu().squeeze(0).numpy()]) plt.imshow(np.transpose(np.clip(overlay, 0, 1), (1,2,0)), cmap="gray") plt.imsave("benign_inch/masked_{}.jpg".format(plot_i), np.transpose(np.clip(overlay, 0, 1))) else: plt.imshow(mask, cmap="gray") plot_i += 1 if plot: plt.show() return mean_activations_list def sum_top_feature_maps_by_class(self, layer, transform, img_dir, top_feature_maps_dict=None, training_imgs_dir=None, classes=None, n_imgs_dict=None, plot=True, colours=[c[4:] for c in list(mcolors.TABLEAU_COLORS)]*1000): ''' ### Visualization #5 ### Plot the SUM of activations of each class's top feature maps for each image, for all classes in the same plot || PARAMETERS || layer : (int) if using last convolutional layer, use -2 for resnet & 12 for vgg16 transform : (torchvision.transforms object) transform to be applied to each test image img_dir : (str) address of the folder containing image folders *Image folders' names must be the same as target class names. /// You MUST either pass `top_feature_maps_dict` or ALL of `train_dir`, `classes`, and `n_imgs_dict`. /// top_feature_maps_dict : (dict) (key, value)=(class name, list of top feature maps for that class) e.g. {"cat":[1,3,5], "dog":[2,4,8]} train_dir : (str) address of the folder that contains training data including "/" at the end e.g. "train_data/" classes : (list of strs) list containing (at least two) class names in string e.g. ["cat", "dog"] n_imgs_dict : (dict) key : class name (str), value : # of training images for that class (int) e.g. {"dog":955, "cat":1857} plot : (bool) show plots if True ''' if top_feature_maps_dict is None: top_feature_maps_dict = self.find_unique_filters(layer=layer, train_dir=training_imgs_dir, classes=classes, n_imgs_dict=n_imgs_dict) sum_dicts_dict = {} # will become a dict of dicts classes = os.listdir(img_dir) for cls_i, cls in enumerate(classes): sum_lists_dict = {_cls:[] for _cls in top_feature_maps_dict.keys()} for img_path in os.listdir(os.path.join(img_dir, cls)): # read in the image and transform it into a torch tensor full_img_path = os.path.join(img_dir, cls, img_path) img = Image.open(full_img_path).convert('RGB') img_var = transform(img)[:3, :, :].unsqueeze(0).cuda() # compute the activations of all feature maps for the image activations_list = self.one_image_N_top_feature_maps(layer, img_path=full_img_path, plot=False) # save the sum of only the class top feature maps' activations for each class for top_feature_map_cls in top_feature_maps_dict.keys(): sum_lists_dict[top_feature_map_cls].append(sum(activations_list[top_feature_maps_dict[top_feature_map_cls]])) for top_feature_map_cls in top_feature_maps_dict.keys(): sum_dicts_dict[cls] = sum_lists_dict if plot: c = {cls:colour for cls, colour in zip(classes, colours)} for top_feature_map_cls in top_feature_maps_dict.keys(): plt.figure(figsize=(10,7)) for cls in classes: plt.plot(sum_dicts_dict[cls][top_feature_map_cls], marker=".", color=c[cls]) plt.title(top_feature_map_cls+" activations") plt.legend(classes) plt.show() return sum_dicts_dict
en
0.656934
### Feature Map Visualization class: ### Contains various functions for visualization methods using convolutional feature maps || PARAMETERS || model : (PyTorch model) model_type : (str) must be "resnet" or "vgg" ec : (bool) True if using encoder, False if using the whole model (encoder + classifier) Register hook in the requested layer # register hook Find indices of feature maps that are activated the most when the model sees images of a particular class, so we can focus on those feature maps when visualizing. || PARAMETERS || layer : (int) if using last convolutional layer, use -2 for resnet & 12 for vgg16 train_dir : (str) address of the folder that contains training data including "/" at the end e.g. "train_data/" classes : (list of strs) list containing (at least two) class names in string e.g. ["cat", "dog"] n_imgs_dict : (dict) key : class name (str), value : # of training images for that class (int) e.g. {"dog":955, "cat":1857} n_each_img : (int) # of top feature maps to save for EACH IMAGE n_each_class : (int) # of top feature maps to save for EACH CLASS # dict to save top feature maps for ALL images for each class ########## Top Feature maps for EACH IMAGE ########## # iterate over class ### for EACH IMAGE of the class ### ### Save activations of ALL feature maps for the image ### ### Add top n_each_img most activated feature maps of the image to the "top filters" list ### # class name ### Add the aggregated list of the class to the dict ### ########## Top Feature maps for EACH CLASS ########## # dict to save top feature maps for each class ### Count the feature maps appearing in each class's aggregated list of top feature maps for ALL images ### ### Calculate the frequency ratio for each feature map ### Add top n_each_class most frequent feature maps of the class to the dict ### ### Eliminate feature maps that exist in more than one classes' top feature map lists ### ### VISUALIZATION #1 : ### Visualize patterns captured by a single feature map || PARAMETERS || layer : (int) index of the convolutional layer to investigate feature maps *For the last convolutional layer, use -2 for resent50 & 12 for vgg16 filter_n : (int) index of the feature map to investigate in the layer init_size : (int) intial length of the square random image lr : (float) learning rate for pixel optimization opt_steps : (int) number of optimization steps upscaling_steps : (int) # of upscaling steps upscaling_factor : (float) >1, upscale factor print_loss : (bool) if True, log info at each optimizing iteration *if activation: 0 for all iterations, there's a problem plot : (bool) if True, plot the generated image at each optimizing iteration ### Generate a random image ### ### Upscale the image (upscaling_steps) times ### ### Attach graients to the optimized image ### ### Define Optimizer to update the image pixels ### ### Update the image's pixel values for (opt_steps) times ### ### Pass the image through the model ### # Use sigmoid to restrict the image pixels between 0 and 1. # Without sigmoid, the pixels can become negative. ### Maximize the activation of the (filter_n)th feature map of the requested layer ### # [1, n_filter, intermediate_H, intermediate_W] ### Scale the optimized image up ### # calculate new image size ### for the last iteration, convert img_var into a numpy array ### ### Remove hook ### ### Save the generated image ### Given a path to an image (str), convert the image into a PyTorch variable ### VISUALIZATION #2 : ### 1. Find top n feature maps for a single image. 2. Highlight each top feature map's most attended regions of the image by overlaying its activation map on top of the image. || PARAMETERS || layer : (int) index of the convolutional layer to investigate feature maps *For the LAST convolutional layer, use -2 for resent50 & 12 for vgg16 img_path : (str) path to the image to investigate plot : (bool) if True, plot the top N feature maps' activation maps on the image /// MUST BE : n_plots_horiz * n_plots_vert = n /// n : (int) # of top feature maps to plot n_plots_horiz : (int) # of feature maps to plot horizontally n_plots_vert : (int) # of feature maps to plot vertically /// It's recommended that (n_plots_horiz/n_plots_vert) = (plot_h/plot_w) /// plot_h : (int) height of the plot plot_w : (int) width of the plot print_logits : (bool) if True, print model logits (outputs) for the image imagenet : (bool) if True, print_logits will print the logits for corresponding imagenet labels plot_overlay : (bool) if True, overlay the top feature map on top of the image and plot the overlaid image if False, plot the original feature map only ### Convert the image into a pytorch variable ### ### Pass the image through the model ### ### Save the activations of ALL feature maps in the requested convolutional layer ### ### Save only the top N most activated feature maps, in order of largest to smallest activations ### ### Show the input image ### ### Print model outputs (logits) ### ### Download imagenet labels ### ### Upscale the feature maps to match the image size ### ### double the mask signal for resnet50 ### Overlay the mask on top of the image ### ### Plot a line plot of average activations of ALL feature maps ### ### Return the activations of ALL feature maps in the requested convolutional layer ### ### VISUALIZATION #3 : ### Given the index of the feature map to investigate (filter_idx), plot its activation map for images in the dataloader. || PARAMETERS || layer : (int) index of the convolutional layer to investigate feature maps *For the last convolutional layer, use -2 for resent50 & 12 for vgg16 dataloader : (torch.utils.data.dataloader object) dataloader containing images to plot (usually images of a single class) filter_idx : (int) index of the feature map to investigate in the layer plot : (bool) if True, plot the feature maps' activation maps on images in the dataloader max_n_imgs_to_plot : (int) maximum number of images to plot plot_overlay : (bool) if True, overlay the top feature map on top of the image and plot the overlaid image if False, plot the original feature map only normalize : (bool) if True, normalize the mask feature map by dividing by maximum value folder : (str) name of the folder to save images (only if you want to save the visualizations) class_name : (str) name of the class the images belong to # only do odd batch (not enough RAM) ### Pass the batch of images through the model ### ### Save only the requested feature map's activation for the images ### ### Compute the average of the 7x7 activation map ### ### Upscale the feature maps to match the image size ### ### double the mask signal for resnet50 ### Overlay the mask on top of the image ### ### Save the masked images ### ### VISUALIZATION #4 : ### Given the indices of MULTIPLE feature maps to investigate (filter_idxs), plot the SUM of their activation maps (one on top of each other) for images in the dataloader. || PARAMETERS || layer : (int) index of the convolutional layer to investigate feature maps *For the last convolutional layer, use -2 for resent50 & 12 for vgg16 dataloader : (torch.utils.data.dataloader object) dataloader containing images to plot (usually images of a single class) filter_idxs : (list of ints) index of the feature map to investigate in the layer plot : (bool) if True, plot the feature maps' activation maps on images in the dataloader max_n_imgs_to_plot : (int) maximum number of images to plot plot_overlay : (bool) if True, overlay the top feature map on top of the image and plot the overlaid image if False, plot the original feature map only # only do odd batch (not enough RAM) #overlay = np.array([ch * np.clip(mask, 0, 1) for ch in img[img_i].detach().cpu().squeeze(0).numpy()]) ### Visualization #5 ### Plot the SUM of activations of each class's top feature maps for each image, for all classes in the same plot || PARAMETERS || layer : (int) if using last convolutional layer, use -2 for resnet & 12 for vgg16 transform : (torchvision.transforms object) transform to be applied to each test image img_dir : (str) address of the folder containing image folders *Image folders' names must be the same as target class names. /// You MUST either pass `top_feature_maps_dict` or ALL of `train_dir`, `classes`, and `n_imgs_dict`. /// top_feature_maps_dict : (dict) (key, value)=(class name, list of top feature maps for that class) e.g. {"cat":[1,3,5], "dog":[2,4,8]} train_dir : (str) address of the folder that contains training data including "/" at the end e.g. "train_data/" classes : (list of strs) list containing (at least two) class names in string e.g. ["cat", "dog"] n_imgs_dict : (dict) key : class name (str), value : # of training images for that class (int) e.g. {"dog":955, "cat":1857} plot : (bool) show plots if True # will become a dict of dicts # read in the image and transform it into a torch tensor # compute the activations of all feature maps for the image # save the sum of only the class top feature maps' activations for each class
2.480209
2
thonny/plugins/backend/birdseye_backend.py
rjalif199/thonny
2
6630964
import os from thonny.plugins.cpython.cpython_backend import ( get_backend, Executor, return_execution_result, prepare_hooks, ) def _cmd_Birdseye(cmd): backend = get_backend() backend.switch_env_to_script_mode(cmd) return backend._execute_file(cmd, BirdsEyeRunner) class BirdsEyeRunner(Executor): @return_execution_result @prepare_hooks def execute_source(self, source, filename, mode, ast_postprocessors): import webbrowser assert mode == "exec" # ignore ast_postprocessors, because birdseye requires source if isinstance(source, bytes): source = source.decode("utf-8") import __main__ # @UnresolvedImport global_vars = __main__.__dict__ # Following is a trick, which allows importing birdseye in the backends, # which doesn't have it installed (provided it is installed for frontend Python) from birdseye.bird import eye eye.exec_string(source, filename, globs=global_vars, locs=global_vars, deep=True) port = os.environ.get("BIRDSEYE_PORT", "7777") webbrowser.open_new_tab("http://localhost:%s/ipython_call/" % port + eye._last_call_id) def load_plugin(): try: os.environ["OUTDATED_IGNORE"] = "1" # TODO: it would be good to do this here, but it's slow # import birdseye.bird # need to import at plugin load time, because later it may not be in path except ImportError: pass get_backend().add_command("Birdseye", _cmd_Birdseye)
import os from thonny.plugins.cpython.cpython_backend import ( get_backend, Executor, return_execution_result, prepare_hooks, ) def _cmd_Birdseye(cmd): backend = get_backend() backend.switch_env_to_script_mode(cmd) return backend._execute_file(cmd, BirdsEyeRunner) class BirdsEyeRunner(Executor): @return_execution_result @prepare_hooks def execute_source(self, source, filename, mode, ast_postprocessors): import webbrowser assert mode == "exec" # ignore ast_postprocessors, because birdseye requires source if isinstance(source, bytes): source = source.decode("utf-8") import __main__ # @UnresolvedImport global_vars = __main__.__dict__ # Following is a trick, which allows importing birdseye in the backends, # which doesn't have it installed (provided it is installed for frontend Python) from birdseye.bird import eye eye.exec_string(source, filename, globs=global_vars, locs=global_vars, deep=True) port = os.environ.get("BIRDSEYE_PORT", "7777") webbrowser.open_new_tab("http://localhost:%s/ipython_call/" % port + eye._last_call_id) def load_plugin(): try: os.environ["OUTDATED_IGNORE"] = "1" # TODO: it would be good to do this here, but it's slow # import birdseye.bird # need to import at plugin load time, because later it may not be in path except ImportError: pass get_backend().add_command("Birdseye", _cmd_Birdseye)
en
0.94183
# ignore ast_postprocessors, because birdseye requires source # @UnresolvedImport # Following is a trick, which allows importing birdseye in the backends, # which doesn't have it installed (provided it is installed for frontend Python) # TODO: it would be good to do this here, but it's slow # import birdseye.bird # need to import at plugin load time, because later it may not be in path
2.20893
2
backend/mythbusters/users/views/users_views.py
MayankJ99/MythBuster
0
6630965
from django.shortcuts import render from django.http import JsonResponse from rest_framework.response import Response from rest_framework.decorators import api_view, permission_classes from users.serializers import * from users.models import * # Create your views here. from rest_framework import status from django.contrib.auth.hashers import make_password from rest_framework.permissions import IsAuthenticated, IsAdminUser from rest_framework_simplejwt.serializers import TokenObtainPairSerializer from rest_framework_simplejwt.views import TokenObtainPairView class MyTokenObtainPairSerializer(TokenObtainPairSerializer): def validate(self, attrs): data = super().validate(attrs) serializer = UserSerializerWithToken(self.user).data for k, v in serializer.items(): data[k] = v return data class MyTokenObtainPairView(TokenObtainPairView): serializer_class = MyTokenObtainPairSerializer #create a GET view to return all users from the User model in Django @api_view(['GET']) def get_users(request): users = CurrentUser.objects.all() serializer = UserSerializer(users, many=True) return Response(serializer.data) #create a GET view to return one particular user from the User model in Django using the pk @api_view(['GET']) def get_user_profile(request, pk): user = CurrentUser.objects.get(pk=pk) serializer = UserProfileSerializer(user) return Response(serializer.data) #create a GET view called get_current_user_profile that will be a protected route to return the current user's profile @api_view(['GET']) @permission_classes((IsAuthenticated,)) def get_current_user_profile(request): print(request.user) user = CurrentUser.objects.get(pk=request.user.id) serializer = UserProfileSerializer(user) return Response(serializer.data) #create a POST view to create a new user in the User model in Django that also creates a UserProfile object associated with the newly created user @api_view(['POST']) def create_user(request): try: data = request.data print(data) user = CurrentUser.objects.create( username=data['username'], email = data['email'], first_name = data['first_name'], last_name = data['last_name'], password=make_password(data['password']), ) user_profile = UserProfile.objects.create( user=user, bio=data['bio'], linkedin=data['linkedin'], twitter = data['twitter'], github = data['github'], occupation = data['occupation'], location = data['location'], website = data['website'], education = data['education'], ) user.save() user_profile.save() serializer = UserSerializerWithToken(user) return Response(serializer.data, status=status.HTTP_201_CREATED) except Exception as err: print(err) message = {'detail': 'User with this email already exists'} return Response(message, status=status.HTTP_400_BAD_REQUEST) #create a PUT call to update a user in the User model in Django. It should include a permission for isauth users to update their own profile #the PUT call should update the UserProfile model as well. It should only update the fields that are non empty in the request data @api_view(['PUT']) @permission_classes((IsAuthenticated,)) def update_user(request): try: user = CurrentUser.objects.get(pk=request.user.id) user_profile = UserProfile.objects.get(user=user) data = request.data # if data['username'] != '': # user.username = data['username'] # if data['email'] != '': # user.email = data['email'] # if data['first_name'] != '': # user.first_name = data['first_name'] # if data['last_name'] != '': # user.last_name = data['last_name'] # if data['bio'] != '': # user_profile.bio = data['bio'] # if data['linkedin'] != '': # user_profile.linkedin = data['linkedin'] # if data['twitter'] != '': # user_profile.twitter = data['twitter'] # if data['github'] != '': # user_profile.github = data['github'] # if data['occupation'] != '': # user_profile.occupation = data['occupation'] # if data['location'] != '': # user_profile.location = data['location'] # if data['website'] != '': # user_profile.website = data['website'] # if data['education'] != '': # user_profile.education = data['education'] if 'username' in data: user.username = data['username'] if 'email' in data: user.email = data['email'] if 'first_name' in data: user.first_name = data['first_name'] if 'last_name' in data: user.last_name = data['last_name'] if 'bio' in data: user_profile.bio = data['bio'] if 'linkedin' in data: user_profile.linkedin = data['linkedin'] if 'profile_image' in data: user_profile.profile_image = data['profile_image'] if 'twitter' in data: user_profile.twitter = data['twitter'] if 'github' in data: user_profile.github = data['github'] if 'occupation' in data: user_profile.occupation = data['occupation'] if 'location' in data: user_profile.location = data['location'] if 'website' in data: user_profile.website = data['website'] if 'education' in data: user_profile.education = data['education'] user.save() user_profile.save() serializer = UserProfileSerializer(user) return Response(serializer.data, status=status.HTTP_201_CREATED) except Exception as err: message = {"error" : err} return Response(message, status=status.HTTP_400_BAD_REQUEST) #create a DELETE call to delete the current user from the User model in Django. Must be protected by a permission class @api_view(['DELETE']) @permission_classes((IsAuthenticated,)) def delete_user(request): try: user = request.user user.delete() return Response(status=status.HTTP_204_NO_CONTENT) except Exception as err: message = {"error" : err} return Response(message, status=status.HTTP_400_BAD_REQUEST)
from django.shortcuts import render from django.http import JsonResponse from rest_framework.response import Response from rest_framework.decorators import api_view, permission_classes from users.serializers import * from users.models import * # Create your views here. from rest_framework import status from django.contrib.auth.hashers import make_password from rest_framework.permissions import IsAuthenticated, IsAdminUser from rest_framework_simplejwt.serializers import TokenObtainPairSerializer from rest_framework_simplejwt.views import TokenObtainPairView class MyTokenObtainPairSerializer(TokenObtainPairSerializer): def validate(self, attrs): data = super().validate(attrs) serializer = UserSerializerWithToken(self.user).data for k, v in serializer.items(): data[k] = v return data class MyTokenObtainPairView(TokenObtainPairView): serializer_class = MyTokenObtainPairSerializer #create a GET view to return all users from the User model in Django @api_view(['GET']) def get_users(request): users = CurrentUser.objects.all() serializer = UserSerializer(users, many=True) return Response(serializer.data) #create a GET view to return one particular user from the User model in Django using the pk @api_view(['GET']) def get_user_profile(request, pk): user = CurrentUser.objects.get(pk=pk) serializer = UserProfileSerializer(user) return Response(serializer.data) #create a GET view called get_current_user_profile that will be a protected route to return the current user's profile @api_view(['GET']) @permission_classes((IsAuthenticated,)) def get_current_user_profile(request): print(request.user) user = CurrentUser.objects.get(pk=request.user.id) serializer = UserProfileSerializer(user) return Response(serializer.data) #create a POST view to create a new user in the User model in Django that also creates a UserProfile object associated with the newly created user @api_view(['POST']) def create_user(request): try: data = request.data print(data) user = CurrentUser.objects.create( username=data['username'], email = data['email'], first_name = data['first_name'], last_name = data['last_name'], password=make_password(data['password']), ) user_profile = UserProfile.objects.create( user=user, bio=data['bio'], linkedin=data['linkedin'], twitter = data['twitter'], github = data['github'], occupation = data['occupation'], location = data['location'], website = data['website'], education = data['education'], ) user.save() user_profile.save() serializer = UserSerializerWithToken(user) return Response(serializer.data, status=status.HTTP_201_CREATED) except Exception as err: print(err) message = {'detail': 'User with this email already exists'} return Response(message, status=status.HTTP_400_BAD_REQUEST) #create a PUT call to update a user in the User model in Django. It should include a permission for isauth users to update their own profile #the PUT call should update the UserProfile model as well. It should only update the fields that are non empty in the request data @api_view(['PUT']) @permission_classes((IsAuthenticated,)) def update_user(request): try: user = CurrentUser.objects.get(pk=request.user.id) user_profile = UserProfile.objects.get(user=user) data = request.data # if data['username'] != '': # user.username = data['username'] # if data['email'] != '': # user.email = data['email'] # if data['first_name'] != '': # user.first_name = data['first_name'] # if data['last_name'] != '': # user.last_name = data['last_name'] # if data['bio'] != '': # user_profile.bio = data['bio'] # if data['linkedin'] != '': # user_profile.linkedin = data['linkedin'] # if data['twitter'] != '': # user_profile.twitter = data['twitter'] # if data['github'] != '': # user_profile.github = data['github'] # if data['occupation'] != '': # user_profile.occupation = data['occupation'] # if data['location'] != '': # user_profile.location = data['location'] # if data['website'] != '': # user_profile.website = data['website'] # if data['education'] != '': # user_profile.education = data['education'] if 'username' in data: user.username = data['username'] if 'email' in data: user.email = data['email'] if 'first_name' in data: user.first_name = data['first_name'] if 'last_name' in data: user.last_name = data['last_name'] if 'bio' in data: user_profile.bio = data['bio'] if 'linkedin' in data: user_profile.linkedin = data['linkedin'] if 'profile_image' in data: user_profile.profile_image = data['profile_image'] if 'twitter' in data: user_profile.twitter = data['twitter'] if 'github' in data: user_profile.github = data['github'] if 'occupation' in data: user_profile.occupation = data['occupation'] if 'location' in data: user_profile.location = data['location'] if 'website' in data: user_profile.website = data['website'] if 'education' in data: user_profile.education = data['education'] user.save() user_profile.save() serializer = UserProfileSerializer(user) return Response(serializer.data, status=status.HTTP_201_CREATED) except Exception as err: message = {"error" : err} return Response(message, status=status.HTTP_400_BAD_REQUEST) #create a DELETE call to delete the current user from the User model in Django. Must be protected by a permission class @api_view(['DELETE']) @permission_classes((IsAuthenticated,)) def delete_user(request): try: user = request.user user.delete() return Response(status=status.HTTP_204_NO_CONTENT) except Exception as err: message = {"error" : err} return Response(message, status=status.HTTP_400_BAD_REQUEST)
en
0.697569
# Create your views here. #create a GET view to return all users from the User model in Django #create a GET view to return one particular user from the User model in Django using the pk #create a GET view called get_current_user_profile that will be a protected route to return the current user's profile #create a POST view to create a new user in the User model in Django that also creates a UserProfile object associated with the newly created user #create a PUT call to update a user in the User model in Django. It should include a permission for isauth users to update their own profile #the PUT call should update the UserProfile model as well. It should only update the fields that are non empty in the request data # if data['username'] != '': # user.username = data['username'] # if data['email'] != '': # user.email = data['email'] # if data['first_name'] != '': # user.first_name = data['first_name'] # if data['last_name'] != '': # user.last_name = data['last_name'] # if data['bio'] != '': # user_profile.bio = data['bio'] # if data['linkedin'] != '': # user_profile.linkedin = data['linkedin'] # if data['twitter'] != '': # user_profile.twitter = data['twitter'] # if data['github'] != '': # user_profile.github = data['github'] # if data['occupation'] != '': # user_profile.occupation = data['occupation'] # if data['location'] != '': # user_profile.location = data['location'] # if data['website'] != '': # user_profile.website = data['website'] # if data['education'] != '': # user_profile.education = data['education'] #create a DELETE call to delete the current user from the User model in Django. Must be protected by a permission class
2.223803
2
togglcmder/toggl/decoders/time_entry_decoder.py
yatesjr/toggl-cmder
3
6630966
from json import JSONDecoder from togglcmder.toggl.builders.time_entry_builder import TimeEntryBuilder class TimeEntryDecoder(JSONDecoder): def __init__(self, *args: tuple, **kwargs: dict): JSONDecoder.__init__(self, object_hook=TimeEntryDecoder.object_hook, *args, **kwargs) @staticmethod def object_hook(obj: dict): if 'data' in obj: return obj['data'] if 'id' in obj: return TimeEntryBuilder()\ .identifier(obj['id'])\ .description(obj.get('description', None))\ .workspace_identifier(obj['wid'])\ .project_identifier(obj.get('pid', None))\ .start_time(start_time=obj['start'])\ .duration(obj.get('duration', None))\ .stop_time(stop_time=obj.get('stop', None))\ .tags(obj.get('tags', None))\ .last_updated(last_update=obj.get('at', None))\ .build() return obj
from json import JSONDecoder from togglcmder.toggl.builders.time_entry_builder import TimeEntryBuilder class TimeEntryDecoder(JSONDecoder): def __init__(self, *args: tuple, **kwargs: dict): JSONDecoder.__init__(self, object_hook=TimeEntryDecoder.object_hook, *args, **kwargs) @staticmethod def object_hook(obj: dict): if 'data' in obj: return obj['data'] if 'id' in obj: return TimeEntryBuilder()\ .identifier(obj['id'])\ .description(obj.get('description', None))\ .workspace_identifier(obj['wid'])\ .project_identifier(obj.get('pid', None))\ .start_time(start_time=obj['start'])\ .duration(obj.get('duration', None))\ .stop_time(stop_time=obj.get('stop', None))\ .tags(obj.get('tags', None))\ .last_updated(last_update=obj.get('at', None))\ .build() return obj
none
1
2.406256
2
pandas/core/algorithms.py
flexlee/pandas
0
6630967
<gh_stars>0 """ Generic data algorithms. This module is experimental at the moment and not intended for public consumption """ import numpy as np import pandas.core.common as com import pandas.lib as lib import pandas._algos as _algos def match(to_match, values, na_sentinel=-1): """ Compute locations of to_match into values Parameters ---------- to_match : array-like values to find positions of values : array-like Unique set of values na_sentinel : int, default -1 Value to mark "not found" Examples -------- Returns ------- match : ndarray of integers """ values = com._asarray_tuplesafe(values) if issubclass(values.dtype.type, basestring): values = np.array(values, dtype='O') f = lambda htype, caster: _match_generic(to_match, values, htype, caster) return _hashtable_algo(f, values.dtype) def unique(values): """ Compute unique values (not necessarily sorted) efficiently from input array of values Parameters ---------- values : array-like Returns ------- uniques """ values = com._asarray_tuplesafe(values) f = lambda htype, caster: _unique_generic(values, htype, caster) return _hashtable_algo(f, values.dtype) # def count(values, uniques=None): # f = lambda htype, caster: _count_generic(values, htype, caster) # if uniques is not None: # raise NotImplementedError # else: # return _hashtable_algo(f, values.dtype) def _hashtable_algo(f, dtype): """ f(HashTable, type_caster) -> result """ if com.is_float_dtype(dtype): return f(lib.Float64HashTable, com._ensure_float64) elif com.is_integer_dtype(dtype): return f(lib.Int64HashTable, com._ensure_int64) else: return f(lib.PyObjectHashTable, com._ensure_object) def _count_generic(values, table_type, type_caster): from pandas.core.series import Series values = type_caster(values) table = table_type(min(len(values), 1000000)) uniques, labels = table.factorize(values) return Series(counts, index=uniques) def _match_generic(values, index, table_type, type_caster): values = type_caster(values) index = type_caster(index) table = table_type(min(len(index), 1000000)) table.map_locations(index) return table.lookup(values) def _unique_generic(values, table_type, type_caster): values = type_caster(values) table = table_type(min(len(values), 1000000)) uniques = table.unique(values) return type_caster(uniques) def factorize(values, sort=False, order=None, na_sentinel=-1): """ Encode input values as an enumerated type or categorical variable Parameters ---------- values : sequence sort : order : Returns ------- """ values = np.asarray(values) is_datetime = com.is_datetime64_dtype(values) (hash_klass, vec_klass), values = _get_data_algo(values, _hashtables) table = hash_klass(len(values)) uniques = vec_klass() labels = table.get_labels(values, uniques, 0, na_sentinel) labels = com._ensure_platform_int(labels) uniques = uniques.to_array() if sort and len(uniques) > 0: sorter = uniques.argsort() reverse_indexer = np.empty(len(sorter), dtype=np.int_) reverse_indexer.put(sorter, np.arange(len(sorter))) mask = labels < 0 labels = reverse_indexer.take(labels) np.putmask(labels, mask, -1) uniques = uniques.take(sorter) if is_datetime: uniques = uniques.view('M8[ns]') return labels, uniques def value_counts(values, sort=True, ascending=False): """ Compute a histogram of the counts of non-null values Parameters ---------- values : ndarray (1-d) sort : boolean, default True Sort by values ascending : boolean, default False Sort in ascending order Returns ------- value_counts : Series """ from pandas.core.series import Series from collections import defaultdict values = np.asarray(values) if com.is_integer_dtype(values.dtype): values = com._ensure_int64(values) keys, counts = lib.value_count_int64(values) result = Series(counts, index=keys) else: counter = defaultdict(lambda: 0) values = values[com.notnull(values)] for value in values: counter[value] += 1 result = Series(counter) if sort: result.sort() if not ascending: result = result[::-1] return result def rank(values, axis=0, method='average', na_option='keep', ascending=True): """ """ if values.ndim == 1: f, values = _get_data_algo(values, _rank1d_functions) ranks = f(values, ties_method=method, ascending=ascending, na_option=na_option) elif values.ndim == 2: f, values = _get_data_algo(values, _rank2d_functions) ranks = f(values, axis=axis, ties_method=method, ascending=ascending, na_option=na_option) return ranks def quantile(x, q, interpolation_method='fraction'): """ Compute sample quantile or quantiles of the input array. For example, q=0.5 computes the median. The `interpolation_method` parameter supports three values, namely `fraction` (default), `lower` and `higher`. Interpolation is done only, if the desired quantile lies between two data points `i` and `j`. For `fraction`, the result is an interpolated value between `i` and `j`; for `lower`, the result is `i`, for `higher` the result is `j`. Parameters ---------- a : ndarray Values from which to extract score. q : scalar or array Percentile at which to extract score. interpolation : {'fraction', 'lower', 'higher'}, optional This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: - fraction: `i + (j - i)*fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. -lower: `i`. - higher: `j`. Returns ------- score : float Score at percentile. Examples -------- >>> from scipy import stats >>> a = np.arange(100) >>> stats.scoreatpercentile(a, 50) 49.5 """ x = np.asarray(x) mask = com.isnull(x) x = x[-mask] values = np.sort(x) def _get_score(at): if len(values) == 0: return np.nan idx = at * (len(values) - 1) if (idx % 1 == 0): score = values[idx] else: if interpolation_method == 'fraction': score = _interpolate(values[int(idx)], values[int(idx) + 1], idx % 1) elif interpolation_method == 'lower': score = values[np.floor(idx)] elif interpolation_method == 'higher': score = values[np.ceil(idx)] else: raise ValueError("interpolation_method can only be 'fraction' " ", 'lower' or 'higher'") return score if np.isscalar(q): return _get_score(q) else: q = np.asarray(q, np.float64) return _algos.arrmap_float64(q, _get_score) def _interpolate(a, b, fraction): """Returns the point at the given fraction between a and b, where 'fraction' must be between 0 and 1. """ return a + (b - a) * fraction def _get_data_algo(values, func_map): if com.is_float_dtype(values): f = func_map['float64'] values = com._ensure_float64(values) elif com.is_datetime64_dtype(values): f = func_map['int64'] values = values.view('i8') elif com.is_integer_dtype(values): f = func_map['int64'] values = com._ensure_int64(values) else: f = func_map['generic'] values = com._ensure_object(values) return f, values def group_position(*args): """ Get group position """ from collections import defaultdict table = defaultdict(int) result = [] for tup in zip(*args): result.append(table[tup]) table[tup] += 1 return result _rank1d_functions = { 'float64': lib.rank_1d_float64, 'int64': lib.rank_1d_int64, 'generic': lib.rank_1d_generic } _rank2d_functions = { 'float64': lib.rank_2d_float64, 'int64': lib.rank_2d_int64, 'generic': lib.rank_2d_generic } _hashtables = { 'float64': (lib.Float64HashTable, lib.Float64Vector), 'int64': (lib.Int64HashTable, lib.Int64Vector), 'generic': (lib.PyObjectHashTable, lib.ObjectVector) }
""" Generic data algorithms. This module is experimental at the moment and not intended for public consumption """ import numpy as np import pandas.core.common as com import pandas.lib as lib import pandas._algos as _algos def match(to_match, values, na_sentinel=-1): """ Compute locations of to_match into values Parameters ---------- to_match : array-like values to find positions of values : array-like Unique set of values na_sentinel : int, default -1 Value to mark "not found" Examples -------- Returns ------- match : ndarray of integers """ values = com._asarray_tuplesafe(values) if issubclass(values.dtype.type, basestring): values = np.array(values, dtype='O') f = lambda htype, caster: _match_generic(to_match, values, htype, caster) return _hashtable_algo(f, values.dtype) def unique(values): """ Compute unique values (not necessarily sorted) efficiently from input array of values Parameters ---------- values : array-like Returns ------- uniques """ values = com._asarray_tuplesafe(values) f = lambda htype, caster: _unique_generic(values, htype, caster) return _hashtable_algo(f, values.dtype) # def count(values, uniques=None): # f = lambda htype, caster: _count_generic(values, htype, caster) # if uniques is not None: # raise NotImplementedError # else: # return _hashtable_algo(f, values.dtype) def _hashtable_algo(f, dtype): """ f(HashTable, type_caster) -> result """ if com.is_float_dtype(dtype): return f(lib.Float64HashTable, com._ensure_float64) elif com.is_integer_dtype(dtype): return f(lib.Int64HashTable, com._ensure_int64) else: return f(lib.PyObjectHashTable, com._ensure_object) def _count_generic(values, table_type, type_caster): from pandas.core.series import Series values = type_caster(values) table = table_type(min(len(values), 1000000)) uniques, labels = table.factorize(values) return Series(counts, index=uniques) def _match_generic(values, index, table_type, type_caster): values = type_caster(values) index = type_caster(index) table = table_type(min(len(index), 1000000)) table.map_locations(index) return table.lookup(values) def _unique_generic(values, table_type, type_caster): values = type_caster(values) table = table_type(min(len(values), 1000000)) uniques = table.unique(values) return type_caster(uniques) def factorize(values, sort=False, order=None, na_sentinel=-1): """ Encode input values as an enumerated type or categorical variable Parameters ---------- values : sequence sort : order : Returns ------- """ values = np.asarray(values) is_datetime = com.is_datetime64_dtype(values) (hash_klass, vec_klass), values = _get_data_algo(values, _hashtables) table = hash_klass(len(values)) uniques = vec_klass() labels = table.get_labels(values, uniques, 0, na_sentinel) labels = com._ensure_platform_int(labels) uniques = uniques.to_array() if sort and len(uniques) > 0: sorter = uniques.argsort() reverse_indexer = np.empty(len(sorter), dtype=np.int_) reverse_indexer.put(sorter, np.arange(len(sorter))) mask = labels < 0 labels = reverse_indexer.take(labels) np.putmask(labels, mask, -1) uniques = uniques.take(sorter) if is_datetime: uniques = uniques.view('M8[ns]') return labels, uniques def value_counts(values, sort=True, ascending=False): """ Compute a histogram of the counts of non-null values Parameters ---------- values : ndarray (1-d) sort : boolean, default True Sort by values ascending : boolean, default False Sort in ascending order Returns ------- value_counts : Series """ from pandas.core.series import Series from collections import defaultdict values = np.asarray(values) if com.is_integer_dtype(values.dtype): values = com._ensure_int64(values) keys, counts = lib.value_count_int64(values) result = Series(counts, index=keys) else: counter = defaultdict(lambda: 0) values = values[com.notnull(values)] for value in values: counter[value] += 1 result = Series(counter) if sort: result.sort() if not ascending: result = result[::-1] return result def rank(values, axis=0, method='average', na_option='keep', ascending=True): """ """ if values.ndim == 1: f, values = _get_data_algo(values, _rank1d_functions) ranks = f(values, ties_method=method, ascending=ascending, na_option=na_option) elif values.ndim == 2: f, values = _get_data_algo(values, _rank2d_functions) ranks = f(values, axis=axis, ties_method=method, ascending=ascending, na_option=na_option) return ranks def quantile(x, q, interpolation_method='fraction'): """ Compute sample quantile or quantiles of the input array. For example, q=0.5 computes the median. The `interpolation_method` parameter supports three values, namely `fraction` (default), `lower` and `higher`. Interpolation is done only, if the desired quantile lies between two data points `i` and `j`. For `fraction`, the result is an interpolated value between `i` and `j`; for `lower`, the result is `i`, for `higher` the result is `j`. Parameters ---------- a : ndarray Values from which to extract score. q : scalar or array Percentile at which to extract score. interpolation : {'fraction', 'lower', 'higher'}, optional This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: - fraction: `i + (j - i)*fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. -lower: `i`. - higher: `j`. Returns ------- score : float Score at percentile. Examples -------- >>> from scipy import stats >>> a = np.arange(100) >>> stats.scoreatpercentile(a, 50) 49.5 """ x = np.asarray(x) mask = com.isnull(x) x = x[-mask] values = np.sort(x) def _get_score(at): if len(values) == 0: return np.nan idx = at * (len(values) - 1) if (idx % 1 == 0): score = values[idx] else: if interpolation_method == 'fraction': score = _interpolate(values[int(idx)], values[int(idx) + 1], idx % 1) elif interpolation_method == 'lower': score = values[np.floor(idx)] elif interpolation_method == 'higher': score = values[np.ceil(idx)] else: raise ValueError("interpolation_method can only be 'fraction' " ", 'lower' or 'higher'") return score if np.isscalar(q): return _get_score(q) else: q = np.asarray(q, np.float64) return _algos.arrmap_float64(q, _get_score) def _interpolate(a, b, fraction): """Returns the point at the given fraction between a and b, where 'fraction' must be between 0 and 1. """ return a + (b - a) * fraction def _get_data_algo(values, func_map): if com.is_float_dtype(values): f = func_map['float64'] values = com._ensure_float64(values) elif com.is_datetime64_dtype(values): f = func_map['int64'] values = values.view('i8') elif com.is_integer_dtype(values): f = func_map['int64'] values = com._ensure_int64(values) else: f = func_map['generic'] values = com._ensure_object(values) return f, values def group_position(*args): """ Get group position """ from collections import defaultdict table = defaultdict(int) result = [] for tup in zip(*args): result.append(table[tup]) table[tup] += 1 return result _rank1d_functions = { 'float64': lib.rank_1d_float64, 'int64': lib.rank_1d_int64, 'generic': lib.rank_1d_generic } _rank2d_functions = { 'float64': lib.rank_2d_float64, 'int64': lib.rank_2d_int64, 'generic': lib.rank_2d_generic } _hashtables = { 'float64': (lib.Float64HashTable, lib.Float64Vector), 'int64': (lib.Int64HashTable, lib.Int64Vector), 'generic': (lib.PyObjectHashTable, lib.ObjectVector) }
en
0.497672
Generic data algorithms. This module is experimental at the moment and not intended for public consumption Compute locations of to_match into values Parameters ---------- to_match : array-like values to find positions of values : array-like Unique set of values na_sentinel : int, default -1 Value to mark "not found" Examples -------- Returns ------- match : ndarray of integers Compute unique values (not necessarily sorted) efficiently from input array of values Parameters ---------- values : array-like Returns ------- uniques # def count(values, uniques=None): # f = lambda htype, caster: _count_generic(values, htype, caster) # if uniques is not None: # raise NotImplementedError # else: # return _hashtable_algo(f, values.dtype) f(HashTable, type_caster) -> result Encode input values as an enumerated type or categorical variable Parameters ---------- values : sequence sort : order : Returns ------- Compute a histogram of the counts of non-null values Parameters ---------- values : ndarray (1-d) sort : boolean, default True Sort by values ascending : boolean, default False Sort in ascending order Returns ------- value_counts : Series Compute sample quantile or quantiles of the input array. For example, q=0.5 computes the median. The `interpolation_method` parameter supports three values, namely `fraction` (default), `lower` and `higher`. Interpolation is done only, if the desired quantile lies between two data points `i` and `j`. For `fraction`, the result is an interpolated value between `i` and `j`; for `lower`, the result is `i`, for `higher` the result is `j`. Parameters ---------- a : ndarray Values from which to extract score. q : scalar or array Percentile at which to extract score. interpolation : {'fraction', 'lower', 'higher'}, optional This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: - fraction: `i + (j - i)*fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. -lower: `i`. - higher: `j`. Returns ------- score : float Score at percentile. Examples -------- >>> from scipy import stats >>> a = np.arange(100) >>> stats.scoreatpercentile(a, 50) 49.5 Returns the point at the given fraction between a and b, where 'fraction' must be between 0 and 1. Get group position
2.931167
3
Solutions/p0017.py
JCMarcoG/project_euler
0
6630968
# Solution to Problem 0015 def solution(): #dictionary to store the values dic = {n:0 for n in range(0,1001)} #initial values manually dic[0] = 0 #'' dic[1] = 3 #'one' dic[2] = 3 #'two' dic[3] = 5 #'three' dic[4] = 4 #'four' dic[5] = 4 #'five' dic[6] = 3 #'six' dic[7] = 5 #'seven' dic[8] = 5 #'eight' dic[9] = 4 #'nine' dic[10] = 3 #'ten' dic[11] = 6 #'eleven' dic[12] = 6 #'twelve' dic[13] = 8 #'thirteen' dic[14] = 8 #'fourteen' dic[15] = 7 #'fifteen' dic[16] = 7 #'sixteen' dic[17] = 9 #'seventeen' dic[18] = 8 #'eighteen' dic[19] = 8 #'nineteen' dic[20] = 6 #'twenty' dic[30] = 6 #'thirty' dic[40] = 5 #'forty' dic[50] = 5 #'fifty' dic[60] = 5 #'sixty' dic[70] = 7 #'seventy' dic[80] = 6 #'eighty' dic[90] = 6 #'ninety' #for loop to generate the values for 21-99 as we have already entered the values under 20 manually for i in range(21,100): tens = int(i/10)*10 ones = i - tens dic[i] = dic[tens]+dic[ones] #for loop to generate values for 100-999 for i in range(100,1000): hundreds = int(i/100) tens_ones = i - hundreds*100 #if the value of tens and ones place is 0 just use 'hundred' instead of 'and hundred' if tens_ones == 0: dic[i] = dic[hundreds] + 7#'hundred' else: #10 refers - 'and hundred' dic[i] = dic[hundreds] +10+dic[tens_ones] dic[1000] = 11 #'one thousand' #return solution return sum(dic.values()) if __name__ == "__main__": print(solution())
# Solution to Problem 0015 def solution(): #dictionary to store the values dic = {n:0 for n in range(0,1001)} #initial values manually dic[0] = 0 #'' dic[1] = 3 #'one' dic[2] = 3 #'two' dic[3] = 5 #'three' dic[4] = 4 #'four' dic[5] = 4 #'five' dic[6] = 3 #'six' dic[7] = 5 #'seven' dic[8] = 5 #'eight' dic[9] = 4 #'nine' dic[10] = 3 #'ten' dic[11] = 6 #'eleven' dic[12] = 6 #'twelve' dic[13] = 8 #'thirteen' dic[14] = 8 #'fourteen' dic[15] = 7 #'fifteen' dic[16] = 7 #'sixteen' dic[17] = 9 #'seventeen' dic[18] = 8 #'eighteen' dic[19] = 8 #'nineteen' dic[20] = 6 #'twenty' dic[30] = 6 #'thirty' dic[40] = 5 #'forty' dic[50] = 5 #'fifty' dic[60] = 5 #'sixty' dic[70] = 7 #'seventy' dic[80] = 6 #'eighty' dic[90] = 6 #'ninety' #for loop to generate the values for 21-99 as we have already entered the values under 20 manually for i in range(21,100): tens = int(i/10)*10 ones = i - tens dic[i] = dic[tens]+dic[ones] #for loop to generate values for 100-999 for i in range(100,1000): hundreds = int(i/100) tens_ones = i - hundreds*100 #if the value of tens and ones place is 0 just use 'hundred' instead of 'and hundred' if tens_ones == 0: dic[i] = dic[hundreds] + 7#'hundred' else: #10 refers - 'and hundred' dic[i] = dic[hundreds] +10+dic[tens_ones] dic[1000] = 11 #'one thousand' #return solution return sum(dic.values()) if __name__ == "__main__": print(solution())
en
0.342679
# Solution to Problem 0015 #dictionary to store the values #initial values manually #'' #'one' #'two' #'three' #'four' #'five' #'six' #'seven' #'eight' #'nine' #'ten' #'eleven' #'twelve' #'thirteen' #'fourteen' #'fifteen' #'sixteen' #'seventeen' #'eighteen' #'nineteen' #'twenty' #'thirty' #'forty' #'fifty' #'sixty' #'seventy' #'eighty' #'ninety' #for loop to generate the values for 21-99 as we have already entered the values under 20 manually #for loop to generate values for 100-999 #if the value of tens and ones place is 0 just use 'hundred' instead of 'and hundred' #'hundred' #10 refers - 'and hundred' #'one thousand' #return solution
3.098328
3
pdia/responseReconstruction/parseBQResponses.py
yangjiang001/pdia-1
0
6630969
# coding: utf-8 # # Reconstructing 2017 SQ Responses # # ``` # <NAME> # 2017-07-14 # ``` # import sys import pandas as pd from pdia.responseReconstruction.extractBQChoice import parseBQChoice from pdia.responseReconstruction.extractBQMC import parseBQMC from pdia.responseReconstruction.extractBQNumeric import parseBQNumeric def parseStrSQResponses(df, config=None, label="ItemTypeCode", outputCol = "Answer"): """Parse the SQ response data, extract the responses from the JSON data :param df: the input data frame :type df: Pandas data frame :param label: optional, name of the column indicating the item type, which determines how to parse. :type label: string :param config: optional configuation object; default to None :type config: object or None :returns: df with Response.PartId, Response.Index, value :rtype: Pandas data frame """ assert (isinstance(df, pd.DataFrame)) assert (label in df.columns) if config is None: config = { "handlers": { "BQNumeric": parseBQNumeric, "BQChoices": parseBQChoice, "BQMCSS": parseBQMC, "BQMCMS": parseBQMC } } # check to see if there are events not handled #print config["handlers"] #print "Events in the data frame: {}".format(df[label].unique().tolist()) #print "Events to be handled: {}".format(config["handlers"].keys()) if len(set(df[label].unique().tolist())-set(config["handlers"].keys()))>0: print("Not all item types are handled!\n{}"\ .format(set(df[label].unique().tolist())-set(config["handlers"].keys()))) # now let's revert the config, to get `parser:[list of labels]` funcMap = {} for k, v in config["handlers"].items(): funcMap[v] = funcMap.get(v, []) + [k] # add a output # we now loop through all funcMap elements and do the conversion for parser, eventList in funcMap.items(): idx = df.loc[:, label].isin(eventList) df.loc[idx, outputCol] = df.loc[idx, "Response"].apply(parser) return df if __name__ == '__main__': if len(sys.argv)<2: print("Usage: python {} csvFileName.csv".format(sys.argv[0])) exit() dataFileName = sys.argv[1] df = pd.read_csv(dataFileName, sep="\t", header=None, names=["ItemResponseId","SubjectName","Grade","BookletNumber", "BlockCode","AccessionNumber","ItemTypeCode","IsAnswered", "IsSkipped","Response"]) res = parseStrSQResponses(df) # looking for duplicated responses res.loc[res.duplicated([ 'BookletNumber', 'AccessionNumber'], keep=False)]\ .sort_values([ 'BookletNumber', 'AccessionNumber'])\ .to_csv(dataFileName.replace(".csv", "")+'_DuplicatedResponses.csv') dfByAccNum = res.drop_duplicates([ 'BookletNumber', 'AccessionNumber'])\ .pivot(columns='AccessionNumber', index="BookletNumber", values="Answer") # saving to a bunch of csv files res.to_csv(dataFileName.replace(".csv", "")+'_Responses.csv') dfByAccNum.to_csv(dataFileName.replace(".csv", "")+'_Responses_byAccNum.csv')
# coding: utf-8 # # Reconstructing 2017 SQ Responses # # ``` # <NAME> # 2017-07-14 # ``` # import sys import pandas as pd from pdia.responseReconstruction.extractBQChoice import parseBQChoice from pdia.responseReconstruction.extractBQMC import parseBQMC from pdia.responseReconstruction.extractBQNumeric import parseBQNumeric def parseStrSQResponses(df, config=None, label="ItemTypeCode", outputCol = "Answer"): """Parse the SQ response data, extract the responses from the JSON data :param df: the input data frame :type df: Pandas data frame :param label: optional, name of the column indicating the item type, which determines how to parse. :type label: string :param config: optional configuation object; default to None :type config: object or None :returns: df with Response.PartId, Response.Index, value :rtype: Pandas data frame """ assert (isinstance(df, pd.DataFrame)) assert (label in df.columns) if config is None: config = { "handlers": { "BQNumeric": parseBQNumeric, "BQChoices": parseBQChoice, "BQMCSS": parseBQMC, "BQMCMS": parseBQMC } } # check to see if there are events not handled #print config["handlers"] #print "Events in the data frame: {}".format(df[label].unique().tolist()) #print "Events to be handled: {}".format(config["handlers"].keys()) if len(set(df[label].unique().tolist())-set(config["handlers"].keys()))>0: print("Not all item types are handled!\n{}"\ .format(set(df[label].unique().tolist())-set(config["handlers"].keys()))) # now let's revert the config, to get `parser:[list of labels]` funcMap = {} for k, v in config["handlers"].items(): funcMap[v] = funcMap.get(v, []) + [k] # add a output # we now loop through all funcMap elements and do the conversion for parser, eventList in funcMap.items(): idx = df.loc[:, label].isin(eventList) df.loc[idx, outputCol] = df.loc[idx, "Response"].apply(parser) return df if __name__ == '__main__': if len(sys.argv)<2: print("Usage: python {} csvFileName.csv".format(sys.argv[0])) exit() dataFileName = sys.argv[1] df = pd.read_csv(dataFileName, sep="\t", header=None, names=["ItemResponseId","SubjectName","Grade","BookletNumber", "BlockCode","AccessionNumber","ItemTypeCode","IsAnswered", "IsSkipped","Response"]) res = parseStrSQResponses(df) # looking for duplicated responses res.loc[res.duplicated([ 'BookletNumber', 'AccessionNumber'], keep=False)]\ .sort_values([ 'BookletNumber', 'AccessionNumber'])\ .to_csv(dataFileName.replace(".csv", "")+'_DuplicatedResponses.csv') dfByAccNum = res.drop_duplicates([ 'BookletNumber', 'AccessionNumber'])\ .pivot(columns='AccessionNumber', index="BookletNumber", values="Answer") # saving to a bunch of csv files res.to_csv(dataFileName.replace(".csv", "")+'_Responses.csv') dfByAccNum.to_csv(dataFileName.replace(".csv", "")+'_Responses_byAccNum.csv')
en
0.547753
# coding: utf-8 # # Reconstructing 2017 SQ Responses # # ``` # <NAME> # 2017-07-14 # ``` # Parse the SQ response data, extract the responses from the JSON data :param df: the input data frame :type df: Pandas data frame :param label: optional, name of the column indicating the item type, which determines how to parse. :type label: string :param config: optional configuation object; default to None :type config: object or None :returns: df with Response.PartId, Response.Index, value :rtype: Pandas data frame # check to see if there are events not handled #print config["handlers"] #print "Events in the data frame: {}".format(df[label].unique().tolist()) #print "Events to be handled: {}".format(config["handlers"].keys()) # now let's revert the config, to get `parser:[list of labels]` # add a output # we now loop through all funcMap elements and do the conversion # looking for duplicated responses # saving to a bunch of csv files
2.83704
3
var/spack/repos/builtin/packages/r-sandwich/package.py
xiki-tempula/spack
9
6630970
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RSandwich(RPackage): """Model-robust standard error estimators for cross-sectional, time series, and longitudinal data.""" homepage = "https://cloud.r-project.org/package=sandwich" url = "https://cloud.r-project.org/src/contrib/sandwich_2.3-4.tar.gz" list_url = "https://cloud.r-project.org/src/contrib/Archive/sandwich" version('2.5-1', sha256='dbef6f4d12b83e166f9a2508b7c732b04493641685d6758d29f3609e564166d6') version('2.5-0', sha256='6cc144af20739eb23e5539010d3833d7c7fc53cbca2addb583ab933167c11399') version('2.3-4', sha256='2052f7e3d19a05c372f422c5480f1058a4107e420cd038a9bd7240c4f0746d4d') depends_on('[email protected]:', type=('build', 'run')) depends_on('r-zoo', type=('build', 'run'))
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RSandwich(RPackage): """Model-robust standard error estimators for cross-sectional, time series, and longitudinal data.""" homepage = "https://cloud.r-project.org/package=sandwich" url = "https://cloud.r-project.org/src/contrib/sandwich_2.3-4.tar.gz" list_url = "https://cloud.r-project.org/src/contrib/Archive/sandwich" version('2.5-1', sha256='dbef6f4d12b83e166f9a2508b7c732b04493641685d6758d29f3609e564166d6') version('2.5-0', sha256='6cc144af20739eb23e5539010d3833d7c7fc53cbca2addb583ab933167c11399') version('2.3-4', sha256='2052f7e3d19a05c372f422c5480f1058a4107e420cd038a9bd7240c4f0746d4d') depends_on('[email protected]:', type=('build', 'run')) depends_on('r-zoo', type=('build', 'run'))
en
0.624971
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) Model-robust standard error estimators for cross-sectional, time series, and longitudinal data.
1.326958
1
app/bot/conversations/query.py
DramatikMan/mlhl-01-python-bot
0
6630971
<reponame>DramatikMan/mlhl-01-python-bot<gh_stars>0 import sqlite3 from collections.abc import Iterable from io import BytesIO import matplotlib.pyplot as plt import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from telegram import ( Update, ReplyKeyboardMarkup, ForceReply, ReplyKeyboardRemove, InputMediaPhoto ) from telegram.ext import CommandHandler, MessageHandler, Filters from app.db import DB_URI from . import BaseHandler from ..types import CCT, DataRecord class QueryHandler(BaseHandler): CHOOSING, FILTERING, PROMPTING_OUTPUT, PROMPTING_PREDICTION = range(4) def __init__(self) -> None: super().__init__( entry_points=[CommandHandler('query', self.handle_query_command)], states={ self.CHOOSING: [ MessageHandler( Filters.regex(f'^({"|".join(self.columns.keys())})$'), self.handle_choosing ), CommandHandler('charts', self.handle_charts_command) ], self.FILTERING: [MessageHandler( Filters.text & ~Filters.command, self.handle_filtering )], self.PROMPTING_OUTPUT: [MessageHandler( Filters.regex('^(output|continue)$'), self.handle_output_prompt )], self.PROMPTING_PREDICTION: [MessageHandler( Filters.regex('^(YES|NO)$'), self.handle_prediction_prompt )] }, fallbacks=[CommandHandler('cancel', self.cancel)], ) def get_not_yet_filtered_params(self, context: CCT) -> list[str]: return [ key for key in self.columns.keys() if key not in context.user_data['filters'] ] def handle_query_command(self, update: Update, context: CCT) -> int: if 'filters' not in context.user_data: context.user_data['filters'] = {} params: list[str] = self.get_not_yet_filtered_params(context) descriptions: str = self.get_descriptions_string(params) update.message.reply_text( 'We are in query mode. Choose parameter to filter deals by:\n\n' f'{descriptions}', reply_markup=ReplyKeyboardMarkup( [params[i:i + 3] for i in range(0, len(params), 3)], one_time_keyboard=True ) ) return self.CHOOSING def handle_choosing(self, update: Update, context: CCT) -> int: param: str = update.message.text context.user_data['param'] = param update.message.reply_text( f'Now enter the target value for parameter: {param}.', reply_markup=ForceReply() ) return self.FILTERING def handle_filtering(self, update: Update, context: CCT) -> int: value: str = update.message.text context.user_data['filters'] |= {context.user_data['param']: value} WHERE_SQL = 'WHERE ' + ' AND '.join( f'{key} = {value}' for key, value in context.user_data['filters'].items() ) with sqlite3.connect(DB_URI) as conn: count, avg_price = conn.cursor().execute(f''' SELECT count(price_doc) , avg(price_doc) FROM data {WHERE_SQL} ''').fetchone() if count == 0: update.message.reply_text( 'No records met the current filtering conditions.\n\n' 'Would you like to get a modeled prediction of the price ' 'for the current filter (excluding NaN variables)?', reply_markup=ReplyKeyboardMarkup( [['YES', 'NO']], one_time_keyboard=True ) ) return self.PROMPTING_PREDICTION elif count == 1: with sqlite3.connect(DB_URI) as conn: result: DataRecord = conn.cursor().execute(f''' SELECT * FROM data {WHERE_SQL} ''').fetchone() single_record: str = '\n'.join(( f'{key} = {value}' for key, value in zip(self.columns.keys(), result) )) update.message.reply_text( 'Found a single matching record.\n\n' f'{single_record}\n\n' 'Exiting query mode.', reply_markup=ReplyKeyboardRemove() ) context.user_data['filters'] = {} return self.END elif count <= 10: update.message.reply_text( f'Average price = {avg_price:.2f}.\n\n' f'{count} records met the current filtering conditions.\n\n' 'Would you like to output these records ' 'or to continue filtering?', reply_markup=ReplyKeyboardMarkup( [['output', 'continue']], one_time_keyboard=True ) ) return self.PROMPTING_OUTPUT params: list[str] = self.get_not_yet_filtered_params(context) descriptions: str = self.get_descriptions_string(params) update.message.reply_text( f'Average price = {avg_price:.2f}.\n\n' f'{count} records met the current filtering conditions.\n\n' 'Choose another parameter to narrow down the current selection ' 'or type /cancel to quit query mode.\n\n' + ( 'You can also type /charts to get visualization of how the ' 'price depends on each of the not yet filtered parameters ' '(excluding NaNs).\n\n' if count <= 1000 else '' ) + f'{descriptions}', reply_markup=ReplyKeyboardMarkup( [params[i:i + 3] for i in range(0, len(params), 3)], one_time_keyboard=True ) ) return self.CHOOSING def handle_output_prompt(self, update: Update, context: CCT) -> int: value: str = update.message.text if value == 'output': WHERE_SQL = 'WHERE ' + ' AND '.join( f'{key} = {value}' for key, value in context.user_data['filters'].items() ) with sqlite3.connect(DB_URI) as conn: result: Iterable[DataRecord] = conn.cursor().execute(f''' SELECT * FROM data {WHERE_SQL} ''') multiple_records: str = '\n'.join(( f'{i}: {value}' for i, value in enumerate(result, 1) )) update.message.reply_text( f'{multiple_records}\n\n' 'Exiting query mode.', reply_markup=ReplyKeyboardRemove() ) context.user_data['filters'] = {} return self.END elif value == 'continue': params: list[str] = self.get_not_yet_filtered_params(context) descriptions: str = self.get_descriptions_string(params) update.message.reply_text( 'Choose another parameter to narrow down the current ' 'selection or type /cancel to quit query mode.\n\n' f'{descriptions}', reply_markup=ReplyKeyboardMarkup( [params[i:i + 3] for i in range(0, len(params), 3)], one_time_keyboard=True ) ) return self.CHOOSING return self.END def get_chart_images(self, context: CCT) -> list[InputMediaPhoto]: params: list[str] = self.get_not_yet_filtered_params(context) VARS_SQL = ', '.join(params) WHERE_SQL = 'WHERE ' + ' AND '.join( f'{key} = {value}' for key, value in context.user_data['filters'].items() ) with sqlite3.connect(DB_URI) as conn: df: pd.DataFrame = pd.read_sql_query( sql=f'SELECT {VARS_SQL}, price_doc FROM data {WHERE_SQL}', con=conn ) label_size = 25 plt.rcParams.update({ 'axes.labelsize': label_size, 'xtick.labelsize': label_size, 'ytick.labelsize': label_size, 'figure.figsize': (15, 15) }) images: list[InputMediaPhoto] = [] for param in ( param for param in params if param not in ('product_type', 'sub_area') ): plt.clf() plt.xlabel(self.columns[param]) plt.ylabel('sale price') plt.hexbin( x=df[param], y=df['price_doc'].apply(lambda x: x / (10 ** 6)), gridsize=50, cmap='coolwarm' ) image_io = BytesIO() plt.savefig(image_io) images.append(InputMediaPhoto(image_io.getvalue())) return images def handle_charts_command(self, update: Update, context: CCT) -> int: update.message.reply_text( 'Building charts...', reply_markup=ReplyKeyboardRemove() ) images: list[InputMediaPhoto] = self.get_chart_images(context) update.message.reply_media_group(media=images) # type: ignore context.user_data['filters'] = {} return self.END def get_prediction(self, context: CCT) -> tuple[float, float]: params = { key: value for key, value in context.user_data['filters'].items() if key not in ('product_type', 'sub_area') } with sqlite3.connect(DB_URI) as conn: df: pd.DataFrame = pd.read_sql_query( sql=f''' SELECT {', '.join(params)}, price_doc FROM data ''', con=conn ) X = df[[*params]] y = df['price_doc'] / (10 ** 6) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=42 ) model = LinearRegression() model.fit(X=X_train, y=y_train) return ( float(model.score(X=X_test, y=y_test)), float( model.coef_ @ [*map(float, params.values())] + model.intercept_ ) ) def handle_prediction_prompt(self, update: Update, context: CCT) -> int: value: str = update.message.text if value == 'NO': update.message.reply_text( 'Exiting query mode.', reply_markup=ReplyKeyboardRemove() ) return self.END elif value == 'YES': R_squared, prediction = self.get_prediction(context) update.message.reply_text( f'Predicted price = {prediction:.6f} M.' '\n' f'R-squared for test subset = {R_squared:.2f}.' '\n\nExiting query mode.' ) context.user_data['filters'] = {} return self.END
import sqlite3 from collections.abc import Iterable from io import BytesIO import matplotlib.pyplot as plt import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from telegram import ( Update, ReplyKeyboardMarkup, ForceReply, ReplyKeyboardRemove, InputMediaPhoto ) from telegram.ext import CommandHandler, MessageHandler, Filters from app.db import DB_URI from . import BaseHandler from ..types import CCT, DataRecord class QueryHandler(BaseHandler): CHOOSING, FILTERING, PROMPTING_OUTPUT, PROMPTING_PREDICTION = range(4) def __init__(self) -> None: super().__init__( entry_points=[CommandHandler('query', self.handle_query_command)], states={ self.CHOOSING: [ MessageHandler( Filters.regex(f'^({"|".join(self.columns.keys())})$'), self.handle_choosing ), CommandHandler('charts', self.handle_charts_command) ], self.FILTERING: [MessageHandler( Filters.text & ~Filters.command, self.handle_filtering )], self.PROMPTING_OUTPUT: [MessageHandler( Filters.regex('^(output|continue)$'), self.handle_output_prompt )], self.PROMPTING_PREDICTION: [MessageHandler( Filters.regex('^(YES|NO)$'), self.handle_prediction_prompt )] }, fallbacks=[CommandHandler('cancel', self.cancel)], ) def get_not_yet_filtered_params(self, context: CCT) -> list[str]: return [ key for key in self.columns.keys() if key not in context.user_data['filters'] ] def handle_query_command(self, update: Update, context: CCT) -> int: if 'filters' not in context.user_data: context.user_data['filters'] = {} params: list[str] = self.get_not_yet_filtered_params(context) descriptions: str = self.get_descriptions_string(params) update.message.reply_text( 'We are in query mode. Choose parameter to filter deals by:\n\n' f'{descriptions}', reply_markup=ReplyKeyboardMarkup( [params[i:i + 3] for i in range(0, len(params), 3)], one_time_keyboard=True ) ) return self.CHOOSING def handle_choosing(self, update: Update, context: CCT) -> int: param: str = update.message.text context.user_data['param'] = param update.message.reply_text( f'Now enter the target value for parameter: {param}.', reply_markup=ForceReply() ) return self.FILTERING def handle_filtering(self, update: Update, context: CCT) -> int: value: str = update.message.text context.user_data['filters'] |= {context.user_data['param']: value} WHERE_SQL = 'WHERE ' + ' AND '.join( f'{key} = {value}' for key, value in context.user_data['filters'].items() ) with sqlite3.connect(DB_URI) as conn: count, avg_price = conn.cursor().execute(f''' SELECT count(price_doc) , avg(price_doc) FROM data {WHERE_SQL} ''').fetchone() if count == 0: update.message.reply_text( 'No records met the current filtering conditions.\n\n' 'Would you like to get a modeled prediction of the price ' 'for the current filter (excluding NaN variables)?', reply_markup=ReplyKeyboardMarkup( [['YES', 'NO']], one_time_keyboard=True ) ) return self.PROMPTING_PREDICTION elif count == 1: with sqlite3.connect(DB_URI) as conn: result: DataRecord = conn.cursor().execute(f''' SELECT * FROM data {WHERE_SQL} ''').fetchone() single_record: str = '\n'.join(( f'{key} = {value}' for key, value in zip(self.columns.keys(), result) )) update.message.reply_text( 'Found a single matching record.\n\n' f'{single_record}\n\n' 'Exiting query mode.', reply_markup=ReplyKeyboardRemove() ) context.user_data['filters'] = {} return self.END elif count <= 10: update.message.reply_text( f'Average price = {avg_price:.2f}.\n\n' f'{count} records met the current filtering conditions.\n\n' 'Would you like to output these records ' 'or to continue filtering?', reply_markup=ReplyKeyboardMarkup( [['output', 'continue']], one_time_keyboard=True ) ) return self.PROMPTING_OUTPUT params: list[str] = self.get_not_yet_filtered_params(context) descriptions: str = self.get_descriptions_string(params) update.message.reply_text( f'Average price = {avg_price:.2f}.\n\n' f'{count} records met the current filtering conditions.\n\n' 'Choose another parameter to narrow down the current selection ' 'or type /cancel to quit query mode.\n\n' + ( 'You can also type /charts to get visualization of how the ' 'price depends on each of the not yet filtered parameters ' '(excluding NaNs).\n\n' if count <= 1000 else '' ) + f'{descriptions}', reply_markup=ReplyKeyboardMarkup( [params[i:i + 3] for i in range(0, len(params), 3)], one_time_keyboard=True ) ) return self.CHOOSING def handle_output_prompt(self, update: Update, context: CCT) -> int: value: str = update.message.text if value == 'output': WHERE_SQL = 'WHERE ' + ' AND '.join( f'{key} = {value}' for key, value in context.user_data['filters'].items() ) with sqlite3.connect(DB_URI) as conn: result: Iterable[DataRecord] = conn.cursor().execute(f''' SELECT * FROM data {WHERE_SQL} ''') multiple_records: str = '\n'.join(( f'{i}: {value}' for i, value in enumerate(result, 1) )) update.message.reply_text( f'{multiple_records}\n\n' 'Exiting query mode.', reply_markup=ReplyKeyboardRemove() ) context.user_data['filters'] = {} return self.END elif value == 'continue': params: list[str] = self.get_not_yet_filtered_params(context) descriptions: str = self.get_descriptions_string(params) update.message.reply_text( 'Choose another parameter to narrow down the current ' 'selection or type /cancel to quit query mode.\n\n' f'{descriptions}', reply_markup=ReplyKeyboardMarkup( [params[i:i + 3] for i in range(0, len(params), 3)], one_time_keyboard=True ) ) return self.CHOOSING return self.END def get_chart_images(self, context: CCT) -> list[InputMediaPhoto]: params: list[str] = self.get_not_yet_filtered_params(context) VARS_SQL = ', '.join(params) WHERE_SQL = 'WHERE ' + ' AND '.join( f'{key} = {value}' for key, value in context.user_data['filters'].items() ) with sqlite3.connect(DB_URI) as conn: df: pd.DataFrame = pd.read_sql_query( sql=f'SELECT {VARS_SQL}, price_doc FROM data {WHERE_SQL}', con=conn ) label_size = 25 plt.rcParams.update({ 'axes.labelsize': label_size, 'xtick.labelsize': label_size, 'ytick.labelsize': label_size, 'figure.figsize': (15, 15) }) images: list[InputMediaPhoto] = [] for param in ( param for param in params if param not in ('product_type', 'sub_area') ): plt.clf() plt.xlabel(self.columns[param]) plt.ylabel('sale price') plt.hexbin( x=df[param], y=df['price_doc'].apply(lambda x: x / (10 ** 6)), gridsize=50, cmap='coolwarm' ) image_io = BytesIO() plt.savefig(image_io) images.append(InputMediaPhoto(image_io.getvalue())) return images def handle_charts_command(self, update: Update, context: CCT) -> int: update.message.reply_text( 'Building charts...', reply_markup=ReplyKeyboardRemove() ) images: list[InputMediaPhoto] = self.get_chart_images(context) update.message.reply_media_group(media=images) # type: ignore context.user_data['filters'] = {} return self.END def get_prediction(self, context: CCT) -> tuple[float, float]: params = { key: value for key, value in context.user_data['filters'].items() if key not in ('product_type', 'sub_area') } with sqlite3.connect(DB_URI) as conn: df: pd.DataFrame = pd.read_sql_query( sql=f''' SELECT {', '.join(params)}, price_doc FROM data ''', con=conn ) X = df[[*params]] y = df['price_doc'] / (10 ** 6) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=42 ) model = LinearRegression() model.fit(X=X_train, y=y_train) return ( float(model.score(X=X_test, y=y_test)), float( model.coef_ @ [*map(float, params.values())] + model.intercept_ ) ) def handle_prediction_prompt(self, update: Update, context: CCT) -> int: value: str = update.message.text if value == 'NO': update.message.reply_text( 'Exiting query mode.', reply_markup=ReplyKeyboardRemove() ) return self.END elif value == 'YES': R_squared, prediction = self.get_prediction(context) update.message.reply_text( f'Predicted price = {prediction:.6f} M.' '\n' f'R-squared for test subset = {R_squared:.2f}.' '\n\nExiting query mode.' ) context.user_data['filters'] = {} return self.END
en
0.14806
SELECT count(price_doc) , avg(price_doc) FROM data {WHERE_SQL} SELECT * FROM data {WHERE_SQL} SELECT * FROM data {WHERE_SQL} # type: ignore SELECT {', '.join(params)}, price_doc FROM data
1.993867
2
AStarSearch/student_code.py
jingr1/SelfDrivingCar
0
6630972
import math def dist_between(start,end): return math.sqrt(pow((start[0]-end[0]),2)+pow((start[1]-end[1]),2)) def get_best_f_score(input_set,scoredict): idx = input_set.pop() input_set.add(idx) best = idx bv = scoredict[idx] for idx in input_set: if scoredict[idx] < bv: best = idx bv = scoredict[idx] return best def reconstruct_path(start_node,came_from, current_node): p = [current_node] while current_node != start_node: current_node = came_from[current_node] p.append(current_node) return p[::-1] def shortest_path(M,start,goal): print("shortest path called") intersections = M.intersections roads = M.roads frontierset = set([start]) explorededset = set() came_from = {} g_score = {} h_score = {} f_score = {} g_score[start] = 0 h_score[start] = dist_between(intersections[start],intersections[goal]) f_score[start] = g_score[start] + h_score[start] while frontierset: currentintersection = get_best_f_score(frontierset,f_score) frontierset.remove(currentintersection) explorededset.add(currentintersection) neighborsets = set(roads[currentintersection]) if currentintersection == goal: return reconstruct_path(start,came_from, goal) else: for neighbor in neighborsets: if neighbor not in explorededset: tentative_g_score = g_score[currentintersection] + dist_between(intersections[currentintersection],intersections[neighbor]) if neighbor not in frontierset: frontierset.add(neighbor) h_score[neighbor] = dist_between(intersections[neighbor],intersections[goal]) tentative_is_better = True elif (tentative_g_score < g_score[neighbor]): tentative_is_better = True else: tentative_is_better = False if tentative_is_better == True: came_from[neighbor] = currentintersection g_score[neighbor] = tentative_g_score f_score[neighbor] = g_score[neighbor] + h_score[neighbor] print('can not find the shortest path')
import math def dist_between(start,end): return math.sqrt(pow((start[0]-end[0]),2)+pow((start[1]-end[1]),2)) def get_best_f_score(input_set,scoredict): idx = input_set.pop() input_set.add(idx) best = idx bv = scoredict[idx] for idx in input_set: if scoredict[idx] < bv: best = idx bv = scoredict[idx] return best def reconstruct_path(start_node,came_from, current_node): p = [current_node] while current_node != start_node: current_node = came_from[current_node] p.append(current_node) return p[::-1] def shortest_path(M,start,goal): print("shortest path called") intersections = M.intersections roads = M.roads frontierset = set([start]) explorededset = set() came_from = {} g_score = {} h_score = {} f_score = {} g_score[start] = 0 h_score[start] = dist_between(intersections[start],intersections[goal]) f_score[start] = g_score[start] + h_score[start] while frontierset: currentintersection = get_best_f_score(frontierset,f_score) frontierset.remove(currentintersection) explorededset.add(currentintersection) neighborsets = set(roads[currentintersection]) if currentintersection == goal: return reconstruct_path(start,came_from, goal) else: for neighbor in neighborsets: if neighbor not in explorededset: tentative_g_score = g_score[currentintersection] + dist_between(intersections[currentintersection],intersections[neighbor]) if neighbor not in frontierset: frontierset.add(neighbor) h_score[neighbor] = dist_between(intersections[neighbor],intersections[goal]) tentative_is_better = True elif (tentative_g_score < g_score[neighbor]): tentative_is_better = True else: tentative_is_better = False if tentative_is_better == True: came_from[neighbor] = currentintersection g_score[neighbor] = tentative_g_score f_score[neighbor] = g_score[neighbor] + h_score[neighbor] print('can not find the shortest path')
none
1
3.531246
4
release.py
SHSharkar/geolocationapi
0
6630973
<reponame>SHSharkar/geolocationapi import io import os import shutil import tarfile import requests GEOIP2_DB_URL = ( "https://download.maxmind.com/app/geoip_download?edition_id=GeoLite2-Country&license_key=iZmGL4IowR8JrRsv&suffix=tar.gz" ) r = requests.get(GEOIP2_DB_URL) tar = tarfile.open(mode="r:gz", fileobj=io.BytesIO(r.content)) for member in tar.getmembers(): if member.name.endswith("GeoLite2-Country.mmdb"): member.name = os.path.basename(member.name) tar.extract(member, path="data")
import io import os import shutil import tarfile import requests GEOIP2_DB_URL = ( "https://download.maxmind.com/app/geoip_download?edition_id=GeoLite2-Country&license_key=iZmGL4IowR8JrRsv&suffix=tar.gz" ) r = requests.get(GEOIP2_DB_URL) tar = tarfile.open(mode="r:gz", fileobj=io.BytesIO(r.content)) for member in tar.getmembers(): if member.name.endswith("GeoLite2-Country.mmdb"): member.name = os.path.basename(member.name) tar.extract(member, path="data")
none
1
2.770785
3
xreshaper/datasets.py
NCAR/xarray-pyreshaper
0
6630974
<reponame>NCAR/xarray-pyreshaper #!/usr/bin/env python from __future__ import absolute_import, print_function import os import numpy as np import pandas as pd import xarray as xr def create_data_array(time, lat, lon, name): """Generate some random xarray dataarray""" data_array = xr.DataArray( np.random.randn(len([time]), len(lat), len(lon)), coords={'time': [time], 'lat': lat, 'lon': lon}, dims=('time', 'lat', 'lon'), name=name, ) return data_array def generate_fake_data(time, suffix, output_dir=None): """Create xarray 'time-slice' dataset and save it to disk""" # generate latitude and longitude values lat = np.linspace(start=-90, stop=90, num=180, dtype='int') lon = np.linspace(start=-180, stop=180, num=360, dtype='int') # Create some variables sst = create_data_array(time, lat, lon, name='sst') prec = create_data_array(time, lat, lon, name='prec') pressure = create_data_array(time, lat, lon, name='pressure') # Create some meta data variables. These variables are the same for all # time slices meta = xr.DataArray( np.arange(len(lat) * len(lon)).reshape(len(lat), len(lon)), coords={'lat': lat, 'lon': lon}, dims=('lat', 'lon'), name='meta_var', ) nlat = xr.DataArray(lat / 2, coords={'lat': lat}, dims=('lat')) nlon = xr.DataArray(lon / 2, coords={'lon': lon}, dims=('lon')) dset = xr.Dataset( { 'sst': sst, 'pressure': pressure, 'prec': prec, 'meta_var': meta, 'nlat': nlat, 'nlon': nlon, } ) # Add some global attributes to our dataset dset.attrs['created on'] = '2010-10-10' dset.attrs['created by'] = 'foo' dset.attrs['experiment_name'] = 'bar' path = f'{output_dir}/tslice{str(suffix)}.nc' dset.to_netcdf(path, engine='netcdf4', mode='w') def make_netcdf_data(start_date='2000-01-01', freq='1M', periods=24, output_dir=None): if not output_dir: home = os.environ.get('HOME') output_dir = f'{home}/.xreshaper/data' os.makedirs(output_dir, exist_ok=True) times = pd.DatetimeIndex(start=start_date, freq=freq, periods=periods) for index, time in enumerate(times): generate_fake_data(time, index, output_dir) print(f'******** The generated data location is : {output_dir} ************')
#!/usr/bin/env python from __future__ import absolute_import, print_function import os import numpy as np import pandas as pd import xarray as xr def create_data_array(time, lat, lon, name): """Generate some random xarray dataarray""" data_array = xr.DataArray( np.random.randn(len([time]), len(lat), len(lon)), coords={'time': [time], 'lat': lat, 'lon': lon}, dims=('time', 'lat', 'lon'), name=name, ) return data_array def generate_fake_data(time, suffix, output_dir=None): """Create xarray 'time-slice' dataset and save it to disk""" # generate latitude and longitude values lat = np.linspace(start=-90, stop=90, num=180, dtype='int') lon = np.linspace(start=-180, stop=180, num=360, dtype='int') # Create some variables sst = create_data_array(time, lat, lon, name='sst') prec = create_data_array(time, lat, lon, name='prec') pressure = create_data_array(time, lat, lon, name='pressure') # Create some meta data variables. These variables are the same for all # time slices meta = xr.DataArray( np.arange(len(lat) * len(lon)).reshape(len(lat), len(lon)), coords={'lat': lat, 'lon': lon}, dims=('lat', 'lon'), name='meta_var', ) nlat = xr.DataArray(lat / 2, coords={'lat': lat}, dims=('lat')) nlon = xr.DataArray(lon / 2, coords={'lon': lon}, dims=('lon')) dset = xr.Dataset( { 'sst': sst, 'pressure': pressure, 'prec': prec, 'meta_var': meta, 'nlat': nlat, 'nlon': nlon, } ) # Add some global attributes to our dataset dset.attrs['created on'] = '2010-10-10' dset.attrs['created by'] = 'foo' dset.attrs['experiment_name'] = 'bar' path = f'{output_dir}/tslice{str(suffix)}.nc' dset.to_netcdf(path, engine='netcdf4', mode='w') def make_netcdf_data(start_date='2000-01-01', freq='1M', periods=24, output_dir=None): if not output_dir: home = os.environ.get('HOME') output_dir = f'{home}/.xreshaper/data' os.makedirs(output_dir, exist_ok=True) times = pd.DatetimeIndex(start=start_date, freq=freq, periods=periods) for index, time in enumerate(times): generate_fake_data(time, index, output_dir) print(f'******** The generated data location is : {output_dir} ************')
en
0.3797
#!/usr/bin/env python Generate some random xarray dataarray Create xarray 'time-slice' dataset and save it to disk # generate latitude and longitude values # Create some variables # Create some meta data variables. These variables are the same for all # time slices # Add some global attributes to our dataset
3.261089
3
commands/textchannelname.py
MehmetSalihK/AutoVoiceChannels
0
6630975
import discord import utils import functions as func from commands.base import Cmd help_text = [ [ ("Usage:", "<PREFIX><COMMAND> `NEW NAME`"), ("Description:", "Modifiez le nom des canaux de texte privés temporaires créés pour chaque conversation vocale si `textchannels` est activé." "\nLa valeur par défaut est `voice context`."), ("Example:", "<PREFIX><COMMAND> typing/tts/bot commands"), ] ] async def execute(ctx, params): params_str = ' '.join(params) guild = ctx['guild'] settings = ctx['settings'] author = ctx['message'].author new_word = params_str.replace('\n', ' ') # Can't have newlines in channel name. new_word = utils.strip_quotes(new_word) previous_word = ("text" if 'text_channel_name' not in settings else func.esc_md(settings['text_channel_name'])) if not new_word: return False, ("You need to define a new name, e.g. `{}textchannelname links` to make " "**links** shown instead of **{}**.".format(ctx['print_prefix'], previous_word)) settings['text_channel_name'] = new_word utils.set_serv_settings(guild, settings) e_new_word = func.esc_md(new_word) await func.server_log( guild, "💬 {} (`{}`) définissez le nom \"text\" du serveur sur **{}**".format( func.user_hash(author), author.id, e_new_word ), 2, settings) for p, pv in settings['auto_channels'].items(): for s, sv in pv['secondaries'].items(): if 'tc' in sv: tc = guild.get_channel(sv['tc']) try: await tc.edit(name=utils.nice_cname(new_word)) except discord.errors.Forbidden: pass return True, ("Done! From now on I'll use **{}** instead of **{}**.".format(e_new_word, previous_word)) command = Cmd( execute=execute, help_text=help_text, params_required=1, gold_required=True, admin_required=True, )
import discord import utils import functions as func from commands.base import Cmd help_text = [ [ ("Usage:", "<PREFIX><COMMAND> `NEW NAME`"), ("Description:", "Modifiez le nom des canaux de texte privés temporaires créés pour chaque conversation vocale si `textchannels` est activé." "\nLa valeur par défaut est `voice context`."), ("Example:", "<PREFIX><COMMAND> typing/tts/bot commands"), ] ] async def execute(ctx, params): params_str = ' '.join(params) guild = ctx['guild'] settings = ctx['settings'] author = ctx['message'].author new_word = params_str.replace('\n', ' ') # Can't have newlines in channel name. new_word = utils.strip_quotes(new_word) previous_word = ("text" if 'text_channel_name' not in settings else func.esc_md(settings['text_channel_name'])) if not new_word: return False, ("You need to define a new name, e.g. `{}textchannelname links` to make " "**links** shown instead of **{}**.".format(ctx['print_prefix'], previous_word)) settings['text_channel_name'] = new_word utils.set_serv_settings(guild, settings) e_new_word = func.esc_md(new_word) await func.server_log( guild, "💬 {} (`{}`) définissez le nom \"text\" du serveur sur **{}**".format( func.user_hash(author), author.id, e_new_word ), 2, settings) for p, pv in settings['auto_channels'].items(): for s, sv in pv['secondaries'].items(): if 'tc' in sv: tc = guild.get_channel(sv['tc']) try: await tc.edit(name=utils.nice_cname(new_word)) except discord.errors.Forbidden: pass return True, ("Done! From now on I'll use **{}** instead of **{}**.".format(e_new_word, previous_word)) command = Cmd( execute=execute, help_text=help_text, params_required=1, gold_required=True, admin_required=True, )
