max_stars_repo_path
stringlengths
4
286
max_stars_repo_name
stringlengths
5
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.03M
content_cleaned
stringlengths
6
1.03M
language
stringclasses
111 values
language_score
float64
0.03
1
comments
stringlengths
0
556k
edu_score
float64
0.32
5.03
edu_int_score
int64
0
5
perfkitbenchmarker/linux_benchmarks/stress_ng_benchmark.py
inflatador/PerfKitBenchmarker
0
6631251
# Copyright 2019 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs stress-ng. From the stress-ng ubuntu documentation: stress-ng will stress test a computer system in various selectable ways. It was designed to exercise various physical subsystems of a computer as well as the various operating system kernel interfaces. stress-ng also has a wide range of CPU specific stress tests that exercise floating point, integer, bit manipulation and control flow. stress-ng manpage: http://manpages.ubuntu.com/manpages/xenial/man1/stress-ng.1.html """ import logging import numpy from perfkitbenchmarker import configs from perfkitbenchmarker import flags from perfkitbenchmarker import sample FLAGS = flags.FLAGS BENCHMARK_NAME = 'stress_ng' BENCHMARK_CONFIG = """ stress_ng: description: Runs stress-ng vm_groups: default: vm_spec: *default_single_core disk_spec: *default_50_gb """ STRESS_NG_DIR = '~/stress_ng' GIT_REPO = 'https://github.com/ColinIanKing/stress-ng' GIT_TAG_MAP = { '0.05.23': '54722768329c9f8184c1c98db63435f201377df1', # ubuntu1604 '0.09.25': '2db2812edf99ec80c08edf98ee88806a3662031c', # ubuntu1804 } VALID_CPU_METHODS = { 'all', 'ackermann', 'bitops', 'callfunc', 'cdouble', 'cfloat', 'clongdouble', 'correlate', 'crc16', 'decimal32', 'decimal64', 'decimal128', 'dither', 'djb2a', 'double', 'euler', 'explog', 'fft', 'fibonacci', 'float', 'fnv1a', 'gamma', 'gcd', 'gray', 'hamming', 'hanoi', 'hyperbolic', 'idct', 'int128', 'int64', 'int32', 'int16', 'int8', 'int128float', 'int128double', 'int128longdouble', 'int128decimal32', 'int128decimal64', 'int128decimal128', 'int64float', 'int64double', 'int64longdouble', 'int32float', 'int32double', 'int32longdouble', 'jenkin', 'jmp', 'ln2', 'longdouble', 'loop', 'matrixprod', 'nsqrt', 'omega', 'parity', 'phi', 'pi', 'pjw', 'prime', 'psi', 'queens', 'rand', 'rand48', 'rgb', 'sdbm', 'sieve', 'sqrt', 'trig', 'union', 'zeta' } VALID_STRESSORS = { 'affinity', 'af-alg', 'aio', 'aio-linux', 'apparmor', 'bigheap', 'brk', 'bsearch', 'cache', 'chdir', 'chmod', 'clock', 'clone', 'context', 'cpu', 'cpu-online', 'crypt', 'daemon', 'dentry', 'dir', 'dup', 'epoll', 'eventfd', 'exec', 'fallocate', 'fault', 'fcntl', 'fiemap', 'fifo', 'filename', 'flock', 'fork', 'fp-error', 'fstat', 'futex', 'get', 'getrandom', 'getdent', 'handle', 'hdd', 'heapsort', 'hsearch', 'icache', 'iosync', 'inotify', 'itimer', 'kcmp', 'key', 'kill', 'klog', 'lease', 'link', 'lockbus', 'lockf', 'longjmp', 'lsearch', 'malloc', 'matrix', 'membarrier', 'memcpy', 'memfd', 'mergesort', 'mincore', 'mknod', 'mlock', 'mmap', 'mmapfork', 'mmapmany', 'mremap', 'msg', 'mq', 'nice', 'null', 'numa', 'oom-pipe', 'open', 'personality', 'pipe', 'poll', 'procfs', 'pthread', 'ptrace', 'qsort', 'quota', 'rdrand', 'readahead', 'remap-file-pages', 'rename', 'rlimit', 'seccomp', 'seek', 'sem-posix', 'sem-sysv', 'shm-posix', 'shm-sysv', 'sendfile', 'sigfd', 'sigfpe', 'sigpending', 'sigq', 'sigsegv', 'sigsuspend', 'sleep', 'socket', 'socket-fd', 'socket-pair', 'spawn', 'splice', 'stack', 'str', 'stream', 'switch', 'symlink', 'sync-file', 'sysinfo', 'sysfs', 'tee', 'timer', 'timerfd', 'tsc', 'tsearch', 'udp', 'udp-flood', 'unshare', 'urandom', 'userfaultfd', 'utime', 'vecmath', 'vfork', 'vm', 'vm-rw', 'vm-splice', 'wait', 'wcs', 'xattr', 'yield', 'zero', 'zlib', 'zombie' } CPU_SUITE = { 'af-alg', 'bsearch', 'context', 'cpu', 'cpu-online', 'crypt', 'fp-error', 'getrandom', 'heapsort', 'hsearch', 'longjmp', 'lsearch', 'matrix', 'mergesort', 'numa', 'qsort', 'rdrand', 'str', 'stream', 'tsc', 'tsearch', 'vecmath', 'wcs', 'zlib' } CPU_CACHE_SUITE = { 'bsearch', 'cache', 'heapsort', 'hsearch', 'icache', 'lockbus', 'lsearch', 'malloc', 'matrix', 'membarrier', 'memcpy', 'mergesort', 'qsort', 'str', 'stream', 'tsearch', 'vecmath', 'wcs', 'zlib' } MEMORY_SUITE = { 'bsearch', 'context', 'heapsort', 'hsearch', 'lockbus', 'lsearch', 'malloc', 'matrix', 'membarrier', 'memcpy', 'memfd', 'mergesort', 'mincore', 'null', 'numa', 'oom-pipe', 'pipe', 'qsort', 'stack', 'str', 'stream', 'tsearch', 'vm', 'vm-rw', 'wcs', 'zero', 'zlib' } # Run the stressors that are each part of all of the compute related stress-ng # classes: cpu, cpu-cache, and memory. DEFAULT_STRESSORS = sorted( CPU_SUITE.intersection(CPU_CACHE_SUITE).intersection(MEMORY_SUITE)) flags.DEFINE_integer('stress_ng_duration', 10, 'Number of seconds to run the test.') flags.DEFINE_boolean('stress_ng_calc_geomean', True, 'Whether to calculate geomean or not.') flags.DEFINE_list('stress_ng_custom_stressors', DEFAULT_STRESSORS, 'List of stressors to run against. Default combines cpu,' 'cpu-cache, and memory suites') flags.DEFINE_list('stress_ng_cpu_methods', [], 'List of cpu methods to run with. By default none are ran.') ALL_WORKLOADS = ['small', 'medium', 'large'] flags.DEFINE_list( 'stress_ng_thread_workloads', ['large'], 'List of threads sizes to run against. Options are' 'small (1 thread total), medium (1 thread per 2 cpus), and ' 'large (1 thread per cpu).') flags.register_validator( 'stress_ng_thread_workloads', lambda workloads: workloads and set(workloads).issubset(ALL_WORKLOADS)) ALL_VERSIONS = ['0.05.23', '0.09.25'] flags.DEFINE_enum( 'stress_ng_version', '0.09.25', ALL_VERSIONS, 'Stress-ng version to use. Default is 0.09.25 which ' 'is the default package on Ubuntu 1804.') def _GeoMeanOverflow(iterable): """Returns the geometric mean. See https://en.wikipedia.org/wiki/Geometric_mean#Relationship_with_logarithms Args: iterable: a list of positive floats to take the geometric mean of. Returns: The geometric mean of the list. """ a = numpy.log(iterable) return numpy.exp(a.sum() / len(a)) def StressngCustomStressorsValidator(stressors): """Returns whether or not the list of custom stressors is valid.""" return VALID_STRESSORS.issuperset(set(stressors)) def StressngCpuMethodsValidator(cpu_methods): """Returns whether or not the list of cpu methods is valid.""" return ('all_cpu_methods' in cpu_methods or VALID_CPU_METHODS.issuperset(set(cpu_methods))) flags.register_validator('stress_ng_custom_stressors', StressngCustomStressorsValidator) flags.register_validator('stress_ng_cpu_methods', StressngCpuMethodsValidator) def GetConfig(user_config): return configs.LoadConfig(BENCHMARK_CONFIG, user_config, BENCHMARK_NAME) def Prepare(benchmark_spec): """Installs stress-ng on the target vm. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. """ vm = benchmark_spec.vms[0] vm.InstallPackages( 'build-essential libaio-dev libapparmor-dev libattr1-dev libbsd-dev libcap-dev libgcrypt11-dev libkeyutils-dev libsctp-dev zlib1g-dev' ) vm.RemoteCommand('git clone {0} {1}'.format(GIT_REPO, STRESS_NG_DIR)) vm.RemoteCommand('cd {0} && git checkout {1}'.format( STRESS_NG_DIR, GIT_TAG_MAP[FLAGS.stress_ng_version])) vm.RemoteCommand('cd {0} && make && sudo make install'.format(STRESS_NG_DIR)) def _ParseStressngResult(metadata, output, cpu_method=None): """Returns stress-ng data as a sample. Sample output eg: stress-ng: info: [2566] dispatching hogs: 2 context stress-ng: info: [2566] successful run completed in 5.00s stress-ng: info: [2566] stressor bogo ops real time usr time sys time bogo ops/s bogo ops/s stress-ng: info: [2566] (secs) (secs) (secs) (real time) (usr+sys time) stress-ng: info: [2566] context 22429 5.00 5.49 4.48 4485.82 2249.65 Args: metadata: metadata of the sample. output: the output of the stress-ng benchmark. cpu_method: an optional flag for the cpu method for the cpu stressor. """ output_list = output.splitlines() output_matrix = [i.split() for i in output_list] if len(output_matrix) != 5: logging.error('output is missing') return '' assert output_matrix[2][-4] == 'bogo' and output_matrix[2][-3] == 'ops/s' assert output_matrix[3][-4] == '(real' and output_matrix[3][-3] == 'time)' line = output_matrix[4] name = line[3] value = float(line[-2]) # parse bogo ops/s (real time) if name == 'cpu' and cpu_method: return sample.Sample( metric=cpu_method, value=value, unit='bogus_ops_sec', # bogus operations per second metadata=metadata) return sample.Sample( metric=name, value=value, unit='bogus_ops_sec', # bogus operations per second metadata=metadata) def _RunWorkload(vm, num_threads): """Runs stress-ng on the target vm. Args: vm: The target vm to run on. num_threads: Number of instances of stressors to launch. Returns: A list of sample.Sample objects. """ metadata = { 'duration_sec': FLAGS.stress_ng_duration, 'threads': num_threads, 'version': FLAGS.stress_ng_version, } samples = [] values_to_geomean_list = [] stressors = FLAGS.stress_ng_custom_stressors for stressor in stressors: cmd = ('stress-ng --{stressor} {numthreads} --metrics-brief ' '-t {duration}'.format( stressor=stressor, numthreads=num_threads, duration=FLAGS.stress_ng_duration)) stdout, stderr = vm.RemoteCommand(cmd) # TODO(user): Find the actual stress-ng version that changes output to # stderr instead of stdout if FLAGS.stress_ng_version > '0.05.23': stdout = stderr stressng_sample = _ParseStressngResult(metadata, stdout) if stressng_sample: samples.append(stressng_sample) values_to_geomean_list.append(stressng_sample.value) cpu_methods = (VALID_CPU_METHODS if 'all_cpu_methods' in FLAGS.stress_ng_cpu_methods else FLAGS.stress_ng_cpu_methods) for cpu_method in cpu_methods: cmd = ('stress-ng --cpu {numthreads} --metrics-brief ' '-t {duration} --cpu-method {cpu_method}'.format( numthreads=num_threads, duration=FLAGS.stress_ng_duration, cpu_method=cpu_method)) stdout, _ = vm.RemoteCommand(cmd) stressng_sample = _ParseStressngResult(metadata, stdout, cpu_method) if stressng_sample: samples.append(stressng_sample) values_to_geomean_list.append(stressng_sample.value) if FLAGS.stress_ng_calc_geomean: geomean_metadata = metadata.copy() geomean_metadata['stressors'] = stressors # True only if each stressor provided a value geomean_metadata['valid_run'] = ( len(values_to_geomean_list) == len(stressors) + len(cpu_methods)) geomean_sample = sample.Sample( metric='STRESS_NG_GEOMEAN', value=_GeoMeanOverflow(values_to_geomean_list), unit='bogus_ops_sec', metadata=geomean_metadata) samples.append(geomean_sample) return samples def Run(benchmark_spec): """Runs stress-ng on the target vm. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. Returns: A list of sample.Sample objects. """ vm = benchmark_spec.vms[0] samples = [] for workload in FLAGS.stress_ng_thread_workloads: if workload == 'small': samples.extend(_RunWorkload(vm, 1)) elif workload == 'medium': samples.extend(_RunWorkload(vm, vm.NumCpusForBenchmark() / 2)) elif workload == 'large': samples.extend(_RunWorkload(vm, vm.NumCpusForBenchmark())) return samples def Cleanup(benchmark_spec): """Cleans up stress-ng from the target vm. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. """ vm = benchmark_spec.vms[0] vm.RemoteCommand('cd {0} && sudo make uninstall'.format(STRESS_NG_DIR))
# Copyright 2019 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs stress-ng. From the stress-ng ubuntu documentation: stress-ng will stress test a computer system in various selectable ways. It was designed to exercise various physical subsystems of a computer as well as the various operating system kernel interfaces. stress-ng also has a wide range of CPU specific stress tests that exercise floating point, integer, bit manipulation and control flow. stress-ng manpage: http://manpages.ubuntu.com/manpages/xenial/man1/stress-ng.1.html """ import logging import numpy from perfkitbenchmarker import configs from perfkitbenchmarker import flags from perfkitbenchmarker import sample FLAGS = flags.FLAGS BENCHMARK_NAME = 'stress_ng' BENCHMARK_CONFIG = """ stress_ng: description: Runs stress-ng vm_groups: default: vm_spec: *default_single_core disk_spec: *default_50_gb """ STRESS_NG_DIR = '~/stress_ng' GIT_REPO = 'https://github.com/ColinIanKing/stress-ng' GIT_TAG_MAP = { '0.05.23': '54722768329c9f8184c1c98db63435f201377df1', # ubuntu1604 '0.09.25': '2db2812edf99ec80c08edf98ee88806a3662031c', # ubuntu1804 } VALID_CPU_METHODS = { 'all', 'ackermann', 'bitops', 'callfunc', 'cdouble', 'cfloat', 'clongdouble', 'correlate', 'crc16', 'decimal32', 'decimal64', 'decimal128', 'dither', 'djb2a', 'double', 'euler', 'explog', 'fft', 'fibonacci', 'float', 'fnv1a', 'gamma', 'gcd', 'gray', 'hamming', 'hanoi', 'hyperbolic', 'idct', 'int128', 'int64', 'int32', 'int16', 'int8', 'int128float', 'int128double', 'int128longdouble', 'int128decimal32', 'int128decimal64', 'int128decimal128', 'int64float', 'int64double', 'int64longdouble', 'int32float', 'int32double', 'int32longdouble', 'jenkin', 'jmp', 'ln2', 'longdouble', 'loop', 'matrixprod', 'nsqrt', 'omega', 'parity', 'phi', 'pi', 'pjw', 'prime', 'psi', 'queens', 'rand', 'rand48', 'rgb', 'sdbm', 'sieve', 'sqrt', 'trig', 'union', 'zeta' } VALID_STRESSORS = { 'affinity', 'af-alg', 'aio', 'aio-linux', 'apparmor', 'bigheap', 'brk', 'bsearch', 'cache', 'chdir', 'chmod', 'clock', 'clone', 'context', 'cpu', 'cpu-online', 'crypt', 'daemon', 'dentry', 'dir', 'dup', 'epoll', 'eventfd', 'exec', 'fallocate', 'fault', 'fcntl', 'fiemap', 'fifo', 'filename', 'flock', 'fork', 'fp-error', 'fstat', 'futex', 'get', 'getrandom', 'getdent', 'handle', 'hdd', 'heapsort', 'hsearch', 'icache', 'iosync', 'inotify', 'itimer', 'kcmp', 'key', 'kill', 'klog', 'lease', 'link', 'lockbus', 'lockf', 'longjmp', 'lsearch', 'malloc', 'matrix', 'membarrier', 'memcpy', 'memfd', 'mergesort', 'mincore', 'mknod', 'mlock', 'mmap', 'mmapfork', 'mmapmany', 'mremap', 'msg', 'mq', 'nice', 'null', 'numa', 'oom-pipe', 'open', 'personality', 'pipe', 'poll', 'procfs', 'pthread', 'ptrace', 'qsort', 'quota', 'rdrand', 'readahead', 'remap-file-pages', 'rename', 'rlimit', 'seccomp', 'seek', 'sem-posix', 'sem-sysv', 'shm-posix', 'shm-sysv', 'sendfile', 'sigfd', 'sigfpe', 'sigpending', 'sigq', 'sigsegv', 'sigsuspend', 'sleep', 'socket', 'socket-fd', 'socket-pair', 'spawn', 'splice', 'stack', 'str', 'stream', 'switch', 'symlink', 'sync-file', 'sysinfo', 'sysfs', 'tee', 'timer', 'timerfd', 'tsc', 'tsearch', 'udp', 'udp-flood', 'unshare', 'urandom', 'userfaultfd', 'utime', 'vecmath', 'vfork', 'vm', 'vm-rw', 'vm-splice', 'wait', 'wcs', 'xattr', 'yield', 'zero', 'zlib', 'zombie' } CPU_SUITE = { 'af-alg', 'bsearch', 'context', 'cpu', 'cpu-online', 'crypt', 'fp-error', 'getrandom', 'heapsort', 'hsearch', 'longjmp', 'lsearch', 'matrix', 'mergesort', 'numa', 'qsort', 'rdrand', 'str', 'stream', 'tsc', 'tsearch', 'vecmath', 'wcs', 'zlib' } CPU_CACHE_SUITE = { 'bsearch', 'cache', 'heapsort', 'hsearch', 'icache', 'lockbus', 'lsearch', 'malloc', 'matrix', 'membarrier', 'memcpy', 'mergesort', 'qsort', 'str', 'stream', 'tsearch', 'vecmath', 'wcs', 'zlib' } MEMORY_SUITE = { 'bsearch', 'context', 'heapsort', 'hsearch', 'lockbus', 'lsearch', 'malloc', 'matrix', 'membarrier', 'memcpy', 'memfd', 'mergesort', 'mincore', 'null', 'numa', 'oom-pipe', 'pipe', 'qsort', 'stack', 'str', 'stream', 'tsearch', 'vm', 'vm-rw', 'wcs', 'zero', 'zlib' } # Run the stressors that are each part of all of the compute related stress-ng # classes: cpu, cpu-cache, and memory. DEFAULT_STRESSORS = sorted( CPU_SUITE.intersection(CPU_CACHE_SUITE).intersection(MEMORY_SUITE)) flags.DEFINE_integer('stress_ng_duration', 10, 'Number of seconds to run the test.') flags.DEFINE_boolean('stress_ng_calc_geomean', True, 'Whether to calculate geomean or not.') flags.DEFINE_list('stress_ng_custom_stressors', DEFAULT_STRESSORS, 'List of stressors to run against. Default combines cpu,' 'cpu-cache, and memory suites') flags.DEFINE_list('stress_ng_cpu_methods', [], 'List of cpu methods to run with. By default none are ran.') ALL_WORKLOADS = ['small', 'medium', 'large'] flags.DEFINE_list( 'stress_ng_thread_workloads', ['large'], 'List of threads sizes to run against. Options are' 'small (1 thread total), medium (1 thread per 2 cpus), and ' 'large (1 thread per cpu).') flags.register_validator( 'stress_ng_thread_workloads', lambda workloads: workloads and set(workloads).issubset(ALL_WORKLOADS)) ALL_VERSIONS = ['0.05.23', '0.09.25'] flags.DEFINE_enum( 'stress_ng_version', '0.09.25', ALL_VERSIONS, 'Stress-ng version to use. Default is 0.09.25 which ' 'is the default package on Ubuntu 1804.') def _GeoMeanOverflow(iterable): """Returns the geometric mean. See https://en.wikipedia.org/wiki/Geometric_mean#Relationship_with_logarithms Args: iterable: a list of positive floats to take the geometric mean of. Returns: The geometric mean of the list. """ a = numpy.log(iterable) return numpy.exp(a.sum() / len(a)) def StressngCustomStressorsValidator(stressors): """Returns whether or not the list of custom stressors is valid.""" return VALID_STRESSORS.issuperset(set(stressors)) def StressngCpuMethodsValidator(cpu_methods): """Returns whether or not the list of cpu methods is valid.""" return ('all_cpu_methods' in cpu_methods or VALID_CPU_METHODS.issuperset(set(cpu_methods))) flags.register_validator('stress_ng_custom_stressors', StressngCustomStressorsValidator) flags.register_validator('stress_ng_cpu_methods', StressngCpuMethodsValidator) def GetConfig(user_config): return configs.LoadConfig(BENCHMARK_CONFIG, user_config, BENCHMARK_NAME) def Prepare(benchmark_spec): """Installs stress-ng on the target vm. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. """ vm = benchmark_spec.vms[0] vm.InstallPackages( 'build-essential libaio-dev libapparmor-dev libattr1-dev libbsd-dev libcap-dev libgcrypt11-dev libkeyutils-dev libsctp-dev zlib1g-dev' ) vm.RemoteCommand('git clone {0} {1}'.format(GIT_REPO, STRESS_NG_DIR)) vm.RemoteCommand('cd {0} && git checkout {1}'.format( STRESS_NG_DIR, GIT_TAG_MAP[FLAGS.stress_ng_version])) vm.RemoteCommand('cd {0} && make && sudo make install'.format(STRESS_NG_DIR)) def _ParseStressngResult(metadata, output, cpu_method=None): """Returns stress-ng data as a sample. Sample output eg: stress-ng: info: [2566] dispatching hogs: 2 context stress-ng: info: [2566] successful run completed in 5.00s stress-ng: info: [2566] stressor bogo ops real time usr time sys time bogo ops/s bogo ops/s stress-ng: info: [2566] (secs) (secs) (secs) (real time) (usr+sys time) stress-ng: info: [2566] context 22429 5.00 5.49 4.48 4485.82 2249.65 Args: metadata: metadata of the sample. output: the output of the stress-ng benchmark. cpu_method: an optional flag for the cpu method for the cpu stressor. """ output_list = output.splitlines() output_matrix = [i.split() for i in output_list] if len(output_matrix) != 5: logging.error('output is missing') return '' assert output_matrix[2][-4] == 'bogo' and output_matrix[2][-3] == 'ops/s' assert output_matrix[3][-4] == '(real' and output_matrix[3][-3] == 'time)' line = output_matrix[4] name = line[3] value = float(line[-2]) # parse bogo ops/s (real time) if name == 'cpu' and cpu_method: return sample.Sample( metric=cpu_method, value=value, unit='bogus_ops_sec', # bogus operations per second metadata=metadata) return sample.Sample( metric=name, value=value, unit='bogus_ops_sec', # bogus operations per second metadata=metadata) def _RunWorkload(vm, num_threads): """Runs stress-ng on the target vm. Args: vm: The target vm to run on. num_threads: Number of instances of stressors to launch. Returns: A list of sample.Sample objects. """ metadata = { 'duration_sec': FLAGS.stress_ng_duration, 'threads': num_threads, 'version': FLAGS.stress_ng_version, } samples = [] values_to_geomean_list = [] stressors = FLAGS.stress_ng_custom_stressors for stressor in stressors: cmd = ('stress-ng --{stressor} {numthreads} --metrics-brief ' '-t {duration}'.format( stressor=stressor, numthreads=num_threads, duration=FLAGS.stress_ng_duration)) stdout, stderr = vm.RemoteCommand(cmd) # TODO(user): Find the actual stress-ng version that changes output to # stderr instead of stdout if FLAGS.stress_ng_version > '0.05.23': stdout = stderr stressng_sample = _ParseStressngResult(metadata, stdout) if stressng_sample: samples.append(stressng_sample) values_to_geomean_list.append(stressng_sample.value) cpu_methods = (VALID_CPU_METHODS if 'all_cpu_methods' in FLAGS.stress_ng_cpu_methods else FLAGS.stress_ng_cpu_methods) for cpu_method in cpu_methods: cmd = ('stress-ng --cpu {numthreads} --metrics-brief ' '-t {duration} --cpu-method {cpu_method}'.format( numthreads=num_threads, duration=FLAGS.stress_ng_duration, cpu_method=cpu_method)) stdout, _ = vm.RemoteCommand(cmd) stressng_sample = _ParseStressngResult(metadata, stdout, cpu_method) if stressng_sample: samples.append(stressng_sample) values_to_geomean_list.append(stressng_sample.value) if FLAGS.stress_ng_calc_geomean: geomean_metadata = metadata.copy() geomean_metadata['stressors'] = stressors # True only if each stressor provided a value geomean_metadata['valid_run'] = ( len(values_to_geomean_list) == len(stressors) + len(cpu_methods)) geomean_sample = sample.Sample( metric='STRESS_NG_GEOMEAN', value=_GeoMeanOverflow(values_to_geomean_list), unit='bogus_ops_sec', metadata=geomean_metadata) samples.append(geomean_sample) return samples def Run(benchmark_spec): """Runs stress-ng on the target vm. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. Returns: A list of sample.Sample objects. """ vm = benchmark_spec.vms[0] samples = [] for workload in FLAGS.stress_ng_thread_workloads: if workload == 'small': samples.extend(_RunWorkload(vm, 1)) elif workload == 'medium': samples.extend(_RunWorkload(vm, vm.NumCpusForBenchmark() / 2)) elif workload == 'large': samples.extend(_RunWorkload(vm, vm.NumCpusForBenchmark())) return samples def Cleanup(benchmark_spec): """Cleans up stress-ng from the target vm. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. """ vm = benchmark_spec.vms[0] vm.RemoteCommand('cd {0} && sudo make uninstall'.format(STRESS_NG_DIR))
en
0.768055
# Copyright 2019 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Runs stress-ng. From the stress-ng ubuntu documentation: stress-ng will stress test a computer system in various selectable ways. It was designed to exercise various physical subsystems of a computer as well as the various operating system kernel interfaces. stress-ng also has a wide range of CPU specific stress tests that exercise floating point, integer, bit manipulation and control flow. stress-ng manpage: http://manpages.ubuntu.com/manpages/xenial/man1/stress-ng.1.html stress_ng: description: Runs stress-ng vm_groups: default: vm_spec: *default_single_core disk_spec: *default_50_gb # ubuntu1604 # ubuntu1804 # Run the stressors that are each part of all of the compute related stress-ng # classes: cpu, cpu-cache, and memory. Returns the geometric mean. See https://en.wikipedia.org/wiki/Geometric_mean#Relationship_with_logarithms Args: iterable: a list of positive floats to take the geometric mean of. Returns: The geometric mean of the list. Returns whether or not the list of custom stressors is valid. Returns whether or not the list of cpu methods is valid. Installs stress-ng on the target vm. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. Returns stress-ng data as a sample. Sample output eg: stress-ng: info: [2566] dispatching hogs: 2 context stress-ng: info: [2566] successful run completed in 5.00s stress-ng: info: [2566] stressor bogo ops real time usr time sys time bogo ops/s bogo ops/s stress-ng: info: [2566] (secs) (secs) (secs) (real time) (usr+sys time) stress-ng: info: [2566] context 22429 5.00 5.49 4.48 4485.82 2249.65 Args: metadata: metadata of the sample. output: the output of the stress-ng benchmark. cpu_method: an optional flag for the cpu method for the cpu stressor. # parse bogo ops/s (real time) # bogus operations per second # bogus operations per second Runs stress-ng on the target vm. Args: vm: The target vm to run on. num_threads: Number of instances of stressors to launch. Returns: A list of sample.Sample objects. # TODO(user): Find the actual stress-ng version that changes output to # stderr instead of stdout # True only if each stressor provided a value Runs stress-ng on the target vm. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. Returns: A list of sample.Sample objects. Cleans up stress-ng from the target vm. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark.