en
0.898794
# Can't have newlines in channel name.
2.588737
3
src/bxcommon/services/http_service.py
thabaptiser/bxcommon
0
6630976
<gh_stars>0 import json from ssl import SSLContext from typing import Optional, Dict, Any, Union, List import status from urllib3 import Retry, HTTPResponse from urllib3.exceptions import HTTPError, MaxRetryError from urllib3.poolmanager import PoolManager from urllib3.util import parse_url from bxcommon import constants from bxutils import log_messages from bxutils import logging from bxutils.encoding import json_encoder # recursive types are not supported: https://github.com/python/typing/issues/182 JT = Union[Dict[str, Any], List[Any]] logger = logging.get_logger(__name__) _url = constants.SDN_ROOT_URL _ssl_context: Optional[SSLContext] = None METHODS_WHITELIST = frozenset( ["HEAD", "GET", "PUT", "DELETE", "OPTIONS", "TRACE", "POST", "PATCH"] ) def set_root_url(sdn_url: str, ssl_context: Optional[SSLContext] = None): # pylint: disable=global-statement global _url _url = sdn_url update_http_ssl_context(ssl_context) def update_http_ssl_context(ssl_context: Optional[SSLContext] = None): # pylint: disable=global-statement global _ssl_context _ssl_context = ssl_context def post_json(endpoint: str, payload=None) -> Optional[JT]: return _http_request("POST", endpoint, body=json_encoder.to_json(payload), headers=constants.HTTP_HEADERS) def patch_json(endpoint: str, payload=None) -> Optional[JT]: return _http_request("PATCH", endpoint, body=json_encoder.to_json(payload), headers=constants.HTTP_HEADERS) def delete_json(endpoint: str, payload=None) -> Optional[JT]: return _http_request("DELETE", endpoint, body=json_encoder.to_json(payload), headers=constants.HTTP_HEADERS) def get_json(endpoint: str) -> Optional[JT]: return _http_request("GET", endpoint, headers=constants.HTTP_HEADERS) def get_json_with_payload(endpoint: str, payload=None) -> Optional[JT]: return _http_request("GET", endpoint, body=json_encoder.to_json(payload), headers=constants.HTTP_HEADERS) def build_url(endpoint: str) -> str: if not endpoint or not isinstance(endpoint, str): raise ValueError("Missing or invalid URL") return _url + endpoint def raise_for_status(res: HTTPResponse) -> None: if status.is_client_error(res.status) or status.is_server_error(res.status): raise HTTPError(f"{res.status}:{res.reason}") def _http_request(method: str, endpoint: str, **kwargs) -> Optional[JT]: url = build_url(endpoint) parsed_url = parse_url(url) pm_args = { "num_pools": constants.HTTP_POOL_MANAGER_COUNT, "host": parsed_url.host, "port": parsed_url.port, "retries": Retry( connect=constants.HTTP_REQUEST_RETRIES_COUNT, read=constants.HTTP_REQUEST_RETRIES_COUNT, redirect=constants.HTTP_REQUEST_RETRIES_COUNT, backoff_factor=constants.HTTP_REQUEST_BACKOFF_FACTOR, method_whitelist=METHODS_WHITELIST ), "ssl_context": _ssl_context, } if _ssl_context is not None and url.startswith("https"): pm_args["assert_hostname"] = False http_pool_manager: PoolManager = PoolManager(**pm_args) try: logger.trace("HTTP {0} to {1}", method, url) response = http_pool_manager.request( method=method, url=parsed_url.url, timeout=constants.HTTP_REQUEST_TIMEOUT, **kwargs ) raise_for_status(response) except MaxRetryError as e: logger.info("{} to {} failed due to: {}.", method, url, e) return None except Exception as e: # pylint: disable=broad-except logger.error(log_messages.HTTP_REQUEST_RETURNED_ERROR, method, url, e) return None return json.loads(response.data)
import json from ssl import SSLContext from typing import Optional, Dict, Any, Union, List import status from urllib3 import Retry, HTTPResponse from urllib3.exceptions import HTTPError, MaxRetryError from urllib3.poolmanager import PoolManager from urllib3.util import parse_url from bxcommon import constants from bxutils import log_messages from bxutils import logging from bxutils.encoding import json_encoder # recursive types are not supported: https://github.com/python/typing/issues/182 JT = Union[Dict[str, Any], List[Any]] logger = logging.get_logger(__name__) _url = constants.SDN_ROOT_URL _ssl_context: Optional[SSLContext] = None METHODS_WHITELIST = frozenset( ["HEAD", "GET", "PUT", "DELETE", "OPTIONS", "TRACE", "POST", "PATCH"] ) def set_root_url(sdn_url: str, ssl_context: Optional[SSLContext] = None): # pylint: disable=global-statement global _url _url = sdn_url update_http_ssl_context(ssl_context) def update_http_ssl_context(ssl_context: Optional[SSLContext] = None): # pylint: disable=global-statement global _ssl_context _ssl_context = ssl_context def post_json(endpoint: str, payload=None) -> Optional[JT]: return _http_request("POST", endpoint, body=json_encoder.to_json(payload), headers=constants.HTTP_HEADERS) def patch_json(endpoint: str, payload=None) -> Optional[JT]: return _http_request("PATCH", endpoint, body=json_encoder.to_json(payload), headers=constants.HTTP_HEADERS) def delete_json(endpoint: str, payload=None) -> Optional[JT]: return _http_request("DELETE", endpoint, body=json_encoder.to_json(payload), headers=constants.HTTP_HEADERS) def get_json(endpoint: str) -> Optional[JT]: return _http_request("GET", endpoint, headers=constants.HTTP_HEADERS) def get_json_with_payload(endpoint: str, payload=None) -> Optional[JT]: return _http_request("GET", endpoint, body=json_encoder.to_json(payload), headers=constants.HTTP_HEADERS) def build_url(endpoint: str) -> str: if not endpoint or not isinstance(endpoint, str): raise ValueError("Missing or invalid URL") return _url + endpoint def raise_for_status(res: HTTPResponse) -> None: if status.is_client_error(res.status) or status.is_server_error(res.status): raise HTTPError(f"{res.status}:{res.reason}") def _http_request(method: str, endpoint: str, **kwargs) -> Optional[JT]: url = build_url(endpoint) parsed_url = parse_url(url) pm_args = { "num_pools": constants.HTTP_POOL_MANAGER_COUNT, "host": parsed_url.host, "port": parsed_url.port, "retries": Retry( connect=constants.HTTP_REQUEST_RETRIES_COUNT, read=constants.HTTP_REQUEST_RETRIES_COUNT, redirect=constants.HTTP_REQUEST_RETRIES_COUNT, backoff_factor=constants.HTTP_REQUEST_BACKOFF_FACTOR, method_whitelist=METHODS_WHITELIST ), "ssl_context": _ssl_context, } if _ssl_context is not None and url.startswith("https"): pm_args["assert_hostname"] = False http_pool_manager: PoolManager = PoolManager(**pm_args) try: logger.trace("HTTP {0} to {1}", method, url) response = http_pool_manager.request( method=method, url=parsed_url.url, timeout=constants.HTTP_REQUEST_TIMEOUT, **kwargs ) raise_for_status(response) except MaxRetryError as e: logger.info("{} to {} failed due to: {}.", method, url, e) return None except Exception as e: # pylint: disable=broad-except logger.error(log_messages.HTTP_REQUEST_RETURNED_ERROR, method, url, e) return None return json.loads(response.data)
en
0.714865
# recursive types are not supported: https://github.com/python/typing/issues/182 # pylint: disable=global-statement # pylint: disable=global-statement # pylint: disable=broad-except
2.059291
2
sgtpy/gammamie_mixtures/ares.py
MatKie/SGTPy
12
6630977
<reponame>MatKie/SGTPy<gh_stars>10-100 from __future__ import division, print_function, absolute_import import numpy as np from .a1sB_monomer import a1sB_eval, da1sB_dxhi00_eval, d2a1sB_dxhi00_eval from .a1sB_monomer import d3a1sB_dxhi00_eval from .a1sB_monomer import da1sB_dx_eval, da1sB_dx_dxhi00_eval from .a1sB_monomer import da1sB_dx_dxhi00_dxxhi_eval from .a1sB_monomer import da1sB_dx_d2xhi00_dxxhi_eval from .ahs_monomer import ahs, dahs_dxhi00, d2ahs_dxhi00 from .ahs_monomer import dahs_dx, dahs_dxxhi from .a3_monomer import a3, da3_dxhi00, d2a3_dxhi00 from .a3_monomer import da3_dx, da3_dxxhi from .a2_monomer import a2, da2_dxhi00, d2a2_dxhi00 from .a2_monomer import da2_dx, da2_dxxhi from .a1_monomer import a1, da1_dxhi00, d2a1_dxhi00 from .a1_monomer import da1_dx, da1_dxxhi from .a2new_chain import da2new_dxhi00, d2a2new_dxhi00, d3a2new_dxhi00 from .a2new_chain import da2new_dx_dxhi00, da2new_dxxhi_dxhi00 from .gdHS_chain import gdHS, dgdHS_dxhi00, d2gdHS_dxhi00 from .gdHS_chain import dgdHS_dx, dgdHS_dxxhi from .gammac_chain import gammac, dgammac_dxhi00, d2gammac_dxhi00 from .gammac_chain import dgammac_dx, dgammac_dxxhi from .g1sigma_chain import g1sigma, dg1sigma_dxhi00, d2g1sigma_dxhi00 from .g1sigma_chain import dg1sigma_dx, dg1sigma_dxxhi from .g2mca_chain import g2mca, dg2mca_dxhi00, d2g2mca_dxhi00 from .g2mca_chain import dg2mca_dx, dg2mca_dxxhi from .lngmie_chain import lngmie, dlngmie_dxhi00, d2lngmie_dxhi00 from .lngmie_chain import dlngmie_dx, dlngmie_dxxhi from .monomer_aux import dkHS_dxhi00, d2kHS_dxhi00, d3kHS_dxhi00 from .monomer_aux import dkHS_dx_dxhi00, d2kHS_dx_dxhi00 from .association_aux import Xass_solver, CIJ_matrix from .association_aux import dXass_drho, d2Xass_drho, dXass_dx from .association_aux import Iab, dIab_drho, d2Iab_drho, dIab # Eq. (14) Paper 2014 def xhi_eval(xhi00, xs_k, xs_m, d_kk03): dxhi_dxhi00 = xs_m * np.matmul(xs_k, d_kk03) xhi = xhi00 * dxhi_dxhi00 return xhi, dxhi_dxhi00 def dxhi_dx_eval(xhi00, xs_k, xs_m, d_kk03, dxk_dx_aux): dxhi_dxhi00 = xs_m * np.matmul(xs_k, d_kk03) xhi = xhi00 * dxhi_dxhi00 dxhi_dx = (xhi00*dxk_dx_aux@d_kk03).T return xhi, dxhi_dxhi00, dxhi_dx # Eq (22) Paper 2014 def xhix_eval(xhi00, xs_k, xs_m, d_kl3): sum1 = np.matmul(np.matmul(xs_k, d_kl3), xs_k) dxhix_dxhi00 = xs_m * sum1 xhix = xhi00 * dxhix_dxhi00 return xhix, dxhix_dxhi00 def dxhix_dx_eval(xhi00, xs_k, dxsk_dx, xs_m, zs_m, d_kl3): aux1 = xs_k * d_kl3 aux2 = np.dot(xs_k, aux1) aux3 = aux2.sum() dxhix_dxhi00 = xs_m * aux3 xhix = xhi00 * dxhix_dxhi00 suma1 = 2*np.sum(dxsk_dx@aux1, axis=1) dxhix_dx_dxhi00 = (zs_m * aux3 + xs_m * suma1) dxhix_dx = xhi00 * dxhix_dx_dxhi00 return xhix, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00 def ares(self, x, rho, temp_aux, Xass0=None): beta, beta2, beta3, d_kk, d_kl, d_kl3, d_kk03, x0_kl = temp_aux[:8] a1vdw_ctekl, a1vdwkl, x0_a1, x0_a2, I_lambdaskl = temp_aux[8:13] J_lambdaskl, d_ii, d_ii3, x0_ii, a1vdw_cteii, a1vdwii = temp_aux[13:19] tetha, x0_a1ii, x0_a2ii, x0_g1ii, x0_g2ii, I_lambdasii = temp_aux[19:25] J_lambdasii, x0i_matrix, beps_ii, beps_ii2 = temp_aux[25:29] dxhi00_drho = self.dxhi00_drho xhi00 = rho*dxhi00_drho sigma_kl3 = self.sigma_kl3 Sk = self.Sk vki = self.vki vk = self.vk x_k = x[self.groups_index] xs_ki = x_k*Sk*vki*vk xs_m = np.sum(xs_ki) xs_k = xs_ki / xs_m xhi, dxhi_dxhi00 = xhi_eval(xhi00, xs_k, xs_m, d_kk03) xhix, dxhix_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, d_kl3) xhixm, dxhixm_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, sigma_kl3) xhix2 = xhix**2 xhix3 = xhix2*xhix xhix4 = xhix3*xhix xhix_vec = np.array([[xhix, xhix2, xhix3, xhix4], [1., 2 * xhix, 3*xhix2, 4*xhix3]]) # monomer contribution calculation Ckl = self.Ckl Ckl2 = self.Ckl2 eps_kl = self.eps_kl f1, f2, f3 = self.f1, self.f2, self.f3 f4, f5, f6 = self.f4, self.f5, self.f6 # lambdaskl = self.lambdaskl ccteskl = self.ccteskl a1kl, a2kl = a1sB_eval(xhi00, xhix, xhix_vec[0], xs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl) # zero order pertubation aHS = ahs(xhi) # first order pertubation suma1_monomer = Ckl * np.sum(a1kl * x0_a1, axis=0) a1m = a1(xs_k, suma1_monomer) # second order pertubation khs, dkhs = dkHS_dxhi00(xhix, dxhix_dxhi00) suma2_monomer = Ckl2 * np.sum(a2kl * x0_a2, axis=0) a2m = a2(xs_k, khs, xhixm, suma2_monomer, eps_kl, f1, f2, f3) # third order pertubaton a3m = a3(xs_k, xhixm, eps_kl, f4, f5, f6) am = xs_m * (aHS + beta * a1m + beta**2 * a2m + beta**3 * a3m) # chain contribution calculation # lambdasii = self.lambdasii cctesii = self.cctesii alphaii = self.alphaii eps_ii = self.eps_ii Cii = self.Cii Cii2 = self.Cii2 da1ii, da2ii = da1sB_dxhi00_eval(xhi00, xhix, xhix_vec, xs_m, I_lambdasii, J_lambdasii, cctesii, a1vdwii, a1vdw_cteii, dxhix_dxhi00) # g hard sphere gHS = gdHS(x0i_matrix, xhix) # gamma_c gc = gammac(xhixm, alphaii, tetha) # g1sigma da1_chain = Cii * np.sum(da1ii[1] * x0_a1ii, axis=0) suma_g1 = Cii * np.sum(da1ii[0] * x0_g1ii, axis=0) g1s = g1sigma(xhi00, xs_m, da1_chain, suma_g1, a1vdw_cteii) # g2sigma dsuma2_chain = Cii2 * np.sum(da2ii * x0_a2ii, axis=1) da2new = da2new_dxhi00(khs, dkhs, dsuma2_chain, eps_ii) suma_g2 = Cii2 * np.sum(da2ii[0] * x0_g2ii, axis=0) g2m = g2mca(xhi00, khs, xs_m, da2new, suma_g2, eps_ii, a1vdw_cteii) g2s = (1 + gc) * g2m lng = lngmie(gHS, g1s, g2s, beps_ii, beps_ii2) ach = - lng@(x * (self.zs_m - 1.)) ares = am + ach if self.asso_bool: if Xass0 is None: Xass = 0.2 * np.ones(self.nsites) else: Xass = 1. * Xass0 # T_ad = 1/(self.eps_ij*beta) T_ad = temp_aux[29] sigma_kl3 = self.sigma_kl3 sigma_x3 = np.matmul(np.matmul(sigma_kl3, xs_k), xs_k) rho_ad = rho * xs_m * sigma_x3 Iijklab = np.zeros([self.nc, self.nc]) Iab(rho_ad, T_ad, Iijklab) diagasso = self.diagasso # vki_asso = self.vki[self.group_asso_index] vki_asso = self.vki_asso DIJ = self.DIJ xj_asso = x[self.molecule_id_index_sites] xjvk = xj_asso*vki_asso # Fklab = np.exp(self.epsAB_kl * beta) - 1 Fklab = temp_aux[30] Dijklab = self.kAB_kl * Fklab Dijklab[self.indexABij] *= Iijklab[self.indexAB_id] Xass = Xass_solver(rho, xjvk, DIJ, Dijklab, diagasso, Xass) ares += np.dot(self.S * xjvk, (np.log(Xass) - Xass/2 + 1/2)) else: Xass = Xass0 return ares, Xass def dares_drho(self, x, rho, temp_aux, Xass0=None): beta, beta2, beta3, d_kk, d_kl, d_kl3, d_kk03, x0_kl = temp_aux[:8] a1vdw_ctekl, a1vdwkl, x0_a1, x0_a2, I_lambdaskl = temp_aux[8:13] J_lambdaskl, d_ii, d_ii3, x0_ii, a1vdw_cteii, a1vdwii = temp_aux[13:19] tetha, x0_a1ii, x0_a2ii, x0_g1ii, x0_g2ii, I_lambdasii = temp_aux[19:25] J_lambdasii, x0i_matrix, beps_ii, beps_ii2 = temp_aux[25:29] dxhi00_drho = self.dxhi00_drho xhi00 = rho*dxhi00_drho sigma_kl3 = self.sigma_kl3 Sk = self.Sk vki = self.vki vk = self.vk x_k = x[self.groups_index] xs_ki = x_k*Sk*vki*vk xs_m = np.sum(xs_ki) xs_k = xs_ki / xs_m xhi, dxhi_dxhi00 = xhi_eval(xhi00, xs_k, xs_m, d_kk03) xhix, dxhix_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, d_kl3) xhixm, dxhixm_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, sigma_kl3) xhix2 = xhix**2 xhix3 = xhix2*xhix xhix4 = xhix3*xhix xhix_vec = np.array([[xhix, xhix2, xhix3, xhix4], [1., 2 * xhix, 3*xhix2, 4*xhix3], [0., 2., 6*xhix, 12*xhix2]]) # monomer contribution calculation Ckl = self.Ckl Ckl2 = self.Ckl2 eps_kl = self.eps_kl f1, f2, f3 = self.f1, self.f2, self.f3 f4, f5, f6 = self.f4, self.f5, self.f6 # lambdaskl = self.lambdaskl ccteskl = self.ccteskl da1kl, da2kl = da1sB_dxhi00_eval(xhi00, xhix, xhix_vec[:2], xs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl, dxhix_dxhi00) # zero order pertubation daHS = dahs_dxhi00(xhi, dxhi_dxhi00) # first order pertubation suma1_monomer = Ckl * np.sum(da1kl * x0_a1, axis=1) da1m = da1_dxhi00(xs_k, suma1_monomer) # second order pertubation khs, dkhs, d2khs = d2kHS_dxhi00(xhix, dxhix_dxhi00) suma2_monomer = Ckl2 * np.sum(da2kl * x0_a2, axis=1) da2m = da2_dxhi00(xs_k, khs, dkhs, xhixm, dxhixm_dxhi00, suma2_monomer, eps_kl, f1, f2, f3) # third order pertubaton da3m = da3_dxhi00(xs_k, xhixm, dxhixm_dxhi00, eps_kl, f4, f5, f6) damono = xs_m * (daHS + beta * da1m + beta**2 * da2m + beta**3 * da3m) # chain contribution calculation # lambdasii = self.lambdasii cctesii = self.cctesii alphaii = self.alphaii eps_ii = self.eps_ii Cii = self.Cii Cii2 = self.Cii2 d2a1ii, d2a2ii = d2a1sB_dxhi00_eval(xhi00, xhix, xhix_vec, xs_m, I_lambdasii, J_lambdasii, cctesii, a1vdwii, a1vdw_cteii, dxhix_dxhi00) # g hard sphere dgHS = dgdHS_dxhi00(x0i_matrix, xhix, dxhix_dxhi00) # gamma_c dgc = dgammac_dxhi00(xhixm, dxhixm_dxhi00, alphaii, tetha) # g1sigma d2a1_chain = Cii * np.sum(d2a1ii[1:] * x0_a1ii, axis=1) dsuma_g1 = Cii * np.sum(d2a1ii[:2] * x0_g1ii, axis=1) dg1s = dg1sigma_dxhi00(xhi00, xs_m, d2a1_chain, dsuma_g1, a1vdw_cteii) # g2sigma d2suma2_chain = Cii2 * np.sum(d2a2ii * x0_a2ii, axis=1) d2a2new = d2a2new_dxhi00(khs, dkhs, d2khs, d2suma2_chain, eps_ii) dsuma_g2 = Cii2 * np.sum(d2a2ii[:2] * x0_g2ii, axis=1) dg2m = dg2mca_dxhi00(xhi00, khs, dkhs, xs_m, d2a2new, dsuma_g2, eps_ii, a1vdw_cteii) dg2s = dg2m * (1 + dgc[0]) dg2s[1] += dg2m[0] * dgc[1] dlng = dlngmie_dxhi00(dgHS, dg1s, dg2s, beps_ii, beps_ii2) dachain = - dlng@(x * (self.zs_m - 1.)) ares = damono + dachain ares *= self.dxhi00_1 if self.asso_bool: if Xass0 is None: Xass = 0.2 * np.ones(self.nsites) else: Xass = 1. * Xass0 # T_ad = 1/(self.eps_ij*beta) T_ad = temp_aux[29] sigma_kl3 = self.sigma_kl3 sigma_x3 = np.matmul(np.matmul(sigma_kl3, xs_k), xs_k) drho_ad = xs_m * sigma_x3 rho_ad = rho * drho_ad Iijklab = np.zeros([self.nc, self.nc]) dIijklab_drho = np.zeros([self.nc, self.nc]) dIab_drho(rho_ad, T_ad, drho_ad, Iijklab, dIijklab_drho) diagasso = self.diagasso # vki_asso = self.vki[self.group_asso_index] vki_asso = self.vki_asso DIJ = self.DIJ xj_asso = x[self.molecule_id_index_sites] xjvk = xj_asso*vki_asso # Fklab = np.exp(self.epsAB_kl * beta) - 1 Fklab = temp_aux[30] Dijklab = self.kAB_kl * Fklab Dijklab[self.indexABij] *= Iijklab[self.indexAB_id] dDijklab_drho = self.kAB_kl * Fklab dDijklab_drho[self.indexABij] *= dIijklab_drho[self.indexAB_id] Xass = Xass_solver(rho, xjvk, DIJ, Dijklab, diagasso, Xass) CIJ = CIJ_matrix(rho, xjvk, Xass, DIJ, Dijklab, diagasso) dXass = dXass_drho(rho, xjvk, Xass, DIJ, Dijklab, dDijklab_drho, CIJ) ares[0] += np.dot(self.S * xjvk, (np.log(Xass) - Xass/2 + 1/2)) ares[1] += np.dot(self.S * xjvk, (1/Xass - 1/2) * dXass) else: Xass = Xass0 return ares, Xass def d2ares_drho(self, x, rho, temp_aux, Xass0=None): beta, beta2, beta3, d_kk, d_kl, d_kl3, d_kk03, x0_kl = temp_aux[:8] a1vdw_ctekl, a1vdwkl, x0_a1, x0_a2, I_lambdaskl = temp_aux[8:13] J_lambdaskl, d_ii, d_ii3, x0_ii, a1vdw_cteii, a1vdwii = temp_aux[13:19] tetha, x0_a1ii, x0_a2ii, x0_g1ii, x0_g2ii, I_lambdasii = temp_aux[19:25] J_lambdasii, x0i_matrix, beps_ii, beps_ii2 = temp_aux[25:29] dxhi00_drho = self.dxhi00_drho xhi00 = rho*dxhi00_drho sigma_kl3 = self.sigma_kl3 Sk = self.Sk vki = self.vki vk = self.vk x_k = x[self.groups_index] xs_ki = x_k*Sk*vki*vk xs_m = np.sum(xs_ki) xs_k = xs_ki / xs_m xhi, dxhi_dxhi00 = xhi_eval(xhi00, xs_k, xs_m, d_kk03) xhix, dxhix_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, d_kl3) xhixm, dxhixm_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, sigma_kl3) xhix2 = xhix**2 xhix3 = xhix2*xhix xhix4 = xhix3*xhix xhix_vec = np.array([[xhix, xhix2, xhix3, xhix4], [1., 2 * xhix, 3.*xhix2, 4.*xhix3], [0., 2., 6*xhix, 12.*xhix2], [0., 0., 6., 24.*xhix]]) # monomer contribution calculation Ckl = self.Ckl Ckl2 = self.Ckl2 eps_kl = self.eps_kl f1, f2, f3 = self.f1, self.f2, self.f3 f4, f5, f6 = self.f4, self.f5, self.f6 # lambdaskl = self.lambdaskl ccteskl = self.ccteskl xhi, dxhi_dxhi00 = xhi_eval(xhi00, xs_k, xs_m, d_kk03) xhix, dxhix_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, d_kl3) xhixm, dxhixm_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, sigma_kl3) d2a1kl, d2a2kl = d2a1sB_dxhi00_eval(xhi00, xhix, xhix_vec[:3], xs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl, dxhix_dxhi00) # zero order pertubation d2aHS = d2ahs_dxhi00(xhi, dxhi_dxhi00) # first order pertubation suma1_monomer = Ckl * np.sum(d2a1kl * x0_a1, axis=1) d2a1m = d2a1_dxhi00(xs_k, suma1_monomer) # second order pertubation khs, dkhs, d2khs, d3khs = d3kHS_dxhi00(xhix, dxhix_dxhi00) suma2_monomer = Ckl2 * np.sum(d2a2kl * x0_a2, axis=1) d2a2m = d2a2_dxhi00(xs_k, khs, dkhs, d2khs, xhixm, dxhixm_dxhi00, suma2_monomer, eps_kl, f1, f2, f3) # third order pertubaton d2a3m = d2a3_dxhi00(xs_k, xhixm, dxhixm_dxhi00, eps_kl, f4, f5, f6) d2amono = xs_m * (d2aHS + beta * d2a1m + beta**2 * d2a2m + beta**3 * d2a3m) # chain contribution calculation # lambdasii = self.lambdasii cctesii = self.cctesii alphaii = self.alphaii eps_ii = self.eps_ii Cii = self.Cii Cii2 = self.Cii2 d3a1ii, d3a2ii = d3a1sB_dxhi00_eval(xhi00, xhix, xhix_vec, xs_m, I_lambdasii, J_lambdasii, cctesii, a1vdwii, a1vdw_cteii, dxhix_dxhi00) # g hard sphere d2gHS = d2gdHS_dxhi00(x0i_matrix, xhix, dxhix_dxhi00) # gamma_c d2gc = d2gammac_dxhi00(xhixm, dxhixm_dxhi00, alphaii, tetha) # g1sigma d3a1_chain = Cii * np.sum(d3a1ii[1:] * x0_a1ii, axis=1) d2suma_g1 = Cii * np.sum(d3a1ii[:3] * x0_g1ii, axis=1) d2g1s = d2g1sigma_dxhi00(xhi00, xs_m, d3a1_chain, d2suma_g1, a1vdw_cteii) # g2sigma d3suma2_chain = Cii2 * np.sum(d3a2ii * x0_a2ii, axis=1) d3a2new = d3a2new_dxhi00(khs, dkhs, d2khs, d3khs, d3suma2_chain, eps_ii) d2suma_g2 = Cii2 * np.sum(d3a2ii[:3] * x0_g2ii, axis=1) d2g2m = d2g2mca_dxhi00(xhi00, khs, dkhs, d2khs, xs_m, d3a2new, d2suma_g2, eps_ii, a1vdw_cteii) d2g2s = d2g2m * (1. + d2gc[0]) d2g2s[1] += d2g2m[0] * d2gc[1] d2g2s[2] += 2. * d2g2m[1] * d2gc[1] + d2g2m[0] * d2gc[2] d2lng = d2lngmie_dxhi00(d2gHS, d2g1s, d2g2s, beps_ii, beps_ii2) d2achain = - d2lng@(x * (self.zs_m - 1.)) ares = d2amono + d2achain ares *= self.dxhi00_2 if self.asso_bool: if Xass0 is None: Xass = 0.2 * np.ones(self.nsites) else: Xass = 1. * Xass0 # T_ad = 1/(self.eps_ij*beta) T_ad = temp_aux[29] sigma_kl3 = self.sigma_kl3 sigma_x3 = np.matmul(np.matmul(sigma_kl3, xs_k), xs_k) drho_ad = xs_m * sigma_x3 rho_ad = rho * drho_ad Iijklab = np.zeros([self.nc, self.nc]) dIijklab_drho = np.zeros([self.nc, self.nc]) d2Iijklab_drho = np.zeros([self.nc, self.nc]) d2Iab_drho(rho_ad, T_ad, drho_ad, Iijklab, dIijklab_drho, d2Iijklab_drho) diagasso = self.diagasso # vki_asso = self.vki[self.group_asso_index] vki_asso = self.vki_asso DIJ = self.DIJ xj_asso = x[self.molecule_id_index_sites] xjvk = xj_asso*vki_asso # Fklab = np.exp(self.epsAB_kl * beta) - 1 Fklab = temp_aux[30] Dijklab = self.kAB_kl * Fklab Dijklab[self.indexABij] *= Iijklab[self.indexAB_id] dDijklab_drho = self.kAB_kl * Fklab dDijklab_drho[self.indexABij] *= dIijklab_drho[self.indexAB_id] d2Dijklab_drho = self.kAB_kl * Fklab d2Dijklab_drho[self.indexABij] *= d2Iijklab_drho[self.indexAB_id] Xass = Xass_solver(rho, xjvk, DIJ, Dijklab, diagasso, Xass) CIJ = CIJ_matrix(rho, xjvk, Xass, DIJ, Dijklab, diagasso) dXass = dXass_drho(rho, xjvk, Xass, DIJ, Dijklab, dDijklab_drho, CIJ) d2Xass = d2Xass_drho(rho, xjvk, Xass, dXass, DIJ, Dijklab, dDijklab_drho, d2Dijklab_drho, CIJ) aux0 = self.S * xjvk aux1 = np.log(Xass) - Xass/2 + 1/2 aux2 = 1/Xass - 1/2 ares[0] += np.dot(aux0, aux1) ares[1] += np.dot(aux0, aux2 * dXass) ares[2] += np.dot(aux0, -(dXass/Xass)**2+d2Xass*aux2) else: Xass = Xass0 return ares, Xass def dares_dx(self, x, rho, temp_aux, Xass0=None): beta, beta2, beta3, d_kk, d_kl, d_kl3, d_kk03, x0_kl = temp_aux[:8] a1vdw_ctekl, a1vdwkl, x0_a1, x0_a2, I_lambdaskl = temp_aux[8:13] J_lambdaskl, d_ii, d_ii3, x0_ii, a1vdw_cteii, a1vdwii = temp_aux[13:19] tetha, x0_a1ii, x0_a2ii, x0_g1ii, x0_g2ii, I_lambdasii = temp_aux[19:25] J_lambdasii, x0i_matrix, beps_ii, beps_ii2 = temp_aux[25:29] dxhi00_drho = self.dxhi00_drho xhi00 = rho*dxhi00_drho sigma_kl3 = self.sigma_kl3 Sk = self.Sk vki = self.vki vk = self.vk dxkdx = self.dxkdx zs_m = self.zs_m x_k = x[self.groups_index] aux_Skvksvki = Sk*vki*vk xs_ki = x_k*aux_Skvksvki xs_m = np.sum(xs_ki) xs_k = xs_ki / xs_m dxk_dx_aux = aux_Skvksvki * dxkdx dxsk_dx = dxk_dx_aux * xs_m dxsk_dx -= np.outer(zs_m, xs_ki) dxsk_dx /= xs_m**2 out = dxhi_dx_eval(xhi00, xs_k, xs_m, d_kk03, dxk_dx_aux) xhi, dxhi_dxhi00, dxhi_dx = out out = dxhix_dx_eval(xhi00, xs_k, dxsk_dx, xs_m, zs_m, d_kl3) xhix, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00 = out out = dxhix_dx_eval(xhi00, xs_k, dxsk_dx, xs_m, zs_m, sigma_kl3) xhixm, dxhixm_dxhi00, dxhixm_dx, dxhixm_dx_dxhi00 = out xhix2 = xhix**2 xhix3 = xhix2*xhix xhix4 = xhix3*xhix xhix_vec = np.array([[xhix, xhix2, xhix3, xhix4], [1., 2 * xhix, 3*xhix2, 4*xhix3], [0., 2, 6*xhix, 12*xhix2]]) khs, dkhs, dkhsx, dkhsxxhi = dkHS_dx_dxhi00(xhix, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00) # monomer contribution calculation Ckl = self.Ckl Ckl2 = self.Ckl2 eps_kl = self.eps_kl f1, f2, f3 = self.f1, self.f2, self.f3 f4, f5, f6 = self.f4, self.f5, self.f6 # lambdaskl = self.lambdaskl ccteskl = self.ccteskl out = da1sB_dx_eval(xhi00, xhix, xhix_vec[:2], xs_m, zs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl, dxhix_dx) a1kl, a2kl, da1x_kl, da2x_kl = out # zero order pertubation aHS, daHSx = dahs_dx(xhi, dxhi_dx) # first order pertubation suma1_monomer = Ckl * np.sum(a1kl * x0_a1, axis=0) suma1x_monomer = Ckl * (da1x_kl[0]*x0_a1[0] + da1x_kl[1]*x0_a1[1]) a1m, da1mx = da1_dx(xs_k, dxsk_dx, suma1_monomer, suma1x_monomer) # second order pertubation suma2_monomer = Ckl2 * np.sum(a2kl * x0_a2, axis=0) suma2x_monomer = da2x_kl[0]*x0_a2[0] + da2x_kl[1]*x0_a2[1] suma2x_monomer += da2x_kl[2]*x0_a2[2] suma2x_monomer *= Ckl2 a2m, da2mx = da2_dx(xs_k, dxsk_dx, khs, dkhsx, xhixm, dxhixm_dx, suma2_monomer, suma2x_monomer, eps_kl, f1, f2, f3) # third order pertubation a3m, da3mx = da3_dx(xs_k, dxsk_dx, xhixm, dxhixm_dx, eps_kl, f4, f5, f6) beta2 = beta**2 beta3 = beta2*beta am = aHS + beta * a1m + beta2 * a2m + beta3 * a3m damx = daHSx + beta * da1mx + beta2 * da2mx + beta3 * da3mx amono = xs_m * am damonox = self.zs_m * am + xs_m * damx # chain contribution calculation # lambdasii = self.lambdasii cctesii = self.cctesii alphaii = self.alphaii eps_ii = self.eps_ii Cii = self.Cii Cii2 = self.Cii2 out = da1sB_dx_dxhi00_dxxhi_eval(xhi00, xhix, xhix_vec, xs_m, zs_m, I_lambdasii, J_lambdasii, cctesii, a1vdwii, a1vdw_cteii, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00) da1ii, da2ii, da1x_ii, da2x_ii, da1_xxhi00_ii, da2_xxhi00_ii = out # g hard sphere ghs, dghsx = dgdHS_dx(x0i_matrix, xhix, dxhix_dx) # g1sigma da1_chain = Cii * np.sum(da1ii[1] * x0_a1ii, axis=0) da1x_chain = Cii*(da1_xxhi00_ii[0]*x0_a1ii[0]+da1_xxhi00_ii[1]*x0_a1ii[1]) suma_g1 = Cii * np.sum(da1ii[0] * x0_g1ii, axis=0) suma_g1x = Cii*(da1x_ii[0] * x0_g1ii[0] + da1x_ii[1] * x0_g1ii[1]) g1s, dg1sx = dg1sigma_dx(xhi00, xs_m, zs_m, da1_chain, da1x_chain, suma_g1, suma_g1x, a1vdw_cteii) # gamma_c gc, dgcx = dgammac_dx(xhixm, dxhixm_dx, alphaii, tetha) # g2sigma suma_g2 = Cii2 * np.sum(da2ii[0] * x0_g2ii, axis=0) suma_g2x = da2x_ii[0]*x0_g2ii[0] + da2x_ii[1]*x0_g2ii[1] suma_g2x += da2x_ii[2]*x0_g2ii[2] suma_g2x *= Cii2 dsuma2_chain = Cii2 * np.sum(da2ii * x0_a2ii, axis=1) dsuma2x_chain = da2x_ii[0] * x0_a2ii[0] + da2x_ii[1] * x0_a2ii[1] dsuma2x_chain += da2x_ii[2] * x0_a2ii[2] dsuma2x_chain *= Cii2 dsuma2xxhi_chain = da2_xxhi00_ii[0] * x0_a2ii[0] dsuma2xxhi_chain += da2_xxhi00_ii[1] * x0_a2ii[1] dsuma2xxhi_chain += da2_xxhi00_ii[2] * x0_a2ii[2] dsuma2xxhi_chain *= Cii2 da2new, da2newx = da2new_dx_dxhi00(khs, dkhs, dkhsx, dkhsxxhi, dsuma2_chain, dsuma2x_chain, dsuma2xxhi_chain, eps_ii) g2m, dg2mx = dg2mca_dx(xhi00, khs, dkhsx, xs_m, zs_m, da2new, da2newx, suma_g2, suma_g2x, eps_ii, a1vdw_cteii) g2s = g2m * (1 + gc) dg2sx = dgcx*g2m + (1+gc)*dg2mx lng, dlngx = dlngmie_dx(ghs, g1s, g2s, dghsx, dg1sx, dg2sx, beps_ii, beps_ii2) zs_m1 = (zs_m - 1.) xzs_m1 = x*zs_m1 achain = - lng@xzs_m1 dachainx = - dlngx@xzs_m1 - lng * zs_m1 ares = amono + achain daresx = damonox + dachainx if self.asso_bool: nc = self.nc if Xass0 is None: Xass = 0.2 * np.ones(self.nsites) else: Xass = 1. * Xass0 # beta = temp_aux[0] # T_ad = 1/(self.eps_ij*beta) T_ad = temp_aux[29] aux1 = xs_k * sigma_kl3 aux2 = np.dot(xs_k, aux1) sigma_x3 = np.sum(aux2) drho_ad = xs_m * sigma_x3 rho_ad = rho * drho_ad suma1 = 2*np.sum(dxsk_dx@aux1, axis=1) drhoad_dx = rho * (zs_m * sigma_x3 + xs_m * suma1) Iijklab = np.zeros([nc, nc]) dIijklab = np.zeros([nc, nc]) dIab(rho_ad, T_ad, Iijklab, dIijklab) dIijklab_dx = np.multiply.outer(drhoad_dx, dIijklab) diagasso = self.diagasso vki_asso = self.vki[self.group_asso_index] DIJ = self.DIJ xj_asso = x[self.molecule_id_index_sites] xjvk = xj_asso*vki_asso dxjasso_dx = self.dxjasso_dx # Fklab = np.exp(self.epsAB_kl * beta) - 1 Fklab = temp_aux[30] Dijklab = self.kAB_kl * Fklab Dijklab[self.indexABij] *= Iijklab[self.indexAB_id] dDijklab_dx = np.stack(nc*[self.kAB_kl * Fklab]) dDijklab_dx[:, self.indexABij[0], self.indexABij[1]] *= dIijklab_dx[:, self.indexAB_id[0], self.indexAB_id[1]] Xass = Xass_solver(rho, xjvk, DIJ, Dijklab, diagasso, Xass) CIJ = CIJ_matrix(rho, xjvk, Xass, DIJ, Dijklab, diagasso) dXassx = dXass_dx(rho, xjvk, Xass, DIJ, Dijklab, dDijklab_dx, dxjasso_dx, CIJ) aux1 = np.log(Xass) - Xass/2 + 1/2 aux2 = 1/Xass - 1/2 ares += np.dot(self.S*xjvk, aux1) daresx += (dxjasso_dx * aux1 + dXassx * xjvk * aux2)@self.S else: Xass = Xass0 return ares, daresx, Xass def dares_dx_drho(self, x, rho, temp_aux, Xass0=None): beta, beta2, beta3, d_kk, d_kl, d_kl3, d_kk03, x0_kl = temp_aux[:8] a1vdw_ctekl, a1vdwkl, x0_a1, x0_a2, I_lambdaskl = temp_aux[8:13] J_lambdaskl, d_ii, d_ii3, x0_ii, a1vdw_cteii, a1vdwii = temp_aux[13:19] tetha, x0_a1ii, x0_a2ii, x0_g1ii, x0_g2ii, I_lambdasii = temp_aux[19:25] J_lambdasii, x0i_matrix, beps_ii, beps_ii2 = temp_aux[25:29] dxhi00_drho = self.dxhi00_drho xhi00 = rho*dxhi00_drho sigma_kl3 = self.sigma_kl3 Sk = self.Sk vki = self.vki vk = self.vk dxkdx = self.dxkdx zs_m = self.zs_m x_k = x[self.groups_index] aux_Skvksvki = Sk*vki*vk xs_ki = x_k*aux_Skvksvki xs_m = np.sum(xs_ki) xs_k = xs_ki / xs_m dxk_dx_aux = aux_Skvksvki * dxkdx dxsk_dx = dxk_dx_aux * xs_m dxsk_dx -= np.outer(zs_m, xs_ki) dxsk_dx /= xs_m**2 out = dxhi_dx_eval(xhi00, xs_k, xs_m, d_kk03, dxk_dx_aux) xhi, dxhi_dxhi00, dxhi_dx = out out = dxhix_dx_eval(xhi00, xs_k, dxsk_dx, xs_m, zs_m, d_kl3) xhix, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00 = out out = dxhix_dx_eval(xhi00, xs_k, dxsk_dx, xs_m, zs_m, sigma_kl3) xhixm, dxhixm_dxhi00, dxhixm_dx, dxhixm_dx_dxhi00 = out xhix2 = xhix**2 xhix3 = xhix2*xhix xhix4 = xhix3*xhix xhix_vec = np.array([[xhix, xhix2, xhix3, xhix4], [1., 2 * xhix, 3*xhix2, 4*xhix3], [0., 2, 6*xhix, 12*xhix2]]) out = d2kHS_dx_dxhi00(xhix, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00) khs, dkhs, d2khs, dkhsx, dkhsxxhi = out # monomer contribution calculation Ckl = self.Ckl Ckl2 = self.Ckl2 eps_kl = self.eps_kl f1, f2, f3 = self.f1, self.f2, self.f3 f4, f5, f6 = self.f4, self.f5, self.f6 # lambdaskl = self.lambdaskl ccteskl = self.ccteskl out = da1sB_dx_dxhi00_eval(xhi00, xhix, xhix_vec, xs_m, zs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl, dxhix_dxhi00, dxhix_dx) da1kl, da2kl, da1x_kl, da2x_kl = out # zero order pertubation aHS, daHSx = dahs_dxxhi(xhi, dxhi_dxhi00, dxhi_dx) # first order pertubation suma1_monomer = Ckl * np.sum(da1kl * x0_a1, axis=1) suma1x_monomer = Ckl * (da1x_kl[0]*x0_a1[0] + da1x_kl[1]*x0_a1[1]) a1m, da1mx = da1_dxxhi(xs_k, dxsk_dx, suma1_monomer, suma1x_monomer) # second order pertubation suma2_monomer = Ckl2 * np.sum(da2kl * x0_a2, axis=1) suma2x_monomer = da2x_kl[0]*x0_a2[0] + da2x_kl[1]*x0_a2[1] suma2x_monomer += da2x_kl[2]*x0_a2[2] suma2x_monomer *= Ckl2 a2m, da2mx = da2_dxxhi(xs_k, dxsk_dx, khs, dkhs, dkhsx, xhixm, dxhixm_dxhi00, dxhixm_dx, suma2_monomer, suma2x_monomer, eps_kl, f1, f2, f3) # third order pertubation a3m, da3mx = da3_dxxhi(xs_k, dxsk_dx, xhixm, dxhixm_dxhi00, dxhixm_dx, eps_kl, f4, f5, f6) beta2 = beta**2 beta3 = beta2*beta am = aHS + beta * a1m + beta2 * a2m + beta3 * a3m damx = daHSx + beta * da1mx + beta2 * da2mx + beta3 * da3mx amono = xs_m * am damonox = self.zs_m * am[0] + xs_m * damx # chain contribution calculation # lambdasii = self.lambdasii cctesii = self.cctesii alphaii = self.alphaii eps_ii = self.eps_ii Cii = self.Cii Cii2 = self.Cii2 out = da1sB_dx_d2xhi00_dxxhi_eval(xhi00, xhix, xhix_vec, xs_m, zs_m, I_lambdasii, J_lambdasii, cctesii, a1vdwii, a1vdw_cteii, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00) d2a1ii, d2a2ii, da1x_ii, da2x_ii, da1_xxhi00_ii, da2_xxhi00_ii = out # g hard sphere ghs, dghsx = dgdHS_dxxhi(x0i_matrix, xhix, dxhix_dxhi00, dxhix_dx) # g1sigma d2a1_chain = Cii * np.sum(d2a1ii[1:] * x0_a1ii, axis=1) # da1_chain = Cii * np.sum(da1ii[1] * x0_a1ii, axis=0) da1x_chain = Cii*(da1_xxhi00_ii[0]*x0_a1ii[0]+da1_xxhi00_ii[1]*x0_a1ii[1]) dsuma_g1 = Cii * np.sum(d2a1ii[:2] * x0_g1ii, axis=1) # suma_g1 = Cii * np.sum(da1ii[0] * x0_g1ii, axis=0) suma_g1x = Cii*(da1x_ii[0] * x0_g1ii[0] + da1x_ii[1] * x0_g1ii[1]) g1s, dg1sx = dg1sigma_dxxhi(xhi00, xs_m, zs_m, d2a1_chain, da1x_chain, dsuma_g1, suma_g1x, a1vdw_cteii) # gamma_c gc, dgcx = dgammac_dxxhi(xhixm, dxhixm_dxhi00, dxhixm_dx, alphaii, tetha) # g2sigma dsuma_g2 = Cii2 * np.sum(d2a2ii[:2] * x0_g2ii, axis=1) suma_g2x = da2x_ii[0]*x0_g2ii[0] + da2x_ii[1]*x0_g2ii[1] suma_g2x += da2x_ii[2]*x0_g2ii[2] suma_g2x *= Cii2 dsuma2x_chain = da2x_ii[0] * x0_a2ii[0] + da2x_ii[1] * x0_a2ii[1] dsuma2x_chain += da2x_ii[2] * x0_a2ii[2] dsuma2x_chain *= Cii2 dsuma2xxhi_chain = da2_xxhi00_ii[0] * x0_a2ii[0] dsuma2xxhi_chain += da2_xxhi00_ii[1] * x0_a2ii[1] dsuma2xxhi_chain += da2_xxhi00_ii[2] * x0_a2ii[2] dsuma2xxhi_chain *= Cii2 d2suma2_chain = Cii2 * np.sum(d2a2ii * x0_a2ii, axis=1) *d2a2new, da2newx = da2new_dxxhi_dxhi00(khs, dkhs, d2khs, dkhsx, dkhsxxhi, d2suma2_chain, dsuma2x_chain, dsuma2xxhi_chain, eps_ii) g2m, dg2mx = dg2mca_dxxhi(xhi00, khs, dkhs, dkhsx, xs_m, zs_m, d2a2new, da2newx, dsuma_g2, suma_g2x, eps_ii, a1vdw_cteii) g2s = g2m * (1 + gc[0]) g2s[1] += g2m[0] * gc[1] dg2sx = dgcx*g2m[0] + (1 + gc[0])*dg2mx lng, dlngx = dlngmie_dxxhi(ghs, g1s, g2s, dghsx, dg1sx, dg2sx, beps_ii, beps_ii2) zs_m1 = (zs_m - 1.) xzs_m1 = x*zs_m1 achain = - lng@xzs_m1 dachainx = - dlngx@xzs_m1 - lng[0] * zs_m1 ares = amono + achain ares *= self.dxhi00_1 daresx = damonox + dachainx if self.asso_bool: nc = self.nc if Xass0 is None: Xass = 0.2 * np.ones(self.nsites) else: Xass = 1. * Xass0 # beta = temp_aux[0] # T_ad = 1/(self.eps_ij*beta) T_ad = temp_aux[29] aux1 = xs_k * sigma_kl3 aux2 = np.dot(xs_k, aux1) sigma_x3 = np.sum(aux2) drho_ad = xs_m * sigma_x3 rho_ad = rho * drho_ad suma1 = 2*np.sum(dxsk_dx@aux1, axis=1) drhoad_dx = rho * (zs_m * sigma_x3 + xs_m * suma1) Iijklab = np.zeros([nc, nc]) dIijklab = np.zeros([nc, nc]) dIab(rho_ad, T_ad, Iijklab, dIijklab) dIijklab_dx = np.multiply.outer(drhoad_dx, dIijklab) dIijklab_drho = dIijklab*drho_ad diagasso = self.diagasso vki_asso = self.vki[self.group_asso_index] DIJ = self.DIJ xj_asso = x[self.molecule_id_index_sites] xjvk = xj_asso*vki_asso dxjasso_dx = self.dxjasso_dx # Fklab = np.exp(self.epsAB_kl * beta) - 1 Fklab = temp_aux[30] Dijklab = self.kAB_kl * Fklab Dijklab[self.indexABij] *= Iijklab[self.indexAB_id] dDijklab_drho = self.kAB_kl * Fklab dDijklab_drho[self.indexABij] *= dIijklab_drho[self.indexAB_id] dDijklab_dx = np.stack(nc*[self.kAB_kl * Fklab]) dDijklab_dx[:, self.indexABij[0], self.indexABij[1]] *= dIijklab_dx[:, self.indexAB_id[0], self.indexAB_id[1]] Xass = Xass_solver(rho, xjvk, DIJ, Dijklab, diagasso, Xass) CIJ = CIJ_matrix(rho, xjvk, Xass, DIJ, Dijklab, diagasso) dXass = dXass_drho(rho, xjvk, Xass, DIJ, Dijklab, dDijklab_drho, CIJ) dXassx = dXass_dx(rho, xjvk, Xass, DIJ, Dijklab, dDijklab_dx, dxjasso_dx, CIJ) aux1 = np.log(Xass) - Xass/2 + 1/2 aux2 = 1/Xass - 1/2 ares[0] += np.dot(self.S*xjvk, aux1) ares[1] += np.dot(self.S*xjvk, aux2 * dXass) daresx += (dxjasso_dx * aux1 + dXassx * xjvk * aux2)@self.S else: Xass = Xass0 return ares, daresx, Xass
from __future__ import division, print_function, absolute_import import numpy as np from .a1sB_monomer import a1sB_eval, da1sB_dxhi00_eval, d2a1sB_dxhi00_eval from .a1sB_monomer import d3a1sB_dxhi00_eval from .a1sB_monomer import da1sB_dx_eval, da1sB_dx_dxhi00_eval from .a1sB_monomer import da1sB_dx_dxhi00_dxxhi_eval from .a1sB_monomer import da1sB_dx_d2xhi00_dxxhi_eval from .ahs_monomer import ahs, dahs_dxhi00, d2ahs_dxhi00 from .ahs_monomer import dahs_dx, dahs_dxxhi from .a3_monomer import a3, da3_dxhi00, d2a3_dxhi00 from .a3_monomer import da3_dx, da3_dxxhi from .a2_monomer import a2, da2_dxhi00, d2a2_dxhi00 from .a2_monomer import da2_dx, da2_dxxhi from .a1_monomer import a1, da1_dxhi00, d2a1_dxhi00 from .a1_monomer import da1_dx, da1_dxxhi from .a2new_chain import da2new_dxhi00, d2a2new_dxhi00, d3a2new_dxhi00 from .a2new_chain import da2new_dx_dxhi00, da2new_dxxhi_dxhi00 from .gdHS_chain import gdHS, dgdHS_dxhi00, d2gdHS_dxhi00 from .gdHS_chain import dgdHS_dx, dgdHS_dxxhi from .gammac_chain import gammac, dgammac_dxhi00, d2gammac_dxhi00 from .gammac_chain import dgammac_dx, dgammac_dxxhi from .g1sigma_chain import g1sigma, dg1sigma_dxhi00, d2g1sigma_dxhi00 from .g1sigma_chain import dg1sigma_dx, dg1sigma_dxxhi from .g2mca_chain import g2mca, dg2mca_dxhi00, d2g2mca_dxhi00 from .g2mca_chain import dg2mca_dx, dg2mca_dxxhi from .lngmie_chain import lngmie, dlngmie_dxhi00, d2lngmie_dxhi00 from .lngmie_chain import dlngmie_dx, dlngmie_dxxhi from .monomer_aux import dkHS_dxhi00, d2kHS_dxhi00, d3kHS_dxhi00 from .monomer_aux import dkHS_dx_dxhi00, d2kHS_dx_dxhi00 from .association_aux import Xass_solver, CIJ_matrix from .association_aux import dXass_drho, d2Xass_drho, dXass_dx from .association_aux import Iab, dIab_drho, d2Iab_drho, dIab # Eq. (14) Paper 2014 def xhi_eval(xhi00, xs_k, xs_m, d_kk03): dxhi_dxhi00 = xs_m * np.matmul(xs_k, d_kk03) xhi = xhi00 * dxhi_dxhi00 return xhi, dxhi_dxhi00 def dxhi_dx_eval(xhi00, xs_k, xs_m, d_kk03, dxk_dx_aux): dxhi_dxhi00 = xs_m * np.matmul(xs_k, d_kk03) xhi = xhi00 * dxhi_dxhi00 dxhi_dx = (xhi00*dxk_dx_aux@d_kk03).T return xhi, dxhi_dxhi00, dxhi_dx # Eq (22) Paper 2014 def xhix_eval(xhi00, xs_k, xs_m, d_kl3): sum1 = np.matmul(np.matmul(xs_k, d_kl3), xs_k) dxhix_dxhi00 = xs_m * sum1 xhix = xhi00 * dxhix_dxhi00 return xhix, dxhix_dxhi00 def dxhix_dx_eval(xhi00, xs_k, dxsk_dx, xs_m, zs_m, d_kl3): aux1 = xs_k * d_kl3 aux2 = np.dot(xs_k, aux1) aux3 = aux2.sum() dxhix_dxhi00 = xs_m * aux3 xhix = xhi00 * dxhix_dxhi00 suma1 = 2*np.sum(dxsk_dx@aux1, axis=1) dxhix_dx_dxhi00 = (zs_m * aux3 + xs_m * suma1) dxhix_dx = xhi00 * dxhix_dx_dxhi00 return xhix, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00 def ares(self, x, rho, temp_aux, Xass0=None): beta, beta2, beta3, d_kk, d_kl, d_kl3, d_kk03, x0_kl = temp_aux[:8] a1vdw_ctekl, a1vdwkl, x0_a1, x0_a2, I_lambdaskl = temp_aux[8:13] J_lambdaskl, d_ii, d_ii3, x0_ii, a1vdw_cteii, a1vdwii = temp_aux[13:19] tetha, x0_a1ii, x0_a2ii, x0_g1ii, x0_g2ii, I_lambdasii = temp_aux[19:25] J_lambdasii, x0i_matrix, beps_ii, beps_ii2 = temp_aux[25:29] dxhi00_drho = self.dxhi00_drho xhi00 = rho*dxhi00_drho sigma_kl3 = self.sigma_kl3 Sk = self.Sk vki = self.vki vk = self.vk x_k = x[self.groups_index] xs_ki = x_k*Sk*vki*vk xs_m = np.sum(xs_ki) xs_k = xs_ki / xs_m xhi, dxhi_dxhi00 = xhi_eval(xhi00, xs_k, xs_m, d_kk03) xhix, dxhix_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, d_kl3) xhixm, dxhixm_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, sigma_kl3) xhix2 = xhix**2 xhix3 = xhix2*xhix xhix4 = xhix3*xhix xhix_vec = np.array([[xhix, xhix2, xhix3, xhix4], [1., 2 * xhix, 3*xhix2, 4*xhix3]]) # monomer contribution calculation Ckl = self.Ckl Ckl2 = self.Ckl2 eps_kl = self.eps_kl f1, f2, f3 = self.f1, self.f2, self.f3 f4, f5, f6 = self.f4, self.f5, self.f6 # lambdaskl = self.lambdaskl ccteskl = self.ccteskl a1kl, a2kl = a1sB_eval(xhi00, xhix, xhix_vec[0], xs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl) # zero order pertubation aHS = ahs(xhi) # first order pertubation suma1_monomer = Ckl * np.sum(a1kl * x0_a1, axis=0) a1m = a1(xs_k, suma1_monomer) # second order pertubation khs, dkhs = dkHS_dxhi00(xhix, dxhix_dxhi00) suma2_monomer = Ckl2 * np.sum(a2kl * x0_a2, axis=0) a2m = a2(xs_k, khs, xhixm, suma2_monomer, eps_kl, f1, f2, f3) # third order pertubaton a3m = a3(xs_k, xhixm, eps_kl, f4, f5, f6) am = xs_m * (aHS + beta * a1m + beta**2 * a2m + beta**3 * a3m) # chain contribution calculation # lambdasii = self.lambdasii cctesii = self.cctesii alphaii = self.alphaii eps_ii = self.eps_ii Cii = self.Cii Cii2 = self.Cii2 da1ii, da2ii = da1sB_dxhi00_eval(xhi00, xhix, xhix_vec, xs_m, I_lambdasii, J_lambdasii, cctesii, a1vdwii, a1vdw_cteii, dxhix_dxhi00) # g hard sphere gHS = gdHS(x0i_matrix, xhix) # gamma_c gc = gammac(xhixm, alphaii, tetha) # g1sigma da1_chain = Cii * np.sum(da1ii[1] * x0_a1ii, axis=0) suma_g1 = Cii * np.sum(da1ii[0] * x0_g1ii, axis=0) g1s = g1sigma(xhi00, xs_m, da1_chain, suma_g1, a1vdw_cteii) # g2sigma dsuma2_chain = Cii2 * np.sum(da2ii * x0_a2ii, axis=1) da2new = da2new_dxhi00(khs, dkhs, dsuma2_chain, eps_ii) suma_g2 = Cii2 * np.sum(da2ii[0] * x0_g2ii, axis=0) g2m = g2mca(xhi00, khs, xs_m, da2new, suma_g2, eps_ii, a1vdw_cteii) g2s = (1 + gc) * g2m lng = lngmie(gHS, g1s, g2s, beps_ii, beps_ii2) ach = - lng@(x * (self.zs_m - 1.)) ares = am + ach if self.asso_bool: if Xass0 is None: Xass = 0.2 * np.ones(self.nsites) else: Xass = 1. * Xass0 # T_ad = 1/(self.eps_ij*beta) T_ad = temp_aux[29] sigma_kl3 = self.sigma_kl3 sigma_x3 = np.matmul(np.matmul(sigma_kl3, xs_k), xs_k) rho_ad = rho * xs_m * sigma_x3 Iijklab = np.zeros([self.nc, self.nc]) Iab(rho_ad, T_ad, Iijklab) diagasso = self.diagasso # vki_asso = self.vki[self.group_asso_index] vki_asso = self.vki_asso DIJ = self.DIJ xj_asso = x[self.molecule_id_index_sites] xjvk = xj_asso*vki_asso # Fklab = np.exp(self.epsAB_kl * beta) - 1 Fklab = temp_aux[30] Dijklab = self.kAB_kl * Fklab Dijklab[self.indexABij] *= Iijklab[self.indexAB_id] Xass = Xass_solver(rho, xjvk, DIJ, Dijklab, diagasso, Xass) ares += np.dot(self.S * xjvk, (np.log(Xass) - Xass/2 + 1/2)) else: Xass = Xass0 return ares, Xass def dares_drho(self, x, rho, temp_aux, Xass0=None): beta, beta2, beta3, d_kk, d_kl, d_kl3, d_kk03, x0_kl = temp_aux[:8] a1vdw_ctekl, a1vdwkl, x0_a1, x0_a2, I_lambdaskl = temp_aux[8:13] J_lambdaskl, d_ii, d_ii3, x0_ii, a1vdw_cteii, a1vdwii = temp_aux[13:19] tetha, x0_a1ii, x0_a2ii, x0_g1ii, x0_g2ii, I_lambdasii = temp_aux[19:25] J_lambdasii, x0i_matrix, beps_ii, beps_ii2 = temp_aux[25:29] dxhi00_drho = self.dxhi00_drho xhi00 = rho*dxhi00_drho sigma_kl3 = self.sigma_kl3 Sk = self.Sk vki = self.vki vk = self.vk x_k = x[self.groups_index] xs_ki = x_k*Sk*vki*vk xs_m = np.sum(xs_ki) xs_k = xs_ki / xs_m xhi, dxhi_dxhi00 = xhi_eval(xhi00, xs_k, xs_m, d_kk03) xhix, dxhix_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, d_kl3) xhixm, dxhixm_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, sigma_kl3) xhix2 = xhix**2 xhix3 = xhix2*xhix xhix4 = xhix3*xhix xhix_vec = np.array([[xhix, xhix2, xhix3, xhix4], [1., 2 * xhix, 3*xhix2, 4*xhix3], [0., 2., 6*xhix, 12*xhix2]]) # monomer contribution calculation Ckl = self.Ckl Ckl2 = self.Ckl2 eps_kl = self.eps_kl f1, f2, f3 = self.f1, self.f2, self.f3 f4, f5, f6 = self.f4, self.f5, self.f6 # lambdaskl = self.lambdaskl ccteskl = self.ccteskl da1kl, da2kl = da1sB_dxhi00_eval(xhi00, xhix, xhix_vec[:2], xs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl, dxhix_dxhi00) # zero order pertubation daHS = dahs_dxhi00(xhi, dxhi_dxhi00) # first order pertubation suma1_monomer = Ckl * np.sum(da1kl * x0_a1, axis=1) da1m = da1_dxhi00(xs_k, suma1_monomer) # second order pertubation khs, dkhs, d2khs = d2kHS_dxhi00(xhix, dxhix_dxhi00) suma2_monomer = Ckl2 * np.sum(da2kl * x0_a2, axis=1) da2m = da2_dxhi00(xs_k, khs, dkhs, xhixm, dxhixm_dxhi00, suma2_monomer, eps_kl, f1, f2, f3) # third order pertubaton da3m = da3_dxhi00(xs_k, xhixm, dxhixm_dxhi00, eps_kl, f4, f5, f6) damono = xs_m * (daHS + beta * da1m + beta**2 * da2m + beta**3 * da3m) # chain contribution calculation # lambdasii = self.lambdasii cctesii = self.cctesii alphaii = self.alphaii eps_ii = self.eps_ii Cii = self.Cii Cii2 = self.Cii2 d2a1ii, d2a2ii = d2a1sB_dxhi00_eval(xhi00, xhix, xhix_vec, xs_m, I_lambdasii, J_lambdasii, cctesii, a1vdwii, a1vdw_cteii, dxhix_dxhi00) # g hard sphere dgHS = dgdHS_dxhi00(x0i_matrix, xhix, dxhix_dxhi00) # gamma_c dgc = dgammac_dxhi00(xhixm, dxhixm_dxhi00, alphaii, tetha) # g1sigma d2a1_chain = Cii * np.sum(d2a1ii[1:] * x0_a1ii, axis=1) dsuma_g1 = Cii * np.sum(d2a1ii[:2] * x0_g1ii, axis=1) dg1s = dg1sigma_dxhi00(xhi00, xs_m, d2a1_chain, dsuma_g1, a1vdw_cteii) # g2sigma d2suma2_chain = Cii2 * np.sum(d2a2ii * x0_a2ii, axis=1) d2a2new = d2a2new_dxhi00(khs, dkhs, d2khs, d2suma2_chain, eps_ii) dsuma_g2 = Cii2 * np.sum(d2a2ii[:2] * x0_g2ii, axis=1) dg2m = dg2mca_dxhi00(xhi00, khs, dkhs, xs_m, d2a2new, dsuma_g2, eps_ii, a1vdw_cteii) dg2s = dg2m * (1 + dgc[0]) dg2s[1] += dg2m[0] * dgc[1] dlng = dlngmie_dxhi00(dgHS, dg1s, dg2s, beps_ii, beps_ii2) dachain = - dlng@(x * (self.zs_m - 1.)) ares = damono + dachain ares *= self.dxhi00_1 if self.asso_bool: if Xass0 is None: Xass = 0.2 * np.ones(self.nsites) else: Xass = 1. * Xass0 # T_ad = 1/(self.eps_ij*beta) T_ad = temp_aux[29] sigma_kl3 = self.sigma_kl3 sigma_x3 = np.matmul(np.matmul(sigma_kl3, xs_k), xs_k) drho_ad = xs_m * sigma_x3 rho_ad = rho * drho_ad Iijklab = np.zeros([self.nc, self.nc]) dIijklab_drho = np.zeros([self.nc, self.nc]) dIab_drho(rho_ad, T_ad, drho_ad, Iijklab, dIijklab_drho) diagasso = self.diagasso # vki_asso = self.vki[self.group_asso_index] vki_asso = self.vki_asso DIJ = self.DIJ xj_asso = x[self.molecule_id_index_sites] xjvk = xj_asso*vki_asso # Fklab = np.exp(self.epsAB_kl * beta) - 1 Fklab = temp_aux[30] Dijklab = self.kAB_kl * Fklab Dijklab[self.indexABij] *= Iijklab[self.indexAB_id] dDijklab_drho = self.kAB_kl * Fklab dDijklab_drho[self.indexABij] *= dIijklab_drho[self.indexAB_id] Xass = Xass_solver(rho, xjvk, DIJ, Dijklab, diagasso, Xass) CIJ = CIJ_matrix(rho, xjvk, Xass, DIJ, Dijklab, diagasso) dXass = dXass_drho(rho, xjvk, Xass, DIJ, Dijklab, dDijklab_drho, CIJ) ares[0] += np.dot(self.S * xjvk, (np.log(Xass) - Xass/2 + 1/2)) ares[1] += np.dot(self.S * xjvk, (1/Xass - 1/2) * dXass) else: Xass = Xass0 return ares, Xass def d2ares_drho(self, x, rho, temp_aux, Xass0=None): beta, beta2, beta3, d_kk, d_kl, d_kl3, d_kk03, x0_kl = temp_aux[:8] a1vdw_ctekl, a1vdwkl, x0_a1, x0_a2, I_lambdaskl = temp_aux[8:13] J_lambdaskl, d_ii, d_ii3, x0_ii, a1vdw_cteii, a1vdwii = temp_aux[13:19] tetha, x0_a1ii, x0_a2ii, x0_g1ii, x0_g2ii, I_lambdasii = temp_aux[19:25] J_lambdasii, x0i_matrix, beps_ii, beps_ii2 = temp_aux[25:29] dxhi00_drho = self.dxhi00_drho xhi00 = rho*dxhi00_drho sigma_kl3 = self.sigma_kl3 Sk = self.Sk vki = self.vki vk = self.vk x_k = x[self.groups_index] xs_ki = x_k*Sk*vki*vk xs_m = np.sum(xs_ki) xs_k = xs_ki / xs_m xhi, dxhi_dxhi00 = xhi_eval(xhi00, xs_k, xs_m, d_kk03) xhix, dxhix_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, d_kl3) xhixm, dxhixm_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, sigma_kl3) xhix2 = xhix**2 xhix3 = xhix2*xhix xhix4 = xhix3*xhix xhix_vec = np.array([[xhix, xhix2, xhix3, xhix4], [1., 2 * xhix, 3.*xhix2, 4.*xhix3], [0., 2., 6*xhix, 12.*xhix2], [0., 0., 6., 24.*xhix]]) # monomer contribution calculation Ckl = self.Ckl Ckl2 = self.Ckl2 eps_kl = self.eps_kl f1, f2, f3 = self.f1, self.f2, self.f3 f4, f5, f6 = self.f4, self.f5, self.f6 # lambdaskl = self.lambdaskl ccteskl = self.ccteskl xhi, dxhi_dxhi00 = xhi_eval(xhi00, xs_k, xs_m, d_kk03) xhix, dxhix_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, d_kl3) xhixm, dxhixm_dxhi00 = xhix_eval(xhi00, xs_k, xs_m, sigma_kl3) d2a1kl, d2a2kl = d2a1sB_dxhi00_eval(xhi00, xhix, xhix_vec[:3], xs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl, dxhix_dxhi00) # zero order pertubation d2aHS = d2ahs_dxhi00(xhi, dxhi_dxhi00) # first order pertubation suma1_monomer = Ckl * np.sum(d2a1kl * x0_a1, axis=1) d2a1m = d2a1_dxhi00(xs_k, suma1_monomer) # second order pertubation khs, dkhs, d2khs, d3khs = d3kHS_dxhi00(xhix, dxhix_dxhi00) suma2_monomer = Ckl2 * np.sum(d2a2kl * x0_a2, axis=1) d2a2m = d2a2_dxhi00(xs_k, khs, dkhs, d2khs, xhixm, dxhixm_dxhi00, suma2_monomer, eps_kl, f1, f2, f3) # third order pertubaton d2a3m = d2a3_dxhi00(xs_k, xhixm, dxhixm_dxhi00, eps_kl, f4, f5, f6) d2amono = xs_m * (d2aHS + beta * d2a1m + beta**2 * d2a2m + beta**3 * d2a3m) # chain contribution calculation # lambdasii = self.lambdasii cctesii = self.cctesii alphaii = self.alphaii eps_ii = self.eps_ii Cii = self.Cii Cii2 = self.Cii2 d3a1ii, d3a2ii = d3a1sB_dxhi00_eval(xhi00, xhix, xhix_vec, xs_m, I_lambdasii, J_lambdasii, cctesii, a1vdwii, a1vdw_cteii, dxhix_dxhi00) # g hard sphere d2gHS = d2gdHS_dxhi00(x0i_matrix, xhix, dxhix_dxhi00) # gamma_c d2gc = d2gammac_dxhi00(xhixm, dxhixm_dxhi00, alphaii, tetha) # g1sigma d3a1_chain = Cii * np.sum(d3a1ii[1:] * x0_a1ii, axis=1) d2suma_g1 = Cii * np.sum(d3a1ii[:3] * x0_g1ii, axis=1) d2g1s = d2g1sigma_dxhi00(xhi00, xs_m, d3a1_chain, d2suma_g1, a1vdw_cteii) # g2sigma d3suma2_chain = Cii2 * np.sum(d3a2ii * x0_a2ii, axis=1) d3a2new = d3a2new_dxhi00(khs, dkhs, d2khs, d3khs, d3suma2_chain, eps_ii) d2suma_g2 = Cii2 * np.sum(d3a2ii[:3] * x0_g2ii, axis=1) d2g2m = d2g2mca_dxhi00(xhi00, khs, dkhs, d2khs, xs_m, d3a2new, d2suma_g2, eps_ii, a1vdw_cteii) d2g2s = d2g2m * (1. + d2gc[0]) d2g2s[1] += d2g2m[0] * d2gc[1] d2g2s[2] += 2. * d2g2m[1] * d2gc[1] + d2g2m[0] * d2gc[2] d2lng = d2lngmie_dxhi00(d2gHS, d2g1s, d2g2s, beps_ii, beps_ii2) d2achain = - d2lng@(x * (self.zs_m - 1.)) ares = d2amono + d2achain ares *= self.dxhi00_2 if self.asso_bool: if Xass0 is None: Xass = 0.2 * np.ones(self.nsites) else: Xass = 1. * Xass0 # T_ad = 1/(self.eps_ij*beta) T_ad = temp_aux[29] sigma_kl3 = self.sigma_kl3 sigma_x3 = np.matmul(np.matmul(sigma_kl3, xs_k), xs_k) drho_ad = xs_m * sigma_x3 rho_ad = rho * drho_ad Iijklab = np.zeros([self.nc, self.nc]) dIijklab_drho = np.zeros([self.nc, self.nc]) d2Iijklab_drho = np.zeros([self.nc, self.nc]) d2Iab_drho(rho_ad, T_ad, drho_ad, Iijklab, dIijklab_drho, d2Iijklab_drho) diagasso = self.diagasso # vki_asso = self.vki[self.group_asso_index] vki_asso = self.vki_asso DIJ = self.DIJ xj_asso = x[self.molecule_id_index_sites] xjvk = xj_asso*vki_asso # Fklab = np.exp(self.epsAB_kl * beta) - 1 Fklab = temp_aux[30] Dijklab = self.kAB_kl * Fklab Dijklab[self.indexABij] *= Iijklab[self.indexAB_id] dDijklab_drho = self.kAB_kl * Fklab dDijklab_drho[self.indexABij] *= dIijklab_drho[self.indexAB_id] d2Dijklab_drho = self.kAB_kl * Fklab d2Dijklab_drho[self.indexABij] *= d2Iijklab_drho[self.indexAB_id] Xass = Xass_solver(rho, xjvk, DIJ, Dijklab, diagasso, Xass) CIJ = CIJ_matrix(rho, xjvk, Xass, DIJ, Dijklab, diagasso) dXass = dXass_drho(rho, xjvk, Xass, DIJ, Dijklab, dDijklab_drho, CIJ) d2Xass = d2Xass_drho(rho, xjvk, Xass, dXass, DIJ, Dijklab, dDijklab_drho, d2Dijklab_drho, CIJ) aux0 = self.S * xjvk aux1 = np.log(Xass) - Xass/2 + 1/2 aux2 = 1/Xass - 1/2 ares[0] += np.dot(aux0, aux1) ares[1] += np.dot(aux0, aux2 * dXass) ares[2] += np.dot(aux0, -(dXass/Xass)**2+d2Xass*aux2) else: Xass = Xass0 return ares, Xass def dares_dx(self, x, rho, temp_aux, Xass0=None): beta, beta2, beta3, d_kk, d_kl, d_kl3, d_kk03, x0_kl = temp_aux[:8] a1vdw_ctekl, a1vdwkl, x0_a1, x0_a2, I_lambdaskl = temp_aux[8:13] J_lambdaskl, d_ii, d_ii3, x0_ii, a1vdw_cteii, a1vdwii = temp_aux[13:19] tetha, x0_a1ii, x0_a2ii, x0_g1ii, x0_g2ii, I_lambdasii = temp_aux[19:25] J_lambdasii, x0i_matrix, beps_ii, beps_ii2 = temp_aux[25:29] dxhi00_drho = self.dxhi00_drho xhi00 = rho*dxhi00_drho sigma_kl3 = self.sigma_kl3 Sk = self.Sk vki = self.vki vk = self.vk dxkdx = self.dxkdx zs_m = self.zs_m x_k = x[self.groups_index] aux_Skvksvki = Sk*vki*vk xs_ki = x_k*aux_Skvksvki xs_m = np.sum(xs_ki) xs_k = xs_ki / xs_m dxk_dx_aux = aux_Skvksvki * dxkdx dxsk_dx = dxk_dx_aux * xs_m dxsk_dx -= np.outer(zs_m, xs_ki) dxsk_dx /= xs_m**2 out = dxhi_dx_eval(xhi00, xs_k, xs_m, d_kk03, dxk_dx_aux) xhi, dxhi_dxhi00, dxhi_dx = out out = dxhix_dx_eval(xhi00, xs_k, dxsk_dx, xs_m, zs_m, d_kl3) xhix, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00 = out out = dxhix_dx_eval(xhi00, xs_k, dxsk_dx, xs_m, zs_m, sigma_kl3) xhixm, dxhixm_dxhi00, dxhixm_dx, dxhixm_dx_dxhi00 = out xhix2 = xhix**2 xhix3 = xhix2*xhix xhix4 = xhix3*xhix xhix_vec = np.array([[xhix, xhix2, xhix3, xhix4], [1., 2 * xhix, 3*xhix2, 4*xhix3], [0., 2, 6*xhix, 12*xhix2]]) khs, dkhs, dkhsx, dkhsxxhi = dkHS_dx_dxhi00(xhix, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00) # monomer contribution calculation Ckl = self.Ckl Ckl2 = self.Ckl2 eps_kl = self.eps_kl f1, f2, f3 = self.f1, self.f2, self.f3 f4, f5, f6 = self.f4, self.f5, self.f6 # lambdaskl = self.lambdaskl ccteskl = self.ccteskl out = da1sB_dx_eval(xhi00, xhix, xhix_vec[:2], xs_m, zs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl, dxhix_dx) a1kl, a2kl, da1x_kl, da2x_kl = out # zero order pertubation aHS, daHSx = dahs_dx(xhi, dxhi_dx) # first order pertubation suma1_monomer = Ckl * np.sum(a1kl * x0_a1, axis=0) suma1x_monomer = Ckl * (da1x_kl[0]*x0_a1[0] + da1x_kl[1]*x0_a1[1]) a1m, da1mx = da1_dx(xs_k, dxsk_dx, suma1_monomer, suma1x_monomer) # second order pertubation suma2_monomer = Ckl2 * np.sum(a2kl * x0_a2, axis=0) suma2x_monomer = da2x_kl[0]*x0_a2[0] + da2x_kl[1]*x0_a2[1] suma2x_monomer += da2x_kl[2]*x0_a2[2] suma2x_monomer *= Ckl2 a2m, da2mx = da2_dx(xs_k, dxsk_dx, khs, dkhsx, xhixm, dxhixm_dx, suma2_monomer, suma2x_monomer, eps_kl, f1, f2, f3) # third order pertubation a3m, da3mx = da3_dx(xs_k, dxsk_dx, xhixm, dxhixm_dx, eps_kl, f4, f5, f6) beta2 = beta**2 beta3 = beta2*beta am = aHS + beta * a1m + beta2 * a2m + beta3 * a3m damx = daHSx + beta * da1mx + beta2 * da2mx + beta3 * da3mx amono = xs_m * am damonox = self.zs_m * am + xs_m * damx # chain contribution calculation # lambdasii = self.lambdasii cctesii = self.cctesii alphaii = self.alphaii eps_ii = self.eps_ii Cii = self.Cii Cii2 = self.Cii2 out = da1sB_dx_dxhi00_dxxhi_eval(xhi00, xhix, xhix_vec, xs_m, zs_m, I_lambdasii, J_lambdasii, cctesii, a1vdwii, a1vdw_cteii, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00) da1ii, da2ii, da1x_ii, da2x_ii, da1_xxhi00_ii, da2_xxhi00_ii = out # g hard sphere ghs, dghsx = dgdHS_dx(x0i_matrix, xhix, dxhix_dx) # g1sigma da1_chain = Cii * np.sum(da1ii[1] * x0_a1ii, axis=0) da1x_chain = Cii*(da1_xxhi00_ii[0]*x0_a1ii[0]+da1_xxhi00_ii[1]*x0_a1ii[1]) suma_g1 = Cii * np.sum(da1ii[0] * x0_g1ii, axis=0) suma_g1x = Cii*(da1x_ii[0] * x0_g1ii[0] + da1x_ii[1] * x0_g1ii[1]) g1s, dg1sx = dg1sigma_dx(xhi00, xs_m, zs_m, da1_chain, da1x_chain, suma_g1, suma_g1x, a1vdw_cteii) # gamma_c gc, dgcx = dgammac_dx(xhixm, dxhixm_dx, alphaii, tetha) # g2sigma suma_g2 = Cii2 * np.sum(da2ii[0] * x0_g2ii, axis=0) suma_g2x = da2x_ii[0]*x0_g2ii[0] + da2x_ii[1]*x0_g2ii[1] suma_g2x += da2x_ii[2]*x0_g2ii[2] suma_g2x *= Cii2 dsuma2_chain = Cii2 * np.sum(da2ii * x0_a2ii, axis=1) dsuma2x_chain = da2x_ii[0] * x0_a2ii[0] + da2x_ii[1] * x0_a2ii[1] dsuma2x_chain += da2x_ii[2] * x0_a2ii[2] dsuma2x_chain *= Cii2 dsuma2xxhi_chain = da2_xxhi00_ii[0] * x0_a2ii[0] dsuma2xxhi_chain += da2_xxhi00_ii[1] * x0_a2ii[1] dsuma2xxhi_chain += da2_xxhi00_ii[2] * x0_a2ii[2] dsuma2xxhi_chain *= Cii2 da2new, da2newx = da2new_dx_dxhi00(khs, dkhs, dkhsx, dkhsxxhi, dsuma2_chain, dsuma2x_chain, dsuma2xxhi_chain, eps_ii) g2m, dg2mx = dg2mca_dx(xhi00, khs, dkhsx, xs_m, zs_m, da2new, da2newx, suma_g2, suma_g2x, eps_ii, a1vdw_cteii) g2s = g2m * (1 + gc) dg2sx = dgcx*g2m + (1+gc)*dg2mx lng, dlngx = dlngmie_dx(ghs, g1s, g2s, dghsx, dg1sx, dg2sx, beps_ii, beps_ii2) zs_m1 = (zs_m - 1.) xzs_m1 = x*zs_m1 achain = - lng@xzs_m1 dachainx = - dlngx@xzs_m1 - lng * zs_m1 ares = amono + achain daresx = damonox + dachainx if self.asso_bool: nc = self.nc if Xass0 is None: Xass = 0.2 * np.ones(self.nsites) else: Xass = 1. * Xass0 # beta = temp_aux[0] # T_ad = 1/(self.eps_ij*beta) T_ad = temp_aux[29] aux1 = xs_k * sigma_kl3 aux2 = np.dot(xs_k, aux1) sigma_x3 = np.sum(aux2) drho_ad = xs_m * sigma_x3 rho_ad = rho * drho_ad suma1 = 2*np.sum(dxsk_dx@aux1, axis=1) drhoad_dx = rho * (zs_m * sigma_x3 + xs_m * suma1) Iijklab = np.zeros([nc, nc]) dIijklab = np.zeros([nc, nc]) dIab(rho_ad, T_ad, Iijklab, dIijklab) dIijklab_dx = np.multiply.outer(drhoad_dx, dIijklab) diagasso = self.diagasso vki_asso = self.vki[self.group_asso_index] DIJ = self.DIJ xj_asso = x[self.molecule_id_index_sites] xjvk = xj_asso*vki_asso dxjasso_dx = self.dxjasso_dx # Fklab = np.exp(self.epsAB_kl * beta) - 1 Fklab = temp_aux[30] Dijklab = self.kAB_kl * Fklab Dijklab[self.indexABij] *= Iijklab[self.indexAB_id] dDijklab_dx = np.stack(nc*[self.kAB_kl * Fklab]) dDijklab_dx[:, self.indexABij[0], self.indexABij[1]] *= dIijklab_dx[:, self.indexAB_id[0], self.indexAB_id[1]] Xass = Xass_solver(rho, xjvk, DIJ, Dijklab, diagasso, Xass) CIJ = CIJ_matrix(rho, xjvk, Xass, DIJ, Dijklab, diagasso) dXassx = dXass_dx(rho, xjvk, Xass, DIJ, Dijklab, dDijklab_dx, dxjasso_dx, CIJ) aux1 = np.log(Xass) - Xass/2 + 1/2 aux2 = 1/Xass - 1/2 ares += np.dot(self.S*xjvk, aux1) daresx += (dxjasso_dx * aux1 + dXassx * xjvk * aux2)@self.S else: Xass = Xass0 return ares, daresx, Xass def dares_dx_drho(self, x, rho, temp_aux, Xass0=None): beta, beta2, beta3, d_kk, d_kl, d_kl3, d_kk03, x0_kl = temp_aux[:8] a1vdw_ctekl, a1vdwkl, x0_a1, x0_a2, I_lambdaskl = temp_aux[8:13] J_lambdaskl, d_ii, d_ii3, x0_ii, a1vdw_cteii, a1vdwii = temp_aux[13:19] tetha, x0_a1ii, x0_a2ii, x0_g1ii, x0_g2ii, I_lambdasii = temp_aux[19:25] J_lambdasii, x0i_matrix, beps_ii, beps_ii2 = temp_aux[25:29] dxhi00_drho = self.dxhi00_drho xhi00 = rho*dxhi00_drho sigma_kl3 = self.sigma_kl3 Sk = self.Sk vki = self.vki vk = self.vk dxkdx = self.dxkdx zs_m = self.zs_m x_k = x[self.groups_index] aux_Skvksvki = Sk*vki*vk xs_ki = x_k*aux_Skvksvki xs_m = np.sum(xs_ki) xs_k = xs_ki / xs_m dxk_dx_aux = aux_Skvksvki * dxkdx dxsk_dx = dxk_dx_aux * xs_m dxsk_dx -= np.outer(zs_m, xs_ki) dxsk_dx /= xs_m**2 out = dxhi_dx_eval(xhi00, xs_k, xs_m, d_kk03, dxk_dx_aux) xhi, dxhi_dxhi00, dxhi_dx = out out = dxhix_dx_eval(xhi00, xs_k, dxsk_dx, xs_m, zs_m, d_kl3) xhix, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00 = out out = dxhix_dx_eval(xhi00, xs_k, dxsk_dx, xs_m, zs_m, sigma_kl3) xhixm, dxhixm_dxhi00, dxhixm_dx, dxhixm_dx_dxhi00 = out xhix2 = xhix**2 xhix3 = xhix2*xhix xhix4 = xhix3*xhix xhix_vec = np.array([[xhix, xhix2, xhix3, xhix4], [1., 2 * xhix, 3*xhix2, 4*xhix3], [0., 2, 6*xhix, 12*xhix2]]) out = d2kHS_dx_dxhi00(xhix, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00) khs, dkhs, d2khs, dkhsx, dkhsxxhi = out # monomer contribution calculation Ckl = self.Ckl Ckl2 = self.Ckl2 eps_kl = self.eps_kl f1, f2, f3 = self.f1, self.f2, self.f3 f4, f5, f6 = self.f4, self.f5, self.f6 # lambdaskl = self.lambdaskl ccteskl = self.ccteskl out = da1sB_dx_dxhi00_eval(xhi00, xhix, xhix_vec, xs_m, zs_m, I_lambdaskl, J_lambdaskl, ccteskl, a1vdwkl, a1vdw_ctekl, dxhix_dxhi00, dxhix_dx) da1kl, da2kl, da1x_kl, da2x_kl = out # zero order pertubation aHS, daHSx = dahs_dxxhi(xhi, dxhi_dxhi00, dxhi_dx) # first order pertubation suma1_monomer = Ckl * np.sum(da1kl * x0_a1, axis=1) suma1x_monomer = Ckl * (da1x_kl[0]*x0_a1[0] + da1x_kl[1]*x0_a1[1]) a1m, da1mx = da1_dxxhi(xs_k, dxsk_dx, suma1_monomer, suma1x_monomer) # second order pertubation suma2_monomer = Ckl2 * np.sum(da2kl * x0_a2, axis=1) suma2x_monomer = da2x_kl[0]*x0_a2[0] + da2x_kl[1]*x0_a2[1] suma2x_monomer += da2x_kl[2]*x0_a2[2] suma2x_monomer *= Ckl2 a2m, da2mx = da2_dxxhi(xs_k, dxsk_dx, khs, dkhs, dkhsx, xhixm, dxhixm_dxhi00, dxhixm_dx, suma2_monomer, suma2x_monomer, eps_kl, f1, f2, f3) # third order pertubation a3m, da3mx = da3_dxxhi(xs_k, dxsk_dx, xhixm, dxhixm_dxhi00, dxhixm_dx, eps_kl, f4, f5, f6) beta2 = beta**2 beta3 = beta2*beta am = aHS + beta * a1m + beta2 * a2m + beta3 * a3m damx = daHSx + beta * da1mx + beta2 * da2mx + beta3 * da3mx amono = xs_m * am damonox = self.zs_m * am[0] + xs_m * damx # chain contribution calculation # lambdasii = self.lambdasii cctesii = self.cctesii alphaii = self.alphaii eps_ii = self.eps_ii Cii = self.Cii Cii2 = self.Cii2 out = da1sB_dx_d2xhi00_dxxhi_eval(xhi00, xhix, xhix_vec, xs_m, zs_m, I_lambdasii, J_lambdasii, cctesii, a1vdwii, a1vdw_cteii, dxhix_dxhi00, dxhix_dx, dxhix_dx_dxhi00) d2a1ii, d2a2ii, da1x_ii, da2x_ii, da1_xxhi00_ii, da2_xxhi00_ii = out # g hard sphere ghs, dghsx = dgdHS_dxxhi(x0i_matrix, xhix, dxhix_dxhi00, dxhix_dx) # g1sigma d2a1_chain = Cii * np.sum(d2a1ii[1:] * x0_a1ii, axis=1) # da1_chain = Cii * np.sum(da1ii[1] * x0_a1ii, axis=0) da1x_chain = Cii*(da1_xxhi00_ii[0]*x0_a1ii[0]+da1_xxhi00_ii[1]*x0_a1ii[1]) dsuma_g1 = Cii * np.sum(d2a1ii[:2] * x0_g1ii, axis=1) # suma_g1 = Cii * np.sum(da1ii[0] * x0_g1ii, axis=0) suma_g1x = Cii*(da1x_ii[0] * x0_g1ii[0] + da1x_ii[1] * x0_g1ii[1]) g1s, dg1sx = dg1sigma_dxxhi(xhi00, xs_m, zs_m, d2a1_chain, da1x_chain, dsuma_g1, suma_g1x, a1vdw_cteii) # gamma_c gc, dgcx = dgammac_dxxhi(xhixm, dxhixm_dxhi00, dxhixm_dx, alphaii, tetha) # g2sigma dsuma_g2 = Cii2 * np.sum(d2a2ii[:2] * x0_g2ii, axis=1) suma_g2x = da2x_ii[0]*x0_g2ii[0] + da2x_ii[1]*x0_g2ii[1] suma_g2x += da2x_ii[2]*x0_g2ii[2] suma_g2x *= Cii2 dsuma2x_chain = da2x_ii[0] * x0_a2ii[0] + da2x_ii[1] * x0_a2ii[1] dsuma2x_chain += da2x_ii[2] * x0_a2ii[2] dsuma2x_chain *= Cii2 dsuma2xxhi_chain = da2_xxhi00_ii[0] * x0_a2ii[0] dsuma2xxhi_chain += da2_xxhi00_ii[1] * x0_a2ii[1] dsuma2xxhi_chain += da2_xxhi00_ii[2] * x0_a2ii[2] dsuma2xxhi_chain *= Cii2 d2suma2_chain = Cii2 * np.sum(d2a2ii * x0_a2ii, axis=1) *d2a2new, da2newx = da2new_dxxhi_dxhi00(khs, dkhs, d2khs, dkhsx, dkhsxxhi, d2suma2_chain, dsuma2x_chain, dsuma2xxhi_chain, eps_ii) g2m, dg2mx = dg2mca_dxxhi(xhi00, khs, dkhs, dkhsx, xs_m, zs_m, d2a2new, da2newx, dsuma_g2, suma_g2x, eps_ii, a1vdw_cteii) g2s = g2m * (1 + gc[0]) g2s[1] += g2m[0] * gc[1] dg2sx = dgcx*g2m[0] + (1 + gc[0])*dg2mx lng, dlngx = dlngmie_dxxhi(ghs, g1s, g2s, dghsx, dg1sx, dg2sx, beps_ii, beps_ii2) zs_m1 = (zs_m - 1.) xzs_m1 = x*zs_m1 achain = - lng@xzs_m1 dachainx = - dlngx@xzs_m1 - lng[0] * zs_m1 ares = amono + achain ares *= self.dxhi00_1 daresx = damonox + dachainx if self.asso_bool: nc = self.nc if Xass0 is None: Xass = 0.2 * np.ones(self.nsites) else: Xass = 1. * Xass0 # beta = temp_aux[0] # T_ad = 1/(self.eps_ij*beta) T_ad = temp_aux[29] aux1 = xs_k * sigma_kl3 aux2 = np.dot(xs_k, aux1) sigma_x3 = np.sum(aux2) drho_ad = xs_m * sigma_x3 rho_ad = rho * drho_ad suma1 = 2*np.sum(dxsk_dx@aux1, axis=1) drhoad_dx = rho * (zs_m * sigma_x3 + xs_m * suma1) Iijklab = np.zeros([nc, nc]) dIijklab = np.zeros([nc, nc]) dIab(rho_ad, T_ad, Iijklab, dIijklab) dIijklab_dx = np.multiply.outer(drhoad_dx, dIijklab) dIijklab_drho = dIijklab*drho_ad diagasso = self.diagasso vki_asso = self.vki[self.group_asso_index] DIJ = self.DIJ xj_asso = x[self.molecule_id_index_sites] xjvk = xj_asso*vki_asso dxjasso_dx = self.dxjasso_dx # Fklab = np.exp(self.epsAB_kl * beta) - 1 Fklab = temp_aux[30] Dijklab = self.kAB_kl * Fklab Dijklab[self.indexABij] *= Iijklab[self.indexAB_id] dDijklab_drho = self.kAB_kl * Fklab dDijklab_drho[self.indexABij] *= dIijklab_drho[self.indexAB_id] dDijklab_dx = np.stack(nc*[self.kAB_kl * Fklab]) dDijklab_dx[:, self.indexABij[0], self.indexABij[1]] *= dIijklab_dx[:, self.indexAB_id[0], self.indexAB_id[1]] Xass = Xass_solver(rho, xjvk, DIJ, Dijklab, diagasso, Xass) CIJ = CIJ_matrix(rho, xjvk, Xass, DIJ, Dijklab, diagasso) dXass = dXass_drho(rho, xjvk, Xass, DIJ, Dijklab, dDijklab_drho, CIJ) dXassx = dXass_dx(rho, xjvk, Xass, DIJ, Dijklab, dDijklab_dx, dxjasso_dx, CIJ) aux1 = np.log(Xass) - Xass/2 + 1/2 aux2 = 1/Xass - 1/2 ares[0] += np.dot(self.S*xjvk, aux1) ares[1] += np.dot(self.S*xjvk, aux2 * dXass) daresx += (dxjasso_dx * aux1 + dXassx * xjvk * aux2)@self.S else: Xass = Xass0 return ares, daresx, Xass
en
0.428406
# Eq. (14) Paper 2014 # Eq (22) Paper 2014 # monomer contribution calculation # lambdaskl = self.lambdaskl # zero order pertubation # first order pertubation # second order pertubation # third order pertubaton # chain contribution calculation # lambdasii = self.lambdasii # g hard sphere # gamma_c # g1sigma # g2sigma # T_ad = 1/(self.eps_ij*beta) # vki_asso = self.vki[self.group_asso_index] # Fklab = np.exp(self.epsAB_kl * beta) - 1 # monomer contribution calculation # lambdaskl = self.lambdaskl # zero order pertubation # first order pertubation # second order pertubation # third order pertubaton # chain contribution calculation # lambdasii = self.lambdasii # g hard sphere # gamma_c # g1sigma # g2sigma # T_ad = 1/(self.eps_ij*beta) # vki_asso = self.vki[self.group_asso_index] # Fklab = np.exp(self.epsAB_kl * beta) - 1 # monomer contribution calculation # lambdaskl = self.lambdaskl # zero order pertubation # first order pertubation # second order pertubation # third order pertubaton # chain contribution calculation # lambdasii = self.lambdasii # g hard sphere # gamma_c # g1sigma # g2sigma # T_ad = 1/(self.eps_ij*beta) # vki_asso = self.vki[self.group_asso_index] # Fklab = np.exp(self.epsAB_kl * beta) - 1 # monomer contribution calculation # lambdaskl = self.lambdaskl # zero order pertubation # first order pertubation # second order pertubation # third order pertubation # chain contribution calculation # lambdasii = self.lambdasii # g hard sphere # g1sigma # gamma_c # g2sigma # beta = temp_aux[0] # T_ad = 1/(self.eps_ij*beta) # Fklab = np.exp(self.epsAB_kl * beta) - 1 # monomer contribution calculation # lambdaskl = self.lambdaskl # zero order pertubation # first order pertubation # second order pertubation # third order pertubation # chain contribution calculation # lambdasii = self.lambdasii # g hard sphere # g1sigma # da1_chain = Cii * np.sum(da1ii[1] * x0_a1ii, axis=0) # suma_g1 = Cii * np.sum(da1ii[0] * x0_g1ii, axis=0) # gamma_c # g2sigma # beta = temp_aux[0] # T_ad = 1/(self.eps_ij*beta) # Fklab = np.exp(self.epsAB_kl * beta) - 1
1.293054
1
panel/models/katex.py
vaishali-verma-19/panel
0
6630978
""" Defines a custom KaTeX bokeh model to render text using KaTeX. """ from bokeh.models import Markup class KaTeX(Markup): """ A bokeh model that renders text using KaTeX. """ __javascript__ = ["https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.6.0/katex.min.js", "https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js"] __js_require__ = {'paths': {'katex': 'https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.6.0/katex.min', 'autoLoad': 'https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min'}, 'exports': {'katex': 'katex', 'autoLoad': 'renderMathInElement'}} __css__ = ["https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.6.0/katex.min.css"]
""" Defines a custom KaTeX bokeh model to render text using KaTeX. """ from bokeh.models import Markup class KaTeX(Markup): """ A bokeh model that renders text using KaTeX. """ __javascript__ = ["https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.6.0/katex.min.js", "https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min.js"] __js_require__ = {'paths': {'katex': 'https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.6.0/katex.min', 'autoLoad': 'https://cdn.jsdelivr.net/npm/[email protected]/dist/contrib/auto-render.min'}, 'exports': {'katex': 'katex', 'autoLoad': 'renderMathInElement'}} __css__ = ["https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.6.0/katex.min.css"]
en
0.469744
Defines a custom KaTeX bokeh model to render text using KaTeX. A bokeh model that renders text using KaTeX.
2.703484
3
cmz/cms_news/migrations/0006_newstranslation_body.py
inmagik/cmz
1
6630979
# -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2016-09-23 20:47 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cms_news', '0005_remove_newstranslation_body'), ] operations = [ migrations.AddField( model_name='newstranslation', name='body', field=models.TextField(default=''), preserve_default=False, ), ]
# -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2016-09-23 20:47 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('cms_news', '0005_remove_newstranslation_body'), ] operations = [ migrations.AddField( model_name='newstranslation', name='body', field=models.TextField(default=''), preserve_default=False, ), ]
en
0.800454
# -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2016-09-23 20:47
1.519499
2
cfn_pyplates/utils.py
JSainsburyPLC/cfn-pyplates
0
6630980
<reponame>JSainsburyPLC/cfn-pyplates # Copyright (c) 2013 ReThought Ltd # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. """ These utilities are ReThought additions that provide additional functionality Useful to us, they may be quite specific in cases. """ import re from cfn_pyplates.functions import join from jinja2 import Template # Match strings of the form {'XXX': 'YYY'} e.g. # {'Ref': 'AWS::Region'} CFN_FN_RE = r"{'[^{^}.]*'}" FN_MATCH = re.compile(r"({})".format(CFN_FN_RE)) # As above, but match only if this comprises the entire string STRICT_MATCH = re.compile(r"^{}$".format(CFN_FN_RE)) def _selective_eval(s): """ Takes supplied string and if it matches STRICT_MATCH, it is returned evaled so as to be a Python structure (dict), otherwise it is returned as is. This is to be used exclusively by templated_read to render correctly the CloudFormation functions that it finds in the rendered output. There are no doubt edge-cases on which this does the wrong thing! """ if STRICT_MATCH.match(s) is None: return s return eval(s) def templated_read(file_handle, context={}): """ This function reads content from a file handle and processes as a template The Jinja2 templating engine is used, and the supplied context is provided. Once Jinja template processed, the document is split to extract CFN functions, e.g. Ref and Fn::Join etc, and the whole lot is returned Fn::Joined together (using the cfn_pyplates `join` function) ready to place in a UserData argument. This process is required in order that the Cloudformation functions are not embedded in strings where they would not be correctly evaluated at the time the template is processed by Cloudformation. Args: file_handle: any file-like object context: a dictionary of keys to use in the template Example ------- File template: # snippet of script... $CFN_ROOT/cfn-init -s {{ stack_id }} -r {{ resource_name }} \ --region {{ aws_region }} || error_exit 'Failed to run cfn-init' In the PyPlates code: ... 'UserData': templated_read( open('my_template_script.sh', 'rt'), {'resource_name': 'MyWebServer', 'stack_id': ref('AWS::StackId'), 'aws_region': ref('AWS::Region') }), ... After processing, in the Cloudformation template: "UserData": { "Fn::Base64": { "Fn::Join": [ "", [ "$CFN_ROOT/cfn-init -s ", { "Ref": "AWS::StackId" }, " -r MyWebServer --region ", { "Ref": "AWS::Region" }, " || error_exit 'Failed to run cfn-init'" ] ] } }, """ template = Template(file_handle.read()) rendered = template.render(**context) tokens = FN_MATCH.split(rendered) return join("", *[_selective_eval(s) for s in tokens])
# Copyright (c) 2013 ReThought Ltd # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. """ These utilities are ReThought additions that provide additional functionality Useful to us, they may be quite specific in cases. """ import re from cfn_pyplates.functions import join from jinja2 import Template # Match strings of the form {'XXX': 'YYY'} e.g. # {'Ref': 'AWS::Region'} CFN_FN_RE = r"{'[^{^}.]*'}" FN_MATCH = re.compile(r"({})".format(CFN_FN_RE)) # As above, but match only if this comprises the entire string STRICT_MATCH = re.compile(r"^{}$".format(CFN_FN_RE)) def _selective_eval(s): """ Takes supplied string and if it matches STRICT_MATCH, it is returned evaled so as to be a Python structure (dict), otherwise it is returned as is. This is to be used exclusively by templated_read to render correctly the CloudFormation functions that it finds in the rendered output. There are no doubt edge-cases on which this does the wrong thing! """ if STRICT_MATCH.match(s) is None: return s return eval(s) def templated_read(file_handle, context={}): """ This function reads content from a file handle and processes as a template The Jinja2 templating engine is used, and the supplied context is provided. Once Jinja template processed, the document is split to extract CFN functions, e.g. Ref and Fn::Join etc, and the whole lot is returned Fn::Joined together (using the cfn_pyplates `join` function) ready to place in a UserData argument. This process is required in order that the Cloudformation functions are not embedded in strings where they would not be correctly evaluated at the time the template is processed by Cloudformation. Args: file_handle: any file-like object context: a dictionary of keys to use in the template Example ------- File template: # snippet of script... $CFN_ROOT/cfn-init -s {{ stack_id }} -r {{ resource_name }} \ --region {{ aws_region }} || error_exit 'Failed to run cfn-init' In the PyPlates code: ... 'UserData': templated_read( open('my_template_script.sh', 'rt'), {'resource_name': 'MyWebServer', 'stack_id': ref('AWS::StackId'), 'aws_region': ref('AWS::Region') }), ... After processing, in the Cloudformation template: "UserData": { "Fn::Base64": { "Fn::Join": [ "", [ "$CFN_ROOT/cfn-init -s ", { "Ref": "AWS::StackId" }, " -r MyWebServer --region ", { "Ref": "AWS::Region" }, " || error_exit 'Failed to run cfn-init'" ] ] } }, """ template = Template(file_handle.read()) rendered = template.render(**context) tokens = FN_MATCH.split(rendered) return join("", *[_selective_eval(s) for s in tokens])
en
0.802119
# Copyright (c) 2013 ReThought Ltd # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. These utilities are ReThought additions that provide additional functionality Useful to us, they may be quite specific in cases. # Match strings of the form {'XXX': 'YYY'} e.g. # {'Ref': 'AWS::Region'} # As above, but match only if this comprises the entire string Takes supplied string and if it matches STRICT_MATCH, it is returned evaled so as to be a Python structure (dict), otherwise it is returned as is. This is to be used exclusively by templated_read to render correctly the CloudFormation functions that it finds in the rendered output. There are no doubt edge-cases on which this does the wrong thing! This function reads content from a file handle and processes as a template The Jinja2 templating engine is used, and the supplied context is provided. Once Jinja template processed, the document is split to extract CFN functions, e.g. Ref and Fn::Join etc, and the whole lot is returned Fn::Joined together (using the cfn_pyplates `join` function) ready to place in a UserData argument. This process is required in order that the Cloudformation functions are not embedded in strings where they would not be correctly evaluated at the time the template is processed by Cloudformation. Args: file_handle: any file-like object context: a dictionary of keys to use in the template Example ------- File template: # snippet of script... $CFN_ROOT/cfn-init -s {{ stack_id }} -r {{ resource_name }} \ --region {{ aws_region }} || error_exit 'Failed to run cfn-init' In the PyPlates code: ... 'UserData': templated_read( open('my_template_script.sh', 'rt'), {'resource_name': 'MyWebServer', 'stack_id': ref('AWS::StackId'), 'aws_region': ref('AWS::Region') }), ... After processing, in the Cloudformation template: "UserData": { "Fn::Base64": { "Fn::Join": [ "", [ "$CFN_ROOT/cfn-init -s ", { "Ref": "AWS::StackId" }, " -r MyWebServer --region ", { "Ref": "AWS::Region" }, " || error_exit 'Failed to run cfn-init'" ] ] } },
2.271383
2
tests/test_command_parser.py
lazToum/redis-py
0
6630981
<gh_stars>0 import pytest from redis.commands import CommandsParser from .conftest import skip_if_server_version_lt class TestCommandsParser: def test_init_commands(self, r): commands_parser = CommandsParser(r) assert commands_parser.commands is not None assert "get" in commands_parser.commands def test_get_keys_predetermined_key_location(self, r): commands_parser = CommandsParser(r) args1 = ["GET", "foo"] args2 = ["OBJECT", "encoding", "foo"] args3 = ["MGET", "foo", "bar", "foobar"] assert commands_parser.get_keys(r, *args1) == ["foo"] assert commands_parser.get_keys(r, *args2) == ["foo"] assert commands_parser.get_keys(r, *args3) == ["foo", "bar", "foobar"] @pytest.mark.filterwarnings("ignore:ResponseError") def test_get_moveable_keys(self, r): commands_parser = CommandsParser(r) args1 = [ "EVAL", "return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}", 2, "key1", "key2", "first", "second", ] args2 = ["XREAD", "COUNT", 2, b"STREAMS", "mystream", "writers", 0, 0] args3 = ["ZUNIONSTORE", "out", 2, "zset1", "zset2", "WEIGHTS", 2, 3] args4 = ["GEORADIUS", "Sicily", 15, 37, 200, "km", "WITHCOORD", b"STORE", "out"] args5 = ["MEMORY USAGE", "foo"] args6 = [ "MIGRATE", "192.168.1.34", 6379, "", 0, 5000, b"KEYS", "key1", "key2", "key3", ] args7 = ["MIGRATE", "192.168.1.34", 6379, "key1", 0, 5000] args8 = ["STRALGO", "LCS", "STRINGS", "string_a", "string_b"] args9 = ["STRALGO", "LCS", "KEYS", "key1", "key2"] assert commands_parser.get_keys(r, *args1).sort() == ["key1", "key2"].sort() assert ( commands_parser.get_keys(r, *args2).sort() == ["mystream", "writers"].sort() ) assert ( commands_parser.get_keys(r, *args3).sort() == ["out", "zset1", "zset2"].sort() ) assert commands_parser.get_keys(r, *args4).sort() == ["Sicily", "out"].sort() assert commands_parser.get_keys(r, *args5).sort() == ["foo"].sort() assert ( commands_parser.get_keys(r, *args6).sort() == ["key1", "key2", "key3"].sort() ) assert commands_parser.get_keys(r, *args7).sort() == ["key1"].sort() assert commands_parser.get_keys(r, *args8) is None assert commands_parser.get_keys(r, *args9).sort() == ["key1", "key2"].sort() # A bug in redis<7.0 causes this to fail: https://github.com/redis/redis/issues/9493 @skip_if_server_version_lt("7.0.0") def test_get_eval_keys_with_0_keys(self, r): commands_parser = CommandsParser(r) args = [ "EVAL", "return {ARGV[1],ARGV[2]}", 0, "key1", "key2", ] assert commands_parser.get_keys(r, *args) == [] def test_get_pubsub_keys(self, r): commands_parser = CommandsParser(r) args1 = ["PUBLISH", "foo", "bar"] args2 = ["PUBSUB NUMSUB", "foo1", "foo2", "foo3"] args3 = ["PUBSUB channels", "*"] args4 = ["SUBSCRIBE", "foo1", "foo2", "foo3"] assert commands_parser.get_keys(r, *args1) == ["foo"] assert commands_parser.get_keys(r, *args2) == ["foo1", "foo2", "foo3"] assert commands_parser.get_keys(r, *args3) == ["*"] assert commands_parser.get_keys(r, *args4) == ["foo1", "foo2", "foo3"]
import pytest from redis.commands import CommandsParser from .conftest import skip_if_server_version_lt class TestCommandsParser: def test_init_commands(self, r): commands_parser = CommandsParser(r) assert commands_parser.commands is not None assert "get" in commands_parser.commands def test_get_keys_predetermined_key_location(self, r): commands_parser = CommandsParser(r) args1 = ["GET", "foo"] args2 = ["OBJECT", "encoding", "foo"] args3 = ["MGET", "foo", "bar", "foobar"] assert commands_parser.get_keys(r, *args1) == ["foo"] assert commands_parser.get_keys(r, *args2) == ["foo"] assert commands_parser.get_keys(r, *args3) == ["foo", "bar", "foobar"] @pytest.mark.filterwarnings("ignore:ResponseError") def test_get_moveable_keys(self, r): commands_parser = CommandsParser(r) args1 = [ "EVAL", "return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}", 2, "key1", "key2", "first", "second", ] args2 = ["XREAD", "COUNT", 2, b"STREAMS", "mystream", "writers", 0, 0] args3 = ["ZUNIONSTORE", "out", 2, "zset1", "zset2", "WEIGHTS", 2, 3] args4 = ["GEORADIUS", "Sicily", 15, 37, 200, "km", "WITHCOORD", b"STORE", "out"] args5 = ["MEMORY USAGE", "foo"] args6 = [ "MIGRATE", "192.168.1.34", 6379, "", 0, 5000, b"KEYS", "key1", "key2", "key3", ] args7 = ["MIGRATE", "192.168.1.34", 6379, "key1", 0, 5000] args8 = ["STRALGO", "LCS", "STRINGS", "string_a", "string_b"] args9 = ["STRALGO", "LCS", "KEYS", "key1", "key2"] assert commands_parser.get_keys(r, *args1).sort() == ["key1", "key2"].sort() assert ( commands_parser.get_keys(r, *args2).sort() == ["mystream", "writers"].sort() ) assert ( commands_parser.get_keys(r, *args3).sort() == ["out", "zset1", "zset2"].sort() ) assert commands_parser.get_keys(r, *args4).sort() == ["Sicily", "out"].sort() assert commands_parser.get_keys(r, *args5).sort() == ["foo"].sort() assert ( commands_parser.get_keys(r, *args6).sort() == ["key1", "key2", "key3"].sort() ) assert commands_parser.get_keys(r, *args7).sort() == ["key1"].sort() assert commands_parser.get_keys(r, *args8) is None assert commands_parser.get_keys(r, *args9).sort() == ["key1", "key2"].sort() # A bug in redis<7.0 causes this to fail: https://github.com/redis/redis/issues/9493 @skip_if_server_version_lt("7.0.0") def test_get_eval_keys_with_0_keys(self, r): commands_parser = CommandsParser(r) args = [ "EVAL", "return {ARGV[1],ARGV[2]}", 0, "key1", "key2", ] assert commands_parser.get_keys(r, *args) == [] def test_get_pubsub_keys(self, r): commands_parser = CommandsParser(r) args1 = ["PUBLISH", "foo", "bar"] args2 = ["PUBSUB NUMSUB", "foo1", "foo2", "foo3"] args3 = ["PUBSUB channels", "*"] args4 = ["SUBSCRIBE", "foo1", "foo2", "foo3"] assert commands_parser.get_keys(r, *args1) == ["foo"] assert commands_parser.get_keys(r, *args2) == ["foo1", "foo2", "foo3"] assert commands_parser.get_keys(r, *args3) == ["*"] assert commands_parser.get_keys(r, *args4) == ["foo1", "foo2", "foo3"]
en
0.764123
# A bug in redis<7.0 causes this to fail: https://github.com/redis/redis/issues/9493
2.380957
2
tests/test_models/test_place.py
calypsobronte/AirBnB_clone
0
6630982
#!/usr/bin/python3 """Test State""" import unittest import pep8 from models.place import Place from models.user import User from models.city import City from models.amenity import Amenity class Testplace(unittest.TestCase): """ Test Place """ def test_pep8_conformance_place(self): """Test that we conform to PEP8.""" pep8style = pep8.StyleGuide(quiet=True) result = pep8style.check_files(['models/place.py']) self.assertEqual(result.total_errors, 0, "Found code style errors.") def test_place(self): """ Test attributes of Class Place """ my_amenity = Amenity() my_city = City() my_user = User() my_place = Place() my_place.city_id = my_city.id my_place.user_id = my_user.id my_place.name = 'Coworking' my_place.description = 'description' my_place.number_rooms = 4 my_place.number_bathrooms = 2 my_place.max_guest = 4 my_place.price_by_night = 200 my_place.latitude = 25.0342808 my_place.longitude = -77.3962784 my_place.amenity_ids = str(my_amenity.id) self.assertEqual(my_place.city_id, my_city.id) self.assertEqual(my_place.user_id, my_user.id) self.assertEqual(my_place.name, 'Coworking') self.assertEqual(my_place.description, 'description') self.assertEqual(my_place.number_rooms, 4) self.assertTrue(type(my_place.number_rooms), int) self.assertEqual(my_place.number_bathrooms, 2) self.assertTrue(type(my_place.number_bathrooms), int) self.assertEqual(my_place.max_guest, 4) self.assertTrue(type(my_place.max_guest), int) self.assertEqual(my_place.price_by_night, 200) self.assertTrue(type(my_place.price_by_night), int) self.assertEqual(my_place.latitude, 25.0342808) self.assertTrue(type(my_place.latitude), float) self.assertEqual(my_place.longitude, -77.3962784) self.assertTrue(type(my_place.longitude), float) self.assertEqual(my_place.amenity_ids, str(my_amenity.id)) self.assertTrue(type(my_place.amenity_ids), str)
#!/usr/bin/python3 """Test State""" import unittest import pep8 from models.place import Place from models.user import User from models.city import City from models.amenity import Amenity class Testplace(unittest.TestCase): """ Test Place """ def test_pep8_conformance_place(self): """Test that we conform to PEP8.""" pep8style = pep8.StyleGuide(quiet=True) result = pep8style.check_files(['models/place.py']) self.assertEqual(result.total_errors, 0, "Found code style errors.") def test_place(self): """ Test attributes of Class Place """ my_amenity = Amenity() my_city = City() my_user = User() my_place = Place() my_place.city_id = my_city.id my_place.user_id = my_user.id my_place.name = 'Coworking' my_place.description = 'description' my_place.number_rooms = 4 my_place.number_bathrooms = 2 my_place.max_guest = 4 my_place.price_by_night = 200 my_place.latitude = 25.0342808 my_place.longitude = -77.3962784 my_place.amenity_ids = str(my_amenity.id) self.assertEqual(my_place.city_id, my_city.id) self.assertEqual(my_place.user_id, my_user.id) self.assertEqual(my_place.name, 'Coworking') self.assertEqual(my_place.description, 'description') self.assertEqual(my_place.number_rooms, 4) self.assertTrue(type(my_place.number_rooms), int) self.assertEqual(my_place.number_bathrooms, 2) self.assertTrue(type(my_place.number_bathrooms), int) self.assertEqual(my_place.max_guest, 4) self.assertTrue(type(my_place.max_guest), int) self.assertEqual(my_place.price_by_night, 200) self.assertTrue(type(my_place.price_by_night), int) self.assertEqual(my_place.latitude, 25.0342808) self.assertTrue(type(my_place.latitude), float) self.assertEqual(my_place.longitude, -77.3962784) self.assertTrue(type(my_place.longitude), float) self.assertEqual(my_place.amenity_ids, str(my_amenity.id)) self.assertTrue(type(my_place.amenity_ids), str)
en
0.685444
#!/usr/bin/python3 Test State Test Place Test that we conform to PEP8. Test attributes of Class Place
3.318442
3
appengine/chrome_infra_packages/cipd/api.py
eunchong/infra
0
6630983