1.784285
2
mpms/src/crawler.py
dadosjusbr/coletores
18
6631252
import pathlib import os import sys from time import sleep import shutil from selenium import webdriver from selenium.webdriver.common.by import By BASE_URL = 'https://transparencia.mpms.mp.br/QvAJAXZfc/opendoc.htm?document=portaltransparencia%5Cportaltransparencia.qvw&lang=pt-BR&host=QVS%40srv-1645&anonymous=true' MONTHS = ['Jan', 'Fev', 'Mar', 'Abr', 'Mai', 'Jun', 'Jul', 'Ago', 'Set', 'Out', 'Nov', 'Dez'] def crawl(year, month, driver_path, output_path): file = [] pathlib.Path(output_path).mkdir(exist_ok=True) driver = setup_driver(driver_path, output_path) find_paycheck(driver) select_remuneration(driver) if(year != '2021'): select_year(year, driver) # Usar o mês passado como parâmetro para pegar o equivalente em string select_month(MONTHS[int(month) - 1], driver) file.append(download(output_path, driver, year, month, 'remuneracao')) if year == '2020' or year == '2021' or (year == '2019' and int(month)>=7): select_indemnization(driver) if(year != '2021'): select_year(year, driver) # Usar o mês passado como parâmetro para pegar o equivalente em string select_month(MONTHS[int(month) - 1], driver) file.append(download(output_path, driver, year, month, 'indenizacao')) return file def setup_driver(driver_path, output_path): # Seting the directorys to be used by selenium current_directory = os.getcwd() path_chrome = current_directory + driver_path path_prefs = output_path # Attributing the paths to the webdriver chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('user-agent="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36"') chrome_options.add_experimental_option('prefs', { 'download.default_directory': path_prefs, 'download.prompt_for_download': False }) chrome_options.add_argument('--headless') chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--disable-setuid-sandbox') chrome_options.add_argument('start-maximized') return webdriver.Chrome(executable_path=path_chrome, chrome_options=chrome_options) def find_paycheck(driver): driver.get(BASE_URL) sleep(15) # find_main_contain = driver.find_element_by_css_selector('.QvPageBody') find_div_by_id = driver.find_element_by_class_name('Document_TX28') selected_div_qvcontent = find_div_by_id.find_elements_by_class_name(name='QvContent')[0] find_div_clickable = selected_div_qvcontent.find_element_by_class_name(name='TextObject') find_div_clickable.click() sleep(3) def select_remuneration(driver): find_div_by_id = driver.find_element_by_id('26') selected_div_qvcontent = find_div_by_id.find_elements_by_class_name(name='QvContent')[0] find_div_clickable = selected_div_qvcontent.find_element_by_class_name(name='TextObject') find_div_clickable.click() sleep(3) def select_indemnization(driver): find_div_by_id = driver.find_element_by_id('83') selected_div_qvcontent = find_div_by_id.find_elements_by_class_name(name='QvContent')[0] find_div_clickable = selected_div_qvcontent.find_element_by_class_name(name='TextObject') find_div_clickable.click() sleep(3) def select_year(year, driver): # Usado para selecionar a div e o ano dele div_year = driver.find_element(By.XPATH, '//*[@title="Ano"]/div') div_year.click() sleep(1) year_selected = driver.find_element(By.XPATH, f'//*[@title="{year}"]') year_selected.click() sleep(2) def select_month(month, driver): # Estava dando erro quando o mês já estava selecionado, para resolver, apenas ignoro try: # Usado para selecionar a div e o mês dele div_month = driver.find_element(By.XPATH, '//*[@title="Mês"]/div') div_month.click() sleep(1) month_selected = driver.find_element(By.XPATH, f'//*[@title="{month}"]') month_selected.click() sleep(2) except: pass def download(output_path, driver, year, month, name): n1 = driver.find_element(By.XPATH, "//*[@title='Enviar para Excel']") n1.click() sleep(15) file_name = format_filename(output_path, year, month, name) return file_name def format_filename(output_path, year, month, name): # Identifying the name of the last downloaded file filename = max([os.path.join(output_path, f) for f in os.listdir(output_path)], key=os.path.getctime) # renaming the file properly, according to the payroll new_filename = name + "-" + year + '-' + month + ".xlsx" shutil.move(filename,os.path.join(output_path,f"{new_filename}")) new_output_path =output_path + "/" + new_filename return new_output_path
import pathlib import os import sys from time import sleep import shutil from selenium import webdriver from selenium.webdriver.common.by import By BASE_URL = 'https://transparencia.mpms.mp.br/QvAJAXZfc/opendoc.htm?document=portaltransparencia%5Cportaltransparencia.qvw&lang=pt-BR&host=QVS%40srv-1645&anonymous=true' MONTHS = ['Jan', 'Fev', 'Mar', 'Abr', 'Mai', 'Jun', 'Jul', 'Ago', 'Set', 'Out', 'Nov', 'Dez'] def crawl(year, month, driver_path, output_path): file = [] pathlib.Path(output_path).mkdir(exist_ok=True) driver = setup_driver(driver_path, output_path) find_paycheck(driver) select_remuneration(driver) if(year != '2021'): select_year(year, driver) # Usar o mês passado como parâmetro para pegar o equivalente em string select_month(MONTHS[int(month) - 1], driver) file.append(download(output_path, driver, year, month, 'remuneracao')) if year == '2020' or year == '2021' or (year == '2019' and int(month)>=7): select_indemnization(driver) if(year != '2021'): select_year(year, driver) # Usar o mês passado como parâmetro para pegar o equivalente em string select_month(MONTHS[int(month) - 1], driver) file.append(download(output_path, driver, year, month, 'indenizacao')) return file def setup_driver(driver_path, output_path): # Seting the directorys to be used by selenium current_directory = os.getcwd() path_chrome = current_directory + driver_path path_prefs = output_path # Attributing the paths to the webdriver chrome_options = webdriver.ChromeOptions() chrome_options.add_argument('user-agent="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36"') chrome_options.add_experimental_option('prefs', { 'download.default_directory': path_prefs, 'download.prompt_for_download': False }) chrome_options.add_argument('--headless') chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--disable-setuid-sandbox') chrome_options.add_argument('start-maximized') return webdriver.Chrome(executable_path=path_chrome, chrome_options=chrome_options) def find_paycheck(driver): driver.get(BASE_URL) sleep(15) # find_main_contain = driver.find_element_by_css_selector('.QvPageBody') find_div_by_id = driver.find_element_by_class_name('Document_TX28') selected_div_qvcontent = find_div_by_id.find_elements_by_class_name(name='QvContent')[0] find_div_clickable = selected_div_qvcontent.find_element_by_class_name(name='TextObject') find_div_clickable.click() sleep(3) def select_remuneration(driver): find_div_by_id = driver.find_element_by_id('26') selected_div_qvcontent = find_div_by_id.find_elements_by_class_name(name='QvContent')[0] find_div_clickable = selected_div_qvcontent.find_element_by_class_name(name='TextObject') find_div_clickable.click() sleep(3) def select_indemnization(driver): find_div_by_id = driver.find_element_by_id('83') selected_div_qvcontent = find_div_by_id.find_elements_by_class_name(name='QvContent')[0] find_div_clickable = selected_div_qvcontent.find_element_by_class_name(name='TextObject') find_div_clickable.click() sleep(3) def select_year(year, driver): # Usado para selecionar a div e o ano dele div_year = driver.find_element(By.XPATH, '//*[@title="Ano"]/div') div_year.click() sleep(1) year_selected = driver.find_element(By.XPATH, f'//*[@title="{year}"]') year_selected.click() sleep(2) def select_month(month, driver): # Estava dando erro quando o mês já estava selecionado, para resolver, apenas ignoro try: # Usado para selecionar a div e o mês dele div_month = driver.find_element(By.XPATH, '//*[@title="Mês"]/div') div_month.click() sleep(1) month_selected = driver.find_element(By.XPATH, f'//*[@title="{month}"]') month_selected.click() sleep(2) except: pass def download(output_path, driver, year, month, name): n1 = driver.find_element(By.XPATH, "//*[@title='Enviar para Excel']") n1.click() sleep(15) file_name = format_filename(output_path, year, month, name) return file_name def format_filename(output_path, year, month, name): # Identifying the name of the last downloaded file filename = max([os.path.join(output_path, f) for f in os.listdir(output_path)], key=os.path.getctime) # renaming the file properly, according to the payroll new_filename = name + "-" + year + '-' + month + ".xlsx" shutil.move(filename,os.path.join(output_path,f"{new_filename}")) new_output_path =output_path + "/" + new_filename return new_output_path
pt
0.825527
# Usar o mês passado como parâmetro para pegar o equivalente em string # Usar o mês passado como parâmetro para pegar o equivalente em string # Seting the directorys to be used by selenium # Attributing the paths to the webdriver # find_main_contain = driver.find_element_by_css_selector('.QvPageBody') # Usado para selecionar a div e o ano dele # Estava dando erro quando o mês já estava selecionado, para resolver, apenas ignoro # Usado para selecionar a div e o mês dele # Identifying the name of the last downloaded file # renaming the file properly, according to the payroll
2.909616
3
updater/__init__.py
daguar/srtracker
2
6631253
# Copyright (C) 2012, Code for America # This is open source software, released under a standard 3-clause # BSD-style license; see the file LICENSE for details. from update import subscribe, subscription_exists, unsubscribe, subscription_for_key, unsubscribe_with_key
# Copyright (C) 2012, Code for America # This is open source software, released under a standard 3-clause # BSD-style license; see the file LICENSE for details. from update import subscribe, subscription_exists, unsubscribe, subscription_for_key, unsubscribe_with_key
en
0.858194
# Copyright (C) 2012, Code for America # This is open source software, released under a standard 3-clause # BSD-style license; see the file LICENSE for details.
0.803589
1
model-optimizer/mo/front/common/partial_infer/utils.py
undeadinu/dldt
1
6631254
""" Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging as log import numpy as np def int64_array(l: list): return np.array(l, dtype=np.int64) def float_array(l: list): return np.array(l, dtype=np.int64) def mark_input_bins(node, names=('weights', 'biases'), start_port: int = 1): """ Preparing necessary attributes for edges at input ports starting from start_port. It is applicable for convolution and other operations that has constant inputs which are intended to be dumped as IE IR bin file. """ nports = len(node.in_nodes()) for i, name in enumerate(names): port = i + start_port if port >= nports: break if node.in_node(port).value is not None: node.in_edge(port)['bin'] = name def assign_dims_to_weights(node, spatial, input_channel, output_channel=None, dims_number=None): if spatial is not None: node['spatial_dims'] = np.array(spatial, dtype=np.int64) node['input_channel_dim'] = np.array(input_channel, dtype=np.int64) node['output_channel_dim'] = np.array(output_channel, dtype=np.int64) if 'input_channel_dim' not in node['dim_attrs']: node['dim_attrs'].append('input_channel_dim') node['dims_number'] = dims_number def copy_or_none(x): return x.copy() if x is not None else None def convert_tf_padding_to_str(padding): mapping = {b'SAME': 'same_upper', b'VALID': 'valid'} return mapping[padding.s] # TODO eliminate this dependency and pass necessary function as an argument def tf_window_op_pad_infer(input, window, stride, auto_pad): if input is None or window is None or stride is None or auto_pad is None: return (None, None) if auto_pad in ['same_lower', 'same_upper']: if auto_pad == 'same_upper': output = np.int64(np.ceil(input / stride)) else: output = np.int64(np.floor(input / stride)) residual = input % stride mask = residual == 0 full_pad = window.copy() full_pad[mask] -= stride[mask] mask = np.logical_not(mask) full_pad[mask] -= input[mask] % stride[mask] full_pad = np.maximum(full_pad, 0) low_pad = np.int64(full_pad / 2) high_pad = full_pad - low_pad pad = np.array([low_pad, high_pad]).transpose() elif auto_pad == 'valid': output = np.int64(np.ceil((input - window + 1) / stride)) pad = np.zeros((len(output), 2), dtype=np.int64) else: log.error("Unsupported padding scheme: {}".format(auto_pad)) pad = None output = None return (pad, output)
""" Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging as log import numpy as np def int64_array(l: list): return np.array(l, dtype=np.int64) def float_array(l: list): return np.array(l, dtype=np.int64) def mark_input_bins(node, names=('weights', 'biases'), start_port: int = 1): """ Preparing necessary attributes for edges at input ports starting from start_port. It is applicable for convolution and other operations that has constant inputs which are intended to be dumped as IE IR bin file. """ nports = len(node.in_nodes()) for i, name in enumerate(names): port = i + start_port if port >= nports: break if node.in_node(port).value is not None: node.in_edge(port)['bin'] = name def assign_dims_to_weights(node, spatial, input_channel, output_channel=None, dims_number=None): if spatial is not None: node['spatial_dims'] = np.array(spatial, dtype=np.int64) node['input_channel_dim'] = np.array(input_channel, dtype=np.int64) node['output_channel_dim'] = np.array(output_channel, dtype=np.int64) if 'input_channel_dim' not in node['dim_attrs']: node['dim_attrs'].append('input_channel_dim') node['dims_number'] = dims_number def copy_or_none(x): return x.copy() if x is not None else None def convert_tf_padding_to_str(padding): mapping = {b'SAME': 'same_upper', b'VALID': 'valid'} return mapping[padding.s] # TODO eliminate this dependency and pass necessary function as an argument def tf_window_op_pad_infer(input, window, stride, auto_pad): if input is None or window is None or stride is None or auto_pad is None: return (None, None) if auto_pad in ['same_lower', 'same_upper']: if auto_pad == 'same_upper': output = np.int64(np.ceil(input / stride)) else: output = np.int64(np.floor(input / stride)) residual = input % stride mask = residual == 0 full_pad = window.copy() full_pad[mask] -= stride[mask] mask = np.logical_not(mask) full_pad[mask] -= input[mask] % stride[mask] full_pad = np.maximum(full_pad, 0) low_pad = np.int64(full_pad / 2) high_pad = full_pad - low_pad pad = np.array([low_pad, high_pad]).transpose() elif auto_pad == 'valid': output = np.int64(np.ceil((input - window + 1) / stride)) pad = np.zeros((len(output), 2), dtype=np.int64) else: log.error("Unsupported padding scheme: {}".format(auto_pad)) pad = None output = None return (pad, output)
en
0.884808
Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Preparing necessary attributes for edges at input ports starting from start_port. It is applicable for convolution and other operations that has constant inputs which are intended to be dumped as IE IR bin file. # TODO eliminate this dependency and pass necessary function as an argument
1.856518
2
sgas/authz/ctxinsertchecker.py
kmjonsson/luts3-service
0
6631255
<reponame>kmjonsson/luts3-service """ Usage Records insertion checker. Provides functionality for checking if a host should be able to insert a given usage record. Author: <NAME> <<EMAIL>> Copyright: Nordic Data Grid Facility (2009, 2010) """ from sgas.authz import rights class InsertChecker: CONTEXT_KEY = None def __init__(self, check_depth): self.check_depth = check_depth def contextCheck(self, subject_identity, subject_rights, action_context): """ Given a (x509) subject identity, subject rights and a context with for the insertion, this function decides if the subject is allowed to perform insertion for the given context. This is done both with specific checking of specified context, and by checking "similarity" between the subject identity host name and the action context. """ if action_context is None: return True # compat mode subject_fqdn = extractFQDNfromX509Identity(subject_identity) insert_context = [ ctx_value for ctx_key, ctx_value in action_context if ctx_key == self.CONTEXT_KEY ] # insert context explicitely allowed explicit_allowed_contexts = [] for sr in subject_rights: explicit_allowed_contexts += sr.get(self.CONTEXT_KEY, []) # subject name parts for depth checking id_parts = [ p for p in subject_fqdn.split('.') if p != '' ] cd = min(self.check_depth, len(id_parts)) # go through all requested machine names and check if insert is allowed allowed = [] for ic in insert_context: if ic in explicit_allowed_contexts: allowed.append(True) continue # check if x509 identity is close enough to machine name to allow insertion ic_parts = [ p for p in ic.split('.') if p != '' ] if len(ic_parts) < cd: allowed.append(False) continue for d in range( - cd, 0): if ic_parts[d] != id_parts[d]: allowed.append(False) break else: # for loop terminated without breaking, check depth ok allowed.append(True) return all(allowed) def extractFQDNfromX509Identity(identity): """ Givens strings like: "/O=Grid/O=NorduGrid/CN=benedict.grid.aau.dk" "/O=Grid/O=NorduGrid/CN=host/fyrkat.grid.aau.dk" this function returns the FQDN of the identity. """ if identity is None: return '.' # this is technically a hostname tokens = identity.split('/') if len(tokens) == 1: return identity # not an x509 identity if tokens[-2] == 'CN=host': fqdn = tokens[-1] elif tokens[-1].startswith('CN='): fqdn = tokens[-1].split('=',2)[1] else: raise ValueError('Could not extract FQDN from X509 identity (%s)' % identity) if not '.' in fqdn: raise ValueError('Extracted FQDN is not an FQDN (%s)' % fqdn) return fqdn
""" Usage Records insertion checker. Provides functionality for checking if a host should be able to insert a given usage record. Author: <NAME> <<EMAIL>> Copyright: Nordic Data Grid Facility (2009, 2010) """ from sgas.authz import rights class InsertChecker: CONTEXT_KEY = None def __init__(self, check_depth): self.check_depth = check_depth def contextCheck(self, subject_identity, subject_rights, action_context): """ Given a (x509) subject identity, subject rights and a context with for the insertion, this function decides if the subject is allowed to perform insertion for the given context. This is done both with specific checking of specified context, and by checking "similarity" between the subject identity host name and the action context. """ if action_context is None: return True # compat mode subject_fqdn = extractFQDNfromX509Identity(subject_identity) insert_context = [ ctx_value for ctx_key, ctx_value in action_context if ctx_key == self.CONTEXT_KEY ] # insert context explicitely allowed explicit_allowed_contexts = [] for sr in subject_rights: explicit_allowed_contexts += sr.get(self.CONTEXT_KEY, []) # subject name parts for depth checking id_parts = [ p for p in subject_fqdn.split('.') if p != '' ] cd = min(self.check_depth, len(id_parts)) # go through all requested machine names and check if insert is allowed allowed = [] for ic in insert_context: if ic in explicit_allowed_contexts: allowed.append(True) continue # check if x509 identity is close enough to machine name to allow insertion ic_parts = [ p for p in ic.split('.') if p != '' ] if len(ic_parts) < cd: allowed.append(False) continue for d in range( - cd, 0): if ic_parts[d] != id_parts[d]: allowed.append(False) break else: # for loop terminated without breaking, check depth ok allowed.append(True) return all(allowed) def extractFQDNfromX509Identity(identity): """ Givens strings like: "/O=Grid/O=NorduGrid/CN=benedict.grid.aau.dk" "/O=Grid/O=NorduGrid/CN=host/fyrkat.grid.aau.dk" this function returns the FQDN of the identity. """ if identity is None: return '.' # this is technically a hostname tokens = identity.split('/') if len(tokens) == 1: return identity # not an x509 identity if tokens[-2] == 'CN=host': fqdn = tokens[-1] elif tokens[-1].startswith('CN='): fqdn = tokens[-1].split('=',2)[1] else: raise ValueError('Could not extract FQDN from X509 identity (%s)' % identity) if not '.' in fqdn: raise ValueError('Extracted FQDN is not an FQDN (%s)' % fqdn) return fqdn
en
0.745934
Usage Records insertion checker. Provides functionality for checking if a host should be able to insert a given usage record. Author: <NAME> <<EMAIL>> Copyright: Nordic Data Grid Facility (2009, 2010) Given a (x509) subject identity, subject rights and a context with for the insertion, this function decides if the subject is allowed to perform insertion for the given context. This is done both with specific checking of specified context, and by checking "similarity" between the subject identity host name and the action context. # compat mode # insert context explicitely allowed # subject name parts for depth checking # go through all requested machine names and check if insert is allowed # check if x509 identity is close enough to machine name to allow insertion # for loop terminated without breaking, check depth ok Givens strings like: "/O=Grid/O=NorduGrid/CN=benedict.grid.aau.dk" "/O=Grid/O=NorduGrid/CN=host/fyrkat.grid.aau.dk" this function returns the FQDN of the identity. # this is technically a hostname # not an x509 identity
2.805139
3
psltdsim/find/findGenOnBus.py
thadhaines/PSLTDSim
0
6631256
def findGenOnBus(mirror, Busnum, Id=None, timing = True): """Find first generator on bus unless Id specified Note that Ids are typically a strings i.e. '2' """ # TODO: remove this import import time if timing: tic = time.time() #if mirror.debug: # prints a lot # print('***Searching Bus %d for gen with ID %s...' %(Busnum, Id)) if not mirror.searchDict: for x in range(len(mirror.Machines)): if mirror.Machines[x].Busnum == Busnum: # Return first gen on bus if no Id if mirror.debug: print('***Found gen on Bus %d with ID %s...' %(mirror.Machines[x].Busnum, mirror.Machines[x].Id)) if Id == None: if timing: mirror.FindTime += time.time() - tic return mirror.Machines[x] if Id == mirror.Machines[x].Id: mirror.FindTime += time.time() - tic return mirror.Machines[x] else: bnum = str(int(Busnum)) if bnum in mirror.searchDict: # bus found if 'Machines' in mirror.searchDict[bnum]: # bus has machines if Id == None: # return first gen if No id if timing: mirror.FindTime += time.time() - tic return mirror.searchDict[bnum]['Machines'][0] else: # find gen with matching ID for bGen in mirror.searchDict[bnum]['Machines']: if bGen.Id == Id: if timing: mirror.FindTime += time.time() - tic return bGen if Id: print("Generator on Bus %d with Id '%s' not Found" % (Busnum,Id)) else: print("Generator on Bus %d not Found" % Busnum) if timing: mirror.FindTime += time.time() - tic return None
def findGenOnBus(mirror, Busnum, Id=None, timing = True): """Find first generator on bus unless Id specified Note that Ids are typically a strings i.e. '2' """ # TODO: remove this import import time if timing: tic = time.time() #if mirror.debug: # prints a lot # print('***Searching Bus %d for gen with ID %s...' %(Busnum, Id)) if not mirror.searchDict: for x in range(len(mirror.Machines)): if mirror.Machines[x].Busnum == Busnum: # Return first gen on bus if no Id if mirror.debug: print('***Found gen on Bus %d with ID %s...' %(mirror.Machines[x].Busnum, mirror.Machines[x].Id)) if Id == None: if timing: mirror.FindTime += time.time() - tic return mirror.Machines[x] if Id == mirror.Machines[x].Id: mirror.FindTime += time.time() - tic return mirror.Machines[x] else: bnum = str(int(Busnum)) if bnum in mirror.searchDict: # bus found if 'Machines' in mirror.searchDict[bnum]: # bus has machines if Id == None: # return first gen if No id if timing: mirror.FindTime += time.time() - tic return mirror.searchDict[bnum]['Machines'][0] else: # find gen with matching ID for bGen in mirror.searchDict[bnum]['Machines']: if bGen.Id == Id: if timing: mirror.FindTime += time.time() - tic return bGen if Id: print("Generator on Bus %d with Id '%s' not Found" % (Busnum,Id)) else: print("Generator on Bus %d not Found" % Busnum) if timing: mirror.FindTime += time.time() - tic return None
en
0.68711
Find first generator on bus unless Id specified Note that Ids are typically a strings i.e. '2' # TODO: remove this import #if mirror.debug: # prints a lot # print('***Searching Bus %d for gen with ID %s...' %(Busnum, Id)) # Return first gen on bus if no Id # bus found # bus has machines # return first gen if No id # find gen with matching ID
3.171308
3
docs/quickstart.py
shapiromatron/bmds-server
1
6631257
import json import os import time import requests # set the URL root to the address where BMDS server is currently running url_root = os.environ.get("BMDS_SERVER_URL", "http://bmds-server.com") # Create an example BMDS job. This example uses uses BMDS v2.6.0.1. with two # dichotomous datasets: inputs = { "id": "My first BMDS-server run", "dataset_type": "D", "bmds_version": "BMDS270", "datasets": [ { "id": "run #1", "doses": [0, 1.96, 5.69, 29.75], "ns": [75, 49, 50, 49], "incidences": [5, 1, 3, 14], }, { "id": 2, "doses": [0, 1.96, 5.69, 29.75], "ns": [75, 49, 50, 49], "incidences": [0, 0, 11, 27], }, ], } # We submit the dataset to the job API: url = f"{url_root}/api/job/" data = {"inputs": json.dumps(inputs)} r = requests.post(url, data) # If submission is successful, we'll get a HTTP 201 response (job # created), along with a new random unique identifier for this job: if r.status_code == 201: job_id = r.json()["id"] # Each job is added to a queue on the server; when there are no other jobs # running this job will be started. We can poll the results page (in this # case waiting 15 seconds between requests) until the job is finished: url = f"{url_root}/api/job/{job_id}/" while True: print("Polling outputs... sleeping for 15 seconds...") time.sleep(15) r = requests.get(url) response = r.json() if response["is_finished"]: print("Job complete!") break # After completion, the job returns model outputs. There's lots of # information in the outputs, including the created dfile, output file, # and results from the parsed output. If model-recommendations is enabled, # then a model will also be recommended in the outputs. Here's a snapshot: outputs = response["outputs"] for dataset in outputs["outputs"]: print("----") ds = json.dumps(dataset["dataset"], indent=2) n_models = len(dataset["models"]) print(f"Dataset: {ds}") print(f"Number of models: {n_models}") for model in dataset["models"]: name = model["output"]["model_name"] bmd = model["output"]["BMD"] print(f" - {name}: BMD -> {bmd}")
import json import os import time import requests # set the URL root to the address where BMDS server is currently running url_root = os.environ.get("BMDS_SERVER_URL", "http://bmds-server.com") # Create an example BMDS job. This example uses uses BMDS v2.6.0.1. with two # dichotomous datasets: inputs = { "id": "My first BMDS-server run", "dataset_type": "D", "bmds_version": "BMDS270", "datasets": [ { "id": "run #1", "doses": [0, 1.96, 5.69, 29.75], "ns": [75, 49, 50, 49], "incidences": [5, 1, 3, 14], }, { "id": 2, "doses": [0, 1.96, 5.69, 29.75], "ns": [75, 49, 50, 49], "incidences": [0, 0, 11, 27], }, ], } # We submit the dataset to the job API: url = f"{url_root}/api/job/" data = {"inputs": json.dumps(inputs)} r = requests.post(url, data) # If submission is successful, we'll get a HTTP 201 response (job # created), along with a new random unique identifier for this job: if r.status_code == 201: job_id = r.json()["id"] # Each job is added to a queue on the server; when there are no other jobs # running this job will be started. We can poll the results page (in this # case waiting 15 seconds between requests) until the job is finished: url = f"{url_root}/api/job/{job_id}/" while True: print("Polling outputs... sleeping for 15 seconds...") time.sleep(15) r = requests.get(url) response = r.json() if response["is_finished"]: print("Job complete!") break # After completion, the job returns model outputs. There's lots of # information in the outputs, including the created dfile, output file, # and results from the parsed output. If model-recommendations is enabled, # then a model will also be recommended in the outputs. Here's a snapshot: outputs = response["outputs"] for dataset in outputs["outputs"]: print("----") ds = json.dumps(dataset["dataset"], indent=2) n_models = len(dataset["models"]) print(f"Dataset: {ds}") print(f"Number of models: {n_models}") for model in dataset["models"]: name = model["output"]["model_name"] bmd = model["output"]["BMD"] print(f" - {name}: BMD -> {bmd}")
en
0.913764
# set the URL root to the address where BMDS server is currently running # Create an example BMDS job. This example uses uses BMDS v2.6.0.1. with two # dichotomous datasets: #1", # We submit the dataset to the job API: # If submission is successful, we'll get a HTTP 201 response (job # created), along with a new random unique identifier for this job: # Each job is added to a queue on the server; when there are no other jobs # running this job will be started. We can poll the results page (in this # case waiting 15 seconds between requests) until the job is finished: # After completion, the job returns model outputs. There's lots of # information in the outputs, including the created dfile, output file, # and results from the parsed output. If model-recommendations is enabled, # then a model will also be recommended in the outputs. Here's a snapshot:
2.916671
3
tests/postgres_tests/__init__.py
JBKahn/django
3
6631258
<reponame>JBKahn/django<filename>tests/postgres_tests/__init__.py<gh_stars>1-10 import unittest from django.db import connection from django.db.backends.signals import connection_created from django.test import TestCase @unittest.skipUnless(connection.vendor == 'postgresql', "PostgreSQL specific tests") class PostgreSQLTestCase(TestCase): @classmethod def tearDownClass(cls): # No need to keep that signal overhead for non PostgreSQL-related tests. from django.contrib.postgres.signals import register_hstore_handler connection_created.disconnect(register_hstore_handler) super(PostgreSQLTestCase, cls).tearDownClass()
import unittest from django.db import connection from django.db.backends.signals import connection_created from django.test import TestCase @unittest.skipUnless(connection.vendor == 'postgresql', "PostgreSQL specific tests") class PostgreSQLTestCase(TestCase): @classmethod def tearDownClass(cls): # No need to keep that signal overhead for non PostgreSQL-related tests. from django.contrib.postgres.signals import register_hstore_handler connection_created.disconnect(register_hstore_handler) super(PostgreSQLTestCase, cls).tearDownClass()