<filename>appengine/chrome_infra_packages/cipd/api.py # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Cloud Endpoints API for Package Repository service.""" import functools import logging import endpoints from protorpc import message_types from protorpc import messages from protorpc import remote from components import auth from components import utils from . import acl from . import client from . import impl # This is used by endpoints indirectly. package = 'cipd' ################################################################################ ## Messages used by other messages. class Status(messages.Enum): """Response status code, shared by all responses.""" # Operation finished successfully (generic "success" response). SUCCESS = 1 # The package instance was successfully registered. REGISTERED = 2 # The package instance was already registered (not a error). ALREADY_REGISTERED = 3 # Some uncategorized non-transient error happened. ERROR = 4 # No such package. PACKAGE_NOT_FOUND = 5 # Package itself is known, but requested instance_id isn't registered. INSTANCE_NOT_FOUND = 6 # Need to upload package data before registering the package. UPLOAD_FIRST = 7 # Client binary is not available, the call should be retried later. NOT_EXTRACTED_YET = 8 # Some asynchronous package processing failed. PROCESSING_FAILED = 9 # Asynchronous package processing is still running. PROCESSING_NOT_FINISHED_YET = 10 # More than one instance matches criteria in resolveVersion. AMBIGUOUS_VERSION = 11 class Package(messages.Message): """Information about some registered package.""" package_name = messages.StringField(1, required=True) registered_by = messages.StringField(2, required=True) registered_ts = messages.IntegerField(3, required=True) def package_to_proto(entity): """Package entity -> Package proto message.""" return Package( package_name=entity.package_name, registered_by=entity.registered_by.to_bytes(), registered_ts=utils.datetime_to_timestamp(entity.registered_ts)) class PackageInstance(messages.Message): """Information about some registered package instance.""" package_name = messages.StringField(1, required=True) instance_id = messages.StringField(2, required=True) registered_by = messages.StringField(3, required=True) registered_ts = messages.IntegerField(4, required=True) def instance_to_proto(entity): """PackageInstance entity -> PackageInstance proto message.""" return PackageInstance( package_name=entity.package_name, instance_id=entity.instance_id, registered_by=entity.registered_by.to_bytes(), registered_ts=utils.datetime_to_timestamp(entity.registered_ts)) class InstanceTag(messages.Message): """Some single package instance tag.""" tag = messages.StringField(1, required=True) registered_by = messages.StringField(2, required=True) registered_ts = messages.IntegerField(3, required=True) def tag_to_proto(entity): """InstanceTag entity -> InstanceTag proto message.""" return InstanceTag( tag=entity.tag, registered_by=entity.registered_by.to_bytes(), registered_ts=utils.datetime_to_timestamp(entity.registered_ts)) class PackageRef(messages.Message): """Information about some ref belonging to a package.""" ref = messages.StringField(1, required=True) instance_id = messages.StringField(2, required=True) modified_by = messages.StringField(3, required=True) modified_ts = messages.IntegerField(4, required=True) def package_ref_to_proto(entity): """PackageRef entity -> PackageRef proto message.""" return PackageRef( ref=entity.ref, instance_id=entity.instance_id, modified_by=entity.modified_by.to_bytes(), modified_ts=utils.datetime_to_timestamp(entity.modified_ts)) class PackageACL(messages.Message): """Access control list for some package path and all parent paths.""" class ElementaryACL(messages.Message): """Single per role, per package path ACL.""" package_path = messages.StringField(1, required=True) role = messages.StringField(2, required=True) principals = messages.StringField(3, repeated=True) modified_by = messages.StringField(4, required=True) modified_ts = messages.IntegerField(5, required=True) # List of ACLs split by package path and role. No ordering. acls = messages.MessageField(ElementaryACL, 1, repeated=True) def package_acls_to_proto(per_role_acls): """Dict {role -> list of PackageACL entities} -> PackageACL message.""" acls = [] for role, package_acl_entities in per_role_acls.iteritems(): for e in package_acl_entities: principals = [] principals.extend(u.to_bytes() for u in e.users) principals.extend('group:%s' % g for g in e.groups) acls.append(PackageACL.ElementaryACL( package_path=e.package_path, role=role, principals=principals, modified_by=e.modified_by.to_bytes(), modified_ts=utils.datetime_to_timestamp(e.modified_ts), )) return PackageACL(acls=acls) class RoleChange(messages.Message): """Describes a single modification to ACL.""" class Action(messages.Enum): GRANT = 1 REVOKE = 2 # Action to perform. action = messages.EnumField(Action, 1, required=True) # Role to modify ('OWNER', 'WRITER', 'READER', ...). role = messages.StringField(2, required=True) # Principal ('user:...' or 'group:...') to grant or revoke a role for. principal = messages.StringField(3, required=True) def role_change_from_proto(proto, package_path): """RoleChange proto message -> acl.RoleChange object. Raises ValueError on format errors. """ if not acl.is_valid_role(proto.role): raise ValueError('Invalid role %s' % proto.role) user = None group = None if proto.principal.startswith('group:'): group = proto.principal[len('group:'):] if not auth.is_valid_group_name(group): raise ValueError('Invalid group name: "%s"' % group) else: # Raises ValueError if proto.user has invalid format, e.g. not 'user:...'. user = auth.Identity.from_bytes(proto.principal) return acl.RoleChange( package_path=package_path, revoke=(proto.action != RoleChange.Action.GRANT), role=proto.role, user=user, group=group) class Processor(messages.Message): """Status of some package instance processor.""" class Status(messages.Enum): PENDING = 1 SUCCESS = 2 FAILURE = 3 # Name of the processor, defines what it does. name = messages.StringField(1, required=True) # Status of the processing. status = messages.EnumField(Status, 2, required=True) def processors_protos(instance): """Given PackageInstance entity returns a list of Processor messages.""" def procs_to_msg(procs, status): return [Processor(name=name, status=status) for name in procs ] processors = [] processors += procs_to_msg( instance.processors_pending, Processor.Status.PENDING) processors += procs_to_msg( instance.processors_success, Processor.Status.SUCCESS) processors += procs_to_msg( instance.processors_failure, Processor.Status.FAILURE) return processors ################################################################################ class FetchPackageResponse(messages.Message): """Results of fetchPackage call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS, information about the package. package = messages.MessageField(Package, 3, required=False) refs = messages.MessageField(PackageRef, 4, repeated=True) ################################################################################ class ListPackagesResponse(messages.Message): """Results of listPackage call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS, names of the packages and names of directories. packages = messages.StringField(3, repeated=True) directories = messages.StringField(4, repeated=True) ################################################################################ class DeletePackageResponse(messages.Message): """Results of deletePackage call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) ################################################################################ class FetchInstanceResponse(messages.Message): """Results of fetchInstance call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS, information about the package instance. instance = messages.MessageField(PackageInstance, 3, required=False) # For SUCCESS, a signed url to fetch the package instance file from. fetch_url = messages.StringField(4, required=False) # For SUCCESS, list of processors applied to the instance. processors = messages.MessageField(Processor, 5, repeated=True) ################################################################################ class RegisterInstanceResponse(messages.Message): """Results of registerInstance call. upload_session_id and upload_url (if present) can be used with CAS service (finishUpload call in particular). Callers are expected to execute following protocol: 1. Attempt to register a package instance by calling registerInstance(...). 2. On UPLOAD_FIRST response, upload package data and finalize the upload by using upload_session_id and upload_url and calling cas.finishUpload. 3. Once upload is finalized, call registerInstance(...) again. """ status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For REGISTERED or ALREADY_REGISTERED, info about the package instance. instance = messages.MessageField(PackageInstance, 3, required=False) # For UPLOAD_FIRST status, a unique identifier of the upload operation. upload_session_id = messages.StringField(4, required=False) # For UPLOAD_FIRST status, URL to PUT file to via resumable upload protocol. upload_url = messages.StringField(5, required=False) ################################################################################ class SetRefRequest(messages.Message): """Body of setRef call.""" # ID of the package instance to point the ref too. instance_id = messages.StringField(1, required=True) class SetRefResponse(messages.Message): """Results of setRef call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS status, details about the ref. ref = messages.MessageField(PackageRef, 3, required=False) class FetchRefsResponse(messages.Message): """Results of fetchRefs call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS status, details about fetches refs. refs = messages.MessageField(PackageRef, 3, repeated=True) ################################################################################ class FetchTagsResponse(messages.Message): """Results of fetchTags call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS status, details about found tags. tags = messages.MessageField(InstanceTag, 3, repeated=True) class AttachTagsRequest(messages.Message): """Body of attachTags call.""" tags = messages.StringField(1, repeated=True) class AttachTagsResponse(messages.Message): """Results of attachTag call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS status, details about attached tags. tags = messages.MessageField(InstanceTag, 3, repeated=True) class DetachTagsResponse(messages.Message): """Results of detachTags call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) ################################################################################ class SearchResponse(messages.Message): """Results of searchInstances call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS, list of instances found. instances = messages.MessageField(PackageInstance, 3, repeated=True) class ResolveVersionResponse(messages.Message): """Results of resolveVersion call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS, concrete existing instance ID. instance_id = messages.StringField(3, required=False) ################################################################################ class FetchACLResponse(messages.Message): """Results of fetchACL call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS status, list of ACLs split by package path and role. acls = messages.MessageField(PackageACL, 3, required=False) ################################################################################ class ModifyACLRequest(messages.Message): """Body of modifyACL call.""" changes = messages.MessageField(RoleChange, 1, repeated=True) class ModifyACLResponse(messages.Message): """Results of modifyACL call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) ################################################################################ class FetchClientBinaryResponse(messages.Message): """Results of fetchClientBinary call.""" class ClientBinary(messages.Message): # SHA1 hex digest of the extracted binary, for verification on the client. sha1 = messages.StringField(1, required=True) # Size of the binary file, just for information. size = messages.IntegerField(2, required=True) # A signed url to fetch the binary file from. fetch_url = messages.StringField(3, required=True) status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS or NOT_EXTRACTED_YET, information about the package instance. instance = messages.MessageField(PackageInstance, 3, required=False) # For SUCCESS, information about the client binary. client_binary = messages.MessageField(ClientBinary, 4, required=False) ################################################################################ class Error(Exception): status = Status.ERROR class PackageNotFoundError(Error): status = Status.PACKAGE_NOT_FOUND class InstanceNotFoundError(Error): status = Status.INSTANCE_NOT_FOUND class ProcessingFailedError(Error): status = Status.PROCESSING_FAILED class ProcessingNotFinishedYetError(Error): status = Status.PROCESSING_NOT_FINISHED_YET class ValidationError(Error): # TODO(vadimsh): Use VALIDATION_ERROR. It changes JSON protocol. status = Status.ERROR def validate_package_name(package_name): if not impl.is_valid_package_path(package_name): raise ValidationError('Invalid package name') return package_name def validate_package_path(package_path): if not impl.is_valid_package_path(package_path): raise ValidationError('Invalid package path') return package_path def validate_package_ref(ref): if not impl.is_valid_package_ref(ref): raise ValidationError('Invalid package ref name') return ref def validate_package_ref_list(refs): if not refs: # pragma: no cover raise ValidationError('Ref list is empty') return [validate_package_ref(ref) for ref in refs] def validate_instance_id(instance_id): if not impl.is_valid_instance_id(instance_id): raise ValidationError('Invalid package instance ID') return instance_id def validate_instance_tag(tag): if not impl.is_valid_instance_tag(tag): raise ValidationError('Invalid tag "%s"' % tag) return tag def validate_instance_tag_list(tags): if not tags: raise ValidationError('Tag list is empty') return [validate_instance_tag(tag) for tag in tags] def validate_instance_version(version): if not impl.is_valid_instance_version(version): raise ValidationError('Not a valid instance ID or tag: "%s"' % version) return version def endpoints_method(request_message, response_message, **kwargs): """Wrapper around Endpoint methods to simplify error handling. Catches Error exceptions and converts them to error responses. Assumes response_message has fields 'status' and 'error_message'. """ assert hasattr(response_message, 'status') assert hasattr(response_message, 'error_message') def decorator(f): @auth.endpoints_method(request_message, response_message, **kwargs) @functools.wraps(f) def wrapper(*args): try: response = f(*args) if response.status is None: response.status = Status.SUCCESS return response except Error as e: return response_message( status=e.status, error_message=e.message if e.message else None) except auth.Error as e: caller = auth.get_current_identity().to_bytes() logging.warning('%s (%s): %s', e.__class__.__name__, caller, e) raise return wrapper return decorator ################################################################################ @auth.endpoints_api( name='repo', version='v1', title='CIPD Package Repository API') class PackageRepositoryApi(remote.Service): """Package Repository API.""" # Cached value of 'service' property. _service = None @property def service(self): """Returns configured impl.RepoService.""" if self._service is None: self._service = impl.get_repo_service() if self._service is None or not self._service.is_fetch_configured(): raise endpoints.InternalServerErrorException( 'Service is not configured') return self._service def get_instance(self, package_name, instance_id): """Grabs PackageInstance or raises appropriate *NotFoundError.""" instance = self.service.get_instance(package_name, instance_id) if instance is None: pkg = self.service.get_package(package_name) if pkg is None: raise PackageNotFoundError() raise InstanceNotFoundError() return instance def verify_instance_exists(self, package_name, instance_id): """Raises appropriate *NotFoundError if instance is missing.""" self.get_instance(package_name, instance_id) def verify_instance_is_ready(self, package_name, instance_id): """Raises appropriate error if instance doesn't exist or not ready yet. Instance is ready when all processors successfully finished. """ instance = self.get_instance(package_name, instance_id) if instance.processors_failure: raise ProcessingFailedError( 'Failed processors: %s' % ', '.join(instance.processors_failure)) if instance.processors_pending: raise ProcessingNotFinishedYetError( 'Pending processors: %s' % ', '.join(instance.processors_pending)) ### Package methods. @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), with_refs=messages.BooleanField(2, required=False)), FetchPackageResponse, http_method='GET', path='package', name='fetchPackage') @auth.public # ACL check is inside def fetch_package(self, request): """Returns information about a package.""" package_name = validate_package_name(request.package_name) caller = auth.get_current_identity() if not acl.can_fetch_package(package_name, caller): raise auth.AuthorizationError() pkg = self.service.get_package(package_name) if pkg is None: raise PackageNotFoundError() refs = [] if request.with_refs: refs = self.service.query_package_refs(package_name) return FetchPackageResponse( package=package_to_proto(pkg), refs=[package_ref_to_proto(r) for r in refs]) @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, path=messages.StringField(1, required=False), recursive=messages.BooleanField(2, required=False)), ListPackagesResponse, http_method='GET', path='package/search', name='listPackages') @auth.public # ACL check is inside def list_packages(self, request): """Returns packages in the given directory and possibly subdirectories.""" path = request.path or '' recursive = request.recursive or False pkgs, dirs = self.service.list_packages(path, recursive) caller = auth.get_current_identity() visible_pkgs = [p for p in pkgs if acl.can_fetch_package(p, caller)] visible_dirs = [d for d in dirs if acl.can_fetch_package(d, caller)] return ListPackagesResponse(packages=visible_pkgs, directories=visible_dirs) @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True)), DeletePackageResponse, http_method='DELETE', path='package', name='deletePackage') @auth.public # ACL check is inside def delete_package(self, request): """Deletes a package along with all its instances.""" package_name = validate_package_name(request.package_name) caller = auth.get_current_identity() if not acl.can_delete_package(package_name, caller): raise auth.AuthorizationError() deleted = self.service.delete_package(package_name) if not deleted: raise PackageNotFoundError() return DeletePackageResponse() ### PackageInstance methods. @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True)), FetchInstanceResponse, http_method='GET', path='instance', name='fetchInstance') @auth.public # ACL check is inside def fetch_instance(self, request): """Returns signed URL that can be used to fetch a package instance.""" package_name = validate_package_name(request.package_name) instance_id = validate_instance_id(request.instance_id) caller = auth.get_current_identity() if not acl.can_fetch_instance(package_name, caller): raise auth.AuthorizationError() instance = self.get_instance(package_name, instance_id) return FetchInstanceResponse( instance=instance_to_proto(instance), fetch_url=self.service.generate_fetch_url(instance), processors=processors_protos(instance)) @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True)), RegisterInstanceResponse, path='instance', http_method='POST', name='registerInstance') @auth.public # ACL check is inside def register_instance(self, request): """Registers a new package instance in the repository.""" package_name = validate_package_name(request.package_name) instance_id = validate_instance_id(request.instance_id) caller = auth.get_current_identity() if not acl.can_register_instance(package_name, caller): raise auth.AuthorizationError() instance = self.service.get_instance(package_name, instance_id) if instance is not None: return RegisterInstanceResponse( status=Status.ALREADY_REGISTERED, instance=instance_to_proto(instance)) # Need to upload to CAS first? Open an upload session. Caller must use # CASServiceApi to finish the upload and then call registerInstance again. if not self.service.is_instance_file_uploaded(package_name, instance_id): upload_url, upload_session_id = self.service.create_upload_session( package_name, instance_id, caller) return RegisterInstanceResponse( status=Status.UPLOAD_FIRST, upload_session_id=upload_session_id, upload_url=upload_url) # Package data is in the store. Make an entity. instance, registered = self.service.register_instance( package_name=package_name, instance_id=instance_id, caller=caller, now=utils.utcnow()) return RegisterInstanceResponse( status=Status.REGISTERED if registered else Status.ALREADY_REGISTERED, instance=instance_to_proto(instance)) ### Refs methods. @endpoints_method( endpoints.ResourceContainer( SetRefRequest, package_name=messages.StringField(1, required=True), ref=messages.StringField(2, required=True)), SetRefResponse, path='ref', http_method='POST', name='setRef') @auth.public # ACL check is inside def set_ref(self, request): """Creates a ref or moves an existing one.""" package_name = validate_package_name(request.package_name) ref = validate_package_ref(request.ref) instance_id = validate_instance_id(request.instance_id) caller = auth.get_current_identity() if not acl.can_move_ref(package_name, ref, caller): raise auth.AuthorizationError('Not authorized to move "%s"' % ref) self.verify_instance_is_ready(package_name, instance_id) ref_entity = self.service.set_package_ref( package_name=package_name, ref=ref, instance_id=instance_id, caller=caller, now=utils.utcnow()) return SetRefResponse(ref=package_ref_to_proto(ref_entity)) @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True), ref=messages.StringField(3, repeated=True)), FetchRefsResponse, path='ref', http_method='GET', name='fetchRefs') @auth.public # ACL check is inside def fetch_refs(self, request): """Lists package instance refs (newest first).""" package_name = validate_package_name(request.package_name) instance_id = validate_instance_id(request.instance_id) refs = validate_package_ref_list(request.ref) if request.ref else None caller = auth.get_current_identity() if not acl.can_fetch_instance(package_name, caller): raise auth.AuthorizationError() self.verify_instance_exists(package_name, instance_id) if not refs: # Fetch all. output = self.service.query_instance_refs(package_name, instance_id) else: # Fetch selected refs, pick ones pointing to the instance. output = [ r for r in self.service.get_package_refs(package_name, refs).itervalues() if r and r.instance_id == instance_id ] output.sort(key=lambda r: r.modified_ts, reverse=True) return FetchRefsResponse(refs=[package_ref_to_proto(ref) for ref in output]) ### Tags methods. @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True), tag=messages.StringField(3, repeated=True)), FetchTagsResponse, path='tags', http_method='GET', name='fetchTags') @auth.public # ACL check is inside def fetch_tags(self, request): """Lists package instance tags (newest first).""" package_name = validate_package_name(request.package_name) instance_id = validate_instance_id(request.instance_id) tags = validate_instance_tag_list(request.tag) if request.tag else None caller = auth.get_current_identity() if not acl.can_fetch_instance(package_name, caller): raise auth.AuthorizationError() self.verify_instance_exists(package_name, instance_id) if not tags: # Fetch all. attached = self.service.query_tags(package_name, instance_id) else: # Fetch selected only. "Is tagged by?" check essentially. found = self.service.get_tags(package_name, instance_id, tags) attached = [found[tag] for tag in tags if found[tag]] attached.sort(key=lambda t: t.registered_ts, reverse=True) return FetchTagsResponse(tags=[tag_to_proto(tag) for tag in attached]) @endpoints_method( endpoints.ResourceContainer( AttachTagsRequest, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True)), AttachTagsResponse, path='tags', http_method='POST', name='attachTags') @auth.public # ACL check is inside def attach_tags(self, request): """Attaches a set of tags to a package instance.""" package_name = validate_package_name(request.package_name) instance_id = validate_instance_id(request.instance_id) tags = validate_instance_tag_list(request.tags) caller = auth.get_current_identity() for tag in tags: if not acl.can_attach_tag(package_name, tag, caller): raise auth.AuthorizationError('Not authorized to attach "%s"' % tag) self.verify_instance_is_ready(package_name, instance_id) attached = self.service.attach_tags( package_name=package_name, instance_id=instance_id, tags=tags, caller=caller, now=utils.utcnow()) return AttachTagsResponse(tags=[tag_to_proto(attached[t]) for t in tags]) @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True), tag=messages.StringField(3, repeated=True)), DetachTagsResponse, path='tags', http_method='DELETE', name='detachTags') @auth.public # ACL check is inside def detach_tags(self, request): """Removes given tags from a package instance.""" package_name = validate_package_name(request.package_name) instance_id = validate_instance_id(request.instance_id) tags = validate_instance_tag_list(request.tag) caller = auth.get_current_identity() for tag in tags: if not acl.can_detach_tag(package_name, tag, caller): raise auth.AuthorizationError('Not authorized to detach "%s"' % tag) self.verify_instance_exists(package_name, instance_id) self.service.detach_tags( package_name=package_name, instance_id=instance_id, tags=tags) return DetachTagsResponse() ### Search methods. @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, tag=messages.StringField(1, required=True), package_name=messages.StringField(2, required=False)), SearchResponse, path='instance/search', http_method='GET', name='searchInstances') @auth.public # ACL check is inside def search_instances(self, request): """Returns package instances with given tag (in no particular order).""" tag = validate_instance_tag(request.tag) if request.package_name: package_name = validate_package_name(request.package_name) else: package_name = None caller = auth.get_current_identity() callback = None if package_name: # If search is limited to one package, check its ACL only once. if not acl.can_fetch_instance(package_name, caller): raise auth.AuthorizationError() else: # Filter out packages not allowed by ACL. acl_cache = {} def check_readable(package_name, _instance_id): if package_name not in acl_cache: acl_cache[package_name] = acl.can_fetch_instance(package_name, caller) return acl_cache[package_name] callback = check_readable found = self.service.search_by_tag(tag, package_name, callback) return SearchResponse(instances=[instance_to_proto(i) for i in found]) @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), version=messages.StringField(2, required=True)), ResolveVersionResponse, path='instance/resolve', http_method='GET', name='resolveVersion') @auth.public # ACL check is inside def resolve_version(self, request): """Returns instance ID of an existing instance given a ref or a tag.""" package_name = validate_package_name(request.package_name) version = validate_instance_version(request.version) caller = auth.get_current_identity() if not acl.can_fetch_instance(package_name, caller): raise auth.AuthorizationError() pkg = self.service.get_package(package_name) if pkg is None: raise PackageNotFoundError() ids = self.service.resolve_version(package_name, version, limit=2) if not ids: raise InstanceNotFoundError() if len(ids) > 1: return ResolveVersionResponse( status=Status.AMBIGUOUS_VERSION, error_message='More than one instance has tag "%s" set' % version) return ResolveVersionResponse(instance_id=ids[0]) ### ACL methods. @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_path=messages.StringField(1, required=True)), FetchACLResponse, http_method='GET', path='acl', name='fetchACL') @auth.public # ACL check is inside def fetch_acl(self, request): """Returns access control list for a given package path.""" package_path = validate_package_path(request.package_path) caller = auth.get_current_identity() if not acl.can_fetch_acl(package_path, caller): raise auth.AuthorizationError() return FetchACLResponse( acls=package_acls_to_proto({ role: acl.get_package_acls(package_path, role) for role in acl.ROLES })) @endpoints_method( endpoints.ResourceContainer( ModifyACLRequest, package_path=messages.StringField(1, required=True)), ModifyACLResponse, http_method='POST', path='acl', name='modifyACL') @auth.public # ACL check is inside def modify_acl(self, request): """Changes access control list for a given package path.""" package_path = validate_package_path(request.package_path) try: changes = [ role_change_from_proto(msg, package_path) for msg in request.changes ] except ValueError as exc: raise ValidationError('Invalid role change request: %s' % exc) caller = auth.get_current_identity() if not acl.can_modify_acl(package_path, caller): raise auth.AuthorizationError() # Apply changes. Do not catch ValueError. Validation above should be # sufficient. If it is not, HTTP 500 and an uncaught exception in logs is # exactly what is needed. acl.modify_roles(changes, caller, utils.utcnow()) return ModifyACLResponse() ### ClientBinary methods. @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True)), FetchClientBinaryResponse, http_method='GET', path='client', name='fetchClientBinary') @auth.public # ACL check is inside def fetch_client_binary(self, request): """Returns signed URL that can be used to fetch CIPD client binary.""" package_name = validate_package_name(request.package_name) if not client.is_cipd_client_package(package_name): raise ValidationError('Not a CIPD client package') instance_id = validate_instance_id(request.instance_id) caller = auth.get_current_identity() if not acl.can_fetch_instance(package_name, caller): raise auth.AuthorizationError() # Grab the location of the extracted binary. instance = self.get_instance(package_name, instance_id) client_info, error_message = self.service.get_client_binary_info(instance) if error_message: raise Error(error_message) if client_info is None: return FetchClientBinaryResponse( status=Status.NOT_EXTRACTED_YET, instance=instance_to_proto(instance)) return FetchClientBinaryResponse( instance=instance_to_proto(instance), client_binary=FetchClientBinaryResponse.ClientBinary( sha1=client_info.sha1, size=client_info.size, fetch_url=client_info.fetch_url))
<filename>appengine/chrome_infra_packages/cipd/api.py # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Cloud Endpoints API for Package Repository service.""" import functools import logging import endpoints from protorpc import message_types from protorpc import messages from protorpc import remote from components import auth from components import utils from . import acl from . import client from . import impl # This is used by endpoints indirectly. package = 'cipd' ################################################################################ ## Messages used by other messages. class Status(messages.Enum): """Response status code, shared by all responses.""" # Operation finished successfully (generic "success" response). SUCCESS = 1 # The package instance was successfully registered. REGISTERED = 2 # The package instance was already registered (not a error). ALREADY_REGISTERED = 3 # Some uncategorized non-transient error happened. ERROR = 4 # No such package. PACKAGE_NOT_FOUND = 5 # Package itself is known, but requested instance_id isn't registered. INSTANCE_NOT_FOUND = 6 # Need to upload package data before registering the package. UPLOAD_FIRST = 7 # Client binary is not available, the call should be retried later. NOT_EXTRACTED_YET = 8 # Some asynchronous package processing failed. PROCESSING_FAILED = 9 # Asynchronous package processing is still running. PROCESSING_NOT_FINISHED_YET = 10 # More than one instance matches criteria in resolveVersion. AMBIGUOUS_VERSION = 11 class Package(messages.Message): """Information about some registered package.""" package_name = messages.StringField(1, required=True) registered_by = messages.StringField(2, required=True) registered_ts = messages.IntegerField(3, required=True) def package_to_proto(entity): """Package entity -> Package proto message.""" return Package( package_name=entity.package_name, registered_by=entity.registered_by.to_bytes(), registered_ts=utils.datetime_to_timestamp(entity.registered_ts)) class PackageInstance(messages.Message): """Information about some registered package instance.""" package_name = messages.StringField(1, required=True) instance_id = messages.StringField(2, required=True) registered_by = messages.StringField(3, required=True) registered_ts = messages.IntegerField(4, required=True) def instance_to_proto(entity): """PackageInstance entity -> PackageInstance proto message.""" return PackageInstance( package_name=entity.package_name, instance_id=entity.instance_id, registered_by=entity.registered_by.to_bytes(), registered_ts=utils.datetime_to_timestamp(entity.registered_ts)) class InstanceTag(messages.Message): """Some single package instance tag.""" tag = messages.StringField(1, required=True) registered_by = messages.StringField(2, required=True) registered_ts = messages.IntegerField(3, required=True) def tag_to_proto(entity): """InstanceTag entity -> InstanceTag proto message.""" return InstanceTag( tag=entity.tag, registered_by=entity.registered_by.to_bytes(), registered_ts=utils.datetime_to_timestamp(entity.registered_ts)) class PackageRef(messages.Message): """Information about some ref belonging to a package.""" ref = messages.StringField(1, required=True) instance_id = messages.StringField(2, required=True) modified_by = messages.StringField(3, required=True) modified_ts = messages.IntegerField(4, required=True) def package_ref_to_proto(entity): """PackageRef entity -> PackageRef proto message.""" return PackageRef( ref=entity.ref, instance_id=entity.instance_id, modified_by=entity.modified_by.to_bytes(), modified_ts=utils.datetime_to_timestamp(entity.modified_ts)) class PackageACL(messages.Message): """Access control list for some package path and all parent paths.""" class ElementaryACL(messages.Message): """Single per role, per package path ACL.""" package_path = messages.StringField(1, required=True) role = messages.StringField(2, required=True) principals = messages.StringField(3, repeated=True) modified_by = messages.StringField(4, required=True) modified_ts = messages.IntegerField(5, required=True) # List of ACLs split by package path and role. No ordering. acls = messages.MessageField(ElementaryACL, 1, repeated=True) def package_acls_to_proto(per_role_acls): """Dict {role -> list of PackageACL entities} -> PackageACL message.""" acls = [] for role, package_acl_entities in per_role_acls.iteritems(): for e in package_acl_entities: principals = [] principals.extend(u.to_bytes() for u in e.users) principals.extend('group:%s' % g for g in e.groups) acls.append(PackageACL.ElementaryACL( package_path=e.package_path, role=role, principals=principals, modified_by=e.modified_by.to_bytes(), modified_ts=utils.datetime_to_timestamp(e.modified_ts), )) return PackageACL(acls=acls) class RoleChange(messages.Message): """Describes a single modification to ACL.""" class Action(messages.Enum): GRANT = 1 REVOKE = 2 # Action to perform. action = messages.EnumField(Action, 1, required=True) # Role to modify ('OWNER', 'WRITER', 'READER', ...). role = messages.StringField(2, required=True) # Principal ('user:...' or 'group:...') to grant or revoke a role for. principal = messages.StringField(3, required=True) def role_change_from_proto(proto, package_path): """RoleChange proto message -> acl.RoleChange object. Raises ValueError on format errors. """ if not acl.is_valid_role(proto.role): raise ValueError('Invalid role %s' % proto.role) user = None group = None if proto.principal.startswith('group:'): group = proto.principal[len('group:'):] if not auth.is_valid_group_name(group): raise ValueError('Invalid group name: "%s"' % group) else: # Raises ValueError if proto.user has invalid format, e.g. not 'user:...'. user = auth.Identity.from_bytes(proto.principal) return acl.RoleChange( package_path=package_path, revoke=(proto.action != RoleChange.Action.GRANT), role=proto.role, user=user, group=group) class Processor(messages.Message): """Status of some package instance processor.""" class Status(messages.Enum): PENDING = 1 SUCCESS = 2 FAILURE = 3 # Name of the processor, defines what it does. name = messages.StringField(1, required=True) # Status of the processing. status = messages.EnumField(Status, 2, required=True) def processors_protos(instance): """Given PackageInstance entity returns a list of Processor messages.""" def procs_to_msg(procs, status): return [Processor(name=name, status=status) for name in procs ] processors = [] processors += procs_to_msg( instance.processors_pending, Processor.Status.PENDING) processors += procs_to_msg( instance.processors_success, Processor.Status.SUCCESS) processors += procs_to_msg( instance.processors_failure, Processor.Status.FAILURE) return processors ################################################################################ class FetchPackageResponse(messages.Message): """Results of fetchPackage call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS, information about the package. package = messages.MessageField(Package, 3, required=False) refs = messages.MessageField(PackageRef, 4, repeated=True) ################################################################################ class ListPackagesResponse(messages.Message): """Results of listPackage call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS, names of the packages and names of directories. packages = messages.StringField(3, repeated=True) directories = messages.StringField(4, repeated=True) ################################################################################ class DeletePackageResponse(messages.Message): """Results of deletePackage call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) ################################################################################ class FetchInstanceResponse(messages.Message): """Results of fetchInstance call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS, information about the package instance. instance = messages.MessageField(PackageInstance, 3, required=False) # For SUCCESS, a signed url to fetch the package instance file from. fetch_url = messages.StringField(4, required=False) # For SUCCESS, list of processors applied to the instance. processors = messages.MessageField(Processor, 5, repeated=True) ################################################################################ class RegisterInstanceResponse(messages.Message): """Results of registerInstance call. upload_session_id and upload_url (if present) can be used with CAS service (finishUpload call in particular). Callers are expected to execute following protocol: 1. Attempt to register a package instance by calling registerInstance(...). 2. On UPLOAD_FIRST response, upload package data and finalize the upload by using upload_session_id and upload_url and calling cas.finishUpload. 3. Once upload is finalized, call registerInstance(...) again. """ status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For REGISTERED or ALREADY_REGISTERED, info about the package instance. instance = messages.MessageField(PackageInstance, 3, required=False) # For UPLOAD_FIRST status, a unique identifier of the upload operation. upload_session_id = messages.StringField(4, required=False) # For UPLOAD_FIRST status, URL to PUT file to via resumable upload protocol. upload_url = messages.StringField(5, required=False) ################################################################################ class SetRefRequest(messages.Message): """Body of setRef call.""" # ID of the package instance to point the ref too. instance_id = messages.StringField(1, required=True) class SetRefResponse(messages.Message): """Results of setRef call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS status, details about the ref. ref = messages.MessageField(PackageRef, 3, required=False) class FetchRefsResponse(messages.Message): """Results of fetchRefs call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS status, details about fetches refs. refs = messages.MessageField(PackageRef, 3, repeated=True) ################################################################################ class FetchTagsResponse(messages.Message): """Results of fetchTags call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS status, details about found tags. tags = messages.MessageField(InstanceTag, 3, repeated=True) class AttachTagsRequest(messages.Message): """Body of attachTags call.""" tags = messages.StringField(1, repeated=True) class AttachTagsResponse(messages.Message): """Results of attachTag call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS status, details about attached tags. tags = messages.MessageField(InstanceTag, 3, repeated=True) class DetachTagsResponse(messages.Message): """Results of detachTags call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) ################################################################################ class SearchResponse(messages.Message): """Results of searchInstances call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS, list of instances found. instances = messages.MessageField(PackageInstance, 3, repeated=True) class ResolveVersionResponse(messages.Message): """Results of resolveVersion call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS, concrete existing instance ID. instance_id = messages.StringField(3, required=False) ################################################################################ class FetchACLResponse(messages.Message): """Results of fetchACL call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS status, list of ACLs split by package path and role. acls = messages.MessageField(PackageACL, 3, required=False) ################################################################################ class ModifyACLRequest(messages.Message): """Body of modifyACL call.""" changes = messages.MessageField(RoleChange, 1, repeated=True) class ModifyACLResponse(messages.Message): """Results of modifyACL call.""" status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) ################################################################################ class FetchClientBinaryResponse(messages.Message): """Results of fetchClientBinary call.""" class ClientBinary(messages.Message): # SHA1 hex digest of the extracted binary, for verification on the client. sha1 = messages.StringField(1, required=True) # Size of the binary file, just for information. size = messages.IntegerField(2, required=True) # A signed url to fetch the binary file from. fetch_url = messages.StringField(3, required=True) status = messages.EnumField(Status, 1, required=True) error_message = messages.StringField(2, required=False) # For SUCCESS or NOT_EXTRACTED_YET, information about the package instance. instance = messages.MessageField(PackageInstance, 3, required=False) # For SUCCESS, information about the client binary. client_binary = messages.MessageField(ClientBinary, 4, required=False) ################################################################################ class Error(Exception): status = Status.ERROR class PackageNotFoundError(Error): status = Status.PACKAGE_NOT_FOUND class InstanceNotFoundError(Error): status = Status.INSTANCE_NOT_FOUND class ProcessingFailedError(Error): status = Status.PROCESSING_FAILED class ProcessingNotFinishedYetError(Error): status = Status.PROCESSING_NOT_FINISHED_YET class ValidationError(Error): # TODO(vadimsh): Use VALIDATION_ERROR. It changes JSON protocol. status = Status.ERROR def validate_package_name(package_name): if not impl.is_valid_package_path(package_name): raise ValidationError('Invalid package name') return package_name def validate_package_path(package_path): if not impl.is_valid_package_path(package_path): raise ValidationError('Invalid package path') return package_path def validate_package_ref(ref): if not impl.is_valid_package_ref(ref): raise ValidationError('Invalid package ref name') return ref def validate_package_ref_list(refs): if not refs: # pragma: no cover raise ValidationError('Ref list is empty') return [validate_package_ref(ref) for ref in refs] def validate_instance_id(instance_id): if not impl.is_valid_instance_id(instance_id): raise ValidationError('Invalid package instance ID') return instance_id def validate_instance_tag(tag): if not impl.is_valid_instance_tag(tag): raise ValidationError('Invalid tag "%s"' % tag) return tag def validate_instance_tag_list(tags): if not tags: raise ValidationError('Tag list is empty') return [validate_instance_tag(tag) for tag in tags] def validate_instance_version(version): if not impl.is_valid_instance_version(version): raise ValidationError('Not a valid instance ID or tag: "%s"' % version) return version def endpoints_method(request_message, response_message, **kwargs): """Wrapper around Endpoint methods to simplify error handling. Catches Error exceptions and converts them to error responses. Assumes response_message has fields 'status' and 'error_message'. """ assert hasattr(response_message, 'status') assert hasattr(response_message, 'error_message') def decorator(f): @auth.endpoints_method(request_message, response_message, **kwargs) @functools.wraps(f) def wrapper(*args): try: response = f(*args) if response.status is None: response.status = Status.SUCCESS return response except Error as e: return response_message( status=e.status, error_message=e.message if e.message else None) except auth.Error as e: caller = auth.get_current_identity().to_bytes() logging.warning('%s (%s): %s', e.__class__.__name__, caller, e) raise return wrapper return decorator ################################################################################ @auth.endpoints_api( name='repo', version='v1', title='CIPD Package Repository API') class PackageRepositoryApi(remote.Service): """Package Repository API.""" # Cached value of 'service' property. _service = None @property def service(self): """Returns configured impl.RepoService.""" if self._service is None: self._service = impl.get_repo_service() if self._service is None or not self._service.is_fetch_configured(): raise endpoints.InternalServerErrorException( 'Service is not configured') return self._service def get_instance(self, package_name, instance_id): """Grabs PackageInstance or raises appropriate *NotFoundError.""" instance = self.service.get_instance(package_name, instance_id) if instance is None: pkg = self.service.get_package(package_name) if pkg is None: raise PackageNotFoundError() raise InstanceNotFoundError() return instance def verify_instance_exists(self, package_name, instance_id): """Raises appropriate *NotFoundError if instance is missing.""" self.get_instance(package_name, instance_id) def verify_instance_is_ready(self, package_name, instance_id): """Raises appropriate error if instance doesn't exist or not ready yet. Instance is ready when all processors successfully finished. """ instance = self.get_instance(package_name, instance_id) if instance.processors_failure: raise ProcessingFailedError( 'Failed processors: %s' % ', '.join(instance.processors_failure)) if instance.processors_pending: raise ProcessingNotFinishedYetError( 'Pending processors: %s' % ', '.join(instance.processors_pending)) ### Package methods. @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), with_refs=messages.BooleanField(2, required=False)), FetchPackageResponse, http_method='GET', path='package', name='fetchPackage') @auth.public # ACL check is inside def fetch_package(self, request): """Returns information about a package.""" package_name = validate_package_name(request.package_name) caller = auth.get_current_identity() if not acl.can_fetch_package(package_name, caller): raise auth.AuthorizationError() pkg = self.service.get_package(package_name) if pkg is None: raise PackageNotFoundError() refs = [] if request.with_refs: refs = self.service.query_package_refs(package_name) return FetchPackageResponse( package=package_to_proto(pkg), refs=[package_ref_to_proto(r) for r in refs]) @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, path=messages.StringField(1, required=False), recursive=messages.BooleanField(2, required=False)), ListPackagesResponse, http_method='GET', path='package/search', name='listPackages') @auth.public # ACL check is inside def list_packages(self, request): """Returns packages in the given directory and possibly subdirectories.""" path = request.path or '' recursive = request.recursive or False pkgs, dirs = self.service.list_packages(path, recursive) caller = auth.get_current_identity() visible_pkgs = [p for p in pkgs if acl.can_fetch_package(p, caller)] visible_dirs = [d for d in dirs if acl.can_fetch_package(d, caller)] return ListPackagesResponse(packages=visible_pkgs, directories=visible_dirs) @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True)), DeletePackageResponse, http_method='DELETE', path='package', name='deletePackage') @auth.public # ACL check is inside def delete_package(self, request): """Deletes a package along with all its instances.""" package_name = validate_package_name(request.package_name) caller = auth.get_current_identity() if not acl.can_delete_package(package_name, caller): raise auth.AuthorizationError() deleted = self.service.delete_package(package_name) if not deleted: raise PackageNotFoundError() return DeletePackageResponse() ### PackageInstance methods. @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True)), FetchInstanceResponse, http_method='GET', path='instance', name='fetchInstance') @auth.public # ACL check is inside def fetch_instance(self, request): """Returns signed URL that can be used to fetch a package instance.""" package_name = validate_package_name(request.package_name) instance_id = validate_instance_id(request.instance_id) caller = auth.get_current_identity() if not acl.can_fetch_instance(package_name, caller): raise auth.AuthorizationError() instance = self.get_instance(package_name, instance_id) return FetchInstanceResponse( instance=instance_to_proto(instance), fetch_url=self.service.generate_fetch_url(instance), processors=processors_protos(instance)) @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True)), RegisterInstanceResponse, path='instance', http_method='POST', name='registerInstance') @auth.public # ACL check is inside def register_instance(self, request): """Registers a new package instance in the repository.""" package_name = validate_package_name(request.package_name) instance_id = validate_instance_id(request.instance_id) caller = auth.get_current_identity() if not acl.can_register_instance(package_name, caller): raise auth.AuthorizationError() instance = self.service.get_instance(package_name, instance_id) if instance is not None: return RegisterInstanceResponse( status=Status.ALREADY_REGISTERED, instance=instance_to_proto(instance)) # Need to upload to CAS first? Open an upload session. Caller must use # CASServiceApi to finish the upload and then call registerInstance again. if not self.service.is_instance_file_uploaded(package_name, instance_id): upload_url, upload_session_id = self.service.create_upload_session( package_name, instance_id, caller) return RegisterInstanceResponse( status=Status.UPLOAD_FIRST, upload_session_id=upload_session_id, upload_url=upload_url) # Package data is in the store. Make an entity. instance, registered = self.service.register_instance( package_name=package_name, instance_id=instance_id, caller=caller, now=utils.utcnow()) return RegisterInstanceResponse( status=Status.REGISTERED if registered else Status.ALREADY_REGISTERED, instance=instance_to_proto(instance)) ### Refs methods. @endpoints_method( endpoints.ResourceContainer( SetRefRequest, package_name=messages.StringField(1, required=True), ref=messages.StringField(2, required=True)), SetRefResponse, path='ref', http_method='POST', name='setRef') @auth.public # ACL check is inside def set_ref(self, request): """Creates a ref or moves an existing one.""" package_name = validate_package_name(request.package_name) ref = validate_package_ref(request.ref) instance_id = validate_instance_id(request.instance_id) caller = auth.get_current_identity() if not acl.can_move_ref(package_name, ref, caller): raise auth.AuthorizationError('Not authorized to move "%s"' % ref) self.verify_instance_is_ready(package_name, instance_id) ref_entity = self.service.set_package_ref( package_name=package_name, ref=ref, instance_id=instance_id, caller=caller, now=utils.utcnow()) return SetRefResponse(ref=package_ref_to_proto(ref_entity)) @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True), ref=messages.StringField(3, repeated=True)), FetchRefsResponse, path='ref', http_method='GET', name='fetchRefs') @auth.public # ACL check is inside def fetch_refs(self, request): """Lists package instance refs (newest first).""" package_name = validate_package_name(request.package_name) instance_id = validate_instance_id(request.instance_id) refs = validate_package_ref_list(request.ref) if request.ref else None caller = auth.get_current_identity() if not acl.can_fetch_instance(package_name, caller): raise auth.AuthorizationError() self.verify_instance_exists(package_name, instance_id) if not refs: # Fetch all. output = self.service.query_instance_refs(package_name, instance_id) else: # Fetch selected refs, pick ones pointing to the instance. output = [ r for r in self.service.get_package_refs(package_name, refs).itervalues() if r and r.instance_id == instance_id ] output.sort(key=lambda r: r.modified_ts, reverse=True) return FetchRefsResponse(refs=[package_ref_to_proto(ref) for ref in output]) ### Tags methods. @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True), tag=messages.StringField(3, repeated=True)), FetchTagsResponse, path='tags', http_method='GET', name='fetchTags') @auth.public # ACL check is inside def fetch_tags(self, request): """Lists package instance tags (newest first).""" package_name = validate_package_name(request.package_name) instance_id = validate_instance_id(request.instance_id) tags = validate_instance_tag_list(request.tag) if request.tag else None caller = auth.get_current_identity() if not acl.can_fetch_instance(package_name, caller): raise auth.AuthorizationError() self.verify_instance_exists(package_name, instance_id) if not tags: # Fetch all. attached = self.service.query_tags(package_name, instance_id) else: # Fetch selected only. "Is tagged by?" check essentially. found = self.service.get_tags(package_name, instance_id, tags) attached = [found[tag] for tag in tags if found[tag]] attached.sort(key=lambda t: t.registered_ts, reverse=True) return FetchTagsResponse(tags=[tag_to_proto(tag) for tag in attached]) @endpoints_method( endpoints.ResourceContainer( AttachTagsRequest, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True)), AttachTagsResponse, path='tags', http_method='POST', name='attachTags') @auth.public # ACL check is inside def attach_tags(self, request): """Attaches a set of tags to a package instance.""" package_name = validate_package_name(request.package_name) instance_id = validate_instance_id(request.instance_id) tags = validate_instance_tag_list(request.tags) caller = auth.get_current_identity() for tag in tags: if not acl.can_attach_tag(package_name, tag, caller): raise auth.AuthorizationError('Not authorized to attach "%s"' % tag) self.verify_instance_is_ready(package_name, instance_id) attached = self.service.attach_tags( package_name=package_name, instance_id=instance_id, tags=tags, caller=caller, now=utils.utcnow()) return AttachTagsResponse(tags=[tag_to_proto(attached[t]) for t in tags]) @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True), tag=messages.StringField(3, repeated=True)), DetachTagsResponse, path='tags', http_method='DELETE', name='detachTags') @auth.public # ACL check is inside def detach_tags(self, request): """Removes given tags from a package instance.""" package_name = validate_package_name(request.package_name) instance_id = validate_instance_id(request.instance_id) tags = validate_instance_tag_list(request.tag) caller = auth.get_current_identity() for tag in tags: if not acl.can_detach_tag(package_name, tag, caller): raise auth.AuthorizationError('Not authorized to detach "%s"' % tag) self.verify_instance_exists(package_name, instance_id) self.service.detach_tags( package_name=package_name, instance_id=instance_id, tags=tags) return DetachTagsResponse() ### Search methods. @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, tag=messages.StringField(1, required=True), package_name=messages.StringField(2, required=False)), SearchResponse, path='instance/search', http_method='GET', name='searchInstances') @auth.public # ACL check is inside def search_instances(self, request): """Returns package instances with given tag (in no particular order).""" tag = validate_instance_tag(request.tag) if request.package_name: package_name = validate_package_name(request.package_name) else: package_name = None caller = auth.get_current_identity() callback = None if package_name: # If search is limited to one package, check its ACL only once. if not acl.can_fetch_instance(package_name, caller): raise auth.AuthorizationError() else: # Filter out packages not allowed by ACL. acl_cache = {} def check_readable(package_name, _instance_id): if package_name not in acl_cache: acl_cache[package_name] = acl.can_fetch_instance(package_name, caller) return acl_cache[package_name] callback = check_readable found = self.service.search_by_tag(tag, package_name, callback) return SearchResponse(instances=[instance_to_proto(i) for i in found]) @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), version=messages.StringField(2, required=True)), ResolveVersionResponse, path='instance/resolve', http_method='GET', name='resolveVersion') @auth.public # ACL check is inside def resolve_version(self, request): """Returns instance ID of an existing instance given a ref or a tag.""" package_name = validate_package_name(request.package_name) version = validate_instance_version(request.version) caller = auth.get_current_identity() if not acl.can_fetch_instance(package_name, caller): raise auth.AuthorizationError() pkg = self.service.get_package(package_name) if pkg is None: raise PackageNotFoundError() ids = self.service.resolve_version(package_name, version, limit=2) if not ids: raise InstanceNotFoundError() if len(ids) > 1: return ResolveVersionResponse( status=Status.AMBIGUOUS_VERSION, error_message='More than one instance has tag "%s" set' % version) return ResolveVersionResponse(instance_id=ids[0]) ### ACL methods. @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_path=messages.StringField(1, required=True)), FetchACLResponse, http_method='GET', path='acl', name='fetchACL') @auth.public # ACL check is inside def fetch_acl(self, request): """Returns access control list for a given package path.""" package_path = validate_package_path(request.package_path) caller = auth.get_current_identity() if not acl.can_fetch_acl(package_path, caller): raise auth.AuthorizationError() return FetchACLResponse( acls=package_acls_to_proto({ role: acl.get_package_acls(package_path, role) for role in acl.ROLES })) @endpoints_method( endpoints.ResourceContainer( ModifyACLRequest, package_path=messages.StringField(1, required=True)), ModifyACLResponse, http_method='POST', path='acl', name='modifyACL') @auth.public # ACL check is inside def modify_acl(self, request): """Changes access control list for a given package path.""" package_path = validate_package_path(request.package_path) try: changes = [ role_change_from_proto(msg, package_path) for msg in request.changes ] except ValueError as exc: raise ValidationError('Invalid role change request: %s' % exc) caller = auth.get_current_identity() if not acl.can_modify_acl(package_path, caller): raise auth.AuthorizationError() # Apply changes. Do not catch ValueError. Validation above should be # sufficient. If it is not, HTTP 500 and an uncaught exception in logs is # exactly what is needed. acl.modify_roles(changes, caller, utils.utcnow()) return ModifyACLResponse() ### ClientBinary methods. @endpoints_method( endpoints.ResourceContainer( message_types.VoidMessage, package_name=messages.StringField(1, required=True), instance_id=messages.StringField(2, required=True)), FetchClientBinaryResponse, http_method='GET', path='client', name='fetchClientBinary') @auth.public # ACL check is inside def fetch_client_binary(self, request): """Returns signed URL that can be used to fetch CIPD client binary.""" package_name = validate_package_name(request.package_name) if not client.is_cipd_client_package(package_name): raise ValidationError('Not a CIPD client package') instance_id = validate_instance_id(request.instance_id) caller = auth.get_current_identity() if not acl.can_fetch_instance(package_name, caller): raise auth.AuthorizationError() # Grab the location of the extracted binary. instance = self.get_instance(package_name, instance_id) client_info, error_message = self.service.get_client_binary_info(instance) if error_message: raise Error(error_message) if client_info is None: return FetchClientBinaryResponse( status=Status.NOT_EXTRACTED_YET, instance=instance_to_proto(instance)) return FetchClientBinaryResponse( instance=instance_to_proto(instance), client_binary=FetchClientBinaryResponse.ClientBinary( sha1=client_info.sha1, size=client_info.size, fetch_url=client_info.fetch_url))
en
0.645697
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. Cloud Endpoints API for Package Repository service. # This is used by endpoints indirectly. ################################################################################ ## Messages used by other messages. Response status code, shared by all responses. # Operation finished successfully (generic "success" response). # The package instance was successfully registered. # The package instance was already registered (not a error). # Some uncategorized non-transient error happened. # No such package. # Package itself is known, but requested instance_id isn't registered. # Need to upload package data before registering the package. # Client binary is not available, the call should be retried later. # Some asynchronous package processing failed. # Asynchronous package processing is still running. # More than one instance matches criteria in resolveVersion. Information about some registered package. Package entity -> Package proto message. Information about some registered package instance. PackageInstance entity -> PackageInstance proto message. Some single package instance tag. InstanceTag entity -> InstanceTag proto message. Information about some ref belonging to a package. PackageRef entity -> PackageRef proto message. Access control list for some package path and all parent paths. Single per role, per package path ACL. # List of ACLs split by package path and role. No ordering. Dict {role -> list of PackageACL entities} -> PackageACL message. Describes a single modification to ACL. # Action to perform. # Role to modify ('OWNER', 'WRITER', 'READER', ...). # Principal ('user:...' or 'group:...') to grant or revoke a role for. RoleChange proto message -> acl.RoleChange object. Raises ValueError on format errors. # Raises ValueError if proto.user has invalid format, e.g. not 'user:...'. Status of some package instance processor. # Name of the processor, defines what it does. # Status of the processing. Given PackageInstance entity returns a list of Processor messages. ################################################################################ Results of fetchPackage call. # For SUCCESS, information about the package. ################################################################################ Results of listPackage call. # For SUCCESS, names of the packages and names of directories. ################################################################################ Results of deletePackage call. ################################################################################ Results of fetchInstance call. # For SUCCESS, information about the package instance. # For SUCCESS, a signed url to fetch the package instance file from. # For SUCCESS, list of processors applied to the instance. ################################################################################ Results of registerInstance call. upload_session_id and upload_url (if present) can be used with CAS service (finishUpload call in particular). Callers are expected to execute following protocol: 1. Attempt to register a package instance by calling registerInstance(...). 2. On UPLOAD_FIRST response, upload package data and finalize the upload by using upload_session_id and upload_url and calling cas.finishUpload. 3. Once upload is finalized, call registerInstance(...) again. # For REGISTERED or ALREADY_REGISTERED, info about the package instance. # For UPLOAD_FIRST status, a unique identifier of the upload operation. # For UPLOAD_FIRST status, URL to PUT file to via resumable upload protocol. ################################################################################ Body of setRef call. # ID of the package instance to point the ref too. Results of setRef call. # For SUCCESS status, details about the ref. Results of fetchRefs call. # For SUCCESS status, details about fetches refs. ################################################################################ Results of fetchTags call. # For SUCCESS status, details about found tags. Body of attachTags call. Results of attachTag call. # For SUCCESS status, details about attached tags. Results of detachTags call. ################################################################################ Results of searchInstances call. # For SUCCESS, list of instances found. Results of resolveVersion call. # For SUCCESS, concrete existing instance ID. ################################################################################ Results of fetchACL call. # For SUCCESS status, list of ACLs split by package path and role. ################################################################################ Body of modifyACL call. Results of modifyACL call. ################################################################################ Results of fetchClientBinary call. # SHA1 hex digest of the extracted binary, for verification on the client. # Size of the binary file, just for information. # A signed url to fetch the binary file from. # For SUCCESS or NOT_EXTRACTED_YET, information about the package instance. # For SUCCESS, information about the client binary. ################################################################################ # TODO(vadimsh): Use VALIDATION_ERROR. It changes JSON protocol. # pragma: no cover Wrapper around Endpoint methods to simplify error handling. Catches Error exceptions and converts them to error responses. Assumes response_message has fields 'status' and 'error_message'. ################################################################################ Package Repository API. # Cached value of 'service' property. Returns configured impl.RepoService. Grabs PackageInstance or raises appropriate *NotFoundError. Raises appropriate *NotFoundError if instance is missing. Raises appropriate error if instance doesn't exist or not ready yet. Instance is ready when all processors successfully finished. ### Package methods. # ACL check is inside Returns information about a package. # ACL check is inside Returns packages in the given directory and possibly subdirectories. # ACL check is inside Deletes a package along with all its instances. ### PackageInstance methods. # ACL check is inside Returns signed URL that can be used to fetch a package instance. # ACL check is inside Registers a new package instance in the repository. # Need to upload to CAS first? Open an upload session. Caller must use # CASServiceApi to finish the upload and then call registerInstance again. # Package data is in the store. Make an entity. ### Refs methods. # ACL check is inside Creates a ref or moves an existing one. # ACL check is inside Lists package instance refs (newest first). # Fetch all. # Fetch selected refs, pick ones pointing to the instance. ### Tags methods. # ACL check is inside Lists package instance tags (newest first). # Fetch all. # Fetch selected only. "Is tagged by?" check essentially. # ACL check is inside Attaches a set of tags to a package instance. # ACL check is inside Removes given tags from a package instance. ### Search methods. # ACL check is inside Returns package instances with given tag (in no particular order). # If search is limited to one package, check its ACL only once. # Filter out packages not allowed by ACL. # ACL check is inside Returns instance ID of an existing instance given a ref or a tag. ### ACL methods. # ACL check is inside Returns access control list for a given package path. # ACL check is inside Changes access control list for a given package path. # Apply changes. Do not catch ValueError. Validation above should be # sufficient. If it is not, HTTP 500 and an uncaught exception in logs is # exactly what is needed. ### ClientBinary methods. # ACL check is inside Returns signed URL that can be used to fetch CIPD client binary. # Grab the location of the extracted binary.
1.958108
2
var/spack/repos/builtin/packages/tclap/package.py
HaochengLIU/spack
2
6630984
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Tclap(AutotoolsPackage): """Templatized C++ Command Line Parser""" homepage = "http://tclap.sourceforge.net" url = "https://downloads.sourceforge.net/project/tclap/tclap-1.2.2.tar.gz" version('1.2.2', '6f35665814dca292eceda007d7e13bcb') version('1.2.1', 'eb0521d029bf3b1cc0dcaa7e42abf82a')
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Tclap(AutotoolsPackage): """Templatized C++ Command Line Parser""" homepage = "http://tclap.sourceforge.net" url = "https://downloads.sourceforge.net/project/tclap/tclap-1.2.2.tar.gz" version('1.2.2', '6f35665814dca292eceda007d7e13bcb') version('1.2.1', 'eb0521d029bf3b1cc0dcaa7e42abf82a')
en
0.616952
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) Templatized C++ Command Line Parser
1.181775
1
backend/apps/events/migrations/0001_initial.py
dominikbullo/SportAgenda
0
6630985
<gh_stars>0 # Generated by Django 3.1.2 on 2020-10-27 20:14 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(choices=[('U8', 'Superbaby'), ('U10', 'Mladší predžiaci'), ('U12', 'Starší predžiaci'), ('U14', 'Mladší žiaci'), ('U16', 'Starší žiaci'), ('U18', 'Juniory'), ('U21', 'Dospelý')], max_length=3)), ('year_from', models.IntegerField(choices=[(1984, 1984), (1985, 1985), (1986, 1986), (1987, 1987), (1988, 1988), (1989, 1989), (1990, 1990), (1991, 1991), (1992, 1992), (1993, 1993), (1994, 1994), (1995, 1995), (1996, 1996), (1997, 1997), (1998, 1998), (1999, 1999), (2000, 2000), (2001, 2001), (2002, 2002), (2003, 2003), (2004, 2004), (2005, 2005), (2006, 2006), (2007, 2007), (2008, 2008), (2009, 2009), (2010, 2010), (2011, 2011), (2012, 2012), (2013, 2013), (2014, 2014), (2015, 2015), (2016, 2016), (2017, 2017), (2018, 2018), (2019, 2019), (2020, 2020)], default=2018, verbose_name='Year from')), ('year_until', models.IntegerField(choices=[(1984, 1984), (1985, 1985), (1986, 1986), (1987, 1987), (1988, 1988), (1989, 1989), (1990, 1990), (1991, 1991), (1992, 1992), (1993, 1993), (1994, 1994), (1995, 1995), (1996, 1996), (1997, 1997), (1998, 1998), (1999, 1999), (2000, 2000), (2001, 2001), (2002, 2002), (2003, 2003), (2004, 2004), (2005, 2005), (2006, 2006), (2007, 2007), (2008, 2008), (2009, 2009), (2010, 2010), (2011, 2011), (2012, 2012), (2013, 2013), (2014, 2014), (2015, 2015), (2016, 2016), (2017, 2017), (2018, 2018), (2019, 2019), (2020, 2020)], default=2020, verbose_name='Year until')), ], options={ 'verbose_name_plural': 'Categories', 'ordering': ['id'], }, ), migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(choices=[('SKI_TRAINING', 'Ski Training'), ('ATHLETIC_TRAINING', 'Athletic Training'), ('SKI_RACE', 'Ski Race'), ('SKI_CAMP', 'Ski Camp'), ('VIDEO_ANALYZE', 'Video Analyze'), ('MEETING', 'Meeting')], max_length=50)), ('canceled', models.BooleanField(default=False)), ('send_email', models.BooleanField(default=False)), ('start', models.DateTimeField()), ('end', models.DateTimeField(blank=True)), ('additional_info', models.CharField(blank=True, max_length=150)), ('category', models.ManyToManyField(to='events.Category')), ], options={ 'abstract': False, 'base_manager_name': 'objects', }, ), migrations.CreateModel( name='Season', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('year', models.CharField(max_length=9, unique=True)), ('current', models.BooleanField(default=False)), ('start_date', models.DateField(blank=True, null=True)), ('end_date', models.DateField(blank=True, null=True)), ], ), migrations.CreateModel( name='SkiRace', fields=[ ('event_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='events.event')), ('skis_type', models.CharField(choices=[('ALL', 'All'), ('SL', 'Slalom'), ('GS', 'Giant Slalom')], default='ALL', max_length=3)), ('temperature', models.IntegerField(blank=True, null=True)), ('propositionURL', models.URLField(blank=True, null=True)), ('hotel_price', models.CharField(blank=True, max_length=50, null=True)), ('book_hotel_from', models.DateTimeField(blank=True, null=True)), ('book_hotel_to', models.DateTimeField(blank=True, null=True)), ], options={ 'abstract': False, }, bases=('events.event',), ), migrations.CreateModel( name='SkiTraining', fields=[ ('event_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='events.event')), ('skis_type', models.CharField(choices=[('ALL', 'All'), ('SL', 'Slalom'), ('GS', 'Giant Slalom')], default='ALL', max_length=3)), ('temperature', models.IntegerField(blank=True, null=True)), ('gates', models.CharField(blank=True, max_length=50, null=True)), ('number_of_runs', models.CharField(blank=True, max_length=50, null=True)), ], options={ 'abstract': False, }, bases=('events.event',), ), migrations.CreateModel( name='RaceOrganizer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('shorthand', models.CharField(max_length=15)), ('website', models.URLField(blank=True, null=True)), ('club', models.CharField(blank=True, max_length=50, null=True)), ], options={ 'unique_together': {('name', 'club')}, }, ), migrations.CreateModel( name='Location', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=80)), ('ski_slope', models.CharField(blank=True, max_length=50, null=True)), ('additional_info', models.CharField(blank=True, max_length=100, null=True)), ], options={ 'unique_together': {('name', 'ski_slope')}, }, ), migrations.AddField( model_name='event', name='location', field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='events.location'), ), ]
# Generated by Django 3.1.2 on 2020-10-27 20:14 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(choices=[('U8', 'Superbaby'), ('U10', 'Mladší predžiaci'), ('U12', 'Starší predžiaci'), ('U14', 'Mladší žiaci'), ('U16', 'Starší žiaci'), ('U18', 'Juniory'), ('U21', 'Dospelý')], max_length=3)), ('year_from', models.IntegerField(choices=[(1984, 1984), (1985, 1985), (1986, 1986), (1987, 1987), (1988, 1988), (1989, 1989), (1990, 1990), (1991, 1991), (1992, 1992), (1993, 1993), (1994, 1994), (1995, 1995), (1996, 1996), (1997, 1997), (1998, 1998), (1999, 1999), (2000, 2000), (2001, 2001), (2002, 2002), (2003, 2003), (2004, 2004), (2005, 2005), (2006, 2006), (2007, 2007), (2008, 2008), (2009, 2009), (2010, 2010), (2011, 2011), (2012, 2012), (2013, 2013), (2014, 2014), (2015, 2015), (2016, 2016), (2017, 2017), (2018, 2018), (2019, 2019), (2020, 2020)], default=2018, verbose_name='Year from')), ('year_until', models.IntegerField(choices=[(1984, 1984), (1985, 1985), (1986, 1986), (1987, 1987), (1988, 1988), (1989, 1989), (1990, 1990), (1991, 1991), (1992, 1992), (1993, 1993), (1994, 1994), (1995, 1995), (1996, 1996), (1997, 1997), (1998, 1998), (1999, 1999), (2000, 2000), (2001, 2001), (2002, 2002), (2003, 2003), (2004, 2004), (2005, 2005), (2006, 2006), (2007, 2007), (2008, 2008), (2009, 2009), (2010, 2010), (2011, 2011), (2012, 2012), (2013, 2013), (2014, 2014), (2015, 2015), (2016, 2016), (2017, 2017), (2018, 2018), (2019, 2019), (2020, 2020)], default=2020, verbose_name='Year until')), ], options={ 'verbose_name_plural': 'Categories', 'ordering': ['id'], }, ), migrations.CreateModel( name='Event', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('type', models.CharField(choices=[('SKI_TRAINING', 'Ski Training'), ('ATHLETIC_TRAINING', 'Athletic Training'), ('SKI_RACE', 'Ski Race'), ('SKI_CAMP', 'Ski Camp'), ('VIDEO_ANALYZE', 'Video Analyze'), ('MEETING', 'Meeting')], max_length=50)), ('canceled', models.BooleanField(default=False)), ('send_email', models.BooleanField(default=False)), ('start', models.DateTimeField()), ('end', models.DateTimeField(blank=True)), ('additional_info', models.CharField(blank=True, max_length=150)), ('category', models.ManyToManyField(to='events.Category')), ], options={ 'abstract': False, 'base_manager_name': 'objects', }, ), migrations.CreateModel( name='Season', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('year', models.CharField(max_length=9, unique=True)), ('current', models.BooleanField(default=False)), ('start_date', models.DateField(blank=True, null=True)), ('end_date', models.DateField(blank=True, null=True)), ], ), migrations.CreateModel( name='SkiRace', fields=[ ('event_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='events.event')), ('skis_type', models.CharField(choices=[('ALL', 'All'), ('SL', 'Slalom'), ('GS', 'Giant Slalom')], default='ALL', max_length=3)), ('temperature', models.IntegerField(blank=True, null=True)), ('propositionURL', models.URLField(blank=True, null=True)), ('hotel_price', models.CharField(blank=True, max_length=50, null=True)), ('book_hotel_from', models.DateTimeField(blank=True, null=True)), ('book_hotel_to', models.DateTimeField(blank=True, null=True)), ], options={ 'abstract': False, }, bases=('events.event',), ), migrations.CreateModel( name='SkiTraining', fields=[ ('event_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='events.event')), ('skis_type', models.CharField(choices=[('ALL', 'All'), ('SL', 'Slalom'), ('GS', 'Giant Slalom')], default='ALL', max_length=3)), ('temperature', models.IntegerField(blank=True, null=True)), ('gates', models.CharField(blank=True, max_length=50, null=True)), ('number_of_runs', models.CharField(blank=True, max_length=50, null=True)), ], options={ 'abstract': False, }, bases=('events.event',), ), migrations.CreateModel( name='RaceOrganizer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('shorthand', models.CharField(max_length=15)), ('website', models.URLField(blank=True, null=True)), ('club', models.CharField(blank=True, max_length=50, null=True)), ], options={ 'unique_together': {('name', 'club')}, }, ), migrations.CreateModel( name='Location', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=80)), ('ski_slope', models.CharField(blank=True, max_length=50, null=True)), ('additional_info', models.CharField(blank=True, max_length=100, null=True)), ], options={ 'unique_together': {('name', 'ski_slope')}, }, ), migrations.AddField( model_name='event', name='location', field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='events.location'), ), ]
en
0.768677
# Generated by Django 3.1.2 on 2020-10-27 20:14
2.063211
2
ontonotes5_to_json.py
geraltofrivia/ontonotes-5-parsing
0
6630986
from argparse import ArgumentParser import codecs import gc import json import os import random import traceback import tarfile from tempfile import NamedTemporaryFile from tqdm import tqdm from ontonotes5.utils import parse_file, parse_splitting, check_onf_name from ontonotes5.utils import get_language_by_filename from ontonotes5.utils import get_language_frequencies, get_entity_frequencies def main(): parser = ArgumentParser() parser.add_argument( '-s', '--src', dest='source_file', type=str, required=True, help='The source *.tgz file with gzipped Ontonotes 5 dataset (see ' 'https://catalog.ldc.upenn.edu/LDC2013T19).' ) parser.add_argument( '-d', '--dst', dest='dst_file', type=str, required=True, help='The destination *.json file with texts and their annotations ' '(named entities, morphology and syntax).' ) parser.add_argument( '-i', '--ids', dest='train_dev_test_ids', type=str, required=False, default=None, help='The directory with identifiers list, which is described the ' 'Ontonotes 5 splitting by subsets for training, development ' '(validation) and final testing (see ' 'http://conll.cemantix.org/2012/download/ids/).' ) parser.add_argument( '-r', '--random', dest='random_seed', type=int, required=False, default=None, help='A random seed.' ) cmd_args = parser.parse_args() if cmd_args.random_seed is not None: random.seed(cmd_args.random_seed) src_file_name = os.path.normpath(cmd_args.source_file) err_msg = 'File "{0}" does not exist!'.format(src_file_name) assert os.path.isfile(src_file_name), err_msg dst_file_name = os.path.normpath(cmd_args.dst_file) dst_file_dir = os.path.dirname(dst_file_name) if len(dst_file_dir) > 0: err_msg = 'Directory "{0}" does not exist!'.format(dst_file_dir) assert os.path.isdir(dst_file_dir), err_msg if cmd_args.train_dev_test_ids is None: ids_dir_name = None else: ids_dir_name = os.path.normpath(cmd_args.train_dev_test_ids) err_msg = 'Directory "{0}" does not exist!'.format(ids_dir_name) assert os.path.isdir(dst_file_dir), err_msg data_for_training = {} data_for_validation = [] data_for_testing = [] if ids_dir_name is None: splitting = None else: splitting = parse_splitting(ids_dir_name) assert len(set(splitting['train']) & set(splitting['test'])) == 0 assert len(set(splitting['train']) & set(splitting['development'])) == 0 assert len(set(splitting['development']) & set(splitting['test'])) == 0 files_with_errors = [] with tarfile.open(src_file_name, mode='r:*', encoding='utf-8') as tgz_fp: onf_names = list(map( lambda it2: it2.name, filter( lambda it1: it1.isfile() and it1.name.endswith('.onf') and it1.name.startswith('ontonotes-release-5.0/data/files/data/english/annotations/nw/wsj'), tgz_fp.getmembers() ) )) # onf_names = onf_names[:100] number_of_members = len(onf_names) err_msg = 'There are no labeled texts with *.onf extension in the ' \ '"{0}"!'.format(src_file_name) assert number_of_members > 0, err_msg for cur_name in tqdm(onf_names): language = get_language_by_filename(cur_name) tmp_name = None try: with NamedTemporaryFile(mode='w', delete=False) as tmp_fp: tmp_name = tmp_fp.name binary_stream = tgz_fp.extractfile(cur_name) if binary_stream is not None: binary_data = binary_stream.read() with open(tmp_name, 'wb') as tmp_fp: tmp_fp.write(binary_data) del binary_data, binary_stream try: parsed, err_msg_2 = parse_file(tmp_name, cur_name) except ValueError: traceback.print_exc() continue if err_msg_2 != '': files_with_errors.append((cur_name, err_msg_2)) n = len(parsed) if n > 0: for idx in range(n): parsed[idx]['language'] = language if splitting is None: data_for_training[cur_name] = parsed else: dst_key = check_onf_name(cur_name, splitting) if dst_key == 'train': data_for_training += parsed elif dst_key == 'development': data_for_validation += parsed elif dst_key == 'test': data_for_testing += parsed finally: if tmp_name is not None: if os.path.isfile(tmp_name): os.remove(tmp_name) gc.collect() with codecs.open(dst_file_name, mode='w', encoding='utf-8') as fp: # random.shuffle(data_for_training) res = {'TRAINING': data_for_training} if splitting is None: assert len(data_for_validation) == 0 assert len(data_for_testing) == 0 else: assert len(data_for_validation) > 0 assert len(data_for_testing) > 0 # random.shuffle(data_for_validation) res['VALIDATION'] = data_for_validation # random.shuffle(data_for_testing) res['TESTING'] = data_for_testing json.dump(res, fp=fp, ensure_ascii=False, indent=4, sort_keys=True) print('{0} files are processed.'.format(number_of_members)) n_errors = len(files_with_errors) if n_errors > 0: print('{0} files from them contain some errors.'.format(n_errors)) print('They are:') for filename, err_msg in files_with_errors: print(' file name "{0}"'.format(filename)) print(' error "{0}"'.format(err_msg)) assert len(data_for_training) > 0 if splitting is None: print('{0} samples are loaded...'.format(len(data_for_training))) languages_for_training = get_language_frequencies(data_for_training) print('By languages:') for lang, freq in languages_for_training: entity_stat = get_entity_frequencies(data_for_training, lang) print(' {0}:'.format(lang)) print(' {0} samples;'.format(freq)) print(' {0} entities, among them:'.format( sum([cur[1] for cur in entity_stat]) )) max_width = max([len(cur[0]) for cur in entity_stat]) for entity_type, entity_freq in entity_stat: print(' {0:>{1}} {2}'.format(entity_type, max_width, entity_freq)) else: for goal in res: print('===============') print(' {0}'.format(goal)) print('===============') print('') print('{0} samples are loaded...'.format(len(res[goal]))) languages_for_training = get_language_frequencies(res[goal]) print('By languages:') for lang, freq in languages_for_training: entity_stat = get_entity_frequencies(res[goal], lang) print(' {0}:'.format(lang)) print(' {0} samples;'.format(freq)) print(' {0} entities, among them:'.format( sum([cur[1] for cur in entity_stat]) )) max_width = max([len(cur[0]) for cur in entity_stat]) for entity_type, entity_freq in entity_stat: print(' {0:>{1}} {2}'.format(entity_type, max_width, entity_freq)) print('') if __name__ == '__main__': main()
from argparse import ArgumentParser import codecs import gc import json import os import random import traceback import tarfile from tempfile import NamedTemporaryFile from tqdm import tqdm from ontonotes5.utils import parse_file, parse_splitting, check_onf_name from ontonotes5.utils import get_language_by_filename from ontonotes5.utils import get_language_frequencies, get_entity_frequencies def main(): parser = ArgumentParser() parser.add_argument( '-s', '--src', dest='source_file', type=str, required=True, help='The source *.tgz file with gzipped Ontonotes 5 dataset (see ' 'https://catalog.ldc.upenn.edu/LDC2013T19).' ) parser.add_argument( '-d', '--dst', dest='dst_file', type=str, required=True, help='The destination *.json file with texts and their annotations ' '(named entities, morphology and syntax).' ) parser.add_argument( '-i', '--ids', dest='train_dev_test_ids', type=str, required=False, default=None, help='The directory with identifiers list, which is described the ' 'Ontonotes 5 splitting by subsets for training, development ' '(validation) and final testing (see ' 'http://conll.cemantix.org/2012/download/ids/).' ) parser.add_argument( '-r', '--random', dest='random_seed', type=int, required=False, default=None, help='A random seed.' ) cmd_args = parser.parse_args() if cmd_args.random_seed is not None: random.seed(cmd_args.random_seed) src_file_name = os.path.normpath(cmd_args.source_file) err_msg = 'File "{0}" does not exist!'.format(src_file_name) assert os.path.isfile(src_file_name), err_msg dst_file_name = os.path.normpath(cmd_args.dst_file) dst_file_dir = os.path.dirname(dst_file_name) if len(dst_file_dir) > 0: err_msg = 'Directory "{0}" does not exist!'.format(dst_file_dir) assert os.path.isdir(dst_file_dir), err_msg if cmd_args.train_dev_test_ids is None: ids_dir_name = None else: ids_dir_name = os.path.normpath(cmd_args.train_dev_test_ids) err_msg = 'Directory "{0}" does not exist!'.format(ids_dir_name) assert os.path.isdir(dst_file_dir), err_msg data_for_training = {} data_for_validation = [] data_for_testing = [] if ids_dir_name is None: splitting = None else: splitting = parse_splitting(ids_dir_name) assert len(set(splitting['train']) & set(splitting['test'])) == 0 assert len(set(splitting['train']) & set(splitting['development'])) == 0 assert len(set(splitting['development']) & set(splitting['test'])) == 0 files_with_errors = [] with tarfile.open(src_file_name, mode='r:*', encoding='utf-8') as tgz_fp: onf_names = list(map( lambda it2: it2.name, filter( lambda it1: it1.isfile() and it1.name.endswith('.onf') and it1.name.startswith('ontonotes-release-5.0/data/files/data/english/annotations/nw/wsj'), tgz_fp.getmembers() ) )) # onf_names = onf_names[:100] number_of_members = len(onf_names) err_msg = 'There are no labeled texts with *.onf extension in the ' \ '"{0}"!'.format(src_file_name) assert number_of_members > 0, err_msg for cur_name in tqdm(onf_names): language = get_language_by_filename(cur_name) tmp_name = None try: with NamedTemporaryFile(mode='w', delete=False) as tmp_fp: tmp_name = tmp_fp.name binary_stream = tgz_fp.extractfile(cur_name) if binary_stream is not None: binary_data = binary_stream.read() with open(tmp_name, 'wb') as tmp_fp: tmp_fp.write(binary_data) del binary_data, binary_stream try: parsed, err_msg_2 = parse_file(tmp_name, cur_name) except ValueError: traceback.print_exc() continue if err_msg_2 != '': files_with_errors.append((cur_name, err_msg_2)) n = len(parsed) if n > 0: for idx in range(n): parsed[idx]['language'] = language if splitting is None: data_for_training[cur_name] = parsed else: dst_key = check_onf_name(cur_name, splitting) if dst_key == 'train': data_for_training += parsed elif dst_key == 'development': data_for_validation += parsed elif dst_key == 'test': data_for_testing += parsed finally: if tmp_name is not None: if os.path.isfile(tmp_name): os.remove(tmp_name) gc.collect() with codecs.open(dst_file_name, mode='w', encoding='utf-8') as fp: # random.shuffle(data_for_training) res = {'TRAINING': data_for_training} if splitting is None: assert len(data_for_validation) == 0 assert len(data_for_testing) == 0 else: assert len(data_for_validation) > 0 assert len(data_for_testing) > 0 # random.shuffle(data_for_validation) res['VALIDATION'] = data_for_validation # random.shuffle(data_for_testing) res['TESTING'] = data_for_testing json.dump(res, fp=fp, ensure_ascii=False, indent=4, sort_keys=True) print('{0} files are processed.'.format(number_of_members)) n_errors = len(files_with_errors) if n_errors > 0: print('{0} files from them contain some errors.'.format(n_errors)) print('They are:') for filename, err_msg in files_with_errors: print(' file name "{0}"'.format(filename)) print(' error "{0}"'.format(err_msg)) assert len(data_for_training) > 0 if splitting is None: print('{0} samples are loaded...'.format(len(data_for_training))) languages_for_training = get_language_frequencies(data_for_training) print('By languages:') for lang, freq in languages_for_training: entity_stat = get_entity_frequencies(data_for_training, lang) print(' {0}:'.format(lang)) print(' {0} samples;'.format(freq)) print(' {0} entities, among them:'.format( sum([cur[1] for cur in entity_stat]) )) max_width = max([len(cur[0]) for cur in entity_stat]) for entity_type, entity_freq in entity_stat: print(' {0:>{1}} {2}'.format(entity_type, max_width, entity_freq)) else: for goal in res: print('===============') print(' {0}'.format(goal)) print('===============') print('') print('{0} samples are loaded...'.format(len(res[goal]))) languages_for_training = get_language_frequencies(res[goal]) print('By languages:') for lang, freq in languages_for_training: entity_stat = get_entity_frequencies(res[goal], lang) print(' {0}:'.format(lang)) print(' {0} samples;'.format(freq)) print(' {0} entities, among them:'.format( sum([cur[1] for cur in entity_stat]) )) max_width = max([len(cur[0]) for cur in entity_stat]) for entity_type, entity_freq in entity_stat: print(' {0:>{1}} {2}'.format(entity_type, max_width, entity_freq)) print('') if __name__ == '__main__': main()
en
0.450857
# onf_names = onf_names[:100] # random.shuffle(data_for_training) # random.shuffle(data_for_validation) # random.shuffle(data_for_testing)
2.198978
2
upwork/routers/workdays.py
upwork/python-upwork
150
6630987
# Licensed under the Upwork's API Terms of Use; # you may not use this file except in compliance with the Terms. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author:: <NAME> (<EMAIL>) # Copyright:: Copyright 2020(c) Upwork.com # License:: See LICENSE.txt and TOS - https://developers.upwork.com/api-tos.html class Api: """ """ client = None def __init__(self, client): self.client = client def get_by_company(self, company, from_date, till_date, params={}): """Get Workdays by Company Parameters: :param company: :param from_date: :param till_date: :param params: (Default value = {}) """ return self.client.get( "/team/v3/workdays/companies/{0}/{1},{2}".format( company, from_date, till_date ), params, ) def get_by_contract(self, contract, from_date, till_date, params={}): """Get Workdays by Contract Parameters: :param contract: :param from_date: :param till_date: :param params: (Default value = {}) """ return self.client.get( "/team/v3/workdays/contracts/{0}/{1},{2}".format( contract, from_date, till_date ), params, )
# Licensed under the Upwork's API Terms of Use; # you may not use this file except in compliance with the Terms. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author:: <NAME> (<EMAIL>) # Copyright:: Copyright 2020(c) Upwork.com # License:: See LICENSE.txt and TOS - https://developers.upwork.com/api-tos.html class Api: """ """ client = None def __init__(self, client): self.client = client def get_by_company(self, company, from_date, till_date, params={}): """Get Workdays by Company Parameters: :param company: :param from_date: :param till_date: :param params: (Default value = {}) """ return self.client.get( "/team/v3/workdays/companies/{0}/{1},{2}".format( company, from_date, till_date ), params, ) def get_by_contract(self, contract, from_date, till_date, params={}): """Get Workdays by Contract Parameters: :param contract: :param from_date: :param till_date: :param params: (Default value = {}) """ return self.client.get( "/team/v3/workdays/contracts/{0}/{1},{2}".format( contract, from_date, till_date ), params, )
en
0.810003
# Licensed under the Upwork's API Terms of Use; # you may not use this file except in compliance with the Terms. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author:: <NAME> (<EMAIL>) # Copyright:: Copyright 2020(c) Upwork.com # License:: See LICENSE.txt and TOS - https://developers.upwork.com/api-tos.html Get Workdays by Company Parameters: :param company: :param from_date: :param till_date: :param params: (Default value = {}) Get Workdays by Contract Parameters: :param contract: :param from_date: :param till_date: :param params: (Default value = {})
2.283705
2
fragmenstein/victor/_victor_validate.py
matteoferla/Fragmenstein
41
6630988
from rdkit import Chem from ._victor_base import _VictorBase from ..m_rmsd import mRSMD class _VictorValidate(_VictorBase): def validate(self, reference_mol: Chem.Mol): """ Get how well the results compare. Alternative, do a docking with victor.dock() (-> Chem.Mol) :param reference_mol: Crystal structure mol :return: """ try: # compare with reference mol return mRSMD.from_other_annotated_mols(reference_mol, self.hits, self.monster.positioned_mol).mrmsd except self.error_to_catch as err: self.journal.error(f'{err.__class__.__name__}: {err} in validation step.') pass return float('nan')
from rdkit import Chem from ._victor_base import _VictorBase from ..m_rmsd import mRSMD class _VictorValidate(_VictorBase): def validate(self, reference_mol: Chem.Mol): """ Get how well the results compare. Alternative, do a docking with victor.dock() (-> Chem.Mol) :param reference_mol: Crystal structure mol :return: """ try: # compare with reference mol return mRSMD.from_other_annotated_mols(reference_mol, self.hits, self.monster.positioned_mol).mrmsd except self.error_to_catch as err: self.journal.error(f'{err.__class__.__name__}: {err} in validation step.') pass return float('nan')
en
0.600657
Get how well the results compare. Alternative, do a docking with victor.dock() (-> Chem.Mol) :param reference_mol: Crystal structure mol :return: # compare with reference mol
2.105664
2
The_ultimate_cloud_ops-install_kubernetes_with_kops-automate_jobs_with_jenkins/3_Tools/create_ec2_server_instance.py
spinningops/SpinningOps_Courses
0
6630989
<gh_stars>0 import boto3 ec2 = boto3.resource('ec2', region_name='us-east-1') # create a new EC2 instance instances = ec2.create_instances( ImageId='ami-013f17f36f8b1fefb', MinCount=1, MaxCount=1, InstanceType='t2.micro', KeyName='SpinningOps_Key', SecurityGroupIds=[ '<KEY>', ], InstanceMarketOptions={ 'MarketType': 'spot', 'SpotOptions': { 'MaxPrice': '0.0037, 'SpotInstanceType': 'one-time', 'InstanceInterruptionBehavior': 'terminate' }, } )
import boto3 ec2 = boto3.resource('ec2', region_name='us-east-1') # create a new EC2 instance instances = ec2.create_instances( ImageId='ami-013f17f36f8b1fefb', MinCount=1, MaxCount=1, InstanceType='t2.micro', KeyName='SpinningOps_Key', SecurityGroupIds=[ '<KEY>', ], InstanceMarketOptions={ 'MarketType': 'spot', 'SpotOptions': { 'MaxPrice': '0.0037, 'SpotInstanceType': 'one-time', 'InstanceInterruptionBehavior': 'terminate' }, } )
en
0.251346
# create a new EC2 instance
2.242979
2
src/create_plot.py
thomasreolon/DeepfakeDetection
2
6630990
import os, pathlib from videoanalizer import VideoAnalizer os.chdir(pathlib.Path(__file__).parent.absolute()) vd = VideoAnalizer() ############ Plot videos in a graph ROOT_DIR = '../test_data/videos' SAVE_PATH= '../output' # where plots are saved folders_list=[ # each sublist will have a different color in the plot ['real/ElonMusk/train'], # relative path from ROOT_DIR ['fake/ElonMusk'], ['real/Obama/train'], ['fake/Obama'], ['real/morez'], ['fake/morez'], ] vd.plot_features(folders_list=folders_list, root_dir=ROOT_DIR, save_path=SAVE_PATH, plot_type='LDA')
import os, pathlib from videoanalizer import VideoAnalizer os.chdir(pathlib.Path(__file__).parent.absolute()) vd = VideoAnalizer() ############ Plot videos in a graph ROOT_DIR = '../test_data/videos' SAVE_PATH= '../output' # where plots are saved folders_list=[ # each sublist will have a different color in the plot ['real/ElonMusk/train'], # relative path from ROOT_DIR ['fake/ElonMusk'], ['real/Obama/train'], ['fake/Obama'], ['real/morez'], ['fake/morez'], ] vd.plot_features(folders_list=folders_list, root_dir=ROOT_DIR, save_path=SAVE_PATH, plot_type='LDA')
en
0.890336
############ Plot videos in a graph # where plots are saved # each sublist will have a different color in the plot # relative path from ROOT_DIR
2.250863
2
datascience/api/inspect.py
rlmwang/datascience-workspace
0
6630991
<gh_stars>0 import re from inspect import Parameter, signature from .typing import get_args, get_origin def inspect_inputs(func): """ Inspects the signature of a function and returns its input parameters as a dictionary. """ parameters = signature(func).parameters return { param.name: { "dtype": get_type(param.annotation), "value": None, "default": get_default(param), "required": get_required(param), } for param in parameters.values() } def inspect_output(func): """ Inspects the signature of a function and returns its output parameters as a dictionary. """ anno = signature(func).return_annotation name = getattr(anno, "__name__", None) if name == "tuple": args = get_args(anno) else: args = (anno,) return { f"output {k or ''}".strip(): { "dtype": get_type(arg), "value": None, "default": None, } for k, arg in enumerate(args) } def get_required(param): d = getattr(param, "default", Parameter.empty) return d == Parameter.empty def get_default(param): d = getattr(param, "default", None) d = None if d is Parameter.empty else d return d def get_type(anno): origin = get_origin(anno) if origin is not None: return { "name": camel_case(getattr(origin, "__name__", None)), "args": tuple(get_type(a) for a in get_args(anno)), } name = camel_case(getattr(anno, "__name__", None)) if name is None: name = str(anno) elif name == "_empty": name = None if name == "ndarray": return { "name": "ndarray", "args": tuple(anno.dtype.name), } return name def camel_case(string): if string is None: return None pattern = re.compile(r"(?<!^)(?=[A-Z])") return re.sub(pattern, "_", string).lower()
import re from inspect import Parameter, signature from .typing import get_args, get_origin def inspect_inputs(func): """ Inspects the signature of a function and returns its input parameters as a dictionary. """ parameters = signature(func).parameters return { param.name: { "dtype": get_type(param.annotation), "value": None, "default": get_default(param), "required": get_required(param), } for param in parameters.values() } def inspect_output(func): """ Inspects the signature of a function and returns its output parameters as a dictionary. """ anno = signature(func).return_annotation name = getattr(anno, "__name__", None) if name == "tuple": args = get_args(anno) else: args = (anno,) return { f"output {k or ''}".strip(): { "dtype": get_type(arg), "value": None, "default": None, } for k, arg in enumerate(args) } def get_required(param): d = getattr(param, "default", Parameter.empty) return d == Parameter.empty def get_default(param): d = getattr(param, "default", None) d = None if d is Parameter.empty else d return d def get_type(anno): origin = get_origin(anno) if origin is not None: return { "name": camel_case(getattr(origin, "__name__", None)), "args": tuple(get_type(a) for a in get_args(anno)), } name = camel_case(getattr(anno, "__name__", None)) if name is None: name = str(anno) elif name == "_empty": name = None if name == "ndarray": return { "name": "ndarray", "args": tuple(anno.dtype.name), } return name def camel_case(string): if string is None: return None pattern = re.compile(r"(?<!^)(?=[A-Z])") return re.sub(pattern, "_", string).lower()
en
0.78954
Inspects the signature of a function and returns its input parameters as a dictionary. Inspects the signature of a function and returns its output parameters as a dictionary.
2.870885
3
Analysis/EstimateTRAPPIST1Radius/estRad.py
dflemin3/trappist
1
6630992
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Estimate the distribution of TRAPPIST-1's radius using our stellar mass posterior distributions and the Delrez et al. (2018) density constraint following the procedure outlined in Van Grootel et al. (2018). Script output: Radius [Rsun] = 0.120295 + 0.001951 - 0.001821 @author: <NAME>, 2019 @email: dflemin3 (at) uw (dot) edu """ import sys import numpy as np import pandas as pd from scipy.stats import norm from trappist import mcmcUtils import matplotlib as mpl import matplotlib.pyplot as plt #Typical plot parameters that make for pretty plots mpl.rcParams['font.size'] = 12.0 ## for Palatino and other serif fonts use: mpl.rc('font',**{'family':'serif'}) mpl.rc('text', usetex=True) # CGS constants MSUN = 1.988435e33 # mass of Sun in grams RSUN = 6.957e10 # radius of Sun incm RHOSUN = MSUN / (4./3. * np.pi * RSUN**3) # density of sun in g/cm^3 # Read in evolutionary tracks chains = mcmcUtils.extractMCMCResults("../../Data/trappist1Fiducial.h5", verbose=False, applyBurnin=True, thinChains=True, blobsExist=False) # Draw num samples num = int(1.0e5) # Number of samples # Draw mass samples with replacement in grams masses = np.random.choice(chains[:,0], size=(num,), replace=True) * MSUN # Draw density samples in g/cm^3 by approximating constraint as wide gaussian rhos = norm.rvs(loc=51.1, scale=2.4, size=(num,)) * RHOSUN # Compute radius via density equation: rho = M/V = M/(4/3 * pi * r^3) # -> (rho/m * (4/3) * pi)^(1/3) = r, but convert to Rsun rads = np.power(masses / (rhos * (4./3.) * np.pi), 1./3.) / RSUN # Visualize final distribution, compute statistics of interest rad = np.median(rads) radPlus = np.percentile(rads, 84) - rad radMinus = rad - np.percentile(rads, 16) print("Radius [Rsun] = %lf + %lf - %lf" % (rad, radPlus, radMinus)) # Plot histogram fig, ax = plt.subplots(figsize=(6,5)) # Plot histogram of samples ax.hist(rads, bins="auto", color="C0", density=True, alpha=0.6); ax.hist(rads, bins="auto", color="C0", density=True, histtype="step", lw=2.5); # Overplot med, +/- ax.axvline(rad, color="k", ls="--", lw=2.5, label="This Work") ax.axvline(rad + radPlus, color="k", ls="--", lw=2.5) ax.axvline(rad - radMinus, color="k", ls="--", lw=2.5) # Overplot Van Grootel et al. (2018) constraints ax.axvline(0.121, color="C1", ls="--", lw=2.5, label="Van Grootel et al. (2018)") ax.axvline(0.121 + 0.003, color="C1", ls="--", lw=2.5) ax.axvline(0.121 - 0.003, color="C1", ls="--", lw=2.5) ax.set_ylabel("Density") ax.set_xlabel(r"Radius [$R_{\odot}]$") ax.legend(loc="best", framealpha=0.8, fontsize=10) fig.tight_layout() # Save! if (sys.argv[1] == 'pdf'): fig.savefig("estRad.pdf", bbox_inches="tight", dpi=200) if (sys.argv[1] == 'png'): fig.savefig("estRad.png", bbox_inches="tight", dpi=200) # Done!
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Estimate the distribution of TRAPPIST-1's radius using our stellar mass posterior distributions and the Delrez et al. (2018) density constraint following the procedure outlined in Van Grootel et al. (2018). Script output: Radius [Rsun] = 0.120295 + 0.001951 - 0.001821 @author: <NAME>, 2019 @email: dflemin3 (at) uw (dot) edu """ import sys import numpy as np import pandas as pd from scipy.stats import norm from trappist import mcmcUtils import matplotlib as mpl import matplotlib.pyplot as plt #Typical plot parameters that make for pretty plots mpl.rcParams['font.size'] = 12.0 ## for Palatino and other serif fonts use: mpl.rc('font',**{'family':'serif'}) mpl.rc('text', usetex=True) # CGS constants MSUN = 1.988435e33 # mass of Sun in grams RSUN = 6.957e10 # radius of Sun incm RHOSUN = MSUN / (4./3. * np.pi * RSUN**3) # density of sun in g/cm^3 # Read in evolutionary tracks chains = mcmcUtils.extractMCMCResults("../../Data/trappist1Fiducial.h5", verbose=False, applyBurnin=True, thinChains=True, blobsExist=False) # Draw num samples num = int(1.0e5) # Number of samples # Draw mass samples with replacement in grams masses = np.random.choice(chains[:,0], size=(num,), replace=True) * MSUN # Draw density samples in g/cm^3 by approximating constraint as wide gaussian rhos = norm.rvs(loc=51.1, scale=2.4, size=(num,)) * RHOSUN # Compute radius via density equation: rho = M/V = M/(4/3 * pi * r^3) # -> (rho/m * (4/3) * pi)^(1/3) = r, but convert to Rsun rads = np.power(masses / (rhos * (4./3.) * np.pi), 1./3.) / RSUN # Visualize final distribution, compute statistics of interest rad = np.median(rads) radPlus = np.percentile(rads, 84) - rad radMinus = rad - np.percentile(rads, 16) print("Radius [Rsun] = %lf + %lf - %lf" % (rad, radPlus, radMinus)) # Plot histogram fig, ax = plt.subplots(figsize=(6,5)) # Plot histogram of samples ax.hist(rads, bins="auto", color="C0", density=True, alpha=0.6); ax.hist(rads, bins="auto", color="C0", density=True, histtype="step", lw=2.5); # Overplot med, +/- ax.axvline(rad, color="k", ls="--", lw=2.5, label="This Work") ax.axvline(rad + radPlus, color="k", ls="--", lw=2.5) ax.axvline(rad - radMinus, color="k", ls="--", lw=2.5) # Overplot Van Grootel et al. (2018) constraints ax.axvline(0.121, color="C1", ls="--", lw=2.5, label="Van Grootel et al. (2018)") ax.axvline(0.121 + 0.003, color="C1", ls="--", lw=2.5) ax.axvline(0.121 - 0.003, color="C1", ls="--", lw=2.5) ax.set_ylabel("Density") ax.set_xlabel(r"Radius [$R_{\odot}]$") ax.legend(loc="best", framealpha=0.8, fontsize=10) fig.tight_layout() # Save! if (sys.argv[1] == 'pdf'): fig.savefig("estRad.pdf", bbox_inches="tight", dpi=200) if (sys.argv[1] == 'png'): fig.savefig("estRad.png", bbox_inches="tight", dpi=200) # Done!
en
0.703606
#!/usr/bin/env python # -*- coding: utf-8 -*- Estimate the distribution of TRAPPIST-1's radius using our stellar mass posterior distributions and the Delrez et al. (2018) density constraint following the procedure outlined in Van Grootel et al. (2018). Script output: Radius [Rsun] = 0.120295 + 0.001951 - 0.001821 @author: <NAME>, 2019 @email: dflemin3 (at) uw (dot) edu #Typical plot parameters that make for pretty plots ## for Palatino and other serif fonts use: # CGS constants # mass of Sun in grams # radius of Sun incm # density of sun in g/cm^3 # Read in evolutionary tracks # Draw num samples # Number of samples # Draw mass samples with replacement in grams # Draw density samples in g/cm^3 by approximating constraint as wide gaussian # Compute radius via density equation: rho = M/V = M/(4/3 * pi * r^3) # -> (rho/m * (4/3) * pi)^(1/3) = r, but convert to Rsun # Visualize final distribution, compute statistics of interest # Plot histogram # Plot histogram of samples # Overplot med, +/- # Overplot Van Grootel et al. (2018) constraints # Save! # Done!
2.664402
3
test/test_room.py
DataDog/camplight
1
6630993
# -*- coding: utf-8 -*- import os import sys camplight_root = os.path.join(os.path.abspath(os.path.dirname(__file__)), '..') sys.path.insert(0, camplight_root) import pytest from httpretty import HTTPretty from camplight import Request, Campfire, Room, MessageType, Sound def campfire_url(path=''): return 'https://foo.campfirenow.com' + path def stub_get(path, *args, **kwargs): HTTPretty.register_uri(HTTPretty.GET, campfire_url(path), *args, **kwargs) def stub_post(path, *args, **kwargs): HTTPretty.register_uri(HTTPretty.POST, campfire_url(path), *args, **kwargs) def stub_put(path, *args, **kwargs): HTTPretty.register_uri(HTTPretty.PUT, campfire_url(path), *args, **kwargs) class TestRoom(object): def setup_class(self): HTTPretty.enable() self.request = Request(campfire_url(), 'some_token') self.campfire = Campfire(self.request) self.room_id = 27121983 self.room = Room(self.request, self.room_id) def teardown_class(self): HTTPretty.disable() def test_status(self): stub_get('/room/%s.json' % self.room_id, body=""" {"room": {"name": "Danger", "topic": "No serious discussion"}}""") room = self.room.status() assert room['name'] == 'Danger' assert room['topic'] == 'No serious discussion' def test_recent(self): stub_get('/room/%s/recent.json' % self.room_id, body=""" {"messages": [{"body": "Hello World", "type": "TextMessage"}]}""") messages = self.room.recent() assert len(messages) == 1 assert messages[0]['body'] == 'Hello World' assert messages[0]['type'] == MessageType.TEXT def test_transcript(self): stub_get('/room/%s/transcript.json' % self.room_id, body=""" {"messages": [{"body": "Hello World", "type": "TextMessage"}]}""") messages = self.room.transcript() assert len(messages) == 1 assert messages[0]['body'] == 'Hello World' assert messages[0]['type'] == MessageType.TEXT def test_transcript_by_date(self): date = '2013/08/12' stub_get('/room/%s/transcript/%s.json' % (self.room_id, date), body=""" {"messages": [{"body": "Hello World", "type": "TextMessage"}]}""") messages = self.room.transcript(date) assert len(messages) == 1 assert messages[0]['body'] == 'Hello World' assert messages[0]['type'] == MessageType.TEXT def test_uploads(self): stub_get('/room/%s/uploads.json' % self.room_id, body=""" {"uploads": [{"name": "file.png", "content_type": "image/png"}]}""") uploads = self.room.uploads() assert len(uploads) == 1 assert uploads[0]['name'] == 'file.png' assert uploads[0]['content_type'] == 'image/png' def test_join(self): stub_post('/room/%s/join.json' % self.room_id, body='') assert self.room.join() == None def test_leave(self): stub_post('/room/%s/leave.json' % self.room_id, body='') assert self.room.leave() == None def test_lock(self): stub_post('/room/%s/lock.json' % self.room_id, body='') assert self.room.lock() == None def test_unlock(self): stub_post('/room/%s/unlock.json' % self.room_id, body='') assert self.room.unlock() == None def test_speak(self): body = b'{"message": {"body": "Hello World"}}' stub_post('/room/%s/speak.json' % self.room_id, body=body) message = self.room.speak('Hello World') assert message['body'] == 'Hello World' assert hasattr(message, 'type') == False assert HTTPretty.last_request.body == body def test_paste(self): body = b'{"message": {"body": "Hello World", "type": "PasteMessage"}}' stub_post('/room/%s/speak.json' % self.room_id, body=body) message = self.room.paste('Hello World') assert message['body'] == 'Hello World' assert message['type'] == MessageType.PASTE assert HTTPretty.last_request.body == body def test_play(self): body = b'{"message": {"body": "yeah", "type": "SoundMessage"}}' stub_post('/room/%s/speak.json' % self.room_id, body=body) message = self.room.play(Sound.YEAH) assert message['body'] == Sound.YEAH assert message['type'] == MessageType.SOUND assert HTTPretty.last_request.body == body def test_set_name(self): stub_put('/room/%s.json' % self.room_id, body='') assert self.room.set_name('Danger') == None assert HTTPretty.last_request.body == b'{"room": {"name": "Danger"}}' def test_set_topic(self): stub_put('/room/%s.json' % self.room_id, body='') assert self.room.set_topic('No serious discussion') == None assert HTTPretty.last_request.body == \ b'{"room": {"topic": "No serious discussion"}}' if __name__ == '__main__': pytest.main(__file__)
# -*- coding: utf-8 -*- import os import sys camplight_root = os.path.join(os.path.abspath(os.path.dirname(__file__)), '..') sys.path.insert(0, camplight_root) import pytest from httpretty import HTTPretty from camplight import Request, Campfire, Room, MessageType, Sound def campfire_url(path=''): return 'https://foo.campfirenow.com' + path def stub_get(path, *args, **kwargs): HTTPretty.register_uri(HTTPretty.GET, campfire_url(path), *args, **kwargs) def stub_post(path, *args, **kwargs): HTTPretty.register_uri(HTTPretty.POST, campfire_url(path), *args, **kwargs) def stub_put(path, *args, **kwargs): HTTPretty.register_uri(HTTPretty.PUT, campfire_url(path), *args, **kwargs) class TestRoom(object): def setup_class(self): HTTPretty.enable() self.request = Request(campfire_url(), 'some_token') self.campfire = Campfire(self.request) self.room_id = 27121983 self.room = Room(self.request, self.room_id) def teardown_class(self): HTTPretty.disable() def test_status(self): stub_get('/room/%s.json' % self.room_id, body=""" {"room": {"name": "Danger", "topic": "No serious discussion"}}""") room = self.room.status() assert room['name'] == 'Danger' assert room['topic'] == 'No serious discussion' def test_recent(self): stub_get('/room/%s/recent.json' % self.room_id, body=""" {"messages": [{"body": "Hello World", "type": "TextMessage"}]}""") messages = self.room.recent() assert len(messages) == 1 assert messages[0]['body'] == 'Hello World' assert messages[0]['type'] == MessageType.TEXT def test_transcript(self): stub_get('/room/%s/transcript.json' % self.room_id, body=""" {"messages": [{"body": "Hello World", "type": "TextMessage"}]}""") messages = self.room.transcript() assert len(messages) == 1 assert messages[0]['body'] == 'Hello World' assert messages[0]['type'] == MessageType.TEXT def test_transcript_by_date(self): date = '2013/08/12' stub_get('/room/%s/transcript/%s.json' % (self.room_id, date), body=""" {"messages": [{"body": "Hello World", "type": "TextMessage"}]}""") messages = self.room.transcript(date) assert len(messages) == 1 assert messages[0]['body'] == 'Hello World' assert messages[0]['type'] == MessageType.TEXT def test_uploads(self): stub_get('/room/%s/uploads.json' % self.room_id, body=""" {"uploads": [{"name": "file.png", "content_type": "image/png"}]}""") uploads = self.room.uploads() assert len(uploads) == 1 assert uploads[0]['name'] == 'file.png' assert uploads[0]['content_type'] == 'image/png' def test_join(self): stub_post('/room/%s/join.json' % self.room_id, body='') assert self.room.join() == None def test_leave(self): stub_post('/room/%s/leave.json' % self.room_id, body='') assert self.room.leave() == None def test_lock(self): stub_post('/room/%s/lock.json' % self.room_id, body='') assert self.room.lock() == None def test_unlock(self): stub_post('/room/%s/unlock.json' % self.room_id, body='') assert self.room.unlock() == None def test_speak(self): body = b'{"message": {"body": "Hello World"}}' stub_post('/room/%s/speak.json' % self.room_id, body=body) message = self.room.speak('Hello World') assert message['body'] == 'Hello World' assert hasattr(message, 'type') == False assert HTTPretty.last_request.body == body def test_paste(self): body = b'{"message": {"body": "Hello World", "type": "PasteMessage"}}' stub_post('/room/%s/speak.json' % self.room_id, body=body) message = self.room.paste('Hello World') assert message['body'] == 'Hello World' assert message['type'] == MessageType.PASTE assert HTTPretty.last_request.body == body def test_play(self): body = b'{"message": {"body": "yeah", "type": "SoundMessage"}}' stub_post('/room/%s/speak.json' % self.room_id, body=body) message = self.room.play(Sound.YEAH) assert message['body'] == Sound.YEAH assert message['type'] == MessageType.SOUND assert HTTPretty.last_request.body == body def test_set_name(self): stub_put('/room/%s.json' % self.room_id, body='') assert self.room.set_name('Danger') == None assert HTTPretty.last_request.body == b'{"room": {"name": "Danger"}}' def test_set_topic(self): stub_put('/room/%s.json' % self.room_id, body='') assert self.room.set_topic('No serious discussion') == None assert HTTPretty.last_request.body == \ b'{"room": {"topic": "No serious discussion"}}' if __name__ == '__main__': pytest.main(__file__)
en
0.242787
# -*- coding: utf-8 -*- {"room": {"name": "Danger", "topic": "No serious discussion"}} {"messages": [{"body": "Hello World", "type": "TextMessage"}]} {"messages": [{"body": "Hello World", "type": "TextMessage"}]} {"messages": [{"body": "Hello World", "type": "TextMessage"}]} {"uploads": [{"name": "file.png", "content_type": "image/png"}]}
2.173993
2
project_template/urls/api.py
armstrong/armstrong.templates.tutorial
0
6630994
""" Contains URL patterns for a basic API using `Tastypie`_. .. _tastypie: https://github.com/toastdriven/django-tastypie """ from django.conf.urls.defaults import patterns, include, url from apis.api import v1_api urlpatterns = patterns('', url(r'^api/', include(v1_api.urls)), )
""" Contains URL patterns for a basic API using `Tastypie`_. .. _tastypie: https://github.com/toastdriven/django-tastypie """ from django.conf.urls.defaults import patterns, include, url from apis.api import v1_api urlpatterns = patterns('', url(r'^api/', include(v1_api.urls)), )
en
0.369242
Contains URL patterns for a basic API using `Tastypie`_. .. _tastypie: https://github.com/toastdriven/django-tastypie
1.793145
2
src/python/director/visualization.py
edrumwri/director
0
6630995
import director.objectmodel as om import director.applogic as app from .shallowCopy import shallowCopy import director.vtkAll as vtk from director import filterUtils from director import transformUtils from director import callbacks from director import frameupdater from director.fieldcontainer import FieldContainer from PythonQt import QtCore, QtGui import PythonQt import numpy as np import os import colorsys import weakref import itertools class PolyDataItem(om.ObjectModelItem): defaultScalarRangeMap = { # 'intensity' : (400, 4000), 'spindle_angle' : (0, 360), 'azimuth' : (-2.5, 2.5), 'scan_delta' : (0.0, 0.3), 'point distance to plane' : (-0.2, 0.2), 'normal angle to plane' : (0.0, 10.0), } def __init__(self, name, polyData, view): om.ObjectModelItem.__init__(self, name, om.Icons.Robot) self.views = [] self.polyData = polyData self.mapper = vtk.vtkPolyDataMapper() self.mapper.SetInputData(self.polyData) self.actor = vtk.vtkActor() self.actor.SetMapper(self.mapper) self.shadowActor = None self.scalarBarWidget = None self.extraViewRenderers = {} self.rangeMap = dict(PolyDataItem.defaultScalarRangeMap) self.addProperty('Color By', 0, attributes=om.PropertyAttributes(enumNames=['Solid Color'])) self.addProperty('Visible', True) self.addProperty('Alpha', 1.0, attributes=om.PropertyAttributes(decimals=2, minimum=0, maximum=1.0, singleStep=0.1, hidden=False)) self.addProperty('Point Size', self.actor.GetProperty().GetPointSize(), attributes=om.PropertyAttributes(decimals=0, minimum=1, maximum=20, singleStep=1, hidden=False)) self.addProperty('Line Width', self.actor.GetProperty().GetLineWidth(), attributes=om.PropertyAttributes(decimals=0, minimum=1, maximum=20, singleStep=1, hidden=False)) self.addProperty('Surface Mode', 0, attributes=om.PropertyAttributes(enumNames=['Surface', 'Wireframe', 'Surface with edges', 'Points'], hidden=True)) self.addProperty('Color', [1.0, 1.0, 1.0]) self.addProperty('Show Scalar Bar', False) self._updateSurfaceProperty() self._updateColorByProperty() if view is not None: self.addToView(view) def _renderAllViews(self): for view in self.views: view.render() def hasDataSet(self, dataSet): return dataSet == self.polyData def hasActor(self, actor): return actor == self.actor def setPolyData(self, polyData): self.polyData = polyData self.mapper.SetInputData(polyData) self._updateSurfaceProperty() self._updateColorByProperty() self._updateColorBy(retainColorMap=True) if self.getProperty('Visible'): self._renderAllViews() def setRangeMap(self, key, value): self.rangeMap[key] = value def getArrayNames(self): pointData = self.polyData.GetPointData() return [pointData.GetArrayName(i) for i in range(pointData.GetNumberOfArrays())] def setSolidColor(self, color): self.setProperty('Color', [float(c) for c in color]) self.colorBy(None) def _isPointCloud(self): return self.polyData.GetNumberOfPoints() and (self.polyData.GetNumberOfCells() == self.polyData.GetNumberOfVerts()) def colorBy(self, arrayName, scalarRange=None, lut=None): if not arrayName: self.mapper.ScalarVisibilityOff() self.polyData.GetPointData().SetActiveScalars(None) return array = self.polyData.GetPointData().GetArray(arrayName) if not array: print('colorBy(%s): array not found' % arrayName) self.mapper.ScalarVisibilityOff() self.polyData.GetPointData().SetActiveScalars(None) return self.polyData.GetPointData().SetActiveScalars(arrayName) if not lut: lut = self._getDefaultColorMap(array, scalarRange) #self.mapper.SetColorModeToMapScalars() self.mapper.ScalarVisibilityOn() self.mapper.SetUseLookupTableScalarRange(True) self.mapper.SetLookupTable(lut) self.mapper.SetInterpolateScalarsBeforeMapping(not self._isPointCloud()) if self.getProperty('Visible'): self._renderAllViews() def getChildFrame(self): frameName = self.getProperty('Name') + ' frame' return self.findChild(frameName) def addToView(self, view): if view in self.views: return self.views.append(view) view.renderer().AddActor(self.actor) if self.shadowActor: view.renderer().AddActor(self.shadowActor) view.render() def _onPropertyChanged(self, propertySet, propertyName): om.ObjectModelItem._onPropertyChanged(self, propertySet, propertyName) if propertyName == 'Point Size': self.actor.GetProperty().SetPointSize(self.getProperty(propertyName)) elif propertyName == 'Line Width': self.actor.GetProperty().SetLineWidth(self.getProperty(propertyName)) elif propertyName == 'Alpha': self.actor.GetProperty().SetOpacity(self.getProperty(propertyName)) if self.shadowActor: self.shadowActor.GetProperty().SetOpacity(self.getProperty(propertyName)) elif propertyName == 'Visible': self.actor.SetVisibility(self.getProperty(propertyName)) if self.shadowActor: self.shadowActor.SetVisibility(self.getProperty(propertyName)) elif propertyName == 'Surface Mode': mode = self.properties.getPropertyEnumValue(propertyName) prop = self.actor.GetProperty() if mode == 'Surface': prop.SetRepresentationToSurface() prop.EdgeVisibilityOff() if mode == 'Wireframe': prop.SetRepresentationToWireframe() elif mode == 'Surface with edges': prop.SetRepresentationToSurface() prop.EdgeVisibilityOn() elif mode == 'Points': prop.SetRepresentationToPoints() elif propertyName == 'Color': color = self.getProperty(propertyName) self.actor.GetProperty().SetColor(color) elif propertyName == 'Color By': self._updateColorBy() elif propertyName == 'Show Scalar Bar': self._updateScalarBar() self._renderAllViews() def setScalarRange(self, rangeMin, rangeMax): arrayName = self.getPropertyEnumValue('Color By') if arrayName != 'Solid Color': lut = self.mapper.GetLookupTable() self.colorBy(arrayName, scalarRange=(rangeMin, rangeMax)) def _updateSurfaceProperty(self): hasPolys = self.polyData.GetNumberOfPolys() or self.polyData.GetNumberOfStrips() hasLines = self.polyData.GetNumberOfLines() enableSurfaceMode = hasPolys or hasLines self.properties.setPropertyAttribute('Surface Mode', 'hidden', not enableSurfaceMode) enableLineWidth = enableSurfaceMode self.properties.setPropertyAttribute('Line Width', 'hidden', not enableLineWidth) enablePointSize = True self.properties.setPropertyAttribute('Point Size', 'hidden', not enablePointSize) def _updateColorBy(self, retainColorMap=False): arrayName = self.getPropertyEnumValue('Color By') if arrayName == 'Solid Color': self.colorBy(None) else: lut = self.mapper.GetLookupTable() if retainColorMap else None self.colorBy(arrayName, lut=lut) self._updateScalarBar() def _updateColorByProperty(self): enumNames = ['Solid Color'] + self.getArrayNames() currentValue = self.properties.getProperty('Color By') if currentValue >= len(enumNames): self.setProperty('Color By', 0) self.properties.setPropertyAttribute('Color By', 'enumNames', enumNames) def _updateScalarBar(self): barEnabled = self.getProperty('Show Scalar Bar') colorBy = self.getProperty('Color By') if barEnabled and colorBy != 0: self._showScalarBar() else: self._hideScalarBar() def _hideScalarBar(self): if self.scalarBarWidget: self.scalarBarWidget.Off() self.scalarBarWidget.SetInteractor(None) self.scalarBarWidget = None self._renderAllViews() def _showScalarBar(self): title = self.properties.getPropertyEnumValue('Color By') view = self.views[0] lut = self.mapper.GetLookupTable() self.scalarBarWidget = createScalarBarWidget(view, lut, title) self._renderAllViews() def _setScalarBarTextColor(self, color=(0,0,0)): act = self.scalarBarWidget.GetScalarBarActor() act.GetTitleTextProperty().SetColor(color) act.GetLabelTextProperty().SetColor(color) def _setScalarBarTitle(self, titleText): act = self.scalarBarWidget.GetScalarBarActor() act.SetTitle(titleText) def getCoolToWarmColorMap(self, scalarRange): f = vtk.vtkDiscretizableColorTransferFunction() f.DiscretizeOn() f.SetColorSpaceToDiverging() f.SetNumberOfValues(256) f.AddRGBPoint(scalarRange[0], 0.23, 0.299, 0.754) f.AddRGBPoint(scalarRange[1], 0.706, 0.016, 0.15) f.Build() return f def _getDefaultColorMap(self, array, scalarRange=None, hueRange=None): name = array.GetName() blueToRed = (0.667, 0) redtoBlue = (0, 0.667) hueMap = { 'Axes' : redtoBlue } scalarRange = scalarRange or self.rangeMap.get(name, array.GetRange()) hueRange = hueRange or hueMap.get(name, blueToRed) lut = vtk.vtkLookupTable() lut.SetNumberOfColors(256) lut.SetHueRange(hueRange) lut.SetRange(scalarRange) lut.Build() return lut #return self.getCoolToWarmColorMap(scalarRange) def shadowOn(self): if self.shadowActor: return mat = [[1, 0, -1, 0], [0, 1, -1, 0], [0, 0, 0, 0], [0, 0, 0, 1]] shadowT = transformUtils.getTransformFromNumpy(mat) baseTransform = self.actor.GetUserTransform() if baseTransform: shadowT.PreMultiply() shadowT.Concatenate(baseTransform) self.shadowActor = vtk.vtkActor() self.shadowActor.SetMapper(self.mapper) self.shadowActor.SetUserTransform(shadowT) self.shadowActor.GetProperty().LightingOff() self.shadowActor.GetProperty().SetColor(0, 0, 0) for view in self.views: view.renderer().AddActor(self.shadowActor) def shadowOff(self): for view in self.views: view.renderer().RemoveActor(self.shadowActor) self.shadowActor = None def onRemoveFromObjectModel(self): om.ObjectModelItem.onRemoveFromObjectModel(self) self.removeFromAllViews() def removeFromAllViews(self): for view in list(self.views): self.removeFromView(view) assert len(self.views) == 0 self._hideScalarBar() def removeFromView(self, view): assert view in self.views self.views.remove(view) view.renderer().RemoveActor(self.actor) if self.shadowActor: view.renderer().RemoveActor(self.shadowActor) for renderer in self.extraViewRenderers.get(view, []): renderer.RemoveActor(self.actor) view.render() class Image2DItem(om.ObjectModelItem): def __init__(self, name, image, view): om.ObjectModelItem.__init__(self, name, om.Icons.Robot) self.views = [] self.image = image defaultWidth = 300 self.actor = vtk.vtkLogoRepresentation() self.actor.SetImage(image) self.actor.GetImageProperty().SetOpacity(1.0) actors = vtk.vtkPropCollection() self.actor.GetActors2D(actors) self.texture = actors.GetItemAsObject(0).GetTexture() self.addProperty('Visible', True) self.addProperty('Anchor', 1, attributes=om.PropertyAttributes(enumNames=['Top Left', 'Top Right', 'Bottom Left', 'Bottom Right'])) self.addProperty('Width', defaultWidth, attributes=om.PropertyAttributes(minimum=0, maximum=9999, singleStep=50)) self.addProperty('Alpha', 1.0, attributes=om.PropertyAttributes(decimals=2, minimum=0, maximum=1.0, singleStep=0.1)) #defaultHeight = self._getHeightForWidth(defaultWidth) #self.addProperty('Height', defaultHeight, # attributes=om.PropertyAttributes(minimum=0, maximum=9999, singleStep=10)) if view is not None: self.addToView(view) def _renderAllViews(self): for view in self.views: view.render() def hasDataSet(self, dataSet): return dataSet == self.image def hasActor(self, actor): return actor == self.actor def setImage(self, image): self.image = image self.actor.SetImage(image) # also set the image on the texture, otherwise # the texture input won't update until the next # render where this actor is visible self.texture.SetInputData(image) if self.getProperty('Visible'): self._renderAllViews() def addToView(self, view): if view in self.views: return self.views.append(view) self._updatePositionCoordinates(view) view.renderer().AddActor(self.actor) view.render() def _getHeightForWidth(self, image, width): w, h, _ = image.GetDimensions() aspect = w/float(h) return int(np.round(width / aspect)) def _updatePositionCoordinates(self, view): width = self.getProperty('Width') height = self._getHeightForWidth(self.image, width) pc0 = vtk.vtkCoordinate() pc1 = self.actor.GetPositionCoordinate() pc2 = self.actor.GetPosition2Coordinate() for pc in [pc0, pc1, pc2]: pc.SetViewport(view.renderer()) pc0.SetReferenceCoordinate(None) pc0.SetCoordinateSystemToNormalizedDisplay() pc1.SetReferenceCoordinate(pc0) pc1.SetCoordinateSystemToDisplay() anchor = self.getPropertyEnumValue('Anchor') if anchor == 'Top Left': pc0.SetValue(0.0, 1.0) pc1.SetValue(0.0, -height) elif anchor == 'Top Right': pc0.SetValue(1.0, 1.0) pc1.SetValue(-width, -height) elif anchor == 'Bottom Left': pc0.SetValue(0.0, 0.0) pc1.SetValue(0.0, 0.0) elif anchor == 'Bottom Right': pc0.SetValue(1.0, 0.0) pc1.SetValue(-width, 0.0) pc2.SetCoordinateSystemToDisplay() pc2.SetReferenceCoordinate(pc1) pc2.SetValue(width, height) def _onPropertyChanged(self, propertySet, propertyName): om.ObjectModelItem._onPropertyChanged(self, propertySet, propertyName) if propertyName == 'Alpha': self.actor.GetImageProperty().SetOpacity(self.getProperty(propertyName)) elif propertyName == 'Visible': self.actor.SetVisibility(self.getProperty(propertyName)) elif propertyName in ('Width', 'Height', 'Anchor'): if self.views: self._updatePositionCoordinates(self.views[0]) self._renderAllViews() def onRemoveFromObjectModel(self): om.ObjectModelItem.onRemoveFromObjectModel(self) self.removeFromAllViews() def removeFromAllViews(self): for view in list(self.views): self.removeFromView(view) assert len(self.views) == 0 def removeFromView(self, view): assert view in self.views self.views.remove(view) view.renderer().RemoveActor(self.actor) view.render() class TextItem(om.ObjectModelItem): def __init__(self, name, text='', view=None): om.ObjectModelItem.__init__(self, name) self.views = [] self.actor = vtk.vtkTextActor() prop = self.actor.GetTextProperty() prop.SetFontSize(18) self.actor.SetPosition(10,10) self.actor.SetInput(text) self.addProperty('Visible', True) self.addProperty('Text', text) self.addProperty('Position', [10, 10], attributes=om.PropertyAttributes(minimum=0, maximum=3000, singleStep=1)) self.addProperty('Font Size', 18, attributes=om.PropertyAttributes(minimum=6, maximum=128, singleStep=1)) self.addProperty('Bold', False) self.addProperty('Italic', False) if view: self.addToView(view) def addToView(self, view): if view in self.views: return self.views.append(view) view.renderer().AddActor(self.actor) view.render() def _renderAllViews(self): for view in self.views: view.render() def onRemoveFromObjectModel(self): om.ObjectModelItem.onRemoveFromObjectModel(self) self.removeFromAllViews() def removeFromAllViews(self): for view in list(self.views): self.removeFromView(view) def removeFromView(self, view): assert view in self.views self.views.remove(view) view.renderer().RemoveActor(self.actor) view.render() def _onPropertyChanged(self, propertySet, propertyName): om.ObjectModelItem._onPropertyChanged(self, propertySet, propertyName) if propertyName == 'Visible': self.actor.SetVisibility(self.getProperty(propertyName)) self._renderAllViews() elif propertyName == 'Text': view = app.getCurrentRenderView() self.actor.SetInput(self.getProperty(propertyName)) elif propertyName == 'Position': pos = self.getProperty(propertyName) self.actor.SetPosition(pos[0], pos[1]) elif propertyName == 'Font Size': self.actor.GetTextProperty().SetFontSize(self.getProperty(propertyName)) elif propertyName == 'Bold Size': self.actor.GetTextProperty().SetBold(self.getProperty(propertyName)) elif propertyName == 'Italic': self.actor.GetTextProperty().SetItalic(self.getProperty(propertyName)) if self.getProperty('Visible'): self._renderAllViews() def updateText(text, name, **kwargs): obj = om.findObjectByName(name, parent=getParentObj(kwargs.get('parent'))) if obj is None: obj or showText(text, name, **kwargs) else: obj.setProperty('Text', text) return obj def showText(text, name, fontSize=18, position=(10, 10), parent=None, view=None): view = view or app.getCurrentRenderView() assert view item = TextItem(name, text, view=view) item.setProperty('Font Size', fontSize) item.setProperty('Position', list(position)) om.addToObjectModel(item, getParentObj(parent)) return item def updateImage(image, name, **kwargs): obj = om.findObjectByName(name, parent=getParentObj(kwargs.get('parent'))) if obj is None: obj = showImage(image, name, **kwargs) else: obj.setImage(image) return obj def showImage(image, name, anchor='Top Left', parent=None, view=None): view = view or app.getCurrentRenderView() assert view item = Image2DItem(name, image, view=view) item.setProperty('Anchor', anchor) om.addToObjectModel(item, getParentObj(parent)) return item def createAxesPolyData(scale, useTube, tubeWidth=0.002): axes = vtk.vtkAxes() axes.SetComputeNormals(0) axes.SetScaleFactor(scale) axes.Update() if useTube: tube = vtk.vtkTubeFilter() tube.SetInputConnection(axes.GetOutputPort()) tube.SetRadius(tubeWidth) tube.SetNumberOfSides(12) tube.Update() axes = tube return shallowCopy(axes.GetOutput()) class FrameItem(PolyDataItem): def __init__(self, name, transform, view): PolyDataItem.__init__(self, name, vtk.vtkPolyData(), view) self.transform = transform self._blockSignals = False self.actor.SetUserTransform(transform) self.widget = vtk.vtkFrameWidget() self.widget.CreateDefaultRepresentation() self.widget.EnabledOff() self.rep = self.widget.GetRepresentation() self.rep.SetTransform(transform) self.traceData = None self._frameSync = None self.addProperty('Scale', 1.0, attributes=om.PropertyAttributes(decimals=2, minimum=0.01, maximum=100, singleStep=0.1, hidden=False)) self.addProperty('Edit', False) self.addProperty('Trace', False) self.addProperty('Tube', False) self.addProperty('Tube Width', 0.002, attributes=om.PropertyAttributes(decimals=3, minimum=0.001, maximum=10, singleStep=0.01, hidden=True)) self.properties.setPropertyIndex('Edit', 0) self.properties.setPropertyIndex('Trace', 1) self.properties.setPropertyIndex('Tube', 2) self.callbacks.addSignal('FrameModified') self.onTransformModifiedCallback = None self.observerTag = self.transform.AddObserver('ModifiedEvent', self.onTransformModified) self._updateAxesGeometry() self.setProperty('Color By', 'Axes') self.setProperty('Icon', om.Icons.Axes) def connectFrameModified(self, func): return self.callbacks.connect('FrameModified', func) def disconnectFrameModified(self, callbackId): self.callbacks.disconnect(callbackId) def onTransformModified(self, transform, event): if not self._blockSignals: if self.onTransformModifiedCallback: self.onTransformModifiedCallback(self) self.callbacks.process('FrameModified', self) def addToView(self, view): PolyDataItem.addToView(self, view) def hasDataSet(self, dataSet): return dataSet == self.transform def hasActor(self, actor): return actor == self.widget.GetRepresentation() or PolyDataItem.hasActor(self, actor) def copyFrame(self, transform): self._blockSignals = True self.transform.SetMatrix(transform.GetMatrix()) self._blockSignals = False self.transform.Modified() parent = self.parent() if (parent and parent.getProperty('Visible')) or self.getProperty('Visible'): self._renderAllViews() def getFrameSync(self): if self._frameSync is None: self._frameSync = FrameSync() self._frameSync.addFrame(self) return self._frameSync def _updateAxesGeometry(self): scale = self.getProperty('Scale') self.rep.SetWorldSize(scale) self.setPolyData(createAxesPolyData(scale, self.getProperty('Tube'), self.getProperty('Tube Width'))) def _onPropertyChanged(self, propertySet, propertyName): PolyDataItem._onPropertyChanged(self, propertySet, propertyName) if propertyName == 'Scale': scale = self.getProperty(propertyName) self.rep.SetWorldSize(scale) self._updateAxesGeometry() elif propertyName == 'Edit': view = app.getCurrentRenderView() if view not in self.views: view = self.views[0] self.widget.SetInteractor(view.renderWindow().GetInteractor()) self.widget.SetEnabled(self.getProperty(propertyName)) isEditing = self.getProperty(propertyName) if isEditing: frameupdater.registerFrame(self) elif propertyName == 'Trace': trace = self.getProperty(propertyName) if trace and not self.traceData: self.traceData = FrameTraceVisualizer(self) elif not trace and self.traceData: om.removeFromObjectModel(self.traceData.getTraceData()) self.traceData = None elif propertyName == 'Tube': self.properties.setPropertyAttribute('Tube Width', 'hidden', not self.getProperty(propertyName)) self._updateAxesGeometry() def onRemoveFromObjectModel(self): PolyDataItem.onRemoveFromObjectModel(self) self.transform.RemoveObserver(self.observerTag) self.widget.SetInteractor(None) self.widget.EnabledOff() for view in self.views: view.renderer().RemoveActor(self.actor) view.render() class FrameTraceVisualizer(object): def __init__(self, frame): self.frame = frame self.traceName = '%s trace' % frame.getProperty('Name') self.lastPosition = np.array(frame.transform.GetPosition()) frame.connectFrameModified(self.onFrameModified) def getTraceData(self): t = self.frame.findChild(self.traceName) if not t: pts = vtk.vtkPoints() pts.SetDataTypeToDouble() pts.InsertNextPoint(self.lastPosition) pd = vtk.vtkPolyData() pd.Allocate(1, 1) pd.SetPoints(pts) polyline = vtk.vtkPolyLine() pd.InsertNextCell(polyline.GetCellType(), polyline.GetPointIds()) idArray = pd.GetLines().GetData() idArray.InsertNextValue(0) t = showPolyData(pd, self.traceName, parent=self.frame) return t def addPoint(self, point): traceData = self.getTraceData() pd = traceData.polyData pd.GetPoints().InsertNextPoint(point) numberOfPoints = pd.GetNumberOfPoints() idArray = pd.GetLines().GetData() idArray.InsertNextValue(numberOfPoints-1) idArray.SetValue(0, numberOfPoints) pd.GetPoints().Modified() traceData._renderAllViews() def onFrameModified(self, frame): position = np.array(frame.transform.GetPosition()) if not np.allclose(position, self.lastPosition): self.lastPosition = position self.addPoint(position) class FrameSync(object): class FrameData(object): def __init__(self, **kwargs): self.__dict__.update(kwargs) def __init__(self): self.frames = {} self._blockCallbacks = False self._ids = itertools.count() def addFrame(self, frame, ignoreIncoming=False): if frame is None: return if self._findFrameId(frame) is not None: return frameId = next(self._ids) callbackId = frame.connectFrameModified(self._onFrameModified) self.frames[frameId] = FrameSync.FrameData( ref=weakref.ref(frame), baseTransform=self._computeBaseTransform(frame), callbackId=callbackId, ignoreIncoming=ignoreIncoming) def removeFrame(self, frame): frameId = self._findFrameId(frame) if frameId is None: raise KeyError(frame) frame.disconnectFrameModified(self.frames[frameId].callbackId) self._removeFrameId(frameId) def _computeBaseTransform(self, frame): currentDelta = None for frameId, frameData in list(self.frames.items()): if frameData.ref() is None: self._removeFrameId(frameId) elif frameData.ref() is frame: continue else: currentDelta = transformUtils.copyFrame(frameData.baseTransform.GetLinearInverse()) currentDelta.Concatenate(transformUtils.copyFrame(frameData.ref().transform)) break t = transformUtils.copyFrame(frame.transform) t.PostMultiply() if currentDelta: t.Concatenate(currentDelta.GetLinearInverse()) return t def _removeFrameId(self, frameId): del self.frames[frameId] def _findFrameId(self, frame): for frameId, frameData in list(self.frames.items()): if frameData.ref() is None: self._removeFrameId(frameId) elif frameData.ref() is frame: return frameId def _moveFrame(self, frameId, modifiedFrameId): frameData = self.frames[frameId] modifiedFrameData = self.frames[modifiedFrameId] t = vtk.vtkTransform() t.PostMultiply() t.Concatenate(frameData.baseTransform) t.Concatenate(modifiedFrameData.baseTransform.GetLinearInverse()) t.Concatenate(modifiedFrameData.ref().transform) frameData.ref().copyFrame(t) def _onFrameModified(self, frame): if self._blockCallbacks: return modifiedFrameId = self._findFrameId(frame) assert modifiedFrameId is not None #print self, 'onFrameModified:', self.frames[modifiedFrameId].ref().getProperty('Name') if self.frames[modifiedFrameId].ignoreIncoming: self.frames[modifiedFrameId].baseTransform = self._computeBaseTransform(frame) return self._blockCallbacks = True for frameId, frameData in list(self.frames.items()): if frameData.ref() is None: self._removeFrameId(frameId) elif frameId != modifiedFrameId: #print ' ', self, 'moving:', self.frames[frameId].ref().getProperty('Name') self._moveFrame(frameId, modifiedFrameId) self._blockCallbacks = False def setCameraToParallelProjection(camera): viewAngle = np.radians(camera.GetViewAngle()) viewDistance = np.linalg.norm(np.array(camera.GetFocalPoint()) - np.array(camera.GetPosition())) desiredParallelScale = np.tan(viewAngle * 0.5) * viewDistance camera.SetParallelScale(desiredParallelScale) camera.ParallelProjectionOn() def setCameraToPerspectiveProjection(camera): parallelScale = camera.GetParallelScale() viewAngle = np.radians(camera.GetViewAngle()) desiredViewDistance = parallelScale / np.tan(viewAngle * 0.5) focalPoint = np.array(camera.GetFocalPoint()) desiredCameraPosition = focalPoint + desiredViewDistance * np.array(camera.GetViewPlaneNormal()) camera.SetPosition(desiredCameraPosition) camera.ParallelProjectionOff() class ViewOptionsItem(om.ObjectModelItem): def __init__(self, view): om.ObjectModelItem.__init__(self, 'view options') self.view = view self.addProperty('Camera projection', 0, attributes=om.PropertyAttributes(enumNames=['Perspective', 'Parallel'])) self.addProperty('View angle', view.camera().GetViewAngle(), attributes=om.PropertyAttributes(minimum=2, maximum=180)) self.addProperty('Key light intensity', view.lightKit().GetKeyLightIntensity(), attributes=om.PropertyAttributes(minimum=0, maximum=5, singleStep=0.1, decimals=2)) self.addProperty('Light kit', True) self.addProperty('Eye dome lighting', False) self.addProperty('Orientation widget', True) self.addProperty('Interactive render', True) self.addProperty('Gradient background', True) self.addProperty('Background color', view.backgroundRenderer().GetBackground()) self.addProperty('Background color 2', view.backgroundRenderer().GetBackground2()) def _onPropertyChanged(self, propertySet, propertyName): om.ObjectModelItem._onPropertyChanged(self, propertySet, propertyName) if propertyName in ('Gradient background', 'Background color', 'Background color 2'): colors = [self.getProperty('Background color'), self.getProperty('Background color 2')] if not self.getProperty('Gradient background'): colors[1] = colors[0] self.view.renderer().SetBackground(colors[0]) self.view.renderer().SetBackground2(colors[1]) elif propertyName == 'Camera projection': if self.getPropertyEnumValue(propertyName) == 'Perspective': setCameraToPerspectiveProjection(self.view.camera()) else: setCameraToParallelProjection(self.view.camera()) elif propertyName == 'Orientation widget': if self.getProperty(propertyName): self.view.orientationMarkerWidget().On() else: self.view.orientationMarkerWidget().Off() elif propertyName == 'View angle': angle = self.getProperty(propertyName) self.view.camera().SetViewAngle(angle) elif propertyName == 'Key light intensity': intensity = self.getProperty(propertyName) self.view.lightKit().SetKeyLightIntensity(intensity) elif propertyName == 'Light kit': self.view.setLightKitEnabled(self.getProperty(propertyName)) elif propertyName == 'Eye dome lighting': if self.getProperty(propertyName): enableEyeDomeLighting(self.view) else: disableEyeDomeLighting(self.view) elif propertyName == 'Interactive render': if self.getProperty(propertyName): self.view.renderWindow().GetInteractor().EnableRenderOn() else: self.view.renderWindow().GetInteractor().EnableRenderOff() self.view.render() def getVisibleActors(view): actors = view.renderer().GetActors() return [actors.GetItemAsObject(i) for i in range(actors.GetNumberOfItems()) if actors.GetItemAsObject(i).GetVisibility()] def computeViewBoundsNoGrid(view, gridObj): gridObj.actor.SetUseBounds(False) bounds = view.renderer().ComputeVisiblePropBounds() gridObj.actor.SetUseBounds(True) return bounds def computeViewBoundsSoloGrid(view, gridObj): actors = getVisibleActors(view) onlyGridShowing = (len(actors) == 1) and (actors[0] == gridObj.actor) if onlyGridShowing: gridObj.actor.SetUseBounds(True) return view.renderer().ComputeVisiblePropBounds() else: return computeViewBoundsNoGrid(view, gridObj) class GridItem(PolyDataItem): def __init__(self, name, view=None): PolyDataItem.__init__(self, name, polyData=vtk.vtkPolyData(), view=view) self.actor.PickableOff() self.actor.GetProperty().LightingOff() self.textActors = [] self.addProperty('Grid Half Width', 100.0, attributes=om.PropertyAttributes(minimum=0.01, maximum=1e6, singleStep=10, decimals=2)) self.addProperty('Major Tick Resolution', 10, attributes=om.PropertyAttributes(minimum=1, maximum=100, singleStep=1)) self.addProperty('Minor Tick Resolution', 2, attributes=om.PropertyAttributes(minimum=1, maximum=100, singleStep=1)) self.addProperty('Major Tick Rings', True) self.addProperty('Minor Tick Rings', False) self.addProperty('Show Text', True) self.addProperty('Text Angle', 0, attributes=om.PropertyAttributes(minimum=-999, maximum=999, singleStep=5)) self.addProperty('Text Size', 10, attributes=om.PropertyAttributes(minimum=4, maximum=100, singleStep=1)) self.addProperty('Text Color', [1.0, 1.0, 1.0]) self.addProperty('Text Alpha', 1.0, attributes=om.PropertyAttributes(decimals=2, minimum=0, maximum=1.0, singleStep=0.1)) self._updateGrid() self.setProperty('Surface Mode', 'Wireframe') def _onPropertyChanged(self, propertySet, propertyName): PolyDataItem._onPropertyChanged(self, propertySet, propertyName) if propertyName in ('Grid Half Width', 'Major Tick Resolution', 'Minor Tick Resolution', 'Major Tick Rings', 'Minor Tick Rings'): self._updateGrid() if propertyName in ('Visible', 'Show Text', 'Text Color', 'Text Alpha', 'Text Size', 'Text Angle'): self._updateTextActorProperties() def _updateGrid(self): gridHalfWidth = self.getProperty('Grid Half Width') majorTickSize = gridHalfWidth / self.getProperty('Major Tick Resolution') minorTickSize = majorTickSize / self.getProperty('Minor Tick Resolution') majorTickRings = self.getProperty('Major Tick Rings') minorTickRings = self.getProperty('Minor Tick Rings') polyData = makeGridPolyData(gridHalfWidth, majorTickSize, minorTickSize, majorTickRings, minorTickRings) self.setPolyData(polyData) self._buildTextActors() def _updateTextActorProperties(self): self._repositionTextActors() visible = self.getProperty('Visible') and self.getProperty('Show Text') textAlpha = self.getProperty('Text Alpha') color = self.getProperty('Text Color') textSize = self.getProperty('Text Size') for actor in self.textActors: prop = actor.GetTextProperty() actor.SetVisibility(visible) prop.SetColor(color) prop.SetFontSize(textSize) prop.SetOpacity(textAlpha) def addToView(self, view): if view in self.views: return PolyDataItem.addToView(self, view) self._addTextActorsToView(view) def _addTextActorsToView(self, view): for actor in self.textActors: view.renderer().AddActor(actor) def _removeTextActorsFromView(self, view): for actor in self.textActors: view.renderer().RemoveActor(actor) def _clearTextActors(self): for view in self.views: self._removeTextActorsFromView(view) self.textActors = [] def _repositionTextActors(self): if not self.textActors: return angle = np.radians(self.getProperty('Text Angle')) sinAngle = np.sin(angle) cosAngle = np.cos(angle) gridHalfWidth = self.getProperty('Grid Half Width') majorTickSize = gridHalfWidth / self.getProperty('Major Tick Resolution') transform = self.actor.GetUserTransform() or vtk.vtkTransform() for i, actor in enumerate(self.textActors): distance = i * majorTickSize actor = self.textActors[i] prop = actor.GetTextProperty() coord = actor.GetPositionCoordinate() coord.SetCoordinateSystemToWorld() p = transform.TransformPoint((distance*cosAngle, distance*sinAngle, 0.0)) coord.SetValue(p) def _buildTextActors(self): self._clearTextActors() gridHalfWidth = self.getProperty('Grid Half Width') majorTickSize = gridHalfWidth / self.getProperty('Major Tick Resolution') suffix = 'm' for i in range(int(gridHalfWidth / majorTickSize)): ringDistance = i * majorTickSize actor = vtk.vtkTextActor() prop = actor.GetTextProperty() actor.SetInput('{:.3f}'.format(ringDistance).rstrip('0').rstrip('.') + suffix) actor.SetPickable(False) self.textActors.append(actor) self._updateTextActorProperties() for view in self.views: self._addTextActorsToView(view) def showGrid(view, cellSize=0.5, numberOfCells=25, name='grid', parent='scene', color=[1,1,1], alpha=0.05, gridTransform=None, viewBoundsFunction=None): gridObj = GridItem(name) gridHalfWidth = cellSize * numberOfCells gridObj.setProperty('Grid Half Width', gridHalfWidth) gridObj.setProperty('Major Tick Resolution', numberOfCells) gridObj.setProperty('Minor Tick Resolution', 1) gridObj.setProperty('Show Text', False) gridObj.setProperty('Major Tick Rings', False) gridObj.setProperty('Minor Tick Rings', False) gridObj.setProperty('Alpha', alpha) gridObj.setProperty('Text Alpha', 0.5) gridObj.addToView(view) om.addToObjectModel(gridObj, getParentObj(parent)) gridFrame = addChildFrame(gridObj) gridFrame.connectFrameModified(lambda x: gridObj._repositionTextActors()) gridFrame.setProperty('Scale', 1.0) gridObj.viewBoundsFunction = viewBoundsFunction or computeViewBoundsNoGrid gridObj.emptyBoundsSize = 1.0 def onViewBoundsRequest(): if view not in gridObj.views or not gridObj.getProperty('Visible'): return bounds = gridObj.viewBoundsFunction(view, gridObj) if vtk.vtkMath.AreBoundsInitialized(bounds): view.addCustomBounds(bounds) else: view.addCustomBounds(np.array([-1, 1, -1, 1, -1, 1]) * gridObj.emptyBoundsSize) view.connect('computeBoundsRequest(ddQVTKWidgetView*)', onViewBoundsRequest) return gridObj def makeGridPolyData(gridHalfWidth=100, majorTickSize=10.0, minorTickSize=1.0, majorGridRings=True, minorGridRings=False): majorGrid = vtk.vtkGridSource() majorGrid.SetSurfaceEnabled(True) majorGrid.SetArcsEnabled(majorGridRings) majorGrid.SetGridSize(int(gridHalfWidth/majorTickSize)) majorGrid.SetScale(majorTickSize) majorGrid.Update() if minorTickSize != majorTickSize: minorGrid = vtk.vtkGridSource() minorGrid.SetSurfaceEnabled(False) minorGrid.SetArcsEnabled(minorGridRings) minorGrid.SetScale(minorTickSize) minorGrid.SetGridSize(int(gridHalfWidth/minorTickSize)) minorGrid.Update() return filterUtils.appendPolyData([majorGrid.GetOutput(), minorGrid.GetOutput()]) else: return majorGrid.GetOutput() def createScalarBarWidget(view, lookupTable, title): w = vtk.vtkScalarBarWidget() bar = w.GetScalarBarActor() bar.SetTitle(title) bar.SetLookupTable(lookupTable) w.SetRepositionable(True) w.SetInteractor(view.renderWindow().GetInteractor()) w.On() rep = w.GetRepresentation() rep.SetOrientation(0) rep.SetPosition(0.77, 0.92) rep.SetPosition2(0.20, 0.07) return w def getParentObj(parent): if isinstance(parent, str): return om.getOrCreateContainer(parent) else: return parent def updatePolyData(polyData, name, **kwargs): obj = om.findObjectByName(name, parent=getParentObj(kwargs.get('parent'))) if obj is None: obj = showPolyData(polyData, name, **kwargs) else: obj.setPolyData(polyData) return obj def updateFrame(frame, name, **kwargs): obj = om.findObjectByName(name, parent=getParentObj(kwargs.get('parent'))) if obj is None: obj = showFrame(frame, name, **kwargs) else: obj.copyFrame(frame) return obj def showFrame(frame, name, view=None, parent='data', scale=0.35, visible=True, alpha=1.0): view = view or app.getCurrentRenderView() assert view item = FrameItem(name, frame, view) om.addToObjectModel(item, getParentObj(parent)) item.setProperty('Visible', visible) item.setProperty('Alpha', alpha) item.setProperty('Scale', scale) return item def showPolyData(polyData, name, color=None, colorByName=None, colorByRange=None, alpha=1.0, visible=True, view=None, parent='data', cls=None): view = view or app.getCurrentRenderView() assert view cls = cls or PolyDataItem item = cls(name, polyData, view) om.addToObjectModel(item, getParentObj(parent)) item.setProperty('Visible', visible) item.setProperty('Alpha', alpha) if colorByName and colorByName not in item.getArrayNames(): print('showPolyData(colorByName=%s): array not found' % colorByName) colorByName = None if colorByName: item.setProperty('Color By', colorByName) item.colorBy(colorByName, colorByRange) else: color = [1.0, 1.0, 1.0] if color is None else color item.setProperty('Color', [float(c) for c in color]) item.colorBy(None) return item def addChildFrame(obj, initialTransform=None): ''' Adds a child frame to the given PolyDataItem. If initialTransform is given, the object's polydata is transformed using the inverse of initialTransform and then a child frame is assigned to the object to maintain its original position. ''' if obj.getChildFrame(): return obj.getChildFrame() if initialTransform: pd = filterUtils.transformPolyData(obj.polyData, initialTransform.GetLinearInverse()) obj.setPolyData(pd) t = initialTransform else: t = obj.actor.GetUserTransform() if t is None: t = vtk.vtkTransform() t.PostMultiply() frame = showFrame(t, obj.getProperty('Name') + ' frame', parent=obj, scale=0.2, visible=False, view=None) for view in obj.views: frame.addToView(view) obj.actor.SetUserTransform(t) return frame def getRandomColor(): ''' Return a random color as a list of RGB values between 0.0 and 1.0. ''' return colorsys.hsv_to_rgb(np.random.rand(), 1.0, 0.9) def showClusterObjects(clusters, parent): colors = [ QtCore.Qt.red, QtCore.Qt.blue, QtCore.Qt.yellow, QtCore.Qt.green, QtCore.Qt.magenta, QtCore.Qt.cyan, QtCore.Qt.darkCyan, QtCore.Qt.darkGreen, QtCore.Qt.darkMagenta ] colors = [QtGui.QColor(c) for c in colors] colors = [(c.red()/255.0, c.green()/255.0, c.blue()/255.0) for c in colors] objects = [] for i, cluster in enumerate(clusters): name = 'object %d' % i color = colors[i % len(colors)] clusterObj = showPolyData(cluster.mesh, name, color=color, parent=parent, alpha=1.0) clusterFrame = showFrame(cluster.frame, name + ' frame', scale=0.2, visible=False, parent=clusterObj) clusterBox = showPolyData(cluster.box, name + ' box', color=color, parent=clusterObj, alpha=0.6, visible=False) clusterPoints = showPolyData(cluster.points, name + ' points', color=color, parent=clusterObj, visible=False, alpha=1.0) if hasattr(cluster,'oriented_frame'): orientedFrame = showFrame(cluster.oriented_frame, name + ' oriented frame', scale=0.2, visible=False, parent=clusterObj) clusterPoints.setProperty('Point Size', 7) clusterPoints.colorBy(None) clusterObj.data = cluster objects.append(clusterObj) for obj in [clusterObj, clusterBox, clusterPoints]: obj.actor.SetUserTransform(cluster.frame) return objects captionWidget = None def hideCaptionWidget(): global captionWidget if captionWidget is not None: captionWidget.Off() captionWidget.Render() def showCaptionWidget(position, text, view=None): view = view or app.getCurrentRenderView() assert view global captionWidget if not captionWidget: rep = vtk.vtkCaptionRepresentation() rep.SetPosition(0.2, 0.8) w = vtk.vtkCaptionWidget() w.SetInteractor(view.renderWindow().GetInteractor()) w.SetRepresentation(rep) w.On() captionWidget = w rep = captionWidget.GetRepresentation() rep.SetAnchorPosition(position) rep.GetCaptionActor2D().SetCaption(text) a = rep.GetCaptionActor2D() pr = a.GetTextActor().GetTextProperty() pr.SetJustificationToCentered() pr.SetVerticalJustificationToCentered() pr.SetItalic(0) pr.SetBold(0) pr.SetShadow(0) pr.SetFontFamilyToArial() c2 = rep.GetPosition2Coordinate() c2.SetCoordinateSystemToDisplay() c2.SetValue(12*len(text),30) # disable border #rep.SetShowBorder(0) a.SetThreeDimensionalLeader(0) a.SetLeaderGlyphSize(0.005) captionWidget.On() captionWidget.Render() def getRayFromDisplayPoint(view, displayPoint): ''' Given a view and an XY display point, returns two XYZ world points which are the display point at the near/far clipping planes of the view. ''' worldPt1 = [0,0,0,0] worldPt2 = [0,0,0,0] renderer = view.renderer() vtk.vtkInteractorObserver.ComputeDisplayToWorld(renderer, displayPoint[0], displayPoint[1], 0, worldPt1) vtk.vtkInteractorObserver.ComputeDisplayToWorld(renderer, displayPoint[0], displayPoint[1], 1, worldPt2) worldPt1 = np.array(worldPt1[:3]) worldPt2 = np.array(worldPt2[:3]) return worldPt1, worldPt2 def pickImage(displayPoint, view, obj=None): picker = vtk.vtkCellPicker() if isinstance(obj, str): obj = om.findObjectByName(obj) assert obj if obj: picker.AddPickList(obj.actor) picker.PickFromListOn() picker.Pick(displayPoint[0], displayPoint[1], 0, view.renderer()) pickedDataset = picker.GetDataSet() if obj: return picker.GetPointIJK() else: return pickedDataset, picker.GetPointIJK() def pickProp(displayPoint, view): for tolerance in (0.0, 0.005, 0.01): pickType = 'render' if tolerance == 0.0 else 'cells' pickData = pickPoint(displayPoint, view, pickType=pickType, tolerance=tolerance) pickedPoint = pickData.pickedPoint pickedProp = pickData.pickedProp pickedDataset = pickData.pickedDataset if pickedProp is not None: return pickedPoint, pickedProp, pickedDataset return None, None, None def pickPoint(displayPoint, view, obj=None, pickType='points', tolerance=0.01): """ :param displayPoint: :param view: :param obj: :param pickType: :param tolerance: :return: FieldContainer with fields pickedPoint pickedProp pickedDataset pickedNormal - is None if no normal can be comp pickedCellId - is None unless pickType="cells" """ assert pickType in ('points', 'cells', 'render') view = view or app.getCurrentRenderView() assert view if isinstance(obj, str): obj = om.findObjectByName(obj) assert obj wasTexturedBackground = False if pickType == 'render': picker = vtk.vtkPropPicker() wasTexturedBackground = view.renderer().GetTexturedBackground() view.renderer().TexturedBackgroundOff() else: picker = vtk.vtkPointPicker() if pickType == 'points' else vtk.vtkCellPicker() picker.SetTolerance(tolerance) if obj is not None: if isinstance(obj, list): for o in obj: picker.AddPickList(o.actor) obj = None else: picker.AddPickList(obj.actor) picker.PickFromListOn() picker.Pick(displayPoint[0], displayPoint[1], 0, view.renderer()) if wasTexturedBackground: view.renderer().TexturedBackgroundOn() pickedProp = picker.GetViewProp() pickedPoint = np.array(picker.GetPickPosition()) pickedDataset = pickedProp.GetMapper().GetInput() if isinstance(pickedProp, vtk.vtkActor) else None if pickType == "cells": pickedCellId = picker.GetCellId() else: pickedCellId = None # populate pickedNormal if possible pickedNormal = None if pickType == 'cells': pickedNormal = np.array(picker.GetPickNormal()) elif pickType == 'points' and pickedDataset: pointId = picker.GetPointId() normals = pickedDataset.GetPointData().GetNormals() if normals: pickedNormal = np.array(normals.GetTuple3(pointId)) #if pickedDataset and pickType == 'cells': # print 'point id:', pickedDataset.GetCell(picker.GetCellId()).GetPointIds().GetId(picker.GetSubId()) #if pickType == 'points': # print 'point id:', picker.GetPointId() fields = FieldContainer( pickedPoint=pickedPoint, pickedProp=pickedProp, pickedDataset=pickedDataset, pickedNormal=pickedNormal, pickedCellId=pickedCellId ) return fields def mapMousePosition(widget, mouseEvent): mousePosition = mouseEvent.pos() return mousePosition.x(), widget.height - mousePosition.y() def getObjectByDataSet(dataSet): if not dataSet: return None for obj in om.getObjects(): if obj.hasDataSet(dataSet): return obj def getObjectByProp(prop): if not prop: return None for obj in om.getObjects(): if obj.hasActor(prop): return obj def findPickedObject(displayPoint, view): pickedPoint, pickedProp, pickedDataset = pickProp(displayPoint, view) obj = getObjectByProp(pickedProp) or getObjectByDataSet(pickedDataset) return obj, pickedPoint """ Toggles whether anti-aliasing is enabled or not. This sets a static variable in the ddQVTKWidgeView so this controls the setting for all views created in the current executable. Must be called before constructing a ddQTKWidgetView Anti-aliasing is enabled by default """ def setAntiAliasing(enabled): PythonQt.dd.ddQVTKWidgetView.setAntiAliasing(enabled) def enableEyeDomeLighting(view): standardPass = vtk.vtkRenderStepsPass() edlPass = vtk.vtkEDLShading() edlPass.SetDelegatePass(standardPass) view.renderer().SetPass(edlPass) def disableEyeDomeLighting(view): view.renderer().SetPass(None) def showQLabelImage(filename): ''' Returns a QLabel displaying the image contents of given filename. Make sure to assign the label, it will destruct when it goes out of scope. ''' image = QtGui.QImage(filename) assert not image.isNull() imageLabel = QtGui.QLabel() imageLabel.setPixmap(QtGui.QPixmap.fromImage(image)) imageLabel.setScaledContents(True) imageLabel.resize(imageLabel.pixmap.size()) imageLabel.setWindowTitle(os.path.basename(filename)) imageLabel.show() return imageLabel
import director.objectmodel as om import director.applogic as app from .shallowCopy import shallowCopy import director.vtkAll as vtk from director import filterUtils from director import transformUtils from director import callbacks from director import frameupdater from director.fieldcontainer import FieldContainer from PythonQt import QtCore, QtGui import PythonQt import numpy as np import os import colorsys import weakref import itertools class PolyDataItem(om.ObjectModelItem): defaultScalarRangeMap = { # 'intensity' : (400, 4000), 'spindle_angle' : (0, 360), 'azimuth' : (-2.5, 2.5), 'scan_delta' : (0.0, 0.3), 'point distance to plane' : (-0.2, 0.2), 'normal angle to plane' : (0.0, 10.0), } def __init__(self, name, polyData, view): om.ObjectModelItem.__init__(self, name, om.Icons.Robot) self.views = [] self.polyData = polyData self.mapper = vtk.vtkPolyDataMapper() self.mapper.SetInputData(self.polyData) self.actor = vtk.vtkActor() self.actor.SetMapper(self.mapper) self.shadowActor = None self.scalarBarWidget = None self.extraViewRenderers = {} self.rangeMap = dict(PolyDataItem.defaultScalarRangeMap) self.addProperty('Color By', 0, attributes=om.PropertyAttributes(enumNames=['Solid Color'])) self.addProperty('Visible', True) self.addProperty('Alpha', 1.0, attributes=om.PropertyAttributes(decimals=2, minimum=0, maximum=1.0, singleStep=0.1, hidden=False)) self.addProperty('Point Size', self.actor.GetProperty().GetPointSize(), attributes=om.PropertyAttributes(decimals=0, minimum=1, maximum=20, singleStep=1, hidden=False)) self.addProperty('Line Width', self.actor.GetProperty().GetLineWidth(), attributes=om.PropertyAttributes(decimals=0, minimum=1, maximum=20, singleStep=1, hidden=False)) self.addProperty('Surface Mode', 0, attributes=om.PropertyAttributes(enumNames=['Surface', 'Wireframe', 'Surface with edges', 'Points'], hidden=True)) self.addProperty('Color', [1.0, 1.0, 1.0]) self.addProperty('Show Scalar Bar', False) self._updateSurfaceProperty() self._updateColorByProperty() if view is not None: self.addToView(view) def _renderAllViews(self): for view in self.views: view.render() def hasDataSet(self, dataSet): return dataSet == self.polyData def hasActor(self, actor): return actor == self.actor def setPolyData(self, polyData): self.polyData = polyData self.mapper.SetInputData(polyData) self._updateSurfaceProperty() self._updateColorByProperty() self._updateColorBy(retainColorMap=True) if self.getProperty('Visible'): self._renderAllViews() def setRangeMap(self, key, value): self.rangeMap[key] = value def getArrayNames(self): pointData = self.polyData.GetPointData() return [pointData.GetArrayName(i) for i in range(pointData.GetNumberOfArrays())] def setSolidColor(self, color): self.setProperty('Color', [float(c) for c in color]) self.colorBy(None) def _isPointCloud(self): return self.polyData.GetNumberOfPoints() and (self.polyData.GetNumberOfCells() == self.polyData.GetNumberOfVerts()) def colorBy(self, arrayName, scalarRange=None, lut=None): if not arrayName: self.mapper.ScalarVisibilityOff() self.polyData.GetPointData().SetActiveScalars(None) return array = self.polyData.GetPointData().GetArray(arrayName) if not array: print('colorBy(%s): array not found' % arrayName) self.mapper.ScalarVisibilityOff() self.polyData.GetPointData().SetActiveScalars(None) return self.polyData.GetPointData().SetActiveScalars(arrayName) if not lut: lut = self._getDefaultColorMap(array, scalarRange) #self.mapper.SetColorModeToMapScalars() self.mapper.ScalarVisibilityOn() self.mapper.SetUseLookupTableScalarRange(True) self.mapper.SetLookupTable(lut) self.mapper.SetInterpolateScalarsBeforeMapping(not self._isPointCloud()) if self.getProperty('Visible'): self._renderAllViews() def getChildFrame(self): frameName = self.getProperty('Name') + ' frame' return self.findChild(frameName) def addToView(self, view): if view in self.views: return self.views.append(view) view.renderer().AddActor(self.actor) if self.shadowActor: view.renderer().AddActor(self.shadowActor) view.render() def _onPropertyChanged(self, propertySet, propertyName): om.ObjectModelItem._onPropertyChanged(self, propertySet, propertyName) if propertyName == 'Point Size': self.actor.GetProperty().SetPointSize(self.getProperty(propertyName)) elif propertyName == 'Line Width': self.actor.GetProperty().SetLineWidth(self.getProperty(propertyName)) elif propertyName == 'Alpha': self.actor.GetProperty().SetOpacity(self.getProperty(propertyName)) if self.shadowActor: self.shadowActor.GetProperty().SetOpacity(self.getProperty(propertyName)) elif propertyName == 'Visible': self.actor.SetVisibility(self.getProperty(propertyName)) if self.shadowActor: self.shadowActor.SetVisibility(self.getProperty(propertyName)) elif propertyName == 'Surface Mode': mode = self.properties.getPropertyEnumValue(propertyName) prop = self.actor.GetProperty() if mode == 'Surface': prop.SetRepresentationToSurface() prop.EdgeVisibilityOff() if mode == 'Wireframe': prop.SetRepresentationToWireframe() elif mode == 'Surface with edges': prop.SetRepresentationToSurface() prop.EdgeVisibilityOn() elif mode == 'Points': prop.SetRepresentationToPoints() elif propertyName == 'Color': color = self.getProperty(propertyName) self.actor.GetProperty().SetColor(color) elif propertyName == 'Color By': self._updateColorBy() elif propertyName == 'Show Scalar Bar': self._updateScalarBar() self._renderAllViews() def setScalarRange(self, rangeMin, rangeMax): arrayName = self.getPropertyEnumValue('Color By') if arrayName != 'Solid Color': lut = self.mapper.GetLookupTable() self.colorBy(arrayName, scalarRange=(rangeMin, rangeMax)) def _updateSurfaceProperty(self): hasPolys = self.polyData.GetNumberOfPolys() or self.polyData.GetNumberOfStrips() hasLines = self.polyData.GetNumberOfLines() enableSurfaceMode = hasPolys or hasLines self.properties.setPropertyAttribute('Surface Mode', 'hidden', not enableSurfaceMode) enableLineWidth = enableSurfaceMode self.properties.setPropertyAttribute('Line Width', 'hidden', not enableLineWidth) enablePointSize = True self.properties.setPropertyAttribute('Point Size', 'hidden', not enablePointSize) def _updateColorBy(self, retainColorMap=False): arrayName = self.getPropertyEnumValue('Color By') if arrayName == 'Solid Color': self.colorBy(None) else: lut = self.mapper.GetLookupTable() if retainColorMap else None self.colorBy(arrayName, lut=lut) self._updateScalarBar() def _updateColorByProperty(self): enumNames = ['Solid Color'] + self.getArrayNames() currentValue = self.properties.getProperty('Color By') if currentValue >= len(enumNames): self.setProperty('Color By', 0) self.properties.setPropertyAttribute('Color By', 'enumNames', enumNames) def _updateScalarBar(self): barEnabled = self.getProperty('Show Scalar Bar') colorBy = self.getProperty('Color By') if barEnabled and colorBy != 0: self._showScalarBar() else: self._hideScalarBar() def _hideScalarBar(self): if self.scalarBarWidget: self.scalarBarWidget.Off() self.scalarBarWidget.SetInteractor(None) self.scalarBarWidget = None self._renderAllViews() def _showScalarBar(self): title = self.properties.getPropertyEnumValue('Color By') view = self.views[0] lut = self.mapper.GetLookupTable() self.scalarBarWidget = createScalarBarWidget(view, lut, title) self._renderAllViews() def _setScalarBarTextColor(self, color=(0,0,0)): act = self.scalarBarWidget.GetScalarBarActor() act.GetTitleTextProperty().SetColor(color) act.GetLabelTextProperty().SetColor(color) def _setScalarBarTitle(self, titleText): act = self.scalarBarWidget.GetScalarBarActor() act.SetTitle(titleText) def getCoolToWarmColorMap(self, scalarRange): f = vtk.vtkDiscretizableColorTransferFunction() f.DiscretizeOn() f.SetColorSpaceToDiverging() f.SetNumberOfValues(256) f.AddRGBPoint(scalarRange[0], 0.23, 0.299, 0.754) f.AddRGBPoint(scalarRange[1], 0.706, 0.016, 0.15) f.Build() return f def _getDefaultColorMap(self, array, scalarRange=None, hueRange=None): name = array.GetName() blueToRed = (0.667, 0) redtoBlue = (0, 0.667) hueMap = { 'Axes' : redtoBlue } scalarRange = scalarRange or self.rangeMap.get(name, array.GetRange()) hueRange = hueRange or hueMap.get(name, blueToRed) lut = vtk.vtkLookupTable() lut.SetNumberOfColors(256) lut.SetHueRange(hueRange) lut.SetRange(scalarRange) lut.Build() return lut #return self.getCoolToWarmColorMap(scalarRange) def shadowOn(self): if self.shadowActor: return mat = [[1, 0, -1, 0], [0, 1, -1, 0], [0, 0, 0, 0], [0, 0, 0, 1]] shadowT = transformUtils.getTransformFromNumpy(mat) baseTransform = self.actor.GetUserTransform() if baseTransform: shadowT.PreMultiply() shadowT.Concatenate(baseTransform) self.shadowActor = vtk.vtkActor() self.shadowActor.SetMapper(self.mapper) self.shadowActor.SetUserTransform(shadowT) self.shadowActor.GetProperty().LightingOff() self.shadowActor.GetProperty().SetColor(0, 0, 0) for view in self.views: view.renderer().AddActor(self.shadowActor) def shadowOff(self): for view in self.views: view.renderer().RemoveActor(self.shadowActor) self.shadowActor = None def onRemoveFromObjectModel(self): om.ObjectModelItem.onRemoveFromObjectModel(self) self.removeFromAllViews() def removeFromAllViews(self): for view in list(self.views): self.removeFromView(view) assert len(self.views) == 0 self._hideScalarBar() def removeFromView(self, view): assert view in self.views self.views.remove(view) view.renderer().RemoveActor(self.actor) if self.shadowActor: view.renderer().RemoveActor(self.shadowActor) for renderer in self.extraViewRenderers.get(view, []): renderer.RemoveActor(self.actor) view.render() class Image2DItem(om.ObjectModelItem): def __init__(self, name, image, view): om.ObjectModelItem.__init__(self, name, om.Icons.Robot) self.views = [] self.image = image defaultWidth = 300 self.actor = vtk.vtkLogoRepresentation() self.actor.SetImage(image) self.actor.GetImageProperty().SetOpacity(1.0) actors = vtk.vtkPropCollection() self.actor.GetActors2D(actors) self.texture = actors.GetItemAsObject(0).GetTexture() self.addProperty('Visible', True) self.addProperty('Anchor', 1, attributes=om.PropertyAttributes(enumNames=['Top Left', 'Top Right', 'Bottom Left', 'Bottom Right'])) self.addProperty('Width', defaultWidth, attributes=om.PropertyAttributes(minimum=0, maximum=9999, singleStep=50)) self.addProperty('Alpha', 1.0, attributes=om.PropertyAttributes(decimals=2, minimum=0, maximum=1.0, singleStep=0.1)) #defaultHeight = self._getHeightForWidth(defaultWidth) #self.addProperty('Height', defaultHeight, # attributes=om.PropertyAttributes(minimum=0, maximum=9999, singleStep=10)) if view is not None: self.addToView(view) def _renderAllViews(self): for view in self.views: view.render() def hasDataSet(self, dataSet): return dataSet == self.image def hasActor(self, actor): return actor == self.actor def setImage(self, image): self.image = image self.actor.SetImage(image) # also set the image on the texture, otherwise # the texture input won't update until the next # render where this actor is visible self.texture.SetInputData(image) if self.getProperty('Visible'): self._renderAllViews() def addToView(self, view): if view in self.views: return self.views.append(view) self._updatePositionCoordinates(view) view.renderer().AddActor(self.actor) view.render() def _getHeightForWidth(self, image, width): w, h, _ = image.GetDimensions() aspect = w/float(h) return int(np.round(width / aspect)) def _updatePositionCoordinates(self, view): width = self.getProperty('Width') height = self._getHeightForWidth(self.image, width) pc0 = vtk.vtkCoordinate() pc1 = self.actor.GetPositionCoordinate() pc2 = self.actor.GetPosition2Coordinate() for pc in [pc0, pc1, pc2]: pc.SetViewport(view.renderer()) pc0.SetReferenceCoordinate(None) pc0.SetCoordinateSystemToNormalizedDisplay() pc1.SetReferenceCoordinate(pc0) pc1.SetCoordinateSystemToDisplay() anchor = self.getPropertyEnumValue('Anchor') if anchor == 'Top Left': pc0.SetValue(0.0, 1.0) pc1.SetValue(0.0, -height) elif anchor == 'Top Right': pc0.SetValue(1.0, 1.0) pc1.SetValue(-width, -height) elif anchor == 'Bottom Left': pc0.SetValue(0.0, 0.0) pc1.SetValue(0.0, 0.0) elif anchor == 'Bottom Right': pc0.SetValue(1.0, 0.0) pc1.SetValue(-width, 0.0) pc2.SetCoordinateSystemToDisplay() pc2.SetReferenceCoordinate(pc1) pc2.SetValue(width, height) def _onPropertyChanged(self, propertySet, propertyName): om.ObjectModelItem._onPropertyChanged(self, propertySet, propertyName) if propertyName == 'Alpha': self.actor.GetImageProperty().SetOpacity(self.getProperty(propertyName)) elif propertyName == 'Visible': self.actor.SetVisibility(self.getProperty(propertyName)) elif propertyName in ('Width', 'Height', 'Anchor'): if self.views: self._updatePositionCoordinates(self.views[0]) self._renderAllViews() def onRemoveFromObjectModel(self): om.ObjectModelItem.onRemoveFromObjectModel(self) self.removeFromAllViews() def removeFromAllViews(self): for view in list(self.views): self.removeFromView(view) assert len(self.views) == 0 def removeFromView(self, view): assert view in self.views self.views.remove(view) view.renderer().RemoveActor(self.actor) view.render() class TextItem(om.ObjectModelItem): def __init__(self, name, text='', view=None): om.ObjectModelItem.__init__(self, name) self.views = [] self.actor = vtk.vtkTextActor() prop = self.actor.GetTextProperty() prop.SetFontSize(18) self.actor.SetPosition(10,10) self.actor.SetInput(text) self.addProperty('Visible', True) self.addProperty('Text', text) self.addProperty('Position', [10, 10], attributes=om.PropertyAttributes(minimum=0, maximum=3000, singleStep=1)) self.addProperty('Font Size', 18, attributes=om.PropertyAttributes(minimum=6, maximum=128, singleStep=1)) self.addProperty('Bold', False) self.addProperty('Italic', False) if view: self.addToView(view) def addToView(self, view): if view in self.views: return self.views.append(view) view.renderer().AddActor(self.actor) view.render() def _renderAllViews(self): for view in self.views: view.render() def onRemoveFromObjectModel(self): om.ObjectModelItem.onRemoveFromObjectModel(self) self.removeFromAllViews() def removeFromAllViews(self): for view in list(self.views): self.removeFromView(view) def removeFromView(self, view): assert view in self.views self.views.remove(view) view.renderer().RemoveActor(self.actor) view.render() def _onPropertyChanged(self, propertySet, propertyName): om.ObjectModelItem._onPropertyChanged(self, propertySet, propertyName) if propertyName == 'Visible': self.actor.SetVisibility(self.getProperty(propertyName)) self._renderAllViews() elif propertyName == 'Text': view = app.getCurrentRenderView() self.actor.SetInput(self.getProperty(propertyName)) elif propertyName == 'Position': pos = self.getProperty(propertyName) self.actor.SetPosition(pos[0], pos[1]) elif propertyName == 'Font Size': self.actor.GetTextProperty().SetFontSize(self.getProperty(propertyName)) elif propertyName == 'Bold Size': self.actor.GetTextProperty().SetBold(self.getProperty(propertyName)) elif propertyName == 'Italic': self.actor.GetTextProperty().SetItalic(self.getProperty(propertyName)) if self.getProperty('Visible'): self._renderAllViews() def updateText(text, name, **kwargs): obj = om.findObjectByName(name, parent=getParentObj(kwargs.get('parent'))) if obj is None: obj or showText(text, name, **kwargs) else: obj.setProperty('Text', text) return obj def showText(text, name, fontSize=18, position=(10, 10), parent=None, view=None): view = view or app.getCurrentRenderView() assert view item = TextItem(name, text, view=view) item.setProperty('Font Size', fontSize) item.setProperty('Position', list(position)) om.addToObjectModel(item, getParentObj(parent)) return item def updateImage(image, name, **kwargs): obj = om.findObjectByName(name, parent=getParentObj(kwargs.get('parent'))) if obj is None: obj = showImage(image, name, **kwargs) else: obj.setImage(image) return obj def showImage(image, name, anchor='Top Left', parent=None, view=None): view = view or app.getCurrentRenderView() assert view item = Image2DItem(name, image, view=view) item.setProperty('Anchor', anchor) om.addToObjectModel(item, getParentObj(parent)) return item def createAxesPolyData(scale, useTube, tubeWidth=0.002): axes = vtk.vtkAxes() axes.SetComputeNormals(0) axes.SetScaleFactor(scale) axes.Update() if useTube: tube = vtk.vtkTubeFilter() tube.SetInputConnection(axes.GetOutputPort()) tube.SetRadius(tubeWidth) tube.SetNumberOfSides(12) tube.Update() axes = tube return shallowCopy(axes.GetOutput()) class FrameItem(PolyDataItem): def __init__(self, name, transform, view): PolyDataItem.__init__(self, name, vtk.vtkPolyData(), view) self.transform = transform self._blockSignals = False self.actor.SetUserTransform(transform) self.widget = vtk.vtkFrameWidget() self.widget.CreateDefaultRepresentation() self.widget.EnabledOff() self.rep = self.widget.GetRepresentation() self.rep.SetTransform(transform) self.traceData = None self._frameSync = None self.addProperty('Scale', 1.0, attributes=om.PropertyAttributes(decimals=2, minimum=0.01, maximum=100, singleStep=0.1, hidden=False)) self.addProperty('Edit', False) self.addProperty('Trace', False) self.addProperty('Tube', False) self.addProperty('Tube Width', 0.002, attributes=om.PropertyAttributes(decimals=3, minimum=0.001, maximum=10, singleStep=0.01, hidden=True)) self.properties.setPropertyIndex('Edit', 0) self.properties.setPropertyIndex('Trace', 1) self.properties.setPropertyIndex('Tube', 2) self.callbacks.addSignal('FrameModified') self.onTransformModifiedCallback = None self.observerTag = self.transform.AddObserver('ModifiedEvent', self.onTransformModified) self._updateAxesGeometry() self.setProperty('Color By', 'Axes') self.setProperty('Icon', om.Icons.Axes) def connectFrameModified(self, func): return self.callbacks.connect('FrameModified', func) def disconnectFrameModified(self, callbackId): self.callbacks.disconnect(callbackId) def onTransformModified(self, transform, event): if not self._blockSignals: if self.onTransformModifiedCallback: self.onTransformModifiedCallback(self) self.callbacks.process('FrameModified', self) def addToView(self, view): PolyDataItem.addToView(self, view) def hasDataSet(self, dataSet): return dataSet == self.transform def hasActor(self, actor): return actor == self.widget.GetRepresentation() or PolyDataItem.hasActor(self, actor) def copyFrame(self, transform): self._blockSignals = True self.transform.SetMatrix(transform.GetMatrix()) self._blockSignals = False self.transform.Modified() parent = self.parent() if (parent and parent.getProperty('Visible')) or self.getProperty('Visible'): self._renderAllViews() def getFrameSync(self): if self._frameSync is None: self._frameSync = FrameSync() self._frameSync.addFrame(self) return self._frameSync def _updateAxesGeometry(self): scale = self.getProperty('Scale') self.rep.SetWorldSize(scale) self.setPolyData(createAxesPolyData(scale, self.getProperty('Tube'), self.getProperty('Tube Width'))) def _onPropertyChanged(self, propertySet, propertyName): PolyDataItem._onPropertyChanged(self, propertySet, propertyName) if propertyName == 'Scale': scale = self.getProperty(propertyName) self.rep.SetWorldSize(scale) self._updateAxesGeometry() elif propertyName == 'Edit': view = app.getCurrentRenderView() if view not in self.views: view = self.views[0] self.widget.SetInteractor(view.renderWindow().GetInteractor()) self.widget.SetEnabled(self.getProperty(propertyName)) isEditing = self.getProperty(propertyName) if isEditing: frameupdater.registerFrame(self) elif propertyName == 'Trace': trace = self.getProperty(propertyName) if trace and not self.traceData: self.traceData = FrameTraceVisualizer(self) elif not trace and self.traceData: om.removeFromObjectModel(self.traceData.getTraceData()) self.traceData = None elif propertyName == 'Tube': self.properties.setPropertyAttribute('Tube Width', 'hidden', not self.getProperty(propertyName)) self._updateAxesGeometry() def onRemoveFromObjectModel(self): PolyDataItem.onRemoveFromObjectModel(self) self.transform.RemoveObserver(self.observerTag) self.widget.SetInteractor(None) self.widget.EnabledOff() for view in self.views: view.renderer().RemoveActor(self.actor) view.render() class FrameTraceVisualizer(object): def __init__(self, frame): self.frame = frame self.traceName = '%s trace' % frame.getProperty('Name') self.lastPosition = np.array(frame.transform.GetPosition()) frame.connectFrameModified(self.onFrameModified) def getTraceData(self): t = self.frame.findChild(self.traceName) if not t: pts = vtk.vtkPoints() pts.SetDataTypeToDouble() pts.InsertNextPoint(self.lastPosition) pd = vtk.vtkPolyData() pd.Allocate(1, 1) pd.SetPoints(pts) polyline = vtk.vtkPolyLine() pd.InsertNextCell(polyline.GetCellType(), polyline.GetPointIds()) idArray = pd.GetLines().GetData() idArray.InsertNextValue(0) t = showPolyData(pd, self.traceName, parent=self.frame) return t def addPoint(self, point): traceData = self.getTraceData() pd = traceData.polyData pd.GetPoints().InsertNextPoint(point) numberOfPoints = pd.GetNumberOfPoints() idArray = pd.GetLines().GetData() idArray.InsertNextValue(numberOfPoints-1) idArray.SetValue(0, numberOfPoints) pd.GetPoints().Modified() traceData._renderAllViews() def onFrameModified(self, frame): position = np.array(frame.transform.GetPosition()) if not np.allclose(position, self.lastPosition): self.lastPosition = position self.addPoint(position) class FrameSync(object): class FrameData(object): def __init__(self, **kwargs): self.__dict__.update(kwargs) def __init__(self): self.frames = {} self._blockCallbacks = False self._ids = itertools.count() def addFrame(self, frame, ignoreIncoming=False): if frame is None: return if self._findFrameId(frame) is not None: return frameId = next(self._ids) callbackId = frame.connectFrameModified(self._onFrameModified) self.frames[frameId] = FrameSync.FrameData( ref=weakref.ref(frame), baseTransform=self._computeBaseTransform(frame), callbackId=callbackId, ignoreIncoming=ignoreIncoming) def removeFrame(self, frame): frameId = self._findFrameId(frame) if frameId is None: raise KeyError(frame) frame.disconnectFrameModified(self.frames[frameId].callbackId) self._removeFrameId(frameId) def _computeBaseTransform(self, frame): currentDelta = None for frameId, frameData in list(self.frames.items()): if frameData.ref() is None: self._removeFrameId(frameId) elif frameData.ref() is frame: continue else: currentDelta = transformUtils.copyFrame(frameData.baseTransform.GetLinearInverse()) currentDelta.Concatenate(transformUtils.copyFrame(frameData.ref().transform)) break t = transformUtils.copyFrame(frame.transform) t.PostMultiply() if currentDelta: t.Concatenate(currentDelta.GetLinearInverse()) return t def _removeFrameId(self, frameId): del self.frames[frameId] def _findFrameId(self, frame): for frameId, frameData in list(self.frames.items()): if frameData.ref() is None: self._removeFrameId(frameId) elif frameData.ref() is frame: return frameId def _moveFrame(self, frameId, modifiedFrameId): frameData = self.frames[frameId] modifiedFrameData = self.frames[modifiedFrameId] t = vtk.vtkTransform() t.PostMultiply() t.Concatenate(frameData.baseTransform) t.Concatenate(modifiedFrameData.baseTransform.GetLinearInverse()) t.Concatenate(modifiedFrameData.ref().transform) frameData.ref().copyFrame(t) def _onFrameModified(self, frame): if self._blockCallbacks: return modifiedFrameId = self._findFrameId(frame) assert modifiedFrameId is not None #print self, 'onFrameModified:', self.frames[modifiedFrameId].ref().getProperty('Name') if self.frames[modifiedFrameId].ignoreIncoming: self.frames[modifiedFrameId].baseTransform = self._computeBaseTransform(frame) return self._blockCallbacks = True for frameId, frameData in list(self.frames.items()): if frameData.ref() is None: self._removeFrameId(frameId) elif frameId != modifiedFrameId: #print ' ', self, 'moving:', self.frames[frameId].ref().getProperty('Name') self._moveFrame(frameId, modifiedFrameId) self._blockCallbacks = False def setCameraToParallelProjection(camera): viewAngle = np.radians(camera.GetViewAngle()) viewDistance = np.linalg.norm(np.array(camera.GetFocalPoint()) - np.array(camera.GetPosition())) desiredParallelScale = np.tan(viewAngle * 0.5) * viewDistance camera.SetParallelScale(desiredParallelScale) camera.ParallelProjectionOn() def setCameraToPerspectiveProjection(camera): parallelScale = camera.GetParallelScale() viewAngle = np.radians(camera.GetViewAngle()) desiredViewDistance = parallelScale / np.tan(viewAngle * 0.5) focalPoint = np.array(camera.GetFocalPoint()) desiredCameraPosition = focalPoint + desiredViewDistance * np.array(camera.GetViewPlaneNormal()) camera.SetPosition(desiredCameraPosition) camera.ParallelProjectionOff() class ViewOptionsItem(om.ObjectModelItem): def __init__(self, view): om.ObjectModelItem.__init__(self, 'view options') self.view = view self.addProperty('Camera projection', 0, attributes=om.PropertyAttributes(enumNames=['Perspective', 'Parallel'])) self.addProperty('View angle', view.camera().GetViewAngle(), attributes=om.PropertyAttributes(minimum=2, maximum=180)) self.addProperty('Key light intensity', view.lightKit().GetKeyLightIntensity(), attributes=om.PropertyAttributes(minimum=0, maximum=5, singleStep=0.1, decimals=2)) self.addProperty('Light kit', True) self.addProperty('Eye dome lighting', False) self.addProperty('Orientation widget', True) self.addProperty('Interactive render', True) self.addProperty('Gradient background', True) self.addProperty('Background color', view.backgroundRenderer().GetBackground()) self.addProperty('Background color 2', view.backgroundRenderer().GetBackground2()) def _onPropertyChanged(self, propertySet, propertyName): om.ObjectModelItem._onPropertyChanged(self, propertySet, propertyName) if propertyName in ('Gradient background', 'Background color', 'Background color 2'): colors = [self.getProperty('Background color'), self.getProperty('Background color 2')] if not self.getProperty('Gradient background'): colors[1] = colors[0] self.view.renderer().SetBackground(colors[0]) self.view.renderer().SetBackground2(colors[1]) elif propertyName == 'Camera projection': if self.getPropertyEnumValue(propertyName) == 'Perspective': setCameraToPerspectiveProjection(self.view.camera()) else: setCameraToParallelProjection(self.view.camera()) elif propertyName == 'Orientation widget': if self.getProperty(propertyName): self.view.orientationMarkerWidget().On() else: self.view.orientationMarkerWidget().Off() elif propertyName == 'View angle': angle = self.getProperty(propertyName) self.view.camera().SetViewAngle(angle) elif propertyName == 'Key light intensity': intensity = self.getProperty(propertyName) self.view.lightKit().SetKeyLightIntensity(intensity) elif propertyName == 'Light kit': self.view.setLightKitEnabled(self.getProperty(propertyName)) elif propertyName == 'Eye dome lighting': if self.getProperty(propertyName): enableEyeDomeLighting(self.view) else: disableEyeDomeLighting(self.view) elif propertyName == 'Interactive render': if self.getProperty(propertyName): self.view.renderWindow().GetInteractor().EnableRenderOn() else: self.view.renderWindow().GetInteractor().EnableRenderOff() self.view.render() def getVisibleActors(view): actors = view.renderer().GetActors() return [actors.GetItemAsObject(i) for i in range(actors.GetNumberOfItems()) if actors.GetItemAsObject(i).GetVisibility()] def computeViewBoundsNoGrid(view, gridObj): gridObj.actor.SetUseBounds(False) bounds = view.renderer().ComputeVisiblePropBounds() gridObj.actor.SetUseBounds(True) return bounds def computeViewBoundsSoloGrid(view, gridObj): actors = getVisibleActors(view) onlyGridShowing = (len(actors) == 1) and (actors[0] == gridObj.actor) if onlyGridShowing: gridObj.actor.SetUseBounds(True) return view.renderer().ComputeVisiblePropBounds() else: return computeViewBoundsNoGrid(view, gridObj) class GridItem(PolyDataItem): def __init__(self, name, view=None): PolyDataItem.__init__(self, name, polyData=vtk.vtkPolyData(), view=view) self.actor.PickableOff() self.actor.GetProperty().LightingOff() self.textActors = [] self.addProperty('Grid Half Width', 100.0, attributes=om.PropertyAttributes(minimum=0.01, maximum=1e6, singleStep=10, decimals=2)) self.addProperty('Major Tick Resolution', 10, attributes=om.PropertyAttributes(minimum=1, maximum=100, singleStep=1)) self.addProperty('Minor Tick Resolution', 2, attributes=om.PropertyAttributes(minimum=1, maximum=100, singleStep=1)) self.addProperty('Major Tick Rings', True) self.addProperty('Minor Tick Rings', False) self.addProperty('Show Text', True) self.addProperty('Text Angle', 0, attributes=om.PropertyAttributes(minimum=-999, maximum=999, singleStep=5)) self.addProperty('Text Size', 10, attributes=om.PropertyAttributes(minimum=4, maximum=100, singleStep=1)) self.addProperty('Text Color', [1.0, 1.0, 1.0]) self.addProperty('Text Alpha', 1.0, attributes=om.PropertyAttributes(decimals=2, minimum=0, maximum=1.0, singleStep=0.1)) self._updateGrid() self.setProperty('Surface Mode', 'Wireframe') def _onPropertyChanged(self, propertySet, propertyName): PolyDataItem._onPropertyChanged(self, propertySet, propertyName) if propertyName in ('Grid Half Width', 'Major Tick Resolution', 'Minor Tick Resolution', 'Major Tick Rings', 'Minor Tick Rings'): self._updateGrid() if propertyName in ('Visible', 'Show Text', 'Text Color', 'Text Alpha', 'Text Size', 'Text Angle'): self._updateTextActorProperties() def _updateGrid(self): gridHalfWidth = self.getProperty('Grid Half Width') majorTickSize = gridHalfWidth / self.getProperty('Major Tick Resolution') minorTickSize = majorTickSize / self.getProperty('Minor Tick Resolution') majorTickRings = self.getProperty('Major Tick Rings') minorTickRings = self.getProperty('Minor Tick Rings') polyData = makeGridPolyData(gridHalfWidth, majorTickSize, minorTickSize, majorTickRings, minorTickRings) self.setPolyData(polyData) self._buildTextActors() def _updateTextActorProperties(self): self._repositionTextActors() visible = self.getProperty('Visible') and self.getProperty('Show Text') textAlpha = self.getProperty('Text Alpha') color = self.getProperty('Text Color') textSize = self.getProperty('Text Size') for actor in self.textActors: prop = actor.GetTextProperty() actor.SetVisibility(visible) prop.SetColor(color) prop.SetFontSize(textSize) prop.SetOpacity(textAlpha) def addToView(self, view): if view in self.views: return PolyDataItem.addToView(self, view) self._addTextActorsToView(view) def _addTextActorsToView(self, view): for actor in self.textActors: view.renderer().AddActor(actor) def _removeTextActorsFromView(self, view): for actor in self.textActors: view.renderer().RemoveActor(actor) def _clearTextActors(self): for view in self.views: self._removeTextActorsFromView(view) self.textActors = [] def _repositionTextActors(self): if not self.textActors: return angle = np.radians(self.getProperty('Text Angle')) sinAngle = np.sin(angle) cosAngle = np.cos(angle) gridHalfWidth = self.getProperty('Grid Half Width') majorTickSize = gridHalfWidth / self.getProperty('Major Tick Resolution') transform = self.actor.GetUserTransform() or vtk.vtkTransform() for i, actor in enumerate(self.textActors): distance = i * majorTickSize actor = self.textActors[i] prop = actor.GetTextProperty() coord = actor.GetPositionCoordinate() coord.SetCoordinateSystemToWorld() p = transform.TransformPoint((distance*cosAngle, distance*sinAngle, 0.0)) coord.SetValue(p) def _buildTextActors(self): self._clearTextActors() gridHalfWidth = self.getProperty('Grid Half Width') majorTickSize = gridHalfWidth / self.getProperty('Major Tick Resolution') suffix = 'm' for i in range(int(gridHalfWidth / majorTickSize)): ringDistance = i * majorTickSize actor = vtk.vtkTextActor() prop = actor.GetTextProperty() actor.SetInput('{:.3f}'.format(ringDistance).rstrip('0').rstrip('.') + suffix) actor.SetPickable(False) self.textActors.append(actor) self._updateTextActorProperties() for view in self.views: self._addTextActorsToView(view) def showGrid(view, cellSize=0.5, numberOfCells=25, name='grid', parent='scene', color=[1,1,1], alpha=0.05, gridTransform=None, viewBoundsFunction=None): gridObj = GridItem(name) gridHalfWidth = cellSize * numberOfCells gridObj.setProperty('Grid Half Width', gridHalfWidth) gridObj.setProperty('Major Tick Resolution', numberOfCells) gridObj.setProperty('Minor Tick Resolution', 1) gridObj.setProperty('Show Text', False) gridObj.setProperty('Major Tick Rings', False) gridObj.setProperty('Minor Tick Rings', False) gridObj.setProperty('Alpha', alpha) gridObj.setProperty('Text Alpha', 0.5) gridObj.addToView(view) om.addToObjectModel(gridObj, getParentObj(parent)) gridFrame = addChildFrame(gridObj) gridFrame.connectFrameModified(lambda x: gridObj._repositionTextActors()) gridFrame.setProperty('Scale', 1.0) gridObj.viewBoundsFunction = viewBoundsFunction or computeViewBoundsNoGrid gridObj.emptyBoundsSize = 1.0 def onViewBoundsRequest(): if view not in gridObj.views or not gridObj.getProperty('Visible'): return bounds = gridObj.viewBoundsFunction(view, gridObj) if vtk.vtkMath.AreBoundsInitialized(bounds): view.addCustomBounds(bounds) else: view.addCustomBounds(np.array([-1, 1, -1, 1, -1, 1]) * gridObj.emptyBoundsSize) view.connect('computeBoundsRequest(ddQVTKWidgetView*)', onViewBoundsRequest) return gridObj def makeGridPolyData(gridHalfWidth=100, majorTickSize=10.0, minorTickSize=1.0, majorGridRings=True, minorGridRings=False): majorGrid = vtk.vtkGridSource() majorGrid.SetSurfaceEnabled(True) majorGrid.SetArcsEnabled(majorGridRings) majorGrid.SetGridSize(int(gridHalfWidth/majorTickSize)) majorGrid.SetScale(majorTickSize) majorGrid.Update() if minorTickSize != majorTickSize: minorGrid = vtk.vtkGridSource() minorGrid.SetSurfaceEnabled(False) minorGrid.SetArcsEnabled(minorGridRings) minorGrid.SetScale(minorTickSize) minorGrid.SetGridSize(int(gridHalfWidth/minorTickSize)) minorGrid.Update() return filterUtils.appendPolyData([majorGrid.GetOutput(), minorGrid.GetOutput()]) else: return majorGrid.GetOutput() def createScalarBarWidget(view, lookupTable, title): w = vtk.vtkScalarBarWidget() bar = w.GetScalarBarActor() bar.SetTitle(title) bar.SetLookupTable(lookupTable) w.SetRepositionable(True) w.SetInteractor(view.renderWindow().GetInteractor()) w.On() rep = w.GetRepresentation() rep.SetOrientation(0) rep.SetPosition(0.77, 0.92) rep.SetPosition2(0.20, 0.07) return w def getParentObj(parent): if isinstance(parent, str): return om.getOrCreateContainer(parent) else: return parent def updatePolyData(polyData, name, **kwargs): obj = om.findObjectByName(name, parent=getParentObj(kwargs.get('parent'))) if obj is None: obj = showPolyData(polyData, name, **kwargs) else: obj.setPolyData(polyData) return obj def updateFrame(frame, name, **kwargs): obj = om.findObjectByName(name, parent=getParentObj(kwargs.get('parent'))) if obj is None: obj = showFrame(frame, name, **kwargs) else: obj.copyFrame(frame) return obj def showFrame(frame, name, view=None, parent='data', scale=0.35, visible=True, alpha=1.0): view = view or app.getCurrentRenderView() assert view item = FrameItem(name, frame, view) om.addToObjectModel(item, getParentObj(parent)) item.setProperty('Visible', visible) item.setProperty('Alpha', alpha) item.setProperty('Scale', scale) return item def showPolyData(polyData, name, color=None, colorByName=None, colorByRange=None, alpha=1.0, visible=True, view=None, parent='data', cls=None): view = view or app.getCurrentRenderView() assert view cls = cls or PolyDataItem item = cls(name, polyData, view) om.addToObjectModel(item, getParentObj(parent)) item.setProperty('Visible', visible) item.setProperty('Alpha', alpha) if colorByName and colorByName not in item.getArrayNames(): print('showPolyData(colorByName=%s): array not found' % colorByName) colorByName = None if colorByName: item.setProperty('Color By', colorByName) item.colorBy(colorByName, colorByRange) else: color = [1.0, 1.0, 1.0] if color is None else color item.setProperty('Color', [float(c) for c in color]) item.colorBy(None) return item def addChildFrame(obj, initialTransform=None): ''' Adds a child frame to the given PolyDataItem. If initialTransform is given, the object's polydata is transformed using the inverse of initialTransform and then a child frame is assigned to the object to maintain its original position. ''' if obj.getChildFrame(): return obj.getChildFrame() if initialTransform: pd = filterUtils.transformPolyData(obj.polyData, initialTransform.GetLinearInverse()) obj.setPolyData(pd) t = initialTransform else: t = obj.actor.GetUserTransform() if t is None: t = vtk.vtkTransform() t.PostMultiply() frame = showFrame(t, obj.getProperty('Name') + ' frame', parent=obj, scale=0.2, visible=False, view=None) for view in obj.views: frame.addToView(view) obj.actor.SetUserTransform(t) return frame def getRandomColor(): ''' Return a random color as a list of RGB values between 0.0 and 1.0. ''' return colorsys.hsv_to_rgb(np.random.rand(), 1.0, 0.9) def showClusterObjects(clusters, parent): colors = [ QtCore.Qt.red, QtCore.Qt.blue, QtCore.Qt.yellow, QtCore.Qt.green, QtCore.Qt.magenta, QtCore.Qt.cyan, QtCore.Qt.darkCyan, QtCore.Qt.darkGreen, QtCore.Qt.darkMagenta ] colors = [QtGui.QColor(c) for c in colors] colors = [(c.red()/255.0, c.green()/255.0, c.blue()/255.0) for c in colors] objects = [] for i, cluster in enumerate(clusters): name = 'object %d' % i color = colors[i % len(colors)] clusterObj = showPolyData(cluster.mesh, name, color=color, parent=parent, alpha=1.0) clusterFrame = showFrame(cluster.frame, name + ' frame', scale=0.2, visible=False, parent=clusterObj) clusterBox = showPolyData(cluster.box, name + ' box', color=color, parent=clusterObj, alpha=0.6, visible=False) clusterPoints = showPolyData(cluster.points, name + ' points', color=color, parent=clusterObj, visible=False, alpha=1.0) if hasattr(cluster,'oriented_frame'): orientedFrame = showFrame(cluster.oriented_frame, name + ' oriented frame', scale=0.2, visible=False, parent=clusterObj) clusterPoints.setProperty('Point Size', 7) clusterPoints.colorBy(None) clusterObj.data = cluster objects.append(clusterObj) for obj in [clusterObj, clusterBox, clusterPoints]: obj.actor.SetUserTransform(cluster.frame) return objects captionWidget = None def hideCaptionWidget(): global captionWidget if captionWidget is not None: captionWidget.Off() captionWidget.Render() def showCaptionWidget(position, text, view=None): view = view or app.getCurrentRenderView() assert view global captionWidget if not captionWidget: rep = vtk.vtkCaptionRepresentation() rep.SetPosition(0.2, 0.8) w = vtk.vtkCaptionWidget() w.SetInteractor(view.renderWindow().GetInteractor()) w.SetRepresentation(rep) w.On() captionWidget = w rep = captionWidget.GetRepresentation() rep.SetAnchorPosition(position) rep.GetCaptionActor2D().SetCaption(text) a = rep.GetCaptionActor2D() pr = a.GetTextActor().GetTextProperty() pr.SetJustificationToCentered() pr.SetVerticalJustificationToCentered() pr.SetItalic(0) pr.SetBold(0) pr.SetShadow(0) pr.SetFontFamilyToArial() c2 = rep.GetPosition2Coordinate() c2.SetCoordinateSystemToDisplay() c2.SetValue(12*len(text),30) # disable border #rep.SetShowBorder(0) a.SetThreeDimensionalLeader(0) a.SetLeaderGlyphSize(0.005) captionWidget.On() captionWidget.Render() def getRayFromDisplayPoint(view, displayPoint): ''' Given a view and an XY display point, returns two XYZ world points which are the display point at the near/far clipping planes of the view. ''' worldPt1 = [0,0,0,0] worldPt2 = [0,0,0,0] renderer = view.renderer() vtk.vtkInteractorObserver.ComputeDisplayToWorld(renderer, displayPoint[0], displayPoint[1], 0, worldPt1) vtk.vtkInteractorObserver.ComputeDisplayToWorld(renderer, displayPoint[0], displayPoint[1], 1, worldPt2) worldPt1 = np.array(worldPt1[:3]) worldPt2 = np.array(worldPt2[:3]) return worldPt1, worldPt2 def pickImage(displayPoint, view, obj=None): picker = vtk.vtkCellPicker() if isinstance(obj, str): obj = om.findObjectByName(obj) assert obj if obj: picker.AddPickList(obj.actor) picker.PickFromListOn() picker.Pick(displayPoint[0], displayPoint[1], 0, view.renderer()) pickedDataset = picker.GetDataSet() if obj: return picker.GetPointIJK() else: return pickedDataset, picker.GetPointIJK() def pickProp(displayPoint, view): for tolerance in (0.0, 0.005, 0.01): pickType = 'render' if tolerance == 0.0 else 'cells' pickData = pickPoint(displayPoint, view, pickType=pickType, tolerance=tolerance) pickedPoint = pickData.pickedPoint pickedProp = pickData.pickedProp pickedDataset = pickData.pickedDataset if pickedProp is not None: return pickedPoint, pickedProp, pickedDataset return None, None, None def pickPoint(displayPoint, view, obj=None, pickType='points', tolerance=0.01): """ :param displayPoint: :param view: :param obj: :param pickType: :param tolerance: :return: FieldContainer with fields pickedPoint pickedProp pickedDataset pickedNormal - is None if no normal can be comp pickedCellId - is None unless pickType="cells" """ assert pickType in ('points', 'cells', 'render') view = view or app.getCurrentRenderView() assert view if isinstance(obj, str): obj = om.findObjectByName(obj) assert obj wasTexturedBackground = False if pickType == 'render': picker = vtk.vtkPropPicker() wasTexturedBackground = view.renderer().GetTexturedBackground() view.renderer().TexturedBackgroundOff() else: picker = vtk.vtkPointPicker() if pickType == 'points' else vtk.vtkCellPicker() picker.SetTolerance(tolerance) if obj is not None: if isinstance(obj, list): for o in obj: picker.AddPickList(o.actor) obj = None else: picker.AddPickList(obj.actor) picker.PickFromListOn() picker.Pick(displayPoint[0], displayPoint[1], 0, view.renderer()) if wasTexturedBackground: view.renderer().TexturedBackgroundOn() pickedProp = picker.GetViewProp() pickedPoint = np.array(picker.GetPickPosition()) pickedDataset = pickedProp.GetMapper().GetInput() if isinstance(pickedProp, vtk.vtkActor) else None if pickType == "cells": pickedCellId = picker.GetCellId() else: pickedCellId = None # populate pickedNormal if possible pickedNormal = None if pickType == 'cells': pickedNormal = np.array(picker.GetPickNormal()) elif pickType == 'points' and pickedDataset: pointId = picker.GetPointId() normals = pickedDataset.GetPointData().GetNormals() if normals: pickedNormal = np.array(normals.GetTuple3(pointId)) #if pickedDataset and pickType == 'cells': # print 'point id:', pickedDataset.GetCell(picker.GetCellId()).GetPointIds().GetId(picker.GetSubId()) #if pickType == 'points': # print 'point id:', picker.GetPointId() fields = FieldContainer( pickedPoint=pickedPoint, pickedProp=pickedProp, pickedDataset=pickedDataset, pickedNormal=pickedNormal, pickedCellId=pickedCellId ) return fields def mapMousePosition(widget, mouseEvent): mousePosition = mouseEvent.pos() return mousePosition.x(), widget.height - mousePosition.y() def getObjectByDataSet(dataSet): if not dataSet: return None for obj in om.getObjects(): if obj.hasDataSet(dataSet): return obj def getObjectByProp(prop): if not prop: return None for obj in om.getObjects(): if obj.hasActor(prop): return obj def findPickedObject(displayPoint, view): pickedPoint, pickedProp, pickedDataset = pickProp(displayPoint, view) obj = getObjectByProp(pickedProp) or getObjectByDataSet(pickedDataset) return obj, pickedPoint """ Toggles whether anti-aliasing is enabled or not. This sets a static variable in the ddQVTKWidgeView so this controls the setting for all views created in the current executable. Must be called before constructing a ddQTKWidgetView Anti-aliasing is enabled by default """ def setAntiAliasing(enabled): PythonQt.dd.ddQVTKWidgetView.setAntiAliasing(enabled) def enableEyeDomeLighting(view): standardPass = vtk.vtkRenderStepsPass() edlPass = vtk.vtkEDLShading() edlPass.SetDelegatePass(standardPass) view.renderer().SetPass(edlPass) def disableEyeDomeLighting(view): view.renderer().SetPass(None) def showQLabelImage(filename): ''' Returns a QLabel displaying the image contents of given filename. Make sure to assign the label, it will destruct when it goes out of scope. ''' image = QtGui.QImage(filename) assert not image.isNull() imageLabel = QtGui.QLabel() imageLabel.setPixmap(QtGui.QPixmap.fromImage(image)) imageLabel.setScaledContents(True) imageLabel.resize(imageLabel.pixmap.size()) imageLabel.setWindowTitle(os.path.basename(filename)) imageLabel.show() return imageLabel
en
0.610079
# 'intensity' : (400, 4000), #self.mapper.SetColorModeToMapScalars() #return self.getCoolToWarmColorMap(scalarRange) #defaultHeight = self._getHeightForWidth(defaultWidth) #self.addProperty('Height', defaultHeight, # attributes=om.PropertyAttributes(minimum=0, maximum=9999, singleStep=10)) # also set the image on the texture, otherwise # the texture input won't update until the next # render where this actor is visible #print self, 'onFrameModified:', self.frames[modifiedFrameId].ref().getProperty('Name') #print ' ', self, 'moving:', self.frames[frameId].ref().getProperty('Name') Adds a child frame to the given PolyDataItem. If initialTransform is given, the object's polydata is transformed using the inverse of initialTransform and then a child frame is assigned to the object to maintain its original position. Return a random color as a list of RGB values between 0.0 and 1.0. # disable border #rep.SetShowBorder(0) Given a view and an XY display point, returns two XYZ world points which are the display point at the near/far clipping planes of the view. :param displayPoint: :param view: :param obj: :param pickType: :param tolerance: :return: FieldContainer with fields pickedPoint pickedProp pickedDataset pickedNormal - is None if no normal can be comp pickedCellId - is None unless pickType="cells" # populate pickedNormal if possible #if pickedDataset and pickType == 'cells': # print 'point id:', pickedDataset.GetCell(picker.GetCellId()).GetPointIds().GetId(picker.GetSubId()) #if pickType == 'points': # print 'point id:', picker.GetPointId() Toggles whether anti-aliasing is enabled or not. This sets a static variable in the ddQVTKWidgeView so this controls the setting for all views created in the current executable. Must be called before constructing a ddQTKWidgetView Anti-aliasing is enabled by default Returns a QLabel displaying the image contents of given filename. Make sure to assign the label, it will destruct when it goes out of scope.
1.816939
2
SubGNN/test.py
rmwu/SubGNN
107
6630996
import sys sys.path.insert(0, '..') # add config to path import config import train as tr import os import json import random import numpy as np import argparse class Namespace: def __init__(self, **kwargs): self.__dict__.update(kwargs) def parse_arguments(): parser = argparse.ArgumentParser(description="Run SubGNN") parser.add_argument('-task', type=str, default=None, help='Task name (e.g. hpo_metab)') parser.add_argument('-tb_name', type=str, default="sg", help='Base Model Name for Tensorboard Log') parser.add_argument('-restoreModelPath', type=str, default=None, help='Parent directory of model, hparams, kwargs') parser.add_argument("-max_epochs", type=int, default=200, help="Max number of epochs to train") parser.add_argument("-random_seeds", action="store_true", help="Use random seeds from 0-9. Otherwise use random random seeds") parser.add_argument('-tb_dir', default="tensorboard_test", type=str) parser.add_argument('-no_train', action="store_true") args = parser.parse_args() return args def main(args_script): args_to_function = { "task" : args_script.task, "tb_name" : args_script.tb_name, "restoreModelPath" : args_script.restoreModelPath, "max_epochs" : args_script.max_epochs, "tb_dir" : args_script.tb_dir, ## Defaults "checkpoint_k": 1, "no_checkpointing" : False, #0 and True or 1 and False "tb_logging": True, "runTest" : False, "no_save" : False, "print_train_times" : False, "monitor_metric":'val_micro_f1', "opt_n_trials":None, "debug_mode":False, "subset_data":False, "restoreModelName":None, "noTrain":False, "log_path":None } args = Namespace(**args_to_function) # dict to keep track of results exp_results = { "test_acc_mean":0, "test_acc_sd":0,"test_micro_f1_mean":0,"test_micro_f1_sd":0, "test_auroc_mean":0, "test_auroc_sd":0, "test_acc" : [], "test_micro_f1": [], "test_auroc" : [], "call" : args_to_function } # for each seed, train a new model for seed in range(10): print(f"Running Round {seed+1}") # either use a random seed from 0 to 1000000 or use the default random seeds 0-9 args.seed = random.randint(0, 1000000) if args_script.random_seeds else seed print('Seed used: ', args.seed) args.tb_dir = os.path.join(config.PROJECT_ROOT, args.tb_dir) args.tb_version = f"version_{seed}" if not args_script.no_train: #train the model from scratch args.noTrain = False args.runTest = True test_results = tr.train_model(args) else: #read in the model - NOTE that this doesn't differentiaate .ckpt files if multiple are saved model_path = os.path.join(config.PROJECT_ROOT,args.tb_dir, args.tb_name, args.tb_version) for file in os.listdir(model_path): if file.endswith(".ckpt") and file.startswith("epoch"): outpath = file args.noTrain = True args.no_save = True args.restoreModelPath = model_path args.restoreModelName = outpath test_results = tr.train_model(args) # keep track of test results for each random seed run exp_results['test_micro_f1'].append(float(test_results['test_micro_f1'])) exp_results['test_acc'].append(float(test_results['test_acc'])) exp_results['test_auroc'].append(float(test_results['test_auroc'])) exp_results["test_acc_mean"] = np.mean(exp_results['test_acc']) exp_results["test_acc_sd"] = np.std(exp_results['test_acc']) exp_results["test_micro_f1_mean"] = np.mean(exp_results['test_micro_f1']) exp_results["test_micro_f1_sd"] = np.std(exp_results['test_micro_f1']) exp_results["test_auroc_mean"] = np.mean(exp_results['test_auroc']) exp_results["test_auroc_sd"] = np.std(exp_results['test_auroc']) print("OVERALL RESULTS:") # across all random seeds print(exp_results) # write results for all runs to file exp_results_file = open(os.path.join(config.PROJECT_ROOT, args.tb_dir, args.tb_name, "experiment_results.json"),"w") exp_results_file.write(json.dumps(exp_results, indent=4)) exp_results_file.close() if __name__ == "__main__": args = parse_arguments() main(args)
import sys sys.path.insert(0, '..') # add config to path import config import train as tr import os import json import random import numpy as np import argparse class Namespace: def __init__(self, **kwargs): self.__dict__.update(kwargs) def parse_arguments(): parser = argparse.ArgumentParser(description="Run SubGNN") parser.add_argument('-task', type=str, default=None, help='Task name (e.g. hpo_metab)') parser.add_argument('-tb_name', type=str, default="sg", help='Base Model Name for Tensorboard Log') parser.add_argument('-restoreModelPath', type=str, default=None, help='Parent directory of model, hparams, kwargs') parser.add_argument("-max_epochs", type=int, default=200, help="Max number of epochs to train") parser.add_argument("-random_seeds", action="store_true", help="Use random seeds from 0-9. Otherwise use random random seeds") parser.add_argument('-tb_dir', default="tensorboard_test", type=str) parser.add_argument('-no_train', action="store_true") args = parser.parse_args() return args def main(args_script): args_to_function = { "task" : args_script.task, "tb_name" : args_script.tb_name, "restoreModelPath" : args_script.restoreModelPath, "max_epochs" : args_script.max_epochs, "tb_dir" : args_script.tb_dir, ## Defaults "checkpoint_k": 1, "no_checkpointing" : False, #0 and True or 1 and False "tb_logging": True, "runTest" : False, "no_save" : False, "print_train_times" : False, "monitor_metric":'val_micro_f1', "opt_n_trials":None, "debug_mode":False, "subset_data":False, "restoreModelName":None, "noTrain":False, "log_path":None } args = Namespace(**args_to_function) # dict to keep track of results exp_results = { "test_acc_mean":0, "test_acc_sd":0,"test_micro_f1_mean":0,"test_micro_f1_sd":0, "test_auroc_mean":0, "test_auroc_sd":0, "test_acc" : [], "test_micro_f1": [], "test_auroc" : [], "call" : args_to_function } # for each seed, train a new model for seed in range(10): print(f"Running Round {seed+1}") # either use a random seed from 0 to 1000000 or use the default random seeds 0-9 args.seed = random.randint(0, 1000000) if args_script.random_seeds else seed print('Seed used: ', args.seed) args.tb_dir = os.path.join(config.PROJECT_ROOT, args.tb_dir) args.tb_version = f"version_{seed}" if not args_script.no_train: #train the model from scratch args.noTrain = False args.runTest = True test_results = tr.train_model(args) else: #read in the model - NOTE that this doesn't differentiaate .ckpt files if multiple are saved model_path = os.path.join(config.PROJECT_ROOT,args.tb_dir, args.tb_name, args.tb_version) for file in os.listdir(model_path): if file.endswith(".ckpt") and file.startswith("epoch"): outpath = file args.noTrain = True args.no_save = True args.restoreModelPath = model_path args.restoreModelName = outpath test_results = tr.train_model(args) # keep track of test results for each random seed run exp_results['test_micro_f1'].append(float(test_results['test_micro_f1'])) exp_results['test_acc'].append(float(test_results['test_acc'])) exp_results['test_auroc'].append(float(test_results['test_auroc'])) exp_results["test_acc_mean"] = np.mean(exp_results['test_acc']) exp_results["test_acc_sd"] = np.std(exp_results['test_acc']) exp_results["test_micro_f1_mean"] = np.mean(exp_results['test_micro_f1']) exp_results["test_micro_f1_sd"] = np.std(exp_results['test_micro_f1']) exp_results["test_auroc_mean"] = np.mean(exp_results['test_auroc']) exp_results["test_auroc_sd"] = np.std(exp_results['test_auroc']) print("OVERALL RESULTS:") # across all random seeds print(exp_results) # write results for all runs to file exp_results_file = open(os.path.join(config.PROJECT_ROOT, args.tb_dir, args.tb_name, "experiment_results.json"),"w") exp_results_file.write(json.dumps(exp_results, indent=4)) exp_results_file.close() if __name__ == "__main__": args = parse_arguments() main(args)
en
0.879018
# add config to path ## Defaults #0 and True or 1 and False # dict to keep track of results # for each seed, train a new model # either use a random seed from 0 to 1000000 or use the default random seeds 0-9 #train the model from scratch #read in the model - NOTE that this doesn't differentiaate .ckpt files if multiple are saved # keep track of test results for each random seed run # across all random seeds # write results for all runs to file
2.248046
2
flaskr/liff/models.py
kohei25/rakumeshi
2
6630997
<filename>flaskr/liff/models.py<gh_stars>1-10 # from ast import keyword # from flaskr import db # from flaskr.linebot.models import User # class UserFeature(db.Model): # id = db.Column(db.Integer, primary_key=True) # user_id = db.Column(db.ForeignKey(User.id), nullable=False) # sex = db.Column(db.Integer) # age = db.Column(db.Integer) # genre = db.Column(db.Integer) # budget = db.Column(db.Integer) # created_at = db.Column(db.DateTime, nullable=False, server_default=db.func.current_timestamp()) # user = db.relationship(User, lazy='joined', backref='userfeatures') # class Keyword(db.Model): # id = db.Column(db.Integer, primary_key=True) # user_id = db.Column(db.ForeignKey(User.id), nullable=False) # keyword = db.Column(db.String(100)) # created_at = db.Column(db.DateTime, nullable=False, server_default=db.func.current_timestamp()) # user = db.relationship(User, lazy='joined', backref='keywords')
<filename>flaskr/liff/models.py<gh_stars>1-10 # from ast import keyword # from flaskr import db # from flaskr.linebot.models import User # class UserFeature(db.Model): # id = db.Column(db.Integer, primary_key=True) # user_id = db.Column(db.ForeignKey(User.id), nullable=False) # sex = db.Column(db.Integer) # age = db.Column(db.Integer) # genre = db.Column(db.Integer) # budget = db.Column(db.Integer) # created_at = db.Column(db.DateTime, nullable=False, server_default=db.func.current_timestamp()) # user = db.relationship(User, lazy='joined', backref='userfeatures') # class Keyword(db.Model): # id = db.Column(db.Integer, primary_key=True) # user_id = db.Column(db.ForeignKey(User.id), nullable=False) # keyword = db.Column(db.String(100)) # created_at = db.Column(db.DateTime, nullable=False, server_default=db.func.current_timestamp()) # user = db.relationship(User, lazy='joined', backref='keywords')
en
0.350645
# from ast import keyword # from flaskr import db # from flaskr.linebot.models import User # class UserFeature(db.Model): # id = db.Column(db.Integer, primary_key=True) # user_id = db.Column(db.ForeignKey(User.id), nullable=False) # sex = db.Column(db.Integer) # age = db.Column(db.Integer) # genre = db.Column(db.Integer) # budget = db.Column(db.Integer) # created_at = db.Column(db.DateTime, nullable=False, server_default=db.func.current_timestamp()) # user = db.relationship(User, lazy='joined', backref='userfeatures') # class Keyword(db.Model): # id = db.Column(db.Integer, primary_key=True) # user_id = db.Column(db.ForeignKey(User.id), nullable=False) # keyword = db.Column(db.String(100)) # created_at = db.Column(db.DateTime, nullable=False, server_default=db.func.current_timestamp()) # user = db.relationship(User, lazy='joined', backref='keywords')
2.363223
2
django_config_gen/management/commands/print_settings.py
brillgen/django-config-gen
1
6630998
<reponame>brillgen/django-config-gen # -*- coding: utf-8 -*- #Copyright (C) 2010, 2011 <NAME> # #Licensed under a BSD 3-Clause License. See LICENSE file. from django.core.management.base import BaseCommand, CommandError from django.conf import settings from .. import patch_settings import json import copy import logging logger = logging.getLogger(__name__) class NullHandler(logging.Handler): def emit(self, record): pass patch_settings() class Command(BaseCommand): help = 'Prints out settings serialized as JSON.' def handle(self, **options): #remove logging statements from output l = logging.getLogger('') for h in l.handlers: l.removeHandler(h) l.addHandler(NullHandler()) d = {} s_d = settings._wrapped.__dict__ for key in settings._wrapped.__dict__: val = s_d[key] logger.debug('%s: %s' % (key, val)) try: #if settings has something like "import django.conf.global_settings as DEFAULT_SETTINGS" #in it, then json encoding will throw and error. Copying makes #sure modules don't get included. d[key] = copy.copy(val) except Exception as e: logger.error(e) print(json.dumps(d, indent=4, sort_keys=True))
# -*- coding: utf-8 -*- #Copyright (C) 2010, 2011 <NAME> # #Licensed under a BSD 3-Clause License. See LICENSE file. from django.core.management.base import BaseCommand, CommandError from django.conf import settings from .. import patch_settings import json import copy import logging logger = logging.getLogger(__name__) class NullHandler(logging.Handler): def emit(self, record): pass patch_settings() class Command(BaseCommand): help = 'Prints out settings serialized as JSON.' def handle(self, **options): #remove logging statements from output l = logging.getLogger('') for h in l.handlers: l.removeHandler(h) l.addHandler(NullHandler()) d = {} s_d = settings._wrapped.__dict__ for key in settings._wrapped.__dict__: val = s_d[key] logger.debug('%s: %s' % (key, val)) try: #if settings has something like "import django.conf.global_settings as DEFAULT_SETTINGS" #in it, then json encoding will throw and error. Copying makes #sure modules don't get included. d[key] = copy.copy(val) except Exception as e: logger.error(e) print(json.dumps(d, indent=4, sort_keys=True))
en
0.831792
# -*- coding: utf-8 -*- #Copyright (C) 2010, 2011 <NAME> # #Licensed under a BSD 3-Clause License. See LICENSE file. #remove logging statements from output #if settings has something like "import django.conf.global_settings as DEFAULT_SETTINGS" #in it, then json encoding will throw and error. Copying makes #sure modules don't get included.