en
0.960956
# No need to keep that signal overhead for non PostgreSQL-related tests.
1.962467
2
configs/twins/twins_svt-s_fpn_fpnhead_8x4_512x512_80k_ade20k.py
rehohoho/mmsegmentation
1
6631259
_base_ = [ '../_base_/models/twins_pcpvt-s_fpn.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/alt_gvt_small_20220308-7e1c3695.pth' # noqa model = dict( backbone=dict( type='SVT', init_cfg=dict(type='Pretrained', checkpoint=checkpoint), embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4], depths=[2, 2, 10, 4], windiow_sizes=[7, 7, 7, 7], norm_after_stage=True), neck=dict(in_channels=[64, 128, 256, 512], out_channels=256, num_outs=4), decode_head=dict(num_classes=150), ) optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001)
_base_ = [ '../_base_/models/twins_pcpvt-s_fpn.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py' ] checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/alt_gvt_small_20220308-7e1c3695.pth' # noqa model = dict( backbone=dict( type='SVT', init_cfg=dict(type='Pretrained', checkpoint=checkpoint), embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4], depths=[2, 2, 10, 4], windiow_sizes=[7, 7, 7, 7], norm_after_stage=True), neck=dict(in_channels=[64, 128, 256, 512], out_channels=256, num_outs=4), decode_head=dict(num_classes=150), ) optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001)
none
1
1.598241
2
tests/files/md_codeblock_idem_test.py
panfill/pandoc-tables
74
6631260
<gh_stars>10-100 from logging import getLogger from pathlib import Path from typing import Tuple from panflute import convert_text from pytest import mark from pantable.ast import PanCodeBlock from pantable.util import parse_markdown_codeblock logger = getLogger('pantable') EXT = 'md' PWD = Path(__file__).parent DIR = PWD / 'md_codeblock' def round_trip(text: str) -> str: kwargs = parse_markdown_codeblock(text) pan_codeblock = PanCodeBlock.from_yaml_filter(**kwargs) doc = pan_codeblock.to_panflute_ast() return convert_text(doc, input_format='panflute', output_format='markdown') def read(path: Path) -> Tuple[str, str, str]: '''test parsing markdown codeblock to PanCodeBlock ''' logger.info(f'Testing idempotence with {path}...') with open(path, 'r') as f: text = f.read() text_out = round_trip(text) text_idem = round_trip(text_out) return text_out, text_idem, text def read_io(name: str) -> Tuple[str, str, str]: path = DIR / f'{name}.{EXT}' return read(path) @mark.parametrize('name', (path.stem for path in DIR.glob(f'*.{EXT}'))) def test_md_codeblock_idem(name): res = read_io(name) assert res[0].strip() == res[1].strip()
from logging import getLogger from pathlib import Path from typing import Tuple from panflute import convert_text from pytest import mark from pantable.ast import PanCodeBlock from pantable.util import parse_markdown_codeblock logger = getLogger('pantable') EXT = 'md' PWD = Path(__file__).parent DIR = PWD / 'md_codeblock' def round_trip(text: str) -> str: kwargs = parse_markdown_codeblock(text) pan_codeblock = PanCodeBlock.from_yaml_filter(**kwargs) doc = pan_codeblock.to_panflute_ast() return convert_text(doc, input_format='panflute', output_format='markdown') def read(path: Path) -> Tuple[str, str, str]: '''test parsing markdown codeblock to PanCodeBlock ''' logger.info(f'Testing idempotence with {path}...') with open(path, 'r') as f: text = f.read() text_out = round_trip(text) text_idem = round_trip(text_out) return text_out, text_idem, text def read_io(name: str) -> Tuple[str, str, str]: path = DIR / f'{name}.{EXT}' return read(path) @mark.parametrize('name', (path.stem for path in DIR.glob(f'*.{EXT}'))) def test_md_codeblock_idem(name): res = read_io(name) assert res[0].strip() == res[1].strip()
en
0.539133
test parsing markdown codeblock to PanCodeBlock
2.241243
2
project/decorators.py
18F/cloud-marketplace-prototype
0
6631261
import logging from django.contrib.auth import REDIRECT_FIELD_NAME, decorators from django.core.exceptions import PermissionDenied logger = logging.getLogger('cmp') def staff_login_required(function=None, redirect_field_name=REDIRECT_FIELD_NAME, login_url=None): ''' Decorator to check that the user accessing the decorated view has their is_staff flag set to True. It will first redirect to login_url or the default login url if the user is not authenticated. If the user is authenticated but is not staff, then a PermissionDenied exception will be raised. ''' # Based off code from the Django project # License: https://github.com/django/django/blob/c1aec0feda73ede09503192a66f973598aef901d/LICENSE # NOQA # Code reference: https://github.com/django/django/blob/c1aec0feda73ede09503192a66f973598aef901d/django/contrib/auth/decorators.py#L40 # NOQA def check_if_staff(user): if not user.is_authenticated: # returning False will cause the user_passes_test decorator # to redirect to the login flow logger.info(f'Unauthenticated user has attempted to access ' f'is_staff view') return False if user.is_staff: # then all good logger.info(f'User with id {user.id} ({user.email}) has passed ' f'is_staff check') return True # otherwise the user is authenticated but isn't staff, so # they do not have the correct permissions and should be directed # to the 403 page logger.info(f'User with id {user.id} ({user.email}) is ' f'authenticated but has not passed is_staff check') raise PermissionDenied actual_decorator = decorators.user_passes_test( check_if_staff, login_url=login_url, redirect_field_name=redirect_field_name ) if function: return actual_decorator(function) return actual_decorator
import logging from django.contrib.auth import REDIRECT_FIELD_NAME, decorators from django.core.exceptions import PermissionDenied logger = logging.getLogger('cmp') def staff_login_required(function=None, redirect_field_name=REDIRECT_FIELD_NAME, login_url=None): ''' Decorator to check that the user accessing the decorated view has their is_staff flag set to True. It will first redirect to login_url or the default login url if the user is not authenticated. If the user is authenticated but is not staff, then a PermissionDenied exception will be raised. ''' # Based off code from the Django project # License: https://github.com/django/django/blob/c1aec0feda73ede09503192a66f973598aef901d/LICENSE # NOQA # Code reference: https://github.com/django/django/blob/c1aec0feda73ede09503192a66f973598aef901d/django/contrib/auth/decorators.py#L40 # NOQA def check_if_staff(user): if not user.is_authenticated: # returning False will cause the user_passes_test decorator # to redirect to the login flow logger.info(f'Unauthenticated user has attempted to access ' f'is_staff view') return False if user.is_staff: # then all good logger.info(f'User with id {user.id} ({user.email}) has passed ' f'is_staff check') return True # otherwise the user is authenticated but isn't staff, so # they do not have the correct permissions and should be directed # to the 403 page logger.info(f'User with id {user.id} ({user.email}) is ' f'authenticated but has not passed is_staff check') raise PermissionDenied actual_decorator = decorators.user_passes_test( check_if_staff, login_url=login_url, redirect_field_name=redirect_field_name ) if function: return actual_decorator(function) return actual_decorator
en
0.814372
Decorator to check that the user accessing the decorated view has their is_staff flag set to True. It will first redirect to login_url or the default login url if the user is not authenticated. If the user is authenticated but is not staff, then a PermissionDenied exception will be raised. # Based off code from the Django project # License: https://github.com/django/django/blob/c1aec0feda73ede09503192a66f973598aef901d/LICENSE # NOQA # Code reference: https://github.com/django/django/blob/c1aec0feda73ede09503192a66f973598aef901d/django/contrib/auth/decorators.py#L40 # NOQA # returning False will cause the user_passes_test decorator # to redirect to the login flow # then all good # otherwise the user is authenticated but isn't staff, so # they do not have the correct permissions and should be directed # to the 403 page
2.374164
2
nvm/pmemobj/__init__.py
isabella232/pynvm
11
6631262
<filename>nvm/pmemobj/__init__.py from .pool import open, create, MIN_POOL_SIZE, PersistentObjectPool from .list import PersistentList from .dict import PersistentDict from .object import PersistentObject from .tuple import PersistentTuple from .set import PersistentSet, PersistentFrozenSet
<filename>nvm/pmemobj/__init__.py from .pool import open, create, MIN_POOL_SIZE, PersistentObjectPool from .list import PersistentList from .dict import PersistentDict from .object import PersistentObject from .tuple import PersistentTuple from .set import PersistentSet, PersistentFrozenSet
none
1
1.44051
1
binder_requirements.py
whoopnip/project-report
0
6631263
import conf if __name__ == "__main__": for package in conf.BINDER_ENVIRONMENT_REQUIRES: print(package)
import conf if __name__ == "__main__": for package in conf.BINDER_ENVIRONMENT_REQUIRES: print(package)
none
1
1.437693
1
aim/sdk/init.py
VkoHov/aim
1
6631264
from aim.sdk.session import DefaultSession def init(*args, **kwargs): DefaultSession(*args, **kwargs)
from aim.sdk.session import DefaultSession def init(*args, **kwargs): DefaultSession(*args, **kwargs)
none
1
1.472934
1
pillcity/resources/media.py
Crystal-RainSlide/pill-city
0
6631265
import os import boto3 import json import werkzeug import uuid from typing import List from flask_restful import reqparse, Resource, fields from flask_jwt_extended import jwt_required, get_jwt_identity from pillcity.models.media import Media from pillcity.daos.media import get_media, create_media, get_media_page from pillcity.daos.user import find_user from pillcity.utils.now_ms import now_ms from pillcity.utils.profiling import timer from .cache import r, RMediaUrl MaxMediaCount = 4 PostMediaUrlExpireSeconds = 3600 * 12 # 12 hours GetMediaPageCount = 4 # Cache structure within Redis # "mediaUrl" -> object_name -> "media url"(space)"media url generated time in ms" @timer def get_media_url(media: Media): object_name = media.id # subtract expiry by 10 seconds for some network overhead r_media_url = r.hget(RMediaUrl, object_name) if r_media_url: r_media_url = r_media_url.decode('utf-8') if now_ms() < int(r_media_url.split(" ")[1]) + (PostMediaUrlExpireSeconds - 10) * 1000: return r_media_url.split(" ")[0] sts_client = boto3.client( 'sts', endpoint_url=os.environ['STS_ENDPOINT_URL'], region_name=os.environ.get('AWS_REGION', ''), aws_access_key_id=os.environ['AWS_ACCESS_KEY'], aws_secret_access_key=os.environ['AWS_SECRET_KEY'] ) s3_bucket_name = os.environ['S3_BUCKET_NAME'] # obtain temp token read_media_policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": "s3:GetObject", "Resource": [f"arn:aws:s3:::{s3_bucket_name}/{object_name}"], }, ], } assume_role_response = sts_client.assume_role( # for minio this is moot # for s3 this role allows all media read, but intersects with the inline policy, the temp role # would still be minimal privilege RoleArn=os.environ['MEDIA_READER_ROLE_ARN'], # media-reader is the only principal who can assume the role so this can be fixed RoleSessionName='media-reader', Policy=json.dumps(read_media_policy), DurationSeconds=PostMediaUrlExpireSeconds, ) temp_s3_client = boto3.client( 's3', endpoint_url=os.environ['S3_ENDPOINT_URL'], region_name=os.environ.get('AWS_REGION', ''), aws_access_key_id=assume_role_response['Credentials']['AccessKeyId'], aws_secret_access_key=assume_role_response['Credentials']['SecretAccessKey'], aws_session_token=assume_role_response['Credentials']['SessionToken'], ) # get pre-signed url media_url = temp_s3_client.generate_presigned_url( ClientMethod='get_object', Params={'Bucket': s3_bucket_name, 'Key': media.id}, ExpiresIn=PostMediaUrlExpireSeconds ) r.hset(RMediaUrl, object_name, f"{media_url} {now_ms()}") return media_url class MediaUrls(fields.Raw): def format(self, media_list): if not media_list: return [] return list(map(get_media_url, media_list)) post_media_parser = reqparse.RequestParser() for i in range(MaxMediaCount): post_media_parser.add_argument('media' + str(i), type=werkzeug.datastructures.FileStorage, location='files', required=False, default=None) get_media_parser = reqparse.RequestParser() get_media_parser.add_argument('page', type=int, required=True, location='args') class Media(Resource): @jwt_required() def post(self): user_id = get_jwt_identity() user = find_user(user_id) if not user: return {'msg': f'User {user_id} is not found'}, 404 args = post_media_parser.parse_args() media_files = [] for i in range(MaxMediaCount): media_file = args['media' + str(i)] if media_file: media_files.append(media_file) media_object_names = [] for media_file in media_files: object_name_stem = f"media/{uuid.uuid4()}" media_object = create_media(media_file, object_name_stem, user) if not media_object: return {'msg': f"Disallowed image type"}, 400 media_object_names.append(media_object.id) return media_object_names, 201 @jwt_required() def get(self): user_id = get_jwt_identity() user = find_user(user_id) if not user: return {'msg': f'User {user_id} is not found'}, 404 args = get_media_parser.parse_args() page_number = args['page'] if page_number < 1: return {'msg': f'Invalid page number'}, 400 def _media(media: Media): return { "objectName": media.id, "mediaUrl": get_media_url(media) } return list(map(_media, get_media_page(user, page_number - 1, GetMediaPageCount))) def check_media_object_names(media_object_names: List[str], limit: int) -> List[Media]: media_objects = [] for media_object_name in media_object_names[: limit]: media_object = get_media(media_object_name) if media_object: media_objects.append(media_object) return media_objects
import os import boto3 import json import werkzeug import uuid from typing import List from flask_restful import reqparse, Resource, fields from flask_jwt_extended import jwt_required, get_jwt_identity from pillcity.models.media import Media from pillcity.daos.media import get_media, create_media, get_media_page from pillcity.daos.user import find_user from pillcity.utils.now_ms import now_ms from pillcity.utils.profiling import timer from .cache import r, RMediaUrl MaxMediaCount = 4 PostMediaUrlExpireSeconds = 3600 * 12 # 12 hours GetMediaPageCount = 4 # Cache structure within Redis # "mediaUrl" -> object_name -> "media url"(space)"media url generated time in ms" @timer def get_media_url(media: Media): object_name = media.id # subtract expiry by 10 seconds for some network overhead r_media_url = r.hget(RMediaUrl, object_name) if r_media_url: r_media_url = r_media_url.decode('utf-8') if now_ms() < int(r_media_url.split(" ")[1]) + (PostMediaUrlExpireSeconds - 10) * 1000: return r_media_url.split(" ")[0] sts_client = boto3.client( 'sts', endpoint_url=os.environ['STS_ENDPOINT_URL'], region_name=os.environ.get('AWS_REGION', ''), aws_access_key_id=os.environ['AWS_ACCESS_KEY'], aws_secret_access_key=os.environ['AWS_SECRET_KEY'] ) s3_bucket_name = os.environ['S3_BUCKET_NAME'] # obtain temp token read_media_policy = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": "s3:GetObject", "Resource": [f"arn:aws:s3:::{s3_bucket_name}/{object_name}"], }, ], } assume_role_response = sts_client.assume_role( # for minio this is moot # for s3 this role allows all media read, but intersects with the inline policy, the temp role # would still be minimal privilege RoleArn=os.environ['MEDIA_READER_ROLE_ARN'], # media-reader is the only principal who can assume the role so this can be fixed RoleSessionName='media-reader', Policy=json.dumps(read_media_policy), DurationSeconds=PostMediaUrlExpireSeconds, ) temp_s3_client = boto3.client( 's3', endpoint_url=os.environ['S3_ENDPOINT_URL'], region_name=os.environ.get('AWS_REGION', ''), aws_access_key_id=assume_role_response['Credentials']['AccessKeyId'], aws_secret_access_key=assume_role_response['Credentials']['SecretAccessKey'], aws_session_token=assume_role_response['Credentials']['SessionToken'], ) # get pre-signed url media_url = temp_s3_client.generate_presigned_url( ClientMethod='get_object', Params={'Bucket': s3_bucket_name, 'Key': media.id}, ExpiresIn=PostMediaUrlExpireSeconds ) r.hset(RMediaUrl, object_name, f"{media_url} {now_ms()}") return media_url class MediaUrls(fields.Raw): def format(self, media_list): if not media_list: return [] return list(map(get_media_url, media_list)) post_media_parser = reqparse.RequestParser() for i in range(MaxMediaCount): post_media_parser.add_argument('media' + str(i), type=werkzeug.datastructures.FileStorage, location='files', required=False, default=None) get_media_parser = reqparse.RequestParser() get_media_parser.add_argument('page', type=int, required=True, location='args') class Media(Resource): @jwt_required() def post(self): user_id = get_jwt_identity() user = find_user(user_id) if not user: return {'msg': f'User {user_id} is not found'}, 404 args = post_media_parser.parse_args() media_files = [] for i in range(MaxMediaCount): media_file = args['media' + str(i)] if media_file: media_files.append(media_file) media_object_names = [] for media_file in media_files: object_name_stem = f"media/{uuid.uuid4()}" media_object = create_media(media_file, object_name_stem, user) if not media_object: return {'msg': f"Disallowed image type"}, 400 media_object_names.append(media_object.id) return media_object_names, 201 @jwt_required() def get(self): user_id = get_jwt_identity() user = find_user(user_id) if not user: return {'msg': f'User {user_id} is not found'}, 404 args = get_media_parser.parse_args() page_number = args['page'] if page_number < 1: return {'msg': f'Invalid page number'}, 400 def _media(media: Media): return { "objectName": media.id, "mediaUrl": get_media_url(media) } return list(map(_media, get_media_page(user, page_number - 1, GetMediaPageCount))) def check_media_object_names(media_object_names: List[str], limit: int) -> List[Media]: media_objects = [] for media_object_name in media_object_names[: limit]: media_object = get_media(media_object_name) if media_object: media_objects.append(media_object) return media_objects
en
0.808685
# 12 hours # Cache structure within Redis # "mediaUrl" -> object_name -> "media url"(space)"media url generated time in ms" # subtract expiry by 10 seconds for some network overhead # obtain temp token # for minio this is moot # for s3 this role allows all media read, but intersects with the inline policy, the temp role # would still be minimal privilege # media-reader is the only principal who can assume the role so this can be fixed # get pre-signed url
1.860667
2
crypto_duck/quack_forum/views.py
sifrovacky-cz/kachna
0
6631266
<filename>crypto_duck/quack_forum/views.py from django.shortcuts import render, get_object_or_404 from django.contrib.auth.decorators import login_required from django.http import HttpResponseRedirect, HttpResponse from django.urls import reverse import datetime #form and model of normal comment from quack_forum.forms import CommentForm from quack_forum.models import QuackForum #form and model of crypto comment from quack_forum.forms import CryptoForm from quack_forum.models import CryptoQuack # saves comment and returns comment models from database def Comment(request): #error (for unregistred user, if they do the check wrong) error_flag = '' #checking if user is loged in if request.user.is_authenticated: html_path = 'quack_forum/forum.html' form = CommentForm() if request.method == "POST": form = CommentForm(request.POST) if form.is_valid(): form_with_user = form.save(commit=False) form_with_user.user = request.user.username form_with_user.save() form = CommentForm() # this is the part when user is not loged in else: check_password = "<PASSWORD>" html_path = 'quack_forum/forum_unauthorized.html' form = CommentForm() if request.method == "POST": form = CommentForm(request.POST) if form.is_valid() and request.POST.get('check') == check_password: form_with_user = form.save(commit=False) form_with_user.user = request.POST.get('username') form_with_user.save() else: error_flag = "Please write " + check_password + " into the box above!" form = CommentForm() # Ordering comments from oldest to newest comment_list = QuackForum.objects.order_by('-date_time') return render(request,html_path,{'form':form,'comment_list':comment_list,'error_flag':error_flag}) @login_required def CryptoComment(request): form = CryptoForm() if request.method == 'POST': form = CryptoForm(request.POST,request.FILES) if form.is_valid(): form = form.save(commit = False) form.author = request.user form.save() return HttpResponseRedirect(reverse('quack_forum:crypto_forum')) return render(request,'quack_forum/crypto_comment_form.html',{'form':form,}) def CryptoForum(request): today = datetime.date.today() error_flag = "" if request.method == 'POST': try: id_value = request.POST.get('id_value') CryptoQuack.objects.filter(id=id_value).delete() except: error_flag = "An error has occured :(" cryptoCommentList = CryptoQuack.objects.order_by('-publish_time') return render(request,'quack_forum/ciphers.html',{'cryptoComentList':cryptoCommentList,'today':today,'error_flag':error_flag})
<filename>crypto_duck/quack_forum/views.py from django.shortcuts import render, get_object_or_404 from django.contrib.auth.decorators import login_required from django.http import HttpResponseRedirect, HttpResponse from django.urls import reverse import datetime #form and model of normal comment from quack_forum.forms import CommentForm from quack_forum.models import QuackForum #form and model of crypto comment from quack_forum.forms import CryptoForm from quack_forum.models import CryptoQuack # saves comment and returns comment models from database def Comment(request): #error (for unregistred user, if they do the check wrong) error_flag = '' #checking if user is loged in if request.user.is_authenticated: html_path = 'quack_forum/forum.html' form = CommentForm() if request.method == "POST": form = CommentForm(request.POST) if form.is_valid(): form_with_user = form.save(commit=False) form_with_user.user = request.user.username form_with_user.save() form = CommentForm() # this is the part when user is not loged in else: check_password = "<PASSWORD>" html_path = 'quack_forum/forum_unauthorized.html' form = CommentForm() if request.method == "POST": form = CommentForm(request.POST) if form.is_valid() and request.POST.get('check') == check_password: form_with_user = form.save(commit=False) form_with_user.user = request.POST.get('username') form_with_user.save() else: error_flag = "Please write " + check_password + " into the box above!" form = CommentForm() # Ordering comments from oldest to newest comment_list = QuackForum.objects.order_by('-date_time') return render(request,html_path,{'form':form,'comment_list':comment_list,'error_flag':error_flag}) @login_required def CryptoComment(request): form = CryptoForm() if request.method == 'POST': form = CryptoForm(request.POST,request.FILES) if form.is_valid(): form = form.save(commit = False) form.author = request.user form.save() return HttpResponseRedirect(reverse('quack_forum:crypto_forum')) return render(request,'quack_forum/crypto_comment_form.html',{'form':form,}) def CryptoForum(request): today = datetime.date.today() error_flag = "" if request.method == 'POST': try: id_value = request.POST.get('id_value') CryptoQuack.objects.filter(id=id_value).delete() except: error_flag = "An error has occured :(" cryptoCommentList = CryptoQuack.objects.order_by('-publish_time') return render(request,'quack_forum/ciphers.html',{'cryptoComentList':cryptoCommentList,'today':today,'error_flag':error_flag})
en
0.893052
#form and model of normal comment #form and model of crypto comment # saves comment and returns comment models from database #error (for unregistred user, if they do the check wrong) #checking if user is loged in # this is the part when user is not loged in # Ordering comments from oldest to newest
2.455746
2
intcode/handlers/io/std.py
JavierLuna/intcode
0
6631267
from intcode.interfaces.io_handler import BaseIOHandler class StdIOHandler(BaseIOHandler): def print(self, content: str) -> None: print(content) def input(self) -> str: return input()
from intcode.interfaces.io_handler import BaseIOHandler class StdIOHandler(BaseIOHandler): def print(self, content: str) -> None: print(content) def input(self) -> str: return input()
none
1
2.160846
2
update_frontmatter.py
mivanit/dendron-pandoc
7
6631268