2.155541
2
renku/service/config.py
almutlue/renku-python
0
6630999
# -*- coding: utf-8 -*- # # Copyright 2020 - Swiss Data Science Center (SDSC) # A partnership between École Polytechnique Fédérale de Lausanne (EPFL) and # Eidgenössische Technische Hochschule Zürich (ETHZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Renku service config.""" import os import tempfile from pathlib import Path import pkg_resources GIT_ACCESS_DENIED_ERROR_CODE = -32000 GIT_UNKNOWN_ERROR_CODE = -32001 RENKU_EXCEPTION_ERROR_CODE = -32100 REDIS_EXCEPTION_ERROR_CODE = -32200 INVALID_HEADERS_ERROR_CODE = -32601 INVALID_PARAMS_ERROR_CODE = -32602 INTERNAL_FAILURE_ERROR_CODE = -32603 HTTP_SERVER_ERROR = -32000 SERVICE_NAME = "Renku Service" OPENAPI_VERSION = "3.0.3" API_VERSION = "v1" PROJECT_CLONE_NO_DEPTH = -1 PROJECT_CLONE_DEPTH_DEFAULT = int(os.getenv("PROJECT_CLONE_DEPTH_DEFAULT", 1)) TEMPLATE_CLONE_DEPTH_DEFAULT = int(os.getenv("TEMPLATE_CLONE_DEPTH_DEFAULT", 0)) CACHE_DIR = os.getenv("CACHE_DIR", os.path.realpath(tempfile.TemporaryDirectory().name)) CACHE_UPLOADS_PATH = Path(CACHE_DIR) / Path("uploads") CACHE_UPLOADS_PATH.mkdir(parents=True, exist_ok=True) CACHE_PROJECTS_PATH = Path(CACHE_DIR) / Path("projects") CACHE_PROJECTS_PATH.mkdir(parents=True, exist_ok=True) TAR_ARCHIVE_CONTENT_TYPE = "application/x-tar" ZIP_ARCHIVE_CONTENT_TYPE = "application/zip" GZ_ARCHIVE_CONTENT_TYPE = "application/x-gzip" SUPPORTED_ARCHIVES = [ TAR_ARCHIVE_CONTENT_TYPE, ZIP_ARCHIVE_CONTENT_TYPE, GZ_ARCHIVE_CONTENT_TYPE, ] # the path prefix on the service SERVICE_PREFIX = os.getenv("CORE_SERVICE_PREFIX", "/") # the reverse proxy prefix SERVICE_API_BASE_PATH = os.getenv("CORE_SERVICE_API_BASE_PATH", "/") # path to the swagger spec API_SPEC_URL = SERVICE_PREFIX.lstrip("/") + "/spec.json" LOGGER_CONFIG_FILE = Path(pkg_resources.resource_filename("renku", "service/logging.yaml"))
# -*- coding: utf-8 -*- # # Copyright 2020 - Swiss Data Science Center (SDSC) # A partnership between École Polytechnique Fédérale de Lausanne (EPFL) and # Eidgenössische Technische Hochschule Zürich (ETHZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Renku service config.""" import os import tempfile from pathlib import Path import pkg_resources GIT_ACCESS_DENIED_ERROR_CODE = -32000 GIT_UNKNOWN_ERROR_CODE = -32001 RENKU_EXCEPTION_ERROR_CODE = -32100 REDIS_EXCEPTION_ERROR_CODE = -32200 INVALID_HEADERS_ERROR_CODE = -32601 INVALID_PARAMS_ERROR_CODE = -32602 INTERNAL_FAILURE_ERROR_CODE = -32603 HTTP_SERVER_ERROR = -32000 SERVICE_NAME = "Renku Service" OPENAPI_VERSION = "3.0.3" API_VERSION = "v1" PROJECT_CLONE_NO_DEPTH = -1 PROJECT_CLONE_DEPTH_DEFAULT = int(os.getenv("PROJECT_CLONE_DEPTH_DEFAULT", 1)) TEMPLATE_CLONE_DEPTH_DEFAULT = int(os.getenv("TEMPLATE_CLONE_DEPTH_DEFAULT", 0)) CACHE_DIR = os.getenv("CACHE_DIR", os.path.realpath(tempfile.TemporaryDirectory().name)) CACHE_UPLOADS_PATH = Path(CACHE_DIR) / Path("uploads") CACHE_UPLOADS_PATH.mkdir(parents=True, exist_ok=True) CACHE_PROJECTS_PATH = Path(CACHE_DIR) / Path("projects") CACHE_PROJECTS_PATH.mkdir(parents=True, exist_ok=True) TAR_ARCHIVE_CONTENT_TYPE = "application/x-tar" ZIP_ARCHIVE_CONTENT_TYPE = "application/zip" GZ_ARCHIVE_CONTENT_TYPE = "application/x-gzip" SUPPORTED_ARCHIVES = [ TAR_ARCHIVE_CONTENT_TYPE, ZIP_ARCHIVE_CONTENT_TYPE, GZ_ARCHIVE_CONTENT_TYPE, ] # the path prefix on the service SERVICE_PREFIX = os.getenv("CORE_SERVICE_PREFIX", "/") # the reverse proxy prefix SERVICE_API_BASE_PATH = os.getenv("CORE_SERVICE_API_BASE_PATH", "/") # path to the swagger spec API_SPEC_URL = SERVICE_PREFIX.lstrip("/") + "/spec.json" LOGGER_CONFIG_FILE = Path(pkg_resources.resource_filename("renku", "service/logging.yaml"))
en
0.76791
# -*- coding: utf-8 -*- # # Copyright 2020 - Swiss Data Science Center (SDSC) # A partnership between École Polytechnique Fédérale de Lausanne (EPFL) and # Eidgenössische Technische Hochschule Zürich (ETHZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Renku service config. # the path prefix on the service # the reverse proxy prefix # path to the swagger spec
1.810425
2
pysagec/models.py
migonzalvar/pysagec
3
6631000
from urllib.parse import urlsplit, parse_qs from .base import Model, Nested, String def key_or_none(qs, key): iterable = qs.get(key, [None]) return iterable[0] class AuthInfo(Model): root_tag = 'mrw:AuthInfo' franchise_code = String('mrw:CodigoFranquicia') subscriber_code = String('mrw:CodigoAbonado') departament_code = String('mrw:CodigoDepartamento', ignore_if_none=True) username = String('mrw:UserName') password = String('<PASSWORD>') @classmethod def from_url(cls, url): url = urlsplit(url) qs = parse_qs(url.query) return cls( username=url.username, password=<PASSWORD>, franchise_code=key_or_none(qs, 'franchise'), subscriber_code=key_or_none(qs, 'subscriber'), departament_code=key_or_none(qs, 'department') ) class Address(Model): root_tag = 'mrw:Direccion' street_type = String('mrw:CodigoTipoVia') street_name = String('mrw:Via') street_number = String('mrw:Numero') remaining_details = String('mrw:Resto') postal_code = String('mrw:CodigoPostal') city = String('mrw:Poblacion') class PickupInfo(Model): root_tag = 'mrw:DatosEntrega' pickup_address = Nested('mrw:Direccion', Address, unwrap=True) vat_number = String('mrw:Nif') recipient_name = String('mrw:Nombre') recipient_phone_number = String('mrw:Telefono') contact_phone_number = String('mrw:Contacto') contact_name = String('mrw:ALaAtencionDe') comments = String('mrw:Observaciones') class Package(Model): root_tag = 'mrw:BultoRequest' height = String('mrw:Alto') length = String('mrw:Largo') width = String('mrw:Ancho') dimension = String('mrw:Dimension') reference = String('mrw:Referencia') weight = String('mrw:Peso') class ServiceInfo(Model): root_tag = 'mrw:DatosServicio' date = String('mrw:Fecha') customer_reference = String('mrw:Referencia') franchise_delivery = String('mrw:EnFranquicia', default='N') service_code = String('mrw:CodigoServicio') packages = Nested('mrw:Bultos', Package, many=True) number_of_packages = String('mrw:NumeroBultos') weight = String('mrw:Peso') delivery_on_saturday = String('mrw:EntregaSabado', default='N') delivery_before_830 = String('mrw:Entrega830', default='N') delivery_after_time = String('mrw:EntregaPartirDe') management = String('mrw:Gestion', default='N') return_back = String('mrw:Retorno', default='N') immediate_confirmation = String('mrw:ConfirmacionInmediata', default='N') reimbursement = String('mrw:Reembolso', default='N') class GetLabel(Model): root_tag = None shipping_number = String('mrw:NumeroEnvio') delimiter = String('mrw:SeparadorNumerosEnvio', ignore_if_none=True) date_range_start = String('mrw:FechaInicioEnvio', ignore_if_none=True) date_range_end = String('mrw:FechaFinEnvio', ignore_if_none=True) label_type = String('mrw:TipoEtiquetaEnvio', default='0') top_margin = String('mrw:ReportTopMargin', default='1100') left_margin = String('mrw:ReportLeftMargin', default=650) class SendResponseResult(Model): root_tag = None message = String('{http://www.mrw.es/}Mensaje') shipping_number = String('{http://www.mrw.es/}NumeroEnvio') request_number = String('{http://www.mrw.es/}NumeroSolicitud') status = String('{http://www.mrw.es/}Estado') url = String('{http://www.mrw.es/}Url') class SendResponse(Model): root_tag = '{http://www.mrw.es/}TransmEnvioResponse' result = Nested( '{http://www.mrw.es/}TransmEnvioResult', SendResponseResult, unwrap=True ) class LabelResponseResult(Model): root_tag = None file = String('{http://www.mrw.es/}EtiquetaFile') message = String('{http://www.mrw.es/}Mensaje') status = String('{http://www.mrw.es/}Estado') class LabelResponse(Model): root_tag = '{http://www.mrw.es/}GetEtiquetaEnvioResponse' result = Nested( '{http://www.mrw.es/}GetEtiquetaEnvioResult', LabelResponseResult, unwrap=True )
from urllib.parse import urlsplit, parse_qs from .base import Model, Nested, String def key_or_none(qs, key): iterable = qs.get(key, [None]) return iterable[0] class AuthInfo(Model): root_tag = 'mrw:AuthInfo' franchise_code = String('mrw:CodigoFranquicia') subscriber_code = String('mrw:CodigoAbonado') departament_code = String('mrw:CodigoDepartamento', ignore_if_none=True) username = String('mrw:UserName') password = String('<PASSWORD>') @classmethod def from_url(cls, url): url = urlsplit(url) qs = parse_qs(url.query) return cls( username=url.username, password=<PASSWORD>, franchise_code=key_or_none(qs, 'franchise'), subscriber_code=key_or_none(qs, 'subscriber'), departament_code=key_or_none(qs, 'department') ) class Address(Model): root_tag = 'mrw:Direccion' street_type = String('mrw:CodigoTipoVia') street_name = String('mrw:Via') street_number = String('mrw:Numero') remaining_details = String('mrw:Resto') postal_code = String('mrw:CodigoPostal') city = String('mrw:Poblacion') class PickupInfo(Model): root_tag = 'mrw:DatosEntrega' pickup_address = Nested('mrw:Direccion', Address, unwrap=True) vat_number = String('mrw:Nif') recipient_name = String('mrw:Nombre') recipient_phone_number = String('mrw:Telefono') contact_phone_number = String('mrw:Contacto') contact_name = String('mrw:ALaAtencionDe') comments = String('mrw:Observaciones') class Package(Model): root_tag = 'mrw:BultoRequest' height = String('mrw:Alto') length = String('mrw:Largo') width = String('mrw:Ancho') dimension = String('mrw:Dimension') reference = String('mrw:Referencia') weight = String('mrw:Peso') class ServiceInfo(Model): root_tag = 'mrw:DatosServicio' date = String('mrw:Fecha') customer_reference = String('mrw:Referencia') franchise_delivery = String('mrw:EnFranquicia', default='N') service_code = String('mrw:CodigoServicio') packages = Nested('mrw:Bultos', Package, many=True) number_of_packages = String('mrw:NumeroBultos') weight = String('mrw:Peso') delivery_on_saturday = String('mrw:EntregaSabado', default='N') delivery_before_830 = String('mrw:Entrega830', default='N') delivery_after_time = String('mrw:EntregaPartirDe') management = String('mrw:Gestion', default='N') return_back = String('mrw:Retorno', default='N') immediate_confirmation = String('mrw:ConfirmacionInmediata', default='N') reimbursement = String('mrw:Reembolso', default='N') class GetLabel(Model): root_tag = None shipping_number = String('mrw:NumeroEnvio') delimiter = String('mrw:SeparadorNumerosEnvio', ignore_if_none=True) date_range_start = String('mrw:FechaInicioEnvio', ignore_if_none=True) date_range_end = String('mrw:FechaFinEnvio', ignore_if_none=True) label_type = String('mrw:TipoEtiquetaEnvio', default='0') top_margin = String('mrw:ReportTopMargin', default='1100') left_margin = String('mrw:ReportLeftMargin', default=650) class SendResponseResult(Model): root_tag = None message = String('{http://www.mrw.es/}Mensaje') shipping_number = String('{http://www.mrw.es/}NumeroEnvio') request_number = String('{http://www.mrw.es/}NumeroSolicitud') status = String('{http://www.mrw.es/}Estado') url = String('{http://www.mrw.es/}Url') class SendResponse(Model): root_tag = '{http://www.mrw.es/}TransmEnvioResponse' result = Nested( '{http://www.mrw.es/}TransmEnvioResult', SendResponseResult, unwrap=True ) class LabelResponseResult(Model): root_tag = None file = String('{http://www.mrw.es/}EtiquetaFile') message = String('{http://www.mrw.es/}Mensaje') status = String('{http://www.mrw.es/}Estado') class LabelResponse(Model): root_tag = '{http://www.mrw.es/}GetEtiquetaEnvioResponse' result = Nested( '{http://www.mrw.es/}GetEtiquetaEnvioResult', LabelResponseResult, unwrap=True )
none
1
2.463649
2
scripts/models/k_fold_model.py
daniele21/DL_soccer_prediction_v2
0
6631001
<reponame>daniele21/DL_soccer_prediction_v2 from torch.utils.data import DataLoader import numpy as np import torch from tqdm import tqdm from copy import deepcopy from torch.multiprocessing import Process, set_start_method from scripts.constants.configs import HOME, AWAY from scripts.models.base import Base_Model from scripts.models.model_utils import get_device_from_name from scripts.utils.loading import load_model from core.logger.logging import logger from core.file_manager.saving import save_model, save_json class K_fold_model(): def __init__(self, network, params, dataloader): self.name = params['name'] self.seed = params['seed'] self.device = get_device_from_name(params['device']) self.n_folds = len(dataloader['train']) trainloaders = [DataLoader(d, batch_size=d.batch_size, shuffle=False) for d in dataloader['train']] evalloaders = [DataLoader(d, batch_size=d.batch_size, shuffle=False) for d in dataloader['eval']] self.dataloaders = [{'train':trainloader, 'eval':evalloader} for trainloader, evalloader in zip(trainloaders, evalloaders)] self.models = [Base_Model(deepcopy(network), params, self.dataloaders[i]) for i in range(self.n_folds)] for i, model in enumerate(self.models): model.save_dir += f'fold_{i}/' self.save_dir = params['save_dir'] if 'save_dir' in list(params.keys()) else None # REPRODUCIBILITY np.random.seed(self.seed) torch.manual_seed(self.seed) # Dataset size last_train_event = trainloaders[-1].dataset.last_n_event() last_eval_event = evalloaders[-1].dataset.last_n_event() print(f'> Last Training Index: {last_train_event}') print(f'> Last Evaluation Index: {last_eval_event}') def train(self, epochs, patience=None): try: set_start_method('spawn') except RuntimeError: pass for model in tqdm(self.models, desc='> Folds '): p = Process(target=model.train, args=(epochs, patience)) p.start() p.join() updated_models = [] for model in self.models: ckp_model = f'{model.save_dir}{model.name}.pth' updated_models.append(load_model(ckp_model)) self.models = updated_models if(self.save_dir is not None): filepath = f'{self.save_dir}{self.name}.pth' save_model(self, filepath) losses, mean_loss = self.get_losses() model_loss = {'losses':losses, 'mean_loss':mean_loss} filepath = f'{self.save_dir}losses.json' save_json(model_loss, filepath) return def predict(self, testloader, field=None): """ Inference with all models, in a dict Args: testloader: dataloader containing the test data field: type of match [HOME / AWAY] Returns: preds: dict{ KEY: model number VALUE: list of predictions} """ model_name = str(field).lower() assert field == HOME or field == AWAY, 'ERROR - model predict: WRONG model name. Give "home" or "away"' preds = {} for i, model in enumerate(self.models): if (model_name == HOME): # logger.info('> Calling Home Network') field_net = model.model.home_network elif (model_name == AWAY): # logger.info('> Calling Away Network') field_net = model.model.away_network else: raise ValueError('Model - predict: Wrong model name') model_preds = [] with torch.no_grad(): for x in testloader: x = torch.Tensor(x).to(self.device) out = field_net(x) out = out.squeeze() model_preds.append(out.item()) preds[i] = model_preds return preds[i] def get_losses(self): losses = {'train':[], 'eval':[]} for model in self.models: losses['train'].append(model.losses['train'][-1]) losses['eval'].append(model.losses['eval'][-1]) mean_loss = {'train':np.mean(losses['train']), 'eval':np.mean(losses['eval'])} return losses, mean_loss
from torch.utils.data import DataLoader import numpy as np import torch from tqdm import tqdm from copy import deepcopy from torch.multiprocessing import Process, set_start_method from scripts.constants.configs import HOME, AWAY from scripts.models.base import Base_Model from scripts.models.model_utils import get_device_from_name from scripts.utils.loading import load_model from core.logger.logging import logger from core.file_manager.saving import save_model, save_json class K_fold_model(): def __init__(self, network, params, dataloader): self.name = params['name'] self.seed = params['seed'] self.device = get_device_from_name(params['device']) self.n_folds = len(dataloader['train']) trainloaders = [DataLoader(d, batch_size=d.batch_size, shuffle=False) for d in dataloader['train']] evalloaders = [DataLoader(d, batch_size=d.batch_size, shuffle=False) for d in dataloader['eval']] self.dataloaders = [{'train':trainloader, 'eval':evalloader} for trainloader, evalloader in zip(trainloaders, evalloaders)] self.models = [Base_Model(deepcopy(network), params, self.dataloaders[i]) for i in range(self.n_folds)] for i, model in enumerate(self.models): model.save_dir += f'fold_{i}/' self.save_dir = params['save_dir'] if 'save_dir' in list(params.keys()) else None # REPRODUCIBILITY np.random.seed(self.seed) torch.manual_seed(self.seed) # Dataset size last_train_event = trainloaders[-1].dataset.last_n_event() last_eval_event = evalloaders[-1].dataset.last_n_event() print(f'> Last Training Index: {last_train_event}') print(f'> Last Evaluation Index: {last_eval_event}') def train(self, epochs, patience=None): try: set_start_method('spawn') except RuntimeError: pass for model in tqdm(self.models, desc='> Folds '): p = Process(target=model.train, args=(epochs, patience)) p.start() p.join() updated_models = [] for model in self.models: ckp_model = f'{model.save_dir}{model.name}.pth' updated_models.append(load_model(ckp_model)) self.models = updated_models if(self.save_dir is not None): filepath = f'{self.save_dir}{self.name}.pth' save_model(self, filepath) losses, mean_loss = self.get_losses() model_loss = {'losses':losses, 'mean_loss':mean_loss} filepath = f'{self.save_dir}losses.json' save_json(model_loss, filepath) return def predict(self, testloader, field=None): """ Inference with all models, in a dict Args: testloader: dataloader containing the test data field: type of match [HOME / AWAY] Returns: preds: dict{ KEY: model number VALUE: list of predictions} """ model_name = str(field).lower() assert field == HOME or field == AWAY, 'ERROR - model predict: WRONG model name. Give "home" or "away"' preds = {} for i, model in enumerate(self.models): if (model_name == HOME): # logger.info('> Calling Home Network') field_net = model.model.home_network elif (model_name == AWAY): # logger.info('> Calling Away Network') field_net = model.model.away_network else: raise ValueError('Model - predict: Wrong model name') model_preds = [] with torch.no_grad(): for x in testloader: x = torch.Tensor(x).to(self.device) out = field_net(x) out = out.squeeze() model_preds.append(out.item()) preds[i] = model_preds return preds[i] def get_losses(self): losses = {'train':[], 'eval':[]} for model in self.models: losses['train'].append(model.losses['train'][-1]) losses['eval'].append(model.losses['eval'][-1]) mean_loss = {'train':np.mean(losses['train']), 'eval':np.mean(losses['eval'])} return losses, mean_loss
en
0.411117
# REPRODUCIBILITY # Dataset size Inference with all models, in a dict Args: testloader: dataloader containing the test data field: type of match [HOME / AWAY] Returns: preds: dict{ KEY: model number VALUE: list of predictions} # logger.info('> Calling Home Network') # logger.info('> Calling Away Network')
2.113641
2
kaldi_recipes/local/make_train_dev_test_splits.py
skesiraju/indic-kws
0
6631002
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # author : <NAME> # e-mail : kesiraju[AT]fit[DOT]vutbr[DOT]cz # Date created : 03 Jun 2021 # Last modified : 03 Jun 2021 """ Get total duration on utterances. If input is utt2dur, the calculation is straightforward. If the input is wav.scp then will use sox command to get the duration of each recording. """ import os import sys import argparse from random import shuffle import subprocess import numpy as np def get_uid2dur_mapping(data_dir, set_name, uid2dur): """ Get utterance ID to duration (sec) mapping """ utt2dur_f = os.path.join(data_dir, f"{set_name}/utt2dur") wavscp_f = os.path.join(data_dir, f"{set_name}/wav.scp") if os.path.exists(utt2dur_f): with open(utt2dur_f, "r", encoding="utf-8") as fpr: for line in fpr: parts = line.strip().split() if len(parts) != 2: print( "Each line should have two columns. Found:", parts, "at line", lno, file=sys.stderr, ) sys.exit() uid2dur[parts[0]] = float(parts[1]) elif os.path.exists(wavscp_f): with open(wavscp_f, "r", encoding="utf-8") as fpr: for line in fpr: parts = line.strip().split() res = subprocess.run(["soxi", "-D", parts[1]], capture_output=True) uid2dur[parts[0]] = float(res.stdout) return uid2dur def load_key_value_from_text(fname, id2text, full_line=True): with open(fname, "r", encoding="utf-8") as fpr: for line in fpr: parts = line.strip().split(" ", 1) if parts[0] not in id2text: if full_line: id2text[parts[0]] = line.strip() else: id2text[parts[0]] = parts[1].strip() else: print("Duplicate ID:", parts[0]) sys.exit() return id2text def save_subset(in_files, out_ids, out_file): id2text = {} for in_file in in_files: id2text = load_key_value_from_text(in_file, id2text, True) with open(out_file, "w", encoding="utf-8") as fpw: for uid in sorted(out_ids): fpw.write(id2text[uid].strip() + "\n") print(out_file, "saved.") def get_utt2uid_mapping(text_f, utt2uid): if not os.path.exists(text_f): print("get_utt2uid_mapping:", text_f, "FILE NOT FOUND.") sys.exit() lno = 0 with open(text_f, "r", encoding="utf-8") as fpr: for line in fpr: lno += 1 uid, text = line.strip().split(" ", 1) if text in utt2uid: utt2uid[text].append(uid) else: utt2uid[text] = [uid] return utt2uid def main(): """ main method """ args = parse_arguments() utt2uid = {} # utterance text to utterance ID mapping uid2dur = {} # utterance ID to duration mapping for set_name in ["train", "test"]: if args.set_name != "both": if args.set_name != set_name: continue print("processing", set_name, "set ..") text_f = os.path.join(args.data_dir, f"{set_name}/text") utt2uid = get_utt2uid_mapping(text_f, utt2uid) uid2dur = get_uid2dur_mapping(args.data_dir, f"{set_name}", uid2dur) uid2text = {} for text, uids in utt2uid.items(): for uid in uids: uid2text[uid] = text print( "# utt2uid:", len(utt2uid), " | # uid2text:", len(uid2text), "| # uid2dur:", len(uid2dur), ) cntbin2uids = ( {} ) # nested dict {bin_1: {utt_11: [uid_11]..}, bin_2: {utt_22: [uid_221, uid_222], ...}, ...} utt2avgdur = {} avg_uniq_dur = 0.0 for utt, uids in utt2uid.items(): n_uids = len(uids) sub_dict = {} if n_uids in cntbin2uids: sub_dict = cntbin2uids[n_uids] sub_dict[utt] = uids cntbin2uids[n_uids] = sub_dict utt_avg_dur = 0.0 for uid in uids: utt_avg_dur += uid2dur[uid] utt_avg_dur /= len(uids) utt2avgdur[utt] = utt_avg_dur avg_uniq_dur += utt_avg_dur n_utts = 0 for i in cntbin2uids: n_utts += i * len(cntbin2uids[i]) print("# utts:", n_utts) total_dur = 0.0 for uid, dur in uid2dur.items(): total_dur += dur print("total dur: {:.2f} hrs".format(total_dur / 3600)) print("uniq utt dur: {:.2f} hrs".format(avg_uniq_dur / 3600)) desired_total_dur = 5 * 3600.0 desired_uniq_dur = avg_uniq_dur * 0.15 print( "desired uniq utt dur for each dev and test sets: {:.2f} min".format( desired_uniq_dur / 60.0 ) ) bin_sizes = [] for i in range(500): if i not in cntbin2uids: bin_sizes.append(0) else: bin_sizes.append(len(cntbin2uids[i])) selected_utts = {"dev": set(), "test": set()} selected_uids = {"dev": [], "test": []} selected_set = set() percent = args.percent for set_name in ["dev", "test"]: obt_dur = 0.0 cntbin_thresh = 1 flag = False while obt_dur < desired_uniq_dur: for i in range(500): if i not in cntbin2uids: continue sub_dict = cntbin2uids[i] max_utts_per_bin = int(len(sub_dict) * percent) j = 0 for utt in sub_dict: if utt in selected_set: continue obt_dur += utt2avgdur[utt] selected_utts[set_name].add(utt) selected_set.add(utt) j += 1 if obt_dur > desired_uniq_dur: flag = True break if j > max_utts_per_bin: print( "{:2d} {:4d} {:6.2f}/{:6.2f}".format( i, len(selected_utts[set_name]), obt_dur, desired_uniq_dur, ) ) break if flag: break set_dur = 0. set_uids = [] for utt in selected_utts[set_name]: for uid in utt2uid[utt]: set_dur += uid2dur[uid] set_uids.append(uid) selected_uids[set_name] = sorted(set_uids) print(set_name, "dur: {:.2f}".format(set_dur/3600.)) if args.set_name == 'train': break print('utts in dev + test:', len(selected_set)) all_uids = set(list(uid2dur.keys())) train_set = all_uids - (set(selected_uids['dev']) | set(selected_uids['test'])) train_uids = sorted(list(train_set)) print(len(all_uids), len(train_uids), len(selected_uids['dev']), len(selected_uids['test'])) os.makedirs(args.out_dir, exist_ok=True) dev_dur = 0.0 for uid in selected_uids['dev']: dev_dur += uid2dur[uid] print("Dev dur: {:.1f}".format(dev_dur / 3600)) if os.path.exists(os.path.join(args.out_dir, "/train/text")): print("Files present in", args.out_dir) sys.exit() else: with open( os.path.join(args.out_dir, "train.ids"), "w", encoding="utf-8" ) as fpw: for uid in train_uids: fpw.write(uid + "\n") with open(os.path.join(args.out_dir, "dev.ids"), "w", encoding="utf-8") as fpw: for uid in selected_uids['dev']: fpw.write(uid + "\n") if selected_uids['test']: with open(os.path.join(args.out_dir, "test.ids"), "w", encoding="utf-8") as fpw: for uid in selected_uids['test']: fpw.write(uid + "\n") uids = {"train": train_uids, "dev": selected_uids['dev'], "test": selected_uids['test']} for set_name in ["train", "dev", "test"]: os.makedirs(args.out_dir + "/" + set_name, exist_ok=True) for base in ["text", "utt2spk", "wav.scp"]: main_f = [args.data_dir + f"train/{base}", args.data_dir + f"test/{base}"] out_f = args.out_dir + f"/{set_name}/{base}" if uids[set_name]: save_subset(main_f, uids[set_name], out_f) def parse_arguments(): """ parse command line arguments """ parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("data_dir", help="path to data dir") parser.add_argument("out_dir", help="path to out dir to save new splits") parser.add_argument("-percent", type=float, default=0.15, help="percentage of dev and test") parser.add_argument( "-set_name", choices=["train", "test", "both"], default="both", type=str ) args = parser.parse_args() return args if __name__ == "__main__": main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # author : <NAME> # e-mail : kesiraju[AT]fit[DOT]vutbr[DOT]cz # Date created : 03 Jun 2021 # Last modified : 03 Jun 2021 """ Get total duration on utterances. If input is utt2dur, the calculation is straightforward. If the input is wav.scp then will use sox command to get the duration of each recording. """ import os import sys import argparse from random import shuffle import subprocess import numpy as np def get_uid2dur_mapping(data_dir, set_name, uid2dur): """ Get utterance ID to duration (sec) mapping """ utt2dur_f = os.path.join(data_dir, f"{set_name}/utt2dur") wavscp_f = os.path.join(data_dir, f"{set_name}/wav.scp") if os.path.exists(utt2dur_f): with open(utt2dur_f, "r", encoding="utf-8") as fpr: for line in fpr: parts = line.strip().split() if len(parts) != 2: print( "Each line should have two columns. Found:", parts, "at line", lno, file=sys.stderr, ) sys.exit() uid2dur[parts[0]] = float(parts[1]) elif os.path.exists(wavscp_f): with open(wavscp_f, "r", encoding="utf-8") as fpr: for line in fpr: parts = line.strip().split() res = subprocess.run(["soxi", "-D", parts[1]], capture_output=True) uid2dur[parts[0]] = float(res.stdout) return uid2dur def load_key_value_from_text(fname, id2text, full_line=True): with open(fname, "r", encoding="utf-8") as fpr: for line in fpr: parts = line.strip().split(" ", 1) if parts[0] not in id2text: if full_line: id2text[parts[0]] = line.strip() else: id2text[parts[0]] = parts[1].strip() else: print("Duplicate ID:", parts[0]) sys.exit() return id2text def save_subset(in_files, out_ids, out_file): id2text = {} for in_file in in_files: id2text = load_key_value_from_text(in_file, id2text, True) with open(out_file, "w", encoding="utf-8") as fpw: for uid in sorted(out_ids): fpw.write(id2text[uid].strip() + "\n") print(out_file, "saved.") def get_utt2uid_mapping(text_f, utt2uid): if not os.path.exists(text_f): print("get_utt2uid_mapping:", text_f, "FILE NOT FOUND.") sys.exit() lno = 0 with open(text_f, "r", encoding="utf-8") as fpr: for line in fpr: lno += 1 uid, text = line.strip().split(" ", 1) if text in utt2uid: utt2uid[text].append(uid) else: utt2uid[text] = [uid] return utt2uid def main(): """ main method """ args = parse_arguments() utt2uid = {} # utterance text to utterance ID mapping uid2dur = {} # utterance ID to duration mapping for set_name in ["train", "test"]: if args.set_name != "both": if args.set_name != set_name: continue print("processing", set_name, "set ..") text_f = os.path.join(args.data_dir, f"{set_name}/text") utt2uid = get_utt2uid_mapping(text_f, utt2uid) uid2dur = get_uid2dur_mapping(args.data_dir, f"{set_name}", uid2dur) uid2text = {} for text, uids in utt2uid.items(): for uid in uids: uid2text[uid] = text print( "# utt2uid:", len(utt2uid), " | # uid2text:", len(uid2text), "| # uid2dur:", len(uid2dur), ) cntbin2uids = ( {} ) # nested dict {bin_1: {utt_11: [uid_11]..}, bin_2: {utt_22: [uid_221, uid_222], ...}, ...} utt2avgdur = {} avg_uniq_dur = 0.0 for utt, uids in utt2uid.items(): n_uids = len(uids) sub_dict = {} if n_uids in cntbin2uids: sub_dict = cntbin2uids[n_uids] sub_dict[utt] = uids cntbin2uids[n_uids] = sub_dict utt_avg_dur = 0.0 for uid in uids: utt_avg_dur += uid2dur[uid] utt_avg_dur /= len(uids) utt2avgdur[utt] = utt_avg_dur avg_uniq_dur += utt_avg_dur n_utts = 0 for i in cntbin2uids: n_utts += i * len(cntbin2uids[i]) print("# utts:", n_utts) total_dur = 0.0 for uid, dur in uid2dur.items(): total_dur += dur print("total dur: {:.2f} hrs".format(total_dur / 3600)) print("uniq utt dur: {:.2f} hrs".format(avg_uniq_dur / 3600)) desired_total_dur = 5 * 3600.0 desired_uniq_dur = avg_uniq_dur * 0.15 print( "desired uniq utt dur for each dev and test sets: {:.2f} min".format( desired_uniq_dur / 60.0 ) ) bin_sizes = [] for i in range(500): if i not in cntbin2uids: bin_sizes.append(0) else: bin_sizes.append(len(cntbin2uids[i])) selected_utts = {"dev": set(), "test": set()} selected_uids = {"dev": [], "test": []} selected_set = set() percent = args.percent for set_name in ["dev", "test"]: obt_dur = 0.0 cntbin_thresh = 1 flag = False while obt_dur < desired_uniq_dur: for i in range(500): if i not in cntbin2uids: continue sub_dict = cntbin2uids[i] max_utts_per_bin = int(len(sub_dict) * percent) j = 0 for utt in sub_dict: if utt in selected_set: continue obt_dur += utt2avgdur[utt] selected_utts[set_name].add(utt) selected_set.add(utt) j += 1 if obt_dur > desired_uniq_dur: flag = True break if j > max_utts_per_bin: print( "{:2d} {:4d} {:6.2f}/{:6.2f}".format( i, len(selected_utts[set_name]), obt_dur, desired_uniq_dur, ) ) break if flag: break set_dur = 0. set_uids = [] for utt in selected_utts[set_name]: for uid in utt2uid[utt]: set_dur += uid2dur[uid] set_uids.append(uid) selected_uids[set_name] = sorted(set_uids) print(set_name, "dur: {:.2f}".format(set_dur/3600.)) if args.set_name == 'train': break print('utts in dev + test:', len(selected_set)) all_uids = set(list(uid2dur.keys())) train_set = all_uids - (set(selected_uids['dev']) | set(selected_uids['test'])) train_uids = sorted(list(train_set)) print(len(all_uids), len(train_uids), len(selected_uids['dev']), len(selected_uids['test'])) os.makedirs(args.out_dir, exist_ok=True) dev_dur = 0.0 for uid in selected_uids['dev']: dev_dur += uid2dur[uid] print("Dev dur: {:.1f}".format(dev_dur / 3600)) if os.path.exists(os.path.join(args.out_dir, "/train/text")): print("Files present in", args.out_dir) sys.exit() else: with open( os.path.join(args.out_dir, "train.ids"), "w", encoding="utf-8" ) as fpw: for uid in train_uids: fpw.write(uid + "\n") with open(os.path.join(args.out_dir, "dev.ids"), "w", encoding="utf-8") as fpw: for uid in selected_uids['dev']: fpw.write(uid + "\n") if selected_uids['test']: with open(os.path.join(args.out_dir, "test.ids"), "w", encoding="utf-8") as fpw: for uid in selected_uids['test']: fpw.write(uid + "\n") uids = {"train": train_uids, "dev": selected_uids['dev'], "test": selected_uids['test']} for set_name in ["train", "dev", "test"]: os.makedirs(args.out_dir + "/" + set_name, exist_ok=True) for base in ["text", "utt2spk", "wav.scp"]: main_f = [args.data_dir + f"train/{base}", args.data_dir + f"test/{base}"] out_f = args.out_dir + f"/{set_name}/{base}" if uids[set_name]: save_subset(main_f, uids[set_name], out_f) def parse_arguments(): """ parse command line arguments """ parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("data_dir", help="path to data dir") parser.add_argument("out_dir", help="path to out dir to save new splits") parser.add_argument("-percent", type=float, default=0.15, help="percentage of dev and test") parser.add_argument( "-set_name", choices=["train", "test", "both"], default="both", type=str ) args = parser.parse_args() return args if __name__ == "__main__": main()
en
0.708219
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # author : <NAME> # e-mail : kesiraju[AT]fit[DOT]vutbr[DOT]cz # Date created : 03 Jun 2021 # Last modified : 03 Jun 2021 Get total duration on utterances. If input is utt2dur, the calculation is straightforward. If the input is wav.scp then will use sox command to get the duration of each recording. Get utterance ID to duration (sec) mapping main method # utterance text to utterance ID mapping # utterance ID to duration mapping # uid2text:", # uid2dur:", # nested dict {bin_1: {utt_11: [uid_11]..}, bin_2: {utt_22: [uid_221, uid_222], ...}, ...} parse command line arguments
2.698177
3
algorithms/implementation/angry_professor.py
avenet/hackerrank
0
6631003
cases = int(input()) for cases in range(cases): n, k = map( int, input().split() ) arrivals = map(int, input().split()) early_comers = len([x for x in arrivals if x <= 0]) if early_comers >= k: print('NO') else: print('YES')
cases = int(input()) for cases in range(cases): n, k = map( int, input().split() ) arrivals = map(int, input().split()) early_comers = len([x for x in arrivals if x <= 0]) if early_comers >= k: print('NO') else: print('YES')
none
1
3.106714
3
Week 5 - 03.03.2021 DAA Lab/ActivitySelection_Day5.py
abhisheks008/Design-and-Analysis-Algorithm-Lab-4th-Semester
4
6631004
# Author : <NAME> # Q2. Activity Selection problem using Python 3 # Design analysis and Algorithm Problems # difficulty : medium # score : 10 def printMaxActivities(start , finish): n = len(start) z = 1 i = 0 for j in range(1,n): if start[j] >= finish[i]: z = z + 1 i = j print (z) # Author : <NAME> n = int(input()) start = list(map(int, input().strip().split())) finish = list(map(int, input().strip().split())) printMaxActivities(start , finish)
# Author : <NAME> # Q2. Activity Selection problem using Python 3 # Design analysis and Algorithm Problems # difficulty : medium # score : 10 def printMaxActivities(start , finish): n = len(start) z = 1 i = 0 for j in range(1,n): if start[j] >= finish[i]: z = z + 1 i = j print (z) # Author : <NAME> n = int(input()) start = list(map(int, input().strip().split())) finish = list(map(int, input().strip().split())) printMaxActivities(start , finish)
en
0.666973
# Author : <NAME> # Q2. Activity Selection problem using Python 3 # Design analysis and Algorithm Problems # difficulty : medium # score : 10 # Author : <NAME>
3.504249
4
lib/datasets/imagenet.py
j40903272/bottom-up-attention-py3
0
6631005
from __future__ import print_function # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- from future import standard_library standard_library.install_aliases() from builtins import zip from builtins import str from builtins import range import datasets import datasets.imagenet import os, sys from datasets.imdb import imdb import xml.dom.minidom as minidom import numpy as np import scipy.sparse import scipy.io as sio import utils.cython_bbox import pickle import subprocess class imagenet(imdb): def __init__(self, image_set, devkit_path, data_path): imdb.__init__(self, image_set) self._image_set = image_set self._devkit_path = devkit_path self._data_path = data_path synsets_image = sio.loadmat(os.path.join(self._devkit_path, 'data', 'meta_det.mat')) synsets_video = sio.loadmat(os.path.join(self._devkit_path, 'data', 'meta_vid.mat')) self._classes_image = ('__background__',) self._wnid_image = (0,) self._classes = ('__background__',) self._wnid = (0,) for i in range(200): self._classes_image = self._classes_image + (synsets_image['synsets'][0][i][2][0],) self._wnid_image = self._wnid_image + (synsets_image['synsets'][0][i][1][0],) for i in range(30): self._classes = self._classes + (synsets_video['synsets'][0][i][2][0],) self._wnid = self._wnid + (synsets_video['synsets'][0][i][1][0],) self._wnid_to_ind_image = dict(list(zip(self._wnid_image, range(201)))) self._class_to_ind_image = dict(list(zip(self._classes_image, range(201)))) self._wnid_to_ind = dict(list(zip(self._wnid, range(31)))) self._class_to_ind = dict(list(zip(self._classes, range(31)))) #check for valid intersection between video and image classes self._valid_image_flag = [0]*201 for i in range(1,201): if self._wnid_image[i] in self._wnid_to_ind: self._valid_image_flag[i] = 1 self._image_ext = ['.JPEG'] self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb # Specific config options self.config = {'cleanup' : True, 'use_salt' : True, 'top_k' : 2000} assert os.path.exists(self._devkit_path), 'Devkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), 'Path does not exist: {}'.format(self._data_path) def image_path_at(self, i): """ Return the absolute path to image i in the image sequence. """ return self.image_path_from_index(self._image_index[i]) def image_path_from_index(self, index): """ Construct an image path from the image's "index" identifier. """ image_path = os.path.join(self._data_path, 'Data', self._image_set, index + self._image_ext[0]) assert os.path.exists(image_path), 'path does not exist: {}'.format(image_path) return image_path def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ # Example path to image set file: # self._data_path + /ImageSets/val.txt if self._image_set == 'train': image_set_file = os.path.join(self._data_path, 'ImageSets', 'trainr.txt') image_index = [] if os.path.exists(image_set_file): f = open(image_set_file, 'r') data = f.read().split() for lines in data: if lines != '': image_index.append(lines) f.close() return image_index for i in range(1,31): print(i) image_set_file = os.path.join(self._data_path, 'ImageSets', 'train_' + str(i) + '.txt') with open(image_set_file) as f: tmp_index = [x.strip() for x in f.readlines()] vtmp_index = [] for line in tmp_index: image_list = os.popen('ls ' + self._data_path + '/Data/train/' + line + '/*.JPEG').read().split() tmp_list = [] for imgs in image_list: tmp_list.append(imgs[:-5]) vtmp_index = vtmp_index + tmp_list num_lines = len(vtmp_index) ids = np.random.permutation(num_lines) count = 0 while count < 2000: image_index.append(vtmp_index[ids[count % num_lines]]) count = count + 1 for i in range(1,201): if self._valid_image_flag[i] == 1: image_set_file = os.path.join(self._data_path, 'ImageSets', 'train_pos_' + str(i) + '.txt') with open(image_set_file) as f: tmp_index = [x.strip() for x in f.readlines()] num_lines = len(tmp_index) ids = np.random.permutation(num_lines) count = 0 while count < 2000: image_index.append(tmp_index[ids[count % num_lines]]) count = count + 1 image_set_file = os.path.join(self._data_path, 'ImageSets', 'trainr.txt') f = open(image_set_file, 'w') for lines in image_index: f.write(lines + '\n') f.close() else: image_set_file = os.path.join(self._data_path, 'ImageSets', 'val.txt') with open(image_set_file) as f: image_index = [x.strip() for x in f.readlines()] return image_index def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = pickle.load(fid) print('{} gt roidb loaded from {}'.format(self.name, cache_file)) return roidb gt_roidb = [self._load_imagenet_annotation(index) for index in self.image_index] with open(cache_file, 'wb') as fid: pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL) print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb def _load_imagenet_annotation(self, index): """ Load image and bounding boxes info from txt files of imagenet. """ filename = os.path.join(self._data_path, 'Annotations', self._image_set, index + '.xml') # print 'Loading: {}'.format(filename) def get_data_from_tag(node, tag): return node.getElementsByTagName(tag)[0].childNodes[0].data with open(filename) as f: data = minidom.parseString(f.read()) objs = data.getElementsByTagName('object') num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) # Load object bounding boxes into a data frame. for ix, obj in enumerate(objs): x1 = float(get_data_from_tag(obj, 'xmin')) y1 = float(get_data_from_tag(obj, 'ymin')) x2 = float(get_data_from_tag(obj, 'xmax')) y2 = float(get_data_from_tag(obj, 'ymax')) cls = self._wnid_to_ind[ str(get_data_from_tag(obj, "name")).lower().strip()] boxes[ix, :] = [x1, y1, x2, y2] gt_classes[ix] = cls overlaps[ix, cls] = 1.0 overlaps = scipy.sparse.csr_matrix(overlaps) return {'boxes' : boxes, 'gt_classes': gt_classes, 'gt_overlaps' : overlaps, 'flipped' : False} if __name__ == '__main__': d = datasets.imagenet('val', '') res = d.roidb from IPython import embed; embed()
from __future__ import print_function # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- from future import standard_library standard_library.install_aliases() from builtins import zip from builtins import str from builtins import range import datasets import datasets.imagenet import os, sys from datasets.imdb import imdb import xml.dom.minidom as minidom import numpy as np import scipy.sparse import scipy.io as sio import utils.cython_bbox import pickle import subprocess class imagenet(imdb): def __init__(self, image_set, devkit_path, data_path): imdb.__init__(self, image_set) self._image_set = image_set self._devkit_path = devkit_path self._data_path = data_path synsets_image = sio.loadmat(os.path.join(self._devkit_path, 'data', 'meta_det.mat')) synsets_video = sio.loadmat(os.path.join(self._devkit_path, 'data', 'meta_vid.mat')) self._classes_image = ('__background__',) self._wnid_image = (0,) self._classes = ('__background__',) self._wnid = (0,) for i in range(200): self._classes_image = self._classes_image + (synsets_image['synsets'][0][i][2][0],) self._wnid_image = self._wnid_image + (synsets_image['synsets'][0][i][1][0],) for i in range(30): self._classes = self._classes + (synsets_video['synsets'][0][i][2][0],) self._wnid = self._wnid + (synsets_video['synsets'][0][i][1][0],) self._wnid_to_ind_image = dict(list(zip(self._wnid_image, range(201)))) self._class_to_ind_image = dict(list(zip(self._classes_image, range(201)))) self._wnid_to_ind = dict(list(zip(self._wnid, range(31)))) self._class_to_ind = dict(list(zip(self._classes, range(31)))) #check for valid intersection between video and image classes self._valid_image_flag = [0]*201 for i in range(1,201): if self._wnid_image[i] in self._wnid_to_ind: self._valid_image_flag[i] = 1 self._image_ext = ['.JPEG'] self._image_index = self._load_image_set_index() # Default to roidb handler self._roidb_handler = self.gt_roidb # Specific config options self.config = {'cleanup' : True, 'use_salt' : True, 'top_k' : 2000} assert os.path.exists(self._devkit_path), 'Devkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), 'Path does not exist: {}'.format(self._data_path) def image_path_at(self, i): """ Return the absolute path to image i in the image sequence. """ return self.image_path_from_index(self._image_index[i]) def image_path_from_index(self, index): """ Construct an image path from the image's "index" identifier. """ image_path = os.path.join(self._data_path, 'Data', self._image_set, index + self._image_ext[0]) assert os.path.exists(image_path), 'path does not exist: {}'.format(image_path) return image_path def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ # Example path to image set file: # self._data_path + /ImageSets/val.txt if self._image_set == 'train': image_set_file = os.path.join(self._data_path, 'ImageSets', 'trainr.txt') image_index = [] if os.path.exists(image_set_file): f = open(image_set_file, 'r') data = f.read().split() for lines in data: if lines != '': image_index.append(lines) f.close() return image_index for i in range(1,31): print(i) image_set_file = os.path.join(self._data_path, 'ImageSets', 'train_' + str(i) + '.txt') with open(image_set_file) as f: tmp_index = [x.strip() for x in f.readlines()] vtmp_index = [] for line in tmp_index: image_list = os.popen('ls ' + self._data_path + '/Data/train/' + line + '/*.JPEG').read().split() tmp_list = [] for imgs in image_list: tmp_list.append(imgs[:-5]) vtmp_index = vtmp_index + tmp_list num_lines = len(vtmp_index) ids = np.random.permutation(num_lines) count = 0 while count < 2000: image_index.append(vtmp_index[ids[count % num_lines]]) count = count + 1 for i in range(1,201): if self._valid_image_flag[i] == 1: image_set_file = os.path.join(self._data_path, 'ImageSets', 'train_pos_' + str(i) + '.txt') with open(image_set_file) as f: tmp_index = [x.strip() for x in f.readlines()] num_lines = len(tmp_index) ids = np.random.permutation(num_lines) count = 0 while count < 2000: image_index.append(tmp_index[ids[count % num_lines]]) count = count + 1 image_set_file = os.path.join(self._data_path, 'ImageSets', 'trainr.txt') f = open(image_set_file, 'w') for lines in image_index: f.write(lines + '\n') f.close() else: image_set_file = os.path.join(self._data_path, 'ImageSets', 'val.txt') with open(image_set_file) as f: image_index = [x.strip() for x in f.readlines()] return image_index def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = pickle.load(fid) print('{} gt roidb loaded from {}'.format(self.name, cache_file)) return roidb gt_roidb = [self._load_imagenet_annotation(index) for index in self.image_index] with open(cache_file, 'wb') as fid: pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL) print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb def _load_imagenet_annotation(self, index): """ Load image and bounding boxes info from txt files of imagenet. """ filename = os.path.join(self._data_path, 'Annotations', self._image_set, index + '.xml') # print 'Loading: {}'.format(filename) def get_data_from_tag(node, tag): return node.getElementsByTagName(tag)[0].childNodes[0].data with open(filename) as f: data = minidom.parseString(f.read()) objs = data.getElementsByTagName('object') num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) # Load object bounding boxes into a data frame. for ix, obj in enumerate(objs): x1 = float(get_data_from_tag(obj, 'xmin')) y1 = float(get_data_from_tag(obj, 'ymin')) x2 = float(get_data_from_tag(obj, 'xmax')) y2 = float(get_data_from_tag(obj, 'ymax')) cls = self._wnid_to_ind[ str(get_data_from_tag(obj, "name")).lower().strip()] boxes[ix, :] = [x1, y1, x2, y2] gt_classes[ix] = cls overlaps[ix, cls] = 1.0 overlaps = scipy.sparse.csr_matrix(overlaps) return {'boxes' : boxes, 'gt_classes': gt_classes, 'gt_overlaps' : overlaps, 'flipped' : False} if __name__ == '__main__': d = datasets.imagenet('val', '') res = d.roidb from IPython import embed; embed()
en
0.677775
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- #check for valid intersection between video and image classes # Default to roidb handler # Specific config options Return the absolute path to image i in the image sequence. Construct an image path from the image's "index" identifier. Load the indexes listed in this dataset's image set file. # Example path to image set file: # self._data_path + /ImageSets/val.txt Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. Load image and bounding boxes info from txt files of imagenet. # print 'Loading: {}'.format(filename) # Load object bounding boxes into a data frame.
2.031024
2
models/ernie.py
biubiubiiu/SpamClassification
0
6631006
<filename>models/ernie.py from torch import nn from pytorch_pretrained import BertModel class Ernie(nn.Module): def __init__(self, config): super(Ernie, self).__init__() self.ernie = BertModel.from_pretrained('pretrained/ernie') for param in self.ernie.parameters(): param.requires_grad = True self.fc = nn.Linear(config['hidden_size'], config['num_classes']) def forward(self, x): context = x[0] mask = x[2] _, pooled = self.ernie(context, attention_mask=mask, output_all_encoded_layers=False) out = self.fc(pooled) return out
<filename>models/ernie.py from torch import nn from pytorch_pretrained import BertModel class Ernie(nn.Module): def __init__(self, config): super(Ernie, self).__init__() self.ernie = BertModel.from_pretrained('pretrained/ernie') for param in self.ernie.parameters(): param.requires_grad = True self.fc = nn.Linear(config['hidden_size'], config['num_classes']) def forward(self, x): context = x[0] mask = x[2] _, pooled = self.ernie(context, attention_mask=mask, output_all_encoded_layers=False) out = self.fc(pooled) return out
none
1
2.674528
3
setup.py
LeoXing1996/GeNeVA
1
6631007
<reponame>LeoXing1996/GeNeVA # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from setuptools import setup from setuptools import find_packages setup( name='GeNeVA', version='1.0', url='http://github.com/Maluuba/GeNeVA', author='Microsoft Research', description='Code to train and evaluate the GeNeVA-GAN model and the object detector and localizer for GeNeVA metrics', # packages=['geneva'], packages=find_packages(), extras_require=dict( dev=['pytest', 'pytest-flake8', 'flake8<3.6', 'flaky'], ), )
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from setuptools import setup from setuptools import find_packages setup( name='GeNeVA', version='1.0', url='http://github.com/Maluuba/GeNeVA', author='Microsoft Research', description='Code to train and evaluate the GeNeVA-GAN model and the object detector and localizer for GeNeVA metrics', # packages=['geneva'], packages=find_packages(), extras_require=dict( dev=['pytest', 'pytest-flake8', 'flake8<3.6', 'flaky'], ), )
en
0.827842
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # packages=['geneva'],
0.936702
1
src/gtk/toga_gtk/widgets/numberinput.py
jrwdunham/toga
0
6631008
<gh_stars>0 from gi.repository import Gtk from toga.interface import NumberInput as NumberInputInterface from .base import WidgetMixin class NumberInput(WidgetMixin, NumberInputInterface): def __init__(self, id=None, style=None, min_value=0, max_value=100, step=1, **ex): super().__init__(id=id, style=style, min_value=min_value, max_value=max_value, step=step, **ex) self._create() def create(self): adjustment = Gtk.Adjustment(0, self._min_value, self._max_value, self._step, 10, 0) self._impl = Gtk.SpinButton() self._impl.set_adjustment(adjustment) self._impl.set_numeric(True) self._impl._interface = self self.rehint() def _get_value(self): return self._impl.get_value() def _set_value(self, value): self._impl.set_value(value) def rehint(self): self.style.min_width = 120 self.style.height = 32
from gi.repository import Gtk from toga.interface import NumberInput as NumberInputInterface from .base import WidgetMixin class NumberInput(WidgetMixin, NumberInputInterface): def __init__(self, id=None, style=None, min_value=0, max_value=100, step=1, **ex): super().__init__(id=id, style=style, min_value=min_value, max_value=max_value, step=step, **ex) self._create() def create(self): adjustment = Gtk.Adjustment(0, self._min_value, self._max_value, self._step, 10, 0) self._impl = Gtk.SpinButton() self._impl.set_adjustment(adjustment) self._impl.set_numeric(True) self._impl._interface = self self.rehint() def _get_value(self): return self._impl.get_value() def _set_value(self, value): self._impl.set_value(value) def rehint(self): self.style.min_width = 120 self.style.height = 32
none
1
2.33493
2
voyager/resources/fireballresource.py
marwynnsomridhivej/voyager
1
6631009
import datetime from asyncio.events import AbstractEventLoop from typing import Generator, List, Union from ..exceptions import VoyagerException from .base import BaseResource __all__ = [ 'FireballResource', ] class FireballRecord(object): __slots__ = [ '_fc', '_date', '_lat', '_lon', '_lat_dir', '_lon_dir', '_alt', '_vel', '_energy', '_impact_e', '_vx', '_vy', '_vz', ] _FIELDS = [ 'date', 'lat', 'lon', 'lat-dir', 'lon-dir', 'alt', 'vel', 'energy', 'impact-e', 'vx', 'vy', 'vz', ] _cache = {} def __init__(self, data: List[str], fields: List[str]) -> None: self._fc = self._FIELDS.copy() for field, value in zip(fields, data): setattr(self, f"_{field.replace('-', '_')}", value) self._FIELDS.remove(field) for unset in self._FIELDS: setattr(self, f"_{unset.replace('-', '_')}", None) def __len__(self) -> int: if (l := "len") not in self._cache: self._cache[l] = len(self._fc) - len(self._FIELDS) del self._FIELDS return self._cache[l] @property def date(self) -> Union[str, None]: return self._date @property def datetime(self) -> Union[datetime.datetime, None]: if not self._date: return None return datetime.datetime.strptime(self._date, "%Y-%m-%d %H:%M:%S") @property def lat(self) -> Union[float, None]: if not self._lat: return None return float(self._lat) @property def latitude(self) -> Union[float, None]: return self.lat @property def lon(self) -> Union[float, None]: if not self._lon: return None return float(self._lon) @property def longitude(self) -> Union[float, None]: return self.lon @property def lat_dir(self) -> Union[str, None]: return self._lat_dir @property def latitude_dir(self) -> Union[str, None]: return self.lat_dir @property def lon_dir(self) -> Union[str, None]: return self._lon_dir @property def longitude_dir(self) -> Union[str, None]: return self.lon_dir @property def alt(self) -> Union[float, None]: if not self._alt: return None return float(self._alt) @property def altitude(self) -> Union[float, None]: return self.alt @property def vel(self) -> Union[float, None]: if not self._vel: return None return float(self._vel) @property def velocity(self) -> Union[float, None]: return self.vel @property def energy(self) -> Union[float, None]: if not self._energy: return None return float(self._energy) @property def impact_e(self) -> Union[float, None]: if not self._impact_e: return None return float(self._impact_e) @property def impact_energy(self) -> Union[float, None]: return self.impact_e @property def vx(self) -> Union[float, None]: if not self._vx: return None return float(self._vx) @property def velocity_x(self) -> Union[float, None]: return self.vx @property def vy(self) -> Union[float, None]: if not self._vy: return None return float(self._vy) @property def velocity_y(self) -> Union[float, None]: return self.vy @property def vz(self) -> Union[float, None]: if not self._vz: return None return self._vz @property def velocity_z(self) -> Union[float, None]: return self.vz def _process_dict(self) -> dict: return {field: getattr(self, f"_{field.replace('-', '_')}") for field in self._fc} @property def to_dict(self) -> dict: if self not in self._cache: self._cache[self] = self._process_dict() return self._cache[self] @classmethod def from_dict(cls, data: dict) -> "FireballRecord": if not all((key in cls._FIELDS for key in data)): raise VoyagerException("Malformed input. Invalid key(s) supplied") return cls([value for value in data.values()], [key for key in data]) class FireballResource(BaseResource): __slots__ = [ '_signature', '_count', '_fields', '_data', ] _cache = {} def __init__(self, data: dict, loop: AbstractEventLoop = None) -> None: super(FireballResource, self).__init__(data, loop=loop) self._signature = data.get("signature") self._count = data.get("count") self._fields = data.get("fields") self._data = data def __len__(self) -> int: return self.count def __iter__(self): return self def __next__(self): for fb in self.data: yield fb @property def signature(self) -> str: return self._signature @property def source(self) -> str: return self._signature.get("source") @property def version(self) -> str: return self._signature.get("version") @property def count(self) -> int: return int(self._count) @property def fields(self) -> List[str]: return self._fields def _process_fb_data(self) -> Union[Generator[FireballRecord, None, None], FireballRecord, None]: if not (fb := self._data.get("data")): return None elif len(fb) != 1: for values in fb: yield FireballRecord(values, self._fields) else: return FireballRecord(fb[0], self._fields) @property def data(self) -> Union[Generator[FireballRecord, None, None], FireballRecord, None]: if self not in self._cache: self._cache[self] = self._process_fb_data() return self._cache[self] @property def to_dict(self) -> dict: return self._data @classmethod def from_dict(cls, data: dict, loop: AbstractEventLoop = None) -> "FireballResource": return cls(data, loop=loop)
import datetime from asyncio.events import AbstractEventLoop from typing import Generator, List, Union from ..exceptions import VoyagerException from .base import BaseResource __all__ = [ 'FireballResource', ] class FireballRecord(object): __slots__ = [ '_fc', '_date', '_lat', '_lon', '_lat_dir', '_lon_dir', '_alt', '_vel', '_energy', '_impact_e', '_vx', '_vy', '_vz', ] _FIELDS = [ 'date', 'lat', 'lon', 'lat-dir', 'lon-dir', 'alt', 'vel', 'energy', 'impact-e', 'vx', 'vy', 'vz', ] _cache = {} def __init__(self, data: List[str], fields: List[str]) -> None: self._fc = self._FIELDS.copy() for field, value in zip(fields, data): setattr(self, f"_{field.replace('-', '_')}", value) self._FIELDS.remove(field) for unset in self._FIELDS: setattr(self, f"_{unset.replace('-', '_')}", None) def __len__(self) -> int: if (l := "len") not in self._cache: self._cache[l] = len(self._fc) - len(self._FIELDS) del self._FIELDS return self._cache[l] @property def date(self) -> Union[str, None]: return self._date @property def datetime(self) -> Union[datetime.datetime, None]: if not self._date: return None return datetime.datetime.strptime(self._date, "%Y-%m-%d %H:%M:%S") @property def lat(self) -> Union[float, None]: if not self._lat: return None return float(self._lat) @property def latitude(self) -> Union[float, None]: return self.lat @property def lon(self) -> Union[float, None]: if not self._lon: return None return float(self._lon) @property def longitude(self) -> Union[float, None]: return self.lon @property def lat_dir(self) -> Union[str, None]: return self._lat_dir @property def latitude_dir(self) -> Union[str, None]: return self.lat_dir @property def lon_dir(self) -> Union[str, None]: return self._lon_dir @property def longitude_dir(self) -> Union[str, None]: return self.lon_dir @property def alt(self) -> Union[float, None]: if not self._alt: return None return float(self._alt) @property def altitude(self) -> Union[float, None]: return self.alt @property def vel(self) -> Union[float, None]: if not self._vel: return None return float(self._vel) @property def velocity(self) -> Union[float, None]: return self.vel @property def energy(self) -> Union[float, None]: if not self._energy: return None return float(self._energy) @property def impact_e(self) -> Union[float, None]: if not self._impact_e: return None return float(self._impact_e) @property def impact_energy(self) -> Union[float, None]: return self.impact_e @property def vx(self) -> Union[float, None]: if not self._vx: return None return float(self._vx) @property def velocity_x(self) -> Union[float, None]: return self.vx @property def vy(self) -> Union[float, None]: if not self._vy: return None return float(self._vy) @property def velocity_y(self) -> Union[float, None]: return self.vy @property def vz(self) -> Union[float, None]: if not self._vz: return None return self._vz @property def velocity_z(self) -> Union[float, None]: return self.vz def _process_dict(self) -> dict: return {field: getattr(self, f"_{field.replace('-', '_')}") for field in self._fc} @property def to_dict(self) -> dict: if self not in self._cache: self._cache[self] = self._process_dict() return self._cache[self] @classmethod def from_dict(cls, data: dict) -> "FireballRecord": if not all((key in cls._FIELDS for key in data)): raise VoyagerException("Malformed input. Invalid key(s) supplied") return cls([value for value in data.values()], [key for key in data]) class FireballResource(BaseResource): __slots__ = [ '_signature', '_count', '_fields', '_data', ] _cache = {} def __init__(self, data: dict, loop: AbstractEventLoop = None) -> None: super(FireballResource, self).__init__(data, loop=loop) self._signature = data.get("signature") self._count = data.get("count") self._fields = data.get("fields") self._data = data def __len__(self) -> int: return self.count def __iter__(self): return self def __next__(self): for fb in self.data: yield fb @property def signature(self) -> str: return self._signature @property def source(self) -> str: return self._signature.get("source") @property def version(self) -> str: return self._signature.get("version") @property def count(self) -> int: return int(self._count) @property def fields(self) -> List[str]: return self._fields def _process_fb_data(self) -> Union[Generator[FireballRecord, None, None], FireballRecord, None]: if not (fb := self._data.get("data")): return None elif len(fb) != 1: for values in fb: yield FireballRecord(values, self._fields) else: return FireballRecord(fb[0], self._fields) @property def data(self) -> Union[Generator[FireballRecord, None, None], FireballRecord, None]: if self not in self._cache: self._cache[self] = self._process_fb_data() return self._cache[self] @property def to_dict(self) -> dict: return self._data @classmethod def from_dict(cls, data: dict, loop: AbstractEventLoop = None) -> "FireballResource": return cls(data, loop=loop)
none
1
2.066879
2
neps/minerador.py
matheusdomis/OBI
2
6631010
<gh_stars>1-10 nm = [int(x) for x in input().split()] v = [float(x) for x in input().split()] g = [float(x) for x in input().split()] lmax = [0,0] lmin = [float('inf'),0] for i in range(nm[0]): l = sum(g[:i+1]) * v[i] * nm[1] if l > lmax[0]: lmax[0] = l lmax[1] = i+1 if l < lmin[0]: lmin[0] = l lmin[1] = i+1 print("%d %.2f"%(lmax[1],lmax[0])) print("%d %.2f"%(lmin[1],lmin[0]))
nm = [int(x) for x in input().split()] v = [float(x) for x in input().split()] g = [float(x) for x in input().split()] lmax = [0,0] lmin = [float('inf'),0] for i in range(nm[0]): l = sum(g[:i+1]) * v[i] * nm[1] if l > lmax[0]: lmax[0] = l lmax[1] = i+1 if l < lmin[0]: lmin[0] = l lmin[1] = i+1 print("%d %.2f"%(lmax[1],lmax[0])) print("%d %.2f"%(lmin[1],lmin[0]))
none
1
2.951248
3
tools/train_net.py
dylan-campbell/Motionformer
153
6631011
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """Train a video classification model.""" import numpy as np import pickle import pprint from timm.data import Mixup import torch from fvcore.nn.precise_bn import get_bn_modules, update_bn_stats from slowfast.config.defaults import get_cfg import slowfast.models.losses as losses import slowfast.models.optimizer as optim import slowfast.utils.checkpoint as cu import slowfast.utils.distributed as du import slowfast.utils.logging as logging import slowfast.utils.metrics as metrics import slowfast.utils.misc as misc import slowfast.visualization.tensorboard_vis as tb from slowfast.datasets import loader from slowfast.models import build_model from slowfast.utils.meters import TrainMeter, ValMeter, EPICTrainMeter, EPICValMeter from slowfast.utils.multigrid import MultigridSchedule from timm.utils import NativeScaler logger = logging.get_logger(__name__) def train_epoch( train_loader, model, optimizer, train_meter, cur_epoch, cfg, writer=None, loss_scaler=None, loss_fun=None, mixup_fn=None ): """ Perform the video training for one epoch. Args: train_loader (loader): video training loader. model (model): the video model to train. optimizer (optim): the optimizer to perform optimization on the model's parameters. train_meter (TrainMeter): training meters to log the training performance. cur_epoch (int): current epoch of training. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log. """ # Enable train mode. model.train() train_meter.iter_tic() data_size = len(train_loader) for cur_iter, (inputs, labels, index, meta) in enumerate(train_loader): # Transfer the data to the current GPU device. if cfg.NUM_GPUS: if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) for key, val in meta.items(): if isinstance(val, (list,)): for i in range(len(val)): if not isinstance(val[i], (str,)): val[i] = val[i].cuda(non_blocking=True) else: meta[key] = val.cuda(non_blocking=True) if mixup_fn is not None: labels = labels.cuda() inputs, labels = mixup_fn(inputs[0], labels) inputs = [inputs] # Update the learning rate. lr = optim.get_epoch_lr(cur_epoch + float(cur_iter) / data_size, cfg) optim.set_lr(optimizer, lr) train_meter.data_toc() with torch.cuda.amp.autocast(enabled=cfg.SOLVER.USE_MIXED_PRECISION): preds = model(inputs) if mixup_fn is None: if isinstance(labels, (dict,)): labels = {k: v.cuda() for k, v in labels.items()} else: labels = labels.cuda() global_step = data_size * cur_epoch + cur_iter if isinstance(labels, (dict,)) and cfg.TRAIN.DATASET == "Epickitchens": # Compute the loss. loss_verb = loss_fun(preds[0], labels['verb']) loss_noun = loss_fun(preds[1], labels['noun']) loss = 0.5 * (loss_verb + loss_noun) else: loss = loss_fun(preds, labels) # check Nan Loss. misc.check_nan_losses(loss) # Perform the backward pass. optimizer.zero_grad() if cfg.SOLVER.USE_MIXED_PRECISION: # Mixed Precision Training is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order loss_scaler(loss, optimizer, clip_grad=cfg.SOLVER.CLIP_GRAD, parameters=model.parameters(), create_graph=is_second_order) else: loss.backward() # Update the parameters. optimizer.step() if cfg.DETECTION.ENABLE: if cfg.NUM_GPUS > 1: loss = du.all_reduce([loss])[0] loss = loss.item() # Update and log stats. train_meter.update_stats(None, None, None, loss, lr) # write to tensorboard format if available. if writer is not None: writer.add_scalars( {"Train/loss": loss, "Train/lr": lr}, global_step=data_size * cur_epoch + cur_iter, ) else: top1_err, top5_err = None, None if isinstance(labels, (dict,)) and cfg.TRAIN.DATASET == "Epickitchens": # Compute the verb accuracies. verb_top1_acc, verb_top5_acc = metrics.topk_accuracies( preds[0], labels['verb'], (1, 5)) # Gather all the predictions across all the devices. if cfg.NUM_GPUS > 1: loss_verb, verb_top1_acc, verb_top5_acc = du.all_reduce( [loss_verb, verb_top1_acc, verb_top5_acc] ) # Copy the stats from GPU to CPU (sync point). loss_verb, verb_top1_acc, verb_top5_acc = ( loss_verb.item(), verb_top1_acc.item(), verb_top5_acc.item(), ) # Compute the noun accuracies. noun_top1_acc, noun_top5_acc = metrics.topk_accuracies( preds[1], labels['noun'], (1, 5)) # Gather all the predictions across all the devices. if cfg.NUM_GPUS > 1: loss_noun, noun_top1_acc, noun_top5_acc = du.all_reduce( [loss_noun, noun_top1_acc, noun_top5_acc] ) # Copy the stats from GPU to CPU (sync point). loss_noun, noun_top1_acc, noun_top5_acc = ( loss_noun.item(), noun_top1_acc.item(), noun_top5_acc.item(), ) # Compute the action accuracies. action_top1_acc, action_top5_acc = metrics.multitask_topk_accuracies( (preds[0], preds[1]), (labels['verb'], labels['noun']), (1, 5)) # Gather all the predictions across all the devices. if cfg.NUM_GPUS > 1: loss, action_top1_acc, action_top5_acc = du.all_reduce( [loss, action_top1_acc, action_top5_acc] ) # Copy the stats from GPU to CPU (sync point). loss, action_top1_acc, action_top5_acc = ( loss.item(), action_top1_acc.item(), action_top5_acc.item(), ) # Update and log stats. train_meter.update_stats( (verb_top1_acc, noun_top1_acc, action_top1_acc), (verb_top5_acc, noun_top5_acc, action_top5_acc), (loss_verb, loss_noun, loss), lr, inputs[0].size(0) * cfg.NUM_GPUS ) else: num_topks_correct = metrics.topks_correct(preds, labels, (1, 5)) top1_err, top5_err = [ (1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct ] # Gather all the predictions across all the devices. if cfg.NUM_GPUS > 1: loss, top1_err, top5_err = du.all_reduce( [loss, top1_err, top5_err] ) # Copy the stats from GPU to CPU (sync point). loss, top1_err, top5_err = ( loss.item(), top1_err.item(), top5_err.item(), ) # Update and log stats. train_meter.update_stats( top1_err, top5_err, loss, lr, inputs[0].size(0) * max( cfg.NUM_GPUS, 1 ), ) # write to tensorboard format if available. if writer is not None: writer.add_scalars( { "Train/loss": loss, "Train/lr": lr, }, global_step=data_size * cur_epoch + cur_iter, ) if isinstance(labels, (dict,)) and cfg.TRAIN.DATASET == "Epickitchens": writer.add_scalars( { "Train/verb_top1_acc": verb_top1_acc, "Train/verb_top5_acc": verb_top5_acc, "Train/noun_top1_acc": noun_top1_acc, "Train/noun_top5_acc": noun_top5_acc, "Train/action_top1_acc": action_top1_acc, "Train/action_top5_acc": action_top5_acc, }, global_step=data_size * cur_epoch + cur_iter, ) else: writer.add_scalars( { "Train/Top1_err": top1_err if top1_err is not None else 0.0, "Train/Top5_err": top5_err if top5_err is not None else 0.0, }, global_step=data_size * cur_epoch + cur_iter, ) train_meter.iter_toc() # measure allreduce for this meter train_meter.log_iter_stats(cur_epoch, cur_iter) train_meter.iter_tic() # Log epoch stats. train_meter.log_epoch_stats(cur_epoch) train_meter.reset() @torch.no_grad() def eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer=None): """ Evaluate the model on the val set. Args: val_loader (loader): data loader to provide validation data. model (model): model to evaluate the performance. val_meter (ValMeter): meter instance to record and calculate the metrics. cur_epoch (int): number of the current epoch of training. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log. """ # Evaluation mode enabled. The running stats would not be updated. model.eval() val_meter.iter_tic() for cur_iter, (inputs, labels, _, meta) in enumerate(val_loader): if cfg.NUM_GPUS: # Transferthe data to the current GPU device. if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) if isinstance(labels, (dict,)): labels = {k: v.cuda() for k, v in labels.items()} else: labels = labels.cuda() for key, val in meta.items(): if isinstance(val, (list,)): for i in range(len(val)): if not isinstance(val[i], (str,)): val[i] = val[i].cuda(non_blocking=True) else: meta[key] = val.cuda(non_blocking=True) val_meter.data_toc() with torch.cuda.amp.autocast(enabled=cfg.SOLVER.USE_MIXED_PRECISION): preds = model(inputs) if isinstance(labels, (dict,)) and cfg.TRAIN.DATASET == "Epickitchens": # Compute the verb accuracies. verb_top1_acc, verb_top5_acc = metrics.topk_accuracies( preds[0], labels['verb'], (1, 5)) # Combine the errors across the GPUs. if cfg.NUM_GPUS > 1: verb_top1_acc, verb_top5_acc = du.all_reduce( [verb_top1_acc, verb_top5_acc]) # Copy the errors from GPU to CPU (sync point). verb_top1_acc, verb_top5_acc = verb_top1_acc.item(), verb_top5_acc.item() # Compute the noun accuracies. noun_top1_acc, noun_top5_acc = metrics.topk_accuracies( preds[1], labels['noun'], (1, 5)) # Combine the errors across the GPUs. if cfg.NUM_GPUS > 1: noun_top1_acc, noun_top5_acc = du.all_reduce( [noun_top1_acc, noun_top5_acc]) # Copy the errors from GPU to CPU (sync point). noun_top1_acc, noun_top5_acc = noun_top1_acc.item(), noun_top5_acc.item() # Compute the action accuracies. action_top1_acc, action_top5_acc = metrics.multitask_topk_accuracies( (preds[0], preds[1]), (labels['verb'], labels['noun']), (1, 5)) # Combine the errors across the GPUs. if cfg.NUM_GPUS > 1: action_top1_acc, action_top5_acc = du.all_reduce([action_top1_acc, action_top5_acc]) # Copy the errors from GPU to CPU (sync point). action_top1_acc, action_top5_acc = action_top1_acc.item(), action_top5_acc.item() val_meter.iter_toc() # Update and log stats. val_meter.update_stats( (verb_top1_acc, noun_top1_acc, action_top1_acc), (verb_top5_acc, noun_top5_acc, action_top5_acc), inputs[0].size(0) * cfg.NUM_GPUS ) # write to tensorboard format if available. if writer is not None: writer.add_scalars( { "Val/verb_top1_acc": verb_top1_acc, "Val/verb_top5_acc": verb_top5_acc, "Val/noun_top1_acc": noun_top1_acc, "Val/noun_top5_acc": noun_top5_acc, "Val/action_top1_acc": action_top1_acc, "Val/action_top5_acc": action_top5_acc, }, global_step=len(val_loader) * cur_epoch + cur_iter, ) else: # Compute the errors. num_topks_correct = metrics.topks_correct(preds, labels, (1, 5)) # Combine the errors across the GPUs. top1_err, top5_err = [ (1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct ] if cfg.NUM_GPUS > 1: top1_err, top5_err = du.all_reduce([top1_err, top5_err]) # Copy the errors from GPU to CPU (sync point). top1_err, top5_err = top1_err.item(), top5_err.item() val_meter.iter_toc() # Update and log stats. val_meter.update_stats( top1_err, top5_err, inputs[0].size(0) * max( cfg.NUM_GPUS, 1 ), ) # write to tensorboard format if available. if writer is not None: writer.add_scalars( {"Val/Top1_err": top1_err, "Val/Top5_err": top5_err}, global_step=len(val_loader) * cur_epoch + cur_iter, ) val_meter.update_predictions(preds, labels) val_meter.log_iter_stats(cur_epoch, cur_iter) val_meter.iter_tic() # Log epoch stats. val_meter.log_epoch_stats(cur_epoch) # write to tensorboard format if available. if writer is not None: all_preds = [pred.clone().detach() for pred in val_meter.all_preds] all_labels = [ label.clone().detach() for label in val_meter.all_labels ] if cfg.NUM_GPUS: all_preds = [pred.cpu() for pred in all_preds] all_labels = [label.cpu() for label in all_labels] writer.plot_eval( preds=all_preds, labels=all_labels, global_step=cur_epoch ) val_meter.reset() def calculate_and_update_precise_bn(loader, model, num_iters=200, use_gpu=True): """ Update the stats in bn layers by calculate the precise stats. Args: loader (loader): data loader to provide training data. model (model): model to update the bn stats. num_iters (int): number of iterations to compute and update the bn stats. use_gpu (bool): whether to use GPU or not. """ def _gen_loader(): for inputs, *_ in loader: if use_gpu: if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) yield inputs # Update the bn stats. update_bn_stats(model, _gen_loader(), num_iters) def build_trainer(cfg): """ Build training model and its associated tools, including optimizer, dataloaders and meters. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py Returns: model (nn.Module): training model. optimizer (Optimizer): optimizer. train_loader (DataLoader): training data loader. val_loader (DataLoader): validatoin data loader. precise_bn_loader (DataLoader): training data loader for computing precise BN. train_meter (TrainMeter): tool for measuring training stats. val_meter (ValMeter): tool for measuring validation stats. """ # Build the video model and print model statistics. model = build_model(cfg) if du.is_master_proc() and cfg.LOG_MODEL_INFO and cfg.DATA.INPUT_TYPE == 'rgb': misc.log_model_info(model, cfg, use_train_input=True) # Construct the optimizer. optimizer = optim.construct_optimizer(model, cfg) # Create the video train and val loaders. train_loader = loader.construct_loader(cfg, "train") val_loader = loader.construct_loader(cfg, "val") precise_bn_loader = loader.construct_loader( cfg, "train", is_precise_bn=True ) # Create meters. train_meter = TrainMeter(len(train_loader), cfg) val_meter = ValMeter(len(val_loader), cfg) return ( model, optimizer, train_loader, val_loader, precise_bn_loader, train_meter, val_meter, ) def train(cfg): """ Train a video model for many epochs on train set and evaluate it on val set. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py """ # Set up environment. du.init_distributed_training(cfg) # Set random seed from configs. np.random.seed(cfg.RNG_SEED) torch.manual_seed(cfg.RNG_SEED) # Setup logging format. logging.setup_logging(cfg.OUTPUT_DIR) # Init multigrid. multigrid = None if cfg.MULTIGRID.LONG_CYCLE or cfg.MULTIGRID.SHORT_CYCLE: multigrid = MultigridSchedule() cfg = multigrid.init_multigrid(cfg) if cfg.MULTIGRID.LONG_CYCLE: cfg, _ = multigrid.update_long_cycle(cfg, cur_epoch=0) # Print config. logger.info("Train with config:") logger.info(pprint.pformat(cfg)) # Build the video model and print model statistics. model = build_model(cfg) if du.is_master_proc() and cfg.LOG_MODEL_INFO: misc.log_model_info(model, cfg, use_train_input=True) # Construct the optimizer. optimizer = optim.construct_optimizer(model, cfg) # Mixed Precision Training Scaler if cfg.SOLVER.USE_MIXED_PRECISION: loss_scaler = NativeScaler() else: loss_scaler = None # Load a checkpoint to resume training if applicable. start_epoch = cu.load_train_checkpoint( cfg, model, optimizer, loss_scaler=loss_scaler) # Create the video train and val loaders. train_loader = loader.construct_loader(cfg, "train") val_loader = loader.construct_loader(cfg, "val") precise_bn_loader = ( loader.construct_loader(cfg, "train", is_precise_bn=True) if cfg.BN.USE_PRECISE_STATS else None ) # Create meters. if cfg.TRAIN.DATASET == 'Epickitchens': train_meter = EPICTrainMeter(len(train_loader), cfg) val_meter = EPICValMeter(len(val_loader), cfg) else: train_meter = TrainMeter(len(train_loader), cfg) val_meter = ValMeter(len(val_loader), cfg) # set up writer for logging to Tensorboard format. if cfg.TENSORBOARD.ENABLE and du.is_master_proc( cfg.NUM_GPUS * cfg.NUM_SHARDS ): writer = tb.TensorboardWriter(cfg) else: writer = None # Perform the training loop. logger.info("Start epoch: {}".format(start_epoch + 1)) mixup_fn = None mixup_active = cfg.MIXUP.MIXUP_ALPHA > 0 or cfg.MIXUP.CUTMIX_ALPHA > 0 or cfg.MIXUP.CUTMIX_MINMAX is not None if mixup_active: mixup_fn = Mixup( mixup_alpha=cfg.MIXUP.MIXUP_ALPHA, cutmix_alpha=cfg.MIXUP.CUTMIX_ALPHA, cutmix_minmax=cfg.MIXUP.CUTMIX_MINMAX, prob=cfg.MIXUP.MIXUP_PROB, switch_prob=cfg.MIXUP.MIXUP_SWITCH_PROB, mode=cfg.MIXUP.MIXUP_MODE, label_smoothing=cfg.SOLVER.SMOOTHING, num_classes=cfg.MODEL.NUM_CLASSES ) # Explicitly declare reduction to mean. if cfg.MIXUP.MIXUP_ALPHA > 0.: # smoothing is handled with mixup label transform loss_fun = losses.get_loss_func("soft_target_cross_entropy")() elif cfg.SOLVER.SMOOTHING > 0.0: loss_fun = losses.get_loss_func("label_smoothing_cross_entropy")( smoothing=cfg.SOLVER.SMOOTHING) else: loss_fun = losses.get_loss_func(cfg.MODEL.LOSS_FUNC)(reduction="mean") for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH): if cfg.MULTIGRID.LONG_CYCLE: cfg, changed = multigrid.update_long_cycle(cfg, cur_epoch) if changed: ( model, optimizer, train_loader, val_loader, precise_bn_loader, train_meter, val_meter, ) = build_trainer(cfg) # Load checkpoint. if cu.has_checkpoint(cfg.OUTPUT_DIR): last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR) assert "{:05d}.pyth".format(cur_epoch) in last_checkpoint else: last_checkpoint = cfg.TRAIN.CHECKPOINT_FILE_PATH logger.info("Load from {}".format(last_checkpoint)) cu.load_checkpoint( last_checkpoint, model, cfg.NUM_GPUS > 1, optimizer ) # Shuffle the dataset. loader.shuffle_dataset(train_loader, cur_epoch) # Train for one epoch. train_epoch( train_loader, model, optimizer, train_meter, cur_epoch, cfg, writer, loss_scaler=loss_scaler, loss_fun=loss_fun, mixup_fn=mixup_fn) is_checkp_epoch = cu.is_checkpoint_epoch( cfg, cur_epoch, None if multigrid is None else multigrid.schedule, ) is_eval_epoch = misc.is_eval_epoch( cfg, cur_epoch, None if multigrid is None else multigrid.schedule ) # Compute precise BN stats. if ( (is_checkp_epoch or is_eval_epoch) and cfg.BN.USE_PRECISE_STATS and len(get_bn_modules(model)) > 0 ): calculate_and_update_precise_bn( precise_bn_loader, model, min(cfg.BN.NUM_BATCHES_PRECISE, len(precise_bn_loader)), cfg.NUM_GPUS > 0, ) _ = misc.aggregate_sub_bn_stats(model) # Save a checkpoint. if is_checkp_epoch: cu.save_checkpoint(cfg.OUTPUT_DIR, model, optimizer, cur_epoch, cfg, loss_scaler=loss_scaler) # Evaluate the model on validation set. if is_eval_epoch: eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer) if writer is not None: writer.close()
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """Train a video classification model.""" import numpy as np import pickle import pprint from timm.data import Mixup import torch from fvcore.nn.precise_bn import get_bn_modules, update_bn_stats from slowfast.config.defaults import get_cfg import slowfast.models.losses as losses import slowfast.models.optimizer as optim import slowfast.utils.checkpoint as cu import slowfast.utils.distributed as du import slowfast.utils.logging as logging import slowfast.utils.metrics as metrics import slowfast.utils.misc as misc import slowfast.visualization.tensorboard_vis as tb from slowfast.datasets import loader from slowfast.models import build_model from slowfast.utils.meters import TrainMeter, ValMeter, EPICTrainMeter, EPICValMeter from slowfast.utils.multigrid import MultigridSchedule from timm.utils import NativeScaler logger = logging.get_logger(__name__) def train_epoch( train_loader, model, optimizer, train_meter, cur_epoch, cfg, writer=None, loss_scaler=None, loss_fun=None, mixup_fn=None ): """ Perform the video training for one epoch. Args: train_loader (loader): video training loader. model (model): the video model to train. optimizer (optim): the optimizer to perform optimization on the model's parameters. train_meter (TrainMeter): training meters to log the training performance. cur_epoch (int): current epoch of training. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log. """ # Enable train mode. model.train() train_meter.iter_tic() data_size = len(train_loader) for cur_iter, (inputs, labels, index, meta) in enumerate(train_loader): # Transfer the data to the current GPU device. if cfg.NUM_GPUS: if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) for key, val in meta.items(): if isinstance(val, (list,)): for i in range(len(val)): if not isinstance(val[i], (str,)): val[i] = val[i].cuda(non_blocking=True) else: meta[key] = val.cuda(non_blocking=True) if mixup_fn is not None: labels = labels.cuda() inputs, labels = mixup_fn(inputs[0], labels) inputs = [inputs] # Update the learning rate. lr = optim.get_epoch_lr(cur_epoch + float(cur_iter) / data_size, cfg) optim.set_lr(optimizer, lr) train_meter.data_toc() with torch.cuda.amp.autocast(enabled=cfg.SOLVER.USE_MIXED_PRECISION): preds = model(inputs) if mixup_fn is None: if isinstance(labels, (dict,)): labels = {k: v.cuda() for k, v in labels.items()} else: labels = labels.cuda() global_step = data_size * cur_epoch + cur_iter if isinstance(labels, (dict,)) and cfg.TRAIN.DATASET == "Epickitchens": # Compute the loss. loss_verb = loss_fun(preds[0], labels['verb']) loss_noun = loss_fun(preds[1], labels['noun']) loss = 0.5 * (loss_verb + loss_noun) else: loss = loss_fun(preds, labels) # check Nan Loss. misc.check_nan_losses(loss) # Perform the backward pass. optimizer.zero_grad() if cfg.SOLVER.USE_MIXED_PRECISION: # Mixed Precision Training is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order loss_scaler(loss, optimizer, clip_grad=cfg.SOLVER.CLIP_GRAD, parameters=model.parameters(), create_graph=is_second_order) else: loss.backward() # Update the parameters. optimizer.step() if cfg.DETECTION.ENABLE: if cfg.NUM_GPUS > 1: loss = du.all_reduce([loss])[0] loss = loss.item() # Update and log stats. train_meter.update_stats(None, None, None, loss, lr) # write to tensorboard format if available. if writer is not None: writer.add_scalars( {"Train/loss": loss, "Train/lr": lr}, global_step=data_size * cur_epoch + cur_iter, ) else: top1_err, top5_err = None, None if isinstance(labels, (dict,)) and cfg.TRAIN.DATASET == "Epickitchens": # Compute the verb accuracies. verb_top1_acc, verb_top5_acc = metrics.topk_accuracies( preds[0], labels['verb'], (1, 5)) # Gather all the predictions across all the devices. if cfg.NUM_GPUS > 1: loss_verb, verb_top1_acc, verb_top5_acc = du.all_reduce( [loss_verb, verb_top1_acc, verb_top5_acc] ) # Copy the stats from GPU to CPU (sync point). loss_verb, verb_top1_acc, verb_top5_acc = ( loss_verb.item(), verb_top1_acc.item(), verb_top5_acc.item(), ) # Compute the noun accuracies. noun_top1_acc, noun_top5_acc = metrics.topk_accuracies( preds[1], labels['noun'], (1, 5)) # Gather all the predictions across all the devices. if cfg.NUM_GPUS > 1: loss_noun, noun_top1_acc, noun_top5_acc = du.all_reduce( [loss_noun, noun_top1_acc, noun_top5_acc] ) # Copy the stats from GPU to CPU (sync point). loss_noun, noun_top1_acc, noun_top5_acc = ( loss_noun.item(), noun_top1_acc.item(), noun_top5_acc.item(), ) # Compute the action accuracies. action_top1_acc, action_top5_acc = metrics.multitask_topk_accuracies( (preds[0], preds[1]), (labels['verb'], labels['noun']), (1, 5)) # Gather all the predictions across all the devices. if cfg.NUM_GPUS > 1: loss, action_top1_acc, action_top5_acc = du.all_reduce( [loss, action_top1_acc, action_top5_acc] ) # Copy the stats from GPU to CPU (sync point). loss, action_top1_acc, action_top5_acc = ( loss.item(), action_top1_acc.item(), action_top5_acc.item(), ) # Update and log stats. train_meter.update_stats( (verb_top1_acc, noun_top1_acc, action_top1_acc), (verb_top5_acc, noun_top5_acc, action_top5_acc), (loss_verb, loss_noun, loss), lr, inputs[0].size(0) * cfg.NUM_GPUS ) else: num_topks_correct = metrics.topks_correct(preds, labels, (1, 5)) top1_err, top5_err = [ (1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct ] # Gather all the predictions across all the devices. if cfg.NUM_GPUS > 1: loss, top1_err, top5_err = du.all_reduce( [loss, top1_err, top5_err] ) # Copy the stats from GPU to CPU (sync point). loss, top1_err, top5_err = ( loss.item(), top1_err.item(), top5_err.item(), ) # Update and log stats. train_meter.update_stats( top1_err, top5_err, loss, lr, inputs[0].size(0) * max( cfg.NUM_GPUS, 1 ), ) # write to tensorboard format if available. if writer is not None: writer.add_scalars( { "Train/loss": loss, "Train/lr": lr, }, global_step=data_size * cur_epoch + cur_iter, ) if isinstance(labels, (dict,)) and cfg.TRAIN.DATASET == "Epickitchens": writer.add_scalars( { "Train/verb_top1_acc": verb_top1_acc, "Train/verb_top5_acc": verb_top5_acc, "Train/noun_top1_acc": noun_top1_acc, "Train/noun_top5_acc": noun_top5_acc, "Train/action_top1_acc": action_top1_acc, "Train/action_top5_acc": action_top5_acc, }, global_step=data_size * cur_epoch + cur_iter, ) else: writer.add_scalars( { "Train/Top1_err": top1_err if top1_err is not None else 0.0, "Train/Top5_err": top5_err if top5_err is not None else 0.0, }, global_step=data_size * cur_epoch + cur_iter, ) train_meter.iter_toc() # measure allreduce for this meter train_meter.log_iter_stats(cur_epoch, cur_iter) train_meter.iter_tic() # Log epoch stats. train_meter.log_epoch_stats(cur_epoch) train_meter.reset() @torch.no_grad() def eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer=None): """ Evaluate the model on the val set. Args: val_loader (loader): data loader to provide validation data. model (model): model to evaluate the performance. val_meter (ValMeter): meter instance to record and calculate the metrics. cur_epoch (int): number of the current epoch of training. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log. """ # Evaluation mode enabled. The running stats would not be updated. model.eval() val_meter.iter_tic() for cur_iter, (inputs, labels, _, meta) in enumerate(val_loader): if cfg.NUM_GPUS: # Transferthe data to the current GPU device. if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) if isinstance(labels, (dict,)): labels = {k: v.cuda() for k, v in labels.items()} else: labels = labels.cuda() for key, val in meta.items(): if isinstance(val, (list,)): for i in range(len(val)): if not isinstance(val[i], (str,)): val[i] = val[i].cuda(non_blocking=True) else: meta[key] = val.cuda(non_blocking=True) val_meter.data_toc() with torch.cuda.amp.autocast(enabled=cfg.SOLVER.USE_MIXED_PRECISION): preds = model(inputs) if isinstance(labels, (dict,)) and cfg.TRAIN.DATASET == "Epickitchens": # Compute the verb accuracies. verb_top1_acc, verb_top5_acc = metrics.topk_accuracies( preds[0], labels['verb'], (1, 5)) # Combine the errors across the GPUs. if cfg.NUM_GPUS > 1: verb_top1_acc, verb_top5_acc = du.all_reduce( [verb_top1_acc, verb_top5_acc]) # Copy the errors from GPU to CPU (sync point). verb_top1_acc, verb_top5_acc = verb_top1_acc.item(), verb_top5_acc.item() # Compute the noun accuracies. noun_top1_acc, noun_top5_acc = metrics.topk_accuracies( preds[1], labels['noun'], (1, 5)) # Combine the errors across the GPUs. if cfg.NUM_GPUS > 1: noun_top1_acc, noun_top5_acc = du.all_reduce( [noun_top1_acc, noun_top5_acc]) # Copy the errors from GPU to CPU (sync point). noun_top1_acc, noun_top5_acc = noun_top1_acc.item(), noun_top5_acc.item() # Compute the action accuracies. action_top1_acc, action_top5_acc = metrics.multitask_topk_accuracies( (preds[0], preds[1]), (labels['verb'], labels['noun']), (1, 5)) # Combine the errors across the GPUs. if cfg.NUM_GPUS > 1: action_top1_acc, action_top5_acc = du.all_reduce([action_top1_acc, action_top5_acc]) # Copy the errors from GPU to CPU (sync point). action_top1_acc, action_top5_acc = action_top1_acc.item(), action_top5_acc.item() val_meter.iter_toc() # Update and log stats. val_meter.update_stats( (verb_top1_acc, noun_top1_acc, action_top1_acc), (verb_top5_acc, noun_top5_acc, action_top5_acc), inputs[0].size(0) * cfg.NUM_GPUS ) # write to tensorboard format if available. if writer is not None: writer.add_scalars( { "Val/verb_top1_acc": verb_top1_acc, "Val/verb_top5_acc": verb_top5_acc, "Val/noun_top1_acc": noun_top1_acc, "Val/noun_top5_acc": noun_top5_acc, "Val/action_top1_acc": action_top1_acc, "Val/action_top5_acc": action_top5_acc, }, global_step=len(val_loader) * cur_epoch + cur_iter, ) else: # Compute the errors. num_topks_correct = metrics.topks_correct(preds, labels, (1, 5)) # Combine the errors across the GPUs. top1_err, top5_err = [ (1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct ] if cfg.NUM_GPUS > 1: top1_err, top5_err = du.all_reduce([top1_err, top5_err]) # Copy the errors from GPU to CPU (sync point). top1_err, top5_err = top1_err.item(), top5_err.item() val_meter.iter_toc() # Update and log stats. val_meter.update_stats( top1_err, top5_err, inputs[0].size(0) * max( cfg.NUM_GPUS, 1 ), ) # write to tensorboard format if available. if writer is not None: writer.add_scalars( {"Val/Top1_err": top1_err, "Val/Top5_err": top5_err}, global_step=len(val_loader) * cur_epoch + cur_iter, ) val_meter.update_predictions(preds, labels) val_meter.log_iter_stats(cur_epoch, cur_iter) val_meter.iter_tic() # Log epoch stats. val_meter.log_epoch_stats(cur_epoch) # write to tensorboard format if available. if writer is not None: all_preds = [pred.clone().detach() for pred in val_meter.all_preds] all_labels = [ label.clone().detach() for label in val_meter.all_labels ] if cfg.NUM_GPUS: all_preds = [pred.cpu() for pred in all_preds] all_labels = [label.cpu() for label in all_labels] writer.plot_eval( preds=all_preds, labels=all_labels, global_step=cur_epoch ) val_meter.reset() def calculate_and_update_precise_bn(loader, model, num_iters=200, use_gpu=True): """ Update the stats in bn layers by calculate the precise stats. Args: loader (loader): data loader to provide training data. model (model): model to update the bn stats. num_iters (int): number of iterations to compute and update the bn stats. use_gpu (bool): whether to use GPU or not. """ def _gen_loader(): for inputs, *_ in loader: if use_gpu: if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) yield inputs # Update the bn stats. update_bn_stats(model, _gen_loader(), num_iters) def build_trainer(cfg): """ Build training model and its associated tools, including optimizer, dataloaders and meters. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py Returns: model (nn.Module): training model. optimizer (Optimizer): optimizer. train_loader (DataLoader): training data loader. val_loader (DataLoader): validatoin data loader. precise_bn_loader (DataLoader): training data loader for computing precise BN. train_meter (TrainMeter): tool for measuring training stats. val_meter (ValMeter): tool for measuring validation stats. """ # Build the video model and print model statistics. model = build_model(cfg) if du.is_master_proc() and cfg.LOG_MODEL_INFO and cfg.DATA.INPUT_TYPE == 'rgb': misc.log_model_info(model, cfg, use_train_input=True) # Construct the optimizer. optimizer = optim.construct_optimizer(model, cfg) # Create the video train and val loaders. train_loader = loader.construct_loader(cfg, "train") val_loader = loader.construct_loader(cfg, "val") precise_bn_loader = loader.construct_loader( cfg, "train", is_precise_bn=True ) # Create meters. train_meter = TrainMeter(len(train_loader), cfg) val_meter = ValMeter(len(val_loader), cfg) return ( model, optimizer, train_loader, val_loader, precise_bn_loader, train_meter, val_meter, ) def train(cfg): """ Train a video model for many epochs on train set and evaluate it on val set. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py """ # Set up environment. du.init_distributed_training(cfg) # Set random seed from configs. np.random.seed(cfg.RNG_SEED) torch.manual_seed(cfg.RNG_SEED) # Setup logging format. logging.setup_logging(cfg.OUTPUT_DIR) # Init multigrid. multigrid = None if cfg.MULTIGRID.LONG_CYCLE or cfg.MULTIGRID.SHORT_CYCLE: multigrid = MultigridSchedule() cfg = multigrid.init_multigrid(cfg) if cfg.MULTIGRID.LONG_CYCLE: cfg, _ = multigrid.update_long_cycle(cfg, cur_epoch=0) # Print config. logger.info("Train with config:") logger.info(pprint.pformat(cfg)) # Build the video model and print model statistics. model = build_model(cfg) if du.is_master_proc() and cfg.LOG_MODEL_INFO: misc.log_model_info(model, cfg, use_train_input=True) # Construct the optimizer. optimizer = optim.construct_optimizer(model, cfg) # Mixed Precision Training Scaler if cfg.SOLVER.USE_MIXED_PRECISION: loss_scaler = NativeScaler() else: loss_scaler = None # Load a checkpoint to resume training if applicable. start_epoch = cu.load_train_checkpoint( cfg, model, optimizer, loss_scaler=loss_scaler) # Create the video train and val loaders. train_loader = loader.construct_loader(cfg, "train") val_loader = loader.construct_loader(cfg, "val") precise_bn_loader = ( loader.construct_loader(cfg, "train", is_precise_bn=True) if cfg.BN.USE_PRECISE_STATS else None ) # Create meters. if cfg.TRAIN.DATASET == 'Epickitchens': train_meter = EPICTrainMeter(len(train_loader), cfg) val_meter = EPICValMeter(len(val_loader), cfg) else: train_meter = TrainMeter(len(train_loader), cfg) val_meter = ValMeter(len(val_loader), cfg) # set up writer for logging to Tensorboard format. if cfg.TENSORBOARD.ENABLE and du.is_master_proc( cfg.NUM_GPUS * cfg.NUM_SHARDS ): writer = tb.TensorboardWriter(cfg) else: writer = None # Perform the training loop. logger.info("Start epoch: {}".format(start_epoch + 1)) mixup_fn = None mixup_active = cfg.MIXUP.MIXUP_ALPHA > 0 or cfg.MIXUP.CUTMIX_ALPHA > 0 or cfg.MIXUP.CUTMIX_MINMAX is not None if mixup_active: mixup_fn = Mixup( mixup_alpha=cfg.MIXUP.MIXUP_ALPHA, cutmix_alpha=cfg.MIXUP.CUTMIX_ALPHA, cutmix_minmax=cfg.MIXUP.CUTMIX_MINMAX, prob=cfg.MIXUP.MIXUP_PROB, switch_prob=cfg.MIXUP.MIXUP_SWITCH_PROB, mode=cfg.MIXUP.MIXUP_MODE, label_smoothing=cfg.SOLVER.SMOOTHING, num_classes=cfg.MODEL.NUM_CLASSES ) # Explicitly declare reduction to mean. if cfg.MIXUP.MIXUP_ALPHA > 0.: # smoothing is handled with mixup label transform loss_fun = losses.get_loss_func("soft_target_cross_entropy")() elif cfg.SOLVER.SMOOTHING > 0.0: loss_fun = losses.get_loss_func("label_smoothing_cross_entropy")( smoothing=cfg.SOLVER.SMOOTHING) else: loss_fun = losses.get_loss_func(cfg.MODEL.LOSS_FUNC)(reduction="mean") for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH): if cfg.MULTIGRID.LONG_CYCLE: cfg, changed = multigrid.update_long_cycle(cfg, cur_epoch) if changed: ( model, optimizer, train_loader, val_loader, precise_bn_loader, train_meter, val_meter, ) = build_trainer(cfg) # Load checkpoint. if cu.has_checkpoint(cfg.OUTPUT_DIR): last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR) assert "{:05d}.pyth".format(cur_epoch) in last_checkpoint else: last_checkpoint = cfg.TRAIN.CHECKPOINT_FILE_PATH logger.info("Load from {}".format(last_checkpoint)) cu.load_checkpoint( last_checkpoint, model, cfg.NUM_GPUS > 1, optimizer ) # Shuffle the dataset. loader.shuffle_dataset(train_loader, cur_epoch) # Train for one epoch. train_epoch( train_loader, model, optimizer, train_meter, cur_epoch, cfg, writer, loss_scaler=loss_scaler, loss_fun=loss_fun, mixup_fn=mixup_fn) is_checkp_epoch = cu.is_checkpoint_epoch( cfg, cur_epoch, None if multigrid is None else multigrid.schedule, ) is_eval_epoch = misc.is_eval_epoch( cfg, cur_epoch, None if multigrid is None else multigrid.schedule ) # Compute precise BN stats. if ( (is_checkp_epoch or is_eval_epoch) and cfg.BN.USE_PRECISE_STATS and len(get_bn_modules(model)) > 0 ): calculate_and_update_precise_bn( precise_bn_loader, model, min(cfg.BN.NUM_BATCHES_PRECISE, len(precise_bn_loader)), cfg.NUM_GPUS > 0, ) _ = misc.aggregate_sub_bn_stats(model) # Save a checkpoint. if is_checkp_epoch: cu.save_checkpoint(cfg.OUTPUT_DIR, model, optimizer, cur_epoch, cfg, loss_scaler=loss_scaler) # Evaluate the model on validation set. if is_eval_epoch: eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer) if writer is not None: writer.close()
en
0.779146
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. Train a video classification model. Perform the video training for one epoch. Args: train_loader (loader): video training loader. model (model): the video model to train. optimizer (optim): the optimizer to perform optimization on the model's parameters. train_meter (TrainMeter): training meters to log the training performance. cur_epoch (int): current epoch of training. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log. # Enable train mode. # Transfer the data to the current GPU device. # Update the learning rate. # Compute the loss. # check Nan Loss. # Perform the backward pass. # Mixed Precision Training # Update the parameters. # Update and log stats. # write to tensorboard format if available. # Compute the verb accuracies. # Gather all the predictions across all the devices. # Copy the stats from GPU to CPU (sync point). # Compute the noun accuracies. # Gather all the predictions across all the devices. # Copy the stats from GPU to CPU (sync point). # Compute the action accuracies. # Gather all the predictions across all the devices. # Copy the stats from GPU to CPU (sync point). # Update and log stats. # Gather all the predictions across all the devices. # Copy the stats from GPU to CPU (sync point). # Update and log stats. # write to tensorboard format if available. # measure allreduce for this meter # Log epoch stats. Evaluate the model on the val set. Args: val_loader (loader): data loader to provide validation data. model (model): model to evaluate the performance. val_meter (ValMeter): meter instance to record and calculate the metrics. cur_epoch (int): number of the current epoch of training. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log. # Evaluation mode enabled. The running stats would not be updated. # Transferthe data to the current GPU device. # Compute the verb accuracies. # Combine the errors across the GPUs. # Copy the errors from GPU to CPU (sync point). # Compute the noun accuracies. # Combine the errors across the GPUs. # Copy the errors from GPU to CPU (sync point). # Compute the action accuracies. # Combine the errors across the GPUs. # Copy the errors from GPU to CPU (sync point). # Update and log stats. # write to tensorboard format if available. # Compute the errors. # Combine the errors across the GPUs. # Copy the errors from GPU to CPU (sync point). # Update and log stats. # write to tensorboard format if available. # Log epoch stats. # write to tensorboard format if available. Update the stats in bn layers by calculate the precise stats. Args: loader (loader): data loader to provide training data. model (model): model to update the bn stats. num_iters (int): number of iterations to compute and update the bn stats. use_gpu (bool): whether to use GPU or not. # Update the bn stats. Build training model and its associated tools, including optimizer, dataloaders and meters. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py Returns: model (nn.Module): training model. optimizer (Optimizer): optimizer. train_loader (DataLoader): training data loader. val_loader (DataLoader): validatoin data loader. precise_bn_loader (DataLoader): training data loader for computing precise BN. train_meter (TrainMeter): tool for measuring training stats. val_meter (ValMeter): tool for measuring validation stats. # Build the video model and print model statistics. # Construct the optimizer. # Create the video train and val loaders. # Create meters. Train a video model for many epochs on train set and evaluate it on val set. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py # Set up environment. # Set random seed from configs. # Setup logging format. # Init multigrid. # Print config. # Build the video model and print model statistics. # Construct the optimizer. # Mixed Precision Training Scaler # Load a checkpoint to resume training if applicable. # Create the video train and val loaders. # Create meters. # set up writer for logging to Tensorboard format. # Perform the training loop. # Explicitly declare reduction to mean. # smoothing is handled with mixup label transform # Load checkpoint. # Shuffle the dataset. # Train for one epoch. # Compute precise BN stats. # Save a checkpoint. # Evaluate the model on validation set.
2.282494
2
MyExtenstion.extension/Gaochao.tab/Gaochao.panel/Structure_Create.pulldown/Beam_From_CAD.pushbutton/script(bake).py
gaochaowyq/MyPyRevitExtentision
0
6631012
# -*- coding: utf-8 -*- __doc__="根据导入的CAD绘制结构梁" import sys import os from collections import namedtuple from Autodesk.Revit.DB.Architecture import Room import rpw from rpw import doc, uidoc, DB, UI, db, ui from rpw.ui.forms import FlexForm, Label, ComboBox, TextBox, TextBox,Separator, Button,SelectFromList import json from MyLib import Helper uidoc = __revit__.ActiveUIDocument doc = __revit__.ActiveUIDocument.Document Picked= uidoc.Selection.PickObject(UI.Selection.ObjectType.Element) PickedElementId=Picked.ElementId Picked_Selection=db.Element.from_id(PickedElementId) #信息输入部分 Framing_types = rpw.db.Collector(of_category='OST_StructuralFraming', is_type=True).elements Framing_type_options = {t.FamilyName+DB.Element.Name.GetValue(t): t for t in Framing_types} Level_type=db.Collector(of_category='Levels', is_type=False).elements Level_type_options = {DB.Element.Name.GetValue(t): t for t in Level_type} components = [ Label('输入图层名称'), TextBox('图层名称', Text="S-STEL-BEAM"), Label('构件名称'), ComboBox('FamilyName', Framing_type_options), Label('标高'), ComboBox('Level', Level_type_options), Label('偏移标高'), TextBox('Offset', Text="-300"), Button('确定') ] form = FlexForm('结构', components) form.show() Value=form.values LayerName=Value['图层名称'] FamilyName=Value['FamilyName'] Level=Value['Level'] Offset=Helper.MmToFeet(float(Value['Offset'])) # def Draw_LinesfromPoints(Points): pass def Old_ConvertRevitCurves(xcrv): if str(xcrv.GetType()) != "Autodesk.Revit.DB.PolyLine": rtn=xcrv else: pt = [] for abc in xcrv.GetCoordinates(): #print(abc) pt.append(abc) #for i in range(0,len(pt)-1): # lines.append(DB.Line.CreateBound(pt[i],pt[1+1])); #rtn=lines return rtn def _ConvertRevitCurves(xcrv): if str(xcrv.GetType()) != "Autodesk.Revit.DB.PolyLine": rtn=xcrv elif str(xcrv.GetType())=="Autodesk.Revit.DB.PolyLine": lines=[] points=xcrv.GetCoordinates() for i in range(0,len(points)-1): try: newline=DB.Line.CreateBound(points[i],points[i+1]) except: pass lines.append(newline) rtn=lines else: rtn=xcrv return rtn DOC =doc DWG =Picked_Selection.unwrap() CRV = [] CRX = [] LAY = [] CLR = [] for abc in DWG.get_Geometry(DB.Options()): for crv in abc.GetInstanceGeometry(): #print(crv.GetType()) lay = DOC.GetElement(crv.GraphicsStyleId).GraphicsStyleCategory.Name ccc = DOC.GetElement(crv.GraphicsStyleId).GraphicsStyleCategory.LineColor CRX.append(_ConvertRevitCurves(crv)) CRV.append(crv) LAY.append(lay) CLR.append(ccc.Green) OUT = [CRV, CRX, LAY, CLR] LayedSelection=[] for c,l in zip(CRX,LAY): if l==LayerName: LayedSelection.append(c) testLine=LayedSelection @rpw.db.Transaction.ensure('CreateBeam') def CreateBeam(Curves,FamilySymbol,Level,StructureType): for i in Curves: c=doc.Create.NewFamilyInstance(i,FamilySymbol,Level,StructureType) WrpedElement=db.Element(c) WrpedElement.parameters['Start Level Offset']=Offset WrpedElement.parameters['End Level Offset']=Offset print(WrpedElement) Curve=Helper.List_Flat(testLine) StructuralType=DB.Structure.StructuralType.Beam c=CreateBeam(Curve,FamilyName,Level,StructuralType) print(c) print("绘制完成")
# -*- coding: utf-8 -*- __doc__="根据导入的CAD绘制结构梁" import sys import os from collections import namedtuple from Autodesk.Revit.DB.Architecture import Room import rpw from rpw import doc, uidoc, DB, UI, db, ui from rpw.ui.forms import FlexForm, Label, ComboBox, TextBox, TextBox,Separator, Button,SelectFromList import json from MyLib import Helper uidoc = __revit__.ActiveUIDocument doc = __revit__.ActiveUIDocument.Document Picked= uidoc.Selection.PickObject(UI.Selection.ObjectType.Element) PickedElementId=Picked.ElementId Picked_Selection=db.Element.from_id(PickedElementId) #信息输入部分 Framing_types = rpw.db.Collector(of_category='OST_StructuralFraming', is_type=True).elements Framing_type_options = {t.FamilyName+DB.Element.Name.GetValue(t): t for t in Framing_types} Level_type=db.Collector(of_category='Levels', is_type=False).elements Level_type_options = {DB.Element.Name.GetValue(t): t for t in Level_type} components = [ Label('输入图层名称'), TextBox('图层名称', Text="S-STEL-BEAM"), Label('构件名称'), ComboBox('FamilyName', Framing_type_options), Label('标高'), ComboBox('Level', Level_type_options), Label('偏移标高'), TextBox('Offset', Text="-300"), Button('确定') ] form = FlexForm('结构', components) form.show() Value=form.values LayerName=Value['图层名称'] FamilyName=Value['FamilyName'] Level=Value['Level'] Offset=Helper.MmToFeet(float(Value['Offset'])) # def Draw_LinesfromPoints(Points): pass def Old_ConvertRevitCurves(xcrv): if str(xcrv.GetType()) != "Autodesk.Revit.DB.PolyLine": rtn=xcrv else: pt = [] for abc in xcrv.GetCoordinates(): #print(abc) pt.append(abc) #for i in range(0,len(pt)-1): # lines.append(DB.Line.CreateBound(pt[i],pt[1+1])); #rtn=lines return rtn def _ConvertRevitCurves(xcrv): if str(xcrv.GetType()) != "Autodesk.Revit.DB.PolyLine": rtn=xcrv elif str(xcrv.GetType())=="Autodesk.Revit.DB.PolyLine": lines=[] points=xcrv.GetCoordinates() for i in range(0,len(points)-1): try: newline=DB.Line.CreateBound(points[i],points[i+1]) except: pass lines.append(newline) rtn=lines else: rtn=xcrv return rtn DOC =doc DWG =Picked_Selection.unwrap() CRV = [] CRX = [] LAY = [] CLR = [] for abc in DWG.get_Geometry(DB.Options()): for crv in abc.GetInstanceGeometry(): #print(crv.GetType()) lay = DOC.GetElement(crv.GraphicsStyleId).GraphicsStyleCategory.Name ccc = DOC.GetElement(crv.GraphicsStyleId).GraphicsStyleCategory.LineColor CRX.append(_ConvertRevitCurves(crv)) CRV.append(crv) LAY.append(lay) CLR.append(ccc.Green) OUT = [CRV, CRX, LAY, CLR] LayedSelection=[] for c,l in zip(CRX,LAY): if l==LayerName: LayedSelection.append(c) testLine=LayedSelection @rpw.db.Transaction.ensure('CreateBeam') def CreateBeam(Curves,FamilySymbol,Level,StructureType): for i in Curves: c=doc.Create.NewFamilyInstance(i,FamilySymbol,Level,StructureType) WrpedElement=db.Element(c) WrpedElement.parameters['Start Level Offset']=Offset WrpedElement.parameters['End Level Offset']=Offset print(WrpedElement) Curve=Helper.List_Flat(testLine) StructuralType=DB.Structure.StructuralType.Beam c=CreateBeam(Curve,FamilyName,Level,StructuralType) print(c) print("绘制完成")
zh
0.124791
# -*- coding: utf-8 -*- #信息输入部分 # #print(abc) #for i in range(0,len(pt)-1): # lines.append(DB.Line.CreateBound(pt[i],pt[1+1])); #rtn=lines #print(crv.GetType())
2.040957
2
fortnitepy/errors.py
Jawschamp/fortnitepy
0
6631013
# -*- coding: utf-8 -*- """ MIT License Copyright (c) 2019 Terbau Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ class FortniteException(Exception): """Base exception for fortnitepy. This could in theory be caught to handle all exceptions thrown by this library. """ pass class AuthException(FortniteException): """This exception is raised when auth fails.""" pass class EventError(FortniteException): """This exception is raised when something regarding events fails.""" pass class XMPPError(FortniteException): """This exception is raised when something regarding the XMPP service fails.""" pass class PartyError(FortniteException): """This exception is raised when something regarding parties fails.""" pass class PartyPermissionError(FortniteException): """This exception is raised when you dont have permission to do something in a party or a party you are trying to join is private. """ pass class HTTPException(FortniteException): """This exception is raised when an error is received by Fortnite services. Attributes ---------- response: :class:`aiohttp.ClientResponse` The response from the HTTP request. text: :class:`str` The error message. status: :class:`int` The status code of the HTTP request. raw: Union[:class:`str`, :class:`dict`] The raw message/data received from Fortnite services. message: :class:`str` The raw error message received from Fortnite services. message_code: :class:`str` The raw error message code received from Fortnite services. message_vars: List[:class:`str`] List containing arguments passed to the message. code: :class:`int` The error code received from Fortnite services. originating_service: :class:`str` The originating service this error was received from. intent: :class:`str` The prod this error was received from. """ def __init__(self, response, message): self.response = response self.status = response.status self.raw = message _err = message if isinstance(message, dict) else {} self.message = _err.get('errorMessage') self.message_code = _err.get('errorCode') self.message_vars = _err.get('messageVars') self.code = _err.get('numericErrorCode') self.originating_service = _err.get('originatingService') self.intent = _err.get('intent') self.text = 'Code: "{0}" - {1}'.format( self.message_code, self.message ) super().__init__(self.text)
# -*- coding: utf-8 -*- """ MIT License Copyright (c) 2019 Terbau Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ class FortniteException(Exception): """Base exception for fortnitepy. This could in theory be caught to handle all exceptions thrown by this library. """ pass class AuthException(FortniteException): """This exception is raised when auth fails.""" pass class EventError(FortniteException): """This exception is raised when something regarding events fails.""" pass class XMPPError(FortniteException): """This exception is raised when something regarding the XMPP service fails.""" pass class PartyError(FortniteException): """This exception is raised when something regarding parties fails.""" pass class PartyPermissionError(FortniteException): """This exception is raised when you dont have permission to do something in a party or a party you are trying to join is private. """ pass class HTTPException(FortniteException): """This exception is raised when an error is received by Fortnite services. Attributes ---------- response: :class:`aiohttp.ClientResponse` The response from the HTTP request. text: :class:`str` The error message. status: :class:`int` The status code of the HTTP request. raw: Union[:class:`str`, :class:`dict`] The raw message/data received from Fortnite services. message: :class:`str` The raw error message received from Fortnite services. message_code: :class:`str` The raw error message code received from Fortnite services. message_vars: List[:class:`str`] List containing arguments passed to the message. code: :class:`int` The error code received from Fortnite services. originating_service: :class:`str` The originating service this error was received from. intent: :class:`str` The prod this error was received from. """ def __init__(self, response, message): self.response = response self.status = response.status self.raw = message _err = message if isinstance(message, dict) else {} self.message = _err.get('errorMessage') self.message_code = _err.get('errorCode') self.message_vars = _err.get('messageVars') self.code = _err.get('numericErrorCode') self.originating_service = _err.get('originatingService') self.intent = _err.get('intent') self.text = 'Code: "{0}" - {1}'.format( self.message_code, self.message ) super().__init__(self.text)
en
0.843
# -*- coding: utf-8 -*- MIT License Copyright (c) 2019 Terbau Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Base exception for fortnitepy. This could in theory be caught to handle all exceptions thrown by this library. This exception is raised when auth fails. This exception is raised when something regarding events fails. This exception is raised when something regarding the XMPP service fails. This exception is raised when something regarding parties fails. This exception is raised when you dont have permission to do something in a party or a party you are trying to join is private. This exception is raised when an error is received by Fortnite services. Attributes ---------- response: :class:`aiohttp.ClientResponse` The response from the HTTP request. text: :class:`str` The error message. status: :class:`int` The status code of the HTTP request. raw: Union[:class:`str`, :class:`dict`] The raw message/data received from Fortnite services. message: :class:`str` The raw error message received from Fortnite services. message_code: :class:`str` The raw error message code received from Fortnite services. message_vars: List[:class:`str`] List containing arguments passed to the message. code: :class:`int` The error code received from Fortnite services. originating_service: :class:`str` The originating service this error was received from. intent: :class:`str` The prod this error was received from.
2.235627
2
highway_env/envs/merge_out_origin.py
jasonplato/High_SimulationPlatform
0
6631014
<reponame>jasonplato/High_SimulationPlatform from __future__ import division, print_function, absolute_import import numpy as np from highway_env import utils from highway_env.envs.abstract import AbstractEnv from highway_env.road.lane import LineType, StraightLane, SineLane, LanesConcatenation from highway_env.road.road import Road from highway_env.vehicle.control import ControlledVehicle, MDPVehicle, CarSim, FreeControl from highway_env.vehicle.behavior import IDMVehicle from highway_env.vehicle.dynamics import Obstacle import time import random def mobil(self, lane_index, mandatory): """ action_explain = ['left acc', 'left same', 'left dec', 'same acc', 'same same', 'same dec', 'right acc', 'right same', 'right dec'] MOBIL lane change model: Minimizing Overall Braking Induced by a Lane change The vehicle should change lane only if: - after changing it (and/or following vehicles) can accelerate more; - it doesn't impose an unsafe braking on its new following vehicle. :param lane_index: the candidate lane for the change :param mandatory: if the lane change is mandatory :return: whether the lane change should be performed """ def acceleration(ego_vehicle, front_vehicle=None): """ Compute an acceleration command with the Intelligent Driver Model. The acceleration is chosen so as to: - reach a target velocity; - maintain a minimum safety distance (and safety time) w.r.t the front vehicle. :param ego_vehicle: the vehicle whose desired acceleration is to be computed. It does not have to be an IDM vehicle, which is why this method is a class method. This allows an IDM vehicle to reason about other vehicles behaviors even though they may not IDMs. :param front_vehicle: the vehicle preceding the ego-vehicle :return: the acceleration command for the ego-vehicle [m/s2] """ COMFORT_ACC_MAX = 3.0 COMFORT_ACC_MIN = -5.0 TIME_WANTED = 1.5 DISTANCE_WANTED = 10 DELTA = 4.0 def not_zero(x): EPSILON = 0.01 if abs(x) > EPSILON: return x elif x > 0: return EPSILON else: return -EPSILON def desired_gap(ego_vehicle, front_vehicle): d0 = DISTANCE_WANTED + ego_vehicle.LENGTH / 2 + front_vehicle.LENGTH / 2 tau = TIME_WANTED ab = -COMFORT_ACC_MAX * COMFORT_ACC_MIN dv = ego_vehicle.velocity - front_vehicle.velocity d_star = d0 + ego_vehicle.velocity * tau + ego_vehicle.velocity * dv / (2 * np.sqrt(ab)) return d_star if not ego_vehicle: return 0 acceleration = COMFORT_ACC_MAX * ( 1 - np.power(ego_vehicle.velocity / not_zero(ego_vehicle.target_velocity), DELTA)) if front_vehicle: d = ego_vehicle.lane_distance_to(front_vehicle) acceleration -= COMFORT_ACC_MAX * np.power( desired_gap(ego_vehicle, front_vehicle) / not_zero(d), 2) return acceleration LANE_CHANGE_MAX_BRAKING_IMPOSED = 1.0 LANE_CHANGE_MIN_ACC_GAIN = 0.1 POLITENESS = 0. # Is the maneuver unsafe for the new following vehicle? new_preceding, new_following = self.road.neighbour_vehicles(self, self.road.lanes[lane_index]) # todo: added mandatory part preceding_vehicle_ok = True if new_preceding: relative_x = new_preceding.position[0] - self.position[0] relative_v = self.velocity - new_preceding.velocity if relative_x < 5: preceding_vehicle_ok = False if relative_v == 0.0: pass else: t = relative_x / relative_v if 0 < t < 3: preceding_vehicle_ok = False following_vehicle_ok = True if new_following: relative_x = self.position[0] - new_following.position[0] relative_v = new_following.velocity - self.velocity if relative_x < 5: following_vehicle_ok = False if relative_v == 0.0: pass else: t = relative_x / relative_v if 0 < t < 3: following_vehicle_ok = False if mandatory: if preceding_vehicle_ok and following_vehicle_ok: return True else: return False # todo: part finish new_following_a = acceleration(ego_vehicle=new_following, front_vehicle=new_preceding) new_following_pred_a = acceleration(ego_vehicle=new_following, front_vehicle=self) if new_following_pred_a < -LANE_CHANGE_MAX_BRAKING_IMPOSED: return False # Is there an advantage for me and/or my followers to change lane? old_preceding, old_following = self.road.neighbour_vehicles(self) self_a = acceleration(ego_vehicle=self, front_vehicle=old_preceding) self_pred_a = acceleration(ego_vehicle=self, front_vehicle=new_preceding) old_following_a = acceleration(ego_vehicle=old_following, front_vehicle=self) old_following_pred_a = acceleration(ego_vehicle=old_following, front_vehicle=old_preceding) jerk = self_pred_a - self_a + POLITENESS * ( new_following_pred_a - new_following_a + old_following_pred_a - old_following_a) if jerk < LANE_CHANGE_MIN_ACC_GAIN: return False # All clear, let's go! return True def global_mobil(env, action): """ :param env: environment :param action: action_explain = ['left acc', 'left same', 'left dec', 'same acc', 'same same', 'same dec', 'right acc', 'right same', 'right dec'] """ vehicle = env.vehicle mandatory = False lane_index = vehicle.lane_index if action in [0, 1, 2]: lane_index -= 1 mandatory = True if lane_index >= 0 and env.road.lanes[lane_index].is_reachable_from(vehicle.position): print('mandatory to left: {}'.format(mobil(vehicle, lane_index, mandatory))) elif action in [6, 7, 8]: lane_index += 1 mandatory = True if lane_index < len(env.road.lanes) and env.road.lanes[lane_index].is_reachable_from(vehicle.position): print('mandatory to right: {}'.format(mobil(vehicle, lane_index, mandatory))) else: lane_offsets = [i for i in [-1, 1] if 0 <= vehicle.lane_index + i < len(env.road.lanes)] for lane_offset in lane_offsets: # Is the candidate lane close enough? if not env.road.lanes[vehicle.lane_index + lane_offset].is_reachable_from(vehicle.position): continue # Does the MOBIL model recommend a lane change? if mobil(vehicle, lane_index, mandatory): print("unmandatory to {}, True!".format(lane_offset)) else: print("unmandatory to {}, False!".format(lane_offset)) # todo # -------------------------------------------- # todo class MergeEnvOut(AbstractEnv): """ A highway merge negotiation environment. The ego-vehicle is driving on a highway and approached a merge, with some vehicles incoming on the access ramp. It is rewarded for maintaining a high velocity and avoiding collisions, but also making room for merging vehicles. """ COLLISION_REWARD = -1 RIGHT_LANE_REWARD = 0.1 HIGH_VELOCITY_REWARD = 0.2 MERGING_VELOCITY_REWARD = -0.5 LANE_CHANGE_REWARD = -0.05 DEFAULT_CONFIG = {"other_vehicles_type": "highway_env.vehicle.behavior.IDMVehicle"} def __init__(self): super(MergeEnvOut, self).__init__() self.switch = False self.other_vehicles_mandatory = False self.config = self.DEFAULT_CONFIG.copy() # self.make_road() self.make() # self.double_merge() self.make_vehicles(self.other_vehicles_mandatory) self.success_cnt = 0 def configure(self, config): self.config.update(config) def _observation(self): return super(MergeEnvOut, self)._observation() def _reward(self, action): """ The vehicle is rewarded for driving with high velocity on lanes to the right and avoiding collisions, but an additional altruistic penalty is also suffered if any vehicle on the merging lane has a low velocity. :param action: the action performed :return: the reward of the state-action transition """ action_reward = {0: self.LANE_CHANGE_REWARD, 1: 0, 2: self.LANE_CHANGE_REWARD, 3: 0, 4: 0} reward = self.COLLISION_REWARD * self.vehicle.crashed \ + self.RIGHT_LANE_REWARD * self.vehicle.lane_index / (len(self.road.lanes) - 2) \ + self.HIGH_VELOCITY_REWARD * self.vehicle.velocity_index / (self.vehicle.SPEED_COUNT - 1) # Altruistic penalty for vehicle in self.road.vehicles: if vehicle.lane_index == len(self.road.lanes)-1 and isinstance(vehicle, ControlledVehicle): reward += self.MERGING_VELOCITY_REWARD * \ (vehicle.target_velocity - vehicle.velocity) / vehicle.target_velocity return reward + action_reward[action] def ego_vehicle_switch(self): self.switch = not self.switch def _is_terminal(self): """ The episode is over when a collision occurs or when the access ramp has been passed. """ if self.vehicle.position[0] > 500: if self.vehicle.lane_index == 3: self.success_cnt += 0.5 return self.vehicle.crashed or self.vehicle.position[0] > 500 def reset(self): # self.make_road() self.make() self.make_vehicles(self.other_vehicles_mandatory) return self._observation() def make_straight(self): lm10 = StraightLane(np.array([0, 0]), 0, 4.0, [LineType.CONTINUOUS_LINE, LineType.STRIPED], bounds=[0, 500]) l1 = LanesConcatenation([lm10]) lm20 = StraightLane(l1.position(0, 4), 0, 4.0, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 500]) l2 = LanesConcatenation([lm20]) # lm30 = StraightLane(l2.position(0,4), 0, 4.0, [LineType.STRIPED, LineType.STRIPED],bounds=[0,100]) # lm31 = StraightLane(lm30.position(0,0), 0, 4.0, [LineType.STRIPED, LineType.STRIPED],bounds=[0,500]) # l3 = LanesConcatenation([lm30,lm31]) lm30 = StraightLane(l2.position(0, 4), 0, 4.0, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 500]) l3 = LanesConcatenation([lm30]) amplitude = 4.5 lm40 = StraightLane(l3.position(0, 4), 0, 4.0, [LineType.STRIPED, LineType.CONTINUOUS_LINE], bounds=[200, 400]) lm41 = SineLane(lm40.position(400, amplitude), 0, 4.0, -amplitude, 2 * np.pi / (2 * 50), np.pi / 2, [LineType.CONTINUOUS, LineType.CONTINUOUS], bounds=[0, 50], forbidden=True) lm42 = StraightLane(lm41.position(50, 0), 0, 4.0, [LineType.CONTINUOUS_LINE, LineType.CONTINUOUS_LINE], bounds=[0, 50], forbidden=True) l4 = LanesConcatenation([lm40, lm41, lm42]) road = Road([l1, l2, l3, l4]) # road = Road([ l3]) # road = Road([lm0,lm2]) # todo !!!!!!!!!!! how to do with Obstacle in lane.vehicles obstacle = Obstacle(road, lm40.position(0, 0)) road.vehicles.append(obstacle) road.lanes[3].vehicles.append(obstacle) self.road = road def make_sin(self): # amplitude = 4.5 amplitude = 9.0 lm10 = StraightLane(np.array([0, 0]), 0, 5.0, [LineType.CONTINUOUS_LINE, LineType.STRIPED], bounds=[0, 400]) lm11 = SineLane(lm10.position(400, amplitude), 0, 5.0, -amplitude, 2 * np.pi / (2 * 50), np.pi / 2, [LineType.CONTINUOUS, LineType.STRIPED], bounds=[0, 250]) lm12 = StraightLane(lm11.position(250, 0), 0, 5.0, [LineType.CONTINUOUS_LINE, LineType.STRIPED], bounds=[0, 50]) l1 = LanesConcatenation([lm10, lm11, lm12]) lm20 = StraightLane(lm10.position(0, 5), 0, 5.0, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 400]) lm21 = SineLane(lm20.position(400, amplitude), 0, 5.0, -amplitude, 2 * np.pi / (2 * 50), np.pi / 2, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 250]) lm22 = StraightLane(lm21.position(250, 0), 0, 5.0, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 50]) l2 = LanesConcatenation([lm20, lm21, lm22]) lm30 = StraightLane(lm20.position(0, 5), 0, 5.0, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 400]) lm31 = SineLane(lm30.position(400, amplitude), 0, 5.0, -amplitude, 2 * np.pi / (2 * 50), np.pi / 2, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 250]) lm32 = StraightLane(lm31.position(250, 0), 0, 5.0, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 50]) l3 = LanesConcatenation([lm30, lm31, lm32]) lm40 = StraightLane(lm30.position(0, 5), 0, 5.0, [LineType.STRIPED, LineType.CONTINUOUS_LINE], bounds=[0, 400]) lm41 = SineLane(lm40.position(400, amplitude), 0, 5.0, -amplitude, 2 * np.pi / (2 * 50), np.pi / 2, [LineType.STRIPED, LineType.CONTINUOUS], bounds=[0, 250]) lm42 = StraightLane(lm41.position(250, 0), 0, 5.0, [LineType.STRIPED, LineType.CONTINUOUS_LINE], bounds=[0, 50],) l4 = LanesConcatenation([lm40, lm41, lm42]) road = Road([l1, l2, l3, l4]) # road = Road([ l3]) # road = Road([lm0,lm2]) # todo !!!!!!!!!!! how to do with Obstacle in lane.vehicles obstacle = Obstacle(road, lm40.position(0, 0)) road.vehicles.append(obstacle) road.lanes[3].vehicles.append(obstacle) self.road = road def make(self): self.make_straight() # self.make_sin() def make_vehicles(self, other_vehicles_mandatory=False): """ Populate a road with several vehicles on the highway and on the merging lane, as well as an ego-vehicle. :param other_vehicles_mandatory: if the lane changing maneuvers of other vehicles are mandatory :return: None """ max_l = 500 road = self.road other_vehicles_type = utils.class_from_path(self.config["other_vehicles_type"]) car_number_each_lane = 15 # reset_position_range = (30, 40) reset_position_range = (20, 30) # reset_lane = random.choice(road.lanes) reset_lane = road.lanes[0] for l in road.lanes[:3]: cars_on_lane = car_number_each_lane reset_position = None if l is reset_lane: cars_on_lane += 1 reset_position = random.choice(range(5, 6)) # reset_position = 2 for i in range(cars_on_lane): if i == reset_position: if self.switch: ego_vehicle = MDPVehicle(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), velocity=20, max_length=max_l) else: ego_vehicle = IDMVehicle(road, l.position((i + 1) * np.random.randint(*reset_position_range), 0), velocity=20, max_length=max_l) ego_vehicle.destination = 1 ego_vehicle.id = 0 road.vehicles.append(ego_vehicle) self.vehicle = ego_vehicle l.vehicles.append(ego_vehicle) else: car = other_vehicles_type(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), velocity=np.random.randint(18, 25), dst=3, max_length=max_l) if other_vehicles_mandatory: car.destination = 1 road.vehicles.append(car) l.vehicles.append(car) for l in [road.lanes[3]]: cars_on_lane = car_number_each_lane reset_position = None if l is reset_lane: cars_on_lane += 1 reset_position = random.choice(range(5, 6)) # reset_position = 2 for i in range(cars_on_lane): if i < 8: continue if i == reset_position: # ego_vehicle = MDPVehicle(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), # velocity=20, max_length=max_l) ego_vehicle = IDMVehicle(road, l.position((i + 1) * np.random.randint(*reset_position_range), 0), velocity=20, max_length=max_l) ego_vehicle.destination = 1 ego_vehicle.id = 0 road.vehicles.append(ego_vehicle) self.vehicle = ego_vehicle l.vehicles.append(ego_vehicle) else: car = other_vehicles_type(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), velocity=np.random.randint(18, 25), dst=3, max_length=max_l) if other_vehicles_mandatory: car.destination = 1 road.vehicles.append(car) l.vehicles.append(car) for lane in road.lanes: lane.vehicles = sorted(lane.vehicles, key=lambda x: lane.local_coordinates(x.position)[0]) for i, v in enumerate(lane.vehicles): v.vehicle_index_in_line = i # for l in road.lanes[3:]: # cars_on_lane = car_number_each_lane # reset_position = None # if l is reset_lane: # cars_on_lane+=1 # reset_position = random.choice(range(1,car_number_each_lane)) # for i in range(cars_on_lane): # if i == reset_position: # ego_vehicle = ControlledVehicle(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), velocity=20,max_length=max_l) # road.vehicles.append(ego_vehicle) # self.vehicle = ego_vehicle # else: # road.vehicles.append(other_vehicles_type(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), velocity=np.random.randint(18,25),dst=2,rever=True,max_length=max_l)) if __name__ == '__main__': pass
from __future__ import division, print_function, absolute_import import numpy as np from highway_env import utils from highway_env.envs.abstract import AbstractEnv from highway_env.road.lane import LineType, StraightLane, SineLane, LanesConcatenation from highway_env.road.road import Road from highway_env.vehicle.control import ControlledVehicle, MDPVehicle, CarSim, FreeControl from highway_env.vehicle.behavior import IDMVehicle from highway_env.vehicle.dynamics import Obstacle import time import random def mobil(self, lane_index, mandatory): """ action_explain = ['left acc', 'left same', 'left dec', 'same acc', 'same same', 'same dec', 'right acc', 'right same', 'right dec'] MOBIL lane change model: Minimizing Overall Braking Induced by a Lane change The vehicle should change lane only if: - after changing it (and/or following vehicles) can accelerate more; - it doesn't impose an unsafe braking on its new following vehicle. :param lane_index: the candidate lane for the change :param mandatory: if the lane change is mandatory :return: whether the lane change should be performed """ def acceleration(ego_vehicle, front_vehicle=None): """ Compute an acceleration command with the Intelligent Driver Model. The acceleration is chosen so as to: - reach a target velocity; - maintain a minimum safety distance (and safety time) w.r.t the front vehicle. :param ego_vehicle: the vehicle whose desired acceleration is to be computed. It does not have to be an IDM vehicle, which is why this method is a class method. This allows an IDM vehicle to reason about other vehicles behaviors even though they may not IDMs. :param front_vehicle: the vehicle preceding the ego-vehicle :return: the acceleration command for the ego-vehicle [m/s2] """ COMFORT_ACC_MAX = 3.0 COMFORT_ACC_MIN = -5.0 TIME_WANTED = 1.5 DISTANCE_WANTED = 10 DELTA = 4.0 def not_zero(x): EPSILON = 0.01 if abs(x) > EPSILON: return x elif x > 0: return EPSILON else: return -EPSILON def desired_gap(ego_vehicle, front_vehicle): d0 = DISTANCE_WANTED + ego_vehicle.LENGTH / 2 + front_vehicle.LENGTH / 2 tau = TIME_WANTED ab = -COMFORT_ACC_MAX * COMFORT_ACC_MIN dv = ego_vehicle.velocity - front_vehicle.velocity d_star = d0 + ego_vehicle.velocity * tau + ego_vehicle.velocity * dv / (2 * np.sqrt(ab)) return d_star if not ego_vehicle: return 0 acceleration = COMFORT_ACC_MAX * ( 1 - np.power(ego_vehicle.velocity / not_zero(ego_vehicle.target_velocity), DELTA)) if front_vehicle: d = ego_vehicle.lane_distance_to(front_vehicle) acceleration -= COMFORT_ACC_MAX * np.power( desired_gap(ego_vehicle, front_vehicle) / not_zero(d), 2) return acceleration LANE_CHANGE_MAX_BRAKING_IMPOSED = 1.0 LANE_CHANGE_MIN_ACC_GAIN = 0.1 POLITENESS = 0. # Is the maneuver unsafe for the new following vehicle? new_preceding, new_following = self.road.neighbour_vehicles(self, self.road.lanes[lane_index]) # todo: added mandatory part preceding_vehicle_ok = True if new_preceding: relative_x = new_preceding.position[0] - self.position[0] relative_v = self.velocity - new_preceding.velocity if relative_x < 5: preceding_vehicle_ok = False if relative_v == 0.0: pass else: t = relative_x / relative_v if 0 < t < 3: preceding_vehicle_ok = False following_vehicle_ok = True if new_following: relative_x = self.position[0] - new_following.position[0] relative_v = new_following.velocity - self.velocity if relative_x < 5: following_vehicle_ok = False if relative_v == 0.0: pass else: t = relative_x / relative_v if 0 < t < 3: following_vehicle_ok = False if mandatory: if preceding_vehicle_ok and following_vehicle_ok: return True else: return False # todo: part finish new_following_a = acceleration(ego_vehicle=new_following, front_vehicle=new_preceding) new_following_pred_a = acceleration(ego_vehicle=new_following, front_vehicle=self) if new_following_pred_a < -LANE_CHANGE_MAX_BRAKING_IMPOSED: return False # Is there an advantage for me and/or my followers to change lane? old_preceding, old_following = self.road.neighbour_vehicles(self) self_a = acceleration(ego_vehicle=self, front_vehicle=old_preceding) self_pred_a = acceleration(ego_vehicle=self, front_vehicle=new_preceding) old_following_a = acceleration(ego_vehicle=old_following, front_vehicle=self) old_following_pred_a = acceleration(ego_vehicle=old_following, front_vehicle=old_preceding) jerk = self_pred_a - self_a + POLITENESS * ( new_following_pred_a - new_following_a + old_following_pred_a - old_following_a) if jerk < LANE_CHANGE_MIN_ACC_GAIN: return False # All clear, let's go! return True def global_mobil(env, action): """ :param env: environment :param action: action_explain = ['left acc', 'left same', 'left dec', 'same acc', 'same same', 'same dec', 'right acc', 'right same', 'right dec'] """ vehicle = env.vehicle mandatory = False lane_index = vehicle.lane_index if action in [0, 1, 2]: lane_index -= 1 mandatory = True if lane_index >= 0 and env.road.lanes[lane_index].is_reachable_from(vehicle.position): print('mandatory to left: {}'.format(mobil(vehicle, lane_index, mandatory))) elif action in [6, 7, 8]: lane_index += 1 mandatory = True if lane_index < len(env.road.lanes) and env.road.lanes[lane_index].is_reachable_from(vehicle.position): print('mandatory to right: {}'.format(mobil(vehicle, lane_index, mandatory))) else: lane_offsets = [i for i in [-1, 1] if 0 <= vehicle.lane_index + i < len(env.road.lanes)] for lane_offset in lane_offsets: # Is the candidate lane close enough? if not env.road.lanes[vehicle.lane_index + lane_offset].is_reachable_from(vehicle.position): continue # Does the MOBIL model recommend a lane change? if mobil(vehicle, lane_index, mandatory): print("unmandatory to {}, True!".format(lane_offset)) else: print("unmandatory to {}, False!".format(lane_offset)) # todo # -------------------------------------------- # todo class MergeEnvOut(AbstractEnv): """ A highway merge negotiation environment. The ego-vehicle is driving on a highway and approached a merge, with some vehicles incoming on the access ramp. It is rewarded for maintaining a high velocity and avoiding collisions, but also making room for merging vehicles. """ COLLISION_REWARD = -1 RIGHT_LANE_REWARD = 0.1 HIGH_VELOCITY_REWARD = 0.2 MERGING_VELOCITY_REWARD = -0.5 LANE_CHANGE_REWARD = -0.05 DEFAULT_CONFIG = {"other_vehicles_type": "highway_env.vehicle.behavior.IDMVehicle"} def __init__(self): super(MergeEnvOut, self).__init__() self.switch = False self.other_vehicles_mandatory = False self.config = self.DEFAULT_CONFIG.copy() # self.make_road() self.make() # self.double_merge() self.make_vehicles(self.other_vehicles_mandatory) self.success_cnt = 0 def configure(self, config): self.config.update(config) def _observation(self): return super(MergeEnvOut, self)._observation() def _reward(self, action): """ The vehicle is rewarded for driving with high velocity on lanes to the right and avoiding collisions, but an additional altruistic penalty is also suffered if any vehicle on the merging lane has a low velocity. :param action: the action performed :return: the reward of the state-action transition """ action_reward = {0: self.LANE_CHANGE_REWARD, 1: 0, 2: self.LANE_CHANGE_REWARD, 3: 0, 4: 0} reward = self.COLLISION_REWARD * self.vehicle.crashed \ + self.RIGHT_LANE_REWARD * self.vehicle.lane_index / (len(self.road.lanes) - 2) \ + self.HIGH_VELOCITY_REWARD * self.vehicle.velocity_index / (self.vehicle.SPEED_COUNT - 1) # Altruistic penalty for vehicle in self.road.vehicles: if vehicle.lane_index == len(self.road.lanes)-1 and isinstance(vehicle, ControlledVehicle): reward += self.MERGING_VELOCITY_REWARD * \ (vehicle.target_velocity - vehicle.velocity) / vehicle.target_velocity return reward + action_reward[action] def ego_vehicle_switch(self): self.switch = not self.switch def _is_terminal(self): """ The episode is over when a collision occurs or when the access ramp has been passed. """ if self.vehicle.position[0] > 500: if self.vehicle.lane_index == 3: self.success_cnt += 0.5 return self.vehicle.crashed or self.vehicle.position[0] > 500 def reset(self): # self.make_road() self.make() self.make_vehicles(self.other_vehicles_mandatory) return self._observation() def make_straight(self): lm10 = StraightLane(np.array([0, 0]), 0, 4.0, [LineType.CONTINUOUS_LINE, LineType.STRIPED], bounds=[0, 500]) l1 = LanesConcatenation([lm10]) lm20 = StraightLane(l1.position(0, 4), 0, 4.0, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 500]) l2 = LanesConcatenation([lm20]) # lm30 = StraightLane(l2.position(0,4), 0, 4.0, [LineType.STRIPED, LineType.STRIPED],bounds=[0,100]) # lm31 = StraightLane(lm30.position(0,0), 0, 4.0, [LineType.STRIPED, LineType.STRIPED],bounds=[0,500]) # l3 = LanesConcatenation([lm30,lm31]) lm30 = StraightLane(l2.position(0, 4), 0, 4.0, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 500]) l3 = LanesConcatenation([lm30]) amplitude = 4.5 lm40 = StraightLane(l3.position(0, 4), 0, 4.0, [LineType.STRIPED, LineType.CONTINUOUS_LINE], bounds=[200, 400]) lm41 = SineLane(lm40.position(400, amplitude), 0, 4.0, -amplitude, 2 * np.pi / (2 * 50), np.pi / 2, [LineType.CONTINUOUS, LineType.CONTINUOUS], bounds=[0, 50], forbidden=True) lm42 = StraightLane(lm41.position(50, 0), 0, 4.0, [LineType.CONTINUOUS_LINE, LineType.CONTINUOUS_LINE], bounds=[0, 50], forbidden=True) l4 = LanesConcatenation([lm40, lm41, lm42]) road = Road([l1, l2, l3, l4]) # road = Road([ l3]) # road = Road([lm0,lm2]) # todo !!!!!!!!!!! how to do with Obstacle in lane.vehicles obstacle = Obstacle(road, lm40.position(0, 0)) road.vehicles.append(obstacle) road.lanes[3].vehicles.append(obstacle) self.road = road def make_sin(self): # amplitude = 4.5 amplitude = 9.0 lm10 = StraightLane(np.array([0, 0]), 0, 5.0, [LineType.CONTINUOUS_LINE, LineType.STRIPED], bounds=[0, 400]) lm11 = SineLane(lm10.position(400, amplitude), 0, 5.0, -amplitude, 2 * np.pi / (2 * 50), np.pi / 2, [LineType.CONTINUOUS, LineType.STRIPED], bounds=[0, 250]) lm12 = StraightLane(lm11.position(250, 0), 0, 5.0, [LineType.CONTINUOUS_LINE, LineType.STRIPED], bounds=[0, 50]) l1 = LanesConcatenation([lm10, lm11, lm12]) lm20 = StraightLane(lm10.position(0, 5), 0, 5.0, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 400]) lm21 = SineLane(lm20.position(400, amplitude), 0, 5.0, -amplitude, 2 * np.pi / (2 * 50), np.pi / 2, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 250]) lm22 = StraightLane(lm21.position(250, 0), 0, 5.0, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 50]) l2 = LanesConcatenation([lm20, lm21, lm22]) lm30 = StraightLane(lm20.position(0, 5), 0, 5.0, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 400]) lm31 = SineLane(lm30.position(400, amplitude), 0, 5.0, -amplitude, 2 * np.pi / (2 * 50), np.pi / 2, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 250]) lm32 = StraightLane(lm31.position(250, 0), 0, 5.0, [LineType.STRIPED, LineType.STRIPED], bounds=[0, 50]) l3 = LanesConcatenation([lm30, lm31, lm32]) lm40 = StraightLane(lm30.position(0, 5), 0, 5.0, [LineType.STRIPED, LineType.CONTINUOUS_LINE], bounds=[0, 400]) lm41 = SineLane(lm40.position(400, amplitude), 0, 5.0, -amplitude, 2 * np.pi / (2 * 50), np.pi / 2, [LineType.STRIPED, LineType.CONTINUOUS], bounds=[0, 250]) lm42 = StraightLane(lm41.position(250, 0), 0, 5.0, [LineType.STRIPED, LineType.CONTINUOUS_LINE], bounds=[0, 50],) l4 = LanesConcatenation([lm40, lm41, lm42]) road = Road([l1, l2, l3, l4]) # road = Road([ l3]) # road = Road([lm0,lm2]) # todo !!!!!!!!!!! how to do with Obstacle in lane.vehicles obstacle = Obstacle(road, lm40.position(0, 0)) road.vehicles.append(obstacle) road.lanes[3].vehicles.append(obstacle) self.road = road def make(self): self.make_straight() # self.make_sin() def make_vehicles(self, other_vehicles_mandatory=False): """ Populate a road with several vehicles on the highway and on the merging lane, as well as an ego-vehicle. :param other_vehicles_mandatory: if the lane changing maneuvers of other vehicles are mandatory :return: None """ max_l = 500 road = self.road other_vehicles_type = utils.class_from_path(self.config["other_vehicles_type"]) car_number_each_lane = 15 # reset_position_range = (30, 40) reset_position_range = (20, 30) # reset_lane = random.choice(road.lanes) reset_lane = road.lanes[0] for l in road.lanes[:3]: cars_on_lane = car_number_each_lane reset_position = None if l is reset_lane: cars_on_lane += 1 reset_position = random.choice(range(5, 6)) # reset_position = 2 for i in range(cars_on_lane): if i == reset_position: if self.switch: ego_vehicle = MDPVehicle(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), velocity=20, max_length=max_l) else: ego_vehicle = IDMVehicle(road, l.position((i + 1) * np.random.randint(*reset_position_range), 0), velocity=20, max_length=max_l) ego_vehicle.destination = 1 ego_vehicle.id = 0 road.vehicles.append(ego_vehicle) self.vehicle = ego_vehicle l.vehicles.append(ego_vehicle) else: car = other_vehicles_type(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), velocity=np.random.randint(18, 25), dst=3, max_length=max_l) if other_vehicles_mandatory: car.destination = 1 road.vehicles.append(car) l.vehicles.append(car) for l in [road.lanes[3]]: cars_on_lane = car_number_each_lane reset_position = None if l is reset_lane: cars_on_lane += 1 reset_position = random.choice(range(5, 6)) # reset_position = 2 for i in range(cars_on_lane): if i < 8: continue if i == reset_position: # ego_vehicle = MDPVehicle(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), # velocity=20, max_length=max_l) ego_vehicle = IDMVehicle(road, l.position((i + 1) * np.random.randint(*reset_position_range), 0), velocity=20, max_length=max_l) ego_vehicle.destination = 1 ego_vehicle.id = 0 road.vehicles.append(ego_vehicle) self.vehicle = ego_vehicle l.vehicles.append(ego_vehicle) else: car = other_vehicles_type(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), velocity=np.random.randint(18, 25), dst=3, max_length=max_l) if other_vehicles_mandatory: car.destination = 1 road.vehicles.append(car) l.vehicles.append(car) for lane in road.lanes: lane.vehicles = sorted(lane.vehicles, key=lambda x: lane.local_coordinates(x.position)[0]) for i, v in enumerate(lane.vehicles): v.vehicle_index_in_line = i # for l in road.lanes[3:]: # cars_on_lane = car_number_each_lane # reset_position = None # if l is reset_lane: # cars_on_lane+=1 # reset_position = random.choice(range(1,car_number_each_lane)) # for i in range(cars_on_lane): # if i == reset_position: # ego_vehicle = ControlledVehicle(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), velocity=20,max_length=max_l) # road.vehicles.append(ego_vehicle) # self.vehicle = ego_vehicle # else: # road.vehicles.append(other_vehicles_type(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), velocity=np.random.randint(18,25),dst=2,rever=True,max_length=max_l)) if __name__ == '__main__': pass
en
0.733579
action_explain = ['left acc', 'left same', 'left dec', 'same acc', 'same same', 'same dec', 'right acc', 'right same', 'right dec'] MOBIL lane change model: Minimizing Overall Braking Induced by a Lane change The vehicle should change lane only if: - after changing it (and/or following vehicles) can accelerate more; - it doesn't impose an unsafe braking on its new following vehicle. :param lane_index: the candidate lane for the change :param mandatory: if the lane change is mandatory :return: whether the lane change should be performed Compute an acceleration command with the Intelligent Driver Model. The acceleration is chosen so as to: - reach a target velocity; - maintain a minimum safety distance (and safety time) w.r.t the front vehicle. :param ego_vehicle: the vehicle whose desired acceleration is to be computed. It does not have to be an IDM vehicle, which is why this method is a class method. This allows an IDM vehicle to reason about other vehicles behaviors even though they may not IDMs. :param front_vehicle: the vehicle preceding the ego-vehicle :return: the acceleration command for the ego-vehicle [m/s2] # Is the maneuver unsafe for the new following vehicle? # todo: added mandatory part # todo: part finish # Is there an advantage for me and/or my followers to change lane? # All clear, let's go! :param env: environment :param action: action_explain = ['left acc', 'left same', 'left dec', 'same acc', 'same same', 'same dec', 'right acc', 'right same', 'right dec'] # Is the candidate lane close enough? # Does the MOBIL model recommend a lane change? # todo # -------------------------------------------- # todo A highway merge negotiation environment. The ego-vehicle is driving on a highway and approached a merge, with some vehicles incoming on the access ramp. It is rewarded for maintaining a high velocity and avoiding collisions, but also making room for merging vehicles. # self.make_road() # self.double_merge() The vehicle is rewarded for driving with high velocity on lanes to the right and avoiding collisions, but an additional altruistic penalty is also suffered if any vehicle on the merging lane has a low velocity. :param action: the action performed :return: the reward of the state-action transition # Altruistic penalty The episode is over when a collision occurs or when the access ramp has been passed. # self.make_road() # lm30 = StraightLane(l2.position(0,4), 0, 4.0, [LineType.STRIPED, LineType.STRIPED],bounds=[0,100]) # lm31 = StraightLane(lm30.position(0,0), 0, 4.0, [LineType.STRIPED, LineType.STRIPED],bounds=[0,500]) # l3 = LanesConcatenation([lm30,lm31]) # road = Road([ l3]) # road = Road([lm0,lm2]) # todo !!!!!!!!!!! how to do with Obstacle in lane.vehicles # amplitude = 4.5 # road = Road([ l3]) # road = Road([lm0,lm2]) # todo !!!!!!!!!!! how to do with Obstacle in lane.vehicles # self.make_sin() Populate a road with several vehicles on the highway and on the merging lane, as well as an ego-vehicle. :param other_vehicles_mandatory: if the lane changing maneuvers of other vehicles are mandatory :return: None # reset_position_range = (30, 40) # reset_lane = random.choice(road.lanes) # reset_position = 2 # reset_position = 2 # ego_vehicle = MDPVehicle(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), # velocity=20, max_length=max_l) # for l in road.lanes[3:]: # cars_on_lane = car_number_each_lane # reset_position = None # if l is reset_lane: # cars_on_lane+=1 # reset_position = random.choice(range(1,car_number_each_lane)) # for i in range(cars_on_lane): # if i == reset_position: # ego_vehicle = ControlledVehicle(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), velocity=20,max_length=max_l) # road.vehicles.append(ego_vehicle) # self.vehicle = ego_vehicle # else: # road.vehicles.append(other_vehicles_type(road, l.position((i+1) * np.random.randint(*reset_position_range), 0), velocity=np.random.randint(18,25),dst=2,rever=True,max_length=max_l))
2.764081
3
Time.py
DefJia/Auto_Reservation_System_BE
15
6631015
<reponame>DefJia/Auto_Reservation_System_BE<filename>Time.py<gh_stars>10-100 import datetime import time import requests from configparser import ConfigParser import ast class Time: def __init__(self): self.cfg = ConfigParser() self.cfg.read('.config.ini', encoding='utf8') def wait_until(self, type): """ It needs to be clarified that the time is that on remote server. :return: 0 -> time is up """ pass def time_control(self, type): """ :param type: 0 -> pre_book, 1 -> pick :return: """ tmp = 'book' if type == 0 else 'pick' target_time = self.cfg.get('Time', tmp + '_time').split(':') hour = int(target_time[0]) minute = int(target_time[1]) prepare_seconds = self.cfg.getint('Time', 'advanced_second_to_prepare') interval_seconds = self.cfg.getint('Time', 'interval_second_to_calibrate') start_seconds = self.cfg.getint('Time', 'advanced_second_to_book') while True: if self.cal_seconds(0, (hour, minute), prepare_seconds): # 本地时间符合之后,开始验证服务器时间 while not self.cal_seconds(1, (hour, minute), start_seconds): time.sleep(interval_seconds) return 0 else: # 本地时间不符合,则继续等待 time.sleep(interval_seconds) def cal_seconds(self, time_type, target_time, target_delta_seconds): """ :param time_type: 0 -> local time, 1 -> server time :param target_time: target time tuple -> (hour, minute) :param target_delta_seconds: target delta seconds :return: true or false """ target_seconds = (target_time[0] * 60 + target_time[1]) * 60 current_time = datetime.datetime.now() if time_type == 0 else self.get_server_time() current_hour = current_time.hour current_minute = current_time.minute current_second = current_time.second current_seconds = current_hour * 3600 + current_minute * 60 + current_second current_delta_second = target_seconds - current_seconds # print('模式%d, 时间差%d' % (time_type, current_delta_second)) return True if 0 <= current_delta_second <= target_delta_seconds else False @staticmethod def get_server_time(): host = 'http://seat.lib.bit.edu.cn' r = requests.get(host) dic = ast.literal_eval(str(r.headers)) t = datetime.datetime.strptime(dic['Date'], "%a, %d %b %Y %H:%M:%S GMT") + datetime.timedelta(hours=8) return t if __name__ == '__main__': res = Time() # r = res.time_control(0) r = res.get_server_time() print(r)
import datetime import time import requests from configparser import ConfigParser import ast class Time: def __init__(self): self.cfg = ConfigParser() self.cfg.read('.config.ini', encoding='utf8') def wait_until(self, type): """ It needs to be clarified that the time is that on remote server. :return: 0 -> time is up """ pass def time_control(self, type): """ :param type: 0 -> pre_book, 1 -> pick :return: """ tmp = 'book' if type == 0 else 'pick' target_time = self.cfg.get('Time', tmp + '_time').split(':') hour = int(target_time[0]) minute = int(target_time[1]) prepare_seconds = self.cfg.getint('Time', 'advanced_second_to_prepare') interval_seconds = self.cfg.getint('Time', 'interval_second_to_calibrate') start_seconds = self.cfg.getint('Time', 'advanced_second_to_book') while True: if self.cal_seconds(0, (hour, minute), prepare_seconds): # 本地时间符合之后,开始验证服务器时间 while not self.cal_seconds(1, (hour, minute), start_seconds): time.sleep(interval_seconds) return 0 else: # 本地时间不符合,则继续等待 time.sleep(interval_seconds) def cal_seconds(self, time_type, target_time, target_delta_seconds): """ :param time_type: 0 -> local time, 1 -> server time :param target_time: target time tuple -> (hour, minute) :param target_delta_seconds: target delta seconds :return: true or false """ target_seconds = (target_time[0] * 60 + target_time[1]) * 60 current_time = datetime.datetime.now() if time_type == 0 else self.get_server_time() current_hour = current_time.hour current_minute = current_time.minute current_second = current_time.second current_seconds = current_hour * 3600 + current_minute * 60 + current_second current_delta_second = target_seconds - current_seconds # print('模式%d, 时间差%d' % (time_type, current_delta_second)) return True if 0 <= current_delta_second <= target_delta_seconds else False @staticmethod def get_server_time(): host = 'http://seat.lib.bit.edu.cn' r = requests.get(host) dic = ast.literal_eval(str(r.headers)) t = datetime.datetime.strptime(dic['Date'], "%a, %d %b %Y %H:%M:%S GMT") + datetime.timedelta(hours=8) return t if __name__ == '__main__': res = Time() # r = res.time_control(0) r = res.get_server_time() print(r)
en
0.489695
It needs to be clarified that the time is that on remote server. :return: 0 -> time is up :param type: 0 -> pre_book, 1 -> pick :return: # 本地时间符合之后,开始验证服务器时间 # 本地时间不符合,则继续等待 :param time_type: 0 -> local time, 1 -> server time :param target_time: target time tuple -> (hour, minute) :param target_delta_seconds: target delta seconds :return: true or false # print('模式%d, 时间差%d' % (time_type, current_delta_second)) # r = res.time_control(0)
3.210605
3
tensorflow/python/kernel_tests/linalg_grad_test.py
devsangwoo/tensor
1
6631016
<reponame>devsangwoo/tensor <<<<<<< HEAD # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.linalg_grad.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.linalg import linalg_impl from tensorflow.python.platform import test as test_lib def _AddTest(test, op_name, testcase_name, fn): test_name = '_'.join(['test', op_name, testcase_name]) if hasattr(test, test_name): raise RuntimeError('Test %s defined more than once' % test_name) setattr(test, test_name, fn) class ShapeTest(test_lib.TestCase): @test_util.run_deprecated_v1 def testBatchGradientUnknownSize(self): with self.cached_session(): batch_size = constant_op.constant(3) matrix_size = constant_op.constant(4) batch_identity = array_ops.tile( array_ops.expand_dims( array_ops.diag(array_ops.ones([matrix_size])), 0), [batch_size, 1, 1]) determinants = linalg_ops.matrix_determinant(batch_identity) reduced = math_ops.reduce_sum(determinants) sum_grad = gradients_impl.gradients(reduced, batch_identity)[0] self.assertAllClose(batch_identity.eval(), self.evaluate(sum_grad)) class MatrixUnaryFunctorGradientTest(test_lib.TestCase): pass # Filled in below def _GetMatrixUnaryFunctorGradientTest(functor_, dtype_, shape_, **kwargs_): @test_util.run_v1_only('b/120545219') def Test(self): with self.session(use_gpu=True): np.random.seed(1) a_np = np.random.uniform( low=-1.0, high=1.0, size=np.prod(shape_)).reshape(shape_).astype(dtype_) a = constant_op.constant(a_np) if functor_.__name__ == 'matrix_square_root': # Square the input matrix to ensure that its matrix square root exists a = math_ops.matmul(a, a) a_np = self.evaluate(a) b = functor_(a, **kwargs_) # Optimal stepsize for central difference is O(epsilon^{1/3}). epsilon = np.finfo(dtype_).eps delta = epsilon**(1.0 / 3.0) # tolerance obtained by looking at actual differences using # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build tol = 1e-6 if dtype_ == np.float64 else 0.05 theoretical, numerical = gradient_checker.compute_gradient( a, a.get_shape().as_list(), b, b.get_shape().as_list(), x_init_value=a_np, delta=delta) self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol) return Test class MatrixBinaryFunctorGradientTest(test_lib.TestCase): pass # Filled in below def _GetMatrixBinaryFunctorGradientTest(functor_, dtype_, shape_, float32_tol_fudge=1.0, **kwargs_): @test_util.run_v1_only('b/120545219') def Test(self): # TODO(rmlarsen): Debug illegal address bug on CUDA and re-enable # GPU test for matrix_solve. use_gpu = False if functor_ == linalg_ops.matrix_solve else True with self.session(use_gpu=use_gpu): np.random.seed(1) a_np = np.random.uniform( low=-1.0, high=1.0, size=np.prod(shape_)).reshape(shape_).astype(dtype_) a = constant_op.constant(a_np) b_np = np.random.uniform( low=-1.0, high=1.0, size=np.prod(shape_)).reshape(shape_).astype(dtype_) b = constant_op.constant(b_np) c = functor_(a, b, **kwargs_) # Optimal stepsize for central difference is O(epsilon^{1/3}). epsilon = np.finfo(dtype_).eps delta = epsilon**(1.0 / 3.0) # tolerance obtained by looking at actual differences using # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build tol = 1e-6 if dtype_ == np.float64 else float32_tol_fudge * 0.05 # The gradients for a and b may be of very different magnitudes, # so to not get spurious failures we test them separately. for factor, factor_init in [a, a_np], [b, b_np]: theoretical, numerical = gradient_checker.compute_gradient( factor, factor.get_shape().as_list(), c, c.get_shape().as_list(), x_init_value=factor_init, delta=delta) self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol) return Test if __name__ == '__main__': # Tests for gradients of binary matrix operations. for dtype in np.float32, np.float64: for size in 2, 5, 10: # We skip the rank 4, size 10 case: it is slow and conceptually covered # by the other cases. for extra in [(), (2,), (3,)] + [(3, 2)] * (size < 10): for adjoint in False, True: shape = extra + (size, size) name = '%s_%s_adj_%s' % (dtype.__name__, '_'.join(map(str, shape)), str(adjoint)) _AddTest(MatrixBinaryFunctorGradientTest, 'MatrixSolveGradient', name, _GetMatrixBinaryFunctorGradientTest( linalg_ops.matrix_solve, dtype, shape, adjoint=adjoint)) for lower in True, False: name = '%s_low_%s' % (name, lower) if (name == 'float32_10_10_adj_False_low_True') and \ test_lib.is_built_with_rocm(): # Skip this one particular subtest on the ROCm platform # It will fail because of 1 element in 10,000 mismatch, # and the mismatch is minor (tolerance is 0.20, mismtach is 0,22) # TODO(rocm) : investigate cause of mistmach and fix continue _AddTest(MatrixBinaryFunctorGradientTest, 'MatrixTriangularSolveGradient', name, _GetMatrixBinaryFunctorGradientTest( linalg_ops.matrix_triangular_solve, dtype, shape, float32_tol_fudge=4.0, adjoint=adjoint, lower=lower)) # Tests for gradients of unary matrix operations. for dtype in np.float32, np.float64: for size in 2, 5, 10: ======= """Tests for tensorflow.ops.linalg_grad.""" import tensorflow.python.platform import numpy as np import tensorflow as tf from tensorflow.python.kernel_tests import gradient_checker as gc class MatrixInverseGradientTest(tf.test.TestCase): pass # Filled in below def _GetMatrixInverseGradientTest(dtype, shape): def Test(self): with self.test_session(): np.random.seed(1) m = np.random.uniform(low=1.0, high=100.0, size=np.prod(shape)).reshape( shape).astype(dtype) a = tf.constant(m) epsilon = np.finfo(dtype).eps # Optimal stepsize for central difference is O(epsilon^{1/3}). delta = epsilon ** (1.0 / 3.0) tol = 1e-3 if len(shape) == 2: ainv = tf.matrix_inverse(a) else: ainv = tf.batch_matrix_inverse(a) theoretical, numerical = gc.ComputeGradient(a, shape, ainv, shape, delta=delta) self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol) return Test if __name__ == "__main__": # TODO(rmlarsen,irving): Reenable float32 once tolerances are fixed # The test used to loop over (np.float, np.double), both of which are float64. for dtype in np.float64,: for size in 2, 3, 5, 10: >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. # We skip the rank 4, size 10 case: it is slow and conceptually covered # by the other cases. for extra in [(), (2,), (3,)] + [(3, 2)] * (size < 10): shape = extra + (size, size) name = '%s_%s' % (dtype.__name__, '_'.join(map(str, shape))) <<<<<<< HEAD _AddTest(MatrixUnaryFunctorGradientTest, 'MatrixInverseGradient', name, _GetMatrixUnaryFunctorGradientTest(linalg_ops.matrix_inverse, dtype, shape)) _AddTest(MatrixUnaryFunctorGradientTest, 'MatrixExponentialGradient', name, _GetMatrixUnaryFunctorGradientTest( linalg_impl.matrix_exponential, dtype, shape)) _AddTest( MatrixUnaryFunctorGradientTest, 'MatrixDeterminantGradient', name, _GetMatrixUnaryFunctorGradientTest(linalg_ops.matrix_determinant, dtype, shape)) _AddTest( MatrixUnaryFunctorGradientTest, 'LogMatrixDeterminantGradient', name, _GetMatrixUnaryFunctorGradientTest( lambda x: linalg_ops.log_matrix_determinant(x)[1], dtype, shape)) # The numerical Jacobian is consistently invalid for these four shapes # because the matrix square root of the perturbed input doesn't exist if shape in {(2, 5, 5), (3, 5, 5), (3, 10, 10), (3, 2, 5, 5)}: # Alternative shape that consistently produces a valid numerical Jacobian shape = extra + (size + 1, size + 1) name = '%s_%s' % (dtype.__name__, '_'.join(map(str, shape))) _AddTest( MatrixUnaryFunctorGradientTest, 'MatrixSquareRootGradient', name, _GetMatrixUnaryFunctorGradientTest(linalg_ops.matrix_square_root, dtype, shape)) # Tests for gradients of matrix_solve_ls for dtype in np.float32, np.float64: for rows in 2, 5, 10: for cols in 2, 5, 10: for l2_regularization in 1e-6, 0.001, 1.0: shape = (rows, cols) name = '%s_%s_%s' % (dtype.__name__, '_'.join(map(str, shape)), l2_regularization) float32_tol_fudge = 5.1 if l2_regularization == 1e-6 else 4.0 _AddTest( MatrixBinaryFunctorGradientTest, 'MatrixSolveLsGradient', name, # pylint: disable=long-lambda,g-long-lambda _GetMatrixBinaryFunctorGradientTest( (lambda a, b, l=l2_regularization: linalg_ops.matrix_solve_ls(a, b, l)), dtype, shape, float32_tol_fudge)) test_lib.main() ======= setattr(MatrixInverseGradientTest, 'testMatrixInverseGradient_' + name, _GetMatrixInverseGradientTest(dtype, shape)) tf.test.main() >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library.
<<<<<<< HEAD # Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.linalg_grad.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.linalg import linalg_impl from tensorflow.python.platform import test as test_lib def _AddTest(test, op_name, testcase_name, fn): test_name = '_'.join(['test', op_name, testcase_name]) if hasattr(test, test_name): raise RuntimeError('Test %s defined more than once' % test_name) setattr(test, test_name, fn) class ShapeTest(test_lib.TestCase): @test_util.run_deprecated_v1 def testBatchGradientUnknownSize(self): with self.cached_session(): batch_size = constant_op.constant(3) matrix_size = constant_op.constant(4) batch_identity = array_ops.tile( array_ops.expand_dims( array_ops.diag(array_ops.ones([matrix_size])), 0), [batch_size, 1, 1]) determinants = linalg_ops.matrix_determinant(batch_identity) reduced = math_ops.reduce_sum(determinants) sum_grad = gradients_impl.gradients(reduced, batch_identity)[0] self.assertAllClose(batch_identity.eval(), self.evaluate(sum_grad)) class MatrixUnaryFunctorGradientTest(test_lib.TestCase): pass # Filled in below def _GetMatrixUnaryFunctorGradientTest(functor_, dtype_, shape_, **kwargs_): @test_util.run_v1_only('b/120545219') def Test(self): with self.session(use_gpu=True): np.random.seed(1) a_np = np.random.uniform( low=-1.0, high=1.0, size=np.prod(shape_)).reshape(shape_).astype(dtype_) a = constant_op.constant(a_np) if functor_.__name__ == 'matrix_square_root': # Square the input matrix to ensure that its matrix square root exists a = math_ops.matmul(a, a) a_np = self.evaluate(a) b = functor_(a, **kwargs_) # Optimal stepsize for central difference is O(epsilon^{1/3}). epsilon = np.finfo(dtype_).eps delta = epsilon**(1.0 / 3.0) # tolerance obtained by looking at actual differences using # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build tol = 1e-6 if dtype_ == np.float64 else 0.05 theoretical, numerical = gradient_checker.compute_gradient( a, a.get_shape().as_list(), b, b.get_shape().as_list(), x_init_value=a_np, delta=delta) self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol) return Test class MatrixBinaryFunctorGradientTest(test_lib.TestCase): pass # Filled in below def _GetMatrixBinaryFunctorGradientTest(functor_, dtype_, shape_, float32_tol_fudge=1.0, **kwargs_): @test_util.run_v1_only('b/120545219') def Test(self): # TODO(rmlarsen): Debug illegal address bug on CUDA and re-enable # GPU test for matrix_solve. use_gpu = False if functor_ == linalg_ops.matrix_solve else True with self.session(use_gpu=use_gpu): np.random.seed(1) a_np = np.random.uniform( low=-1.0, high=1.0, size=np.prod(shape_)).reshape(shape_).astype(dtype_) a = constant_op.constant(a_np) b_np = np.random.uniform( low=-1.0, high=1.0, size=np.prod(shape_)).reshape(shape_).astype(dtype_) b = constant_op.constant(b_np) c = functor_(a, b, **kwargs_) # Optimal stepsize for central difference is O(epsilon^{1/3}). epsilon = np.finfo(dtype_).eps delta = epsilon**(1.0 / 3.0) # tolerance obtained by looking at actual differences using # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build tol = 1e-6 if dtype_ == np.float64 else float32_tol_fudge * 0.05 # The gradients for a and b may be of very different magnitudes, # so to not get spurious failures we test them separately. for factor, factor_init in [a, a_np], [b, b_np]: theoretical, numerical = gradient_checker.compute_gradient( factor, factor.get_shape().as_list(), c, c.get_shape().as_list(), x_init_value=factor_init, delta=delta) self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol) return Test if __name__ == '__main__': # Tests for gradients of binary matrix operations. for dtype in np.float32, np.float64: for size in 2, 5, 10: # We skip the rank 4, size 10 case: it is slow and conceptually covered # by the other cases. for extra in [(), (2,), (3,)] + [(3, 2)] * (size < 10): for adjoint in False, True: shape = extra + (size, size) name = '%s_%s_adj_%s' % (dtype.__name__, '_'.join(map(str, shape)), str(adjoint)) _AddTest(MatrixBinaryFunctorGradientTest, 'MatrixSolveGradient', name, _GetMatrixBinaryFunctorGradientTest( linalg_ops.matrix_solve, dtype, shape, adjoint=adjoint)) for lower in True, False: name = '%s_low_%s' % (name, lower) if (name == 'float32_10_10_adj_False_low_True') and \ test_lib.is_built_with_rocm(): # Skip this one particular subtest on the ROCm platform # It will fail because of 1 element in 10,000 mismatch, # and the mismatch is minor (tolerance is 0.20, mismtach is 0,22) # TODO(rocm) : investigate cause of mistmach and fix continue _AddTest(MatrixBinaryFunctorGradientTest, 'MatrixTriangularSolveGradient', name, _GetMatrixBinaryFunctorGradientTest( linalg_ops.matrix_triangular_solve, dtype, shape, float32_tol_fudge=4.0, adjoint=adjoint, lower=lower)) # Tests for gradients of unary matrix operations. for dtype in np.float32, np.float64: for size in 2, 5, 10: ======= """Tests for tensorflow.ops.linalg_grad.""" import tensorflow.python.platform import numpy as np import tensorflow as tf from tensorflow.python.kernel_tests import gradient_checker as gc class MatrixInverseGradientTest(tf.test.TestCase): pass # Filled in below def _GetMatrixInverseGradientTest(dtype, shape): def Test(self): with self.test_session(): np.random.seed(1) m = np.random.uniform(low=1.0, high=100.0, size=np.prod(shape)).reshape( shape).astype(dtype) a = tf.constant(m) epsilon = np.finfo(dtype).eps # Optimal stepsize for central difference is O(epsilon^{1/3}). delta = epsilon ** (1.0 / 3.0) tol = 1e-3 if len(shape) == 2: ainv = tf.matrix_inverse(a) else: ainv = tf.batch_matrix_inverse(a) theoretical, numerical = gc.ComputeGradient(a, shape, ainv, shape, delta=delta) self.assertAllClose(theoretical, numerical, atol=tol, rtol=tol) return Test if __name__ == "__main__": # TODO(rmlarsen,irving): Reenable float32 once tolerances are fixed # The test used to loop over (np.float, np.double), both of which are float64. for dtype in np.float64,: for size in 2, 3, 5, 10: >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library. # We skip the rank 4, size 10 case: it is slow and conceptually covered # by the other cases. for extra in [(), (2,), (3,)] + [(3, 2)] * (size < 10): shape = extra + (size, size) name = '%s_%s' % (dtype.__name__, '_'.join(map(str, shape))) <<<<<<< HEAD _AddTest(MatrixUnaryFunctorGradientTest, 'MatrixInverseGradient', name, _GetMatrixUnaryFunctorGradientTest(linalg_ops.matrix_inverse, dtype, shape)) _AddTest(MatrixUnaryFunctorGradientTest, 'MatrixExponentialGradient', name, _GetMatrixUnaryFunctorGradientTest( linalg_impl.matrix_exponential, dtype, shape)) _AddTest( MatrixUnaryFunctorGradientTest, 'MatrixDeterminantGradient', name, _GetMatrixUnaryFunctorGradientTest(linalg_ops.matrix_determinant, dtype, shape)) _AddTest( MatrixUnaryFunctorGradientTest, 'LogMatrixDeterminantGradient', name, _GetMatrixUnaryFunctorGradientTest( lambda x: linalg_ops.log_matrix_determinant(x)[1], dtype, shape)) # The numerical Jacobian is consistently invalid for these four shapes # because the matrix square root of the perturbed input doesn't exist if shape in {(2, 5, 5), (3, 5, 5), (3, 10, 10), (3, 2, 5, 5)}: # Alternative shape that consistently produces a valid numerical Jacobian shape = extra + (size + 1, size + 1) name = '%s_%s' % (dtype.__name__, '_'.join(map(str, shape))) _AddTest( MatrixUnaryFunctorGradientTest, 'MatrixSquareRootGradient', name, _GetMatrixUnaryFunctorGradientTest(linalg_ops.matrix_square_root, dtype, shape)) # Tests for gradients of matrix_solve_ls for dtype in np.float32, np.float64: for rows in 2, 5, 10: for cols in 2, 5, 10: for l2_regularization in 1e-6, 0.001, 1.0: shape = (rows, cols) name = '%s_%s_%s' % (dtype.__name__, '_'.join(map(str, shape)), l2_regularization) float32_tol_fudge = 5.1 if l2_regularization == 1e-6 else 4.0 _AddTest( MatrixBinaryFunctorGradientTest, 'MatrixSolveLsGradient', name, # pylint: disable=long-lambda,g-long-lambda _GetMatrixBinaryFunctorGradientTest( (lambda a, b, l=l2_regularization: linalg_ops.matrix_solve_ls(a, b, l)), dtype, shape, float32_tol_fudge)) test_lib.main() ======= setattr(MatrixInverseGradientTest, 'testMatrixInverseGradient_' + name, _GetMatrixInverseGradientTest(dtype, shape)) tf.test.main() >>>>>>> f41959ccb2... TensorFlow: Initial commit of TensorFlow library.
en
0.825381
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== Tests for tensorflow.ops.linalg_grad. # Filled in below # Square the input matrix to ensure that its matrix square root exists # Optimal stepsize for central difference is O(epsilon^{1/3}). # tolerance obtained by looking at actual differences using # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build # Filled in below # TODO(rmlarsen): Debug illegal address bug on CUDA and re-enable # GPU test for matrix_solve. # Optimal stepsize for central difference is O(epsilon^{1/3}). # tolerance obtained by looking at actual differences using # np.linalg.norm(theoretical-numerical, np.inf) on -mavx build # The gradients for a and b may be of very different magnitudes, # so to not get spurious failures we test them separately. # Tests for gradients of binary matrix operations. # We skip the rank 4, size 10 case: it is slow and conceptually covered # by the other cases. # Skip this one particular subtest on the ROCm platform # It will fail because of 1 element in 10,000 mismatch, # and the mismatch is minor (tolerance is 0.20, mismtach is 0,22) # TODO(rocm) : investigate cause of mistmach and fix # Tests for gradients of unary matrix operations. Tests for tensorflow.ops.linalg_grad. # Filled in below # Optimal stepsize for central difference is O(epsilon^{1/3}). # TODO(rmlarsen,irving): Reenable float32 once tolerances are fixed # The test used to loop over (np.float, np.double), both of which are float64. # We skip the rank 4, size 10 case: it is slow and conceptually covered # by the other cases. # The numerical Jacobian is consistently invalid for these four shapes # because the matrix square root of the perturbed input doesn't exist # Alternative shape that consistently produces a valid numerical Jacobian # Tests for gradients of matrix_solve_ls # pylint: disable=long-lambda,g-long-lambda
2.028057
2
py_privatekonomi/core/db.py
nilsFK/py-privatekonomi
2
6631017
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import sqlalchemy from sqlalchemy import __version__ from sqlalchemy import create_engine import sqlalchemy.engine.url as url from py_privatekonomi.utilities import common from py_privatekonomi.utilities.common import (singleton, is_dict, is_Struct, as_obj, as_dict) @singleton class DB(object): def connect(self, db_config): if not is_dict(db_config) and not is_Struct(db_config): raise Exception("db_config must be either dict or common.Struct: %s" % (repr(db_config))) if is_Struct(db_config): db_config = as_dict(db_config) query = None if 'charset' in db_config: if db_config['charset'] == 'utf-8': # SQLAlchemy won't accept 'utf-8'... db_config['charset'] = 'utf8' query = { 'charset' : db_config['charset'] } if 'encoding' not in db_config: db_config['encoding'] = 'utf-8' db_config = as_obj(db_config) engine_url = url.URL( drivername=db_config.engine, host=db_config.host, port=db_config.port, username=db_config.username, password=<PASSWORD>, database=db_config.database, query=query ) self.__engine = create_engine(engine_url, encoding=db_config.encoding) self.__connection = self.__engine.connect() self.__config = db_config self.__connected = True def getEngine(self): return self.__engine def getConnection(self): return self.__connection def getConfig(self, config = None): if config is not None: return getattr(self.__config, config) else: return self.__config def hasConfig(self, config_name): return hasattr(self.__config, config_name) def isConnected(self): try: is_connected = self.__connected except AttributeError: return False return is_connected if __name__ == '__main__': db = DB() print((sqlalchemy.__version__)) db.connect() db.getEngine()
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import sqlalchemy from sqlalchemy import __version__ from sqlalchemy import create_engine import sqlalchemy.engine.url as url from py_privatekonomi.utilities import common from py_privatekonomi.utilities.common import (singleton, is_dict, is_Struct, as_obj, as_dict) @singleton class DB(object): def connect(self, db_config): if not is_dict(db_config) and not is_Struct(db_config): raise Exception("db_config must be either dict or common.Struct: %s" % (repr(db_config))) if is_Struct(db_config): db_config = as_dict(db_config) query = None if 'charset' in db_config: if db_config['charset'] == 'utf-8': # SQLAlchemy won't accept 'utf-8'... db_config['charset'] = 'utf8' query = { 'charset' : db_config['charset'] } if 'encoding' not in db_config: db_config['encoding'] = 'utf-8' db_config = as_obj(db_config) engine_url = url.URL( drivername=db_config.engine, host=db_config.host, port=db_config.port, username=db_config.username, password=<PASSWORD>, database=db_config.database, query=query ) self.__engine = create_engine(engine_url, encoding=db_config.encoding) self.__connection = self.__engine.connect() self.__config = db_config self.__connected = True def getEngine(self): return self.__engine def getConnection(self): return self.__connection def getConfig(self, config = None): if config is not None: return getattr(self.__config, config) else: return self.__config def hasConfig(self, config_name): return hasattr(self.__config, config_name) def isConnected(self): try: is_connected = self.__connected except AttributeError: return False return is_connected if __name__ == '__main__': db = DB() print((sqlalchemy.__version__)) db.connect() db.getEngine()
en
0.688447
#!/usr/bin/env python # -*- coding: utf-8 -*- # SQLAlchemy won't accept 'utf-8'...
2.4143
2
vyper/parser/external_call.py
t4n6a1ka/vyper
0
6631018
from vyper import ast from vyper.exceptions import ( ConstancyViolationException, FunctionDeclarationException, StructureException, TypeMismatchException, VariableDeclarationException, ) from vyper.parser.lll_node import ( LLLnode, ) from vyper.parser.parser_utils import ( getpos, pack_arguments, unwrap_location, ) from vyper.types import ( BaseType, ByteArrayLike, ListType, TupleLike, get_size_of_type, ) def external_contract_call(node, context, contract_name, contract_address, pos, value=None, gas=None): from vyper.parser.expr import ( Expr, ) if value is None: value = 0 if gas is None: gas = 'gas' if not contract_name: raise StructureException( f'Invalid external contract call "{node.func.attr}".', node ) if contract_name not in context.sigs: raise VariableDeclarationException( f'Contract "{contract_name}" not declared yet', node ) if contract_address.value == "address": raise StructureException( f"External calls to self are not permitted.", node ) method_name = node.func.attr if method_name not in context.sigs[contract_name]: raise FunctionDeclarationException( ( "Function not declared yet: %s (reminder: " "function must be declared in the correct contract)" " The available methods are: %s" ) % (method_name, ",".join(context.sigs[contract_name].keys())), node.func ) sig = context.sigs[contract_name][method_name] inargs, inargsize, _ = pack_arguments( sig, [Expr(arg, context).lll_node for arg in node.args], context, node.func, ) output_placeholder, output_size, returner = get_external_contract_call_output(sig, context) sub = [ 'seq', ['assert', ['extcodesize', contract_address]], ['assert', ['ne', 'address', contract_address]], ] if context.is_constant() and not sig.const: raise ConstancyViolationException( "May not call non-constant function '%s' within %s." % ( method_name, context.pp_constancy(), ) + " For asserting the result of modifiable contract calls, try assert_modifiable.", node ) if context.is_constant() or sig.const: sub.append([ 'assert', [ 'staticcall', gas, contract_address, inargs, inargsize, output_placeholder, output_size, ] ]) else: sub.append([ 'assert', [ 'call', gas, contract_address, value, inargs, inargsize, output_placeholder, output_size, ] ]) sub.extend(returner) o = LLLnode.from_list(sub, typ=sig.output_type, location='memory', pos=getpos(node)) return o def get_external_contract_call_output(sig, context): if not sig.output_type: return 0, 0, [] output_placeholder = context.new_placeholder(typ=sig.output_type) output_size = get_size_of_type(sig.output_type) * 32 if isinstance(sig.output_type, BaseType): returner = [0, output_placeholder] elif isinstance(sig.output_type, ByteArrayLike): returner = [0, output_placeholder + 32] elif isinstance(sig.output_type, TupleLike): returner = [0, output_placeholder] elif isinstance(sig.output_type, ListType): returner = [0, output_placeholder] else: raise TypeMismatchException("Invalid output type: %s" % sig.output_type) return output_placeholder, output_size, returner def get_external_contract_keywords(stmt_expr, context): from vyper.parser.expr import Expr value, gas = None, None for kw in stmt_expr.keywords: if kw.arg not in ('value', 'gas'): raise TypeMismatchException( 'Invalid keyword argument, only "gas" and "value" supported.', stmt_expr, ) elif kw.arg == 'gas': gas = Expr.parse_value_expr(kw.value, context) elif kw.arg == 'value': value = Expr.parse_value_expr(kw.value, context) return value, gas def make_external_call(stmt_expr, context): from vyper.parser.expr import Expr value, gas = get_external_contract_keywords(stmt_expr, context) if isinstance(stmt_expr.func, ast.Attribute) and isinstance(stmt_expr.func.value, ast.Call): contract_name = stmt_expr.func.value.func.id contract_address = Expr.parse_value_expr(stmt_expr.func.value.args[0], context) return external_contract_call( stmt_expr, context, contract_name, contract_address, pos=getpos(stmt_expr), value=value, gas=gas, ) elif isinstance(stmt_expr.func.value, ast.Attribute) and stmt_expr.func.value.attr in context.sigs: # noqa: E501 contract_name = stmt_expr.func.value.attr var = context.globals[stmt_expr.func.value.attr] contract_address = unwrap_location(LLLnode.from_list( var.pos, typ=var.typ, location='storage', pos=getpos(stmt_expr), annotation='self.' + stmt_expr.func.value.attr, )) return external_contract_call( stmt_expr, context, contract_name, contract_address, pos=getpos(stmt_expr), value=value, gas=gas, ) elif isinstance(stmt_expr.func.value, ast.Attribute) and stmt_expr.func.value.attr in context.globals: # noqa: E501 contract_name = context.globals[stmt_expr.func.value.attr].typ.unit var = context.globals[stmt_expr.func.value.attr] contract_address = unwrap_location(LLLnode.from_list( var.pos, typ=var.typ, location='storage', pos=getpos(stmt_expr), annotation='self.' + stmt_expr.func.value.attr, )) return external_contract_call( stmt_expr, context, contract_name, contract_address, pos=getpos(stmt_expr), value=value, gas=gas, ) else: raise StructureException("Unsupported operator.", stmt_expr)
from vyper import ast from vyper.exceptions import ( ConstancyViolationException, FunctionDeclarationException, StructureException, TypeMismatchException, VariableDeclarationException, ) from vyper.parser.lll_node import ( LLLnode, ) from vyper.parser.parser_utils import ( getpos, pack_arguments, unwrap_location, ) from vyper.types import ( BaseType, ByteArrayLike, ListType, TupleLike, get_size_of_type, ) def external_contract_call(node, context, contract_name, contract_address, pos, value=None, gas=None): from vyper.parser.expr import ( Expr, ) if value is None: value = 0 if gas is None: gas = 'gas' if not contract_name: raise StructureException( f'Invalid external contract call "{node.func.attr}".', node ) if contract_name not in context.sigs: raise VariableDeclarationException( f'Contract "{contract_name}" not declared yet', node ) if contract_address.value == "address": raise StructureException( f"External calls to self are not permitted.", node ) method_name = node.func.attr if method_name not in context.sigs[contract_name]: raise FunctionDeclarationException( ( "Function not declared yet: %s (reminder: " "function must be declared in the correct contract)" " The available methods are: %s" ) % (method_name, ",".join(context.sigs[contract_name].keys())), node.func ) sig = context.sigs[contract_name][method_name] inargs, inargsize, _ = pack_arguments( sig, [Expr(arg, context).lll_node for arg in node.args], context, node.func, ) output_placeholder, output_size, returner = get_external_contract_call_output(sig, context) sub = [ 'seq', ['assert', ['extcodesize', contract_address]], ['assert', ['ne', 'address', contract_address]], ] if context.is_constant() and not sig.const: raise ConstancyViolationException( "May not call non-constant function '%s' within %s." % ( method_name, context.pp_constancy(), ) + " For asserting the result of modifiable contract calls, try assert_modifiable.", node ) if context.is_constant() or sig.const: sub.append([ 'assert', [ 'staticcall', gas, contract_address, inargs, inargsize, output_placeholder, output_size, ] ]) else: sub.append([ 'assert', [ 'call', gas, contract_address, value, inargs, inargsize, output_placeholder, output_size, ] ]) sub.extend(returner) o = LLLnode.from_list(sub, typ=sig.output_type, location='memory', pos=getpos(node)) return o def get_external_contract_call_output(sig, context): if not sig.output_type: return 0, 0, [] output_placeholder = context.new_placeholder(typ=sig.output_type) output_size = get_size_of_type(sig.output_type) * 32 if isinstance(sig.output_type, BaseType): returner = [0, output_placeholder] elif isinstance(sig.output_type, ByteArrayLike): returner = [0, output_placeholder + 32] elif isinstance(sig.output_type, TupleLike): returner = [0, output_placeholder] elif isinstance(sig.output_type, ListType): returner = [0, output_placeholder] else: raise TypeMismatchException("Invalid output type: %s" % sig.output_type) return output_placeholder, output_size, returner def get_external_contract_keywords(stmt_expr, context): from vyper.parser.expr import Expr value, gas = None, None for kw in stmt_expr.keywords: if kw.arg not in ('value', 'gas'): raise TypeMismatchException( 'Invalid keyword argument, only "gas" and "value" supported.', stmt_expr, ) elif kw.arg == 'gas': gas = Expr.parse_value_expr(kw.value, context) elif kw.arg == 'value': value = Expr.parse_value_expr(kw.value, context) return value, gas def make_external_call(stmt_expr, context): from vyper.parser.expr import Expr value, gas = get_external_contract_keywords(stmt_expr, context) if isinstance(stmt_expr.func, ast.Attribute) and isinstance(stmt_expr.func.value, ast.Call): contract_name = stmt_expr.func.value.func.id contract_address = Expr.parse_value_expr(stmt_expr.func.value.args[0], context) return external_contract_call( stmt_expr, context, contract_name, contract_address, pos=getpos(stmt_expr), value=value, gas=gas, ) elif isinstance(stmt_expr.func.value, ast.Attribute) and stmt_expr.func.value.attr in context.sigs: # noqa: E501 contract_name = stmt_expr.func.value.attr var = context.globals[stmt_expr.func.value.attr] contract_address = unwrap_location(LLLnode.from_list( var.pos, typ=var.typ, location='storage', pos=getpos(stmt_expr), annotation='self.' + stmt_expr.func.value.attr, )) return external_contract_call( stmt_expr, context, contract_name, contract_address, pos=getpos(stmt_expr), value=value, gas=gas, ) elif isinstance(stmt_expr.func.value, ast.Attribute) and stmt_expr.func.value.attr in context.globals: # noqa: E501 contract_name = context.globals[stmt_expr.func.value.attr].typ.unit var = context.globals[stmt_expr.func.value.attr] contract_address = unwrap_location(LLLnode.from_list( var.pos, typ=var.typ, location='storage', pos=getpos(stmt_expr), annotation='self.' + stmt_expr.func.value.attr, )) return external_contract_call( stmt_expr, context, contract_name, contract_address, pos=getpos(stmt_expr), value=value, gas=gas, ) else: raise StructureException("Unsupported operator.", stmt_expr)
it
0.364061
# noqa: E501 # noqa: E501
2.394392
2
Chapter14/Scripts/cartoframes_test.py
monocilindro/Mastering-Geospatial-Analysis-with-Python
64
6631019
<filename>Chapter14/Scripts/cartoframes_test.py import cartoframes APIKEY = "<KEY>" # `base_url`s are of the form `http://{username}.carto.com/` for most users cc = cartoframes.CartoContext(base_url='https://lokiintelligent.carto.com/', api_key=APIKEY) # read a table from your CARTO account to a DataFrame df = cc.read('arenas_nba')
<filename>Chapter14/Scripts/cartoframes_test.py import cartoframes APIKEY = "<KEY>" # `base_url`s are of the form `http://{username}.carto.com/` for most users cc = cartoframes.CartoContext(base_url='https://lokiintelligent.carto.com/', api_key=APIKEY) # read a table from your CARTO account to a DataFrame df = cc.read('arenas_nba')
en
0.768435
# `base_url`s are of the form `http://{username}.carto.com/` for most users # read a table from your CARTO account to a DataFrame
2.808148
3
Chapter08/rdd/rddtranform1.py
MichaelRW/Python-for-Geeks
31
6631020
#rddtransform1.py: rdd tranformation function #please ignore next 2 statements if running directly in PySpark shell import time from pyspark.sql import SparkSession spark = SparkSession.builder.master("local[*]")\ .appName("RDD Test app")\ .getOrCreate() rdd1 = spark.sparkContext.textFile('sample.txt') #print(rdd1.getNumPartitions()) rdd2 = rdd1.map(lambda lines: lines.lower()) rdd3 = rdd1.map(lambda lines: lines.upper()) print(rdd2.collect()) print(rdd3.collect()) time.sleep(60)
#rddtransform1.py: rdd tranformation function #please ignore next 2 statements if running directly in PySpark shell import time from pyspark.sql import SparkSession spark = SparkSession.builder.master("local[*]")\ .appName("RDD Test app")\ .getOrCreate() rdd1 = spark.sparkContext.textFile('sample.txt') #print(rdd1.getNumPartitions()) rdd2 = rdd1.map(lambda lines: lines.lower()) rdd3 = rdd1.map(lambda lines: lines.upper()) print(rdd2.collect()) print(rdd3.collect()) time.sleep(60)
en
0.234749
#rddtransform1.py: rdd tranformation function #please ignore next 2 statements if running directly in PySpark shell #print(rdd1.getNumPartitions())
2.713923
3
mayan/apps/document_states/tests/test_models.py
marumadang/mayan-edms
0
6631021
<gh_stars>0 from __future__ import unicode_literals from django.test import override_settings from common.tests import BaseTestCase from common.tests.mixins import UserMixin from documents.models import DocumentType from documents.tests import TEST_SMALL_DOCUMENT_PATH, TEST_DOCUMENT_TYPE_LABEL from document_indexing.models import Index, IndexInstanceNode from ..models import Workflow from .literals import ( TEST_INDEX_LABEL, TEST_INDEX_TEMPLATE_METADATA_EXPRESSION, TEST_WORKFLOW_INTERNAL_NAME, TEST_WORKFLOW_INITIAL_STATE_LABEL, TEST_WORKFLOW_INITIAL_STATE_COMPLETION, TEST_WORKFLOW_LABEL, TEST_WORKFLOW_STATE_LABEL, TEST_WORKFLOW_STATE_COMPLETION, TEST_WORKFLOW_TRANSITION_LABEL ) @override_settings(OCR_AUTO_OCR=False) class DocumentStateIndexingTestCase(UserMixin, BaseTestCase): def tearDown(self): self.document_type.delete() super(DocumentStateIndexingTestCase, self).tearDown() def _create_document_type(self): self.document_type = DocumentType.objects.create( label=TEST_DOCUMENT_TYPE_LABEL ) def _create_document(self): with open(TEST_SMALL_DOCUMENT_PATH) as file_object: self.document = self.document_type.new_document( file_object=file_object ) def _create_workflow(self): self.workflow = Workflow.objects.create( label=TEST_WORKFLOW_LABEL, internal_name=TEST_WORKFLOW_INTERNAL_NAME ) self.workflow.document_types.add(self.document_type) def _create_workflow_states(self): self._create_workflow() self.workflow_state_1 = self.workflow.states.create( completion=TEST_WORKFLOW_INITIAL_STATE_COMPLETION, initial=True, label=TEST_WORKFLOW_INITIAL_STATE_LABEL ) self.workflow_state_2 = self.workflow.states.create( completion=TEST_WORKFLOW_STATE_COMPLETION, label=TEST_WORKFLOW_STATE_LABEL ) def _create_workflow_transition(self): self._create_workflow_states() self.workflow_transition = self.workflow.transitions.create( label=TEST_WORKFLOW_TRANSITION_LABEL, origin_state=self.workflow_state_1, destination_state=self.workflow_state_2, ) def _create_index(self): # Create empty index index = Index.objects.create(label=TEST_INDEX_LABEL) # Add our document type to the new index index.document_types.add(self.document_type) # Create simple index template root = index.template_root index.node_templates.create( parent=root, expression=TEST_INDEX_TEMPLATE_METADATA_EXPRESSION, link_documents=True ) def test_workflow_indexing_initial_state(self): self._create_document_type() self._create_workflow_transition() self._create_index() self._create_document() self.assertEqual( list( IndexInstanceNode.objects.values_list('value', flat=True) ), ['', TEST_WORKFLOW_INITIAL_STATE_LABEL] ) def test_workflow_indexing_transition(self): self._create_document_type() self._create_workflow_transition() self._create_index() self._create_document() self.document.workflows.first().do_transition( transition=self.workflow_transition, user=self.admin_user ) self.assertEqual( list( IndexInstanceNode.objects.values_list('value', flat=True) ), ['', TEST_WORKFLOW_STATE_LABEL] ) def test_workflow_indexing_document_delete(self): self._create_document_type() self._create_workflow_transition() self._create_index() self._create_document() self.document.workflows.first().do_transition( transition=self.workflow_transition, user=self.admin_user ) self.document.delete(to_trash=False) self.assertEqual( list( IndexInstanceNode.objects.values_list('value', flat=True) ), [''] )
from __future__ import unicode_literals from django.test import override_settings from common.tests import BaseTestCase from common.tests.mixins import UserMixin from documents.models import DocumentType from documents.tests import TEST_SMALL_DOCUMENT_PATH, TEST_DOCUMENT_TYPE_LABEL from document_indexing.models import Index, IndexInstanceNode from ..models import Workflow from .literals import ( TEST_INDEX_LABEL, TEST_INDEX_TEMPLATE_METADATA_EXPRESSION, TEST_WORKFLOW_INTERNAL_NAME, TEST_WORKFLOW_INITIAL_STATE_LABEL, TEST_WORKFLOW_INITIAL_STATE_COMPLETION, TEST_WORKFLOW_LABEL, TEST_WORKFLOW_STATE_LABEL, TEST_WORKFLOW_STATE_COMPLETION, TEST_WORKFLOW_TRANSITION_LABEL ) @override_settings(OCR_AUTO_OCR=False) class DocumentStateIndexingTestCase(UserMixin, BaseTestCase): def tearDown(self): self.document_type.delete() super(DocumentStateIndexingTestCase, self).tearDown() def _create_document_type(self): self.document_type = DocumentType.objects.create( label=TEST_DOCUMENT_TYPE_LABEL ) def _create_document(self): with open(TEST_SMALL_DOCUMENT_PATH) as file_object: self.document = self.document_type.new_document( file_object=file_object ) def _create_workflow(self): self.workflow = Workflow.objects.create( label=TEST_WORKFLOW_LABEL, internal_name=TEST_WORKFLOW_INTERNAL_NAME ) self.workflow.document_types.add(self.document_type) def _create_workflow_states(self): self._create_workflow() self.workflow_state_1 = self.workflow.states.create( completion=TEST_WORKFLOW_INITIAL_STATE_COMPLETION, initial=True, label=TEST_WORKFLOW_INITIAL_STATE_LABEL ) self.workflow_state_2 = self.workflow.states.create( completion=TEST_WORKFLOW_STATE_COMPLETION, label=TEST_WORKFLOW_STATE_LABEL ) def _create_workflow_transition(self): self._create_workflow_states() self.workflow_transition = self.workflow.transitions.create( label=TEST_WORKFLOW_TRANSITION_LABEL, origin_state=self.workflow_state_1, destination_state=self.workflow_state_2, ) def _create_index(self): # Create empty index index = Index.objects.create(label=TEST_INDEX_LABEL) # Add our document type to the new index index.document_types.add(self.document_type) # Create simple index template root = index.template_root index.node_templates.create( parent=root, expression=TEST_INDEX_TEMPLATE_METADATA_EXPRESSION, link_documents=True ) def test_workflow_indexing_initial_state(self): self._create_document_type() self._create_workflow_transition() self._create_index() self._create_document() self.assertEqual( list( IndexInstanceNode.objects.values_list('value', flat=True) ), ['', TEST_WORKFLOW_INITIAL_STATE_LABEL] ) def test_workflow_indexing_transition(self): self._create_document_type() self._create_workflow_transition() self._create_index() self._create_document() self.document.workflows.first().do_transition( transition=self.workflow_transition, user=self.admin_user ) self.assertEqual( list( IndexInstanceNode.objects.values_list('value', flat=True) ), ['', TEST_WORKFLOW_STATE_LABEL] ) def test_workflow_indexing_document_delete(self): self._create_document_type() self._create_workflow_transition() self._create_index() self._create_document() self.document.workflows.first().do_transition( transition=self.workflow_transition, user=self.admin_user ) self.document.delete(to_trash=False) self.assertEqual( list( IndexInstanceNode.objects.values_list('value', flat=True) ), [''] )
en
0.358598
# Create empty index # Add our document type to the new index # Create simple index template
1.87433
2
wham.py
robeme/whampy
2
6631022
<gh_stars>1-10 """AUTHOR: efortin DATE: 16/05/2018 16:06 VERSION: 1.1 This is a Python3 executable script that performs the WHAM analysis of a set of umbrella sampling simulations, using various methods. """ # IMPORTS import os import re import sys import time import warnings import numpy as np import wham.simdata as sim from wham.init import Logger, update_progress, parse_command from wham.setup import startup, read_data from wham.minim import minimization, calc_free from wham.errors import mc_error_analysis, split_analysis, consistency_tests from wham.prints import print_results, print_consistency from matplotlib import pyplot as plt from scipy import optimize, constants from operator import attrgetter # DECLARATION OF GLOBAL VARIABLES # PROGRAM STARTUP (COMMAND LINE PARSING) start_time = time.time() np.seterr(all='ignore') metafile, outfile = parse_command(sys.argv) print("Using {0} as metadata file".format(metafile)) windows, init_time = startup(metafile) windows, data, read_time = read_data(windows) g, min_time = minimization(windows, data) data[:,2], data[:,3], bin_min = calc_free(g, windows, data) if sim.num_mc_runs: P_std, A_std, G_std, mc_time = mc_error_analysis(windows, data) else: P_std, A_std, G_std, split_time = split_analysis(windows, data) phi, eta, tests_time = consistency_tests(windows, data) print_results(outfile, data, A_std, P_std) print_consistency(outfile, windows, G_std, phi, eta) total_time = time.time() - start_time print("WHAM calculation complete") print("--- Runtime: %s seconds ---" % total_time)
"""AUTHOR: efortin DATE: 16/05/2018 16:06 VERSION: 1.1 This is a Python3 executable script that performs the WHAM analysis of a set of umbrella sampling simulations, using various methods. """ # IMPORTS import os import re import sys import time import warnings import numpy as np import wham.simdata as sim from wham.init import Logger, update_progress, parse_command from wham.setup import startup, read_data from wham.minim import minimization, calc_free from wham.errors import mc_error_analysis, split_analysis, consistency_tests from wham.prints import print_results, print_consistency from matplotlib import pyplot as plt from scipy import optimize, constants from operator import attrgetter # DECLARATION OF GLOBAL VARIABLES # PROGRAM STARTUP (COMMAND LINE PARSING) start_time = time.time() np.seterr(all='ignore') metafile, outfile = parse_command(sys.argv) print("Using {0} as metadata file".format(metafile)) windows, init_time = startup(metafile) windows, data, read_time = read_data(windows) g, min_time = minimization(windows, data) data[:,2], data[:,3], bin_min = calc_free(g, windows, data) if sim.num_mc_runs: P_std, A_std, G_std, mc_time = mc_error_analysis(windows, data) else: P_std, A_std, G_std, split_time = split_analysis(windows, data) phi, eta, tests_time = consistency_tests(windows, data) print_results(outfile, data, A_std, P_std) print_consistency(outfile, windows, G_std, phi, eta) total_time = time.time() - start_time print("WHAM calculation complete") print("--- Runtime: %s seconds ---" % total_time)
en
0.748167
AUTHOR: efortin DATE: 16/05/2018 16:06 VERSION: 1.1 This is a Python3 executable script that performs the WHAM analysis of a set of umbrella sampling simulations, using various methods. # IMPORTS # DECLARATION OF GLOBAL VARIABLES # PROGRAM STARTUP (COMMAND LINE PARSING)
2.37208
2
Algorithm/Easy/1-500/100Remove Duplicates from Sorted Array.py
MartinYan623/Lint-Code
0
6631023
<gh_stars>0 class Solution: """ @param: nums: An ineger array @return: An integer """ def removeDuplicates(self, nums): # write your code here length = len(nums) nowlength = length for i in range(length - 1): while i < nowlength - 1 and nums[i] == nums[i + 1]: del nums[i + 1] nowlength -= 1 ans = len(nums) return ans
class Solution: """ @param: nums: An ineger array @return: An integer """ def removeDuplicates(self, nums): # write your code here length = len(nums) nowlength = length for i in range(length - 1): while i < nowlength - 1 and nums[i] == nums[i + 1]: del nums[i + 1] nowlength -= 1 ans = len(nums) return ans
en
0.207302
@param: nums: An ineger array @return: An integer # write your code here
3.404665
3
dollar_lambda/args.py
ethanabrooks/pymonad
1
6631024
""" Defines the :py:class:`Args <dollar_lambda.args.Args>` dataclass and associated functions. """ from __future__ import annotations import dataclasses import typing from dataclasses import MISSING, Field, dataclass, fields from typing import Any, Callable, Iterator, Optional, Union, get_args from dollar_lambda.data_structures import KeyValue, Output, Sequence from dollar_lambda.parsers import Parser, defaults, flag, nonpositional, option def field( help: Optional[str] = None, metadata: Optional[dict] = None, parser: Optional[Parser[Output]] = None, **kwargs, ) -> Field: """ This is a thin wrapper around :external:py:func:`dataclasses.field`. Parameters ---------- help : str An optional help string for the argument. metadata : str Identical to the `metadata` argument for :external:py:func:`dataclasses.field`. type : Optional[type | Callable[[str], Any]] A function that takes a string and returns a value just like the ``type`` argument for :external:py:meth:`argparse.ArgumentParser.add_argument`. Returns ------- A :external:py:class:`dataclasses.Field` object that can be used in place of a default argument as described in the :external:py:class:`dataclasses.Field` documentation. """ if metadata is None: metadata = {} if parser is not None: metadata.update(parser=parser) if help is not None: metadata.update(help=help) return dataclasses.field(metadata=metadata, **kwargs) @dataclass class _ArgsField: name: str default: Any help: Optional[str] = None type: Callable[[str], Any] = str @staticmethod def parse(field: Field) -> Union["_ArgsField", Parser[Output]]: if "help" in field.metadata: help_ = field.metadata["help"] else: help_ = None if "parser" in field.metadata: parser = field.metadata["parser"] assert isinstance(parser, Parser), parser if field.default is MISSING: return parser else: return parser | defaults(**{field.name: field.default}) return _ArgsField( name=field.name, default=field.default, help=help_, type=field.type ) @staticmethod def parser( *fields: Union["_ArgsField", Parser[Output]], flip_bools: bool, repeated: Optional[Parser[Output]], replace_underscores: bool, ) -> Parser[Output]: """ >>> from dollar_lambda import Args >>> from dataclasses import dataclass ... >>> @dataclass ... class MyArgs(Args): ... x: Optional[int] ... y: Optional[int] = None ... >>> MyArgs.parse_args("-x", "1", "-y", "2") {'x': 1, 'y': 2} >>> MyArgs.parse_args("-x", "1") {'x': 1, 'y': None} >>> MyArgs.parse_args("-y", "2") usage: -x X -y Y y: (default: None) Expected '-x'. Got '-y' >>> MyArgs.parse_args() usage: -x X -y Y y: (default: None) The following arguments are required: -x """ def get_parsers() -> Iterator[Parser[Output]]: for field in fields: if isinstance(field, Parser): yield field continue _type = field.type type_args = get_args(_type) try: _type, none = type_args assert none == type(None) except (ValueError, AssertionError): pass string: Optional[str] = None if _type == bool: if field.default is True and flip_bools: string = f"--no-{field.name}" yield flag( default=field.default, dest=field.name, help=field.help, replace_underscores=replace_underscores, string=string, ) else: yield option( default=field.default, dest=field.name, flag=string, help=field.help, replace_underscores=replace_underscores, type=_type, ) return nonpositional(*get_parsers(), repeated=repeated) @dataclass class Args: """ :py:class:`Args` is sugar for the :py:func:`nonpositional <dollar_lambda.parsers.nonpositional>` function and removes much of the boilerplate from defining parsers with many arguments. >>> from dataclasses import dataclass >>> from dollar_lambda import Args >>> @dataclass ... class MyArgs(Args): ... verbose: bool ... count: int >>> MyArgs.parse_args("--verbose", "--count", "1") {'verbose': True, 'count': 1} ``MyArgs`` will accept these arguments in any order: >>> MyArgs.parse_args("--count", "1", "--verbose") {'count': 1, 'verbose': True} Note that when the default value of an argument is ``True``, :py:class:`Args` will, by default add ``--no-`` to the front of the flag (while still assigning the value to the original key): >>> @dataclass ... class MyArgs(Args): ... tests: bool = True >>> MyArgs.parse_args("--no-tests") {'tests': False} >>> MyArgs.parse_args() {'tests': True} To suppress this behavior, set ``flip_bools=False``: >>> MyArgs.parse_args("--tests", flip_bools=False) {'tests': False} By using the :py:meth:`Args.parser` method, :py:class:`Args` can take advantage of all the same combinators as other parsers: >>> from dollar_lambda import argument >>> p = MyArgs.parser() >>> p1 = p >> argument("a") >>> p1.parse_args("--no-tests", "hello") {'tests': False, 'a': 'hello'} To supply other metadata, like ``help`` text or custom parsers, use :py:func:`field`: >>> from dollar_lambda import field, option >>> @dataclass ... class MyArgs(Args): ... x: int = field(default=0, help="a number") ... y: int = field( ... default=1, ... parser=option("y", type=lambda s: int(s) + 1, help="a number to increment"), ... ) >>> MyArgs.parse_args("-h") usage: -x X -y Y x: a number (default: 0) y: a number to increment This supplies defaults for ``y`` when omitted: >>> MyArgs.parse_args("-x", "10") {'x': 10, 'y': 1} It also applies the custom type to ``y`` when ``"-y"`` is given >>> MyArgs.parse_args() {'y': 1, 'x': 0} """ @classmethod def parser( cls, flip_bools: bool = True, repeated: Optional[Parser[Output]] = None, replace_underscores: bool = True, ) -> Parser[Output]: """ Returns a parser for the dataclass. Converts each field to a parser (:py:func:`option <dollar_lambda.parsers.option>` or :py:func:`flag <dollar_lambda.parsers.flag>` depending on its type). Combines these parsers using :py:func:`nonpositional <dollar_lambda.parsers.nonpositional>`. Parameters ---------- flip_bools: bool Whether to add ``--no-<argument>`` before arguments that default to ``True``. replace_underscores: bool If true, underscores in argument names are replaced with dashes. Examples -------- >>> @dataclass ... class MyArgs(Args): ... tests: bool = True Note the leading ``--no-``: >>> MyArgs.parse_args("--no-tests") {'tests': False} >>> MyArgs.parse_args() {'tests': True} To suppress this behavior, set ``flip_bools=False``: >>> MyArgs.parse_args("--tests", flip_bools=False) {'tests': False} """ def get_fields(): types = typing.get_type_hints(cls) # see https://peps.python.org/pep-0563/ for field in fields(cls): field.type = types.get(field.name, str) yield _ArgsField.parse(field) return _ArgsField.parser( *get_fields(), flip_bools=flip_bools, repeated=repeated, replace_underscores=replace_underscores, ) @classmethod def parse_args( cls, *args, flip_bools: bool = True, repeated: Optional[Parser[Output]] = None, ) -> Optional[typing.Dict[str, Any]]: """ Parses the arguments and returns a dictionary of the parsed values. """ return ( cls.parser(flip_bools=flip_bools, repeated=repeated) >> Parser[Output[Sequence[KeyValue[Any]]]].done() ).parse_args(*args)
""" Defines the :py:class:`Args <dollar_lambda.args.Args>` dataclass and associated functions. """ from __future__ import annotations import dataclasses import typing from dataclasses import MISSING, Field, dataclass, fields from typing import Any, Callable, Iterator, Optional, Union, get_args from dollar_lambda.data_structures import KeyValue, Output, Sequence from dollar_lambda.parsers import Parser, defaults, flag, nonpositional, option def field( help: Optional[str] = None, metadata: Optional[dict] = None, parser: Optional[Parser[Output]] = None, **kwargs, ) -> Field: """ This is a thin wrapper around :external:py:func:`dataclasses.field`. Parameters ---------- help : str An optional help string for the argument. metadata : str Identical to the `metadata` argument for :external:py:func:`dataclasses.field`. type : Optional[type | Callable[[str], Any]] A function that takes a string and returns a value just like the ``type`` argument for :external:py:meth:`argparse.ArgumentParser.add_argument`. Returns ------- A :external:py:class:`dataclasses.Field` object that can be used in place of a default argument as described in the :external:py:class:`dataclasses.Field` documentation. """ if metadata is None: metadata = {} if parser is not None: metadata.update(parser=parser) if help is not None: metadata.update(help=help) return dataclasses.field(metadata=metadata, **kwargs) @dataclass class _ArgsField: name: str default: Any help: Optional[str] = None type: Callable[[str], Any] = str @staticmethod def parse(field: Field) -> Union["_ArgsField", Parser[Output]]: if "help" in field.metadata: help_ = field.metadata["help"] else: help_ = None if "parser" in field.metadata: parser = field.metadata["parser"] assert isinstance(parser, Parser), parser if field.default is MISSING: return parser else: return parser | defaults(**{field.name: field.default}) return _ArgsField( name=field.name, default=field.default, help=help_, type=field.type ) @staticmethod def parser( *fields: Union["_ArgsField", Parser[Output]], flip_bools: bool, repeated: Optional[Parser[Output]], replace_underscores: bool, ) -> Parser[Output]: """ >>> from dollar_lambda import Args >>> from dataclasses import dataclass ... >>> @dataclass ... class MyArgs(Args): ... x: Optional[int] ... y: Optional[int] = None ... >>> MyArgs.parse_args("-x", "1", "-y", "2") {'x': 1, 'y': 2} >>> MyArgs.parse_args("-x", "1") {'x': 1, 'y': None} >>> MyArgs.parse_args("-y", "2") usage: -x X -y Y y: (default: None) Expected '-x'. Got '-y' >>> MyArgs.parse_args() usage: -x X -y Y y: (default: None) The following arguments are required: -x """ def get_parsers() -> Iterator[Parser[Output]]: for field in fields: if isinstance(field, Parser): yield field continue _type = field.type type_args = get_args(_type) try: _type, none = type_args assert none == type(None) except (ValueError, AssertionError): pass string: Optional[str] = None if _type == bool: if field.default is True and flip_bools: string = f"--no-{field.name}" yield flag( default=field.default, dest=field.name, help=field.help, replace_underscores=replace_underscores, string=string, ) else: yield option( default=field.default, dest=field.name, flag=string, help=field.help, replace_underscores=replace_underscores, type=_type, ) return nonpositional(*get_parsers(), repeated=repeated) @dataclass class Args: """ :py:class:`Args` is sugar for the :py:func:`nonpositional <dollar_lambda.parsers.nonpositional>` function and removes much of the boilerplate from defining parsers with many arguments. >>> from dataclasses import dataclass >>> from dollar_lambda import Args >>> @dataclass ... class MyArgs(Args): ... verbose: bool ... count: int >>> MyArgs.parse_args("--verbose", "--count", "1") {'verbose': True, 'count': 1} ``MyArgs`` will accept these arguments in any order: >>> MyArgs.parse_args("--count", "1", "--verbose") {'count': 1, 'verbose': True} Note that when the default value of an argument is ``True``, :py:class:`Args` will, by default add ``--no-`` to the front of the flag (while still assigning the value to the original key): >>> @dataclass ... class MyArgs(Args): ... tests: bool = True >>> MyArgs.parse_args("--no-tests") {'tests': False} >>> MyArgs.parse_args() {'tests': True} To suppress this behavior, set ``flip_bools=False``: >>> MyArgs.parse_args("--tests", flip_bools=False) {'tests': False} By using the :py:meth:`Args.parser` method, :py:class:`Args` can take advantage of all the same combinators as other parsers: >>> from dollar_lambda import argument >>> p = MyArgs.parser() >>> p1 = p >> argument("a") >>> p1.parse_args("--no-tests", "hello") {'tests': False, 'a': 'hello'} To supply other metadata, like ``help`` text or custom parsers, use :py:func:`field`: >>> from dollar_lambda import field, option >>> @dataclass ... class MyArgs(Args): ... x: int = field(default=0, help="a number") ... y: int = field( ... default=1, ... parser=option("y", type=lambda s: int(s) + 1, help="a number to increment"), ... ) >>> MyArgs.parse_args("-h") usage: -x X -y Y x: a number (default: 0) y: a number to increment This supplies defaults for ``y`` when omitted: >>> MyArgs.parse_args("-x", "10") {'x': 10, 'y': 1} It also applies the custom type to ``y`` when ``"-y"`` is given >>> MyArgs.parse_args() {'y': 1, 'x': 0} """ @classmethod def parser( cls, flip_bools: bool = True, repeated: Optional[Parser[Output]] = None, replace_underscores: bool = True, ) -> Parser[Output]: """ Returns a parser for the dataclass. Converts each field to a parser (:py:func:`option <dollar_lambda.parsers.option>` or :py:func:`flag <dollar_lambda.parsers.flag>` depending on its type). Combines these parsers using :py:func:`nonpositional <dollar_lambda.parsers.nonpositional>`. Parameters ---------- flip_bools: bool Whether to add ``--no-<argument>`` before arguments that default to ``True``. replace_underscores: bool If true, underscores in argument names are replaced with dashes. Examples -------- >>> @dataclass ... class MyArgs(Args): ... tests: bool = True Note the leading ``--no-``: >>> MyArgs.parse_args("--no-tests") {'tests': False} >>> MyArgs.parse_args() {'tests': True} To suppress this behavior, set ``flip_bools=False``: >>> MyArgs.parse_args("--tests", flip_bools=False) {'tests': False} """ def get_fields(): types = typing.get_type_hints(cls) # see https://peps.python.org/pep-0563/ for field in fields(cls): field.type = types.get(field.name, str) yield _ArgsField.parse(field) return _ArgsField.parser( *get_fields(), flip_bools=flip_bools, repeated=repeated, replace_underscores=replace_underscores, ) @classmethod def parse_args( cls, *args, flip_bools: bool = True, repeated: Optional[Parser[Output]] = None, ) -> Optional[typing.Dict[str, Any]]: """ Parses the arguments and returns a dictionary of the parsed values. """ return ( cls.parser(flip_bools=flip_bools, repeated=repeated) >> Parser[Output[Sequence[KeyValue[Any]]]].done() ).parse_args(*args)
en
0.294345
Defines the :py:class:`Args <dollar_lambda.args.Args>` dataclass and associated functions. This is a thin wrapper around :external:py:func:`dataclasses.field`. Parameters ---------- help : str An optional help string for the argument. metadata : str Identical to the `metadata` argument for :external:py:func:`dataclasses.field`. type : Optional[type | Callable[[str], Any]] A function that takes a string and returns a value just like the ``type`` argument for :external:py:meth:`argparse.ArgumentParser.add_argument`. Returns ------- A :external:py:class:`dataclasses.Field` object that can be used in place of a default argument as described in the :external:py:class:`dataclasses.Field` documentation. >>> from dollar_lambda import Args >>> from dataclasses import dataclass ... >>> @dataclass ... class MyArgs(Args): ... x: Optional[int] ... y: Optional[int] = None ... >>> MyArgs.parse_args("-x", "1", "-y", "2") {'x': 1, 'y': 2} >>> MyArgs.parse_args("-x", "1") {'x': 1, 'y': None} >>> MyArgs.parse_args("-y", "2") usage: -x X -y Y y: (default: None) Expected '-x'. Got '-y' >>> MyArgs.parse_args() usage: -x X -y Y y: (default: None) The following arguments are required: -x :py:class:`Args` is sugar for the :py:func:`nonpositional <dollar_lambda.parsers.nonpositional>` function and removes much of the boilerplate from defining parsers with many arguments. >>> from dataclasses import dataclass >>> from dollar_lambda import Args >>> @dataclass ... class MyArgs(Args): ... verbose: bool ... count: int >>> MyArgs.parse_args("--verbose", "--count", "1") {'verbose': True, 'count': 1} ``MyArgs`` will accept these arguments in any order: >>> MyArgs.parse_args("--count", "1", "--verbose") {'count': 1, 'verbose': True} Note that when the default value of an argument is ``True``, :py:class:`Args` will, by default add ``--no-`` to the front of the flag (while still assigning the value to the original key): >>> @dataclass ... class MyArgs(Args): ... tests: bool = True >>> MyArgs.parse_args("--no-tests") {'tests': False} >>> MyArgs.parse_args() {'tests': True} To suppress this behavior, set ``flip_bools=False``: >>> MyArgs.parse_args("--tests", flip_bools=False) {'tests': False} By using the :py:meth:`Args.parser` method, :py:class:`Args` can take advantage of all the same combinators as other parsers: >>> from dollar_lambda import argument >>> p = MyArgs.parser() >>> p1 = p >> argument("a") >>> p1.parse_args("--no-tests", "hello") {'tests': False, 'a': 'hello'} To supply other metadata, like ``help`` text or custom parsers, use :py:func:`field`: >>> from dollar_lambda import field, option >>> @dataclass ... class MyArgs(Args): ... x: int = field(default=0, help="a number") ... y: int = field( ... default=1, ... parser=option("y", type=lambda s: int(s) + 1, help="a number to increment"), ... ) >>> MyArgs.parse_args("-h") usage: -x X -y Y x: a number (default: 0) y: a number to increment This supplies defaults for ``y`` when omitted: >>> MyArgs.parse_args("-x", "10") {'x': 10, 'y': 1} It also applies the custom type to ``y`` when ``"-y"`` is given >>> MyArgs.parse_args() {'y': 1, 'x': 0} Returns a parser for the dataclass. Converts each field to a parser (:py:func:`option <dollar_lambda.parsers.option>` or :py:func:`flag <dollar_lambda.parsers.flag>` depending on its type). Combines these parsers using :py:func:`nonpositional <dollar_lambda.parsers.nonpositional>`. Parameters ---------- flip_bools: bool Whether to add ``--no-<argument>`` before arguments that default to ``True``. replace_underscores: bool If true, underscores in argument names are replaced with dashes. Examples -------- >>> @dataclass ... class MyArgs(Args): ... tests: bool = True Note the leading ``--no-``: >>> MyArgs.parse_args("--no-tests") {'tests': False} >>> MyArgs.parse_args() {'tests': True} To suppress this behavior, set ``flip_bools=False``: >>> MyArgs.parse_args("--tests", flip_bools=False) {'tests': False} # see https://peps.python.org/pep-0563/ Parses the arguments and returns a dictionary of the parsed values.