<reponame>mivanit/dendron-pandoc from typing import * import os import yaml MY_REFS : List[str] = ['../refs.bib'] def keylist_access_nested_dict( d : Dict[str,Any], keys : List[str], ) -> Tuple[dict,str]: """given a keylist `keys`, return (x,y) where x[y] is d[keys] by pretending that `d` can be accessed dotlist-style, with keys in the list being keys to successive nested dicts, we can provide both read and write access to the element of `d` pointed to by `keys` ### Parameters: - `d : Dict[str,Any]` dict to access - `keys : List[str]` list of keys to nested dict `d` ### Returns: - `Tuple[dict,str]` dict is the final layer dict which contains the element pointed to by `keys`, and the string is the last key in `keys` """ fin_dict : dict = d for k in keys[:-1]: if k in fin_dict: fin_dict = fin_dict[k] else: fin_dict[k] = {} fin_dict = fin_dict[k] fin_key = keys[-1] return (fin_dict,fin_key) def fm_add_to_list( data : dict, keylist : List[str], insert_data : list, ) -> dict: """add things to the frontmatter given `keylist`, append to `data[keylist[0]][keylist[1]][...]` if it exists and does not contain `insert_data` if `data[keylist[0]][keylist[1]][...]` does not exist, create it and set it to `insert_data` """ fin_dict,fin_key = keylist_access_nested_dict(data,keylist) if fin_key not in fin_dict: fin_dict[fin_key] = insert_data else: for item in insert_data: if item not in fin_dict[fin_key]: fin_dict[fin_key].append(item) return data def fm_add_bib( data : dict, bibfiles : List[str] = MY_REFS, ) -> dict: """add the bib files to the frontmatter we want it to look like ```yaml bibliography: [../refs.bib] ``` """ return fm_add_to_list( data = data, keylist = ['bibliography'], insert_data = bibfiles, ) def fm_add_filters( data : dict, filters : List[str] = ['$FILTERS$/get_markdown_links.py'], ) -> dict: """add the filters to the frontmatter NOTE: this is for a different tool which allows defaults to be set in the frontmatter, instead of a separate file. That tools is kind of a mess, but email me if you're interested. we want it to look like ```yaml __defaults__: filters: - $FILTERS$/get_markdown_links.py ``` """ return fm_add_to_list( data = data, keylist = ['__defaults__', 'filters'], insert_data = filters, ) DEFAULT_KEYORDER : List[str] = [ 'title', 'desc', 'id', 'created', 'updated', 'bibliography', '__defaults__', 'traitIds', ] class PandocMarkdown(object): def __init__( self, delim : str = '---', loader : Callable[[str],dict] = yaml.safe_load, keyorder : List[str] = DEFAULT_KEYORDER, writer : Callable[[dict],str] = lambda x : yaml.dump(x, default_flow_style = None, sort_keys = False), ) -> None: self.delim = delim self.loader = loader self.keyorder = keyorder self.writer = writer # get the first section and parse as yaml self.yaml_data : Dict[str, Any] = None # get the content self.content : str = None def load(self, filename : str) -> None: """load a file into the pandoc markdown object ### Parameters: - `filename : str` the filename to load """ with open(filename, "r") as f: # split the document by yaml file front matter sections : List[str] = f.read().split(self.delim) # check the zeroth section is empty if sections[0].strip(): raise ValueError(f"file does not start with yaml front matter, found at start of file: {sections[0]}") if len(sections) < 3: raise ValueError(f'missing sections in file {filename}, check delims') # get the first section and parse as yaml self.yaml_data : Dict[str, Any] = self.loader(sections[1]) # get the content self.content : str = self.delim.join(sections[2:]) def dumps(self) -> str: """dumps both the front matter and content to a string NOTE: we want this to be on a single line for compatibility with https://github.com/notZaki/PandocCiter, since that tool parses the bibliography in a weird way. hence, `self.writer` has `default_flow_style = None` """ if (self.yaml_data is None) or (self.content is None): raise Exception('') self.keyorder = self.keyorder + [ k for k in self.yaml_data if k not in self.keyorder ] # for k in self.keyorder: # if not (k in self.yaml_data): # raise KeyError(f'key {k} found in keyorder but not in yaml_data') self.yaml_data = { k : self.yaml_data[k] for k in self.keyorder if k in self.yaml_data } return '\n'.join([ self.delim, self.writer(self.yaml_data).strip(), self.delim, self.content.lstrip(), ]) def modify_file_fm(file : str, apply_funcs : List[Callable]) -> None: pdm : PandocMarkdown = PandocMarkdown() pdm.load(file) for func in apply_funcs: pdm.yaml_data = func(pdm.yaml_data) with open(file, "w") as f: f.write(pdm.dumps()) def update_all_files_fm( dir : str, apply_funcs : List[Callable] = [fm_add_bib, fm_add_filters], ) -> None: """update the frontmatter of all files in a directory ### Parameters: - `dir : str` the directory to update - `apply_funcs : List[Callable]` list of functions to apply to the frontmatter """ for file in os.listdir(dir): if file.endswith(".md"): modify_file_fm(f'{dir.rstrip("/")}/{file}', apply_funcs) if __name__ == "__main__": import sys if len(sys.argv) < 2: print("Usage: python update_frontmatter.py <filename>") sys.exit(1) update_all_files_fm( dir = sys.argv[1], apply_funcs = [fm_add_bib], )
from typing import * import os import yaml MY_REFS : List[str] = ['../refs.bib'] def keylist_access_nested_dict( d : Dict[str,Any], keys : List[str], ) -> Tuple[dict,str]: """given a keylist `keys`, return (x,y) where x[y] is d[keys] by pretending that `d` can be accessed dotlist-style, with keys in the list being keys to successive nested dicts, we can provide both read and write access to the element of `d` pointed to by `keys` ### Parameters: - `d : Dict[str,Any]` dict to access - `keys : List[str]` list of keys to nested dict `d` ### Returns: - `Tuple[dict,str]` dict is the final layer dict which contains the element pointed to by `keys`, and the string is the last key in `keys` """ fin_dict : dict = d for k in keys[:-1]: if k in fin_dict: fin_dict = fin_dict[k] else: fin_dict[k] = {} fin_dict = fin_dict[k] fin_key = keys[-1] return (fin_dict,fin_key) def fm_add_to_list( data : dict, keylist : List[str], insert_data : list, ) -> dict: """add things to the frontmatter given `keylist`, append to `data[keylist[0]][keylist[1]][...]` if it exists and does not contain `insert_data` if `data[keylist[0]][keylist[1]][...]` does not exist, create it and set it to `insert_data` """ fin_dict,fin_key = keylist_access_nested_dict(data,keylist) if fin_key not in fin_dict: fin_dict[fin_key] = insert_data else: for item in insert_data: if item not in fin_dict[fin_key]: fin_dict[fin_key].append(item) return data def fm_add_bib( data : dict, bibfiles : List[str] = MY_REFS, ) -> dict: """add the bib files to the frontmatter we want it to look like ```yaml bibliography: [../refs.bib] ``` """ return fm_add_to_list( data = data, keylist = ['bibliography'], insert_data = bibfiles, ) def fm_add_filters( data : dict, filters : List[str] = ['$FILTERS$/get_markdown_links.py'], ) -> dict: """add the filters to the frontmatter NOTE: this is for a different tool which allows defaults to be set in the frontmatter, instead of a separate file. That tools is kind of a mess, but email me if you're interested. we want it to look like ```yaml __defaults__: filters: - $FILTERS$/get_markdown_links.py ``` """ return fm_add_to_list( data = data, keylist = ['__defaults__', 'filters'], insert_data = filters, ) DEFAULT_KEYORDER : List[str] = [ 'title', 'desc', 'id', 'created', 'updated', 'bibliography', '__defaults__', 'traitIds', ] class PandocMarkdown(object): def __init__( self, delim : str = '---', loader : Callable[[str],dict] = yaml.safe_load, keyorder : List[str] = DEFAULT_KEYORDER, writer : Callable[[dict],str] = lambda x : yaml.dump(x, default_flow_style = None, sort_keys = False), ) -> None: self.delim = delim self.loader = loader self.keyorder = keyorder self.writer = writer # get the first section and parse as yaml self.yaml_data : Dict[str, Any] = None # get the content self.content : str = None def load(self, filename : str) -> None: """load a file into the pandoc markdown object ### Parameters: - `filename : str` the filename to load """ with open(filename, "r") as f: # split the document by yaml file front matter sections : List[str] = f.read().split(self.delim) # check the zeroth section is empty if sections[0].strip(): raise ValueError(f"file does not start with yaml front matter, found at start of file: {sections[0]}") if len(sections) < 3: raise ValueError(f'missing sections in file {filename}, check delims') # get the first section and parse as yaml self.yaml_data : Dict[str, Any] = self.loader(sections[1]) # get the content self.content : str = self.delim.join(sections[2:]) def dumps(self) -> str: """dumps both the front matter and content to a string NOTE: we want this to be on a single line for compatibility with https://github.com/notZaki/PandocCiter, since that tool parses the bibliography in a weird way. hence, `self.writer` has `default_flow_style = None` """ if (self.yaml_data is None) or (self.content is None): raise Exception('') self.keyorder = self.keyorder + [ k for k in self.yaml_data if k not in self.keyorder ] # for k in self.keyorder: # if not (k in self.yaml_data): # raise KeyError(f'key {k} found in keyorder but not in yaml_data') self.yaml_data = { k : self.yaml_data[k] for k in self.keyorder if k in self.yaml_data } return '\n'.join([ self.delim, self.writer(self.yaml_data).strip(), self.delim, self.content.lstrip(), ]) def modify_file_fm(file : str, apply_funcs : List[Callable]) -> None: pdm : PandocMarkdown = PandocMarkdown() pdm.load(file) for func in apply_funcs: pdm.yaml_data = func(pdm.yaml_data) with open(file, "w") as f: f.write(pdm.dumps()) def update_all_files_fm( dir : str, apply_funcs : List[Callable] = [fm_add_bib, fm_add_filters], ) -> None: """update the frontmatter of all files in a directory ### Parameters: - `dir : str` the directory to update - `apply_funcs : List[Callable]` list of functions to apply to the frontmatter """ for file in os.listdir(dir): if file.endswith(".md"): modify_file_fm(f'{dir.rstrip("/")}/{file}', apply_funcs) if __name__ == "__main__": import sys if len(sys.argv) < 2: print("Usage: python update_frontmatter.py <filename>") sys.exit(1) update_all_files_fm( dir = sys.argv[1], apply_funcs = [fm_add_bib], )
en
0.754744
given a keylist `keys`, return (x,y) where x[y] is d[keys] by pretending that `d` can be accessed dotlist-style, with keys in the list being keys to successive nested dicts, we can provide both read and write access to the element of `d` pointed to by `keys` ### Parameters: - `d : Dict[str,Any]` dict to access - `keys : List[str]` list of keys to nested dict `d` ### Returns: - `Tuple[dict,str]` dict is the final layer dict which contains the element pointed to by `keys`, and the string is the last key in `keys` add things to the frontmatter given `keylist`, append to `data[keylist[0]][keylist[1]][...]` if it exists and does not contain `insert_data` if `data[keylist[0]][keylist[1]][...]` does not exist, create it and set it to `insert_data` add the bib files to the frontmatter we want it to look like ```yaml bibliography: [../refs.bib] ``` add the filters to the frontmatter NOTE: this is for a different tool which allows defaults to be set in the frontmatter, instead of a separate file. That tools is kind of a mess, but email me if you're interested. we want it to look like ```yaml __defaults__: filters: - $FILTERS$/get_markdown_links.py ``` # get the first section and parse as yaml # get the content load a file into the pandoc markdown object ### Parameters: - `filename : str` the filename to load # split the document by yaml file front matter # check the zeroth section is empty # get the first section and parse as yaml # get the content dumps both the front matter and content to a string NOTE: we want this to be on a single line for compatibility with https://github.com/notZaki/PandocCiter, since that tool parses the bibliography in a weird way. hence, `self.writer` has `default_flow_style = None` # for k in self.keyorder: # if not (k in self.yaml_data): # raise KeyError(f'key {k} found in keyorder but not in yaml_data') update the frontmatter of all files in a directory ### Parameters: - `dir : str` the directory to update - `apply_funcs : List[Callable]` list of functions to apply to the frontmatter
3.539023
4
nipype/testing/tests/test_utils.py
effigies/nipype
0
6631269
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """Test testing utilities """ import os import warnings import subprocess from mock import patch, MagicMock from nipype.testing.utils import TempFATFS from nose.tools import assert_true, assert_raises def test_tempfatfs(): try: fatfs = TempFATFS() except (IOError, OSError): warnings.warn("Cannot mount FAT filesystems with FUSE") else: with fatfs as tmpdir: yield assert_true, os.path.exists(tmpdir) @patch('subprocess.check_call', MagicMock( side_effect=subprocess.CalledProcessError('',''))) def test_tempfatfs_calledprocesserror(): try: TempFATFS() except IOError as e: assert_true(isinstance(e, IOError)) assert_true(isinstance(e.__cause__, subprocess.CalledProcessError)) else: assert_true(False) @patch('subprocess.check_call', MagicMock()) @patch('subprocess.Popen', MagicMock(side_effect=OSError())) def test_tempfatfs_oserror(): try: TempFATFS() except IOError as e: assert_true(isinstance(e, IOError)) assert_true(isinstance(e.__cause__, OSError)) else: assert_true(False)
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """Test testing utilities """ import os import warnings import subprocess from mock import patch, MagicMock from nipype.testing.utils import TempFATFS from nose.tools import assert_true, assert_raises def test_tempfatfs(): try: fatfs = TempFATFS() except (IOError, OSError): warnings.warn("Cannot mount FAT filesystems with FUSE") else: with fatfs as tmpdir: yield assert_true, os.path.exists(tmpdir) @patch('subprocess.check_call', MagicMock( side_effect=subprocess.CalledProcessError('',''))) def test_tempfatfs_calledprocesserror(): try: TempFATFS() except IOError as e: assert_true(isinstance(e, IOError)) assert_true(isinstance(e.__cause__, subprocess.CalledProcessError)) else: assert_true(False) @patch('subprocess.check_call', MagicMock()) @patch('subprocess.Popen', MagicMock(side_effect=OSError())) def test_tempfatfs_oserror(): try: TempFATFS() except IOError as e: assert_true(isinstance(e, IOError)) assert_true(isinstance(e.__cause__, OSError)) else: assert_true(False)
en
0.328576
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: Test testing utilities
2.005188
2
examples/dagster_examples/airline_demo/types.py
vatervonacht/dagster
0
6631270
"""Type definitions for the airline_demo.""" from collections import namedtuple import sqlalchemy from dagster import as_dagster_type from dagster.core.types.dagster_type import create_string_type AirlineDemoResources = namedtuple( 'AirlineDemoResources', ('spark', 's3', 'db_url', 'db_engine', 'db_dialect', 'redshift_s3_temp_dir', 'db_load'), ) SqlAlchemyEngineType = as_dagster_type( sqlalchemy.engine.Connectable, name='SqlAlchemyEngineType', description='A SqlAlchemy Connectable', ) SqlTableName = create_string_type('SqlTableName', description='The name of a database table')
"""Type definitions for the airline_demo.""" from collections import namedtuple import sqlalchemy from dagster import as_dagster_type from dagster.core.types.dagster_type import create_string_type AirlineDemoResources = namedtuple( 'AirlineDemoResources', ('spark', 's3', 'db_url', 'db_engine', 'db_dialect', 'redshift_s3_temp_dir', 'db_load'), ) SqlAlchemyEngineType = as_dagster_type( sqlalchemy.engine.Connectable, name='SqlAlchemyEngineType', description='A SqlAlchemy Connectable', ) SqlTableName = create_string_type('SqlTableName', description='The name of a database table')
en
0.624777
Type definitions for the airline_demo.
2.6634
3
dashathon/scraping/scrape_berlin_data.py
wfrierson/dashathon
1
6631271
from dashathon.scraping.scraping_methods import scrape_berlin_marathon_urls from dashathon.scraping.scraping_methods import scrape_berlin_marathon headers_berlin = ['year', 'bib', 'age_group', 'gender', 'country', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish'] print('Scraping URLs: 2017 M') berlin_marathon_urls_2017_M = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2017/', year=2017, event='MAL', gender='M', num_results_per_page=100) print('Scraping Split Times: 2017 M') scrape_berlin_marathon(path_input='berlin_marathon_2017_M_urls.csv', path_output='berlin_marathon_2017_M.csv', path_error='berlin_marathon_2017_M_error_log.csv', year=2017, gender='M', headers=headers_berlin, df_urls=berlin_marathon_urls_2017_M) print('Scraping URLs: 2017 W') berlin_marathon_urls_2017_W = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2017/', year=2017, event='MAL', gender='W', num_results_per_page=100) print('Scraping Split Times: 2017 W') scrape_berlin_marathon(path_input='berlin_marathon_2017_W_urls.csv', path_output='berlin_marathon_2017_W.csv', path_error='berlin_marathon_2017_W_error_log.csv', year=2017, gender='W', headers=headers_berlin, df_urls=berlin_marathon_urls_2017_W) print('Scraping URLs: 2016 M') berlin_marathon_urls_2016_M = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2016/', year=2016, event='MAL_99999905C9AF3F0000000945', gender='M', num_results_per_page=100) print('Scraping Split Times: 2016 M') scrape_berlin_marathon(path_input='berlin_marathon_2016_M_urls.csv', path_output='berlin_marathon_2016_M.csv', path_error='berlin_marathon_2016_M_error_log.csv', year=2016, gender='M', headers=headers_berlin, df_urls=berlin_marathon_urls_2016_M) print('Scraping URLs: 2016 W') berlin_marathon_urls_2016_W = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2016/', year=2016, event='MAL_99999905C9AF3F0000000945', gender='W', num_results_per_page=100) print('Scraping Split Times: 2016 W') scrape_berlin_marathon(path_input='berlin_marathon_2016_W_urls.csv', path_output='berlin_marathon_2016_W.csv', path_error='berlin_marathon_2016_W_error_log.csv', year=2016, gender='W', headers=headers_berlin, df_urls=berlin_marathon_urls_2016_W) print('Scraping URLs: 2015 M') berlin_marathon_urls_2015_M = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2015/', year=2015, event='MAL', gender='M', num_results_per_page=100) print('Scraping Split Times: 2015 M') scrape_berlin_marathon(path_input='berlin_marathon_2015_M_urls.csv', path_output='berlin_marathon_2015_M.csv', path_error='berlin_marathon_2015_M_error_log.csv', year=2015, gender='M', headers=headers_berlin, df_urls=berlin_marathon_urls_2015_M) print('Scraping URLs: 2015 W') berlin_marathon_urls_2015_W = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2015/', year=2015, event='MAL', gender='W', num_results_per_page=100) print('Scraping Split Times: 2015 W') scrape_berlin_marathon(path_input='berlin_marathon_2015_W_urls.csv', path_output='berlin_marathon_2015_W.csv', path_error='berlin_marathon_2015_W_error_log.csv', year=2015, gender='W', headers=headers_berlin, df_urls=berlin_marathon_urls_2015_W) print('Scraping URLs: 2014 M') berlin_marathon_urls_2014_M = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2014/', year=2014, event='MAL', gender='M', num_results_per_page=100) print('Scraping Split Times: 2014 M') scrape_berlin_marathon(path_input='berlin_marathon_2014_M_urls.csv', path_output='berlin_marathon_2014_M.csv', path_error='berlin_marathon_2014_M_error_log.csv', year=2014, gender='M', headers=headers_berlin, df_urls=berlin_marathon_urls_2014_M) print('Scraping URLs: 2014 W') berlin_marathon_urls_2014_W = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2014/', year=2014, event='MAL', gender='W', num_results_per_page=100) print('Scraping Split Times: 2014 W') scrape_berlin_marathon(path_input='berlin_marathon_2014_W_urls.csv', path_output='berlin_marathon_2014_W.csv', path_error='berlin_marathon_2014_W_error_log.csv', year=2014, gender='W', headers=headers_berlin, df_urls=berlin_marathon_urls_2014_W)
from dashathon.scraping.scraping_methods import scrape_berlin_marathon_urls from dashathon.scraping.scraping_methods import scrape_berlin_marathon headers_berlin = ['year', 'bib', 'age_group', 'gender', 'country', 'rank_gender', 'rank_age_group', '5k', '10k', '15k', '20k', 'half', '25k', '30k', '35k', '40k', 'finish'] print('Scraping URLs: 2017 M') berlin_marathon_urls_2017_M = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2017/', year=2017, event='MAL', gender='M', num_results_per_page=100) print('Scraping Split Times: 2017 M') scrape_berlin_marathon(path_input='berlin_marathon_2017_M_urls.csv', path_output='berlin_marathon_2017_M.csv', path_error='berlin_marathon_2017_M_error_log.csv', year=2017, gender='M', headers=headers_berlin, df_urls=berlin_marathon_urls_2017_M) print('Scraping URLs: 2017 W') berlin_marathon_urls_2017_W = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2017/', year=2017, event='MAL', gender='W', num_results_per_page=100) print('Scraping Split Times: 2017 W') scrape_berlin_marathon(path_input='berlin_marathon_2017_W_urls.csv', path_output='berlin_marathon_2017_W.csv', path_error='berlin_marathon_2017_W_error_log.csv', year=2017, gender='W', headers=headers_berlin, df_urls=berlin_marathon_urls_2017_W) print('Scraping URLs: 2016 M') berlin_marathon_urls_2016_M = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2016/', year=2016, event='MAL_99999905C9AF3F0000000945', gender='M', num_results_per_page=100) print('Scraping Split Times: 2016 M') scrape_berlin_marathon(path_input='berlin_marathon_2016_M_urls.csv', path_output='berlin_marathon_2016_M.csv', path_error='berlin_marathon_2016_M_error_log.csv', year=2016, gender='M', headers=headers_berlin, df_urls=berlin_marathon_urls_2016_M) print('Scraping URLs: 2016 W') berlin_marathon_urls_2016_W = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2016/', year=2016, event='MAL_99999905C9AF3F0000000945', gender='W', num_results_per_page=100) print('Scraping Split Times: 2016 W') scrape_berlin_marathon(path_input='berlin_marathon_2016_W_urls.csv', path_output='berlin_marathon_2016_W.csv', path_error='berlin_marathon_2016_W_error_log.csv', year=2016, gender='W', headers=headers_berlin, df_urls=berlin_marathon_urls_2016_W) print('Scraping URLs: 2015 M') berlin_marathon_urls_2015_M = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2015/', year=2015, event='MAL', gender='M', num_results_per_page=100) print('Scraping Split Times: 2015 M') scrape_berlin_marathon(path_input='berlin_marathon_2015_M_urls.csv', path_output='berlin_marathon_2015_M.csv', path_error='berlin_marathon_2015_M_error_log.csv', year=2015, gender='M', headers=headers_berlin, df_urls=berlin_marathon_urls_2015_M) print('Scraping URLs: 2015 W') berlin_marathon_urls_2015_W = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2015/', year=2015, event='MAL', gender='W', num_results_per_page=100) print('Scraping Split Times: 2015 W') scrape_berlin_marathon(path_input='berlin_marathon_2015_W_urls.csv', path_output='berlin_marathon_2015_W.csv', path_error='berlin_marathon_2015_W_error_log.csv', year=2015, gender='W', headers=headers_berlin, df_urls=berlin_marathon_urls_2015_W) print('Scraping URLs: 2014 M') berlin_marathon_urls_2014_M = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2014/', year=2014, event='MAL', gender='M', num_results_per_page=100) print('Scraping Split Times: 2014 M') scrape_berlin_marathon(path_input='berlin_marathon_2014_M_urls.csv', path_output='berlin_marathon_2014_M.csv', path_error='berlin_marathon_2014_M_error_log.csv', year=2014, gender='M', headers=headers_berlin, df_urls=berlin_marathon_urls_2014_M) print('Scraping URLs: 2014 W') berlin_marathon_urls_2014_W = scrape_berlin_marathon_urls(url='http://results.scc-events.com/2014/', year=2014, event='MAL', gender='W', num_results_per_page=100) print('Scraping Split Times: 2014 W') scrape_berlin_marathon(path_input='berlin_marathon_2014_W_urls.csv', path_output='berlin_marathon_2014_W.csv', path_error='berlin_marathon_2014_W_error_log.csv', year=2014, gender='W', headers=headers_berlin, df_urls=berlin_marathon_urls_2014_W)
none
1
3.127021
3
test/test_api/test_api.py
fmagin/jedi
0
6631272