2.724111
3
deployment/custom_resources/custom-resource-py/lib/medialive.py
mlnrt/live-streaming-with-automated-multi-language-subtitling
0
6631025
<reponame>mlnrt/live-streaming-with-automated-multi-language-subtitling<filename>deployment/custom_resources/custom-resource-py/lib/medialive.py #!/usr/bin/python # -*- coding: utf-8 -*- ############################################################################## # Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Amazon Software License (the "License"). You may not # # use this file except in compliance with the License. A copy of the # # License is located at # # # # http://aws.amazon.com/asl/ # # # # or in the "license" file accompanying this file. This file is distributed # # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # # express or implied. See the License for the specific language governing # # permissions and limitations under the License. # ############################################################################## import json from urllib.parse import urlparse import boto3 import time medialive = boto3.client('medialive') ssm = boto3.client('ssm') responseData = {} def create_push_input(config): sg = medialive.create_input_security_group( WhitelistRules=[ { 'Cidr': config['Cidr'] } ] ) #Feature/xxxx RTMP Requires Stream names for each input Destination. if config['Type'] == 'RTMP_PUSH': Destination = [ { 'StreamName': config['StreamName']+'/primary' }, { 'StreamName': config['StreamName']+'/secondary' } ] else: Destination = [] response = medialive.create_input( InputSecurityGroups=[ sg['SecurityGroup']['Id'], ], Name = config['StreamName'], Destinations= Destination, Type=config['Type'] ) responseData['Id'] = response['Input']['Id'] responseData['EndPoint1'] = response['Input']['Destinations'][0]['Url'] responseData['EndPoint2'] = response['Input']['Destinations'][1]['Url'] print('RESPONSE::{}'.format(responseData)) return responseData def create_pull_input(config): Name = config['StreamName'] Sources = [ { 'Url': config['PriUrl'] }, { 'Url': config['PriUrl'] } ] Type = config['Type'] # store input u/p in SSM if config['PriUser']: Sources[0]['Username'] = config['PriUser'] #Sources[0]['Username'] = config['PriUser'] ssm.put_parameter( Name = config['PriUser'], Description = 'Live Stream solution Primary input credentials', Type = 'string', Value = config['PriPass'] ) # store input u/p in SSM if config['SecUser']: Sources[1]['Username'] = config['SecUser'] #Sources[1]['Username'] = config['SecUser'] ssm.put_parameter( Name = config['PriUser'], Description = 'Live Stream solution Primary input credentials', Type = 'string', Value = config['PriPass'] ) response = medialive.create_input( Name = Name, Type = Type, Sources = Sources ) responseData['Id'] = response['Input']['Id'] responseData['EndPoint1'] = 'Push InputType only' responseData['EndPoint2'] = 'Push InputType only' print('RESPONSE::{}'.format(responseData)) return responseData def create_channel(config): # set InputSpecification based on the input resolution: if config['Resolution'] == '1080': res = 'HD' bitrate = 'MAX_20_MBPS' profile = './encoding-profiles/medialive-1080p.json' elif config['Resolution'] == '720': res = 'HD' bitrate = 'MAX_10_MBPS' profile = './encoding-profiles/medialive-720p.json' else: res = 'SD' bitrate = 'MAX_10_MBPS' profile = './encoding-profiles/medialive-540p.json' #hotfix/V52152945 loop only supported in HLS_PULL if config['Type'] == 'URL_PULL': settings = { 'SourceEndBehavior': 'LOOP' } else: settings = {} with open(profile) as encoding: EncoderSettings = json.load(encoding) response = medialive.create_channel( InputSpecification = { 'Codec': config['Codec'], 'Resolution':res, 'MaximumBitrate':bitrate }, InputAttachments = [{ 'InputId': config['InputId'], 'InputSettings': settings }], Destinations = [{ 'Id': "destination1", 'Settings': [ { 'PasswordParam': config['<PASSWORD>'], 'Url': config['MediaPackagePriUrl'], 'Username': config['MediaPackagePriUser'] }, { 'PasswordParam': config['<PASSWORD>'], 'Url': config['MediaPackageSecUrl'], 'Username': config['MediaPackageSecUser'] } ] }], Name = config['Name'], RoleArn = config['Role'], EncoderSettings = EncoderSettings, ) responseData['ChannelId'] = response['Channel']['Id'] print('RESPONSE::{}'.format(responseData)) return responseData def delete_channel(ChannelId): medialive.stop_channel( ChannelId = ChannelId ) response = medialive.delete_channel( ChannelId = ChannelId ) InputId = response['InputAttachments'][0]['InputId'] # wait for channel delete so that the input state is detached: while True: state = medialive.describe_input( InputId=InputId ) if state['State'] == 'DETACHED': break else: time.sleep(3) medialive.delete_input( InputId = InputId ) return
#!/usr/bin/python # -*- coding: utf-8 -*- ############################################################################## # Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Amazon Software License (the "License"). You may not # # use this file except in compliance with the License. A copy of the # # License is located at # # # # http://aws.amazon.com/asl/ # # # # or in the "license" file accompanying this file. This file is distributed # # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # # express or implied. See the License for the specific language governing # # permissions and limitations under the License. # ############################################################################## import json from urllib.parse import urlparse import boto3 import time medialive = boto3.client('medialive') ssm = boto3.client('ssm') responseData = {} def create_push_input(config): sg = medialive.create_input_security_group( WhitelistRules=[ { 'Cidr': config['Cidr'] } ] ) #Feature/xxxx RTMP Requires Stream names for each input Destination. if config['Type'] == 'RTMP_PUSH': Destination = [ { 'StreamName': config['StreamName']+'/primary' }, { 'StreamName': config['StreamName']+'/secondary' } ] else: Destination = [] response = medialive.create_input( InputSecurityGroups=[ sg['SecurityGroup']['Id'], ], Name = config['StreamName'], Destinations= Destination, Type=config['Type'] ) responseData['Id'] = response['Input']['Id'] responseData['EndPoint1'] = response['Input']['Destinations'][0]['Url'] responseData['EndPoint2'] = response['Input']['Destinations'][1]['Url'] print('RESPONSE::{}'.format(responseData)) return responseData def create_pull_input(config): Name = config['StreamName'] Sources = [ { 'Url': config['PriUrl'] }, { 'Url': config['PriUrl'] } ] Type = config['Type'] # store input u/p in SSM if config['PriUser']: Sources[0]['Username'] = config['PriUser'] #Sources[0]['Username'] = config['PriUser'] ssm.put_parameter( Name = config['PriUser'], Description = 'Live Stream solution Primary input credentials', Type = 'string', Value = config['PriPass'] ) # store input u/p in SSM if config['SecUser']: Sources[1]['Username'] = config['SecUser'] #Sources[1]['Username'] = config['SecUser'] ssm.put_parameter( Name = config['PriUser'], Description = 'Live Stream solution Primary input credentials', Type = 'string', Value = config['PriPass'] ) response = medialive.create_input( Name = Name, Type = Type, Sources = Sources ) responseData['Id'] = response['Input']['Id'] responseData['EndPoint1'] = 'Push InputType only' responseData['EndPoint2'] = 'Push InputType only' print('RESPONSE::{}'.format(responseData)) return responseData def create_channel(config): # set InputSpecification based on the input resolution: if config['Resolution'] == '1080': res = 'HD' bitrate = 'MAX_20_MBPS' profile = './encoding-profiles/medialive-1080p.json' elif config['Resolution'] == '720': res = 'HD' bitrate = 'MAX_10_MBPS' profile = './encoding-profiles/medialive-720p.json' else: res = 'SD' bitrate = 'MAX_10_MBPS' profile = './encoding-profiles/medialive-540p.json' #hotfix/V52152945 loop only supported in HLS_PULL if config['Type'] == 'URL_PULL': settings = { 'SourceEndBehavior': 'LOOP' } else: settings = {} with open(profile) as encoding: EncoderSettings = json.load(encoding) response = medialive.create_channel( InputSpecification = { 'Codec': config['Codec'], 'Resolution':res, 'MaximumBitrate':bitrate }, InputAttachments = [{ 'InputId': config['InputId'], 'InputSettings': settings }], Destinations = [{ 'Id': "destination1", 'Settings': [ { 'PasswordParam': config['<PASSWORD>'], 'Url': config['MediaPackagePriUrl'], 'Username': config['MediaPackagePriUser'] }, { 'PasswordParam': config['<PASSWORD>'], 'Url': config['MediaPackageSecUrl'], 'Username': config['MediaPackageSecUser'] } ] }], Name = config['Name'], RoleArn = config['Role'], EncoderSettings = EncoderSettings, ) responseData['ChannelId'] = response['Channel']['Id'] print('RESPONSE::{}'.format(responseData)) return responseData def delete_channel(ChannelId): medialive.stop_channel( ChannelId = ChannelId ) response = medialive.delete_channel( ChannelId = ChannelId ) InputId = response['InputAttachments'][0]['InputId'] # wait for channel delete so that the input state is detached: while True: state = medialive.describe_input( InputId=InputId ) if state['State'] == 'DETACHED': break else: time.sleep(3) medialive.delete_input( InputId = InputId ) return
en
0.725801
#!/usr/bin/python # -*- coding: utf-8 -*- ############################################################################## # Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Amazon Software License (the "License"). You may not # # use this file except in compliance with the License. A copy of the # # License is located at # # # # http://aws.amazon.com/asl/ # # # # or in the "license" file accompanying this file. This file is distributed # # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # # express or implied. See the License for the specific language governing # # permissions and limitations under the License. # ############################################################################## #Feature/xxxx RTMP Requires Stream names for each input Destination. # store input u/p in SSM #Sources[0]['Username'] = config['PriUser'] # store input u/p in SSM #Sources[1]['Username'] = config['SecUser'] # set InputSpecification based on the input resolution: #hotfix/V52152945 loop only supported in HLS_PULL # wait for channel delete so that the input state is detached:
1.924643
2
pwnable.kr-write-up/random/random.py
IdanBanani/Pwnable.kr-CTF-Writeups
0
6631026
import os random_value = 0x6b8b4567 xor_result = 0xdeadbeef key = random_value ^ xor_result print "key is:", key os.system("echo '" + str(key) + "' | ./random")
import os random_value = 0x6b8b4567 xor_result = 0xdeadbeef key = random_value ^ xor_result print "key is:", key os.system("echo '" + str(key) + "' | ./random")
none
1
2.405367
2
tcfl/pos.py
d-scott-phillips/tcf
0
6631027
<gh_stars>0 #! /usr/bin/python2 # # Copyright (c) 2017 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 # # # FIXME: # # - command line method to discover installed capabiltiies; print # each's __doc__ """ This module provides tools to image devices with a Provisioning OS. The general operation mode for this is instructing the device to boot the :term:`Provisioning OS <POS>`; at this point, the test script (or via the *tcf* client line) can interact with the POS over the serial console. Then the device can be partitioned, formatted, etc with general Linux command line. As well, we can provide an :mod:`rsync server <ttbl.rsync>` to provide OS images that can be flashed Booting to POS can be accomplished: - by network boot and root over NFS - by a special boot device pre-configured to always boot POS - any other Server side modules used actively by this system: - DHCP server :mod:`ttbl.dhcp`: provides dynamic IP address assignment; it can be configured so a pre-configured IP address is always assigned to a target and will provide also PXE/TFTP boot services to boot into POS mode (working in conjunction with a HTTP, TFTP and NFS servers). - rsync server :mod:`ttbl.rsync`: provides access to images to rsync into partitions (which is way faster than some other imaging methods when done over a 1Gbps link). - port redirector :mod:`ttbl.socat`: not strictly needed for POS, but useful to redirect ports out of the :term:`NUT` to the greater Internet. This comes handy if as part of the testing external software has to be installed or external services acccessed. Note installation in the server side is needed, as described in :ref:`POS setup <pos_setup>`. """ import inspect import operator import os import random import re import traceback import distutils.version import Levenshtein import tc import tl from . import msgid_c def image_spec_to_tuple(i): distro = "" spin = "" version = "" pl = "" arch = "" il = i.split(":") if len(il) > 0: distro = il[0] if len(il) > 1: spin = il[1] if len(il) > 2: version = il[2] if len(il) > 3: pl = il[3] if len(il) > 4: arch = il[4] return distro, spin, version, pl, arch def image_list_from_rsync_output(output): imagel = [] # drwxrwxr-x 4,096 2018/10/19 00:41:04 . # drwxr-xr-x 4,096 2018/10/11 06:24:44 clear:live:25550 # dr-xr-xr-x 4,096 2018/04/24 23:10:02 fedora:cloud-base-x86-64:28 # drwxr-xr-x 4,096 2018/10/11 20:52:34 rtk::114 # ... # so we parse for 5 fields, take last for line in output.splitlines(): tokens = line.split(None, 5) if len(tokens) != 5: continue image = tokens[4] if not ':' in image: continue imagel.append(image_spec_to_tuple(image)) return imagel def image_select_best(image, available_images, target): arch_default = target.bsp_model image_spec = image_spec_to_tuple(image) arch = image_spec[4] if arch == "": arch = arch_default if arch == None or arch == "": image_spec2 = list(image_spec) image_spec2[4] = "ARCHITECTURE" raise tc.blocked_e( "no architecture specified (image %s), neither it could not be " "guessed from the target's BSP model (%s); try specifying the " "image as %s" % (image, target.bsp_model, ":".join(image_spec2))) target.report_info("POS: goal image spec: %s" % list(image_spec), dlevel = 2) for available_image in available_images: target.report_info("POS: available images: %s" % list(available_image), dlevel = 2) # filter which images have arch or no arch spec available_images = filter(lambda x: x[4] == arch, available_images) if not available_images: raise tc.blocked_e( "can't find image for architecture %s " "in list of available image" % arch, dict(images_available = \ "\n".join([ ":".join(i) for i in available_images ])) ) for available_image in available_images: target.report_info("POS: available images (filtered arch %s): %s" % (arch, list(available_image)), dlevel = 2) # filter first based on the distro (first field) distro = image_spec[0] if distro == "": distro_images = available_images else: distro_images = filter(lambda x: x[0] == distro, available_images) for available_image in distro_images: target.report_info("POS: available images (filtered distro %s): %s" % (distro, list(available_image)), dlevel = 2) # now filter based on the distro spin; if none, well, pick one at random spin = image_spec[1] if spin == "": spin_images = distro_images else: spin_images = filter(lambda x: x[1] == spin, distro_images) if not spin_images: raise tc.blocked_e( "can't find match for image %s on available images" % image, dict(images_available = "\n".join([ ":".join(i) for i in available_images ])) ) for available_image in spin_images: target.report_info("POS: available images (filtered spin %s): %s" % (spin, list(available_image)), dlevel = 2) # now filter based on version -- rules change here -- if there is # no version specified, pick what seems to be the most recent # (highest) version = image_spec[2] if version == "": versions = sorted([ (distutils.version.LooseVersion(i[2]) if i[2] != "" else distutils.version.LooseVersion('0')) for i in spin_images ]) version = versions[-1] else: version = distutils.version.LooseVersion(version) version_images = filter( lambda x: ( distutils.version.LooseVersion(x[2] if x[2] != "" else '0') == version ), spin_images) if not version_images: raise tc.blocked_e( "can't find image match for version %s " "in list of available images" % version, dict(images_available = "\n".join([ ":".join(i) for i in version_images ])) ) for available_image in version_images: target.report_info("POS: available images (filtered version %s): %s" % (spin, list(available_image)), dlevel = 2) # now filter based on subversion -- rules change here -- if there is # no subversion specified, pick what seems to be the most recent # (highest) subversion = image_spec[3] if subversion == "": subversions = sorted([ (distutils.version.LooseVersion(i[3]) if i[3] != "" else distutils.version.LooseVersion('0')) for i in version_images ]) subversion = subversions[-1] else: subversion = distutils.version.LooseVersion(subversion) subversion_images = filter( lambda x: ( distutils.version.LooseVersion(x[3] if x[3] != "" else '0') == subversion ), version_images) if not subversion_images: raise tc.blocked_e( "can't find image match for sub-version %s " "in list of available images" % subversion, dict(images_available = "\n".join([ ":".join(i) for i in subversion_images ])) ) for available_image in subversion_images: target.report_info("POS: available images (filtered subversion %s): %s" % (spin, list(available_image)), dlevel = 2) # we might have multiple image choices if distro or live image # weren't specified, so pick one return random.choice(subversion_images) # FIXME: what I don't like about this is that we have no info on the # interconnect -- this must require it? def target_power_cycle_to_pos_pxe(target): target.report_info("POS: setting target to PXE boot Provisioning OS") target.property_set("pos_mode", "pxe") target.power.cycle() # Now setup the local boot loader to boot off that target.property_set("pos_mode", "local") # FIXME: what I don't like about this is that we have no info on the # interconnect -- this must require it? def target_power_cycle_to_normal_pxe(target): target.report_info("Setting target not to PXE boot Provisioning OS") target.property_set("pos_mode", "local") target.power.cycle() def mk_persistent_tcf_d(target, subdirs = None): if subdirs == None: dirs = [ '/mnt/persistent.tcf.d' ] else: dirs = [ '/mnt/persistent.tcf.d/' + subdir for subdir in subdirs ] # just create / recreate all the thirs target.shell.run('mkdir -p ' + " ".join(dirs)) # Ensure there is a README -- this is slow, so don't do it if # already there output = target.shell.run( 'test -f /mnt/persistent.tcf.d/README || echo N""O' , output = True) if 'NO' in output: target.shell.run("""\ cat <<EOF > /mnt/persistent.tcf.d/README This directory has been created by TCF's Provisioning OS to store files to be provisioned in the root file system. When flashing a new image to this partition, the contents in this tree will not be removed/replaced. It is then faster to rsync things in from the client machine. EOF""") def deploy_linux_kernel(ic, target, _kws): """Deploy a linux kernel tree in the local machine to the target's root filesystem This is normally given to :func:`target.pos.deploy_image <tcfl.pos.extension.deploy_image>` as: >>> target.kw_set("pos_deploy_linux_kernel", SOMELOCALLOCATION) >>> target.pos.deploy_image(ic, IMAGENAME, >>> extra_deploy_fns = [ tcfl.pos.deploy_linux_kernel ]) as it expects ``kws['pos_deploy_linux_kernel']`` which points to a local directory in the form:: - boot/* - lib/modules/KVER/* all those will be rsynced to the target's persistent root area (for speed) and from there to the root filesystem's /boot and /lib/modules. Anything else in the ``/boot/`` and ``/lib/modules/`` directories will be replaced with what comes from the *kernel tree*. **Low level details** When the target's image has been flashed in place, :func:`tcfl.pos.deploy_image <tcfl.pos.extension.deploy_image>` is asked to call this function. The client will rsync the tree from the local machine to the persistent space using :meth:`target.pos.rsync <extension.rsync>`, which also caches it in a persistent area to speed up multiple transfers. """ if not '' in _kws: target.report_info("not deploying linux kernel because " "*pos_deploy_linux_kernel_tree* keyword " "has not been set for the target", dlevel = 2) return target.report_info("rsyncing boot image to target") target.pos.rsync("%(pos_deploy_linux_kernel_tree)s/boot" % target.kws, "/boot") target.report_info("rsyncing lib/modules to target") target.pos.rsync("%(pos_deploy_linux_kernel_tree)s/lib/modules" % target.kws, "/lib/modules") target.testcase._targets_active() target.report_pass("linux kernel transferred") #: #: Functions to boot a target into POS #: #: Different target drivers can be loaded and will add members to #: these dictionaries to extend the abilities of the core system to #: put targets in Provisioning OS mode. #: #: This then allows a single test script to work with multiple target #: types without having to worry about details. capability_fns = dict( #: Function to call to power cycle the target and have it boot the #: Provisioning OS. #: #: This shall be a one shot thing; the following power cycle shall #: boot the target normally #: #: Arguments: #: - tcfl.tc.target_c target: target to boot in POS mode boot_to_pos = dict(), #: Function to call to power cycle the target and have it boot the #: installed OS (not the Provisioning OS). #: #: Arguments: #: - tcfl.tc.target_c target: target to boot in normal mode boot_to_normal = dict(), #: Function to call to configure the boot loader once the system #: has been provisoned. #: #: Arguments: #: - tcfl.tc.target_c target: target who's boot has to be configured #: - str root_part_dev: root device #: - str image: image specification boot_config = dict(), #: Function to call to fix the boot loader from a system that #: might have booted, we have something like a login prompt on the #: serial console #: #: Arguments: #: - tcfl.tc.target_c target: target who's boot has to be configured boot_config_fix = dict(), #: Function to use to partition the target's storage #: #: Will be called when the target has a property *pos_repartition* #: set or when the system things the partition table is trashed #: and needs reinitialization. #: #: Arguments: #: - tcfl.tc.target_c target: target who's storage we are #: partitioning #: - str boot_dev: device used to boot #: #: returns: nothing, but sets target.root_part_dev, where the rootfs is #: mount_fs = dict(), #: Post-deploy functions to run extra_deploy = dict(), ) _pos_capable_defaults = dict( # backwards compat boot_to_pos = 'pxe', boot_to_normal = 'pxe', boot_config = 'uefi', mount_fs = 'multiroot', partition = 'default', ) def capability_register(capability, value, fns): assert capability in capability_fns.keys(), \ "capability %s is not one of: %s" \ % (capability, " ".join(capability_fns.keys())) assert isinstance(value, basestring), \ "capability value must be a string, got %s" % type(value).__name__ assert callable(fns) \ or ( isinstance(fns, list) and all([ callable(i) for i in fns ]) ), \ "fns %s is not a callable or list of callables" % fns capability_fns.setdefault(capability, {})[value] = fns class extension(tc.target_extension_c): """ Extension to :py:class:`tcfl.tc.target_c` to handle Provisioning OS capabilities. """ def __init__(self, target): if 'pos_capable' not in target.rt: raise self.unneeded tc.target_extension_c.__init__(self, target) pos_capable = target.kws['pos_capable'] if isinstance(pos_capable, bool): if pos_capable == False: raise tc.blocked_e("target is not POS capable", dict(target = target)) target.report_info("WARNING! target's pos_capable is still old " "style, update your config--taking " "defaults") self.capabilities = _pos_capable_defaults elif isinstance(pos_capable, dict): self.capabilities = pos_capable else: raise tc.blocked_e("Target's 'pos_capable' target is " "not a dictionary of POS capabilities", dict(target = self.target)) self.umount_list = [ '/mnt' ] def _boot_dev_guess(self, boot_dev): target = self.target # What is our boot device? if boot_dev: assert isinstance(boot_dev, basestring), \ 'boot_dev must be a string' target.report_info("POS: boot device %s (from arguments)" % boot_dev, dlevel = 3) else: boot_dev = target.kws.get('pos_boot_dev', None) if boot_dev == None: raise tc.blocked_e( "Can't guess boot_dev (no `pos_boot_dev` tag available)", { 'target': target } ) target.report_info("POS: boot device %s (from pos_boot_dev tag)" % boot_dev) boot_dev = "/dev/" + boot_dev # HACK: /dev/[hs]d* do partitions as /dev/[hs]dN, where as mmc and # friends add /dev/mmcWHATEVERpN. Seriously... if boot_dev.startswith("/dev/hd") \ or boot_dev.startswith("/dev/sd") \ or boot_dev.startswith("/dev/vd"): target.kw_set('p_prefix', "") else: target.kw_set('p_prefix', "p") return boot_dev # FIXME: make this return fn and a description saying # "capability %s/%s @ %s.%s()" so we can use it to feed to messages such as # "rebooting into Provisioning OS [0/3] with capability %s/%s @ %s.%s()" def cap_fn_get(self, capability, default = None): """ Return a target's POS capability. :param str capability: name of the capability, as defined in the target's tag :ref:`*pos_capable* <pos_capable>`. :param str default: (optional) default to use if not specified; DO NOT USE! WILL BE DEPRECATED! """ if capability not in capability_fns: raise tc.blocked_e("Unknown POS capability '%s'; maybe " "needs to be configured in " "tcfl.pos.capability_fns?" % capability, dict(target = self.target)) if capability not in self.capabilities: self.target.report_info("WARNING! target's pos_capable " "doesn't list '%s'; defaulting to '%s'" % (capability, default)) capability_value = self.capabilities.get(capability, default) if capability_value == None: # this means not needed/supported self.target.report_info( "POS: capability %s resolves to no-action" % capability) return None if capability_value not in capability_fns[capability]: raise tc.blocked_e( "target defines '%s' method for '%s' that is unknown to " "the Provisioning OS library; maybe configuration for it " "is not loaded?" % (capability_value, capability), attachments = dict(target = self.target, capability = capability, value = capability_value) ) capability_fn = capability_fns[capability][capability_value] modname = capability_fn.__module__ self.target.report_info( "POS: capability %s/%s by %s.%s" % ( capability, capability_value, inspect.getsourcefile(capability_fn), capability_fn.__name__)) return capability_fn _regex_waiting_for_login = re.compile(r".*\blogin:\s*$") def _unexpected_console_output_try_fix(self, output, target): # so when trying to boot POS we got unexpected console output; # let's see what can we do about it. if output == None: # nah, can't do much return # looks like a login prompt? Maybe we can login and munge # things around if self._regex_waiting_for_login.search(output): boot_config_fix_fn = target.pos.cap_fn_get('boot_config_fix', 'uefi') if boot_config_fix_fn: target.report_info("POS: got an unexpected login " "prompt, will try to fix the " "boot configuration") boot_config_fix_fn(target) else: target.report_error( "POS: seems we got a login prompt that is not POS, " "but I don't know how to fix it; target does not " "declare capability `boot_config_fix`", attachments = dict(output = output)) def boot_to_pos(self, pos_prompt = None, # plenty to boot to an nfsroot, hopefully timeout = 60, boot_to_pos_fn = None): target = self.target if boot_to_pos_fn == None: # None specified, let's take from the target config boot_to_pos_fn = self.cap_fn_get('boot_to_pos', 'pxe') for tries in range(3): target.report_info("POS: rebooting into Provisioning OS [%d/3]" % tries) boot_to_pos_fn(target) # Sequence for TCF-live based on Fedora if pos_prompt: target.shell.linux_shell_prompt_regex = pos_prompt try: target.shell.up(timeout = timeout) except tc.error_e as e: outputf = e.attachments_get().get('console output', None) if outputf: output = open(outputf.name).read() if output == None or output == "" or output == "\x00": target.report_error("POS: no console output, retrying") continue # sometimes the BIOS has been set to boot local directly, # so we might as well retry target.report_error("POS: unexpected console output, retrying") self._unexpected_console_output_try_fix(output, target) continue target.report_info("POS: got Provisioning OS shell") break else: raise tc.blocked_e( "POS: tried too many times to boot, without signs of life", { "console output": target.console.read(), 'target': target }) def boot_normal(self, boot_to_normal_fn = None): """ Power cycle the target (if neeed) and boot to normal OS (vs booting to the Provisioning OS). """ target = self.target if boot_to_normal_fn == None: # None specified, let's take from the target config boot_to_normal_fn = self.cap_fn_get('boot_to_normal') boot_to_normal_fn(target) def mount_fs(self, image, boot_dev): """Mount the target's filesystems in /mnt When completed, this function has (maybe) formatted/reformatted and mounted all of the target's filesystems starting in /mnt. For example, if the final system would have filesystems */boot*, */* and */home*, this function would mount them on: - / on /mnt/ - /boot on /mnt/boot - /home on /mnt/home This allows :meth:`deploy_image` to rysnc content into the final system. :param str image: name of the image we are going to deploy in this target :param str boot_dev: device name the system will use to boot """ assert isinstance(image, basestring) assert isinstance(boot_dev, basestring) self.target.shell.run("lsblk") mount_fs_fn = self.cap_fn_get("mount_fs") return mount_fs_fn(self.target, image, boot_dev) def rsyncd_start(self, ic): """ Start an *rsync* server on a target running Provisioning OS This can be used to receive deployment files from any location needed to execute later in the target. The server is attached to the ``/mnt`` directory and the target is upposed to mount the destination filesystems there. This is usually called automatically for the user by the likes of :func:`deploy_image` and others. It will create a tunnel from the server to the target's port where the rsync daemon is listening. A client can then connect to the server's port to stream data over the rsync protocol. The server address and port will be stored in the *target*'s keywords *rsync_port* and *rsync_server* and thus can be accessed with: >>> print target.kws['rsync_server'], target.kws['rsync_port'] :param tcfl.tc.target_c ic: interconnect (network) to which the target is connected. """ target = self.target target.shell.run("""\ cat > /tmp/rsync.conf <<EOF [rootfs] use chroot = true path = /mnt/ read only = false timeout = 60 uid = root gid = root EOF""") # start rsync in the background, save it's PID file as rsync makes # no pids and we might not have killall in the POS target.shell.run( "rsync --port 3000 --daemon --no-detach --config /tmp/rsync.conf &" "echo $! > /tmp/rsync.pid") # Tell the tunneling interface which IP address we want to use target.tunnel.ip_addr = target.addr_get(ic, "ipv4") target.kw_set('rsync_port', target.tunnel.add(3000)) target.kw_set('rsync_server', target.rtb.parsed_url.hostname) def rsync(self, src = None, dst = None, persistent_name = None, persistent_dir = '/persistent.tcf.d'): """ rsync data from the local machine to a target The local machine is the machine executing the test script (where *tcf run* was called). This function will first rsync data to a location in the target (persistent storage ``/persistent.tcd.d``) that will not be overriden when flashing images. Then it will rsync it from there to the final location. This allows the content to be cached in between testcase execution that reimages the target. Thus, the first run, the whole source tree is transferred to the persistent area, but subsequent runs will already find it there even when if the OS image has been reflashed (as the reflashing will not touch the persistent area). Of course this assumes the previous executions didn't wipe the persistent area or the whole disk was not corrupted. This function can be used, for example, when wanting to deploy extra data to the target when using :func:`deploy_image`: >>> @tcfl.tc.interconnect("ipv4_addr") >>> @tcfl.tc.target("pos_capable") >>> class _test(tcfl.tc.tc_c) >>> ... >>> >>> @staticmethod >>> def _deploy_mygittree(_ic, target, _kws): >>> tcfl.pos.rsync(os.path.expanduser("~/somegittree.git"), >>> dst = '/opt/somegittree.git') >>> >>> def deploy(self, ic, target): >>> ic.power.on() >>> target.pos.deploy_image( >>> ic, "fedora::29", >>> extra_deploy_fns = [ self._deploy_mygittree ]) >>> >>> ... In this example, the user has a cloned git tree in ``~/somegittree.git`` that has to be flashed to the target into ``/opt/somegittree.git`` after ensuring the root file system is flashed with *Fedora 29*. :func:`deploy_image` will start the rsync server and then call *_deploy_mygittree()* which will use :meth:`target.pos.rsync <rsync>` to rsync from the user's machine to the target's persistent location (in ``/mnt/persistent.tcf.d/somegittree.git``) and from there to the final location of ``/mnt/opt/somegittree.git``. When the system boots it will be of course in ``/opt/somegittree.git`` Because :meth:`target.pos.rsyncd_start <rsyncd_start>` has been called already, we have now these keywords available that allows to know where to connect to. >>> target.kws['rsync_server'] >>> target.kws['rsync_port'] as setup by calling :meth:`target.pos.rsyncd_start <rsyncd_start>` on the target. Functions such as :meth:`target.pos.deploy_image <deploy_image>` do this for you. :param str src: (optional) source tree/file in the local machine to be copied to the target's persistent area. If not specified, nothing is copied to the persistent area. :param str dst: (optional) destination tree/file in the target machine; if specified, the file is copied from the persistent area to the final destination. If not specified, nothing is copied from the persistent area to the final destination. :param str persistent_name: (optional) name for the file/tree in the persistent area; defaults to the basename of the source file specification. :param str persistent_dir: (optional) name for the persistent area in the target, defaults to `/persistent.tcf.d`. """ target = self.target target.shell.run("mkdir -p /mnt/%s" % persistent_dir) # upload the directory to the persistent area if persistent_name == None: assert src != None, \ "no `src` parameter is given, `persistent_name` must " \ "then be specified" persistent_name = os.path.basename(src) if src != None: target.report_info( "rsyncing %s to target's persistent area /mnt%s/%s" % (src, persistent_dir, persistent_name)) target.shcmd_local( # don't be verbose, makes it too slow and timesout when # sending a lot of files "time rsync -HaAX --numeric-ids --delete" " --port %%(rsync_port)s " " %s/. %%(rsync_server)s::rootfs/%s/%s" % (src, persistent_dir, persistent_name)) target.testcase._targets_active() if dst != None: # There is a final destination specified, so now, in the # target, make a copy from the persistent area to the final # destination parent_dirs = os.path.dirname(dst) if parent_dirs != '': target.shell.run("mkdir -p /mnt/%s" % parent_dirs) target.shell.run( # don't be verbose, makes it too slow and timesout when # sending a lot of files "time rsync -HaAX --delete /mnt/%s/%s/. /mnt/%s" % (persistent_dir, persistent_name, dst)) def rsync_np(self, src, dst, option_delete = False): """rsync data from the local machine to a target The local machine is the machine executing the test script (where *tcf run* was called). Unlike :meth:`rsync`, this function will rsync data straight from the local machine to the target's final destination, but without using the persistent storage ``/persistent.tcd.d``. This function can be used, for example, to flash a whole distribution from the target--however, because that would be very slow, :meth:`deploy_image` is used to transfer a distro as a seed from the server (faster) and then from the local machine, just whatever changed (eg: some changes being tested in some package): >>> @tcfl.tc.interconnect("ipv4_addr") >>> @tcfl.tc.target("pos_capable") >>> class _test(tcfl.tc.tc_c) >>> ... >>> >>> def deploy_tree(_ic, target, _kws): >>> target.pos.rsync_np("/SOME/DIR/my-fedora-29", "/") >>> >>> def deploy(self, ic, target): >>> ic.power.on() >>> target.pos.deploy_image( >>> ic, "fedora::29", >>> extra_deploy_fns = [ self.deploy_tree ]) >>> >>> ... In this example, the target will be flashed to whatever fedora 29 is available in the server and then ``/SOME/DIR/my-fedora-29`` will be rsynced on top. :param str src: (optional) source tree/file in the local machine to be copied to the target's persistent area. If not specified, nothing is copied to the persistent area. :param str dst: (optional) destination tree/file in the target machine; if specified, the file is copied from the persistent area to the final destination. If not specified, nothing is copied from the persistent area to the final destination. :param bool option_delete: (optional) Add the ``--delete`` option to delete anything in the target that is not present in the source (%(default)s). """ target = self.target target.shell.run("mkdir -p /%s # create dest for rsync_np" % dst) if option_delete: _delete = "--delete" else: _delete = "" # don't be verbose, makes it too slow and timesout when # sending a lot of files cmdline = \ "time sudo rsync -HaAX --numeric-ids %s" \ " --inplace" \ " --exclude=persistent.tcf.d --exclude='persistent.tcf.d/*'" \ " --port %%(rsync_port)s %s/. %%(rsync_server)s::rootfs/%s/." \ % (_delete, src, dst) target.report_info( "POS: rsyncing %s to target's /mnt/%s" % (src, dst), dlevel = -1, attachments = dict(cmdline = cmdline)) output = target.shcmd_local(cmdline) target.testcase._targets_active() target.report_info( "rsynced %s to target's /%s" % (src, dst), attachments = dict(cmdline = cmdline, output = output)) def rsyncd_stop(self): """ Stop an *rsync* server on a target running Provisioning OS A server was started with :meth:`target.pos.rsyncd_start <rsyncd_start>`; kill it gracefully. """ target = self.target # Use sh syntax rather than bash's $(</tmp/rsync.pid) to avoid # surprises if the shall changes; ideally we'd use killall, but we # don't know if it is installed in the POS target.shell.run("kill -9 `cat /tmp/rsync.pid`") # remove the runnel we created to the rsync server and the # keywords to access it target.tunnel.remove(int(target.kws['rsync_port'])) target.kw_unset('rsync_port') target.kw_unset('rsync_server') def deploy_image(self, ic, image, boot_dev = None, root_part_dev = None, partitioning_fn = None, extra_deploy_fns = None, # mkfs has to have -F to avoid it asking questions mkfs_cmd = "mkfs.ext4 -Fj %(root_part_dev)s", pos_prompt = None, # plenty to boot to an nfsroot, hopefully timeout = 60, # When flushing to USB drives, it can be slow timeout_sync = 240, target_power_cycle_to_pos = None, boot_config = None): """Deploy an image to a target using the Provisioning OS :param tcfl.tc.tc_c ic: interconnect off which we are booting the Provisioning OS and to which ``target`` is connected. :param str image: name of an image available in an rsync server specified in the interconnect's ``pos_rsync_server`` tag. Each image is specified as ``IMAGE:SPIN:VERSION:SUBVERSION:ARCH``, e.g: - fedora:workstation:28::x86_64 - clear:live:25550::x86_64 - yocto:core-image-minimal:2.5.1::x86 Note that you can specify a partial image name and the closest match to it will be selected. From the previous example, asking for *fedora* would auto select *fedora:workstation:28::x86_64* assuming the target supports the *x86_64* target. :param str boot_dev: (optional) which is the boot device to use, where the boot loader needs to be installed in a boot partition. e.g.: ``sda`` for */dev/sda* or ``mmcblk01`` for */dev/mmcblk01*. Defaults to the value of the ``pos_boot_dev`` tag. :param str root_part_dev: (optional) which is the device to use for the root partition. e.g: ``mmcblk0p4`` for */dev/mmcblk0p4* or ``hda5`` for */dev/hda5*. If not specified, the system will pick up one from all the different root partitions that are available, trying to select the one that has the most similar to what we are installing to minimize the install time. :param extra_deploy_fns: list of functions to call after the image has been deployed. e.g.: >>> def deploy_linux_kernel(ic, target, kws, kernel_file = None): >>> ... the function will be passed keywords which contain values found out during this execution :returns str: name of the image that was deployed (in case it was guessed) FIXME: - increase in property bd.stats.client.sos_boot_failures and bd.stats.client.sos_boot_count (to get a baseline) - tag bd.stats.last_reset to DATE Note: you might want the interconnect power cycled """ assert isinstance(ic, tc.target_c), \ "ic must be an instance of tc.target_c, but found %s" \ % type(ic).__name__ assert isinstance(image, basestring) target = self.target testcase = target.testcase boot_dev = self._boot_dev_guess(boot_dev) with msgid_c("POS"): self.boot_to_pos(pos_prompt = pos_prompt, timeout = timeout, boot_to_pos_fn = target_power_cycle_to_pos) testcase.targets_active() kws = dict( rsync_server = ic.kws['pos_rsync_server'], image = image, boot_dev = boot_dev, ) kws.update(target.kws) original_timeout = testcase.tls.expecter.timeout try: testcase.tls.expecter.timeout = 800 # List the available images and decide if we have the # one we are asked to install, autocomplete missing # fields and get us a good match if there is any. image_list_output = target.shell.run( "rsync %(rsync_server)s/" % kws, output = True) images_available = image_list_from_rsync_output( image_list_output) image_final_tuple = image_select_best(image, images_available, target) image_final = ":".join(image_final_tuple) kws['image'] = image_final testcase.targets_active() root_part_dev = self.mount_fs(image_final, boot_dev) kws['root_part_dev'] = root_part_dev target.report_info("POS: rsyncing %(image)s from " "%(rsync_server)s to /mnt" % kws, dlevel = -1) target.shell.run( "time rsync -HaAX --numeric-ids --delete --inplace" " --exclude=/persistent.tcf.d" " --exclude='/persistent.tcf.d/*'" " %(rsync_server)s/%(image)s/. /mnt/." % kws) target.report_info("POS: rsynced %(image)s from " "%(rsync_server)s to /mnt" % kws) # did the user provide an extra function to deploy stuff? _extra_deploy_fns = [] more = self.cap_fn_get('extra_deploy') if more: _extra_deploy_fns += more if extra_deploy_fns: _extra_deploy_fns += extra_deploy_fns if _extra_deploy_fns: self.rsyncd_start(ic) for extra_deploy_fn in _extra_deploy_fns: target.report_info("POS: running extra deploy fn %s" % extra_deploy_fn, dlevel = 2) testcase.targets_active() extra_deploy_fn(ic, target, kws) self.rsyncd_stop() # Configure the bootloader: by hand with shell # commands, so it is easy to reproduce by a user # typing them testcase.targets_active() target.report_info("POS: configuring bootloader") boot_config_fn = target.pos.cap_fn_get('boot_config', 'uefi') if boot_config_fn: # maybe something, maybe nothing boot_config_fn(target, boot_dev, image_final) testcase.tls.expecter.timeout = timeout_sync except Exception as e: target.report_info( "BUG? exception %s: %s %s" % (type(e).__name__, e, traceback.format_exc())) raise finally: testcase.tls.expecter.timeout = original_timeout # FIXME: document # sync, kill any processes left over in /mnt, unmount it # don't fail if this fails, as it'd trigger another exception # and hide whatever happened that make us fail. Just make a # good hearted attempt at cleaning up target.shell.run( "sync; " "which lsof" " && kill -9 `lsof -Fp /home | sed -n '/^p/{s/^p//;p}'`; " "cd /; " "for device in %s; do umount -l $device || true; done" % " ".join(reversed(target.pos.umount_list))) target.report_info("POS: deployed %(image)s" % kws) return kws['image'] def image_seed_match(lp, goal): """ Given two image/seed specifications, return the most similar one >>> lp = { >>> 'part1': 'clear:live:25550::x86-64', >>> 'part2': 'fedora:workstation:28::x86', >>> 'part3': 'rtk::91', >>> 'part4': 'rtk::90', >>> 'part5': 'rtk::114', >>> } >>> _seed_match(lp, "rtk::112") >>> ('part5', 0.933333333333, 'rtk::114') """ goall = image_spec_to_tuple(str(goal)) scores = {} for part_name, seed in lp.iteritems(): score = 0 seedl = image_spec_to_tuple(str(seed)) if seedl[0] == goall[0]: # At least we want a distribution match for it to be # considered scores[part_name] = Levenshtein.seqratio(goall, seedl) else: scores[part_name] = 0 if scores: selected, score = max(scores.iteritems(), key = operator.itemgetter(1)) return selected, score, lp[selected] return None, 0, None def deploy_tree(_ic, target, _kws): """ Rsync a local tree to the target after imaging This is normally given to :func:`target.pos.deploy_image <tcfl.pos.extension.deploy_image>` as: >>> target.kw_set("pos_deploy_linux_kernel", SOMELOCALLOCATION) >>> target.pos.deploy_image(ic, IMAGENAME, >>> extra_deploy_fns = [ tcfl.pos.deploy_linux_kernel ]) """ source_tree = getattr(target, "deploy_tree_src", None) if source_tree == None: target.report_info("not deploying local tree because " "*target.deploy_tree_src* is missing or None ", dlevel = 2) return target.report_info("rsyncing tree %s -> target:/" % source_tree, dlevel = 1) target.testcase._targets_active() target.pos.rsync_np(source_tree, "/", option_delete = True) target.testcase._targets_active() target.report_pass("rsynced tree %s -> target:/" % source_tree) import pos_multiroot # pylint: disable = wrong-import-order,wrong-import-position,relative-import import pos_uefi # pylint: disable = wrong-import-order,wrong-import-position,relative-import capability_register('mount_fs', 'multiroot', pos_multiroot.mount_fs) capability_register('boot_to_pos', 'pxe', target_power_cycle_to_pos_pxe) capability_register('boot_to_normal', 'pxe', target_power_cycle_to_normal_pxe) capability_register('boot_config', 'uefi', pos_uefi.boot_config_multiroot) capability_register('boot_config_fix', 'uefi', pos_uefi.boot_config_fix)
#! /usr/bin/python2 # # Copyright (c) 2017 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 # # # FIXME: # # - command line method to discover installed capabiltiies; print # each's __doc__ """ This module provides tools to image devices with a Provisioning OS. The general operation mode for this is instructing the device to boot the :term:`Provisioning OS <POS>`; at this point, the test script (or via the *tcf* client line) can interact with the POS over the serial console. Then the device can be partitioned, formatted, etc with general Linux command line. As well, we can provide an :mod:`rsync server <ttbl.rsync>` to provide OS images that can be flashed Booting to POS can be accomplished: - by network boot and root over NFS - by a special boot device pre-configured to always boot POS - any other Server side modules used actively by this system: - DHCP server :mod:`ttbl.dhcp`: provides dynamic IP address assignment; it can be configured so a pre-configured IP address is always assigned to a target and will provide also PXE/TFTP boot services to boot into POS mode (working in conjunction with a HTTP, TFTP and NFS servers). - rsync server :mod:`ttbl.rsync`: provides access to images to rsync into partitions (which is way faster than some other imaging methods when done over a 1Gbps link). - port redirector :mod:`ttbl.socat`: not strictly needed for POS, but useful to redirect ports out of the :term:`NUT` to the greater Internet. This comes handy if as part of the testing external software has to be installed or external services acccessed. Note installation in the server side is needed, as described in :ref:`POS setup <pos_setup>`. """ import inspect import operator import os import random import re import traceback import distutils.version import Levenshtein import tc import tl from . import msgid_c def image_spec_to_tuple(i): distro = "" spin = "" version = "" pl = "" arch = "" il = i.split(":") if len(il) > 0: distro = il[0] if len(il) > 1: spin = il[1] if len(il) > 2: version = il[2] if len(il) > 3: pl = il[3] if len(il) > 4: arch = il[4] return distro, spin, version, pl, arch def image_list_from_rsync_output(output): imagel = [] # drwxrwxr-x 4,096 2018/10/19 00:41:04 . # drwxr-xr-x 4,096 2018/10/11 06:24:44 clear:live:25550 # dr-xr-xr-x 4,096 2018/04/24 23:10:02 fedora:cloud-base-x86-64:28 # drwxr-xr-x 4,096 2018/10/11 20:52:34 rtk::114 # ... # so we parse for 5 fields, take last for line in output.splitlines(): tokens = line.split(None, 5) if len(tokens) != 5: continue image = tokens[4] if not ':' in image: continue imagel.append(image_spec_to_tuple(image)) return imagel def image_select_best(image, available_images, target): arch_default = target.bsp_model image_spec = image_spec_to_tuple(image) arch = image_spec[4] if arch == "": arch = arch_default if arch == None or arch == "": image_spec2 = list(image_spec) image_spec2[4] = "ARCHITECTURE" raise tc.blocked_e( "no architecture specified (image %s), neither it could not be " "guessed from the target's BSP model (%s); try specifying the " "image as %s" % (image, target.bsp_model, ":".join(image_spec2))) target.report_info("POS: goal image spec: %s" % list(image_spec), dlevel = 2) for available_image in available_images: target.report_info("POS: available images: %s" % list(available_image), dlevel = 2) # filter which images have arch or no arch spec available_images = filter(lambda x: x[4] == arch, available_images) if not available_images: raise tc.blocked_e( "can't find image for architecture %s " "in list of available image" % arch, dict(images_available = \ "\n".join([ ":".join(i) for i in available_images ])) ) for available_image in available_images: target.report_info("POS: available images (filtered arch %s): %s" % (arch, list(available_image)), dlevel = 2) # filter first based on the distro (first field) distro = image_spec[0] if distro == "": distro_images = available_images else: distro_images = filter(lambda x: x[0] == distro, available_images) for available_image in distro_images: target.report_info("POS: available images (filtered distro %s): %s" % (distro, list(available_image)), dlevel = 2) # now filter based on the distro spin; if none, well, pick one at random spin = image_spec[1] if spin == "": spin_images = distro_images else: spin_images = filter(lambda x: x[1] == spin, distro_images) if not spin_images: raise tc.blocked_e( "can't find match for image %s on available images" % image, dict(images_available = "\n".join([ ":".join(i) for i in available_images ])) ) for available_image in spin_images: target.report_info("POS: available images (filtered spin %s): %s" % (spin, list(available_image)), dlevel = 2) # now filter based on version -- rules change here -- if there is # no version specified, pick what seems to be the most recent # (highest) version = image_spec[2] if version == "": versions = sorted([ (distutils.version.LooseVersion(i[2]) if i[2] != "" else distutils.version.LooseVersion('0')) for i in spin_images ]) version = versions[-1] else: version = distutils.version.LooseVersion(version) version_images = filter( lambda x: ( distutils.version.LooseVersion(x[2] if x[2] != "" else '0') == version ), spin_images) if not version_images: raise tc.blocked_e( "can't find image match for version %s " "in list of available images" % version, dict(images_available = "\n".join([ ":".join(i) for i in version_images ])) ) for available_image in version_images: target.report_info("POS: available images (filtered version %s): %s" % (spin, list(available_image)), dlevel = 2) # now filter based on subversion -- rules change here -- if there is # no subversion specified, pick what seems to be the most recent # (highest) subversion = image_spec[3] if subversion == "": subversions = sorted([ (distutils.version.LooseVersion(i[3]) if i[3] != "" else distutils.version.LooseVersion('0')) for i in version_images ]) subversion = subversions[-1] else: subversion = distutils.version.LooseVersion(subversion) subversion_images = filter( lambda x: ( distutils.version.LooseVersion(x[3] if x[3] != "" else '0') == subversion ), version_images) if not subversion_images: raise tc.blocked_e( "can't find image match for sub-version %s " "in list of available images" % subversion, dict(images_available = "\n".join([ ":".join(i) for i in subversion_images ])) ) for available_image in subversion_images: target.report_info("POS: available images (filtered subversion %s): %s" % (spin, list(available_image)), dlevel = 2) # we might have multiple image choices if distro or live image # weren't specified, so pick one return random.choice(subversion_images) # FIXME: what I don't like about this is that we have no info on the # interconnect -- this must require it? def target_power_cycle_to_pos_pxe(target): target.report_info("POS: setting target to PXE boot Provisioning OS") target.property_set("pos_mode", "pxe") target.power.cycle() # Now setup the local boot loader to boot off that target.property_set("pos_mode", "local") # FIXME: what I don't like about this is that we have no info on the # interconnect -- this must require it? def target_power_cycle_to_normal_pxe(target): target.report_info("Setting target not to PXE boot Provisioning OS") target.property_set("pos_mode", "local") target.power.cycle() def mk_persistent_tcf_d(target, subdirs = None): if subdirs == None: dirs = [ '/mnt/persistent.tcf.d' ] else: dirs = [ '/mnt/persistent.tcf.d/' + subdir for subdir in subdirs ] # just create / recreate all the thirs target.shell.run('mkdir -p ' + " ".join(dirs)) # Ensure there is a README -- this is slow, so don't do it if # already there output = target.shell.run( 'test -f /mnt/persistent.tcf.d/README || echo N""O' , output = True) if 'NO' in output: target.shell.run("""\ cat <<EOF > /mnt/persistent.tcf.d/README This directory has been created by TCF's Provisioning OS to store files to be provisioned in the root file system. When flashing a new image to this partition, the contents in this tree will not be removed/replaced. It is then faster to rsync things in from the client machine. EOF""") def deploy_linux_kernel(ic, target, _kws): """Deploy a linux kernel tree in the local machine to the target's root filesystem This is normally given to :func:`target.pos.deploy_image <tcfl.pos.extension.deploy_image>` as: >>> target.kw_set("pos_deploy_linux_kernel", SOMELOCALLOCATION) >>> target.pos.deploy_image(ic, IMAGENAME, >>> extra_deploy_fns = [ tcfl.pos.deploy_linux_kernel ]) as it expects ``kws['pos_deploy_linux_kernel']`` which points to a local directory in the form:: - boot/* - lib/modules/KVER/* all those will be rsynced to the target's persistent root area (for speed) and from there to the root filesystem's /boot and /lib/modules. Anything else in the ``/boot/`` and ``/lib/modules/`` directories will be replaced with what comes from the *kernel tree*. **Low level details** When the target's image has been flashed in place, :func:`tcfl.pos.deploy_image <tcfl.pos.extension.deploy_image>` is asked to call this function. The client will rsync the tree from the local machine to the persistent space using :meth:`target.pos.rsync <extension.rsync>`, which also caches it in a persistent area to speed up multiple transfers. """ if not '' in _kws: target.report_info("not deploying linux kernel because " "*pos_deploy_linux_kernel_tree* keyword " "has not been set for the target", dlevel = 2) return target.report_info("rsyncing boot image to target") target.pos.rsync("%(pos_deploy_linux_kernel_tree)s/boot" % target.kws, "/boot") target.report_info("rsyncing lib/modules to target") target.pos.rsync("%(pos_deploy_linux_kernel_tree)s/lib/modules" % target.kws, "/lib/modules") target.testcase._targets_active() target.report_pass("linux kernel transferred") #: #: Functions to boot a target into POS #: #: Different target drivers can be loaded and will add members to #: these dictionaries to extend the abilities of the core system to #: put targets in Provisioning OS mode. #: #: This then allows a single test script to work with multiple target #: types without having to worry about details. capability_fns = dict( #: Function to call to power cycle the target and have it boot the #: Provisioning OS. #: #: This shall be a one shot thing; the following power cycle shall #: boot the target normally #: #: Arguments: #: - tcfl.tc.target_c target: target to boot in POS mode boot_to_pos = dict(), #: Function to call to power cycle the target and have it boot the #: installed OS (not the Provisioning OS). #: #: Arguments: #: - tcfl.tc.target_c target: target to boot in normal mode boot_to_normal = dict(), #: Function to call to configure the boot loader once the system #: has been provisoned. #: #: Arguments: #: - tcfl.tc.target_c target: target who's boot has to be configured #: - str root_part_dev: root device #: - str image: image specification boot_config = dict(), #: Function to call to fix the boot loader from a system that #: might have booted, we have something like a login prompt on the #: serial console #: #: Arguments: #: - tcfl.tc.target_c target: target who's boot has to be configured boot_config_fix = dict(), #: Function to use to partition the target's storage #: #: Will be called when the target has a property *pos_repartition* #: set or when the system things the partition table is trashed #: and needs reinitialization. #: #: Arguments: #: - tcfl.tc.target_c target: target who's storage we are #: partitioning #: - str boot_dev: device used to boot #: #: returns: nothing, but sets target.root_part_dev, where the rootfs is #: mount_fs = dict(), #: Post-deploy functions to run extra_deploy = dict(), ) _pos_capable_defaults = dict( # backwards compat boot_to_pos = 'pxe', boot_to_normal = 'pxe', boot_config = 'uefi', mount_fs = 'multiroot', partition = 'default', ) def capability_register(capability, value, fns): assert capability in capability_fns.keys(), \ "capability %s is not one of: %s" \ % (capability, " ".join(capability_fns.keys())) assert isinstance(value, basestring), \ "capability value must be a string, got %s" % type(value).__name__ assert callable(fns) \ or ( isinstance(fns, list) and all([ callable(i) for i in fns ]) ), \ "fns %s is not a callable or list of callables" % fns capability_fns.setdefault(capability, {})[value] = fns class extension(tc.target_extension_c): """ Extension to :py:class:`tcfl.tc.target_c` to handle Provisioning OS capabilities. """ def __init__(self, target): if 'pos_capable' not in target.rt: raise self.unneeded tc.target_extension_c.__init__(self, target) pos_capable = target.kws['pos_capable'] if isinstance(pos_capable, bool): if pos_capable == False: raise tc.blocked_e("target is not POS capable", dict(target = target)) target.report_info("WARNING! target's pos_capable is still old " "style, update your config--taking " "defaults") self.capabilities = _pos_capable_defaults elif isinstance(pos_capable, dict): self.capabilities = pos_capable else: raise tc.blocked_e("Target's 'pos_capable' target is " "not a dictionary of POS capabilities", dict(target = self.target)) self.umount_list = [ '/mnt' ] def _boot_dev_guess(self, boot_dev): target = self.target # What is our boot device? if boot_dev: assert isinstance(boot_dev, basestring), \ 'boot_dev must be a string' target.report_info("POS: boot device %s (from arguments)" % boot_dev, dlevel = 3) else: boot_dev = target.kws.get('pos_boot_dev', None) if boot_dev == None: raise tc.blocked_e( "Can't guess boot_dev (no `pos_boot_dev` tag available)", { 'target': target } ) target.report_info("POS: boot device %s (from pos_boot_dev tag)" % boot_dev) boot_dev = "/dev/" + boot_dev # HACK: /dev/[hs]d* do partitions as /dev/[hs]dN, where as mmc and # friends add /dev/mmcWHATEVERpN. Seriously... if boot_dev.startswith("/dev/hd") \ or boot_dev.startswith("/dev/sd") \ or boot_dev.startswith("/dev/vd"): target.kw_set('p_prefix', "") else: target.kw_set('p_prefix', "p") return boot_dev # FIXME: make this return fn and a description saying # "capability %s/%s @ %s.%s()" so we can use it to feed to messages such as # "rebooting into Provisioning OS [0/3] with capability %s/%s @ %s.%s()" def cap_fn_get(self, capability, default = None): """ Return a target's POS capability. :param str capability: name of the capability, as defined in the target's tag :ref:`*pos_capable* <pos_capable>`. :param str default: (optional) default to use if not specified; DO NOT USE! WILL BE DEPRECATED! """ if capability not in capability_fns: raise tc.blocked_e("Unknown POS capability '%s'; maybe " "needs to be configured in " "tcfl.pos.capability_fns?" % capability, dict(target = self.target)) if capability not in self.capabilities: self.target.report_info("WARNING! target's pos_capable " "doesn't list '%s'; defaulting to '%s'" % (capability, default)) capability_value = self.capabilities.get(capability, default) if capability_value == None: # this means not needed/supported self.target.report_info( "POS: capability %s resolves to no-action" % capability) return None if capability_value not in capability_fns[capability]: raise tc.blocked_e( "target defines '%s' method for '%s' that is unknown to " "the Provisioning OS library; maybe configuration for it " "is not loaded?" % (capability_value, capability), attachments = dict(target = self.target, capability = capability, value = capability_value) ) capability_fn = capability_fns[capability][capability_value] modname = capability_fn.__module__ self.target.report_info( "POS: capability %s/%s by %s.%s" % ( capability, capability_value, inspect.getsourcefile(capability_fn), capability_fn.__name__)) return capability_fn _regex_waiting_for_login = re.compile(r".*\blogin:\s*$") def _unexpected_console_output_try_fix(self, output, target): # so when trying to boot POS we got unexpected console output; # let's see what can we do about it. if output == None: # nah, can't do much return # looks like a login prompt? Maybe we can login and munge # things around if self._regex_waiting_for_login.search(output): boot_config_fix_fn = target.pos.cap_fn_get('boot_config_fix', 'uefi') if boot_config_fix_fn: target.report_info("POS: got an unexpected login " "prompt, will try to fix the " "boot configuration") boot_config_fix_fn(target) else: target.report_error( "POS: seems we got a login prompt that is not POS, " "but I don't know how to fix it; target does not " "declare capability `boot_config_fix`", attachments = dict(output = output)) def boot_to_pos(self, pos_prompt = None, # plenty to boot to an nfsroot, hopefully timeout = 60, boot_to_pos_fn = None): target = self.target if boot_to_pos_fn == None: # None specified, let's take from the target config boot_to_pos_fn = self.cap_fn_get('boot_to_pos', 'pxe') for tries in range(3): target.report_info("POS: rebooting into Provisioning OS [%d/3]" % tries) boot_to_pos_fn(target) # Sequence for TCF-live based on Fedora if pos_prompt: target.shell.linux_shell_prompt_regex = pos_prompt try: target.shell.up(timeout = timeout) except tc.error_e as e: outputf = e.attachments_get().get('console output', None) if outputf: output = open(outputf.name).read() if output == None or output == "" or output == "\x00": target.report_error("POS: no console output, retrying") continue # sometimes the BIOS has been set to boot local directly, # so we might as well retry target.report_error("POS: unexpected console output, retrying") self._unexpected_console_output_try_fix(output, target) continue target.report_info("POS: got Provisioning OS shell") break else: raise tc.blocked_e( "POS: tried too many times to boot, without signs of life", { "console output": target.console.read(), 'target': target }) def boot_normal(self, boot_to_normal_fn = None): """ Power cycle the target (if neeed) and boot to normal OS (vs booting to the Provisioning OS). """ target = self.target if boot_to_normal_fn == None: # None specified, let's take from the target config boot_to_normal_fn = self.cap_fn_get('boot_to_normal') boot_to_normal_fn(target) def mount_fs(self, image, boot_dev): """Mount the target's filesystems in /mnt When completed, this function has (maybe) formatted/reformatted and mounted all of the target's filesystems starting in /mnt. For example, if the final system would have filesystems */boot*, */* and */home*, this function would mount them on: - / on /mnt/ - /boot on /mnt/boot - /home on /mnt/home This allows :meth:`deploy_image` to rysnc content into the final system. :param str image: name of the image we are going to deploy in this target :param str boot_dev: device name the system will use to boot """ assert isinstance(image, basestring) assert isinstance(boot_dev, basestring) self.target.shell.run("lsblk") mount_fs_fn = self.cap_fn_get("mount_fs") return mount_fs_fn(self.target, image, boot_dev) def rsyncd_start(self, ic): """ Start an *rsync* server on a target running Provisioning OS This can be used to receive deployment files from any location needed to execute later in the target. The server is attached to the ``/mnt`` directory and the target is upposed to mount the destination filesystems there. This is usually called automatically for the user by the likes of :func:`deploy_image` and others. It will create a tunnel from the server to the target's port where the rsync daemon is listening. A client can then connect to the server's port to stream data over the rsync protocol. The server address and port will be stored in the *target*'s keywords *rsync_port* and *rsync_server* and thus can be accessed with: >>> print target.kws['rsync_server'], target.kws['rsync_port'] :param tcfl.tc.target_c ic: interconnect (network) to which the target is connected. """ target = self.target target.shell.run("""\ cat > /tmp/rsync.conf <<EOF [rootfs] use chroot = true path = /mnt/ read only = false timeout = 60 uid = root gid = root EOF""") # start rsync in the background, save it's PID file as rsync makes # no pids and we might not have killall in the POS target.shell.run( "rsync --port 3000 --daemon --no-detach --config /tmp/rsync.conf &" "echo $! > /tmp/rsync.pid") # Tell the tunneling interface which IP address we want to use target.tunnel.ip_addr = target.addr_get(ic, "ipv4") target.kw_set('rsync_port', target.tunnel.add(3000)) target.kw_set('rsync_server', target.rtb.parsed_url.hostname) def rsync(self, src = None, dst = None, persistent_name = None, persistent_dir = '/persistent.tcf.d'): """ rsync data from the local machine to a target The local machine is the machine executing the test script (where *tcf run* was called). This function will first rsync data to a location in the target (persistent storage ``/persistent.tcd.d``) that will not be overriden when flashing images. Then it will rsync it from there to the final location. This allows the content to be cached in between testcase execution that reimages the target. Thus, the first run, the whole source tree is transferred to the persistent area, but subsequent runs will already find it there even when if the OS image has been reflashed (as the reflashing will not touch the persistent area). Of course this assumes the previous executions didn't wipe the persistent area or the whole disk was not corrupted. This function can be used, for example, when wanting to deploy extra data to the target when using :func:`deploy_image`: >>> @tcfl.tc.interconnect("ipv4_addr") >>> @tcfl.tc.target("pos_capable") >>> class _test(tcfl.tc.tc_c) >>> ... >>> >>> @staticmethod >>> def _deploy_mygittree(_ic, target, _kws): >>> tcfl.pos.rsync(os.path.expanduser("~/somegittree.git"), >>> dst = '/opt/somegittree.git') >>> >>> def deploy(self, ic, target): >>> ic.power.on() >>> target.pos.deploy_image( >>> ic, "fedora::29", >>> extra_deploy_fns = [ self._deploy_mygittree ]) >>> >>> ... In this example, the user has a cloned git tree in ``~/somegittree.git`` that has to be flashed to the target into ``/opt/somegittree.git`` after ensuring the root file system is flashed with *Fedora 29*. :func:`deploy_image` will start the rsync server and then call *_deploy_mygittree()* which will use :meth:`target.pos.rsync <rsync>` to rsync from the user's machine to the target's persistent location (in ``/mnt/persistent.tcf.d/somegittree.git``) and from there to the final location of ``/mnt/opt/somegittree.git``. When the system boots it will be of course in ``/opt/somegittree.git`` Because :meth:`target.pos.rsyncd_start <rsyncd_start>` has been called already, we have now these keywords available that allows to know where to connect to. >>> target.kws['rsync_server'] >>> target.kws['rsync_port'] as setup by calling :meth:`target.pos.rsyncd_start <rsyncd_start>` on the target. Functions such as :meth:`target.pos.deploy_image <deploy_image>` do this for you. :param str src: (optional) source tree/file in the local machine to be copied to the target's persistent area. If not specified, nothing is copied to the persistent area. :param str dst: (optional) destination tree/file in the target machine; if specified, the file is copied from the persistent area to the final destination. If not specified, nothing is copied from the persistent area to the final destination. :param str persistent_name: (optional) name for the file/tree in the persistent area; defaults to the basename of the source file specification. :param str persistent_dir: (optional) name for the persistent area in the target, defaults to `/persistent.tcf.d`. """ target = self.target target.shell.run("mkdir -p /mnt/%s" % persistent_dir) # upload the directory to the persistent area if persistent_name == None: assert src != None, \ "no `src` parameter is given, `persistent_name` must " \ "then be specified" persistent_name = os.path.basename(src) if src != None: target.report_info( "rsyncing %s to target's persistent area /mnt%s/%s" % (src, persistent_dir, persistent_name)) target.shcmd_local( # don't be verbose, makes it too slow and timesout when # sending a lot of files "time rsync -HaAX --numeric-ids --delete" " --port %%(rsync_port)s " " %s/. %%(rsync_server)s::rootfs/%s/%s" % (src, persistent_dir, persistent_name)) target.testcase._targets_active() if dst != None: # There is a final destination specified, so now, in the # target, make a copy from the persistent area to the final # destination parent_dirs = os.path.dirname(dst) if parent_dirs != '': target.shell.run("mkdir -p /mnt/%s" % parent_dirs) target.shell.run( # don't be verbose, makes it too slow and timesout when # sending a lot of files "time rsync -HaAX --delete /mnt/%s/%s/. /mnt/%s" % (persistent_dir, persistent_name, dst)) def rsync_np(self, src, dst, option_delete = False): """rsync data from the local machine to a target The local machine is the machine executing the test script (where *tcf run* was called). Unlike :meth:`rsync`, this function will rsync data straight from the local machine to the target's final destination, but without using the persistent storage ``/persistent.tcd.d``. This function can be used, for example, to flash a whole distribution from the target--however, because that would be very slow, :meth:`deploy_image` is used to transfer a distro as a seed from the server (faster) and then from the local machine, just whatever changed (eg: some changes being tested in some package): >>> @tcfl.tc.interconnect("ipv4_addr") >>> @tcfl.tc.target("pos_capable") >>> class _test(tcfl.tc.tc_c) >>> ... >>> >>> def deploy_tree(_ic, target, _kws): >>> target.pos.rsync_np("/SOME/DIR/my-fedora-29", "/") >>> >>> def deploy(self, ic, target): >>> ic.power.on() >>> target.pos.deploy_image( >>> ic, "fedora::29", >>> extra_deploy_fns = [ self.deploy_tree ]) >>> >>> ... In this example, the target will be flashed to whatever fedora 29 is available in the server and then ``/SOME/DIR/my-fedora-29`` will be rsynced on top. :param str src: (optional) source tree/file in the local machine to be copied to the target's persistent area. If not specified, nothing is copied to the persistent area. :param str dst: (optional) destination tree/file in the target machine; if specified, the file is copied from the persistent area to the final destination. If not specified, nothing is copied from the persistent area to the final destination. :param bool option_delete: (optional) Add the ``--delete`` option to delete anything in the target that is not present in the source (%(default)s). """ target = self.target target.shell.run("mkdir -p /%s # create dest for rsync_np" % dst) if option_delete: _delete = "--delete" else: _delete = "" # don't be verbose, makes it too slow and timesout when # sending a lot of files cmdline = \ "time sudo rsync -HaAX --numeric-ids %s" \ " --inplace" \ " --exclude=persistent.tcf.d --exclude='persistent.tcf.d/*'" \ " --port %%(rsync_port)s %s/. %%(rsync_server)s::rootfs/%s/." \ % (_delete, src, dst) target.report_info( "POS: rsyncing %s to target's /mnt/%s" % (src, dst), dlevel = -1, attachments = dict(cmdline = cmdline)) output = target.shcmd_local(cmdline) target.testcase._targets_active() target.report_info( "rsynced %s to target's /%s" % (src, dst), attachments = dict(cmdline = cmdline, output = output)) def rsyncd_stop(self): """ Stop an *rsync* server on a target running Provisioning OS A server was started with :meth:`target.pos.rsyncd_start <rsyncd_start>`; kill it gracefully. """ target = self.target # Use sh syntax rather than bash's $(</tmp/rsync.pid) to avoid # surprises if the shall changes; ideally we'd use killall, but we # don't know if it is installed in the POS target.shell.run("kill -9 `cat /tmp/rsync.pid`") # remove the runnel we created to the rsync server and the # keywords to access it target.tunnel.remove(int(target.kws['rsync_port'])) target.kw_unset('rsync_port') target.kw_unset('rsync_server') def deploy_image(self, ic, image, boot_dev = None, root_part_dev = None, partitioning_fn = None, extra_deploy_fns = None, # mkfs has to have -F to avoid it asking questions mkfs_cmd = "mkfs.ext4 -Fj %(root_part_dev)s", pos_prompt = None, # plenty to boot to an nfsroot, hopefully timeout = 60, # When flushing to USB drives, it can be slow timeout_sync = 240, target_power_cycle_to_pos = None, boot_config = None): """Deploy an image to a target using the Provisioning OS :param tcfl.tc.tc_c ic: interconnect off which we are booting the Provisioning OS and to which ``target`` is connected. :param str image: name of an image available in an rsync server specified in the interconnect's ``pos_rsync_server`` tag. Each image is specified as ``IMAGE:SPIN:VERSION:SUBVERSION:ARCH``, e.g: - fedora:workstation:28::x86_64 - clear:live:25550::x86_64 - yocto:core-image-minimal:2.5.1::x86 Note that you can specify a partial image name and the closest match to it will be selected. From the previous example, asking for *fedora* would auto select *fedora:workstation:28::x86_64* assuming the target supports the *x86_64* target. :param str boot_dev: (optional) which is the boot device to use, where the boot loader needs to be installed in a boot partition. e.g.: ``sda`` for */dev/sda* or ``mmcblk01`` for */dev/mmcblk01*. Defaults to the value of the ``pos_boot_dev`` tag. :param str root_part_dev: (optional) which is the device to use for the root partition. e.g: ``mmcblk0p4`` for */dev/mmcblk0p4* or ``hda5`` for */dev/hda5*. If not specified, the system will pick up one from all the different root partitions that are available, trying to select the one that has the most similar to what we are installing to minimize the install time. :param extra_deploy_fns: list of functions to call after the image has been deployed. e.g.: >>> def deploy_linux_kernel(ic, target, kws, kernel_file = None): >>> ... the function will be passed keywords which contain values found out during this execution :returns str: name of the image that was deployed (in case it was guessed) FIXME: - increase in property bd.stats.client.sos_boot_failures and bd.stats.client.sos_boot_count (to get a baseline) - tag bd.stats.last_reset to DATE Note: you might want the interconnect power cycled """ assert isinstance(ic, tc.target_c), \ "ic must be an instance of tc.target_c, but found %s" \ % type(ic).__name__ assert isinstance(image, basestring) target = self.target testcase = target.testcase boot_dev = self._boot_dev_guess(boot_dev) with msgid_c("POS"): self.boot_to_pos(pos_prompt = pos_prompt, timeout = timeout, boot_to_pos_fn = target_power_cycle_to_pos) testcase.targets_active() kws = dict( rsync_server = ic.kws['pos_rsync_server'], image = image, boot_dev = boot_dev, ) kws.update(target.kws) original_timeout = testcase.tls.expecter.timeout try: testcase.tls.expecter.timeout = 800 # List the available images and decide if we have the # one we are asked to install, autocomplete missing # fields and get us a good match if there is any. image_list_output = target.shell.run( "rsync %(rsync_server)s/" % kws, output = True) images_available = image_list_from_rsync_output( image_list_output) image_final_tuple = image_select_best(image, images_available, target) image_final = ":".join(image_final_tuple) kws['image'] = image_final testcase.targets_active() root_part_dev = self.mount_fs(image_final, boot_dev) kws['root_part_dev'] = root_part_dev target.report_info("POS: rsyncing %(image)s from " "%(rsync_server)s to /mnt" % kws, dlevel = -1) target.shell.run( "time rsync -HaAX --numeric-ids --delete --inplace" " --exclude=/persistent.tcf.d" " --exclude='/persistent.tcf.d/*'" " %(rsync_server)s/%(image)s/. /mnt/." % kws) target.report_info("POS: rsynced %(image)s from " "%(rsync_server)s to /mnt" % kws) # did the user provide an extra function to deploy stuff? _extra_deploy_fns = [] more = self.cap_fn_get('extra_deploy') if more: _extra_deploy_fns += more if extra_deploy_fns: _extra_deploy_fns += extra_deploy_fns if _extra_deploy_fns: self.rsyncd_start(ic) for extra_deploy_fn in _extra_deploy_fns: target.report_info("POS: running extra deploy fn %s" % extra_deploy_fn, dlevel = 2) testcase.targets_active() extra_deploy_fn(ic, target, kws) self.rsyncd_stop() # Configure the bootloader: by hand with shell # commands, so it is easy to reproduce by a user # typing them testcase.targets_active() target.report_info("POS: configuring bootloader") boot_config_fn = target.pos.cap_fn_get('boot_config', 'uefi') if boot_config_fn: # maybe something, maybe nothing boot_config_fn(target, boot_dev, image_final) testcase.tls.expecter.timeout = timeout_sync except Exception as e: target.report_info( "BUG? exception %s: %s %s" % (type(e).__name__, e, traceback.format_exc())) raise finally: testcase.tls.expecter.timeout = original_timeout # FIXME: document # sync, kill any processes left over in /mnt, unmount it # don't fail if this fails, as it'd trigger another exception # and hide whatever happened that make us fail. Just make a # good hearted attempt at cleaning up target.shell.run( "sync; " "which lsof" " && kill -9 `lsof -Fp /home | sed -n '/^p/{s/^p//;p}'`; " "cd /; " "for device in %s; do umount -l $device || true; done" % " ".join(reversed(target.pos.umount_list))) target.report_info("POS: deployed %(image)s" % kws) return kws['image'] def image_seed_match(lp, goal): """ Given two image/seed specifications, return the most similar one >>> lp = { >>> 'part1': 'clear:live:25550::x86-64', >>> 'part2': 'fedora:workstation:28::x86', >>> 'part3': 'rtk::91', >>> 'part4': 'rtk::90', >>> 'part5': 'rtk::114', >>> } >>> _seed_match(lp, "rtk::112") >>> ('part5', 0.933333333333, 'rtk::114') """ goall = image_spec_to_tuple(str(goal)) scores = {} for part_name, seed in lp.iteritems(): score = 0 seedl = image_spec_to_tuple(str(seed)) if seedl[0] == goall[0]: # At least we want a distribution match for it to be # considered scores[part_name] = Levenshtein.seqratio(goall, seedl) else: scores[part_name] = 0 if scores: selected, score = max(scores.iteritems(), key = operator.itemgetter(1)) return selected, score, lp[selected] return None, 0, None def deploy_tree(_ic, target, _kws): """ Rsync a local tree to the target after imaging This is normally given to :func:`target.pos.deploy_image <tcfl.pos.extension.deploy_image>` as: >>> target.kw_set("pos_deploy_linux_kernel", SOMELOCALLOCATION) >>> target.pos.deploy_image(ic, IMAGENAME, >>> extra_deploy_fns = [ tcfl.pos.deploy_linux_kernel ]) """ source_tree = getattr(target, "deploy_tree_src", None) if source_tree == None: target.report_info("not deploying local tree because " "*target.deploy_tree_src* is missing or None ", dlevel = 2) return target.report_info("rsyncing tree %s -> target:/" % source_tree, dlevel = 1) target.testcase._targets_active() target.pos.rsync_np(source_tree, "/", option_delete = True) target.testcase._targets_active() target.report_pass("rsynced tree %s -> target:/" % source_tree) import pos_multiroot # pylint: disable = wrong-import-order,wrong-import-position,relative-import import pos_uefi # pylint: disable = wrong-import-order,wrong-import-position,relative-import capability_register('mount_fs', 'multiroot', pos_multiroot.mount_fs) capability_register('boot_to_pos', 'pxe', target_power_cycle_to_pos_pxe) capability_register('boot_to_normal', 'pxe', target_power_cycle_to_normal_pxe) capability_register('boot_config', 'uefi', pos_uefi.boot_config_multiroot) capability_register('boot_config_fix', 'uefi', pos_uefi.boot_config_fix)
en
0.822179
#! /usr/bin/python2 # # Copyright (c) 2017 Intel Corporation # # SPDX-License-Identifier: Apache-2.0 # # # FIXME: # # - command line method to discover installed capabiltiies; print # each's __doc__ This module provides tools to image devices with a Provisioning OS. The general operation mode for this is instructing the device to boot the :term:`Provisioning OS <POS>`; at this point, the test script (or via the *tcf* client line) can interact with the POS over the serial console. Then the device can be partitioned, formatted, etc with general Linux command line. As well, we can provide an :mod:`rsync server <ttbl.rsync>` to provide OS images that can be flashed Booting to POS can be accomplished: - by network boot and root over NFS - by a special boot device pre-configured to always boot POS - any other Server side modules used actively by this system: - DHCP server :mod:`ttbl.dhcp`: provides dynamic IP address assignment; it can be configured so a pre-configured IP address is always assigned to a target and will provide also PXE/TFTP boot services to boot into POS mode (working in conjunction with a HTTP, TFTP and NFS servers). - rsync server :mod:`ttbl.rsync`: provides access to images to rsync into partitions (which is way faster than some other imaging methods when done over a 1Gbps link). - port redirector :mod:`ttbl.socat`: not strictly needed for POS, but useful to redirect ports out of the :term:`NUT` to the greater Internet. This comes handy if as part of the testing external software has to be installed or external services acccessed. Note installation in the server side is needed, as described in :ref:`POS setup <pos_setup>`. # drwxrwxr-x 4,096 2018/10/19 00:41:04 . # drwxr-xr-x 4,096 2018/10/11 06:24:44 clear:live:25550 # dr-xr-xr-x 4,096 2018/04/24 23:10:02 fedora:cloud-base-x86-64:28 # drwxr-xr-x 4,096 2018/10/11 20:52:34 rtk::114 # ... # so we parse for 5 fields, take last # filter which images have arch or no arch spec # filter first based on the distro (first field) # now filter based on the distro spin; if none, well, pick one at random # now filter based on version -- rules change here -- if there is # no version specified, pick what seems to be the most recent # (highest) # now filter based on subversion -- rules change here -- if there is # no subversion specified, pick what seems to be the most recent # (highest) # we might have multiple image choices if distro or live image # weren't specified, so pick one # FIXME: what I don't like about this is that we have no info on the # interconnect -- this must require it? # Now setup the local boot loader to boot off that # FIXME: what I don't like about this is that we have no info on the # interconnect -- this must require it? # just create / recreate all the thirs # Ensure there is a README -- this is slow, so don't do it if # already there \ cat <<EOF > /mnt/persistent.tcf.d/README This directory has been created by TCF's Provisioning OS to store files to be provisioned in the root file system. When flashing a new image to this partition, the contents in this tree will not be removed/replaced. It is then faster to rsync things in from the client machine. EOF Deploy a linux kernel tree in the local machine to the target's root filesystem This is normally given to :func:`target.pos.deploy_image <tcfl.pos.extension.deploy_image>` as: >>> target.kw_set("pos_deploy_linux_kernel", SOMELOCALLOCATION) >>> target.pos.deploy_image(ic, IMAGENAME, >>> extra_deploy_fns = [ tcfl.pos.deploy_linux_kernel ]) as it expects ``kws['pos_deploy_linux_kernel']`` which points to a local directory in the form:: - boot/* - lib/modules/KVER/* all those will be rsynced to the target's persistent root area (for speed) and from there to the root filesystem's /boot and /lib/modules. Anything else in the ``/boot/`` and ``/lib/modules/`` directories will be replaced with what comes from the *kernel tree*. **Low level details** When the target's image has been flashed in place, :func:`tcfl.pos.deploy_image <tcfl.pos.extension.deploy_image>` is asked to call this function. The client will rsync the tree from the local machine to the persistent space using :meth:`target.pos.rsync <extension.rsync>`, which also caches it in a persistent area to speed up multiple transfers. #: #: Functions to boot a target into POS #: #: Different target drivers can be loaded and will add members to #: these dictionaries to extend the abilities of the core system to #: put targets in Provisioning OS mode. #: #: This then allows a single test script to work with multiple target #: types without having to worry about details. #: Function to call to power cycle the target and have it boot the #: Provisioning OS. #: #: This shall be a one shot thing; the following power cycle shall #: boot the target normally #: #: Arguments: #: - tcfl.tc.target_c target: target to boot in POS mode #: Function to call to power cycle the target and have it boot the #: installed OS (not the Provisioning OS). #: #: Arguments: #: - tcfl.tc.target_c target: target to boot in normal mode #: Function to call to configure the boot loader once the system #: has been provisoned. #: #: Arguments: #: - tcfl.tc.target_c target: target who's boot has to be configured #: - str root_part_dev: root device #: - str image: image specification #: Function to call to fix the boot loader from a system that #: might have booted, we have something like a login prompt on the #: serial console #: #: Arguments: #: - tcfl.tc.target_c target: target who's boot has to be configured #: Function to use to partition the target's storage #: #: Will be called when the target has a property *pos_repartition* #: set or when the system things the partition table is trashed #: and needs reinitialization. #: #: Arguments: #: - tcfl.tc.target_c target: target who's storage we are #: partitioning #: - str boot_dev: device used to boot #: #: returns: nothing, but sets target.root_part_dev, where the rootfs is #: #: Post-deploy functions to run # backwards compat Extension to :py:class:`tcfl.tc.target_c` to handle Provisioning OS capabilities. # What is our boot device? # HACK: /dev/[hs]d* do partitions as /dev/[hs]dN, where as mmc and # friends add /dev/mmcWHATEVERpN. Seriously... # FIXME: make this return fn and a description saying # "capability %s/%s @ %s.%s()" so we can use it to feed to messages such as # "rebooting into Provisioning OS [0/3] with capability %s/%s @ %s.%s()" Return a target's POS capability. :param str capability: name of the capability, as defined in the target's tag :ref:`*pos_capable* <pos_capable>`. :param str default: (optional) default to use if not specified; DO NOT USE! WILL BE DEPRECATED! # this means not needed/supported # so when trying to boot POS we got unexpected console output; # let's see what can we do about it. # nah, can't do much # looks like a login prompt? Maybe we can login and munge # things around # plenty to boot to an nfsroot, hopefully # None specified, let's take from the target config # Sequence for TCF-live based on Fedora # sometimes the BIOS has been set to boot local directly, # so we might as well retry Power cycle the target (if neeed) and boot to normal OS (vs booting to the Provisioning OS). # None specified, let's take from the target config Mount the target's filesystems in /mnt When completed, this function has (maybe) formatted/reformatted and mounted all of the target's filesystems starting in /mnt. For example, if the final system would have filesystems */boot*, */* and */home*, this function would mount them on: - / on /mnt/ - /boot on /mnt/boot - /home on /mnt/home This allows :meth:`deploy_image` to rysnc content into the final system. :param str image: name of the image we are going to deploy in this target :param str boot_dev: device name the system will use to boot Start an *rsync* server on a target running Provisioning OS This can be used to receive deployment files from any location needed to execute later in the target. The server is attached to the ``/mnt`` directory and the target is upposed to mount the destination filesystems there. This is usually called automatically for the user by the likes of :func:`deploy_image` and others. It will create a tunnel from the server to the target's port where the rsync daemon is listening. A client can then connect to the server's port to stream data over the rsync protocol. The server address and port will be stored in the *target*'s keywords *rsync_port* and *rsync_server* and thus can be accessed with: >>> print target.kws['rsync_server'], target.kws['rsync_port'] :param tcfl.tc.target_c ic: interconnect (network) to which the target is connected. \ cat > /tmp/rsync.conf <<EOF [rootfs] use chroot = true path = /mnt/ read only = false timeout = 60 uid = root gid = root EOF # start rsync in the background, save it's PID file as rsync makes # no pids and we might not have killall in the POS # Tell the tunneling interface which IP address we want to use rsync data from the local machine to a target The local machine is the machine executing the test script (where *tcf run* was called). This function will first rsync data to a location in the target (persistent storage ``/persistent.tcd.d``) that will not be overriden when flashing images. Then it will rsync it from there to the final location. This allows the content to be cached in between testcase execution that reimages the target. Thus, the first run, the whole source tree is transferred to the persistent area, but subsequent runs will already find it there even when if the OS image has been reflashed (as the reflashing will not touch the persistent area). Of course this assumes the previous executions didn't wipe the persistent area or the whole disk was not corrupted. This function can be used, for example, when wanting to deploy extra data to the target when using :func:`deploy_image`: >>> @tcfl.tc.interconnect("ipv4_addr") >>> @tcfl.tc.target("pos_capable") >>> class _test(tcfl.tc.tc_c) >>> ... >>> >>> @staticmethod >>> def _deploy_mygittree(_ic, target, _kws): >>> tcfl.pos.rsync(os.path.expanduser("~/somegittree.git"), >>> dst = '/opt/somegittree.git') >>> >>> def deploy(self, ic, target): >>> ic.power.on() >>> target.pos.deploy_image( >>> ic, "fedora::29", >>> extra_deploy_fns = [ self._deploy_mygittree ]) >>> >>> ... In this example, the user has a cloned git tree in ``~/somegittree.git`` that has to be flashed to the target into ``/opt/somegittree.git`` after ensuring the root file system is flashed with *Fedora 29*. :func:`deploy_image` will start the rsync server and then call *_deploy_mygittree()* which will use :meth:`target.pos.rsync <rsync>` to rsync from the user's machine to the target's persistent location (in ``/mnt/persistent.tcf.d/somegittree.git``) and from there to the final location of ``/mnt/opt/somegittree.git``. When the system boots it will be of course in ``/opt/somegittree.git`` Because :meth:`target.pos.rsyncd_start <rsyncd_start>` has been called already, we have now these keywords available that allows to know where to connect to. >>> target.kws['rsync_server'] >>> target.kws['rsync_port'] as setup by calling :meth:`target.pos.rsyncd_start <rsyncd_start>` on the target. Functions such as :meth:`target.pos.deploy_image <deploy_image>` do this for you. :param str src: (optional) source tree/file in the local machine to be copied to the target's persistent area. If not specified, nothing is copied to the persistent area. :param str dst: (optional) destination tree/file in the target machine; if specified, the file is copied from the persistent area to the final destination. If not specified, nothing is copied from the persistent area to the final destination. :param str persistent_name: (optional) name for the file/tree in the persistent area; defaults to the basename of the source file specification. :param str persistent_dir: (optional) name for the persistent area in the target, defaults to `/persistent.tcf.d`. # upload the directory to the persistent area # don't be verbose, makes it too slow and timesout when # sending a lot of files # There is a final destination specified, so now, in the # target, make a copy from the persistent area to the final # destination # don't be verbose, makes it too slow and timesout when # sending a lot of files rsync data from the local machine to a target The local machine is the machine executing the test script (where *tcf run* was called). Unlike :meth:`rsync`, this function will rsync data straight from the local machine to the target's final destination, but without using the persistent storage ``/persistent.tcd.d``. This function can be used, for example, to flash a whole distribution from the target--however, because that would be very slow, :meth:`deploy_image` is used to transfer a distro as a seed from the server (faster) and then from the local machine, just whatever changed (eg: some changes being tested in some package): >>> @tcfl.tc.interconnect("ipv4_addr") >>> @tcfl.tc.target("pos_capable") >>> class _test(tcfl.tc.tc_c) >>> ... >>> >>> def deploy_tree(_ic, target, _kws): >>> target.pos.rsync_np("/SOME/DIR/my-fedora-29", "/") >>> >>> def deploy(self, ic, target): >>> ic.power.on() >>> target.pos.deploy_image( >>> ic, "fedora::29", >>> extra_deploy_fns = [ self.deploy_tree ]) >>> >>> ... In this example, the target will be flashed to whatever fedora 29 is available in the server and then ``/SOME/DIR/my-fedora-29`` will be rsynced on top. :param str src: (optional) source tree/file in the local machine to be copied to the target's persistent area. If not specified, nothing is copied to the persistent area. :param str dst: (optional) destination tree/file in the target machine; if specified, the file is copied from the persistent area to the final destination. If not specified, nothing is copied from the persistent area to the final destination. :param bool option_delete: (optional) Add the ``--delete`` option to delete anything in the target that is not present in the source (%(default)s). # create dest for rsync_np" % dst) # don't be verbose, makes it too slow and timesout when # sending a lot of files Stop an *rsync* server on a target running Provisioning OS A server was started with :meth:`target.pos.rsyncd_start <rsyncd_start>`; kill it gracefully. # Use sh syntax rather than bash's $(</tmp/rsync.pid) to avoid # surprises if the shall changes; ideally we'd use killall, but we # don't know if it is installed in the POS # remove the runnel we created to the rsync server and the # keywords to access it # mkfs has to have -F to avoid it asking questions # plenty to boot to an nfsroot, hopefully # When flushing to USB drives, it can be slow Deploy an image to a target using the Provisioning OS :param tcfl.tc.tc_c ic: interconnect off which we are booting the Provisioning OS and to which ``target`` is connected. :param str image: name of an image available in an rsync server specified in the interconnect's ``pos_rsync_server`` tag. Each image is specified as ``IMAGE:SPIN:VERSION:SUBVERSION:ARCH``, e.g: - fedora:workstation:28::x86_64 - clear:live:25550::x86_64 - yocto:core-image-minimal:2.5.1::x86 Note that you can specify a partial image name and the closest match to it will be selected. From the previous example, asking for *fedora* would auto select *fedora:workstation:28::x86_64* assuming the target supports the *x86_64* target. :param str boot_dev: (optional) which is the boot device to use, where the boot loader needs to be installed in a boot partition. e.g.: ``sda`` for */dev/sda* or ``mmcblk01`` for */dev/mmcblk01*. Defaults to the value of the ``pos_boot_dev`` tag. :param str root_part_dev: (optional) which is the device to use for the root partition. e.g: ``mmcblk0p4`` for */dev/mmcblk0p4* or ``hda5`` for */dev/hda5*. If not specified, the system will pick up one from all the different root partitions that are available, trying to select the one that has the most similar to what we are installing to minimize the install time. :param extra_deploy_fns: list of functions to call after the image has been deployed. e.g.: >>> def deploy_linux_kernel(ic, target, kws, kernel_file = None): >>> ... the function will be passed keywords which contain values found out during this execution :returns str: name of the image that was deployed (in case it was guessed) FIXME: - increase in property bd.stats.client.sos_boot_failures and bd.stats.client.sos_boot_count (to get a baseline) - tag bd.stats.last_reset to DATE Note: you might want the interconnect power cycled # List the available images and decide if we have the # one we are asked to install, autocomplete missing # fields and get us a good match if there is any. # did the user provide an extra function to deploy stuff? # Configure the bootloader: by hand with shell # commands, so it is easy to reproduce by a user # typing them # maybe something, maybe nothing # FIXME: document # sync, kill any processes left over in /mnt, unmount it # don't fail if this fails, as it'd trigger another exception # and hide whatever happened that make us fail. Just make a # good hearted attempt at cleaning up Given two image/seed specifications, return the most similar one >>> lp = { >>> 'part1': 'clear:live:25550::x86-64', >>> 'part2': 'fedora:workstation:28::x86', >>> 'part3': 'rtk::91', >>> 'part4': 'rtk::90', >>> 'part5': 'rtk::114', >>> } >>> _seed_match(lp, "rtk::112") >>> ('part5', 0.933333333333, 'rtk::114') # At least we want a distribution match for it to be # considered Rsync a local tree to the target after imaging This is normally given to :func:`target.pos.deploy_image <tcfl.pos.extension.deploy_image>` as: >>> target.kw_set("pos_deploy_linux_kernel", SOMELOCALLOCATION) >>> target.pos.deploy_image(ic, IMAGENAME, >>> extra_deploy_fns = [ tcfl.pos.deploy_linux_kernel ]) # pylint: disable = wrong-import-order,wrong-import-position,relative-import # pylint: disable = wrong-import-order,wrong-import-position,relative-import
2.40607
2
test.py
darshanajaint/scene-representation-networks
349
6631028
import configargparse import os, time, datetime import torch import numpy as np import dataio from torch.utils.data import DataLoader from srns import * import util p = configargparse.ArgumentParser() p.add('-c', '--config_filepath', required=False, is_config_file=True, help='Path to config file.') # Note: in contrast to training, no multi-resolution! p.add_argument('--img_sidelength', type=int, default=128, required=False, help='Sidelength of test images.') p.add_argument('--data_root', required=True, help='Path to directory with training data.') p.add_argument('--logging_root', type=str, default='./logs', required=False, help='Path to directory where checkpoints & tensorboard events will be saved.') p.add_argument('--batch_size', type=int, default=32, help='Batch size.') p.add_argument('--preload', action='store_true', default=False, help='Whether to preload data to RAM.') p.add_argument('--max_num_instances', type=int, default=-1, help='If \'data_root\' has more instances, only the first max_num_instances are used') p.add_argument('--specific_observation_idcs', type=str, default=None, help='Only pick a subset of specific observations for each instance.') p.add_argument('--has_params', action='store_true', default=False, help='Whether each object instance already comes with its own parameter vector.') p.add_argument('--save_out_first_n',type=int, default=250, help='Only saves images of first n object instances.') p.add_argument('--checkpoint_path', default=None, help='Path to trained model.') # Model options p.add_argument('--num_instances', type=int, required=True, help='The number of object instances that the model was trained with.') p.add_argument('--tracing_steps', type=int, default=10, help='Number of steps of intersection tester.') p.add_argument('--fit_single_srn', action='store_true', required=False, help='Only fit a single SRN for a single scene (not a class of SRNs) --> no hypernetwork') p.add_argument('--use_unet_renderer', action='store_true', help='Whether to use a DeepVoxels-style unet as rendering network or a per-pixel 1x1 convnet') p.add_argument('--embedding_size', type=int, default=256, help='Dimensionality of latent embedding.') opt = p.parse_args() device = torch.device('cuda') def test(): if opt.specific_observation_idcs is not None: specific_observation_idcs = list(map(int, opt.specific_observation_idcs.split(','))) else: specific_observation_idcs = None dataset = dataio.SceneClassDataset(root_dir=opt.data_root, max_num_instances=opt.max_num_instances, specific_observation_idcs=specific_observation_idcs, max_observations_per_instance=-1, samples_per_instance=1, img_sidelength=opt.img_sidelength) dataset = DataLoader(dataset, collate_fn=dataset.collate_fn, batch_size=1, shuffle=False, drop_last=False) model = SRNsModel(num_instances=opt.num_instances, latent_dim=opt.embedding_size, has_params=opt.has_params, fit_single_srn=opt.fit_single_srn, use_unet_renderer=opt.use_unet_renderer, tracing_steps=opt.tracing_steps) assert (opt.checkpoint_path is not None), "Have to pass checkpoint!" print("Loading model from %s" % opt.checkpoint_path) util.custom_load(model, path=opt.checkpoint_path, discriminator=None, overwrite_embeddings=False) model.eval() model.cuda() # directory structure: month_day/ renderings_dir = os.path.join(opt.logging_root, 'renderings') gt_comparison_dir = os.path.join(opt.logging_root, 'gt_comparisons') util.cond_mkdir(opt.logging_root) util.cond_mkdir(gt_comparison_dir) util.cond_mkdir(renderings_dir) # Save command-line parameters to log directory. with open(os.path.join(opt.logging_root, "params.txt"), "w") as out_file: out_file.write('\n'.join(["%s: %s" % (key, value) for key, value in vars(opt).items()])) print('Beginning evaluation...') with torch.no_grad(): instance_idx = 0 idx = 0 psnrs, ssims = list(), list() for model_input, ground_truth in dataset: model_outputs = model(model_input) psnr, ssim = model.get_psnr(model_outputs, ground_truth) psnrs.extend(psnr) ssims.extend(ssim) instance_idcs = model_input['instance_idx'] print("Object instance %d. Running mean PSNR %0.6f SSIM %0.6f" % (instance_idcs[-1], np.mean(psnrs), np.mean(ssims))) if instance_idx < opt.save_out_first_n: output_imgs = model.get_output_img(model_outputs).cpu().numpy() comparisons = model.get_comparisons(model_input, model_outputs, ground_truth) for i in range(len(output_imgs)): prev_instance_idx = instance_idx instance_idx = instance_idcs[i] if prev_instance_idx != instance_idx: idx = 0 img_only_path = os.path.join(renderings_dir, "%06d" % instance_idx) comp_path = os.path.join(gt_comparison_dir, "%06d" % instance_idx) util.cond_mkdir(img_only_path) util.cond_mkdir(comp_path) pred = util.convert_image(output_imgs[i].squeeze()) comp = util.convert_image(comparisons[i].squeeze()) util.write_img(pred, os.path.join(img_only_path, "%06d.png" % idx)) util.write_img(comp, os.path.join(comp_path, "%06d.png" % idx)) idx += 1 with open(os.path.join(opt.logging_root, "results.txt"), "w") as out_file: out_file.write("%0.6f, %0.6f" % (np.mean(psnrs), np.mean(ssims))) print("Final mean PSNR %0.6f SSIM %0.6f" % (np.mean(psnrs), np.mean(ssims))) def main(): test() if __name__ == '__main__': main()
import configargparse import os, time, datetime import torch import numpy as np import dataio from torch.utils.data import DataLoader from srns import * import util p = configargparse.ArgumentParser() p.add('-c', '--config_filepath', required=False, is_config_file=True, help='Path to config file.') # Note: in contrast to training, no multi-resolution! p.add_argument('--img_sidelength', type=int, default=128, required=False, help='Sidelength of test images.') p.add_argument('--data_root', required=True, help='Path to directory with training data.') p.add_argument('--logging_root', type=str, default='./logs', required=False, help='Path to directory where checkpoints & tensorboard events will be saved.') p.add_argument('--batch_size', type=int, default=32, help='Batch size.') p.add_argument('--preload', action='store_true', default=False, help='Whether to preload data to RAM.') p.add_argument('--max_num_instances', type=int, default=-1, help='If \'data_root\' has more instances, only the first max_num_instances are used') p.add_argument('--specific_observation_idcs', type=str, default=None, help='Only pick a subset of specific observations for each instance.') p.add_argument('--has_params', action='store_true', default=False, help='Whether each object instance already comes with its own parameter vector.') p.add_argument('--save_out_first_n',type=int, default=250, help='Only saves images of first n object instances.') p.add_argument('--checkpoint_path', default=None, help='Path to trained model.') # Model options p.add_argument('--num_instances', type=int, required=True, help='The number of object instances that the model was trained with.') p.add_argument('--tracing_steps', type=int, default=10, help='Number of steps of intersection tester.') p.add_argument('--fit_single_srn', action='store_true', required=False, help='Only fit a single SRN for a single scene (not a class of SRNs) --> no hypernetwork') p.add_argument('--use_unet_renderer', action='store_true', help='Whether to use a DeepVoxels-style unet as rendering network or a per-pixel 1x1 convnet') p.add_argument('--embedding_size', type=int, default=256, help='Dimensionality of latent embedding.') opt = p.parse_args() device = torch.device('cuda') def test(): if opt.specific_observation_idcs is not None: specific_observation_idcs = list(map(int, opt.specific_observation_idcs.split(','))) else: specific_observation_idcs = None dataset = dataio.SceneClassDataset(root_dir=opt.data_root, max_num_instances=opt.max_num_instances, specific_observation_idcs=specific_observation_idcs, max_observations_per_instance=-1, samples_per_instance=1, img_sidelength=opt.img_sidelength) dataset = DataLoader(dataset, collate_fn=dataset.collate_fn, batch_size=1, shuffle=False, drop_last=False) model = SRNsModel(num_instances=opt.num_instances, latent_dim=opt.embedding_size, has_params=opt.has_params, fit_single_srn=opt.fit_single_srn, use_unet_renderer=opt.use_unet_renderer, tracing_steps=opt.tracing_steps) assert (opt.checkpoint_path is not None), "Have to pass checkpoint!" print("Loading model from %s" % opt.checkpoint_path) util.custom_load(model, path=opt.checkpoint_path, discriminator=None, overwrite_embeddings=False) model.eval() model.cuda() # directory structure: month_day/ renderings_dir = os.path.join(opt.logging_root, 'renderings') gt_comparison_dir = os.path.join(opt.logging_root, 'gt_comparisons') util.cond_mkdir(opt.logging_root) util.cond_mkdir(gt_comparison_dir) util.cond_mkdir(renderings_dir) # Save command-line parameters to log directory. with open(os.path.join(opt.logging_root, "params.txt"), "w") as out_file: out_file.write('\n'.join(["%s: %s" % (key, value) for key, value in vars(opt).items()])) print('Beginning evaluation...') with torch.no_grad(): instance_idx = 0 idx = 0 psnrs, ssims = list(), list() for model_input, ground_truth in dataset: model_outputs = model(model_input) psnr, ssim = model.get_psnr(model_outputs, ground_truth) psnrs.extend(psnr) ssims.extend(ssim) instance_idcs = model_input['instance_idx'] print("Object instance %d. Running mean PSNR %0.6f SSIM %0.6f" % (instance_idcs[-1], np.mean(psnrs), np.mean(ssims))) if instance_idx < opt.save_out_first_n: output_imgs = model.get_output_img(model_outputs).cpu().numpy() comparisons = model.get_comparisons(model_input, model_outputs, ground_truth) for i in range(len(output_imgs)): prev_instance_idx = instance_idx instance_idx = instance_idcs[i] if prev_instance_idx != instance_idx: idx = 0 img_only_path = os.path.join(renderings_dir, "%06d" % instance_idx) comp_path = os.path.join(gt_comparison_dir, "%06d" % instance_idx) util.cond_mkdir(img_only_path) util.cond_mkdir(comp_path) pred = util.convert_image(output_imgs[i].squeeze()) comp = util.convert_image(comparisons[i].squeeze()) util.write_img(pred, os.path.join(img_only_path, "%06d.png" % idx)) util.write_img(comp, os.path.join(comp_path, "%06d.png" % idx)) idx += 1 with open(os.path.join(opt.logging_root, "results.txt"), "w") as out_file: out_file.write("%0.6f, %0.6f" % (np.mean(psnrs), np.mean(ssims))) print("Final mean PSNR %0.6f SSIM %0.6f" % (np.mean(psnrs), np.mean(ssims))) def main(): test() if __name__ == '__main__': main()
en
0.601734
# Note: in contrast to training, no multi-resolution! # Model options # directory structure: month_day/ # Save command-line parameters to log directory.