<reponame>fmagin/jedi """ Test all things related to the ``jedi.api`` module. """ import os import sys from textwrap import dedent import pytest from pytest import raises from parso import cache from jedi._compatibility import unicode from jedi import preload_module from jedi.inference.gradual import typeshed from test.helpers import test_dir @pytest.mark.skipif(sys.version_info[0] == 2, reason="Ignore Python 2, EoL") def test_preload_modules(): def check_loaded(*modules): for grammar_cache in cache.parser_cache.values(): if None in grammar_cache: break # Filter the typeshed parser cache. typeshed_cache_count = sum( 1 for path in grammar_cache if path is not None and path.startswith(typeshed.TYPESHED_PATH) ) # +1 for None module (currently used) assert len(grammar_cache) - typeshed_cache_count == len(modules) + 1 for i in modules: assert [i in k for k in grammar_cache.keys() if k is not None] old_cache = cache.parser_cache.copy() cache.parser_cache.clear() try: preload_module('sys') check_loaded() # compiled (c_builtin) modules shouldn't be in the cache. preload_module('types', 'token') check_loaded('types', 'token') finally: cache.parser_cache.update(old_cache) def test_empty_script(Script): assert Script('') def test_line_number_errors(Script): """ Script should raise a ValueError if line/column numbers are not in a valid range. """ s = 'hello' # lines with raises(ValueError): Script(s, 2, 0) with raises(ValueError): Script(s, 0, 0) # columns with raises(ValueError): Script(s, 1, len(s) + 1) with raises(ValueError): Script(s, 1, -1) # ok Script(s, 1, 0) Script(s, 1, len(s)) def _check_number(Script, source, result='float'): completions = Script(source).completions() assert completions[0].parent().name == result def test_completion_on_number_literals(Script): # No completions on an int literal (is a float). assert [c.name for c in Script('1. ').completions()] \ == ['and', 'if', 'in', 'is', 'not', 'or'] # Multiple points after an int literal basically mean that there's a float # and a call after that. _check_number(Script, '1..') _check_number(Script, '1.0.') # power notation _check_number(Script, '1.e14.') _check_number(Script, '1.e-3.') _check_number(Script, '9e3.') assert Script('1.e3..').completions() == [] assert Script('1.e-13..').completions() == [] def test_completion_on_hex_literals(Script): assert Script('0x1..').completions() == [] _check_number(Script, '0x1.', 'int') # hexdecimal # Completing binary literals doesn't work if they are not actually binary # (invalid statements). assert Script('0b2.b').completions() == [] _check_number(Script, '0b1.', 'int') # binary _check_number(Script, '0x2e.', 'int') _check_number(Script, '0xE7.', 'int') _check_number(Script, '0xEa.', 'int') # theoretically, but people can just check for syntax errors: assert Script('0x.').completions() == [] def test_completion_on_complex_literals(Script): assert Script('1j..').completions() == [] _check_number(Script, '1j.', 'complex') _check_number(Script, '44.j.', 'complex') _check_number(Script, '4.0j.', 'complex') # No dot no completion - I thought, but 4j is actually a literal after # which a keyword like or is allowed. Good times, haha! # However this has been disabled again, because it apparently annoyed # users. So no completion after j without a space :) assert not Script('4j').completions() assert ({c.name for c in Script('4j ').completions()} == {'if', 'and', 'in', 'is', 'not', 'or'}) def test_goto_assignments_on_non_name(Script, environment): assert Script('for').goto_assignments() == [] assert Script('assert').goto_assignments() == [] assert Script('True').goto_assignments() == [] def test_goto_definitions_on_non_name(Script): assert Script('import x', column=0).goto_definitions() == [] def test_goto_definitions_on_generator(Script): def_, = Script('def x(): yield 1\ny=x()\ny').goto_definitions() assert def_.name == 'Generator' def test_goto_definition_not_multiple(Script): """ There should be only one Definition result if it leads back to the same origin (e.g. instance method) """ s = dedent('''\ import random class A(): def __init__(self, a): self.a = 3 def foo(self): pass if random.randint(0, 1): a = A(2) else: a = A(1) a''') assert len(Script(s).goto_definitions()) == 1 def test_usage_description(Script): descs = [u.description for u in Script("foo = ''; foo").usages()] assert set(descs) == {"foo = ''", 'foo'} def test_get_line_code(Script): def get_line_code(source, line=None, **kwargs): return Script(source, line=line).completions()[0].get_line_code(**kwargs) # On builtin assert get_line_code('abs') == 'def abs(__n: SupportsAbs[_T]) -> _T: ...\n' # On custom code first_line = 'def foo():\n' line = ' foo' code = first_line + line assert get_line_code(code) == first_line # With before/after code = code + '\nother_line' assert get_line_code(code, line=2) == first_line assert get_line_code(code, line=2, after=1) == first_line + line + '\n' assert get_line_code(code, line=2, after=2, before=1) == code # Should just be the whole thing, since there are no more lines on both # sides. assert get_line_code(code, line=2, after=3, before=3) == code def test_get_line_code_on_builtin(Script, disable_typeshed): abs_ = Script('abs').completions()[0] assert abs_.name == 'abs' assert abs_.get_line_code() == '' assert abs_.line is None def test_goto_assignments_follow_imports(Script): code = dedent(""" import inspect inspect.isfunction""") definition, = Script(code, column=0).goto_assignments(follow_imports=True) assert 'inspect.py' in definition.module_path assert (definition.line, definition.column) == (1, 0) definition, = Script(code).goto_assignments(follow_imports=True) assert 'inspect.py' in definition.module_path assert (definition.line, definition.column) > (1, 0) code = '''def param(p): pass\nparam(1)''' start_pos = 1, len('def param(') script = Script(code, *start_pos) definition, = script.goto_assignments(follow_imports=True) assert (definition.line, definition.column) == start_pos assert definition.name == 'p' result, = definition.goto_assignments() assert result.name == 'p' result, = definition.infer() assert result.name == 'int' result, = result.infer() assert result.name == 'int' definition, = script.goto_assignments() assert (definition.line, definition.column) == start_pos d, = Script('a = 1\na').goto_assignments(follow_imports=True) assert d.name == 'a' def test_goto_module(Script): def check(line, expected, follow_imports=False): script = Script(path=path, line=line) module, = script.goto_assignments(follow_imports=follow_imports) assert module.module_path == expected base_path = os.path.join(os.path.dirname(__file__), 'simple_import') path = os.path.join(base_path, '__init__.py') check(1, os.path.join(base_path, 'module.py')) check(1, os.path.join(base_path, 'module.py'), follow_imports=True) check(5, os.path.join(base_path, 'module2.py')) def test_goto_definition_cursor(Script): s = ("class A():\n" " def _something(self):\n" " return\n" " def different_line(self,\n" " b):\n" " return\n" "A._something\n" "A.different_line" ) in_name = 2, 9 under_score = 2, 8 cls = 2, 7 should1 = 7, 10 diff_line = 4, 10 should2 = 8, 10 def get_def(pos): return [d.description for d in Script(s, *pos).goto_definitions()] in_name = get_def(in_name) under_score = get_def(under_score) should1 = get_def(should1) should2 = get_def(should2) diff_line = get_def(diff_line) assert should1 == in_name assert should1 == under_score assert should2 == diff_line assert get_def(cls) == [] def test_no_statement_parent(Script): source = dedent(""" def f(): pass class C: pass variable = f if random.choice([0, 1]) else C""") defs = Script(source, column=3).goto_definitions() defs = sorted(defs, key=lambda d: d.line) assert [d.description for d in defs] == ['def f', 'class C'] def test_backslash_continuation_and_bracket(Script): code = dedent(r""" x = 0 a = \ [1, 2, 3, (x)]""") lines = code.splitlines() column = lines[-1].index('(') def_, = Script(code, line=len(lines), column=column).goto_definitions() assert def_.name == 'int' def test_goto_follow_builtin_imports(Script): s = Script('import sys; sys') d, = s.goto_assignments(follow_imports=True) assert d.in_builtin_module() is True d, = s.goto_assignments(follow_imports=True, follow_builtin_imports=True) assert d.in_builtin_module() is True def test_docstrings_for_completions(Script): for c in Script('').completions(): assert isinstance(c.docstring(), (str, unicode)) def test_fuzzy_completion(Script): script = Script('string = "hello"\nstring.upper') assert ['isupper', 'upper'] == [comp.name for comp in script.completions(fuzzy=True)] def test_math_fuzzy_completion(Script, environment): script = Script('import math\nmath.og') expected = ['copysign', 'log', 'log10', 'log1p'] if environment.version_info.major >= 3: expected.append('log2') completions = script.completions(fuzzy=True) assert expected == [comp.name for comp in completions] for c in completions: assert c.complete is None def test_file_fuzzy_completion(Script): path = os.path.join(test_dir, 'completion') script = Script('"{}/ep08_i'.format(path)) assert ['pep0484_basic.py"', 'pep0484_typing.py"'] \ == [comp.name for comp in script.completions(fuzzy=True)]
""" Test all things related to the ``jedi.api`` module. """ import os import sys from textwrap import dedent import pytest from pytest import raises from parso import cache from jedi._compatibility import unicode from jedi import preload_module from jedi.inference.gradual import typeshed from test.helpers import test_dir @pytest.mark.skipif(sys.version_info[0] == 2, reason="Ignore Python 2, EoL") def test_preload_modules(): def check_loaded(*modules): for grammar_cache in cache.parser_cache.values(): if None in grammar_cache: break # Filter the typeshed parser cache. typeshed_cache_count = sum( 1 for path in grammar_cache if path is not None and path.startswith(typeshed.TYPESHED_PATH) ) # +1 for None module (currently used) assert len(grammar_cache) - typeshed_cache_count == len(modules) + 1 for i in modules: assert [i in k for k in grammar_cache.keys() if k is not None] old_cache = cache.parser_cache.copy() cache.parser_cache.clear() try: preload_module('sys') check_loaded() # compiled (c_builtin) modules shouldn't be in the cache. preload_module('types', 'token') check_loaded('types', 'token') finally: cache.parser_cache.update(old_cache) def test_empty_script(Script): assert Script('') def test_line_number_errors(Script): """ Script should raise a ValueError if line/column numbers are not in a valid range. """ s = 'hello' # lines with raises(ValueError): Script(s, 2, 0) with raises(ValueError): Script(s, 0, 0) # columns with raises(ValueError): Script(s, 1, len(s) + 1) with raises(ValueError): Script(s, 1, -1) # ok Script(s, 1, 0) Script(s, 1, len(s)) def _check_number(Script, source, result='float'): completions = Script(source).completions() assert completions[0].parent().name == result def test_completion_on_number_literals(Script): # No completions on an int literal (is a float). assert [c.name for c in Script('1. ').completions()] \ == ['and', 'if', 'in', 'is', 'not', 'or'] # Multiple points after an int literal basically mean that there's a float # and a call after that. _check_number(Script, '1..') _check_number(Script, '1.0.') # power notation _check_number(Script, '1.e14.') _check_number(Script, '1.e-3.') _check_number(Script, '9e3.') assert Script('1.e3..').completions() == [] assert Script('1.e-13..').completions() == [] def test_completion_on_hex_literals(Script): assert Script('0x1..').completions() == [] _check_number(Script, '0x1.', 'int') # hexdecimal # Completing binary literals doesn't work if they are not actually binary # (invalid statements). assert Script('0b2.b').completions() == [] _check_number(Script, '0b1.', 'int') # binary _check_number(Script, '0x2e.', 'int') _check_number(Script, '0xE7.', 'int') _check_number(Script, '0xEa.', 'int') # theoretically, but people can just check for syntax errors: assert Script('0x.').completions() == [] def test_completion_on_complex_literals(Script): assert Script('1j..').completions() == [] _check_number(Script, '1j.', 'complex') _check_number(Script, '44.j.', 'complex') _check_number(Script, '4.0j.', 'complex') # No dot no completion - I thought, but 4j is actually a literal after # which a keyword like or is allowed. Good times, haha! # However this has been disabled again, because it apparently annoyed # users. So no completion after j without a space :) assert not Script('4j').completions() assert ({c.name for c in Script('4j ').completions()} == {'if', 'and', 'in', 'is', 'not', 'or'}) def test_goto_assignments_on_non_name(Script, environment): assert Script('for').goto_assignments() == [] assert Script('assert').goto_assignments() == [] assert Script('True').goto_assignments() == [] def test_goto_definitions_on_non_name(Script): assert Script('import x', column=0).goto_definitions() == [] def test_goto_definitions_on_generator(Script): def_, = Script('def x(): yield 1\ny=x()\ny').goto_definitions() assert def_.name == 'Generator' def test_goto_definition_not_multiple(Script): """ There should be only one Definition result if it leads back to the same origin (e.g. instance method) """ s = dedent('''\ import random class A(): def __init__(self, a): self.a = 3 def foo(self): pass if random.randint(0, 1): a = A(2) else: a = A(1) a''') assert len(Script(s).goto_definitions()) == 1 def test_usage_description(Script): descs = [u.description for u in Script("foo = ''; foo").usages()] assert set(descs) == {"foo = ''", 'foo'} def test_get_line_code(Script): def get_line_code(source, line=None, **kwargs): return Script(source, line=line).completions()[0].get_line_code(**kwargs) # On builtin assert get_line_code('abs') == 'def abs(__n: SupportsAbs[_T]) -> _T: ...\n' # On custom code first_line = 'def foo():\n' line = ' foo' code = first_line + line assert get_line_code(code) == first_line # With before/after code = code + '\nother_line' assert get_line_code(code, line=2) == first_line assert get_line_code(code, line=2, after=1) == first_line + line + '\n' assert get_line_code(code, line=2, after=2, before=1) == code # Should just be the whole thing, since there are no more lines on both # sides. assert get_line_code(code, line=2, after=3, before=3) == code def test_get_line_code_on_builtin(Script, disable_typeshed): abs_ = Script('abs').completions()[0] assert abs_.name == 'abs' assert abs_.get_line_code() == '' assert abs_.line is None def test_goto_assignments_follow_imports(Script): code = dedent(""" import inspect inspect.isfunction""") definition, = Script(code, column=0).goto_assignments(follow_imports=True) assert 'inspect.py' in definition.module_path assert (definition.line, definition.column) == (1, 0) definition, = Script(code).goto_assignments(follow_imports=True) assert 'inspect.py' in definition.module_path assert (definition.line, definition.column) > (1, 0) code = '''def param(p): pass\nparam(1)''' start_pos = 1, len('def param(') script = Script(code, *start_pos) definition, = script.goto_assignments(follow_imports=True) assert (definition.line, definition.column) == start_pos assert definition.name == 'p' result, = definition.goto_assignments() assert result.name == 'p' result, = definition.infer() assert result.name == 'int' result, = result.infer() assert result.name == 'int' definition, = script.goto_assignments() assert (definition.line, definition.column) == start_pos d, = Script('a = 1\na').goto_assignments(follow_imports=True) assert d.name == 'a' def test_goto_module(Script): def check(line, expected, follow_imports=False): script = Script(path=path, line=line) module, = script.goto_assignments(follow_imports=follow_imports) assert module.module_path == expected base_path = os.path.join(os.path.dirname(__file__), 'simple_import') path = os.path.join(base_path, '__init__.py') check(1, os.path.join(base_path, 'module.py')) check(1, os.path.join(base_path, 'module.py'), follow_imports=True) check(5, os.path.join(base_path, 'module2.py')) def test_goto_definition_cursor(Script): s = ("class A():\n" " def _something(self):\n" " return\n" " def different_line(self,\n" " b):\n" " return\n" "A._something\n" "A.different_line" ) in_name = 2, 9 under_score = 2, 8 cls = 2, 7 should1 = 7, 10 diff_line = 4, 10 should2 = 8, 10 def get_def(pos): return [d.description for d in Script(s, *pos).goto_definitions()] in_name = get_def(in_name) under_score = get_def(under_score) should1 = get_def(should1) should2 = get_def(should2) diff_line = get_def(diff_line) assert should1 == in_name assert should1 == under_score assert should2 == diff_line assert get_def(cls) == [] def test_no_statement_parent(Script): source = dedent(""" def f(): pass class C: pass variable = f if random.choice([0, 1]) else C""") defs = Script(source, column=3).goto_definitions() defs = sorted(defs, key=lambda d: d.line) assert [d.description for d in defs] == ['def f', 'class C'] def test_backslash_continuation_and_bracket(Script): code = dedent(r""" x = 0 a = \ [1, 2, 3, (x)]""") lines = code.splitlines() column = lines[-1].index('(') def_, = Script(code, line=len(lines), column=column).goto_definitions() assert def_.name == 'int' def test_goto_follow_builtin_imports(Script): s = Script('import sys; sys') d, = s.goto_assignments(follow_imports=True) assert d.in_builtin_module() is True d, = s.goto_assignments(follow_imports=True, follow_builtin_imports=True) assert d.in_builtin_module() is True def test_docstrings_for_completions(Script): for c in Script('').completions(): assert isinstance(c.docstring(), (str, unicode)) def test_fuzzy_completion(Script): script = Script('string = "hello"\nstring.upper') assert ['isupper', 'upper'] == [comp.name for comp in script.completions(fuzzy=True)] def test_math_fuzzy_completion(Script, environment): script = Script('import math\nmath.og') expected = ['copysign', 'log', 'log10', 'log1p'] if environment.version_info.major >= 3: expected.append('log2') completions = script.completions(fuzzy=True) assert expected == [comp.name for comp in completions] for c in completions: assert c.complete is None def test_file_fuzzy_completion(Script): path = os.path.join(test_dir, 'completion') script = Script('"{}/ep08_i'.format(path)) assert ['pep0484_basic.py"', 'pep0484_typing.py"'] \ == [comp.name for comp in script.completions(fuzzy=True)]
en
0.845072
Test all things related to the ``jedi.api`` module. # Filter the typeshed parser cache. # +1 for None module (currently used) # compiled (c_builtin) modules shouldn't be in the cache. Script should raise a ValueError if line/column numbers are not in a valid range. # lines # columns # ok # No completions on an int literal (is a float). # Multiple points after an int literal basically mean that there's a float # and a call after that. # power notation # hexdecimal # Completing binary literals doesn't work if they are not actually binary # (invalid statements). # binary # theoretically, but people can just check for syntax errors: # No dot no completion - I thought, but 4j is actually a literal after # which a keyword like or is allowed. Good times, haha! # However this has been disabled again, because it apparently annoyed # users. So no completion after j without a space :) There should be only one Definition result if it leads back to the same origin (e.g. instance method) \ import random class A(): def __init__(self, a): self.a = 3 def foo(self): pass if random.randint(0, 1): a = A(2) else: a = A(1) a # On builtin # On custom code # With before/after # Should just be the whole thing, since there are no more lines on both # sides. import inspect inspect.isfunction def param(p): pass\nparam(1) def f(): pass class C: pass variable = f if random.choice([0, 1]) else C x = 0 a = \ [1, 2, 3, (x)]
2.350529
2
aws-inventory/lambda/report-accounts.py
jchrisfarris/antiope
0
6631273
<reponame>jchrisfarris/antiope import boto3 from botocore.exceptions import ClientError import json import os import time import datetime from mako.template import Template from antiope.aws_account import * from antiope.config import AccountLookupError from common import * import logging logger = logging.getLogger() logger.setLevel(getattr(logging, os.getenv('LOG_LEVEL', default='INFO'))) logging.getLogger('botocore').setLevel(logging.WARNING) logging.getLogger('boto3').setLevel(logging.WARNING) logging.getLogger('urllib3').setLevel(logging.WARNING) assume_role_link = "<a href=\"https://signin.aws.amazon.com/switchrole?account={}&roleName={}&displayName={}\">{}</a>" assume_role_url = "https://signin.aws.amazon.com/switchrole?account={}&roleName={}&displayName={}" RESOURCE_PATH = "organizations/account" # Lambda main routine def handler(event, context): logger.info("Received event: " + json.dumps(event, sort_keys=True)) # We will make a HTML Table and a Json file with this data json_data = [] # Cache account_name for all the parent accounts payers = {} # Data to be saved to S3 and used to generate the template report json_data = {"accounts": []} # account_list.txt file comes from this account_list = [] # Get and then sort the list of accounts by name, case insensitive. active_accounts = get_active_accounts() active_accounts.sort(key=lambda x: x.account_name.lower()) for a in active_accounts: logger.info(a.account_name) # Add the account ID to this array account_list.append(str(a.account_id)) # We don't want to save the entire object's attributes. j = a.db_record.copy() try: if str(a.payer_id) in payers: j['payer_name'] = payers[str(a.payer_id)] else: payer = AWSAccount(str(a.payer_id)) j['payer_name'] = payer.account_name payers[payer.account_id] = payer.account_name except LookupError: logger.debug("Unable to find the payer in the database. Must be an orphan") j['payer_name'] = "Unknown Payer" payers[str(a.payer_id)] = "Unknown Payer" # Build the cross account role link if hasattr(a, 'cross_account_role') and a.cross_account_role is not None: j['assume_role_link'] = assume_role_link.format(a.account_id, os.environ['ROLE_NAME'], a.account_name, os.environ['ROLE_NAME']) else: j['assume_role_link'] = "No Cross Account Role" json_data['accounts'].append(j) save_account_as_resource(a) json_data['timestamp'] = datetime.datetime.now() json_data['account_count'] = len(active_accounts) json_data['bucket'] = os.environ['INVENTORY_BUCKET'] fh = open("html_templates/account_inventory.html", "r") mako_body = fh.read() result = Template(mako_body).render(**json_data) # Save HTML and json to S3 s3_client = boto3.client('s3') try: response = s3_client.put_object( # ACL='public-read', Body=result, Bucket=os.environ['INVENTORY_BUCKET'], ContentType='text/html', Key='Reports/account_inventory.html', ) # Save a txt file of all the active account IDs response = s3_client.put_object( # ACL='public-read', Body="\n".join(account_list), Bucket=os.environ['INVENTORY_BUCKET'], ContentType='text/plain', Key='Reports/account_list.txt', ) # Save the JSON to S3 response = s3_client.put_object( # ACL='public-read', Body=json.dumps(json_data, sort_keys=True, indent=2, default=str), Bucket=os.environ['INVENTORY_BUCKET'], ContentType='application/json', Key='Reports/account_inventory.json', ) except ClientError as e: logger.error("ClientError saving report: {}".format(e)) raise return(event) def save_account_as_resource(target_account): resource_item = {} resource_item['awsAccountId'] = target_account.account_id resource_item['awsAccountName'] = target_account.account_name resource_item['resourceType'] = "AWS::Organizations::Account" resource_item['source'] = "Antiope" resource_item['ARN'] = target_account.db_record['payer_record']['Arn'] resource_item['resourceCreationTime'] = target_account.db_record['payer_record']['JoinedTimestamp'] resource_item['configurationItemCaptureTime'] = str(datetime.datetime.now()) resource_item['configuration'] = target_account.db_record.copy() resource_item['supplementaryConfiguration'] = {} resource_item['resourceId'] = target_account.account_id resource_item['resourceName'] = target_account.account_name resource_item['errors'] = {} if hasattr(target_account, 'cross_account_role') and target_account.cross_account_role is not None: role_name = target_account.cross_account_role.split("/")[-1] resource_item['supplementaryConfiguration']['assume_role_url'] = assume_role_url.format(target_account.account_id, role_name, target_account.account_name) save_resource_to_s3(RESOURCE_PATH, f"{target_account.account_id}", resource_item)
import boto3 from botocore.exceptions import ClientError import json import os import time import datetime from mako.template import Template from antiope.aws_account import * from antiope.config import AccountLookupError from common import * import logging logger = logging.getLogger() logger.setLevel(getattr(logging, os.getenv('LOG_LEVEL', default='INFO'))) logging.getLogger('botocore').setLevel(logging.WARNING) logging.getLogger('boto3').setLevel(logging.WARNING) logging.getLogger('urllib3').setLevel(logging.WARNING) assume_role_link = "<a href=\"https://signin.aws.amazon.com/switchrole?account={}&roleName={}&displayName={}\">{}</a>" assume_role_url = "https://signin.aws.amazon.com/switchrole?account={}&roleName={}&displayName={}" RESOURCE_PATH = "organizations/account" # Lambda main routine def handler(event, context): logger.info("Received event: " + json.dumps(event, sort_keys=True)) # We will make a HTML Table and a Json file with this data json_data = [] # Cache account_name for all the parent accounts payers = {} # Data to be saved to S3 and used to generate the template report json_data = {"accounts": []} # account_list.txt file comes from this account_list = [] # Get and then sort the list of accounts by name, case insensitive. active_accounts = get_active_accounts() active_accounts.sort(key=lambda x: x.account_name.lower()) for a in active_accounts: logger.info(a.account_name) # Add the account ID to this array account_list.append(str(a.account_id)) # We don't want to save the entire object's attributes. j = a.db_record.copy() try: if str(a.payer_id) in payers: j['payer_name'] = payers[str(a.payer_id)] else: payer = AWSAccount(str(a.payer_id)) j['payer_name'] = payer.account_name payers[payer.account_id] = payer.account_name except LookupError: logger.debug("Unable to find the payer in the database. Must be an orphan") j['payer_name'] = "Unknown Payer" payers[str(a.payer_id)] = "Unknown Payer" # Build the cross account role link if hasattr(a, 'cross_account_role') and a.cross_account_role is not None: j['assume_role_link'] = assume_role_link.format(a.account_id, os.environ['ROLE_NAME'], a.account_name, os.environ['ROLE_NAME']) else: j['assume_role_link'] = "No Cross Account Role" json_data['accounts'].append(j) save_account_as_resource(a) json_data['timestamp'] = datetime.datetime.now() json_data['account_count'] = len(active_accounts) json_data['bucket'] = os.environ['INVENTORY_BUCKET'] fh = open("html_templates/account_inventory.html", "r") mako_body = fh.read() result = Template(mako_body).render(**json_data) # Save HTML and json to S3 s3_client = boto3.client('s3') try: response = s3_client.put_object( # ACL='public-read', Body=result, Bucket=os.environ['INVENTORY_BUCKET'], ContentType='text/html', Key='Reports/account_inventory.html', ) # Save a txt file of all the active account IDs response = s3_client.put_object( # ACL='public-read', Body="\n".join(account_list), Bucket=os.environ['INVENTORY_BUCKET'], ContentType='text/plain', Key='Reports/account_list.txt', ) # Save the JSON to S3 response = s3_client.put_object( # ACL='public-read', Body=json.dumps(json_data, sort_keys=True, indent=2, default=str), Bucket=os.environ['INVENTORY_BUCKET'], ContentType='application/json', Key='Reports/account_inventory.json', ) except ClientError as e: logger.error("ClientError saving report: {}".format(e)) raise return(event) def save_account_as_resource(target_account): resource_item = {} resource_item['awsAccountId'] = target_account.account_id resource_item['awsAccountName'] = target_account.account_name resource_item['resourceType'] = "AWS::Organizations::Account" resource_item['source'] = "Antiope" resource_item['ARN'] = target_account.db_record['payer_record']['Arn'] resource_item['resourceCreationTime'] = target_account.db_record['payer_record']['JoinedTimestamp'] resource_item['configurationItemCaptureTime'] = str(datetime.datetime.now()) resource_item['configuration'] = target_account.db_record.copy() resource_item['supplementaryConfiguration'] = {} resource_item['resourceId'] = target_account.account_id resource_item['resourceName'] = target_account.account_name resource_item['errors'] = {} if hasattr(target_account, 'cross_account_role') and target_account.cross_account_role is not None: role_name = target_account.cross_account_role.split("/")[-1] resource_item['supplementaryConfiguration']['assume_role_url'] = assume_role_url.format(target_account.account_id, role_name, target_account.account_name) save_resource_to_s3(RESOURCE_PATH, f"{target_account.account_id}", resource_item)
en
0.783913