2.086247
2
baseforms.py
JezzaHehn/pyifs
0
6631029
<reponame>JezzaHehn/pyifs<filename>baseforms.py from colour import Color from math import sqrt class Transform(object): def __init__(self, rng): self.r, self.g, self.b = Color(hsl=(rng.random(), 1, 0.5)).rgb self.rng = rng def transform_colour(self, r, g, b): r = (self.r + r) / 2.0 g = (self.g + g) / 2.0 b = (self.b + b) / 2.0 return r, g, b def get_name(self): return self.__class__.__name__ class ComplexTransform(Transform): def transform(self, px, py): z = complex(px, py) z2 = self.f(z) return z2.real, z2.imag class MoebiusBase(ComplexTransform): """ This applies a random Moebius transform and then its inverse. """ def __init__(self, rng, xform): super(MoebiusBase, self).__init__(rng) self.coef_a = complex(rng.gauss(0, 0.2), rng.gauss(0, 0.2)) self.coef_b = complex(rng.gauss(0, 0.2), rng.gauss(0, 0.2)) self.coef_c = complex(rng.gauss(0, 0.2), rng.gauss(0, 0.2)) self.coef_d = complex(rng.gauss(0, 0.2), rng.gauss(0, 0.2)) self.xform = xform self.transform_colour = self.xform.transform_colour def get_name(self): return "Moeb" + self.xform.get_name() def f(self, z): # apply pre-Moebius (az+b)/(cz+d) z = (self.coef_a * z + self.coef_b) / (self.coef_c * z + self.coef_d) # apply inner transform z = complex(*self.xform.transform(z.real, z.imag)) # return post-Moebius (dz-b)/(-cz+a), which is inverse of pre-Moebius return (self.coef_d * z - self.coef_b) / (-self.coef_c * z + self.coef_a) class SphericalBase(Transform): """ Since the spherical transform is its own inverse, it can simply be applied twice. """ def __init__(self, rng, xform): super(SphericalBase, self).__init__(rng) self.xform = xform def get_name(self): return "Spheri" + self.xform.get_name() def transform(self, px, py): # first spherical r2 = sqrt(px**2 + py**2)**2 px, py = px/r2, py/r2 # inner transform px, py = self.xform.transform(px, py) # second spherical r2 = sqrt(px**2 + py**2)**2 return px/r2, py/r2
from colour import Color from math import sqrt class Transform(object): def __init__(self, rng): self.r, self.g, self.b = Color(hsl=(rng.random(), 1, 0.5)).rgb self.rng = rng def transform_colour(self, r, g, b): r = (self.r + r) / 2.0 g = (self.g + g) / 2.0 b = (self.b + b) / 2.0 return r, g, b def get_name(self): return self.__class__.__name__ class ComplexTransform(Transform): def transform(self, px, py): z = complex(px, py) z2 = self.f(z) return z2.real, z2.imag class MoebiusBase(ComplexTransform): """ This applies a random Moebius transform and then its inverse. """ def __init__(self, rng, xform): super(MoebiusBase, self).__init__(rng) self.coef_a = complex(rng.gauss(0, 0.2), rng.gauss(0, 0.2)) self.coef_b = complex(rng.gauss(0, 0.2), rng.gauss(0, 0.2)) self.coef_c = complex(rng.gauss(0, 0.2), rng.gauss(0, 0.2)) self.coef_d = complex(rng.gauss(0, 0.2), rng.gauss(0, 0.2)) self.xform = xform self.transform_colour = self.xform.transform_colour def get_name(self): return "Moeb" + self.xform.get_name() def f(self, z): # apply pre-Moebius (az+b)/(cz+d) z = (self.coef_a * z + self.coef_b) / (self.coef_c * z + self.coef_d) # apply inner transform z = complex(*self.xform.transform(z.real, z.imag)) # return post-Moebius (dz-b)/(-cz+a), which is inverse of pre-Moebius return (self.coef_d * z - self.coef_b) / (-self.coef_c * z + self.coef_a) class SphericalBase(Transform): """ Since the spherical transform is its own inverse, it can simply be applied twice. """ def __init__(self, rng, xform): super(SphericalBase, self).__init__(rng) self.xform = xform def get_name(self): return "Spheri" + self.xform.get_name() def transform(self, px, py): # first spherical r2 = sqrt(px**2 + py**2)**2 px, py = px/r2, py/r2 # inner transform px, py = self.xform.transform(px, py) # second spherical r2 = sqrt(px**2 + py**2)**2 return px/r2, py/r2
en
0.808977
This applies a random Moebius transform and then its inverse. # apply pre-Moebius (az+b)/(cz+d) # apply inner transform # return post-Moebius (dz-b)/(-cz+a), which is inverse of pre-Moebius Since the spherical transform is its own inverse, it can simply be applied twice. # first spherical # inner transform # second spherical
3.483839
3
routes.py
BLM16/URL-Shortener
0
6631030
from flask import Blueprint, render_template, redirect, url_for, request from sqlalchemy.sql import text from sqlalchemy.exc import SQLAlchemyError import re from config import engine, db from models.url import URL routes = Blueprint("routes", __name__, static_folder = 'static', template_folder = 'templates') @routes.errorhandler(404) def PageNotFound(e): return redirect(url_for('routes.Error', title = "Error: 404 - page not found", msg = e)) @routes.route('/') def Index(): return render_template("index.html") @routes.route('/', methods = ['POST']) def SetURL(): # Get the url url = request.form['url'] if not url: return # Define valid url regex url_regex = re.compile( r'^(?:http)s?://' # http:// or https:// r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' #domain... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) # Validate the url if not url_regex.match(url): return render_template("index.html", error = True, urlVal = url) # Connect to the DB with engine.connect() as con: # See if there is already a key for the url try: sql = text("SELECT * FROM url WHERE url = :url") res = con.execute(sql, url = url).fetchall() except SQLAlchemyError as e: return redirect(url_for('routes.Error', title = 'Error: Unhandled error', msg = type(e))) except: return redirect(url_for('routes.Error', title = 'Error: Unhandled error')) # If there is a key display that link if len(res) > 0: return render_template("index.html", short = f'{request.url_root}{res[0].key}') # Generate a new key key = URL.GenerateKey() try: # Insert the KVP into the database kvp = URL(key, url) db.session.add(kvp) db.session.commit() except: return redirect(url_for('routes.Error', title = 'Error: Unhandled error')) # Display the new link from the key return render_template("index.html", short = f'{request.url_root}{key}') @routes.route('/<key>') def KeyRedir(key): # Connect to the DB with engine.connect() as con: # Get the url associated with the key sql = text("SELECT url FROM url WHERE key = :key") url = con.execute(sql, key = key).scalar() # Redirect to the url for the key if url: return redirect(url) else: return redirect(url_for('routes.Error', title = "Error: 404 - page not found", msg = f"The key <{key}> does not exist.")) @routes.route('/error') def Error(): # Get the error parameters title = request.args.get('title') msg = request.args.get('msg') back = request.args.get('back') return render_template("error.html", title = title, msg = msg, back = back)
from flask import Blueprint, render_template, redirect, url_for, request from sqlalchemy.sql import text from sqlalchemy.exc import SQLAlchemyError import re from config import engine, db from models.url import URL routes = Blueprint("routes", __name__, static_folder = 'static', template_folder = 'templates') @routes.errorhandler(404) def PageNotFound(e): return redirect(url_for('routes.Error', title = "Error: 404 - page not found", msg = e)) @routes.route('/') def Index(): return render_template("index.html") @routes.route('/', methods = ['POST']) def SetURL(): # Get the url url = request.form['url'] if not url: return # Define valid url regex url_regex = re.compile( r'^(?:http)s?://' # http:// or https:// r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?|[A-Z0-9-]{2,}\.?)|' #domain... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip r'(?::\d+)?' # optional port r'(?:/?|[/?]\S+)$', re.IGNORECASE) # Validate the url if not url_regex.match(url): return render_template("index.html", error = True, urlVal = url) # Connect to the DB with engine.connect() as con: # See if there is already a key for the url try: sql = text("SELECT * FROM url WHERE url = :url") res = con.execute(sql, url = url).fetchall() except SQLAlchemyError as e: return redirect(url_for('routes.Error', title = 'Error: Unhandled error', msg = type(e))) except: return redirect(url_for('routes.Error', title = 'Error: Unhandled error')) # If there is a key display that link if len(res) > 0: return render_template("index.html", short = f'{request.url_root}{res[0].key}') # Generate a new key key = URL.GenerateKey() try: # Insert the KVP into the database kvp = URL(key, url) db.session.add(kvp) db.session.commit() except: return redirect(url_for('routes.Error', title = 'Error: Unhandled error')) # Display the new link from the key return render_template("index.html", short = f'{request.url_root}{key}') @routes.route('/<key>') def KeyRedir(key): # Connect to the DB with engine.connect() as con: # Get the url associated with the key sql = text("SELECT url FROM url WHERE key = :key") url = con.execute(sql, key = key).scalar() # Redirect to the url for the key if url: return redirect(url) else: return redirect(url_for('routes.Error', title = "Error: 404 - page not found", msg = f"The key <{key}> does not exist.")) @routes.route('/error') def Error(): # Get the error parameters title = request.args.get('title') msg = request.args.get('msg') back = request.args.get('back') return render_template("error.html", title = title, msg = msg, back = back)
en
0.663466
# Get the url # Define valid url regex # http:// or https:// #domain... # ...or ip # optional port # Validate the url # Connect to the DB # See if there is already a key for the url # If there is a key display that link # Generate a new key # Insert the KVP into the database # Display the new link from the key # Connect to the DB # Get the url associated with the key # Redirect to the url for the key # Get the error parameters
2.624493
3
.circleci/scripts/wait_for_server.py
ybt195/determined
1,729
6631031
<filename>.circleci/scripts/wait_for_server.py<gh_stars>1000+ import argparse import socket import time def wait_for_server(host, port, timeout=5.0): for _ in range(100): try: with socket.create_connection((host, port), timeout=timeout): return except OSError: time.sleep(1) raise Exception(f"Timed out waiting for the {host}:{port}.") def main() -> None: parser = argparse.ArgumentParser(description="Wait for server helper.") parser.add_argument("host", help="Host") parser.add_argument("port", help="Port") args = parser.parse_args() wait_for_server(args.host, args.port) if __name__ == "__main__": main()
<filename>.circleci/scripts/wait_for_server.py<gh_stars>1000+ import argparse import socket import time def wait_for_server(host, port, timeout=5.0): for _ in range(100): try: with socket.create_connection((host, port), timeout=timeout): return except OSError: time.sleep(1) raise Exception(f"Timed out waiting for the {host}:{port}.") def main() -> None: parser = argparse.ArgumentParser(description="Wait for server helper.") parser.add_argument("host", help="Host") parser.add_argument("port", help="Port") args = parser.parse_args() wait_for_server(args.host, args.port) if __name__ == "__main__": main()
none
1
3.063749
3
LongestLines.py
TurtleShell/DigitImageClassifier
0
6631032
<reponame>TurtleShell/DigitImageClassifier #LongestLines """ This file creates a feature that tracks the longest dark line and the number of distinct lines in each major direction """ import math from DataFormatFunctions import * from TraversalHelperFunctions import * from HelperClasses import * def getLineLenFromCoords(coords, sqMatrix, direction, traversedCoords): nextCoords = coords pixelsTraversed = 0 while (nextCoords.isValid() and nextCoords.isDark(sqMatrix)): traversedCoords.append(nextCoords) pixelsTraversed += 1 nextCoords = Coords(nextCoords.x+direction[0], nextCoords.y+direction[1]) return pixelsTraversed def getLineObjForDir(sqMatrix, direction): traversedCoords = [] lineLenPointObjList = [] lineLens = [] countedCoords = [] for y in range(IMG_HEIGHT): for x in range(IMG_WIDTH): coords = Coords(x, y) if (coords not in traversedCoords): lineLen = getLineLenFromCoords(coords, sqMatrix, direction, traversedCoords) lineLenPointObj = LineLenPointObj(coords, lineLen) lineLenPointObjList.append(lineLenPointObj) lineLens.append(lineLen) maxLen = max(lineLens) for lineLenPointObj in lineLenPointObjList: lineLen = lineLenPointObj.length if (lineLen >= LL_LEN_THRESH): lineLenCoords = lineLenPointObj.coords if (coordsDistantFromList(lineLenCoords, countedCoords, LL_COORD_DIST_THRESH)): countedCoords.append(lineLenCoords) linesOverThresh = len(countedCoords) return LineLenDirectionObj(maxLen, linesOverThresh) def getLongestLinesObject(imgVector): sqMatrix = imgVectorToSquareMatrix(imgVector) llList = [] for direction in DIRECTIONS_LIST: lineObj = getLineObjForDir(sqMatrix, direction) llList.append(lineObj) return llList def setLongestLinesFeature(imgVector, vectori, featureMatrix): llList = getLongestLinesObject(imgVector) for i,lineObj in enumerate(llList): fIndex = i*2 featureMatrix[fIndex,vectori] = lineObj.maxLenVal featureMatrix[fIndex+1,vectori] = lineObj.linesVal def createLongestLinesFeatureMatrixFromInput(inputMatrix): vectors = np.shape(inputMatrix)[1] featureMatrix = np.zeros((LL_INPUT_SIZE, vectors)) for vectori in range(vectors): imgVector = inputMatrix[:,vectori] setLongestLinesFeature(imgVector, vectori, featureMatrix) return featureMatrix
#LongestLines """ This file creates a feature that tracks the longest dark line and the number of distinct lines in each major direction """ import math from DataFormatFunctions import * from TraversalHelperFunctions import * from HelperClasses import * def getLineLenFromCoords(coords, sqMatrix, direction, traversedCoords): nextCoords = coords pixelsTraversed = 0 while (nextCoords.isValid() and nextCoords.isDark(sqMatrix)): traversedCoords.append(nextCoords) pixelsTraversed += 1 nextCoords = Coords(nextCoords.x+direction[0], nextCoords.y+direction[1]) return pixelsTraversed def getLineObjForDir(sqMatrix, direction): traversedCoords = [] lineLenPointObjList = [] lineLens = [] countedCoords = [] for y in range(IMG_HEIGHT): for x in range(IMG_WIDTH): coords = Coords(x, y) if (coords not in traversedCoords): lineLen = getLineLenFromCoords(coords, sqMatrix, direction, traversedCoords) lineLenPointObj = LineLenPointObj(coords, lineLen) lineLenPointObjList.append(lineLenPointObj) lineLens.append(lineLen) maxLen = max(lineLens) for lineLenPointObj in lineLenPointObjList: lineLen = lineLenPointObj.length if (lineLen >= LL_LEN_THRESH): lineLenCoords = lineLenPointObj.coords if (coordsDistantFromList(lineLenCoords, countedCoords, LL_COORD_DIST_THRESH)): countedCoords.append(lineLenCoords) linesOverThresh = len(countedCoords) return LineLenDirectionObj(maxLen, linesOverThresh) def getLongestLinesObject(imgVector): sqMatrix = imgVectorToSquareMatrix(imgVector) llList = [] for direction in DIRECTIONS_LIST: lineObj = getLineObjForDir(sqMatrix, direction) llList.append(lineObj) return llList def setLongestLinesFeature(imgVector, vectori, featureMatrix): llList = getLongestLinesObject(imgVector) for i,lineObj in enumerate(llList): fIndex = i*2 featureMatrix[fIndex,vectori] = lineObj.maxLenVal featureMatrix[fIndex+1,vectori] = lineObj.linesVal def createLongestLinesFeatureMatrixFromInput(inputMatrix): vectors = np.shape(inputMatrix)[1] featureMatrix = np.zeros((LL_INPUT_SIZE, vectors)) for vectori in range(vectors): imgVector = inputMatrix[:,vectori] setLongestLinesFeature(imgVector, vectori, featureMatrix) return featureMatrix
en
0.902498
#LongestLines This file creates a feature that tracks the longest dark line and the number of distinct lines in each major direction
3.044856
3
calculateStatistics.py
dahe-cvl/isvc2020_overscan_detection
0
6631033
import numpy as np import cv2 import csv from itertools import islice import os def readSamples(db_path, image_size): files = [] print(db_path) # r=root, d=directories, f = files for r, d, f in os.walk(db_path): for file in f: if '.png' in file: files.append(os.path.join(r, file)) all_samples_r = []; all_samples_g = []; all_samples_b = []; for f in files: # print(f) # read images frame = cv2.imread(f); frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) frame_np = np.array(frame); # resize image dim = (image_size, image_size); frame_resized = cv2.resize(frame_np, dim, interpolation=cv2.INTER_AREA); # print(frame_resized.shape) # split image b, g, r = cv2.split(frame_resized); all_samples_r.append(r); all_samples_g.append(g); all_samples_b.append(b); print("--------------------------------------------------") print("process frame: " + str(f)) all_samples_r_np = np.array(all_samples_r) all_samples_g_np = np.array(all_samples_g) all_samples_b_np = np.array(all_samples_b) print(all_samples_r_np.shape) print(all_samples_g_np.shape) print(all_samples_b_np.shape) return all_samples_r_np, all_samples_g_np, all_samples_b_np def checkStatistics(zero_centered_r_np, zero_centered_g_np, zero_centered_b_np, normalized_r_np, normalized_g_np, normalized_b_np): # calculate zero-centered frames print(np.mean(zero_centered_r_np)) print(np.mean(zero_centered_g_np)) print(np.mean(zero_centered_b_np)) # calculate standard deviation for each color channel print(np.std(normalized_r_np)) print(np.std(normalized_g_np)) print(np.std(normalized_b_np)) def calculateSTD(all_samples_r_np, all_samples_g_np, all_samples_b_np ): print("calculate standard deviation of zero-centered frames ... ") std_r = np.std(all_samples_r_np); std_g = np.std(all_samples_g_np); std_b = np.std(all_samples_b_np); print(std_r) print(std_g) print(std_b) return std_r, std_g, std_b def calculateMean(all_samples_r_np, all_samples_g_np, all_samples_b_np): print("calculate mean value for each color channel ... ") mean_r = np.mean(all_samples_r_np); mean_g = np.mean(all_samples_g_np); mean_b = np.mean(all_samples_b_np); print(mean_r) print(mean_g) print(mean_b) return mean_r, mean_g, mean_b; #print("calculate mean image for each color channel ... ") #mean_r = np.mean(all_samples_r_np, axis=0); #mean_g = np.mean(all_samples_g_np, axis=0); #mean_b = np.mean(all_samples_b_np, axis=0); #print(mean_r.shape) #print(mean_g.shape) #print(mean_b.shape) #print("merge color channels to one mean image ... ") #mean_frame = cv2.merge((mean_b, mean_g, mean_r)); #print(mean_frame.shape) #print("save image ... ") #cv2.imwrite(dst_path + "/mean_frame_" + str(image_size) + ".jpg", mean_frame) def saveStatistics(dst_path, image_size, mean_r, mean_g, mean_b, std_r, std_g, std_b): print("save statistics to file ... ") fp = open(dst_path + "statistics_" + str(image_size) + "x" + str(image_size) + ".txt", 'w'); fp.write("image_size:" + str(image_size) + "\n") fp.write("mean_r = " + str(mean_r.round(5)) + "\n") fp.write("mean_g = " + str(mean_g.round(5)) + "\n") fp.write("mean_b = " + str(mean_b.round(5)) + "\n") fp.write("std_r = " + str(std_r.round(5)) + "\n") fp.write("std_g = " + str(std_g.round(5)) + "\n") fp.write("std_b = " + str(std_b.round(5)) + "\n") def loadStatistics(statistics_filepath): print("save statistics to file ... ") fp = open(statistics_filepath, 'r'); lines = fp.readlines(); print(lines) image_size = int(lines[0].split(':')[1]); mean_r = float(lines[1].split(' = ')[1]); mean_g = float(lines[2].split(' = ')[1]); mean_b = float(lines[3].split(' = ')[1]); std_r = float(lines[4].split(' = ')[1]); std_g = float(lines[5].split(' = ')[1]); std_b = float(lines[6].split(' = ')[1]); return image_size, mean_r, mean_g, mean_b, std_r, std_g, std_b; def main(): print("prepare keras database"); ############################################################################ ## CONFIGURATION ############################################################################ db_path = "/caa/Projects02/vhh/private/database_nobackup/VHH_datasets/generated/stc/20191203/db_v7/train/" dst_path = "/caa/Projects02/vhh/private/database_nobackup/VHH_datasets/generated/stc/20191203/db_v7/" image_size = 128; ############################################################################ print("get all samples..."); all_samples_r_np, all_samples_g_np, all_samples_b_np = readSamples(db_path, image_size); ACTIVE_FLAG = True; if(ACTIVE_FLAG == True): mean_r, mean_g, mean_b = calculateMean(all_samples_r_np, all_samples_g_np, all_samples_b_np); std_r, std_g, std_b = calculateSTD(all_samples_r_np, all_samples_g_np, all_samples_b_np); # save statiscits saveStatistics(dst_path, image_size, mean_r, mean_g, mean_b, std_r, std_g, std_b); elif (ACTIVE_FLAG == False): image_size, mean_r, mean_g, mean_b, std_r, std_g, std_b = loadStatistics(dst_path + "/statistics_" + str(image_size) + "x"+ str(image_size) + ".txt") # zero-centering zero_centered_r_np = all_samples_r_np - mean_r; zero_centered_g_np = all_samples_g_np - mean_g; zero_centered_b_np = all_samples_b_np - mean_b; # normalization normalized_r_np = zero_centered_r_np / std_r; normalized_g_np = zero_centered_g_np / std_g; normalized_b_np = zero_centered_b_np / std_b; checkStatistics(zero_centered_r_np, zero_centered_g_np, zero_centered_b_np, normalized_r_np, normalized_g_np, normalized_b_np); # print(np.std(samples_b_tmp)); # print(np.std(samples_g_tmp)); # print(np.std(samples_r_tmp)); if(__name__== "__main__"): main();
import numpy as np import cv2 import csv from itertools import islice import os def readSamples(db_path, image_size): files = [] print(db_path) # r=root, d=directories, f = files for r, d, f in os.walk(db_path): for file in f: if '.png' in file: files.append(os.path.join(r, file)) all_samples_r = []; all_samples_g = []; all_samples_b = []; for f in files: # print(f) # read images frame = cv2.imread(f); frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) frame_np = np.array(frame); # resize image dim = (image_size, image_size); frame_resized = cv2.resize(frame_np, dim, interpolation=cv2.INTER_AREA); # print(frame_resized.shape) # split image b, g, r = cv2.split(frame_resized); all_samples_r.append(r); all_samples_g.append(g); all_samples_b.append(b); print("--------------------------------------------------") print("process frame: " + str(f)) all_samples_r_np = np.array(all_samples_r) all_samples_g_np = np.array(all_samples_g) all_samples_b_np = np.array(all_samples_b) print(all_samples_r_np.shape) print(all_samples_g_np.shape) print(all_samples_b_np.shape) return all_samples_r_np, all_samples_g_np, all_samples_b_np def checkStatistics(zero_centered_r_np, zero_centered_g_np, zero_centered_b_np, normalized_r_np, normalized_g_np, normalized_b_np): # calculate zero-centered frames print(np.mean(zero_centered_r_np)) print(np.mean(zero_centered_g_np)) print(np.mean(zero_centered_b_np)) # calculate standard deviation for each color channel print(np.std(normalized_r_np)) print(np.std(normalized_g_np)) print(np.std(normalized_b_np)) def calculateSTD(all_samples_r_np, all_samples_g_np, all_samples_b_np ): print("calculate standard deviation of zero-centered frames ... ") std_r = np.std(all_samples_r_np); std_g = np.std(all_samples_g_np); std_b = np.std(all_samples_b_np); print(std_r) print(std_g) print(std_b) return std_r, std_g, std_b def calculateMean(all_samples_r_np, all_samples_g_np, all_samples_b_np): print("calculate mean value for each color channel ... ") mean_r = np.mean(all_samples_r_np); mean_g = np.mean(all_samples_g_np); mean_b = np.mean(all_samples_b_np); print(mean_r) print(mean_g) print(mean_b) return mean_r, mean_g, mean_b; #print("calculate mean image for each color channel ... ") #mean_r = np.mean(all_samples_r_np, axis=0); #mean_g = np.mean(all_samples_g_np, axis=0); #mean_b = np.mean(all_samples_b_np, axis=0); #print(mean_r.shape) #print(mean_g.shape) #print(mean_b.shape) #print("merge color channels to one mean image ... ") #mean_frame = cv2.merge((mean_b, mean_g, mean_r)); #print(mean_frame.shape) #print("save image ... ") #cv2.imwrite(dst_path + "/mean_frame_" + str(image_size) + ".jpg", mean_frame) def saveStatistics(dst_path, image_size, mean_r, mean_g, mean_b, std_r, std_g, std_b): print("save statistics to file ... ") fp = open(dst_path + "statistics_" + str(image_size) + "x" + str(image_size) + ".txt", 'w'); fp.write("image_size:" + str(image_size) + "\n") fp.write("mean_r = " + str(mean_r.round(5)) + "\n") fp.write("mean_g = " + str(mean_g.round(5)) + "\n") fp.write("mean_b = " + str(mean_b.round(5)) + "\n") fp.write("std_r = " + str(std_r.round(5)) + "\n") fp.write("std_g = " + str(std_g.round(5)) + "\n") fp.write("std_b = " + str(std_b.round(5)) + "\n") def loadStatistics(statistics_filepath): print("save statistics to file ... ") fp = open(statistics_filepath, 'r'); lines = fp.readlines(); print(lines) image_size = int(lines[0].split(':')[1]); mean_r = float(lines[1].split(' = ')[1]); mean_g = float(lines[2].split(' = ')[1]); mean_b = float(lines[3].split(' = ')[1]); std_r = float(lines[4].split(' = ')[1]); std_g = float(lines[5].split(' = ')[1]); std_b = float(lines[6].split(' = ')[1]); return image_size, mean_r, mean_g, mean_b, std_r, std_g, std_b; def main(): print("prepare keras database"); ############################################################################ ## CONFIGURATION ############################################################################ db_path = "/caa/Projects02/vhh/private/database_nobackup/VHH_datasets/generated/stc/20191203/db_v7/train/" dst_path = "/caa/Projects02/vhh/private/database_nobackup/VHH_datasets/generated/stc/20191203/db_v7/" image_size = 128; ############################################################################ print("get all samples..."); all_samples_r_np, all_samples_g_np, all_samples_b_np = readSamples(db_path, image_size); ACTIVE_FLAG = True; if(ACTIVE_FLAG == True): mean_r, mean_g, mean_b = calculateMean(all_samples_r_np, all_samples_g_np, all_samples_b_np); std_r, std_g, std_b = calculateSTD(all_samples_r_np, all_samples_g_np, all_samples_b_np); # save statiscits saveStatistics(dst_path, image_size, mean_r, mean_g, mean_b, std_r, std_g, std_b); elif (ACTIVE_FLAG == False): image_size, mean_r, mean_g, mean_b, std_r, std_g, std_b = loadStatistics(dst_path + "/statistics_" + str(image_size) + "x"+ str(image_size) + ".txt") # zero-centering zero_centered_r_np = all_samples_r_np - mean_r; zero_centered_g_np = all_samples_g_np - mean_g; zero_centered_b_np = all_samples_b_np - mean_b; # normalization normalized_r_np = zero_centered_r_np / std_r; normalized_g_np = zero_centered_g_np / std_g; normalized_b_np = zero_centered_b_np / std_b; checkStatistics(zero_centered_r_np, zero_centered_g_np, zero_centered_b_np, normalized_r_np, normalized_g_np, normalized_b_np); # print(np.std(samples_b_tmp)); # print(np.std(samples_g_tmp)); # print(np.std(samples_r_tmp)); if(__name__== "__main__"): main();
en
0.338932
# r=root, d=directories, f = files # print(f) # read images # resize image # print(frame_resized.shape) # split image # calculate zero-centered frames # calculate standard deviation for each color channel #print("calculate mean image for each color channel ... ") #mean_r = np.mean(all_samples_r_np, axis=0); #mean_g = np.mean(all_samples_g_np, axis=0); #mean_b = np.mean(all_samples_b_np, axis=0); #print(mean_r.shape) #print(mean_g.shape) #print(mean_b.shape) #print("merge color channels to one mean image ... ") #mean_frame = cv2.merge((mean_b, mean_g, mean_r)); #print(mean_frame.shape) #print("save image ... ") #cv2.imwrite(dst_path + "/mean_frame_" + str(image_size) + ".jpg", mean_frame) ############################################################################ ## CONFIGURATION ############################################################################ ############################################################################ # save statiscits # zero-centering # normalization # print(np.std(samples_b_tmp)); # print(np.std(samples_g_tmp)); # print(np.std(samples_r_tmp));
2.551862
3
Exercises/ejercicio-36.py
shoriwe-upb/TallerEjercicios
0
6631034
<gh_stars>0 def main(): a = float(input("Number a: ")) b = float(input("Number b: ")) c = float(input("Number c: ")) if a + b > c: print("Es mayor") elif a + b < c: print("Es menor") if __name__ == '__main__': main()
def main(): a = float(input("Number a: ")) b = float(input("Number b: ")) c = float(input("Number c: ")) if a + b > c: print("Es mayor") elif a + b < c: print("Es menor") if __name__ == '__main__': main()
none
1
3.818494
4
speech.py
dlei/class-transcribe
0
6631035
<reponame>dlei/class-transcribe<filename>speech.py #!/usr/bin/python import sys import urllib2 import os import json import subprocess as sp # url = "https://www.google.com/speech-api/v1/recognize?xjerr=1&client=chromium&lang=en-US" url = 'https://www.google.com/speech-api/v2/recognize?xjerr=1&client=chromium&lang=en-US' fileName = str(sys.argv[1]) fileExtension = os.path.splitext(fileName)[1] converted = False print fileExtension if fileExtension != ".flac": fnull = open(os.devnull, 'w') sp.call("pacpl --overwrite -t flac " + fileName, shell = True, stdout = fnull, stderr = fnull) fnull.close() fileName = os.path.splitext(fileName)[0] + '.flac' converted = True try: binary_audio = open(fileName, 'rb') except: print "Failed to get binary data." size_of_audio = os.path.getsize(fileName) if converted: os.remove(fileName) request = urllib2.Request(url) request.add_header('Content-type','audio/x-flac; rate=16000') request.add_header('Content-length', str(size_of_audio)) request.add_data(binary_audio) try: response = urllib2.urlopen(request) print response except urllib2.URLError, e: print "Unable to connect" except urllib2.HTTPError, e: print "Oops, bad request" content = response.read() data = json.loads(content) print data["hypotheses"][0]["utterance"]
#!/usr/bin/python import sys import urllib2 import os import json import subprocess as sp # url = "https://www.google.com/speech-api/v1/recognize?xjerr=1&client=chromium&lang=en-US" url = 'https://www.google.com/speech-api/v2/recognize?xjerr=1&client=chromium&lang=en-US' fileName = str(sys.argv[1]) fileExtension = os.path.splitext(fileName)[1] converted = False print fileExtension if fileExtension != ".flac": fnull = open(os.devnull, 'w') sp.call("pacpl --overwrite -t flac " + fileName, shell = True, stdout = fnull, stderr = fnull) fnull.close() fileName = os.path.splitext(fileName)[0] + '.flac' converted = True try: binary_audio = open(fileName, 'rb') except: print "Failed to get binary data." size_of_audio = os.path.getsize(fileName) if converted: os.remove(fileName) request = urllib2.Request(url) request.add_header('Content-type','audio/x-flac; rate=16000') request.add_header('Content-length', str(size_of_audio)) request.add_data(binary_audio) try: response = urllib2.urlopen(request) print response except urllib2.URLError, e: print "Unable to connect" except urllib2.HTTPError, e: print "Oops, bad request" content = response.read() data = json.loads(content) print data["hypotheses"][0]["utterance"]
en
0.444293
#!/usr/bin/python # url = "https://www.google.com/speech-api/v1/recognize?xjerr=1&client=chromium&lang=en-US"
2.98433
3
tests/lineage/test_lineage.py
ktmud/incubator-airflow
2
6631036
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest from airflow.lineage import AUTO from airflow.lineage.entities import File from airflow.models import DAG, TaskInstance as TI from airflow.operators.dummy_operator import DummyOperator from airflow.utils import timezone DEFAULT_DATE = timezone.datetime(2016, 1, 1) class TestLineage(unittest.TestCase): def test_lineage(self): dag = DAG( dag_id='test_prepare_lineage', start_date=DEFAULT_DATE ) f1s = "/tmp/does_not_exist_1-{}" f2s = "/tmp/does_not_exist_2-{}" f3s = "/tmp/does_not_exist_3" file1 = File(f1s.format("{{ execution_date }}")) file2 = File(f2s.format("{{ execution_date }}")) file3 = File(f3s) with dag: op1 = DummyOperator(task_id='leave1', inlets=file1, outlets=[file2, ]) op2 = DummyOperator(task_id='leave2') op3 = DummyOperator(task_id='upstream_level_1', inlets=AUTO, outlets=file3) op4 = DummyOperator(task_id='upstream_level_2') op5 = DummyOperator(task_id='upstream_level_3', inlets=["leave1", "upstream_level_1"]) op1.set_downstream(op3) op2.set_downstream(op3) op3.set_downstream(op4) op4.set_downstream(op5) dag.clear() # execution_date is set in the context in order to avoid creating task instances ctx1 = {"ti": TI(task=op1, execution_date=DEFAULT_DATE), "execution_date": DEFAULT_DATE} ctx2 = {"ti": TI(task=op2, execution_date=DEFAULT_DATE), "execution_date": DEFAULT_DATE} ctx3 = {"ti": TI(task=op3, execution_date=DEFAULT_DATE), "execution_date": DEFAULT_DATE} ctx5 = {"ti": TI(task=op5, execution_date=DEFAULT_DATE), "execution_date": DEFAULT_DATE} # prepare with manual inlets and outlets op1.pre_execute(ctx1) self.assertEqual(len(op1.inlets), 1) self.assertEqual(op1.inlets[0].url, f1s.format(DEFAULT_DATE)) self.assertEqual(len(op1.outlets), 1) self.assertEqual(op1.outlets[0].url, f2s.format(DEFAULT_DATE)) # post process with no backend op1.post_execute(ctx1) op2.pre_execute(ctx2) self.assertEqual(len(op2.inlets), 0) op2.post_execute(ctx2) op3.pre_execute(ctx3) self.assertEqual(len(op3.inlets), 1) self.assertEqual(op3.inlets[0].url, f2s.format(DEFAULT_DATE)) self.assertEqual(op3.outlets[0], file3) op3.post_execute(ctx3) # skip 4 op5.pre_execute(ctx5) self.assertEqual(len(op5.inlets), 2) op5.post_execute(ctx5)
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest from airflow.lineage import AUTO from airflow.lineage.entities import File from airflow.models import DAG, TaskInstance as TI from airflow.operators.dummy_operator import DummyOperator from airflow.utils import timezone DEFAULT_DATE = timezone.datetime(2016, 1, 1) class TestLineage(unittest.TestCase): def test_lineage(self): dag = DAG( dag_id='test_prepare_lineage', start_date=DEFAULT_DATE ) f1s = "/tmp/does_not_exist_1-{}" f2s = "/tmp/does_not_exist_2-{}" f3s = "/tmp/does_not_exist_3" file1 = File(f1s.format("{{ execution_date }}")) file2 = File(f2s.format("{{ execution_date }}")) file3 = File(f3s) with dag: op1 = DummyOperator(task_id='leave1', inlets=file1, outlets=[file2, ]) op2 = DummyOperator(task_id='leave2') op3 = DummyOperator(task_id='upstream_level_1', inlets=AUTO, outlets=file3) op4 = DummyOperator(task_id='upstream_level_2') op5 = DummyOperator(task_id='upstream_level_3', inlets=["leave1", "upstream_level_1"]) op1.set_downstream(op3) op2.set_downstream(op3) op3.set_downstream(op4) op4.set_downstream(op5) dag.clear() # execution_date is set in the context in order to avoid creating task instances ctx1 = {"ti": TI(task=op1, execution_date=DEFAULT_DATE), "execution_date": DEFAULT_DATE} ctx2 = {"ti": TI(task=op2, execution_date=DEFAULT_DATE), "execution_date": DEFAULT_DATE} ctx3 = {"ti": TI(task=op3, execution_date=DEFAULT_DATE), "execution_date": DEFAULT_DATE} ctx5 = {"ti": TI(task=op5, execution_date=DEFAULT_DATE), "execution_date": DEFAULT_DATE} # prepare with manual inlets and outlets op1.pre_execute(ctx1) self.assertEqual(len(op1.inlets), 1) self.assertEqual(op1.inlets[0].url, f1s.format(DEFAULT_DATE)) self.assertEqual(len(op1.outlets), 1) self.assertEqual(op1.outlets[0].url, f2s.format(DEFAULT_DATE)) # post process with no backend op1.post_execute(ctx1) op2.pre_execute(ctx2) self.assertEqual(len(op2.inlets), 0) op2.post_execute(ctx2) op3.pre_execute(ctx3) self.assertEqual(len(op3.inlets), 1) self.assertEqual(op3.inlets[0].url, f2s.format(DEFAULT_DATE)) self.assertEqual(op3.outlets[0], file3) op3.post_execute(ctx3) # skip 4 op5.pre_execute(ctx5) self.assertEqual(len(op5.inlets), 2) op5.post_execute(ctx5)
en
0.868302
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # execution_date is set in the context in order to avoid creating task instances # prepare with manual inlets and outlets # post process with no backend # skip 4
1.912357
2
tools/maketestgds.py
gdmcbain/gdspy
239
6631037
###################################################################### # # # Copyright 2009 <NAME>. # # This file is part of gdspy, distributed under the terms of the # # Boost Software License - Version 1.0. See the accompanying # # LICENSE file or <http://www.boost.org/LICENSE_1_0.txt> # # # ###################################################################### import gdspy import numpy lib = gdspy.GdsLibrary("TESTLIB", unit=1, precision=1e-7) ### PolygonSet cell = lib.new_cell("PolygonSet") p = gdspy.PolygonSet( [ [(10, 0), (11, 0), (10, 1)], [(11, 0), (10, 1), (11, 1)], [(11, 1), (12, 1), (11, 2)], ], 1, 2, ) cell.add(p) cell = lib.new_cell("PolygonSet_fillet") orig = gdspy.PolygonSet( [ [ (0, 0), (-1, 0), (0, -1), (0.5, -0.5), (1, 0), (1, 1), (4, -1), (1, 3), (1, 2), (0, 1), ], [(2, -1), (3, -1), (2.5, -2)], ] ) orig.datatypes = [0, 1] p = gdspy.copy(orig, 0, 5) p.layers = [1, 1] p.fillet(0.3, max_points=0) cell.add(p) p = gdspy.copy(orig, 5, 5) p.layers = [2, 2] p.fillet([0.3, 0.2, 0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.4, 0.1, 0.2, 0], max_points=0) cell.add(p) p = gdspy.copy(orig, 5, 0) p.layers = [3, 3] p.fillet( [[0.1, 0.1, 0.4, 0, 0.4, 0.1, 0.1, 0.4, 0.4, 0.1], [0.2, 0.2, 0.5]], max_points=0 ) cell.add(p) p = gdspy.copy(orig, 0, 0) p.layers = [4, 4] p.fillet([0.8, [10.0, 10.0, 20.0]], max_points=199, precision=1e-6) cell.add(p) ### FlexPath def broken(p0, v0, p1, v1, p2, w): den = v1[1] * v0[0] - v1[0] * v0[1] lim = 1e-12 * (v0[0] ** 2 + v0[1] ** 2) * (v1[0] ** 2 + v1[1] ** 2) if den ** 2 < lim: u0 = u1 = 0 p = 0.5 * (p0 + p1) else: dx = p1[0] - p0[0] dy = p1[1] - p0[1] u0 = (v1[1] * dx - v1[0] * dy) / den u1 = (v0[1] * dx - v0[0] * dy) / den p = 0.5 * (p0 + v0 * u0 + p1 + v1 * u1) if u0 <= 0 and u1 >= 0: return [p] return [p0, p2, p1] def pointy(p0, v0, p1, v1): r = 0.5 * numpy.sqrt(numpy.sum((p0 - p1) ** 2)) v0 /= numpy.sqrt(numpy.sum(v0 ** 2)) v1 /= numpy.sqrt(numpy.sum(v1 ** 2)) return [p0, 0.5 * (p0 + p1) + 0.5 * (v0 - v1) * r, p1] cell = lib.new_cell("FlexPath1") fp = gdspy.FlexPath([(0, 0), (1, 1)], 0.1, layer=[1], gdsii_path=True) cell.add(fp) fp = gdspy.FlexPath( [(1, 0), (2, 1)], 0.1, [-0.1, 0.1], tolerance=1e-5, ends=["round", "extended"], layer=[2, 3], max_points=6, ) cell.add(fp) fp = gdspy.FlexPath( [(2, 0), (3, 1)], [0.1, 0.2], 0.2, ends=(0.2, 0.1), layer=4, datatype=[1, 1] ) cell.add(fp) fp = gdspy.FlexPath( [(3, 0), (4, 1)], [0.1, 0.2, 0.1], [-0.2, 0, 0.2], ends=[(0.2, 0.1), "smooth", pointy], datatype=5, ) cell.add(fp) cell = lib.new_cell("FlexPath2") fp = gdspy.FlexPath( [(0, 0), (0.5, 0), (1, 0), (1, 1), (0, 1), (-1, -2), (-2, 0)], 0.05, [0, -0.1, 0, 0.1], corners=["natural", "circular bend", "circular bend", "circular bend"], ends=["flush", "extended", (0.1, 0.2), "round"], tolerance=1e-4, layer=[0, 1, 1, 2], bend_radius=[0, 0.3, 0.3, 0.2], max_points=10, ) cell.add(fp) cell = lib.new_cell("FlexPath3") pts = numpy.array( [ (0, 0), (0.5, 0), (1, 0), (1, 2), (3, 0), (2, -1), (2, -2), (0, -1), (1, -2), (1, -3), ] ) fp = gdspy.FlexPath( pts + numpy.array((0, 5)), [0.1, 0.1, 0.1], 0.15, layer=[1, 2, 3], corners=["natural", "miter", "bevel"], ends=(0.5, 0), ) cell.add(fp) fp = gdspy.FlexPath( pts + numpy.array((5, 0)), [0.1, 0.1, 0.1], 0.15, layer=[4, 5, 6], corners=["round", "smooth", broken], ends=[pointy, "smooth", (0, 0.5)], ) cell.add(fp) cell = lib.new_cell("FlexPath4") fp = gdspy.FlexPath( [(0, 0)], [0.1, 0.2, 0.1], 0.15, layer=[1, 2, 3], corners=["natural", "miter", "bevel"], ) fp.segment((1, 0)) fp.segment((1, 1), 0.1, 0.05) fp.segment((1, 1), [0.2, 0.1, 0.1], -0.05, True) fp.segment((-1, 1), 0.2, [-0.2, 0, 0.3], True) fp.arc(2, 0, 0.5 * numpy.pi) fp.arc(3, 0.5 * numpy.pi, numpy.pi, 0.1, 0) fp.arc(1, 0.4 * numpy.pi, -0.4 * numpy.pi, [0.1, 0.2, 0.1], [0.2, 0, -0.2]) fp.turn(1, 0.4 * numpy.pi) fp.turn(1, "ll", 0.15, 0) fp.turn(0.5, "r", [0.1, 0.05, 0.1], [0.15, 0, -0.15]) cell.add(fp) fp = gdspy.FlexPath([(-5, 6)], 0.8, layer=20, ends="round", tolerance=1e-4) fp.segment((1, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath([(-5, 6)], 0.8, layer=21, ends="extended", tolerance=1e-4) fp.segment((1, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath([(-5, 6)], 0.8, layer=22, ends=(0.1, 0.2), tolerance=1e-4) fp.segment((1, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath([(-5, 6)], 0.8, layer=23, ends="smooth", tolerance=1e-4) fp.segment((1, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath( [(-3, 6)], 0.8, layer=10, corners="round", ends="round", tolerance=1e-5 ) fp.segment((1, 0), 0.1, relative=True) fp.segment((0, 1), 0.8, relative=True) cell.add(fp) fp = gdspy.FlexPath( [(-3, 6)], 0.8, layer=11, corners="smooth", ends="extended", tolerance=1e-5 ) fp.segment((1, 0), 0.1, relative=True) fp.segment((0, 1), 0.8, relative=True) cell.add(fp) fp = gdspy.FlexPath( [(-3, 6)], 0.8, layer=12, corners="smooth", ends="smooth", tolerance=1e-5 ) fp.segment((1, 0), 0.1, relative=True) fp.segment((0, 1), 0.8, relative=True) cell.add(fp) fp = gdspy.FlexPath( [(-3, 8)], 0.1, layer=13, corners="round", ends="round", tolerance=1e-5 ) fp.segment((1, 0), 0.8, relative=True) fp.segment((0, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath( [(-3, 8)], 0.1, layer=14, corners="smooth", ends=(0.2, 0.2), tolerance=1e-5 ) fp.segment((1, 0), 0.8, relative=True) fp.segment((0, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath( [(-3, 8)], 0.1, layer=15, corners="round", ends="smooth", tolerance=1e-5 ) fp.segment((1, 0), 0.8, relative=True) fp.segment((0, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath([(5, 2)], [0.05, 0.1, 0.2], [-0.2, 0, 0.4], layer=[4, 5, 6]) fp.parametric(lambda u: numpy.array((5.5 + 3 * u, 2 + 3 * u ** 2)), relative=False) fp.segment((0, 1), relative=True) fp.parametric( lambda u: numpy.array( (2 * numpy.cos(0.5 * numpy.pi * u) - 2, 3 * numpy.sin(0.5 * numpy.pi * u)) ), [0.2, 0.1, 0.05], [-0.3, 0, 0.3], ) fp.parametric(lambda u: numpy.array((-2 * u, 0)), 0.1, 0.2) fp.bezier([(-3, 0), (-2, -3), (0, -4), (0, -5)], offset=[-0.2, 0, 0.2]) fp.bezier( [(5, 0), (1, -1), (1, 5), (3, 2), (5, 2)], [0.05, 0.1, 0.2], [-0.2, 0, 0.4], relative=False, ) cell.add(fp) fp = gdspy.FlexPath([(2, -1)], 0.1, layer=7, tolerance=1e-5, max_points=0) fp.smooth( [(1, 0), (1, -1), (0, -1)], angles=[numpy.pi / 3, None, -2 / 3.0 * numpy.pi, None], cycle=True, ) cell.add(fp) fp = gdspy.FlexPath([(2.5, -1.5)], 0.1, layer=8) fp.smooth( [(3, -1.5), (4, -2), (5, -1), (6, -2), (7, -1.5), (7.5, -1.5)], relative=False, width=0.2, ) cell.add(fp) cell = lib.new_cell("FlexPath5") fp = gdspy.FlexPath([(0, 0)], [2, 1, 1], 5) fp.segment((15, 20)) fp.scale(0.7) fp.turn(10, "r") fp.transform((10, 0), -1.5, 1.5, x_reflection=True) fp.segment((10, -10), relative=True) fp.rotate(-0.7) fp.translate(50, 30) fp.segment((-10, 0)) cell.add(fp) ### RobustPath cell = lib.new_cell("RobustPath1") rp = gdspy.RobustPath((0, 0), 0.1, layer=[1], gdsii_path=True) rp.segment((1, 1)) cell.add(rp) rp = gdspy.RobustPath( (1, 0), 0.1, [-0.1, 0.1], tolerance=1e-5, ends=["round", "extended"], layer=[2, 3], max_points=6, ) rp.segment((2, 1)) cell.add(rp) rp = gdspy.RobustPath( (2, 0), [0.1, 0.2], 0.2, ends=(0.2, 0.1), layer=4, datatype=[1, 1] ) rp.segment((3, 1)) cell.add(rp) rp = gdspy.RobustPath( (3, 0), [0.1, 0.2, 0.1], [-0.2, 0, 0.2], ends=[(0.2, 0.1), "smooth", "flush"], datatype=5, ) rp.segment((4, 1)) cell.add(rp) cell = lib.new_cell("RobustPath2") rp = gdspy.RobustPath((0, 0), [0.1, 0.2, 0.1], 0.15, layer=[1, 2, 3]) rp.segment((1, 0)) rp.segment((1, 1), 0.1, 0.05) rp.segment((1, 1), [0.2, 0.1, 0.1], -0.05, True) rp.segment((-1, 1), 0.2, [-0.2, 0, 0.3], True) rp.arc(2, 0, 0.5 * numpy.pi) rp.arc(3, 0.7 * numpy.pi, numpy.pi, 0.1, 0) rp.arc(2, 0.4 * numpy.pi, -0.4 * numpy.pi, [0.1, 0.2, 0.1], [0.2, 0, -0.2]) rp.turn(1, -0.3 * numpy.pi) rp.turn(1, "rr", 0.15) rp.turn(0.5, "l", [0.05, 0.1, 0.05], [0.15, 0, -0.15]) cell.add(rp) rp = gdspy.RobustPath((-5, 6), 0.8, layer=20, ends="round", tolerance=1e-4) rp.segment((1, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((-5, 6), 0.8, layer=21, ends="extended", tolerance=1e-4) rp.segment((1, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((-5, 6), 0.8, layer=22, ends=(0.1, 0.2), tolerance=1e-4) rp.segment((1, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((-5, 6), 0.8, layer=23, ends="smooth", tolerance=1e-4) rp.segment((1, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((-3, 6), 0.8, layer=10, ends="round", tolerance=1e-5) rp.segment((1, 0), 0.1, relative=True) rp.segment((0, 1), 0.8, relative=True) cell.add(rp) rp = gdspy.RobustPath((-3, 6), 0.8, layer=11, ends="extended", tolerance=1e-5) rp.segment((1, 0), 0.1, relative=True) rp.segment((0, 1), 0.8, relative=True) cell.add(rp) rp = gdspy.RobustPath((-3, 6), 0.8, layer=12, ends="smooth", tolerance=1e-5) rp.segment((1, 0), 0.1, relative=True) rp.segment((0, 1), 0.8, relative=True) cell.add(rp) rp = gdspy.RobustPath((-3, 8), 0.1, layer=13, ends="round", tolerance=1e-5) rp.segment((1, 0), 0.8, relative=True) rp.segment((0, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((-3, 8), 0.1, layer=14, ends=(0.2, 0.2), tolerance=1e-5) rp.segment((1, 0), 0.8, relative=True) rp.segment((0, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((-3, 8), 0.1, layer=15, ends="smooth", tolerance=1e-5) rp.segment((1, 0), 0.8, relative=True) rp.segment((0, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((5, 2), [0.05, 0.1, 0.2], [-0.2, 0, 0.4], layer=[4, 5, 6]) rp.parametric(lambda u: numpy.array((5.5 + 3 * u, 2 + 3 * u ** 2)), relative=False) rp.segment((0, 1), relative=True) rp.parametric( lambda u: numpy.array( (2 * numpy.cos(0.5 * numpy.pi * u) - 2, 3 * numpy.sin(0.5 * numpy.pi * u)) ), width=[0.2, 0.1, 0.05], offset=[-0.3, 0, 0.3], ) rp.parametric(lambda u: numpy.array((-2 * u, 0)), width=0.1, offset=0.2) rp.bezier([(-3, 0), (-2, -3), (0, -4), (0, -5)], offset=[-0.2, 0, 0.2]) rp.bezier( [(4.5, 0), (1, -1), (1, 5), (3, 2), (5, 2)], width=[0.05, 0.1, 0.2], offset=[-0.2, 0, 0.4], relative=False, ) cell.add(rp) rp = gdspy.RobustPath((2, -1), 0.1, layer=7, tolerance=1e-4, max_points=0) rp.smooth( [(1, 0), (1, -1), (0, -1)], angles=[numpy.pi / 3, None, -2 / 3.0 * numpy.pi, None], cycle=True, ) cell.add(rp) rp = gdspy.RobustPath((2.5, -1.5), 0.1, layer=8) rp.smooth( [(3, -1.5), (4, -2), (5, -1), (6, -2), (7, -1.5), (7.5, -1.5)], relative=False, width=0.2, ) cell.add(rp) cell = lib.new_cell("RobustPath3") rp = gdspy.RobustPath((0, 0), 0.1) rp.parametric( lambda u: numpy.array((3 * numpy.sin(numpy.pi * u), -3 * numpy.cos(numpy.pi * u))), relative=False, ) rp.parametric( lambda u: numpy.array( (3.5 - 3 * numpy.cos(numpy.pi * u), -0.5 + 3 * numpy.sin(numpy.pi * u)) ), lambda u: numpy.array((numpy.sin(numpy.pi * u), numpy.cos(numpy.pi * u))), relative=True, ) cell.add(rp) cell = lib.new_cell("RobustPath4") rp = gdspy.FlexPath([(0, 0)], [2, 1, 1], 5) rp.segment((15, 20)) rp.scale(0.7) rp.turn(10, "r") rp.transform((10, 0), -1.5, 1.5, x_reflection=True) rp.segment((10, -10), relative=True) rp.rotate(-0.7) rp.translate(50, 30) rp.segment((-10, 0)) cell.add(rp) ### Curve cell = lib.new_cell("Hobby1") c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)]) cell.add(gdspy.Polygon(c.get_points(), layer=1)) c = gdspy.Curve(2, 0, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[numpy.pi / 3, None, None, None]) cell.add(gdspy.Polygon(c.get_points(), layer=3)) c = gdspy.Curve(4, 0, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, None, None, 2 / 3.0 * numpy.pi]) cell.add(gdspy.Polygon(c.get_points(), layer=5)) c = gdspy.Curve(0, 2, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[numpy.pi / 3, None, None, 3 / 4.0 * numpy.pi]) cell.add(gdspy.Polygon(c.get_points(), layer=7)) c = gdspy.Curve(2, 2, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, None, numpy.pi / 2, None]) cell.add(gdspy.Polygon(c.get_points(), layer=9)) c = gdspy.Curve(4, 2, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, 0, None, None]) cell.add(gdspy.Polygon(c.get_points(), layer=11)) c = gdspy.Curve(0, 4, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, 0, None, -numpy.pi / 2]) cell.add(gdspy.Polygon(c.get_points(), layer=13)) c = gdspy.Curve(2, 4, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, 0, -numpy.pi, -numpy.pi / 2]) cell.add(gdspy.Polygon(c.get_points(), layer=15)) c = gdspy.Curve(4, 4, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[-numpy.pi / 4, 0, numpy.pi / 2, -numpy.pi]) cell.add(gdspy.Polygon(c.get_points(), layer=17)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=2)) c = gdspy.Curve(2, 0, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[numpy.pi / 3, None, None, None], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=4)) c = gdspy.Curve(4, 0, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, None, None, 2 / 3.0 * numpy.pi], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=6)) c = gdspy.Curve(0, 2, tolerance=1e-3) c.i( [(1, 0), (1, 1), (0, 1)], angles=[numpy.pi / 3, None, None, 3 / 4.0 * numpy.pi], cycle=True, ) cell.add(gdspy.Polygon(c.get_points(), layer=8)) c = gdspy.Curve(2, 2, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, None, numpy.pi / 2, None], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=10)) c = gdspy.Curve(4, 2, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, 0, None, None], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=12)) c = gdspy.Curve(0, 4, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, 0, None, -numpy.pi / 2], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=14)) c = gdspy.Curve(2, 4, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, 0, -numpy.pi, -numpy.pi / 2], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=16)) c = gdspy.Curve(4, 4, tolerance=1e-3) c.i( [(1, 0), (1, 1), (0, 1)], angles=[-numpy.pi / 4, 0, numpy.pi / 2, -numpy.pi], cycle=True, ) cell.add(gdspy.Polygon(c.get_points(), layer=18)) cell = lib.new_cell("Hobby2") c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)]) cell.add(gdspy.Polygon(c.get_points(), layer=1)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], curl_start=0) cell.add(gdspy.Polygon(c.get_points(), layer=2)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], curl_end=0) cell.add(gdspy.Polygon(c.get_points(), layer=3)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], curl_start=0, curl_end=0) cell.add(gdspy.Polygon(c.get_points(), layer=4)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i( [(1, 2), (2, 1), (3, 2), (4, 0)], angles=[numpy.pi / 2, None, None, None, -numpy.pi / 2], curl_start=0, curl_end=0, ) cell.add(gdspy.Polygon(c.get_points(), layer=5)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i( [(1, 2), (2, 1), (3, 2), (4, 0)], angles=[None, 0, None, 0, None], curl_start=0, curl_end=1, ) cell.add(gdspy.Polygon(c.get_points(), layer=6)) cell = lib.new_cell("Hobby3") c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)]) cell.add(gdspy.Polygon(c.get_points(), layer=1)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], t_in=2) cell.add(gdspy.Polygon(c.get_points(), layer=2)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], t_out=2) cell.add(gdspy.Polygon(c.get_points(), layer=3)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], t_in=2, t_out=2) cell.add(gdspy.Polygon(c.get_points(), layer=4)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], t_in=[2, 1, 1, 1, 1], t_out=[1, 1, 1, 1, 2]) cell.add(gdspy.Polygon(c.get_points(), layer=5)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], t_in=[1, 1, 2, 1, 1], t_out=[1, 2, 1, 1, 1]) cell.add(gdspy.Polygon(c.get_points(), layer=6)) cell = lib.new_cell("Hobby4") c = gdspy.Curve(0, 3, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=10)) c = gdspy.Curve(0, 3, tolerance=1e-3) c.i( [(1, 2), (2, 1), (3, 2), (4, 0)], t_in=[2, 1, 1, 1, 1], t_out=[1, 1, 1, 1, 2], cycle=True, ) cell.add(gdspy.Polygon(c.get_points(), layer=11)) c = gdspy.Curve(0, 3, tolerance=1e-3) c.i( [(1, 2), (2, 1), (3, 2), (4, 0)], t_in=[1, 1, 2, 1, 1], t_out=[1, 2, 1, 1, 1], cycle=True, ) cell.add(gdspy.Polygon(c.get_points(), layer=12)) c = gdspy.Curve(0, 3, tolerance=1e-3) c.i( [(1, 2), (2, 1), (3, 2), (4, 0)], angles=[numpy.pi * 3 / 4.0, None, None, None, -numpy.pi * 3 / 4.0], t_in=[2, 1, 1, 1, 1], t_out=[1, 1, 1, 1, 2], cycle=True, ) cell.add(gdspy.Polygon(c.get_points(), layer=13)) c = gdspy.Curve(0, 3, tolerance=1e-3) c.i( [(1, 2), (2, 1), (3, 2), (4, 0)], angles=[numpy.pi * 3 / 4.0, None, None, None, -numpy.pi * 3 / 4.0], t_in=[1, 1, 1, 1, 1], t_out=[1, 1, 1, 1, 1], cycle=True, ) cell.add(gdspy.Polygon(c.get_points(), layer=14)) ### END lib.write_gds("tests/test.gds") gdspy.LayoutViewer(lib)
###################################################################### # # # Copyright 2009 <NAME>. # # This file is part of gdspy, distributed under the terms of the # # Boost Software License - Version 1.0. See the accompanying # # LICENSE file or <http://www.boost.org/LICENSE_1_0.txt> # # # ###################################################################### import gdspy import numpy lib = gdspy.GdsLibrary("TESTLIB", unit=1, precision=1e-7) ### PolygonSet cell = lib.new_cell("PolygonSet") p = gdspy.PolygonSet( [ [(10, 0), (11, 0), (10, 1)], [(11, 0), (10, 1), (11, 1)], [(11, 1), (12, 1), (11, 2)], ], 1, 2, ) cell.add(p) cell = lib.new_cell("PolygonSet_fillet") orig = gdspy.PolygonSet( [ [ (0, 0), (-1, 0), (0, -1), (0.5, -0.5), (1, 0), (1, 1), (4, -1), (1, 3), (1, 2), (0, 1), ], [(2, -1), (3, -1), (2.5, -2)], ] ) orig.datatypes = [0, 1] p = gdspy.copy(orig, 0, 5) p.layers = [1, 1] p.fillet(0.3, max_points=0) cell.add(p) p = gdspy.copy(orig, 5, 5) p.layers = [2, 2] p.fillet([0.3, 0.2, 0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.4, 0.1, 0.2, 0], max_points=0) cell.add(p) p = gdspy.copy(orig, 5, 0) p.layers = [3, 3] p.fillet( [[0.1, 0.1, 0.4, 0, 0.4, 0.1, 0.1, 0.4, 0.4, 0.1], [0.2, 0.2, 0.5]], max_points=0 ) cell.add(p) p = gdspy.copy(orig, 0, 0) p.layers = [4, 4] p.fillet([0.8, [10.0, 10.0, 20.0]], max_points=199, precision=1e-6) cell.add(p) ### FlexPath def broken(p0, v0, p1, v1, p2, w): den = v1[1] * v0[0] - v1[0] * v0[1] lim = 1e-12 * (v0[0] ** 2 + v0[1] ** 2) * (v1[0] ** 2 + v1[1] ** 2) if den ** 2 < lim: u0 = u1 = 0 p = 0.5 * (p0 + p1) else: dx = p1[0] - p0[0] dy = p1[1] - p0[1] u0 = (v1[1] * dx - v1[0] * dy) / den u1 = (v0[1] * dx - v0[0] * dy) / den p = 0.5 * (p0 + v0 * u0 + p1 + v1 * u1) if u0 <= 0 and u1 >= 0: return [p] return [p0, p2, p1] def pointy(p0, v0, p1, v1): r = 0.5 * numpy.sqrt(numpy.sum((p0 - p1) ** 2)) v0 /= numpy.sqrt(numpy.sum(v0 ** 2)) v1 /= numpy.sqrt(numpy.sum(v1 ** 2)) return [p0, 0.5 * (p0 + p1) + 0.5 * (v0 - v1) * r, p1] cell = lib.new_cell("FlexPath1") fp = gdspy.FlexPath([(0, 0), (1, 1)], 0.1, layer=[1], gdsii_path=True) cell.add(fp) fp = gdspy.FlexPath( [(1, 0), (2, 1)], 0.1, [-0.1, 0.1], tolerance=1e-5, ends=["round", "extended"], layer=[2, 3], max_points=6, ) cell.add(fp) fp = gdspy.FlexPath( [(2, 0), (3, 1)], [0.1, 0.2], 0.2, ends=(0.2, 0.1), layer=4, datatype=[1, 1] ) cell.add(fp) fp = gdspy.FlexPath( [(3, 0), (4, 1)], [0.1, 0.2, 0.1], [-0.2, 0, 0.2], ends=[(0.2, 0.1), "smooth", pointy], datatype=5, ) cell.add(fp) cell = lib.new_cell("FlexPath2") fp = gdspy.FlexPath( [(0, 0), (0.5, 0), (1, 0), (1, 1), (0, 1), (-1, -2), (-2, 0)], 0.05, [0, -0.1, 0, 0.1], corners=["natural", "circular bend", "circular bend", "circular bend"], ends=["flush", "extended", (0.1, 0.2), "round"], tolerance=1e-4, layer=[0, 1, 1, 2], bend_radius=[0, 0.3, 0.3, 0.2], max_points=10, ) cell.add(fp) cell = lib.new_cell("FlexPath3") pts = numpy.array( [ (0, 0), (0.5, 0), (1, 0), (1, 2), (3, 0), (2, -1), (2, -2), (0, -1), (1, -2), (1, -3), ] ) fp = gdspy.FlexPath( pts + numpy.array((0, 5)), [0.1, 0.1, 0.1], 0.15, layer=[1, 2, 3], corners=["natural", "miter", "bevel"], ends=(0.5, 0), ) cell.add(fp) fp = gdspy.FlexPath( pts + numpy.array((5, 0)), [0.1, 0.1, 0.1], 0.15, layer=[4, 5, 6], corners=["round", "smooth", broken], ends=[pointy, "smooth", (0, 0.5)], ) cell.add(fp) cell = lib.new_cell("FlexPath4") fp = gdspy.FlexPath( [(0, 0)], [0.1, 0.2, 0.1], 0.15, layer=[1, 2, 3], corners=["natural", "miter", "bevel"], ) fp.segment((1, 0)) fp.segment((1, 1), 0.1, 0.05) fp.segment((1, 1), [0.2, 0.1, 0.1], -0.05, True) fp.segment((-1, 1), 0.2, [-0.2, 0, 0.3], True) fp.arc(2, 0, 0.5 * numpy.pi) fp.arc(3, 0.5 * numpy.pi, numpy.pi, 0.1, 0) fp.arc(1, 0.4 * numpy.pi, -0.4 * numpy.pi, [0.1, 0.2, 0.1], [0.2, 0, -0.2]) fp.turn(1, 0.4 * numpy.pi) fp.turn(1, "ll", 0.15, 0) fp.turn(0.5, "r", [0.1, 0.05, 0.1], [0.15, 0, -0.15]) cell.add(fp) fp = gdspy.FlexPath([(-5, 6)], 0.8, layer=20, ends="round", tolerance=1e-4) fp.segment((1, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath([(-5, 6)], 0.8, layer=21, ends="extended", tolerance=1e-4) fp.segment((1, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath([(-5, 6)], 0.8, layer=22, ends=(0.1, 0.2), tolerance=1e-4) fp.segment((1, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath([(-5, 6)], 0.8, layer=23, ends="smooth", tolerance=1e-4) fp.segment((1, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath( [(-3, 6)], 0.8, layer=10, corners="round", ends="round", tolerance=1e-5 ) fp.segment((1, 0), 0.1, relative=True) fp.segment((0, 1), 0.8, relative=True) cell.add(fp) fp = gdspy.FlexPath( [(-3, 6)], 0.8, layer=11, corners="smooth", ends="extended", tolerance=1e-5 ) fp.segment((1, 0), 0.1, relative=True) fp.segment((0, 1), 0.8, relative=True) cell.add(fp) fp = gdspy.FlexPath( [(-3, 6)], 0.8, layer=12, corners="smooth", ends="smooth", tolerance=1e-5 ) fp.segment((1, 0), 0.1, relative=True) fp.segment((0, 1), 0.8, relative=True) cell.add(fp) fp = gdspy.FlexPath( [(-3, 8)], 0.1, layer=13, corners="round", ends="round", tolerance=1e-5 ) fp.segment((1, 0), 0.8, relative=True) fp.segment((0, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath( [(-3, 8)], 0.1, layer=14, corners="smooth", ends=(0.2, 0.2), tolerance=1e-5 ) fp.segment((1, 0), 0.8, relative=True) fp.segment((0, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath( [(-3, 8)], 0.1, layer=15, corners="round", ends="smooth", tolerance=1e-5 ) fp.segment((1, 0), 0.8, relative=True) fp.segment((0, 1), 0.1, relative=True) cell.add(fp) fp = gdspy.FlexPath([(5, 2)], [0.05, 0.1, 0.2], [-0.2, 0, 0.4], layer=[4, 5, 6]) fp.parametric(lambda u: numpy.array((5.5 + 3 * u, 2 + 3 * u ** 2)), relative=False) fp.segment((0, 1), relative=True) fp.parametric( lambda u: numpy.array( (2 * numpy.cos(0.5 * numpy.pi * u) - 2, 3 * numpy.sin(0.5 * numpy.pi * u)) ), [0.2, 0.1, 0.05], [-0.3, 0, 0.3], ) fp.parametric(lambda u: numpy.array((-2 * u, 0)), 0.1, 0.2) fp.bezier([(-3, 0), (-2, -3), (0, -4), (0, -5)], offset=[-0.2, 0, 0.2]) fp.bezier( [(5, 0), (1, -1), (1, 5), (3, 2), (5, 2)], [0.05, 0.1, 0.2], [-0.2, 0, 0.4], relative=False, ) cell.add(fp) fp = gdspy.FlexPath([(2, -1)], 0.1, layer=7, tolerance=1e-5, max_points=0) fp.smooth( [(1, 0), (1, -1), (0, -1)], angles=[numpy.pi / 3, None, -2 / 3.0 * numpy.pi, None], cycle=True, ) cell.add(fp) fp = gdspy.FlexPath([(2.5, -1.5)], 0.1, layer=8) fp.smooth( [(3, -1.5), (4, -2), (5, -1), (6, -2), (7, -1.5), (7.5, -1.5)], relative=False, width=0.2, ) cell.add(fp) cell = lib.new_cell("FlexPath5") fp = gdspy.FlexPath([(0, 0)], [2, 1, 1], 5) fp.segment((15, 20)) fp.scale(0.7) fp.turn(10, "r") fp.transform((10, 0), -1.5, 1.5, x_reflection=True) fp.segment((10, -10), relative=True) fp.rotate(-0.7) fp.translate(50, 30) fp.segment((-10, 0)) cell.add(fp) ### RobustPath cell = lib.new_cell("RobustPath1") rp = gdspy.RobustPath((0, 0), 0.1, layer=[1], gdsii_path=True) rp.segment((1, 1)) cell.add(rp) rp = gdspy.RobustPath( (1, 0), 0.1, [-0.1, 0.1], tolerance=1e-5, ends=["round", "extended"], layer=[2, 3], max_points=6, ) rp.segment((2, 1)) cell.add(rp) rp = gdspy.RobustPath( (2, 0), [0.1, 0.2], 0.2, ends=(0.2, 0.1), layer=4, datatype=[1, 1] ) rp.segment((3, 1)) cell.add(rp) rp = gdspy.RobustPath( (3, 0), [0.1, 0.2, 0.1], [-0.2, 0, 0.2], ends=[(0.2, 0.1), "smooth", "flush"], datatype=5, ) rp.segment((4, 1)) cell.add(rp) cell = lib.new_cell("RobustPath2") rp = gdspy.RobustPath((0, 0), [0.1, 0.2, 0.1], 0.15, layer=[1, 2, 3]) rp.segment((1, 0)) rp.segment((1, 1), 0.1, 0.05) rp.segment((1, 1), [0.2, 0.1, 0.1], -0.05, True) rp.segment((-1, 1), 0.2, [-0.2, 0, 0.3], True) rp.arc(2, 0, 0.5 * numpy.pi) rp.arc(3, 0.7 * numpy.pi, numpy.pi, 0.1, 0) rp.arc(2, 0.4 * numpy.pi, -0.4 * numpy.pi, [0.1, 0.2, 0.1], [0.2, 0, -0.2]) rp.turn(1, -0.3 * numpy.pi) rp.turn(1, "rr", 0.15) rp.turn(0.5, "l", [0.05, 0.1, 0.05], [0.15, 0, -0.15]) cell.add(rp) rp = gdspy.RobustPath((-5, 6), 0.8, layer=20, ends="round", tolerance=1e-4) rp.segment((1, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((-5, 6), 0.8, layer=21, ends="extended", tolerance=1e-4) rp.segment((1, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((-5, 6), 0.8, layer=22, ends=(0.1, 0.2), tolerance=1e-4) rp.segment((1, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((-5, 6), 0.8, layer=23, ends="smooth", tolerance=1e-4) rp.segment((1, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((-3, 6), 0.8, layer=10, ends="round", tolerance=1e-5) rp.segment((1, 0), 0.1, relative=True) rp.segment((0, 1), 0.8, relative=True) cell.add(rp) rp = gdspy.RobustPath((-3, 6), 0.8, layer=11, ends="extended", tolerance=1e-5) rp.segment((1, 0), 0.1, relative=True) rp.segment((0, 1), 0.8, relative=True) cell.add(rp) rp = gdspy.RobustPath((-3, 6), 0.8, layer=12, ends="smooth", tolerance=1e-5) rp.segment((1, 0), 0.1, relative=True) rp.segment((0, 1), 0.8, relative=True) cell.add(rp) rp = gdspy.RobustPath((-3, 8), 0.1, layer=13, ends="round", tolerance=1e-5) rp.segment((1, 0), 0.8, relative=True) rp.segment((0, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((-3, 8), 0.1, layer=14, ends=(0.2, 0.2), tolerance=1e-5) rp.segment((1, 0), 0.8, relative=True) rp.segment((0, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((-3, 8), 0.1, layer=15, ends="smooth", tolerance=1e-5) rp.segment((1, 0), 0.8, relative=True) rp.segment((0, 1), 0.1, relative=True) cell.add(rp) rp = gdspy.RobustPath((5, 2), [0.05, 0.1, 0.2], [-0.2, 0, 0.4], layer=[4, 5, 6]) rp.parametric(lambda u: numpy.array((5.5 + 3 * u, 2 + 3 * u ** 2)), relative=False) rp.segment((0, 1), relative=True) rp.parametric( lambda u: numpy.array( (2 * numpy.cos(0.5 * numpy.pi * u) - 2, 3 * numpy.sin(0.5 * numpy.pi * u)) ), width=[0.2, 0.1, 0.05], offset=[-0.3, 0, 0.3], ) rp.parametric(lambda u: numpy.array((-2 * u, 0)), width=0.1, offset=0.2) rp.bezier([(-3, 0), (-2, -3), (0, -4), (0, -5)], offset=[-0.2, 0, 0.2]) rp.bezier( [(4.5, 0), (1, -1), (1, 5), (3, 2), (5, 2)], width=[0.05, 0.1, 0.2], offset=[-0.2, 0, 0.4], relative=False, ) cell.add(rp) rp = gdspy.RobustPath((2, -1), 0.1, layer=7, tolerance=1e-4, max_points=0) rp.smooth( [(1, 0), (1, -1), (0, -1)], angles=[numpy.pi / 3, None, -2 / 3.0 * numpy.pi, None], cycle=True, ) cell.add(rp) rp = gdspy.RobustPath((2.5, -1.5), 0.1, layer=8) rp.smooth( [(3, -1.5), (4, -2), (5, -1), (6, -2), (7, -1.5), (7.5, -1.5)], relative=False, width=0.2, ) cell.add(rp) cell = lib.new_cell("RobustPath3") rp = gdspy.RobustPath((0, 0), 0.1) rp.parametric( lambda u: numpy.array((3 * numpy.sin(numpy.pi * u), -3 * numpy.cos(numpy.pi * u))), relative=False, ) rp.parametric( lambda u: numpy.array( (3.5 - 3 * numpy.cos(numpy.pi * u), -0.5 + 3 * numpy.sin(numpy.pi * u)) ), lambda u: numpy.array((numpy.sin(numpy.pi * u), numpy.cos(numpy.pi * u))), relative=True, ) cell.add(rp) cell = lib.new_cell("RobustPath4") rp = gdspy.FlexPath([(0, 0)], [2, 1, 1], 5) rp.segment((15, 20)) rp.scale(0.7) rp.turn(10, "r") rp.transform((10, 0), -1.5, 1.5, x_reflection=True) rp.segment((10, -10), relative=True) rp.rotate(-0.7) rp.translate(50, 30) rp.segment((-10, 0)) cell.add(rp) ### Curve cell = lib.new_cell("Hobby1") c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)]) cell.add(gdspy.Polygon(c.get_points(), layer=1)) c = gdspy.Curve(2, 0, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[numpy.pi / 3, None, None, None]) cell.add(gdspy.Polygon(c.get_points(), layer=3)) c = gdspy.Curve(4, 0, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, None, None, 2 / 3.0 * numpy.pi]) cell.add(gdspy.Polygon(c.get_points(), layer=5)) c = gdspy.Curve(0, 2, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[numpy.pi / 3, None, None, 3 / 4.0 * numpy.pi]) cell.add(gdspy.Polygon(c.get_points(), layer=7)) c = gdspy.Curve(2, 2, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, None, numpy.pi / 2, None]) cell.add(gdspy.Polygon(c.get_points(), layer=9)) c = gdspy.Curve(4, 2, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, 0, None, None]) cell.add(gdspy.Polygon(c.get_points(), layer=11)) c = gdspy.Curve(0, 4, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, 0, None, -numpy.pi / 2]) cell.add(gdspy.Polygon(c.get_points(), layer=13)) c = gdspy.Curve(2, 4, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, 0, -numpy.pi, -numpy.pi / 2]) cell.add(gdspy.Polygon(c.get_points(), layer=15)) c = gdspy.Curve(4, 4, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[-numpy.pi / 4, 0, numpy.pi / 2, -numpy.pi]) cell.add(gdspy.Polygon(c.get_points(), layer=17)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=2)) c = gdspy.Curve(2, 0, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[numpy.pi / 3, None, None, None], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=4)) c = gdspy.Curve(4, 0, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, None, None, 2 / 3.0 * numpy.pi], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=6)) c = gdspy.Curve(0, 2, tolerance=1e-3) c.i( [(1, 0), (1, 1), (0, 1)], angles=[numpy.pi / 3, None, None, 3 / 4.0 * numpy.pi], cycle=True, ) cell.add(gdspy.Polygon(c.get_points(), layer=8)) c = gdspy.Curve(2, 2, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, None, numpy.pi / 2, None], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=10)) c = gdspy.Curve(4, 2, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, 0, None, None], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=12)) c = gdspy.Curve(0, 4, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, 0, None, -numpy.pi / 2], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=14)) c = gdspy.Curve(2, 4, tolerance=1e-3) c.i([(1, 0), (1, 1), (0, 1)], angles=[None, 0, -numpy.pi, -numpy.pi / 2], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=16)) c = gdspy.Curve(4, 4, tolerance=1e-3) c.i( [(1, 0), (1, 1), (0, 1)], angles=[-numpy.pi / 4, 0, numpy.pi / 2, -numpy.pi], cycle=True, ) cell.add(gdspy.Polygon(c.get_points(), layer=18)) cell = lib.new_cell("Hobby2") c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)]) cell.add(gdspy.Polygon(c.get_points(), layer=1)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], curl_start=0) cell.add(gdspy.Polygon(c.get_points(), layer=2)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], curl_end=0) cell.add(gdspy.Polygon(c.get_points(), layer=3)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], curl_start=0, curl_end=0) cell.add(gdspy.Polygon(c.get_points(), layer=4)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i( [(1, 2), (2, 1), (3, 2), (4, 0)], angles=[numpy.pi / 2, None, None, None, -numpy.pi / 2], curl_start=0, curl_end=0, ) cell.add(gdspy.Polygon(c.get_points(), layer=5)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i( [(1, 2), (2, 1), (3, 2), (4, 0)], angles=[None, 0, None, 0, None], curl_start=0, curl_end=1, ) cell.add(gdspy.Polygon(c.get_points(), layer=6)) cell = lib.new_cell("Hobby3") c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)]) cell.add(gdspy.Polygon(c.get_points(), layer=1)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], t_in=2) cell.add(gdspy.Polygon(c.get_points(), layer=2)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], t_out=2) cell.add(gdspy.Polygon(c.get_points(), layer=3)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], t_in=2, t_out=2) cell.add(gdspy.Polygon(c.get_points(), layer=4)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], t_in=[2, 1, 1, 1, 1], t_out=[1, 1, 1, 1, 2]) cell.add(gdspy.Polygon(c.get_points(), layer=5)) c = gdspy.Curve(0, 0, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], t_in=[1, 1, 2, 1, 1], t_out=[1, 2, 1, 1, 1]) cell.add(gdspy.Polygon(c.get_points(), layer=6)) cell = lib.new_cell("Hobby4") c = gdspy.Curve(0, 3, tolerance=1e-3) c.i([(1, 2), (2, 1), (3, 2), (4, 0)], cycle=True) cell.add(gdspy.Polygon(c.get_points(), layer=10)) c = gdspy.Curve(0, 3, tolerance=1e-3) c.i( [(1, 2), (2, 1), (3, 2), (4, 0)], t_in=[2, 1, 1, 1, 1], t_out=[1, 1, 1, 1, 2], cycle=True, ) cell.add(gdspy.Polygon(c.get_points(), layer=11)) c = gdspy.Curve(0, 3, tolerance=1e-3) c.i( [(1, 2), (2, 1), (3, 2), (4, 0)], t_in=[1, 1, 2, 1, 1], t_out=[1, 2, 1, 1, 1], cycle=True, ) cell.add(gdspy.Polygon(c.get_points(), layer=12)) c = gdspy.Curve(0, 3, tolerance=1e-3) c.i( [(1, 2), (2, 1), (3, 2), (4, 0)], angles=[numpy.pi * 3 / 4.0, None, None, None, -numpy.pi * 3 / 4.0], t_in=[2, 1, 1, 1, 1], t_out=[1, 1, 1, 1, 2], cycle=True, ) cell.add(gdspy.Polygon(c.get_points(), layer=13)) c = gdspy.Curve(0, 3, tolerance=1e-3) c.i( [(1, 2), (2, 1), (3, 2), (4, 0)], angles=[numpy.pi * 3 / 4.0, None, None, None, -numpy.pi * 3 / 4.0], t_in=[1, 1, 1, 1, 1], t_out=[1, 1, 1, 1, 1], cycle=True, ) cell.add(gdspy.Polygon(c.get_points(), layer=14)) ### END lib.write_gds("tests/test.gds") gdspy.LayoutViewer(lib)
de
0.338759
###################################################################### # # # Copyright 2009 <NAME>. # # This file is part of gdspy, distributed under the terms of the # # Boost Software License - Version 1.0. See the accompanying # # LICENSE file or <http://www.boost.org/LICENSE_1_0.txt> # # # ###################################################################### ### PolygonSet ### FlexPath ### RobustPath ### Curve ### END
1.934171
2
ALDS1/12c.py
ToshikiShimizu/AOJ
0
6631038
<reponame>ToshikiShimizu/AOJ import heapq MAX = 10000 INFTY = 1<<20 WHITE = 0 GRAY = 1 BLACK = 2 def dijkstra(n, adj): PQ = [] color = [None for i in range(n)] d = [None for i in range(n)] for i in range(n): d[i] = INFTY color[i] = WHITE d[0] = 0 heapq.heappush(PQ,(0,0)) color[0] = GRAY while(len(PQ)>0): f = heapq.heappop(PQ) u = f[1] color[u] = BLACK if (d[u] < f[0]): continue for j in range(len(adj[u])): v = adj[u][j][0] if color[v]==BLACK: continue if (d[v]>d[u]+adj[u][j][1]): d[v] = d[u] + adj[u][j][1] heapq.heappush(PQ,(d[v],v)) color[v] = GRAY for i in range(n): if d[i] == INFTY: tmp = -1 else: tmp = d[i] print (str(i)+" "+str(tmp)) if __name__=="__main__": adj = [[] for i in range(MAX)] n = int(input()) for i in range(n): ls = list(map(int,input().split())) u = ls[0] k = ls[1] for j in range(k): adj[u].append([ls[2+2*j],ls[2+2*j+1]]) dijkstra(n, adj)
import heapq MAX = 10000 INFTY = 1<<20 WHITE = 0 GRAY = 1 BLACK = 2 def dijkstra(n, adj): PQ = [] color = [None for i in range(n)] d = [None for i in range(n)] for i in range(n): d[i] = INFTY color[i] = WHITE d[0] = 0 heapq.heappush(PQ,(0,0)) color[0] = GRAY while(len(PQ)>0): f = heapq.heappop(PQ) u = f[1] color[u] = BLACK if (d[u] < f[0]): continue for j in range(len(adj[u])): v = adj[u][j][0] if color[v]==BLACK: continue if (d[v]>d[u]+adj[u][j][1]): d[v] = d[u] + adj[u][j][1] heapq.heappush(PQ,(d[v],v)) color[v] = GRAY for i in range(n): if d[i] == INFTY: tmp = -1 else: tmp = d[i] print (str(i)+" "+str(tmp)) if __name__=="__main__": adj = [[] for i in range(MAX)] n = int(input()) for i in range(n): ls = list(map(int,input().split())) u = ls[0] k = ls[1] for j in range(k): adj[u].append([ls[2+2*j],ls[2+2*j+1]]) dijkstra(n, adj)
none
1
3.303034
3
eveIntel/limboRun.py
Marclass/EveIntel
0
6631039
<reponame>Marclass/EveIntel #!/usr/bin/env python from limbo.limbo import main import argparse import sys def runSlack(token): parser = argparse.ArgumentParser(description="Run the limbo chatbot for Slack") parser.add_argument('--test', '-t', dest='test', action='store_true', required=False, help='Enter command line mode to enter a limbo repl') parser.add_argument('--hook', dest='hook', action='store', default='message', help='Specify the hook to test. (Defaults to "message")') parser.add_argument('-c', dest="command", help='run a single command') parser.add_argument('--database', '-d', dest='database_name', default='D:\\sqlite3\\SlackBotDB\\limbo.sqlite3', help="Where to store the limbo sqlite database. Defaults to limbo.sqlite") parser.add_argument('--pluginpath', '-pp', dest='pluginpath', default="C:\\Python27\\Lib\\limbo\\plugins", help="The path where limbo should look to find its plugins") #if(token and token!=""): parser.add_argument('--token','-tk', dest='token', default=token, help="Token to use instead of environ var") args = parser.parse_args() main(args) while(True): try: runSlack("") except Exception as e: #e = sys.exc_info()[0] print("Exception: "+str(e))
#!/usr/bin/env python from limbo.limbo import main import argparse import sys def runSlack(token): parser = argparse.ArgumentParser(description="Run the limbo chatbot for Slack") parser.add_argument('--test', '-t', dest='test', action='store_true', required=False, help='Enter command line mode to enter a limbo repl') parser.add_argument('--hook', dest='hook', action='store', default='message', help='Specify the hook to test. (Defaults to "message")') parser.add_argument('-c', dest="command", help='run a single command') parser.add_argument('--database', '-d', dest='database_name', default='D:\\sqlite3\\SlackBotDB\\limbo.sqlite3', help="Where to store the limbo sqlite database. Defaults to limbo.sqlite") parser.add_argument('--pluginpath', '-pp', dest='pluginpath', default="C:\\Python27\\Lib\\limbo\\plugins", help="The path where limbo should look to find its plugins") #if(token and token!=""): parser.add_argument('--token','-tk', dest='token', default=token, help="Token to use instead of environ var") args = parser.parse_args() main(args) while(True): try: runSlack("") except Exception as e: #e = sys.exc_info()[0] print("Exception: "+str(e))
en
0.372037
#!/usr/bin/env python #if(token and token!=""): #e = sys.exc_info()[0]
2.634441
3
catalog.py
KtQiu/mini_sql_python
0
6631040
import six import sys import pickle import os class col(object): r''' class for col information @param: col_name: the name of the col attr: attribution, default is int Generally, we have 'int', 'char(n)' and 'float' is_unique: the data is unique or notz ''' def __init__(self, col_name=None, attr='int', is_unique=0, data=None): super(col).__init__() self.col_name = col_name self.attr = attr self.is_unique = is_unique if data == None: data = [] self.data = data # self.data = (data == None ? list(): data) def set_attr(self, attr): self.attr = attr def set_is_unique(self, is_unique): self.is_unique = is_unique def set_col_name(self, col_name): self.col_name = col_name def add_data(self, data): if data in self.data and self.is_unique == 1: print( 'Cannot insert a duplicate data when {} is \'unique\''. format(self.col_name)) return False else: self.data.append(data) print(self.data) return True class table(object): r''' class for tabel information @param: table_name: the name of table primary_key: primary key, if not exist, None col_list: a list containing col class (implemented above) which covers the information of the col ''' def __init__(self, table_name=None, primary_key=None, col_list=[], col_index=[]): # super(table).__init__() self.table_name = table_name self.primary_key = primary_key self.col_index = col_index self.col_list = col_list # self.data = data def __str__(self): table_str = '' for key, val in six.iteritems(self): if table_str: table_str += '\n' table_str += key + '=' + str(val) return self.__class__.__name__ + '\n' + table_str def set_table_name(self, table_name): self.table_name = table_name def set_primary_key(self, key): self.primary_key = key def add_col(self, _col): if _col.col_name not in self.col_index: self.col_index.append(_col.col_name) self.col_list.append(_col) else: print('Column Redundant') sys.exit(0) def drop_col(self, _col): if _col.col_name in self.col_index: del self.col_index[_col.col_name] del self.col_list[_col] else: print('cannot drop a col which does not exist') sys.exit(0) class Database(object): def __init__(self, table_names=[], tables={}): self.table_names = table_names self.tables = tables def __getstate__(self): # print('====================') return (self.table_names, self.tables) def __setstate__(self, state): (self.table_names, self.tables) = state def save(self): with open('database/data.pickle', 'wb') as file: pickle.dump(self, file, -1) def load(self): os.makedirs('./database', exist_ok=True) try: with open('database/data.pickle', 'rb') as file: self = pickle.load(file) except EOFError: print("EOFERROR") except FileNotFoundError: # print('cannnot find the file! plz new a file named data.pickle') with open('database/data.pickle', 'wb') as file: pickle.dump(self, file, -1) pickle.dump(self.__dict__, file, 1) return self def add_table(self, _table): if _table.table_name in self.table_names: print( "Cannot have table_names with the same names. RedundancyError") sys.exit(0) else: self.table_names.append(_table.table_name) self.tables[_table.table_name] = _table def drop_table(self, _table_name): try: i = self.table_names.index(_table_name) del self.table_names[i] del self.tables[_table_name] except ValueError: print("Not find such table") sys.exit(0) # if _table_name not in self.table_names: # print("Cannot find table: {} in database".format( # _table.table_name)) # sys.exit(0) # else: # del self.table_names[_table.table_name] # def self.tables[]
import six import sys import pickle import os class col(object): r''' class for col information @param: col_name: the name of the col attr: attribution, default is int Generally, we have 'int', 'char(n)' and 'float' is_unique: the data is unique or notz ''' def __init__(self, col_name=None, attr='int', is_unique=0, data=None): super(col).__init__() self.col_name = col_name self.attr = attr self.is_unique = is_unique if data == None: data = [] self.data = data # self.data = (data == None ? list(): data) def set_attr(self, attr): self.attr = attr def set_is_unique(self, is_unique): self.is_unique = is_unique def set_col_name(self, col_name): self.col_name = col_name def add_data(self, data): if data in self.data and self.is_unique == 1: print( 'Cannot insert a duplicate data when {} is \'unique\''. format(self.col_name)) return False else: self.data.append(data) print(self.data) return True class table(object): r''' class for tabel information @param: table_name: the name of table primary_key: primary key, if not exist, None col_list: a list containing col class (implemented above) which covers the information of the col ''' def __init__(self, table_name=None, primary_key=None, col_list=[], col_index=[]): # super(table).__init__() self.table_name = table_name self.primary_key = primary_key self.col_index = col_index self.col_list = col_list # self.data = data def __str__(self): table_str = '' for key, val in six.iteritems(self): if table_str: table_str += '\n' table_str += key + '=' + str(val) return self.__class__.__name__ + '\n' + table_str def set_table_name(self, table_name): self.table_name = table_name def set_primary_key(self, key): self.primary_key = key def add_col(self, _col): if _col.col_name not in self.col_index: self.col_index.append(_col.col_name) self.col_list.append(_col) else: print('Column Redundant') sys.exit(0) def drop_col(self, _col): if _col.col_name in self.col_index: del self.col_index[_col.col_name] del self.col_list[_col] else: print('cannot drop a col which does not exist') sys.exit(0) class Database(object): def __init__(self, table_names=[], tables={}): self.table_names = table_names self.tables = tables def __getstate__(self): # print('====================') return (self.table_names, self.tables) def __setstate__(self, state): (self.table_names, self.tables) = state def save(self): with open('database/data.pickle', 'wb') as file: pickle.dump(self, file, -1) def load(self): os.makedirs('./database', exist_ok=True) try: with open('database/data.pickle', 'rb') as file: self = pickle.load(file) except EOFError: print("EOFERROR") except FileNotFoundError: # print('cannnot find the file! plz new a file named data.pickle') with open('database/data.pickle', 'wb') as file: pickle.dump(self, file, -1) pickle.dump(self.__dict__, file, 1) return self def add_table(self, _table): if _table.table_name in self.table_names: print( "Cannot have table_names with the same names. RedundancyError") sys.exit(0) else: self.table_names.append(_table.table_name) self.tables[_table.table_name] = _table def drop_table(self, _table_name): try: i = self.table_names.index(_table_name) del self.table_names[i] del self.tables[_table_name] except ValueError: print("Not find such table") sys.exit(0) # if _table_name not in self.table_names: # print("Cannot find table: {} in database".format( # _table.table_name)) # sys.exit(0) # else: # del self.table_names[_table.table_name] # def self.tables[]
en
0.479712
class for col information @param: col_name: the name of the col attr: attribution, default is int Generally, we have 'int', 'char(n)' and 'float' is_unique: the data is unique or notz # self.data = (data == None ? list(): data) class for tabel information @param: table_name: the name of table primary_key: primary key, if not exist, None col_list: a list containing col class (implemented above) which covers the information of the col # super(table).__init__() # self.data = data # print('====================') # print('cannnot find the file! plz new a file named data.pickle') # if _table_name not in self.table_names: # print("Cannot find table: {} in database".format( # _table.table_name)) # sys.exit(0) # else: # del self.table_names[_table.table_name] # def self.tables[]
3.662374
4
pms/student/migrations/0009_auto_20190406_0044.py
iammeliodas/pms_django
0
6631041
<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.11 on 2019-04-05 19:14 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('student', '0008_auto_20190405_2356'), ] operations = [ migrations.RemoveField( model_name='studentdetails', name='slug', ), migrations.AddField( model_name='registerdstudents', name='slug', field=models.SlugField(allow_unicode=True, default='a', verbose_name='Slug'), ), ]
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2019-04-05 19:14 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('student', '0008_auto_20190405_2356'), ] operations = [ migrations.RemoveField( model_name='studentdetails', name='slug', ), migrations.AddField( model_name='registerdstudents', name='slug', field=models.SlugField(allow_unicode=True, default='a', verbose_name='Slug'), ), ]
en
0.712805
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2019-04-05 19:14
1.450859
1
etl/parsers/etw/Microsoft_Windows_Workplace_Join.py
IMULMUL/etl-parser
104
6631042
<filename>etl/parsers/etw/Microsoft_Windows_Workplace_Join.py # -*- coding: utf-8 -*- """ Microsoft-Windows-Workplace Join GUID : 76ab12d5-c986-4e60-9d7c-2a092b284cdd """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=100, version=0) class Microsoft_Windows_Workplace_Join_100_0(Etw): pattern = Struct( "ActivityId" / WString, "JWT" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=101, version=0) class Microsoft_Windows_Workplace_Join_101_0(Etw): pattern = Struct( "ServiceUri" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=102, version=0) class Microsoft_Windows_Workplace_Join_102_0(Etw): pattern = Struct( "ExitCode" / Int32ul, "ErrorMessage" / WString, "ServiceUri" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=103, version=0) class Microsoft_Windows_Workplace_Join_103_0(Etw): pattern = Struct( "HttpStatus" / Int32sl, "ServiceUri" / WString, "TraceId" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=104, version=0) class Microsoft_Windows_Workplace_Join_104_0(Etw): pattern = Struct( "ExitCode" / Int32ul, "ZoneUriIsAddedTo" / WString, "ZoneUriExistsIn" / WString, "Uri" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=200, version=0) class Microsoft_Windows_Workplace_Join_200_0(Etw): pattern = Struct( "ExitCode" / Int32ul, "ActivityId" / WString, "SoapResponse" / WString, "ErrorMessage" / WString, "RegistrationServiceUri" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=201, version=0) class Microsoft_Windows_Workplace_Join_201_0(Etw): pattern = Struct( "ActivityId" / WString, "SoapResponse" / WString, "RegistrationServiceUri" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=300, version=0) class Microsoft_Windows_Workplace_Join_300_0(Etw): pattern = Struct( "ExitCode" / Int32ul, "ErrorMessage" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=400, version=0) class Microsoft_Windows_Workplace_Join_400_0(Etw): pattern = Struct( "ExitCode" / Int32ul, "ErrorCodeText" / WString, "ErrorMessage" / WString, "ErrorData" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=401, version=0) class Microsoft_Windows_Workplace_Join_401_0(Etw): pattern = Struct( "Message" / WString, "Data" / WString )
<filename>etl/parsers/etw/Microsoft_Windows_Workplace_Join.py # -*- coding: utf-8 -*- """ Microsoft-Windows-Workplace Join GUID : 76ab12d5-c986-4e60-9d7c-2a092b284cdd """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=100, version=0) class Microsoft_Windows_Workplace_Join_100_0(Etw): pattern = Struct( "ActivityId" / WString, "JWT" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=101, version=0) class Microsoft_Windows_Workplace_Join_101_0(Etw): pattern = Struct( "ServiceUri" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=102, version=0) class Microsoft_Windows_Workplace_Join_102_0(Etw): pattern = Struct( "ExitCode" / Int32ul, "ErrorMessage" / WString, "ServiceUri" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=103, version=0) class Microsoft_Windows_Workplace_Join_103_0(Etw): pattern = Struct( "HttpStatus" / Int32sl, "ServiceUri" / WString, "TraceId" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=104, version=0) class Microsoft_Windows_Workplace_Join_104_0(Etw): pattern = Struct( "ExitCode" / Int32ul, "ZoneUriIsAddedTo" / WString, "ZoneUriExistsIn" / WString, "Uri" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=200, version=0) class Microsoft_Windows_Workplace_Join_200_0(Etw): pattern = Struct( "ExitCode" / Int32ul, "ActivityId" / WString, "SoapResponse" / WString, "ErrorMessage" / WString, "RegistrationServiceUri" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=201, version=0) class Microsoft_Windows_Workplace_Join_201_0(Etw): pattern = Struct( "ActivityId" / WString, "SoapResponse" / WString, "RegistrationServiceUri" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=300, version=0) class Microsoft_Windows_Workplace_Join_300_0(Etw): pattern = Struct( "ExitCode" / Int32ul, "ErrorMessage" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=400, version=0) class Microsoft_Windows_Workplace_Join_400_0(Etw): pattern = Struct( "ExitCode" / Int32ul, "ErrorCodeText" / WString, "ErrorMessage" / WString, "ErrorData" / WString ) @declare(guid=guid("76ab12d5-c986-4e60-9d7c-2a092b284cdd"), event_id=401, version=0) class Microsoft_Windows_Workplace_Join_401_0(Etw): pattern = Struct( "Message" / WString, "Data" / WString )
en
0.368476
# -*- coding: utf-8 -*- Microsoft-Windows-Workplace Join GUID : 76ab12d5-c986-4e60-9d7c-2a092b284cdd
2.129209
2
sharestats_item_editor/rexam_item_editor/misc.py
essb-mt-section/sharestats-item-editor
5
6631043
<reponame>essb-mt-section/sharestats-item-editor import os import tempfile import re def replace_list_element(lst, source_idx, target_idx): """replaces an element in a list""" if source_idx < len(lst) and target_idx<len( lst): tmp = lst.pop(source_idx) return lst[:target_idx] + [tmp] + lst[target_idx:] else: return [] def subdict(d, nested_keys=None): """:return the dict nested hierarchically indicated by nested_keys or None if key list is incorrect :param nested_keys list of keys or a single keys """ if not isinstance(nested_keys, (tuple, list)): nested_keys = [nested_keys] for k in nested_keys: try: d = d[k] except: return {} return d def splitstrip(text, sep): return list(map(lambda x: x.strip(), text.split(sep))) def yesno(bool): if bool: return "Yes" else: return "No" def get_temp_dir(appname, make_dir=True): # creates and returns a temp folder tmpdir = tempfile.gettempdir() tmpdir = os.path.join(tmpdir, appname) if make_dir: try: os.mkdir(tmpdir) except: pass return tmpdir class CaseInsensitiveStringList(object): """String list that handles string search case insensitive""" def __init__(self, str_list=()): self._str_list = list(str_list) self._str_lower = [x.lower() for x in self._str_list] def __len__(self): return len(self._str_list) def append(self, new_string): self._str_list.append(new_string) self._str_lower.append(new_string.lower()) def pop(self, index=-1): self._str_lower.pop(index) return self._str_list.pop(index) def remove(self, element): """removes element and returns it, raises exception in not included""" element = str(element).lower() idx = self._str_lower.index(element) self._str_lower.pop(idx) return self._str_list.pop(idx) def remove_all(self, element): element = str(element).lower() while True: try: idx = self._str_lower.index(element) except: break self._str_list.pop(idx) self._str_lower.pop(idx) def __contains__(self, item): return str(item).lower() in self._str_lower def get(self): return self._str_list def remove_all(str_list, element, ignore_cases=False): """removes all occurrences of element from string list and ignores optionally letter cases""" if ignore_cases: return [e for e in str_list \ if str(e).lower() != str(element).lower()] else: return [e for e in str_list if e != element] def extract_parameter(txt): # extract parameter for text line m = re.match(r"\s*\w+[\[\]\w]+:", txt) if m is not None: return {txt[:m.end()-1].strip(): txt[m.end():].strip()} return None def iter_list(data): """Generates iterator over the data. If None, iterator over empty list. If data is not a list or a tuple, iterator over list with one one element [data] """ if data is None: return iter([]) elif isinstance(data, (list, tuple)): return iter(data) else: return iter([data])
import os import tempfile import re def replace_list_element(lst, source_idx, target_idx): """replaces an element in a list""" if source_idx < len(lst) and target_idx<len( lst): tmp = lst.pop(source_idx) return lst[:target_idx] + [tmp] + lst[target_idx:] else: return [] def subdict(d, nested_keys=None): """:return the dict nested hierarchically indicated by nested_keys or None if key list is incorrect :param nested_keys list of keys or a single keys """ if not isinstance(nested_keys, (tuple, list)): nested_keys = [nested_keys] for k in nested_keys: try: d = d[k] except: return {} return d def splitstrip(text, sep): return list(map(lambda x: x.strip(), text.split(sep))) def yesno(bool): if bool: return "Yes" else: return "No" def get_temp_dir(appname, make_dir=True): # creates and returns a temp folder tmpdir = tempfile.gettempdir() tmpdir = os.path.join(tmpdir, appname) if make_dir: try: os.mkdir(tmpdir) except: pass return tmpdir class CaseInsensitiveStringList(object): """String list that handles string search case insensitive""" def __init__(self, str_list=()): self._str_list = list(str_list) self._str_lower = [x.lower() for x in self._str_list] def __len__(self): return len(self._str_list) def append(self, new_string): self._str_list.append(new_string) self._str_lower.append(new_string.lower()) def pop(self, index=-1): self._str_lower.pop(index) return self._str_list.pop(index) def remove(self, element): """removes element and returns it, raises exception in not included""" element = str(element).lower() idx = self._str_lower.index(element) self._str_lower.pop(idx) return self._str_list.pop(idx) def remove_all(self, element): element = str(element).lower() while True: try: idx = self._str_lower.index(element) except: break self._str_list.pop(idx) self._str_lower.pop(idx) def __contains__(self, item): return str(item).lower() in self._str_lower def get(self): return self._str_list def remove_all(str_list, element, ignore_cases=False): """removes all occurrences of element from string list and ignores optionally letter cases""" if ignore_cases: return [e for e in str_list \ if str(e).lower() != str(element).lower()] else: return [e for e in str_list if e != element] def extract_parameter(txt): # extract parameter for text line m = re.match(r"\s*\w+[\[\]\w]+:", txt) if m is not None: return {txt[:m.end()-1].strip(): txt[m.end():].strip()} return None def iter_list(data): """Generates iterator over the data. If None, iterator over empty list. If data is not a list or a tuple, iterator over list with one one element [data] """ if data is None: return iter([]) elif isinstance(data, (list, tuple)): return iter(data) else: return iter([data])
en
0.649643
replaces an element in a list :return the dict nested hierarchically indicated by nested_keys or None if key list is incorrect :param nested_keys list of keys or a single keys # creates and returns a temp folder String list that handles string search case insensitive removes element and returns it, raises exception in not included removes all occurrences of element from string list and ignores optionally letter cases # extract parameter for text line Generates iterator over the data. If None, iterator over empty list. If data is not a list or a tuple, iterator over list with one one element [data]
3.475411
3
test/playground.py
dustfine/python-learn
0
6631044
import os print(os.cpu_count())
import os print(os.cpu_count())
none
1
1.58478
2
communication/__init__.py
AlexanderPollak/SKA-Compressor-COM
0
6631045
from connection import com from connection import sensor from connection import compressor from connection import error
from connection import com from connection import sensor from connection import compressor from connection import error
none
1
1.135531
1
isbp/producer1.py
5GZORRO/sla-breach-predictor
0
6631046
# -*- coding: utf-8 -*- """ Created on Thu Oct 14 13:09:20 2021 @author: dlaskaratos """ from kafka import KafkaProducer import json import pandas as pd import numpy as np from datetime import datetime import time producer = KafkaProducer(bootstrap_servers = '172.28.3.196:9092') data = { "data": { "eventType": "new_SLA", "transactionID": "e2e2ecaeec944aa793ff701e667c1908", "productID": "2", "resourceID": "250f91b5-a42b-46a5-94cd-419b1f3aa9e0", "instanceID": "52", "kafka_ip": "172.28.3.196", "kafka_port": "9092", "topic": "isbp-topic"} } msg = json.dumps(data) producer.send('isbp-topic', msg.encode('utf-8')) producer.flush() data = { "data": { "eventType": "new_SLA", "transactionID": "e2e2ecaeec944aa793ff701e667c1908", "productID": "1", "resourceID": "250f91b5-a42b-46a5-94cd-419b1f3aa9e0", "instanceID": "52", "kafka_ip": "172.28.3.196", "kafka_port": "9092", "topic": "isbp-topic"} } msg = json.dumps(data) producer.send('isbp-topic', msg.encode('utf-8')) producer.flush()
# -*- coding: utf-8 -*- """ Created on Thu Oct 14 13:09:20 2021 @author: dlaskaratos """ from kafka import KafkaProducer import json import pandas as pd import numpy as np from datetime import datetime import time producer = KafkaProducer(bootstrap_servers = '172.28.3.196:9092') data = { "data": { "eventType": "new_SLA", "transactionID": "e2e2ecaeec944aa793ff701e667c1908", "productID": "2", "resourceID": "250f91b5-a42b-46a5-94cd-419b1f3aa9e0", "instanceID": "52", "kafka_ip": "172.28.3.196", "kafka_port": "9092", "topic": "isbp-topic"} } msg = json.dumps(data) producer.send('isbp-topic', msg.encode('utf-8')) producer.flush() data = { "data": { "eventType": "new_SLA", "transactionID": "e2e2ecaeec944aa793ff701e667c1908", "productID": "1", "resourceID": "250f91b5-a42b-46a5-94cd-419b1f3aa9e0", "instanceID": "52", "kafka_ip": "172.28.3.196", "kafka_port": "9092", "topic": "isbp-topic"} } msg = json.dumps(data) producer.send('isbp-topic', msg.encode('utf-8')) producer.flush()
en
0.698464
# -*- coding: utf-8 -*- Created on Thu Oct 14 13:09:20 2021 @author: dlaskaratos
2.040303
2
tools/infer_mot.py
violetweir/PaddleDetection
23
6631047
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) if parent_path not in sys.path: sys.path.append(parent_path) # ignore warning log import warnings warnings.filterwarnings('ignore') import paddle from paddle.distributed import ParallelEnv from ppdet.core.workspace import load_config, merge_config from ppdet.engine import Tracker from ppdet.utils.check import check_gpu, check_version, check_config from ppdet.utils.cli import ArgsParser from ppdet.utils.logger import setup_logger logger = setup_logger('train') def parse_args(): parser = ArgsParser() parser.add_argument( '--video_file', type=str, default=None, help='Video name for tracking.') parser.add_argument( "--data_type", type=str, default='mot', help='Data type of tracking dataset, should be in ["mot", "kitti"]') parser.add_argument( "--det_results_dir", type=str, default=None, help="Directory name for detection results.") parser.add_argument( '--output_dir', type=str, default='output', help='Directory name for output tracking results.') parser.add_argument( '--save_images', action='store_true', help='Save tracking results (image).') parser.add_argument( '--save_videos', action='store_true', help='Save tracking results (video).') parser.add_argument( '--show_image', action='store_true', help='Show tracking results (image).') args = parser.parse_args() return args def run(FLAGS, cfg): # build Tracker tracker = Tracker(cfg, mode='test') # load weights if cfg.architecture in ['DeepSORT']: if cfg.det_weights != 'None': tracker.load_weights_sde(cfg.det_weights, cfg.reid_weights) else: tracker.load_weights_sde(None, cfg.reid_weights) else: tracker.load_weights_jde(cfg.weights) # inference tracker.mot_predict( video_file=FLAGS.video_file, data_type=FLAGS.data_type, model_type=cfg.architecture, output_dir=FLAGS.output_dir, save_images=FLAGS.save_images, save_videos=FLAGS.save_videos, show_image=FLAGS.show_image, det_results_dir=FLAGS.det_results_dir) def main(): FLAGS = parse_args() cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) check_gpu(cfg.use_gpu) check_version() place = 'gpu:{}'.format(ParallelEnv().dev_id) if cfg.use_gpu else 'cpu' place = paddle.set_device(place) run(FLAGS, cfg) if __name__ == '__main__': main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) if parent_path not in sys.path: sys.path.append(parent_path) # ignore warning log import warnings warnings.filterwarnings('ignore') import paddle from paddle.distributed import ParallelEnv from ppdet.core.workspace import load_config, merge_config from ppdet.engine import Tracker from ppdet.utils.check import check_gpu, check_version, check_config from ppdet.utils.cli import ArgsParser from ppdet.utils.logger import setup_logger logger = setup_logger('train') def parse_args(): parser = ArgsParser() parser.add_argument( '--video_file', type=str, default=None, help='Video name for tracking.') parser.add_argument( "--data_type", type=str, default='mot', help='Data type of tracking dataset, should be in ["mot", "kitti"]') parser.add_argument( "--det_results_dir", type=str, default=None, help="Directory name for detection results.") parser.add_argument( '--output_dir', type=str, default='output', help='Directory name for output tracking results.') parser.add_argument( '--save_images', action='store_true', help='Save tracking results (image).') parser.add_argument( '--save_videos', action='store_true', help='Save tracking results (video).') parser.add_argument( '--show_image', action='store_true', help='Show tracking results (image).') args = parser.parse_args() return args def run(FLAGS, cfg): # build Tracker tracker = Tracker(cfg, mode='test') # load weights if cfg.architecture in ['DeepSORT']: if cfg.det_weights != 'None': tracker.load_weights_sde(cfg.det_weights, cfg.reid_weights) else: tracker.load_weights_sde(None, cfg.reid_weights) else: tracker.load_weights_jde(cfg.weights) # inference tracker.mot_predict( video_file=FLAGS.video_file, data_type=FLAGS.data_type, model_type=cfg.architecture, output_dir=FLAGS.output_dir, save_images=FLAGS.save_images, save_videos=FLAGS.save_videos, show_image=FLAGS.show_image, det_results_dir=FLAGS.det_results_dir) def main(): FLAGS = parse_args() cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) check_gpu(cfg.use_gpu) check_version() place = 'gpu:{}'.format(ParallelEnv().dev_id) if cfg.use_gpu else 'cpu' place = paddle.set_device(place) run(FLAGS, cfg) if __name__ == '__main__': main()
en
0.823256
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # add python path of PadleDetection to sys.path # ignore warning log # build Tracker # load weights # inference
1.777511
2
setup.py
MD-Studio/MDStudio_pylie
1
6631048
# -*- coding: utf-8 -*- # package: pylie # file: setup.py # # Part of ‘pylie’, providing LIE data modelling routines # LIEStudio package. # # Copyright © 2016 <NAME>, VU University Amsterdam, the Netherlands # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup, find_packages distribution_name = 'pylie' setup( name=distribution_name, version=0.2, description='LIE modelling library of the MDStudio application', author=""" <NAME> - VU University - Amsterdam <NAME> - Zefiros Software (www.zefiros.eu) <NAME> - eScience Center (https://www.esciencecenter.nl/)""", author_email=['<EMAIL>', '<EMAIL>'], url='https://github.com/MD-Studio/MDStudio_pylie', license='Apache Software License 2.0', keywords='MDStudio LIE statistics modelling', platforms=['Any'], packages=find_packages(), package_data={distribution_name: ['schemas/*', 'schemas/endpoints/*']}, py_modules=[distribution_name], test_suite="tests", install_requires=[ 'dill', 'numpy', 'pandas', 'statsmodels', 'jsonschema', 'matplotlib', 'scikit-learn', 'openpyxl'], include_package_data=True, zip_safe=True, classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Topic :: Software Development :: Libraries', 'Operating System :: OS Independent', 'Intended Audience :: Science/Research', ], )
# -*- coding: utf-8 -*- # package: pylie # file: setup.py # # Part of ‘pylie’, providing LIE data modelling routines # LIEStudio package. # # Copyright © 2016 <NAME>, VU University Amsterdam, the Netherlands # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup, find_packages distribution_name = 'pylie' setup( name=distribution_name, version=0.2, description='LIE modelling library of the MDStudio application', author=""" <NAME> - VU University - Amsterdam <NAME> - Zefiros Software (www.zefiros.eu) <NAME> - eScience Center (https://www.esciencecenter.nl/)""", author_email=['<EMAIL>', '<EMAIL>'], url='https://github.com/MD-Studio/MDStudio_pylie', license='Apache Software License 2.0', keywords='MDStudio LIE statistics modelling', platforms=['Any'], packages=find_packages(), package_data={distribution_name: ['schemas/*', 'schemas/endpoints/*']}, py_modules=[distribution_name], test_suite="tests", install_requires=[ 'dill', 'numpy', 'pandas', 'statsmodels', 'jsonschema', 'matplotlib', 'scikit-learn', 'openpyxl'], include_package_data=True, zip_safe=True, classifiers=[ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Topic :: Software Development :: Libraries', 'Operating System :: OS Independent', 'Intended Audience :: Science/Research', ], )
en
0.775928
# -*- coding: utf-8 -*- # package: pylie # file: setup.py # # Part of ‘pylie’, providing LIE data modelling routines # LIEStudio package. # # Copyright © 2016 <NAME>, VU University Amsterdam, the Netherlands # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. <NAME> - VU University - Amsterdam <NAME> - Zefiros Software (www.zefiros.eu) <NAME> - eScience Center (https://www.esciencecenter.nl/)
1.334004
1
01-logica-de-programacao-e-algoritmos/Aula 05/2 Parametros/ex05.py
rafaelbarretomg/Uninter
0
6631049
# contagem em uma linha so def contador(fim, inicio=0, passo=1): for i in range(inicio, fim, passo): print('{} ' .format(i), end='') print('\n') # Programa Principal contador(20, 10, 2) contador(12)
# contagem em uma linha so def contador(fim, inicio=0, passo=1): for i in range(inicio, fim, passo): print('{} ' .format(i), end='') print('\n') # Programa Principal contador(20, 10, 2) contador(12)
pt
0.998064
# contagem em uma linha so # Programa Principal
3.731656
4
flask_video_stream/db.py
andricampagnaro/documentacoes_e_testes
0
6631050
import socket TCP_IP = '127.0.0.1' TCP_PORT = 8000 BUFFER_SIZE = 1024 # Normally 1024, but we want fast response s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((TCP_IP, TCP_PORT)) s.listen(1) while True: conn, addr = s.accept() data = conn.recv(BUFFER_SIZE) print(f'Connection address: {addr}') print(f"received data: {data.decode()}") if data: f = open('database/video3.mp4', 'rb') l = f.read(1024) while(l): conn.send(l) l = f.read(1024) f.close() conn.close()
import socket TCP_IP = '127.0.0.1' TCP_PORT = 8000 BUFFER_SIZE = 1024 # Normally 1024, but we want fast response s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((TCP_IP, TCP_PORT)) s.listen(1) while True: conn, addr = s.accept() data = conn.recv(BUFFER_SIZE) print(f'Connection address: {addr}') print(f"received data: {data.decode()}") if data: f = open('database/video3.mp4', 'rb') l = f.read(1024) while(l): conn.send(l) l = f.read(1024) f.close() conn.close()
en
0.957284
# Normally 1024, but we want fast response
2.855491
3