# Lambda main routine # We will make a HTML Table and a Json file with this data # Cache account_name for all the parent accounts # Data to be saved to S3 and used to generate the template report # account_list.txt file comes from this # Get and then sort the list of accounts by name, case insensitive. # Add the account ID to this array # We don't want to save the entire object's attributes. # Build the cross account role link # Save HTML and json to S3 # ACL='public-read', # Save a txt file of all the active account IDs # ACL='public-read', # Save the JSON to S3 # ACL='public-read',
2.116096
2
build.py
yjjnls/tesseract
0
6631274
<filename>build.py #!/usr/bin/env python # -*- coding: utf-8 -*- from bincrafters import build_template_default import os if __name__ == "__main__": builder = build_template_default.get_builder() if os.environ.get('EMSCRIPTEN_VERSIONS'): for version in os.environ['EMSCRIPTEN_VERSIONS'].split(','): for build_type in os.environ.get('CONAN_BUILD_TYPES','Debug').split(','): builder.add(settings={ "compiler": "emcc", "compiler.libcxx":'libcxxabi', "build_type": build_type, "compiler.version": version }) items = [] for item in builder.items: if not os.environ.get('CONAN_GCC_VERSIONS') and item.settings['compiler'] == 'gcc': continue if not os.environ.get('CONAN_CLANG_VERSIONS') and item.settings['compiler'] == 'clang': continue items.append(item) builder.items = items builder.run()
<filename>build.py #!/usr/bin/env python # -*- coding: utf-8 -*- from bincrafters import build_template_default import os if __name__ == "__main__": builder = build_template_default.get_builder() if os.environ.get('EMSCRIPTEN_VERSIONS'): for version in os.environ['EMSCRIPTEN_VERSIONS'].split(','): for build_type in os.environ.get('CONAN_BUILD_TYPES','Debug').split(','): builder.add(settings={ "compiler": "emcc", "compiler.libcxx":'libcxxabi', "build_type": build_type, "compiler.version": version }) items = [] for item in builder.items: if not os.environ.get('CONAN_GCC_VERSIONS') and item.settings['compiler'] == 'gcc': continue if not os.environ.get('CONAN_CLANG_VERSIONS') and item.settings['compiler'] == 'clang': continue items.append(item) builder.items = items builder.run()
en
0.352855
#!/usr/bin/env python # -*- coding: utf-8 -*-
2.075203
2
techminer/co_word_analysis.py
jdvelasq/techminer-new
1
6631275
<filename>techminer/co_word_analysis.py import matplotlib import matplotlib.pyplot as pyplot import numpy as np import pandas as pd from sklearn.manifold import MDS import techminer.core.dashboard as dash from techminer.core import ( CA, DASH, TF_matrix, TFIDF_matrix, add_counters_to_axis, clustering, corpus_filter, limit_to_exclude, normalize_network, sort_by_axis, cluster_table_to_list, cluster_table_to_python_code, keywords_coverage, ) from techminer.plots import ( ax_text_node_labels, counters_to_node_sizes, expand_ax_limits, set_spines_invisible, xy_clusters_plot, xy_cluster_members_plot, ) ############################################################################### ## ## MODEL ## ############################################################################### class Model: def __init__( self, data, limit_to, exclude, years_range, clusters=None, cluster=None, ): ## if years_range is not None: initial_year, final_year = years_range data = data[(data.Year >= initial_year) & (data.Year <= final_year)] ## ## Filter for cluster members ## if clusters is not None and cluster is not None: data = corpus_filter(data=data, clusters=clusters, cluster=cluster) self.data = data self.limit_to = limit_to self.exclude = exclude self.column = None self.min_occurrence = None self.max_items = None self.normalization = None self.clustering_method = None self.n_clusters = None self.affinity = None self.linkage = None self.random_state = None self.x_axis = None self.y_axis = None self.top_n = None self.colors = None self.width = None self.height = None def apply(self): ## ## Concept mapping ## https://tlab.it/en/allegati/help_en_online/mmappe2.htm ## ## ## Co-occurrence matrix ## TF_matrix_ = TF_matrix( data=self.data, column=self.column, scheme=None, min_occurrence=self.min_occurrence, ) ## ## Limit to/Exclude ## TF_matrix_ = limit_to_exclude( data=TF_matrix_, axis=1, column=self.column, limit_to=self.limit_to, exclude=self.exclude, ) ## ## Select max items ## TF_matrix_ = add_counters_to_axis( X=TF_matrix_, axis=1, data=self.data, column=self.column ) TF_matrix_ = sort_by_axis( data=TF_matrix_, sort_by="Num Documents", ascending=False, axis=1 ) TF_matrix_ = TF_matrix_[TF_matrix_.columns[: self.max_items]] if len(TF_matrix_.columns) > self.max_items: top_items = TF_matrix_.sum(axis=0) top_items = top_items.sort_values(ascending=False) top_items = top_items.head(self.max_items) TF_matrix_ = TF_matrix_.loc[:, top_items.index] rows = TF_matrix_.sum(axis=1) rows = rows[rows > 0] TF_matrix_ = TF_matrix_.loc[rows.index, :] ## ## Co-occurrence matrix and association index ## X = np.matmul(TF_matrix_.transpose().values, TF_matrix_.values) X = pd.DataFrame(X, columns=TF_matrix_.columns, index=TF_matrix_.columns) X = normalize_network(X=X, normalization=self.normalization) ## ## Clustering of the dissimilarity matrix ## ( self.n_clusters, self.labels_, self.cluster_members_, self.cluster_centers_, self.cluster_names_, ) = clustering( X=(1 - X), method=self.clustering_method, n_clusters=self.n_clusters, affinity=self.affinity, linkage=self.linkage, random_state=self.random_state, top_n=self.top_n, name_prefix="Cluster {}", ) self.X_ = X ## ## Cluster co-occurrence ## M = X.copy() M["CLUSTER"] = self.labels_ M = M.groupby("CLUSTER").sum() # M = M.transpose() M["CLUSTER"] = self.labels_ M = M.groupby("CLUSTER").sum() # M.columns = ["Cluster {}".format(i) for i in range(self.n_clusters)] M.index = M.columns # self.cluster_co_occurrence_ = M ## ## Strategic Map ## ## clusters name strategic_map = pd.DataFrame( self.cluster_names_, columns=["Cluster name"], index=M.columns ) strategic_map["Density"] = 0.0 strategic_map["Centrality"] = 0.0 ## Density -- internal conections for cluster in M.columns: strategic_map.at[cluster, "Density"] = M[cluster][cluster] ## Centrality -- outside conections strategic_map["Centrality"] = M.sum() strategic_map["Centrality"] = ( strategic_map["Centrality"] - strategic_map["Density"] ) self.strategic_map_ = strategic_map def mds_keywords_map(self): ## ## Compute co-occurrence matrix ## self.apply() X = self.X_.copy() ## ## MDS ## embedding = MDS(n_components=2) X_transformed = embedding.fit_transform( 1 - X, ) x_axis = X_transformed[:, 0] y_axis = X_transformed[:, 1] ## ## Plot ## return xy_cluster_members_plot( x=x_axis, y=y_axis, x_axis_at=0, y_axis_at=0, labels=self.labels_, keywords=X.index, color_scheme=self.colors, xlabel="Dim-0", ylabel="Dim-1", figsize=(self.width, self.height), ) def mds_cluster_map(self): ## ## Compute co-occurrence matrix ## self.apply() X = self.X_.copy() ## ## MDS ## embedding = MDS(n_components=2) X_transformed = embedding.fit_transform( 1 - X, ) X_transformed = pd.DataFrame(X_transformed, columns=["x_axis", "y_axis"]) X_transformed["CLUSTER"] = self.labels_ X_transformed = X_transformed.groupby(["CLUSTER"], as_index=True).mean() X_transformed = X_transformed.sort_index(axis=0) ## ## Cluster coordinates ## x_axis = X_transformed.x_axis.tolist() y_axis = X_transformed.y_axis.tolist() ## ## Cluster names ## labels = [ "CLUST_{} {}".format(index, label) for index, label in enumerate(self.cluster_names_) ] return xy_clusters_plot( x=x_axis, y=y_axis, x_axis_at=0, y_axis_at=0, labels=labels, node_sizes=counters_to_node_sizes(labels), color_scheme=self.colors, xlabel="Dim-{}".format(self.x_axis), ylabel="Dim-{}".format(self.y_axis), figsize=(self.width, self.height), ) def mds_keywords_by_cluster_table(self): self.apply() return self.cluster_members_ def mds_keywords_by_cluster_list(self): self.apply() return cluster_table_to_list(self.cluster_members_) def mds_keywords_by_cluster_python_code(self): self.apply() return cluster_table_to_python_code(self.column, self.cluster_members_) def ca_keywords_map(self): ## ## Compute co-occurrence matrix ## self.apply() X = self.X_.copy() ## ## CA ## ca = CA() ca.fit(1 - X) X_transformed = ca.principal_coordinates_cols_ x_axis = X_transformed.loc[:, X_transformed.columns[self.x_axis]] y_axis = X_transformed.loc[:, X_transformed.columns[self.y_axis]] ## ## Plot ## return xy_cluster_members_plot( x=x_axis, y=y_axis, x_axis_at=0, y_axis_at=0, labels=self.labels_, keywords=X.index, color_scheme=self.colors, xlabel="Dim-0", ylabel="Dim-1", figsize=(self.width, self.height), ) def ca_cluster_map(self): ## ## Compute co-occurrence matrix ## self.apply() X = self.X_.copy() ## ## CA ## ca = CA() ca.fit(1 - X) X_transformed = ca.principal_coordinates_cols_ x_axis = X_transformed.loc[:, X_transformed.columns[self.x_axis]] y_axis = X_transformed.loc[:, X_transformed.columns[self.y_axis]] X_transformed = pd.DataFrame( {"x_axis": x_axis, "y_axis": y_axis, "CLUSTER": self.labels_} ) X_transformed = X_transformed.groupby(["CLUSTER"], as_index=True).mean() X_transformed = X_transformed.sort_index(axis=0) ## ## Cluster coordinates ## x_axis = X_transformed.x_axis.tolist() y_axis = X_transformed.y_axis.tolist() ## ## Cluster names ## labels = [ "CLUST_{} {}".format(index, label) for index, label in enumerate(self.cluster_names_) ] return xy_clusters_plot( x=x_axis, y=y_axis, x_axis_at=0, y_axis_at=0, labels=labels, node_sizes=counters_to_node_sizes(labels), color_scheme=self.colors, xlabel="Dim-{}".format(self.x_axis), ylabel="Dim-{}".format(self.y_axis), figsize=(self.width, self.height), ) def ca_keywords_by_cluster_table(self): self.apply() return self.cluster_members_ def ca_keywords_by_cluster_list(self): self.apply() return cluster_table_to_list(self.cluster_members_) def ca_keywords_by_cluster_python_code(self): self.apply() return cluster_table_to_python_code(self.column, self.cluster_members_) ###### def strategic_map(self): self.apply() strategic_map = self.strategic_map_.copy() strategic_map["node_sizes"] = strategic_map["Cluster name"].map( lambda w: w.split(" ")[-1] ) strategic_map["node_sizes"] = strategic_map.node_sizes.map( lambda w: w.split(":")[0] ) strategic_map["node_sizes"] = strategic_map.node_sizes.map(int) max_node_size = strategic_map.node_sizes.max() min_node_size = strategic_map.node_sizes.min() strategic_map["node_sizes"] = strategic_map.node_sizes.map( lambda w: 200 + 2800 * (w - min_node_size) / (max_node_size - min_node_size) ) return xy_clusters_plot( x=strategic_map.Centrality, y=strategic_map.Density, x_axis_at=strategic_map.Centrality.median(), y_axis_at=strategic_map.Density.median(), labels=strategic_map["Cluster name"] .map(lambda w: " ".join(w.split(" ")[:-1])) .tolist(), node_sizes=strategic_map.node_sizes, color_scheme=self.colors, xlabel="Centrality", ylabel="Density", figsize=(self.width, self.height), ) ############################################################################### ## ## DASHBOARD ## ############################################################################### COLUMNS = sorted( [ "Abstract_words_CL", "Abstract_words", "Author_Keywords_CL", "Author_Keywords", "Index_Keywords_CL", "Index_Keywords", "Keywords_CL", "Title_words_CL", "Title_words", ] ) class DASHapp(DASH, Model): def __init__( self, data, limit_to=None, exclude=None, years_range=None, clusters=None, cluster=None, ): Model.__init__( self, data=data, limit_to=limit_to, exclude=exclude, years_range=years_range, clusters=clusters, cluster=cluster, ) DASH.__init__(self) self.app_title = "Co-word Analysis" self.menu_options = [ "MDS Keywords Map", "MDS Cluster Map", "MDS Keywords by Cluster (table)", "MDS Keywords by Cluster (list)", "MDS Keywords by Cluster (Python code)", "CA Keywords Map", "CA Cluster Map", "CA Keywords by Cluster (table)", "CA Keywords by Cluster (list)", "CA Keywords by Cluster (Python code)", "Strategic Map", ] self.panel_widgets = [ dash.dropdown( desc="Column:", options=[z for z in COLUMNS if z in data.columns], ), dash.min_occurrence(), dash.max_items(), dash.normalization(include_none=False), dash.separator(text="Clustering"), dash.clustering_method(), dash.n_clusters(m=3, n=50, i=1), dash.affinity(), dash.linkage(), dash.random_state(), dash.separator(text="CA diagram"), dash.x_axis(), dash.y_axis(), dash.separator(text="Visualization"), dash.top_n(), dash.dropdown( desc="Colors:", options=[ "4 Quadrants", "Clusters", "Greys", "Purples", "Blues", "Greens", "Oranges", "Reds", ], ), dash.fig_width(), dash.fig_height(), ] self.n_components = 10 super().create_grid() def interactive_output(self, **kwargs): DASH.interactive_output(self, **kwargs) with self.output: if self.menu in ["MDS Keywords Map", "MDS Cluster Map", "Strategic Map"]: self.set_disabled("X-axis:") self.set_disabled("Y-axis:") self.set_enabled("Colors:") self.set_enabled("Width:") self.set_enabled("Height:") if self.menu in ["CA Keywords Map", "CA Cluster Map"]: self.set_enabled("X-axis:") self.set_enabled("Y-axis:") self.set_enabled("Colors:") self.set_enabled("Width:") self.set_enabled("Height:") if self.menu in [ "MDS Keywords by Cluster (table)", "MDS Keywords by Cluster (list)", "MDS Keywords by Cluster (Python code)", "CA Keywords by Cluster (table)", "CA Keywords by Cluster (list)", "CA Keywords by Cluster (Python code)", ]: self.set_disabled("X-axis:") self.set_disabled("Y-axis:") self.set_disabled("Colors:") self.set_disabled("Width:") self.set_disabled("Height:") ############################################################################### ## ## EXTERNAL INTERFACE ## ############################################################################### def co_word_analysis( input_file="techminer.csv", limit_to=None, exclude=None, years_range=None, clusters=None, cluster=None, ): return DASHapp( data=pd.read_csv(input_file), limit_to=limit_to, exclude=exclude, years_range=years_range, clusters=clusters, cluster=cluster, ).run()
<filename>techminer/co_word_analysis.py import matplotlib import matplotlib.pyplot as pyplot import numpy as np import pandas as pd from sklearn.manifold import MDS import techminer.core.dashboard as dash from techminer.core import ( CA, DASH, TF_matrix, TFIDF_matrix, add_counters_to_axis, clustering, corpus_filter, limit_to_exclude, normalize_network, sort_by_axis, cluster_table_to_list, cluster_table_to_python_code, keywords_coverage, ) from techminer.plots import ( ax_text_node_labels, counters_to_node_sizes, expand_ax_limits, set_spines_invisible, xy_clusters_plot, xy_cluster_members_plot, ) ############################################################################### ## ## MODEL ## ############################################################################### class Model: def __init__( self, data, limit_to, exclude, years_range, clusters=None, cluster=None, ): ## if years_range is not None: initial_year, final_year = years_range data = data[(data.Year >= initial_year) & (data.Year <= final_year)] ## ## Filter for cluster members ## if clusters is not None and cluster is not None: data = corpus_filter(data=data, clusters=clusters, cluster=cluster) self.data = data self.limit_to = limit_to self.exclude = exclude self.column = None self.min_occurrence = None self.max_items = None self.normalization = None self.clustering_method = None self.n_clusters = None self.affinity = None self.linkage = None self.random_state = None self.x_axis = None self.y_axis = None self.top_n = None self.colors = None self.width = None self.height = None def apply(self): ## ## Concept mapping ## https://tlab.it/en/allegati/help_en_online/mmappe2.htm ## ## ## Co-occurrence matrix ## TF_matrix_ = TF_matrix( data=self.data, column=self.column, scheme=None, min_occurrence=self.min_occurrence, ) ## ## Limit to/Exclude ## TF_matrix_ = limit_to_exclude( data=TF_matrix_, axis=1, column=self.column, limit_to=self.limit_to, exclude=self.exclude, ) ## ## Select max items ## TF_matrix_ = add_counters_to_axis( X=TF_matrix_, axis=1, data=self.data, column=self.column ) TF_matrix_ = sort_by_axis( data=TF_matrix_, sort_by="Num Documents", ascending=False, axis=1 ) TF_matrix_ = TF_matrix_[TF_matrix_.columns[: self.max_items]] if len(TF_matrix_.columns) > self.max_items: top_items = TF_matrix_.sum(axis=0) top_items = top_items.sort_values(ascending=False) top_items = top_items.head(self.max_items) TF_matrix_ = TF_matrix_.loc[:, top_items.index] rows = TF_matrix_.sum(axis=1) rows = rows[rows > 0] TF_matrix_ = TF_matrix_.loc[rows.index, :] ## ## Co-occurrence matrix and association index ## X = np.matmul(TF_matrix_.transpose().values, TF_matrix_.values) X = pd.DataFrame(X, columns=TF_matrix_.columns, index=TF_matrix_.columns) X = normalize_network(X=X, normalization=self.normalization) ## ## Clustering of the dissimilarity matrix ## ( self.n_clusters, self.labels_, self.cluster_members_, self.cluster_centers_, self.cluster_names_, ) = clustering( X=(1 - X), method=self.clustering_method, n_clusters=self.n_clusters, affinity=self.affinity, linkage=self.linkage, random_state=self.random_state, top_n=self.top_n, name_prefix="Cluster {}", ) self.X_ = X ## ## Cluster co-occurrence ## M = X.copy() M["CLUSTER"] = self.labels_ M = M.groupby("CLUSTER").sum() # M = M.transpose() M["CLUSTER"] = self.labels_ M = M.groupby("CLUSTER").sum() # M.columns = ["Cluster {}".format(i) for i in range(self.n_clusters)] M.index = M.columns # self.cluster_co_occurrence_ = M ## ## Strategic Map ## ## clusters name strategic_map = pd.DataFrame( self.cluster_names_, columns=["Cluster name"], index=M.columns ) strategic_map["Density"] = 0.0 strategic_map["Centrality"] = 0.0 ## Density -- internal conections for cluster in M.columns: strategic_map.at[cluster, "Density"] = M[cluster][cluster] ## Centrality -- outside conections strategic_map["Centrality"] = M.sum() strategic_map["Centrality"] = ( strategic_map["Centrality"] - strategic_map["Density"] ) self.strategic_map_ = strategic_map def mds_keywords_map(self): ## ## Compute co-occurrence matrix ## self.apply() X = self.X_.copy() ## ## MDS ## embedding = MDS(n_components=2) X_transformed = embedding.fit_transform( 1 - X, ) x_axis = X_transformed[:, 0] y_axis = X_transformed[:, 1] ## ## Plot ## return xy_cluster_members_plot( x=x_axis, y=y_axis, x_axis_at=0, y_axis_at=0, labels=self.labels_, keywords=X.index, color_scheme=self.colors, xlabel="Dim-0", ylabel="Dim-1", figsize=(self.width, self.height), ) def mds_cluster_map(self): ## ## Compute co-occurrence matrix ## self.apply() X = self.X_.copy() ## ## MDS ## embedding = MDS(n_components=2) X_transformed = embedding.fit_transform( 1 - X, ) X_transformed = pd.DataFrame(X_transformed, columns=["x_axis", "y_axis"]) X_transformed["CLUSTER"] = self.labels_ X_transformed = X_transformed.groupby(["CLUSTER"], as_index=True).mean() X_transformed = X_transformed.sort_index(axis=0) ## ## Cluster coordinates ## x_axis = X_transformed.x_axis.tolist() y_axis = X_transformed.y_axis.tolist() ## ## Cluster names ## labels = [ "CLUST_{} {}".format(index, label) for index, label in enumerate(self.cluster_names_) ] return xy_clusters_plot( x=x_axis, y=y_axis, x_axis_at=0, y_axis_at=0, labels=labels, node_sizes=counters_to_node_sizes(labels), color_scheme=self.colors, xlabel="Dim-{}".format(self.x_axis), ylabel="Dim-{}".format(self.y_axis), figsize=(self.width, self.height), ) def mds_keywords_by_cluster_table(self): self.apply() return self.cluster_members_ def mds_keywords_by_cluster_list(self): self.apply() return cluster_table_to_list(self.cluster_members_) def mds_keywords_by_cluster_python_code(self): self.apply() return cluster_table_to_python_code(self.column, self.cluster_members_) def ca_keywords_map(self): ## ## Compute co-occurrence matrix ## self.apply() X = self.X_.copy() ## ## CA ## ca = CA() ca.fit(1 - X) X_transformed = ca.principal_coordinates_cols_ x_axis = X_transformed.loc[:, X_transformed.columns[self.x_axis]] y_axis = X_transformed.loc[:, X_transformed.columns[self.y_axis]] ## ## Plot ## return xy_cluster_members_plot( x=x_axis, y=y_axis, x_axis_at=0, y_axis_at=0, labels=self.labels_, keywords=X.index, color_scheme=self.colors, xlabel="Dim-0", ylabel="Dim-1", figsize=(self.width, self.height), ) def ca_cluster_map(self): ## ## Compute co-occurrence matrix ## self.apply() X = self.X_.copy() ## ## CA ## ca = CA() ca.fit(1 - X) X_transformed = ca.principal_coordinates_cols_ x_axis = X_transformed.loc[:, X_transformed.columns[self.x_axis]] y_axis = X_transformed.loc[:, X_transformed.columns[self.y_axis]] X_transformed = pd.DataFrame( {"x_axis": x_axis, "y_axis": y_axis, "CLUSTER": self.labels_} ) X_transformed = X_transformed.groupby(["CLUSTER"], as_index=True).mean() X_transformed = X_transformed.sort_index(axis=0) ## ## Cluster coordinates ## x_axis = X_transformed.x_axis.tolist() y_axis = X_transformed.y_axis.tolist() ## ## Cluster names ## labels = [ "CLUST_{} {}".format(index, label) for index, label in enumerate(self.cluster_names_) ] return xy_clusters_plot( x=x_axis, y=y_axis, x_axis_at=0, y_axis_at=0, labels=labels, node_sizes=counters_to_node_sizes(labels), color_scheme=self.colors, xlabel="Dim-{}".format(self.x_axis), ylabel="Dim-{}".format(self.y_axis), figsize=(self.width, self.height), ) def ca_keywords_by_cluster_table(self): self.apply() return self.cluster_members_ def ca_keywords_by_cluster_list(self): self.apply() return cluster_table_to_list(self.cluster_members_) def ca_keywords_by_cluster_python_code(self): self.apply() return cluster_table_to_python_code(self.column, self.cluster_members_) ###### def strategic_map(self): self.apply() strategic_map = self.strategic_map_.copy() strategic_map["node_sizes"] = strategic_map["Cluster name"].map( lambda w: w.split(" ")[-1] ) strategic_map["node_sizes"] = strategic_map.node_sizes.map( lambda w: w.split(":")[0] ) strategic_map["node_sizes"] = strategic_map.node_sizes.map(int) max_node_size = strategic_map.node_sizes.max() min_node_size = strategic_map.node_sizes.min() strategic_map["node_sizes"] = strategic_map.node_sizes.map( lambda w: 200 + 2800 * (w - min_node_size) / (max_node_size - min_node_size) ) return xy_clusters_plot( x=strategic_map.Centrality, y=strategic_map.Density, x_axis_at=strategic_map.Centrality.median(), y_axis_at=strategic_map.Density.median(), labels=strategic_map["Cluster name"] .map(lambda w: " ".join(w.split(" ")[:-1])) .tolist(), node_sizes=strategic_map.node_sizes, color_scheme=self.colors, xlabel="Centrality", ylabel="Density", figsize=(self.width, self.height), ) ############################################################################### ## ## DASHBOARD ## ############################################################################### COLUMNS = sorted( [ "Abstract_words_CL", "Abstract_words", "Author_Keywords_CL", "Author_Keywords", "Index_Keywords_CL", "Index_Keywords", "Keywords_CL", "Title_words_CL", "Title_words", ] ) class DASHapp(DASH, Model): def __init__( self, data, limit_to=None, exclude=None, years_range=None, clusters=None, cluster=None, ): Model.__init__( self, data=data, limit_to=limit_to, exclude=exclude, years_range=years_range, clusters=clusters, cluster=cluster, ) DASH.__init__(self) self.app_title = "Co-word Analysis" self.menu_options = [ "MDS Keywords Map", "MDS Cluster Map", "MDS Keywords by Cluster (table)", "MDS Keywords by Cluster (list)", "MDS Keywords by Cluster (Python code)", "CA Keywords Map", "CA Cluster Map", "CA Keywords by Cluster (table)", "CA Keywords by Cluster (list)", "CA Keywords by Cluster (Python code)", "Strategic Map", ] self.panel_widgets = [ dash.dropdown( desc="Column:", options=[z for z in COLUMNS if z in data.columns], ), dash.min_occurrence(), dash.max_items(), dash.normalization(include_none=False), dash.separator(text="Clustering"), dash.clustering_method(), dash.n_clusters(m=3, n=50, i=1), dash.affinity(), dash.linkage(), dash.random_state(), dash.separator(text="CA diagram"), dash.x_axis(), dash.y_axis(), dash.separator(text="Visualization"), dash.top_n(), dash.dropdown( desc="Colors:", options=[ "4 Quadrants", "Clusters", "Greys", "Purples", "Blues", "Greens", "Oranges", "Reds", ], ), dash.fig_width(), dash.fig_height(), ] self.n_components = 10 super().create_grid() def interactive_output(self, **kwargs): DASH.interactive_output(self, **kwargs) with self.output: if self.menu in ["MDS Keywords Map", "MDS Cluster Map", "Strategic Map"]: self.set_disabled("X-axis:") self.set_disabled("Y-axis:") self.set_enabled("Colors:") self.set_enabled("Width:") self.set_enabled("Height:") if self.menu in ["CA Keywords Map", "CA Cluster Map"]: self.set_enabled("X-axis:") self.set_enabled("Y-axis:") self.set_enabled("Colors:") self.set_enabled("Width:") self.set_enabled("Height:") if self.menu in [ "MDS Keywords by Cluster (table)", "MDS Keywords by Cluster (list)", "MDS Keywords by Cluster (Python code)", "CA Keywords by Cluster (table)", "CA Keywords by Cluster (list)", "CA Keywords by Cluster (Python code)", ]: self.set_disabled("X-axis:") self.set_disabled("Y-axis:") self.set_disabled("Colors:") self.set_disabled("Width:") self.set_disabled("Height:") ############################################################################### ## ## EXTERNAL INTERFACE ## ############################################################################### def co_word_analysis( input_file="techminer.csv", limit_to=None, exclude=None, years_range=None, clusters=None, cluster=None, ): return DASHapp( data=pd.read_csv(input_file), limit_to=limit_to, exclude=exclude, years_range=years_range, clusters=clusters, cluster=cluster, ).run()
de
0.341384
############################################################################### ## ## MODEL ## ############################################################################### ## ## ## Filter for cluster members ## ## ## Concept mapping ## https://tlab.it/en/allegati/help_en_online/mmappe2.htm ## ## ## Co-occurrence matrix ## ## ## Limit to/Exclude ## ## ## Select max items ## ## ## Co-occurrence matrix and association index ## ## ## Clustering of the dissimilarity matrix ## ## ## Cluster co-occurrence ## # # # ## ## Strategic Map ## ## clusters name ## Density -- internal conections ## Centrality -- outside conections ## ## Compute co-occurrence matrix ## ## ## MDS ## ## ## Plot ## ## ## Compute co-occurrence matrix ## ## ## MDS ## ## ## Cluster coordinates ## ## ## Cluster names ## ## ## Compute co-occurrence matrix ## ## ## CA ## ## ## Plot ## ## ## Compute co-occurrence matrix ## ## ## CA ## ## ## Cluster coordinates ## ## ## Cluster names ## ###### ############################################################################### ## ## DASHBOARD ## ############################################################################### ############################################################################### ## ## EXTERNAL INTERFACE ## ###############################################################################
2.396186
2
pyplan/pyplan/common/email/classes/eEmailType.py
jorgedouglas71/pyplan-ide
17
6631276
from enum import Enum class eEmailType(Enum): WORKFLOW_ASSIGNED_TASK = 0 WORKFLOW_CHANGE_STATE = 1 WORKFLOW_CHANGE_PERCENT = 2 INTERFACE_COMMENT = 3 INTERFACE_REFRESH_USER_IN_COMMENT = 4 # TODO:Implement this INTERFACE_SHARED = 5 APPLICATION_SHARED = 6 RESET_PASSWORD = 7 CHANGED_PASSWORD = 8 TEST = 9 WELCOME_USER = 10 CREATED_USER = 11 ACTIVATED_USER = 12 SCHEDULE_TASK_STATUS_CHANGED = 13 DEACTIVATED_USER = 14 # TODO:Implement this def __str__(self): return self.value
from enum import Enum class eEmailType(Enum): WORKFLOW_ASSIGNED_TASK = 0 WORKFLOW_CHANGE_STATE = 1 WORKFLOW_CHANGE_PERCENT = 2 INTERFACE_COMMENT = 3 INTERFACE_REFRESH_USER_IN_COMMENT = 4 # TODO:Implement this INTERFACE_SHARED = 5 APPLICATION_SHARED = 6 RESET_PASSWORD = 7 CHANGED_PASSWORD = 8 TEST = 9 WELCOME_USER = 10 CREATED_USER = 11 ACTIVATED_USER = 12 SCHEDULE_TASK_STATUS_CHANGED = 13 DEACTIVATED_USER = 14 # TODO:Implement this def __str__(self): return self.value
en
0.212105
# TODO:Implement this # TODO:Implement this
2.74657
3
video.py
rvk007/Multi-Env-Decision-Making
2
6631277
import os import logging import imageio class VideoRecorder: def __init__(self, root_dir, fps=5): logging.getLogger('imageio_ffmpeg').setLevel(logging.ERROR) self.save_dir = os.path.join(root_dir, 'eval_video') if root_dir else None if self.save_dir: os.makedirs(self.save_dir, exist_ok=True) self.fps = fps self.frames = [] def init(self, env, enabled=True): self.frames = [] self.enabled = self.save_dir is not None and enabled self.record(env) def record(self, env): if self.enabled: frame = env.render(mode='rgb_array') self.frames.append(frame) def save(self, file_name): if self.enabled: path = os.path.join(self.save_dir, file_name) imageio.mimsave(path, self.frames, fps=self.fps, macro_block_size=10, ffmpeg_params=['-loglevel', 'error'])
import os import logging import imageio class VideoRecorder: def __init__(self, root_dir, fps=5): logging.getLogger('imageio_ffmpeg').setLevel(logging.ERROR) self.save_dir = os.path.join(root_dir, 'eval_video') if root_dir else None if self.save_dir: os.makedirs(self.save_dir, exist_ok=True) self.fps = fps self.frames = [] def init(self, env, enabled=True): self.frames = [] self.enabled = self.save_dir is not None and enabled self.record(env) def record(self, env): if self.enabled: frame = env.render(mode='rgb_array') self.frames.append(frame) def save(self, file_name): if self.enabled: path = os.path.join(self.save_dir, file_name) imageio.mimsave(path, self.frames, fps=self.fps, macro_block_size=10, ffmpeg_params=['-loglevel', 'error'])
none
1
2.539132
3
container-applications/classified/inspect_workout/routes.py
emerginganalytics/ualr-cyber-gym
3
6631278
<filename>container-applications/classified/inspect_workout/routes.py import cryptocode from flask import Blueprint, render_template, redirect, request, url_for from globals import ds_client, publish_status # Blueprint Configuration inspect_bp = Blueprint( 'inspect_bp', __name__, url_prefix='/inspect', template_folder='templates', static_folder='static' ) @inspect_bp.route('/<workout_id>') def inspect(workout_id): key = ds_client.key('cybergym-workout', workout_id) workout = ds_client.get(key) if workout['type'] == 'inspect': page_template = 'inspect.html' return render_template(page_template, workout_id=workout_id) else: return redirect(404) @inspect_bp.route('/xsfiedSTRflag/<workout_id>', methods=['GET', 'POST']) def xsfiedSTRflag(workout_id): key = ds_client.key('cybergym-workout', workout_id) workout = ds_client.get(key) if workout['type'] == 'inspect': page_template = 'index.html' return render_template(page_template, workout_id=workout_id) else: return redirect(404) @inspect_bp.route('/login/<workout_id>', methods=['POST']) def login(workout_id): page_template = 'inspect.html' key = ds_client.key('cybergym-workout', workout_id) workout = ds_client.get(key) if workout['type'] == 'inspect': if request.method == 'POST': if request.form['password'] == '<PASSWORD>' and request.form['username'] == 'Maximus': decrypt_key = workout['assessment']['key'] classified_flag = 'gecJuFQuv1FhQAfLDvn9f6j6xu/GACm00wqyoWVKUJQ=*gXSP1UFZELV59Qz6yP0Y+w==*' \ 'y6cg3ujMtm7eSklW2SX3JQ==*C4GDYpzjfozIsTQWVuUc4A==' plaintext_flag = cryptocode.decrypt(classified_flag, decrypt_key) return render_template(page_template, workout_id=workout_id, classified_flag=plaintext_flag) else: return redirect(url_for('inspect_bp.xsfiedSTRflag ', workout_id=workout_id)) else: return redirect(404) @inspect_bp.route('/check_flag/<workout_id>', methods=['POST']) def check_flag(workout_id): if request.method == 'POST': key = ds_client.key('cybergym-workout', workout_id) page_template = 'inspect.html' workout = ds_client.get(key) workout_token = workout['assessment']['questions'][0]['key'] if request.form.get('check_button'): decrypt_key = workout['assessment']['key'] encrypted_flag = 'gecJuFQuv1FhQAfLDvn9f6j6xu/GACm00wqyoWVKUJQ=*gXSP1UFZELV59Qz6yP0Y+w==*' \ 'y6cg3ujMtm7eSklW2SX3JQ==*C4GDYpzjfozIsTQWVuUc4A==' classified_flag = cryptocode.decrypt(encrypted_flag, decrypt_key) if classified_flag == request.form['classified_flag']: publish_status(workout_id, workout_token) completion = True return render_template(page_template, workout_id=workout_id, completion=completion) else: return render_template(page_template, workout_id=workout_id)
<filename>container-applications/classified/inspect_workout/routes.py import cryptocode from flask import Blueprint, render_template, redirect, request, url_for from globals import ds_client, publish_status # Blueprint Configuration inspect_bp = Blueprint( 'inspect_bp', __name__, url_prefix='/inspect', template_folder='templates', static_folder='static' ) @inspect_bp.route('/<workout_id>') def inspect(workout_id): key = ds_client.key('cybergym-workout', workout_id) workout = ds_client.get(key) if workout['type'] == 'inspect': page_template = 'inspect.html' return render_template(page_template, workout_id=workout_id) else: return redirect(404) @inspect_bp.route('/xsfiedSTRflag/<workout_id>', methods=['GET', 'POST']) def xsfiedSTRflag(workout_id): key = ds_client.key('cybergym-workout', workout_id) workout = ds_client.get(key) if workout['type'] == 'inspect': page_template = 'index.html' return render_template(page_template, workout_id=workout_id) else: return redirect(404) @inspect_bp.route('/login/<workout_id>', methods=['POST']) def login(workout_id): page_template = 'inspect.html' key = ds_client.key('cybergym-workout', workout_id) workout = ds_client.get(key) if workout['type'] == 'inspect': if request.method == 'POST': if request.form['password'] == '<PASSWORD>' and request.form['username'] == 'Maximus': decrypt_key = workout['assessment']['key'] classified_flag = 'gecJuFQuv1FhQAfLDvn9f6j6xu/GACm00wqyoWVKUJQ=*gXSP1UFZELV59Qz6yP0Y+w==*' \ 'y6cg3ujMtm7eSklW2SX3JQ==*C4GDYpzjfozIsTQWVuUc4A==' plaintext_flag = cryptocode.decrypt(classified_flag, decrypt_key) return render_template(page_template, workout_id=workout_id, classified_flag=plaintext_flag) else: return redirect(url_for('inspect_bp.xsfiedSTRflag ', workout_id=workout_id)) else: return redirect(404) @inspect_bp.route('/check_flag/<workout_id>', methods=['POST']) def check_flag(workout_id): if request.method == 'POST': key = ds_client.key('cybergym-workout', workout_id) page_template = 'inspect.html' workout = ds_client.get(key) workout_token = workout['assessment']['questions'][0]['key'] if request.form.get('check_button'): decrypt_key = workout['assessment']['key'] encrypted_flag = 'gecJuFQuv1FhQAfLDvn9f6j6xu/GACm00wqyoWVKUJQ=*gXSP1UFZELV59Qz6yP0Y+w==*' \ 'y6cg3ujMtm7eSklW2SX3JQ==*C4GDYpzjfozIsTQWVuUc4A==' classified_flag = cryptocode.decrypt(encrypted_flag, decrypt_key) if classified_flag == request.form['classified_flag']: publish_status(workout_id, workout_token) completion = True return render_template(page_template, workout_id=workout_id, completion=completion) else: return render_template(page_template, workout_id=workout_id)
en
0.431194
# Blueprint Configuration
2.018459
2
rdc/dic/test/test_container.py
hartym/rdc.dic
0
6631279
<gh_stars>0 from rdc.dic import Container from rdc.dic.test import TestCase class ContainerTestCase(TestCase): def setUp(self): self.container = Container() def test_set_parameter(self): self.assertRaises(KeyError, self.container.get, 'foo') self.container.set_parameter('foo', 'bar') self.assertEqual(self.container.get('foo'), 'bar') def test_set_parameters(self): self.container.set_parameters({ 'foo': 42, 'bar': 43 }) self.assertEqual(self.container.get('foo'), 42) self.assertEqual(self.container.get('bar'), 43)
from rdc.dic import Container from rdc.dic.test import TestCase class ContainerTestCase(TestCase): def setUp(self): self.container = Container() def test_set_parameter(self): self.assertRaises(KeyError, self.container.get, 'foo') self.container.set_parameter('foo', 'bar') self.assertEqual(self.container.get('foo'), 'bar') def test_set_parameters(self): self.container.set_parameters({ 'foo': 42, 'bar': 43 }) self.assertEqual(self.container.get('foo'), 42) self.assertEqual(self.container.get('bar'), 43)
none
1
2.624074
3
test/test_skim.py
rspencer01/skim
3,352
6631280
<reponame>rspencer01/skim #!/usr/bin/env python3 # -*- coding: utf-8 -*- # The integration test of skim # Modeled after fzf's test: https://github.com/junegunn/fzf/blob/master/test/test_go.rb import subprocess import unittest import os import time import re import inspect import sys INPUT_RECORD_SEPARATOR = '\n' DEFAULT_TIMEOUT = 3000 SCRIPT_PATH = os.path.realpath(__file__) BASE = os.path.expanduser(os.path.join(os.path.dirname(SCRIPT_PATH), '..')) os.chdir(BASE) SK = f"SKIM_DEFAULT_OPTIONS= SKIM_DEFAULT_COMMAND= {BASE}/target/release/sk" def now_mills(): return int(round(time.time() * 1000)) def wait(func, timeout_handler=None): since = now_mills() while now_mills() - since < DEFAULT_TIMEOUT: time.sleep(0.02) ret = func() if ret is not None and ret: return if timeout_handler is not None: timeout_handler() raise BaseException('Timeout on wait') class Shell(object): """The shell configurations for tmux tests""" def __init__(self): super(Shell, self).__init__() def unsets(): return 'unset SKIM_DEFAULT_COMMAND SKIM_DEFAULT_OPTIONS;' def bash(): return 'PS1= PROMPT_COMMAND= bash --rcfile None' def zsh(): return 'PS1= PROMPT_COMMAND= HISTSIZE=100 zsh -f' class Key(object): """Represent a key to send to tmux""" def __init__(self, key): super(Key, self).__init__() self.key = key def __repr__(self): return self.key class Ctrl(Key): """Represent a control key""" def __init__(self, key): super(Ctrl, self).__init__(key) def __repr__(self): return f'C-{self.key.upper()}' class Alt(Key): """Represent an alt key""" def __init__(self, key): super(Alt, self).__init__(key) def __repr__(self): return f'M-{self.key}' class TmuxOutput(list): """A list that contains the output of tmux""" # match the status line # normal: `| 10/219 [2] 8/0.` # inline: `> query < 10/219 [2] 8/0.` # preview: `> query < 10/219 [2] 8/0.│...` RE = re.compile(r'(?:^|[^<-]*). ([0-9]+)/([0-9]+)(?:/[A-Z]*)?(?: \[([0-9]+)\])? *([0-9]+)/(-?[0-9]+)(\.)?(?: │)? *$') def __init__(self, iteratable=[]): super(TmuxOutput, self).__init__(iteratable) self._counts = None def counts(self): if self._counts is not None: return self._counts # match_count item_count select_count item_cursor matcher_stopped ret = (0, 0, 0, 0, 0, '.') for line in self: mat = TmuxOutput.RE.match(line) if mat is not None: ret = mat.groups() break; self._counts = ret return ret def match_count(self): count = self.counts()[0] return int(count) if count is not None else None def item_count(self): count = self.counts()[1] return int(count) if count is not None else None def select_count(self): count = self.counts()[2] return int(count) if count is not None else None def item_index(self): count = self.counts()[3] return int(count) if count is not None else None def hscroll(self): count = self.counts()[4] return int(count) if count is not None else None def matcher_stopped(self): return self.counts()[5] != '.' def ready_with_lines(self, lines): return self.item_count() == lines and self.matcher_stopped() def ready_with_matches(self, matches): return self.match_count() == matches and self.matcher_stopped() def any_include(self, val): if hasattr(re, '_pattern_type') and isinstance(val, re._pattern_type): method = lambda l: val.match(l) if hasattr(re, 'Pattern') and isinstance(val, re.Pattern): method = lambda l: val.match(l) else: method = lambda l: l.find(val) >= 0 for line in self: if method(line): return True return False class Tmux(object): TEMPNAME = '/tmp/skim-test.txt' """Object to manipulate tmux and get result""" def __init__(self, shell = 'bash'): super(Tmux, self).__init__() if shell == 'bash': shell_cmd = Shell.unsets() + Shell.bash() elif shell == 'zsh': shell_cmd = Shell.unsets() + Shell.zsh() else: raise BaseException('unknown shell') self.win = self._go("new-window", "-d", "-P", "-F", "#I", f"{shell_cmd}")[0] self._go("set-window-option", "-t", f"{self.win}", "pane-base-index", "0") self.lines = int(subprocess.check_output('tput lines', shell=True).decode('utf8').strip()) def _go(self, *args, **kwargs): """Run tmux command and return result in list of strings (lines) :returns: List<String> """ ret = subprocess.check_output(["tmux"] + list(args)) return ret.decode('utf8').split(INPUT_RECORD_SEPARATOR) def kill(self): self._go("kill-window", "-t", f"{self.win}", stderr=subprocess.DEVNULL) def send_keys(self, *args, pane=None): if pane is not None: self._go('select-window', '-t', f'{self.win}') target = '{self.win}.{pane}' else: target = self.win for key in args: if key is None: continue else: self._go('send-keys', '-t', f'{target}', f'{key}') time.sleep(0.01) def paste(self, content): subprocess.run(["tmux", "setb", f"{content}", ";", "pasteb", "-t", f"{self.win}", ";", "send-keys", "-t", f"{self.win}", "Enter"]) def capture(self, pane = 0): def save_capture(): try: self._go('capture-pane', '-t', f'{self.win}.{pane}', stderr=subprocess.DEVNULL) self._go("save-buffer", f"{Tmux.TEMPNAME}", stderr=subprocess.DEVNULL) return True except subprocess.CalledProcessError as ex: return False if os.path.exists(Tmux.TEMPNAME): os.remove(Tmux.TEMPNAME) wait(save_capture) with open(Tmux.TEMPNAME) as fp: content = fp.read() return TmuxOutput(content.rstrip().split(INPUT_RECORD_SEPARATOR)) def until(self, predicate, refresh = False, pane = 0, debug_info = None): def wait_callback(): lines = self.capture() pred = predicate(lines) if pred: self.send_keys(Ctrl('l') if refresh else None) return pred def timeout_handler(): lines = self.capture() print(lines) if debug_info: print(debug_info) wait(wait_callback, timeout_handler) def prepare(self): try: self.send_keys(Ctrl('u'), Key('hello')) self.until(lambda lines: lines[-1].endswith('hello')) except Exception as e: raise e self.send_keys(Ctrl('u')) class TestBase(unittest.TestCase): TEMPNAME = '/tmp/output' def __init__(self, *args, **kwargs): super(TestBase, self).__init__(*args, **kwargs) self._temp_suffix = 0 def tempname(self): curframe = inspect.currentframe() frames = inspect.getouterframes(curframe) names = [f.function for f in frames if f.function.startswith('test_')] fun_name = names[0] if len(names) > 0 else 'test' return '-'.join((TestBase.TEMPNAME, fun_name, str(self._temp_suffix))) def writelines(self, path, lines): if os.path.exists(path): os.remove(path) with open(path, 'w') as fp: fp.writelines(lines) def readonce(self): path = self.tempname() try: wait(lambda: os.path.exists(path)) with open(path) as fp: return fp.read() finally: if os.path.exists(path): os.remove(path) self._temp_suffix += 1 self.tmux.prepare() def sk(self, *opts): tmp = self.tempname() return f'{SK} {" ".join(map(str, opts))} > {tmp}.tmp; mv {tmp}.tmp {tmp}' def command_until(self, until_predicate, sk_options, stdin="echo -e 'a1\\na2\\na3'"): command_keys = stdin + " | " + self.sk(*sk_options) self.tmux.send_keys(command_keys) self.tmux.send_keys(Key("Enter")) self.tmux.until(until_predicate, debug_info="SK args: {}".format(sk_options)) self.tmux.send_keys(Key('Enter')) class TestSkim(TestBase): def setUp(self): self.tmux = Tmux() def tearDown(self): self.tmux.kill() pass def test_vanilla(self): self.tmux.send_keys(Key(f'seq 1 100000 | {self.sk()}'), Key('Enter')) self.tmux.until(lambda lines: re.match(r'^>', lines[-1]) and re.match(r'^ 100000', lines[-2])) lines = self.tmux.capture() self.assertEqual(' 2', lines[-4]) self.assertEqual('> 1', lines[-3]) self.assertTrue(re.match('^ 100000/100000 *0', lines[-2])) self.assertEqual('>', lines[-1]) # testing basic key binding self.tmux.send_keys(Key('99')) self.tmux.until(lambda ls: ls[-2].startswith(' 8146/100000')) self.tmux.until(lambda ls: ls[-1].startswith('> 99')) self.tmux.send_keys(Ctrl('a'), Key('1')) self.tmux.until(lambda ls: ls[-2].startswith(' 856/100000')) self.tmux.until(lambda ls: ls[-1].startswith('> 199')) self.tmux.send_keys(Ctrl('f'), Key('3')) self.tmux.until(lambda ls: ls[-2].startswith(' 46/100000')) self.tmux.until(lambda ls: ls[-1].startswith('> 1939')) self.tmux.send_keys(Ctrl('b'), Ctrl('h')) self.tmux.until(lambda ls: ls[-2].startswith(' 856/100000')) self.tmux.until(lambda ls: ls[-1].startswith('> 139')) self.tmux.send_keys(Ctrl('e'), Ctrl('b')) self.tmux.send_keys(Ctrl('k')) self.tmux.until(lambda ls: ls[-4].startswith('> 1390')) self.tmux.until(lambda ls: ls[-3].startswith(' 139')) self.tmux.send_keys(Key('Tab')) self.tmux.until(lambda ls: ls[-4].startswith(' 1390')) self.tmux.until(lambda ls: ls[-3].startswith('> 139')) self.tmux.send_keys(Key('BTab')) self.tmux.until(lambda ls: ls[-4].startswith('> 1390')) self.tmux.until(lambda ls: ls[-3].startswith(' 139')) lines = self.tmux.capture() self.assertEqual('> 1390', lines[-4]) self.assertEqual(' 139', lines[-3]) self.assertTrue(lines[-2].startswith(' 856/100000')) self.assertEqual('> 139', lines[-1]) self.tmux.send_keys(Key('Enter')) self.assertEqual('1390', self.readonce().strip()) def test_default_command(self): self.tmux.send_keys(self.sk().replace('SKIM_DEFAULT_COMMAND=', "SKIM_DEFAULT_COMMAND='echo hello'")) self.tmux.send_keys(Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Key('Enter')) self.assertEqual('hello', self.readonce().strip()) def test_key_bindings(self): self.tmux.send_keys(f"{SK} -q 'foo bar foo-bar'", Key('Enter')) self.tmux.until(lambda lines: lines[-1].startswith('>')) # Ctrl-A self.tmux.send_keys(Ctrl('a'), Key('(')) self.tmux.until(lambda lines: lines[-1] == '> (foo bar foo-bar') ## Meta-F self.tmux.send_keys(Alt('f'), Key(')')) self.tmux.until(lambda lines: lines[-1] == '> (foo) bar foo-bar') # CTRL-B self.tmux.send_keys(Ctrl('b'), 'var') self.tmux.until(lambda lines: lines[-1] == '> (foovar) bar foo-bar') # Left, CTRL-D self.tmux.send_keys(Key('Left'), Key('Left'), Ctrl('d')) self.tmux.until(lambda lines: lines[-1] == '> (foovr) bar foo-bar') # # META-BS self.tmux.send_keys(Alt('BSpace')) self.tmux.until(lambda lines: lines[-1] == '> (r) bar foo-bar') # # # CTRL-Y self.tmux.send_keys(Ctrl('y'), Ctrl('y')) self.tmux.until(lambda lines: lines[-1] == '> (foovfoovr) bar foo-bar') # META-B self.tmux.send_keys(Alt('b'), Key('Space'), Key('Space')) self.tmux.until(lambda lines: lines[-1] == '> ( foovfoovr) bar foo-bar') # CTRL-F / Right self.tmux.send_keys( Ctrl('f'), Key('Right'), '/') self.tmux.until(lambda lines: lines[-1] == '> ( fo/ovfoovr) bar foo-bar') # CTRL-H / BS self.tmux.send_keys( Ctrl('h'), Key('BSpace')) self.tmux.until(lambda lines: lines[-1] == '> ( fovfoovr) bar foo-bar') # CTRL-E self.tmux.send_keys(Ctrl('e'), 'baz') self.tmux.until(lambda lines: lines[-1] == '> ( fovfoovr) bar foo-barbaz') # CTRL-U self.tmux.send_keys( Ctrl('u')) self.tmux.until(lambda lines: lines[-1] == '>') # CTRL-Y self.tmux.send_keys( Ctrl('y')) self.tmux.until(lambda lines: lines[-1] == '> ( fovfoovr) bar foo-barbaz') # CTRL-W self.tmux.send_keys( Ctrl('w'), 'bar-foo') self.tmux.until(lambda lines: lines[-1] == '> ( fovfoovr) bar bar-foo') # # META-D self.tmux.send_keys(Alt('b'), Alt('b'), Alt('d'), Ctrl('a'), Ctrl('y')) self.tmux.until(lambda lines: lines[-1] == '> bar( fovfoovr) bar -foo') # CTRL-M self.tmux.send_keys(Ctrl('m')) self.tmux.until(lambda lines: not lines[-1].startswith('>')) def test_key_bindings_interactive(self): self.tmux.send_keys(f"{SK} -i --cmd-query 'foo bar foo-bar'", Key('Enter')) self.tmux.until(lambda lines: lines[-1].startswith('c>')) # Ctrl-A self.tmux.send_keys(Ctrl('a'), Key('(')) self.tmux.until(lambda lines: lines[-1] == 'c> (foo bar foo-bar') ## Meta-F self.tmux.send_keys(Alt('f'), Key(')')) self.tmux.until(lambda lines: lines[-1] == 'c> (foo) bar foo-bar') # CTRL-B self.tmux.send_keys(Ctrl('b'), 'var') self.tmux.until(lambda lines: lines[-1] == 'c> (foovar) bar foo-bar') # Left, CTRL-D self.tmux.send_keys(Key('Left'), Key('Left'), Ctrl('d')) self.tmux.until(lambda lines: lines[-1] == 'c> (foovr) bar foo-bar') # # META-BS self.tmux.send_keys(Alt('BSpace')) self.tmux.until(lambda lines: lines[-1] == 'c> (r) bar foo-bar') # # # CTRL-Y self.tmux.send_keys(Ctrl('y'), Ctrl('y')) self.tmux.until(lambda lines: lines[-1] == 'c> (foovfoovr) bar foo-bar') # META-B self.tmux.send_keys(Alt('b'), Key('Space'), Key('Space')) self.tmux.until(lambda lines: lines[-1] == 'c> ( foovfoovr) bar foo-bar') # CTRL-F / Right self.tmux.send_keys( Ctrl('f'), Key('Right'), '/') self.tmux.until(lambda lines: lines[-1] == 'c> ( fo/ovfoovr) bar foo-bar') # CTRL-H / BS self.tmux.send_keys( Ctrl('h'), Key('BSpace')) self.tmux.until(lambda lines: lines[-1] == 'c> ( fovfoovr) bar foo-bar') # CTRL-E self.tmux.send_keys(Ctrl('e'), 'baz') self.tmux.until(lambda lines: lines[-1] == 'c> ( fovfoovr) bar foo-barbaz') # CTRL-U self.tmux.send_keys( Ctrl('u')) self.tmux.until(lambda lines: lines[-1] == 'c>') # CTRL-Y self.tmux.send_keys( Ctrl('y')) self.tmux.until(lambda lines: lines[-1] == 'c> ( fovfoovr) bar foo-barbaz') # CTRL-W self.tmux.send_keys( Ctrl('w'), 'bar-foo') self.tmux.until(lambda lines: lines[-1] == 'c> ( fovfoovr) bar bar-foo') # # META-D self.tmux.send_keys(Alt('b'), Alt('b'), Alt('d'), Ctrl('a'), Ctrl('y')) self.tmux.until(lambda lines: lines[-1] == 'c> bar( fovfoovr) bar -foo') # CTRL-M self.tmux.send_keys(Ctrl('m')) self.tmux.until(lambda lines: not lines[-1].startswith('c>')) def test_read0(self): nfiles = subprocess.check_output("find .", shell=True).decode("utf-8").strip().split("\n") num_of_files = len(nfiles) self.tmux.send_keys(f"find . | {self.sk()}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(num_of_files)) self.tmux.send_keys(Key('Enter')) orig = self.readonce().strip() self.tmux.send_keys(f"find . -print0 | {self.sk('--read0')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(num_of_files)) self.tmux.send_keys(Key('Enter')) self.assertEqual(orig, self.readonce().strip()) def test_print0(self): self.tmux.send_keys(f"echo -e 'a\\nb' | {self.sk('-m', '--print0')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(2)) self.tmux.send_keys(Key('BTab'), Key('BTab'), Key('Enter')) lines = self.readonce().strip() self.assertEqual(lines, 'a\0b\0') self.tmux.send_keys(f"echo -e 'a\\naa\\nb' | {self.sk('-f a', '--print0')}", Key('Enter')) lines = self.readonce().strip() self.assertEqual(lines, 'a\0aa\0') def test_with_nth_preview(self): sk_command = self.sk("--delimiter ','", '--with-nth 2..', '--preview', "'echo X{1}Y'") self.tmux.send_keys("echo -e 'field1,field2,field3,field4' |" + sk_command, Key('Enter')) self.tmux.until(lambda lines: lines.any_include("Xfield1Y")) self.tmux.send_keys(Key('Enter')) def test_with_nth(self): # fields, expected tests = [ ('1', 'field1,'), ('2', 'field2,'), ('3', 'field3,'), ('4', 'field4'), ('5', ''), ('-1', 'field4'), ('-2', 'field3,'), ('-3', 'field2,'), ('-4', 'field1,'), ('-5', ''), ('2..', 'field2,field3,field4'), ('..3', 'field1,field2,field3,'), ('2..3', 'field2,field3,'), ('3..2', ''), ] for field, expected in tests: sk_command = self.sk("--delimiter ','", f'--with-nth={field}') self.tmux.send_keys("echo -e 'field1,field2,field3,field4' |" + sk_command, Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) lines = self.tmux.capture() self.tmux.send_keys(Key('Enter')) self.assertEqual(f'> {expected}'.strip(), lines[-3]) def test_nth(self): # fields, query, match_count(0/1) tests = [ ('1', 'field1', 1), ('1', 'field2', 0), ('-1', 'field4', 1), ('-1', 'field3', 0), ('-5', 'f', 0), ('2..', 'field2', 1), ('2..', 'field4', 1), ('..3', 'field1', 1), ('..3', 'field3,', 1), ('2..3', '2,3', 1), ('3..2', 'f', 0), ] for field, query, count in tests: sk_command = self.sk(f"--delimiter ',' --nth={field} -q {query}") self.tmux.send_keys("echo -e 'field1,field2,field3,field4' |" + sk_command, Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key('Enter')) def test_print_query(self): self.tmux.send_keys(f"seq 1 1000 | {self.sk('-q 10', '--print-query')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1000)) self.tmux.send_keys(Key('Enter')) lines = self.readonce().strip() self.assertEqual(lines, '10\n10') def test_print_cmd(self): self.tmux.send_keys(f"seq 1 1000 | {self.sk('--cmd-query 10', '--print-cmd')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1000)) self.tmux.send_keys(Key('Enter')) lines = self.readonce().strip() self.assertEqual(lines, '10\n1') def test_print_cmd_and_query(self): self.tmux.send_keys(f"seq 1 1000 | {self.sk('-q 10', '--cmd-query cmd', '--print-cmd', '--print-query')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1000)) self.tmux.send_keys(Key('Enter')) lines = self.readonce().strip() self.assertEqual(lines, '10\ncmd\n10') def test_hscroll(self): # XXXXXXXXXXXXXXXXX.. self.tmux.send_keys(f"cat <<EOF | {self.sk('-q b')}", Key('Enter')) self.tmux.send_keys(f"b{'a'*1000}", Key('Enter')) self.tmux.send_keys(f"EOF", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].endswith('..')) self.tmux.send_keys(Key('Enter')) # ..XXXXXXXXXXXXXXXXXM self.tmux.send_keys(f"cat <<EOF | {self.sk('-q b')}", Key('Enter')) self.tmux.send_keys(f"{'a'*1000}b", Key('Enter')) self.tmux.send_keys(f"EOF", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].endswith('b')) self.tmux.send_keys(Key('Enter')) # ..XXXXXXXMXXXXXXX.. self.tmux.send_keys(f"cat <<EOF | {self.sk('-q b')}", Key('Enter')) self.tmux.send_keys(f"{'a'*1000}b{'a'*1000}", Key('Enter')) self.tmux.send_keys(f"EOF", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> ..')) self.tmux.until(lambda lines: lines[-3].endswith('..')) self.tmux.send_keys(Key('Enter')) def test_no_hscroll(self): self.tmux.send_keys(f"cat <<EOF | {self.sk('-q b', '--no-hscroll')}", Key('Enter')) self.tmux.send_keys(f"{'a'*1000}b", Key('Enter')) self.tmux.send_keys(f"EOF", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> a')) self.tmux.send_keys(Key('Enter')) def test_tabstop(self): self.tmux.send_keys(f"echo -e 'a\\tb' | {self.sk()}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> a b')) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f"echo -e 'a\\tb' | {self.sk('--tabstop 1')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> a b')) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f"echo -e 'aa\\tb' | {self.sk('--tabstop 2')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> aa b')) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f"echo -e 'aa\\tb' | {self.sk('--tabstop 3')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> aa b')) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f"echo -e 'a\\tb' | {self.sk('--tabstop 4')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> a b')) self.tmux.send_keys(Key('Enter')) def test_inline_info(self): INLINE_INFO_SEP = " <" ## the dot accounts for spinner RE = re.compile(r'[^0-9]*([0-9]+)/([0-9]+)(?: \[([0-9]+)\])?') self.tmux.send_keys(f"echo -e 'a1\\na2\\na3\\na4' | {self.sk('--inline-info')}", Key('Enter')) self.tmux.until(lambda lines: lines.match_count() == lines.item_count()) self.tmux.send_keys("a") self.tmux.until(lambda lines: lines[-1].find(INLINE_INFO_SEP) != -1) lines = self.tmux.capture() self.tmux.send_keys(Key('Enter')) query_line = lines[-1] bef, after = query_line.split(INLINE_INFO_SEP) mat = RE.match(after) self.assertTrue(mat is not None) ret = tuple(map(lambda x: int(x) if x is not None else 0, mat.groups())) self.assertEqual(len(ret), 3) self.assertEqual((bef, ret[0], ret[1], ret[2]), ("> a ", 4, 4, 0)) # test that inline info is does not overwrite query self.tmux.send_keys(f"echo -e '<KEY>' | {self.sk('--inline-info')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(4)) self.tmux.send_keys("bc", Ctrl("a"), "a") self.tmux.until(lambda lines: lines[-1].find(INLINE_INFO_SEP) != -1 and lines[-1].split(INLINE_INFO_SEP)[0] == "> abc ") self.tmux.send_keys(Key('Enter')) def test_header(self): self.command_until(sk_options=['--header', 'hello'], until_predicate=lambda lines: lines[-3].find("hello") != -1) self.command_until(sk_options=['--inline-info', '--header', 'hello'], until_predicate=lambda lines: lines[-2].find("hello") != -1) self.command_until(sk_options=['--reverse', '--inline-info', '--header', 'hello'], until_predicate=lambda lines: lines[1].find("hello") != -1) self.command_until(sk_options=['--reverse', '--header', 'hello'], until_predicate=lambda lines: lines[2].find("hello") != -1) def test_header_lines(self): self.command_until(sk_options=['--header-lines', '1'], until_predicate=lambda lines: lines[-3].find(" a1") != -1) self.command_until(sk_options=['--header-lines', '4'], until_predicate=lambda lines: lines[-5].find(" a3") != -1) self.command_until(sk_options=['--inline-info', '--header-lines', '1'], until_predicate=lambda lines: lines[-2].find(" a1") != -1) self.command_until(sk_options=['--reverse', '--inline-info', '--header-lines', '1'], until_predicate=lambda lines: lines[1].find(" a1") != -1) self.command_until(sk_options=['--reverse', '--header-lines', '1'], until_predicate=lambda lines: lines[2].find(" a1") != -1) def test_reserved_options(self): options = [ '--extended', '--algo=TYPE', '--literal', '--no-mouse', '--cycle', '--hscroll-off=COL', '--filepath-word', '--jump-labels=CHARS', '--border', '--inline-info', '--header=STR', '--header-lines=N', '--no-bold', '--history-size=10', '--sync', '--no-sort', # --select-1 '--select-1', '-1', # --exit-0 '--exit-0', '-0'] for opt in options: self.command_until(sk_options=[opt], until_predicate=find_prompt) def test_multiple_option_values_should_be_accepted(self): # normally we'll put some default options to SKIM_DEFAULT_OPTIONS and override it in command # line. this test will ensure multiple values are accepted. options = [ '--bind=ctrl-a:cancel --bind ctrl-b:cancel', '--expect=ctrl-a --expect=ctrl-v', '--tiebreak=index --tiebreak=score', '--cmd asdf --cmd find', '--query asdf -q xyz', '--delimiter , --delimiter . -d ,', '--nth 1,2 --nth=1,3 -n 1,3', '--with-nth 1,2 --with-nth=1,3', '-I {} -I XX', '--color base --color light', '--margin 30% --margin 0', '--min-height 30% --min-height 10', '--height 30% --height 10', '--preview "ls {}" --preview "cat {}"', '--preview-window up --preview-window down', '--multi -m', '--no-multi --no-multi', '--tac --tac', '--ansi --ansi', '--exact -e', '--regex --regex', '--literal --literal', '--no-mouse --no-mouse', '--cycle --cycle', '--no-hscroll --no-hscroll', '--filepath-word --filepath-word', '--border --border', '--inline-info --inline-info', '--no-bold --no-bold', '--print-query --print-query', '--print-cmd --print-cmd', '--print0 --print0', '--sync --sync', '--extended --extended', '--no-sort --no-sort', '--select-1 --select-1', '--exit-0 --exit-0', ] for opt in options: self.command_until(sk_options=[opt], until_predicate=find_prompt) options = [ ('--prompt a --prompt b -p c', lambda lines: lines[-1].startswith("c")), ('-i --cmd-prompt a --cmd-prompt b', lambda lines: lines[-1].startswith("b")), ('-i --cmd-query asdf --cmd-query xyz', lambda lines: lines[-1].startswith("c> xyz")), ('--interactive -i', lambda lines: find_prompt(lines, interactive=True)), ('--reverse --reverse', lambda lines: find_prompt(lines, reverse=True)) ] for opt, pred in options: self.command_until(sk_options=[opt], until_predicate=pred) self.command_until(stdin="echo -e a\\0b", sk_options=['--read0 --read0'], until_predicate=find_prompt) def test_single_quote_of_preview_command(self): # echo "'\"ABC\"'" | sk --preview="echo X{}X" => X'"ABC"'X echo_command = '''echo "'\\"ABC\\"'" | ''' sk_command = self.sk('--preview=\"echo X{}X\"') command = echo_command + sk_command self.tmux.send_keys(command, Key('Enter')) self.tmux.until(lambda lines: lines.any_include('''X'"ABC"'X''')) # echo "'\"ABC\"'" | sk --preview="echo X\{}X" => X{}X echo_command = '''echo "'\\"ABC\\"'" | ''' sk_command = self.sk('--preview=\"echo X\\{}X\"') command = echo_command + sk_command self.tmux.send_keys(command, Key('Enter')) self.tmux.until(lambda lines: lines.any_include('''X{}X''')) def test_ansi_and_read0(self): """should keep the NULL character, see #142""" self.tmux.send_keys(f"echo -e 'a\\0b' | {self.sk('--ansi')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key('Enter')) output = ":".join("{:02x}".format(ord(c)) for c in self.readonce()) self.assertTrue(output.find("61:00:62:0a") >= 0) def test_smart_case_fuzzy(self): """should behave correctly on case, #219""" # smart case self.tmux.send_keys(f"echo -e 'aBcXyZ' | {self.sk('')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key('abc')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key('aBc')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key('ABc')) self.tmux.until(lambda lines: lines.ready_with_matches(0)) def test_smart_case_exact(self): """should behave correctly on case, #219""" # smart case self.tmux.send_keys(f"echo -e 'aBcXyZ' | {self.sk('')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key("'abc")) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key("'aBc")) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key("'ABc")) self.tmux.until(lambda lines: lines.ready_with_matches(0)) def test_ignore_case_fuzzy(self): """should behave correctly on case, #219""" # ignore case self.tmux.send_keys(f"echo -e 'aBcXyZ' | {self.sk('--case ignore')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key('abc')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key('aBc')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key('ABc')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) def test_ignore_case_exact(self): """should behave correctly on case, #219""" # ignore case self.tmux.send_keys(f"echo -e 'aBcXyZ' | {self.sk('--case ignore')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key("'abc")) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key("'aBc")) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key("'ABc")) self.tmux.until(lambda lines: lines.ready_with_matches(1)) def test_respect_case_fuzzy(self): """should behave correctly on case, #219""" # respect case self.tmux.send_keys(f"echo -e 'aBcXyZ' | {self.sk('--case respect')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key('abc')) self.tmux.until(lambda lines: lines.ready_with_matches(0)) def test_respect_case_exact(self): """should behave correctly on case, #219""" # respect case self.tmux.send_keys(f"echo -e 'aBcXyZ' | {self.sk('--case respect')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key("'abc")) self.tmux.until(lambda lines: lines.ready_with_matches(0)) def test_query_history(self): """query history should work""" history_file = f'{self.tempname()}.history' self.tmux.send_keys(f"echo -e '<KEY> > {history_file}", Key('Enter')) history_mtime = os.stat(history_file).st_mtime self.tmux.send_keys(f"echo -e 'a\nb\nc' | {self.sk('--history', history_file)}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(3)) self.tmux.send_keys(Ctrl('p')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-3].startswith('> c')) self.tmux.send_keys(Ctrl('p')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-3].startswith('> b')) self.tmux.send_keys('b') self.tmux.until(lambda lines: lines.ready_with_matches(0)) self.tmux.send_keys(Ctrl('p')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-3].startswith('> a')) self.tmux.send_keys(Ctrl('n')) self.tmux.until(lambda lines: lines.ready_with_matches(0)) self.tmux.until(lambda lines: lines[-1].startswith('> bb')) self.tmux.send_keys(Ctrl('n')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-1].startswith('> c')) self.tmux.send_keys('d') self.tmux.until(lambda lines: lines[-1].startswith('> cd')) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f'[[ "$(echo -n $(cat {history_file}))" == "a b c cd" ]] && echo ok') self.tmux.send_keys(Key('Enter')) self.tmux.until(lambda lines: lines[-1].startswith('ok')) def test_cmd_history(self): """query history should work""" history_file = f'{self.tempname()}.cmd-history' self.tmux.send_keys(f"echo -e 'a\nb\nc' > {history_file}", Key('Enter')) self.tmux.send_keys(f"""{self.sk("-i -c 'echo {}'", '--cmd-history', history_file)}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Ctrl('p')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-1].startswith('c> c')) self.tmux.send_keys(Ctrl('p')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-1].startswith('c> b')) self.tmux.send_keys('b') self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('p')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-1].startswith('c> a')) self.tmux.send_keys(Ctrl('n')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-1].startswith('c> bb')) self.tmux.send_keys(Ctrl('n')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-1].startswith('c> c')) self.tmux.send_keys('d') self.tmux.until(lambda lines: lines[-1].startswith('c> cd')) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f'[[ "$(echo -n $(cat {history_file}))" == "a b c cd" ]] && echo ok') self.tmux.send_keys(Key('Enter')) self.tmux.until(lambda lines: lines[-1].startswith('ok')) def test_execute_with_zero_result_ref(self): """execute should not panic with zero results #276""" self.tmux.send_keys(f"""echo -n "" | {self.sk("--bind 'enter:execute(less {})'")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(0)) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(Key('q')) self.tmux.until(lambda lines: lines.ready_with_lines(0)) self.tmux.until(lambda lines: lines[-1].startswith('> q')) # less is not executed at all self.tmux.send_keys(Ctrl('g')) def test_execute_with_zero_result_no_ref(self): """execute should not panic with zero results #276""" self.tmux.send_keys(f"""echo -n "" | {self.sk("--bind 'enter:execute(less)'")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(0)) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(Key('q')) self.tmux.until(lambda lines: lines.ready_with_lines(0)) self.tmux.send_keys(Ctrl('g')) def test_if_non_matched(self): """commands only effect if no item is matched""" self.tmux.send_keys(f"""echo "a\nb" | {self.sk("--bind 'enter:if-non-matched(backward-delete-char)'", "-q ab")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_matches(0)) self.tmux.send_keys(Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Key('Enter')) # not triggered anymore self.tmux.until(lambda lines: lines.ready_with_matches(1)) def test_nul_in_execute(self): """NUL should work in preview command see #278""" self.tmux.send_keys(f"""echo -ne 'a\\0b' | {self.sk("--preview='echo -en {} | xxd'")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines.any_include('6100 62')) def test_skip_to_pattern(self): self.tmux.send_keys(f"""echo -ne 'a/b/c' | {self.sk("--skip-to-pattern '[^/]*$'")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines.any_include('..c')) def test_multi_selection(self): self.tmux.send_keys(f"""echo -n 'a\nb\nc' | {self.sk("-m")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(3)) self.tmux.until(lambda lines: lines[-3].startswith('> a')) self.tmux.send_keys(Key('b')) self.tmux.until(lambda lines: lines[-3].startswith('> b')) self.tmux.send_keys(Key('TAB')) self.tmux.until(lambda lines: lines[-3].startswith('>>b')) self.tmux.send_keys(Key('C-h')) self.tmux.until(lambda lines: lines[-4].startswith(' >b')) self.tmux.until(lambda lines: lines[-3].startswith('> a')) self.tmux.send_keys(Key('c')) self.tmux.until(lambda lines: lines[-3].startswith('> c')) self.tmux.send_keys(Key('TAB')) self.tmux.until(lambda lines: lines[-3].startswith('>>c')) self.tmux.send_keys(Key('C-h')) self.tmux.until(lambda lines: lines[-5].startswith(' >c')) self.tmux.until(lambda lines: lines[-4].startswith(' >b')) self.tmux.until(lambda lines: lines[-3].startswith('> a')) self.tmux.send_keys(Key('Enter')) self.assertEqual('b\nc', self.readonce().strip()) def test_append_and_select(self): self.tmux.send_keys(f"""echo -n 'a\nb\nc' | {self.sk("-m --bind 'ctrl-f:append-and-select'")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(3)) self.tmux.send_keys(Key('xyz')) self.tmux.until(lambda lines: lines.ready_with_matches(0)) self.tmux.send_keys(Key('C-f')) self.tmux.until(lambda lines: lines[-3].startswith('>>xyz')) self.tmux.send_keys(Key('C-u')) self.tmux.until(lambda lines: lines[-6].startswith(' >xyz')) self.tmux.until(lambda lines: lines[-5].startswith(' c')) self.tmux.until(lambda lines: lines[-4].startswith(' b')) self.tmux.until(lambda lines: lines[-3].startswith('> a')) def test_pre_select_n(self): self.tmux.send_keys(f"""echo -n 'a\nb\nc' | {self.sk("-m --pre-select-n=1")}""", Key('Enter')) self.tmux.until(lambda lines: lines[-5].startswith(' c')) self.tmux.until(lambda lines: lines[-4].startswith(' b')) self.tmux.until(lambda lines: lines[-3].startswith('>>a')) def test_pre_select_items(self): args = "-m --pre-select-items=$'b\\nc'" self.tmux.send_keys(f"""echo -n 'a\nb\nc' | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: lines[-5].startswith(' >c')) self.tmux.until(lambda lines: lines[-4].startswith(' >b')) self.tmux.until(lambda lines: lines[-3].startswith('> a')) def test_pre_select_pat(self): self.tmux.send_keys(f"""echo -n 'a\nb\nc' | {self.sk("-m --pre-select-pat='[b|c]'")}""", Key('Enter')) self.tmux.until(lambda lines: lines[-5].startswith(' >c')) self.tmux.until(lambda lines: lines[-4].startswith(' >b')) self.tmux.until(lambda lines: lines[-3].startswith('> a')) def test_pre_select_file(self): pre_select_file = f'{self.tempname()}.pre_select' self.tmux.send_keys(f"echo -e 'b\nc' > {pre_select_file}", Key('Enter')) args = f'''-m --pre-select-file={pre_select_file}''' self.tmux.send_keys(f"""echo -n 'a\nb\nc' | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: lines[-5].startswith(' >c')) self.tmux.until(lambda lines: lines[-4].startswith(' >b')) self.tmux.until(lambda lines: lines[-3].startswith('> a')) def test_no_clear_if_empty(self): text_file = f'{self.tempname()}.txt' self.tmux.send_keys(f"echo -e 'b\\nc' > {text_file}", Key('Enter')) args = "-c 'cat {}'" + f''' -i --cmd-query='{text_file}' --no-clear-if-empty''' self.tmux.send_keys(f"""{self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: lines[-4].startswith(' c')) self.tmux.until(lambda lines: lines[-3].startswith('> b')) self.tmux.send_keys(Key('xx')) self.tmux.until(lambda lines: lines.ready_with_matches(0)) self.tmux.until(lambda lines: lines[-4].startswith(' c')) self.tmux.until(lambda lines: lines[-3].startswith('> b')) def test_preview_scroll_const(self): self.tmux.send_keys(f"""echo foo 123 321 | {self.sk("--preview 'seq 1000' --preview-window left:+123")}""", Key('Enter')) self.tmux.until(lambda lines: re.match(r'123.*123/1000', lines[0])) def test_preview_scroll_expr(self): args = "--preview 'seq 1000' --preview-window left:+{3}" self.tmux.send_keys(f"""echo foo 123 321 | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: re.match(r'321.*321/1000', lines[0])) def test_preview_scroll_and_offset(self): args = "--preview 'seq 1000' --preview-window left:+{2}-2" self.tmux.send_keys(f"""echo foo 123 321 | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: re.match(r'121.*121/1000', lines[0])) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f"""echo foo :123: 321 | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: re.match(r'121.*121/1000', lines[0])) self.tmux.send_keys(Key('Enter')) def test_issue_359_multi_byte_and_regex(self): self.tmux.send_keys(f"""echo 'ああa' | {self.sk("--regex -q 'a'")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-3].startswith('> ああa')) def test_issue_361_literal_space(self): args = '''-q "'foo\\ bar"''' self.tmux.send_keys(f"""echo 'foo bar\nfoo bar' | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-3].startswith('> foo bar')) self.tmux.send_keys(Key('Enter')) args = '''-q "!foo\\ bar"''' self.tmux.send_keys(f"""echo 'foo bar\nfoo bar' | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-3].startswith('> foo bar')) self.tmux.send_keys(Key('Enter')) def find_prompt(lines, interactive=False, reverse=False): linen = -1 prompt = ">" if interactive: prompt = "c>" if reverse: linen = 0 return lines[linen].startswith(prompt) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # The integration test of skim # Modeled after fzf's test: https://github.com/junegunn/fzf/blob/master/test/test_go.rb import subprocess import unittest import os import time import re import inspect import sys INPUT_RECORD_SEPARATOR = '\n' DEFAULT_TIMEOUT = 3000 SCRIPT_PATH = os.path.realpath(__file__) BASE = os.path.expanduser(os.path.join(os.path.dirname(SCRIPT_PATH), '..')) os.chdir(BASE) SK = f"SKIM_DEFAULT_OPTIONS= SKIM_DEFAULT_COMMAND= {BASE}/target/release/sk" def now_mills(): return int(round(time.time() * 1000)) def wait(func, timeout_handler=None): since = now_mills() while now_mills() - since < DEFAULT_TIMEOUT: time.sleep(0.02) ret = func() if ret is not None and ret: return if timeout_handler is not None: timeout_handler() raise BaseException('Timeout on wait') class Shell(object): """The shell configurations for tmux tests""" def __init__(self): super(Shell, self).__init__() def unsets(): return 'unset SKIM_DEFAULT_COMMAND SKIM_DEFAULT_OPTIONS;' def bash(): return 'PS1= PROMPT_COMMAND= bash --rcfile None' def zsh(): return 'PS1= PROMPT_COMMAND= HISTSIZE=100 zsh -f' class Key(object): """Represent a key to send to tmux""" def __init__(self, key): super(Key, self).__init__() self.key = key def __repr__(self): return self.key class Ctrl(Key): """Represent a control key""" def __init__(self, key): super(Ctrl, self).__init__(key) def __repr__(self): return f'C-{self.key.upper()}' class Alt(Key): """Represent an alt key""" def __init__(self, key): super(Alt, self).__init__(key) def __repr__(self): return f'M-{self.key}' class TmuxOutput(list): """A list that contains the output of tmux""" # match the status line # normal: `| 10/219 [2] 8/0.` # inline: `> query < 10/219 [2] 8/0.` # preview: `> query < 10/219 [2] 8/0.│...` RE = re.compile(r'(?:^|[^<-]*). ([0-9]+)/([0-9]+)(?:/[A-Z]*)?(?: \[([0-9]+)\])? *([0-9]+)/(-?[0-9]+)(\.)?(?: │)? *$') def __init__(self, iteratable=[]): super(TmuxOutput, self).__init__(iteratable) self._counts = None def counts(self): if self._counts is not None: return self._counts # match_count item_count select_count item_cursor matcher_stopped ret = (0, 0, 0, 0, 0, '.') for line in self: mat = TmuxOutput.RE.match(line) if mat is not None: ret = mat.groups() break; self._counts = ret return ret def match_count(self): count = self.counts()[0] return int(count) if count is not None else None def item_count(self): count = self.counts()[1] return int(count) if count is not None else None def select_count(self): count = self.counts()[2] return int(count) if count is not None else None def item_index(self): count = self.counts()[3] return int(count) if count is not None else None def hscroll(self): count = self.counts()[4] return int(count) if count is not None else None def matcher_stopped(self): return self.counts()[5] != '.' def ready_with_lines(self, lines): return self.item_count() == lines and self.matcher_stopped() def ready_with_matches(self, matches): return self.match_count() == matches and self.matcher_stopped() def any_include(self, val): if hasattr(re, '_pattern_type') and isinstance(val, re._pattern_type): method = lambda l: val.match(l) if hasattr(re, 'Pattern') and isinstance(val, re.Pattern): method = lambda l: val.match(l) else: method = lambda l: l.find(val) >= 0 for line in self: if method(line): return True return False class Tmux(object): TEMPNAME = '/tmp/skim-test.txt' """Object to manipulate tmux and get result""" def __init__(self, shell = 'bash'): super(Tmux, self).__init__() if shell == 'bash': shell_cmd = Shell.unsets() + Shell.bash() elif shell == 'zsh': shell_cmd = Shell.unsets() + Shell.zsh() else: raise BaseException('unknown shell') self.win = self._go("new-window", "-d", "-P", "-F", "#I", f"{shell_cmd}")[0] self._go("set-window-option", "-t", f"{self.win}", "pane-base-index", "0") self.lines = int(subprocess.check_output('tput lines', shell=True).decode('utf8').strip()) def _go(self, *args, **kwargs): """Run tmux command and return result in list of strings (lines) :returns: List<String> """ ret = subprocess.check_output(["tmux"] + list(args)) return ret.decode('utf8').split(INPUT_RECORD_SEPARATOR) def kill(self): self._go("kill-window", "-t", f"{self.win}", stderr=subprocess.DEVNULL) def send_keys(self, *args, pane=None): if pane is not None: self._go('select-window', '-t', f'{self.win}') target = '{self.win}.{pane}' else: target = self.win for key in args: if key is None: continue else: self._go('send-keys', '-t', f'{target}', f'{key}') time.sleep(0.01) def paste(self, content): subprocess.run(["tmux", "setb", f"{content}", ";", "pasteb", "-t", f"{self.win}", ";", "send-keys", "-t", f"{self.win}", "Enter"]) def capture(self, pane = 0): def save_capture(): try: self._go('capture-pane', '-t', f'{self.win}.{pane}', stderr=subprocess.DEVNULL) self._go("save-buffer", f"{Tmux.TEMPNAME}", stderr=subprocess.DEVNULL) return True except subprocess.CalledProcessError as ex: return False if os.path.exists(Tmux.TEMPNAME): os.remove(Tmux.TEMPNAME) wait(save_capture) with open(Tmux.TEMPNAME) as fp: content = fp.read() return TmuxOutput(content.rstrip().split(INPUT_RECORD_SEPARATOR)) def until(self, predicate, refresh = False, pane = 0, debug_info = None): def wait_callback(): lines = self.capture() pred = predicate(lines) if pred: self.send_keys(Ctrl('l') if refresh else None) return pred def timeout_handler(): lines = self.capture() print(lines) if debug_info: print(debug_info) wait(wait_callback, timeout_handler) def prepare(self): try: self.send_keys(Ctrl('u'), Key('hello')) self.until(lambda lines: lines[-1].endswith('hello')) except Exception as e: raise e self.send_keys(Ctrl('u')) class TestBase(unittest.TestCase): TEMPNAME = '/tmp/output' def __init__(self, *args, **kwargs): super(TestBase, self).__init__(*args, **kwargs) self._temp_suffix = 0 def tempname(self): curframe = inspect.currentframe() frames = inspect.getouterframes(curframe) names = [f.function for f in frames if f.function.startswith('test_')] fun_name = names[0] if len(names) > 0 else 'test' return '-'.join((TestBase.TEMPNAME, fun_name, str(self._temp_suffix))) def writelines(self, path, lines): if os.path.exists(path): os.remove(path) with open(path, 'w') as fp: fp.writelines(lines) def readonce(self): path = self.tempname() try: wait(lambda: os.path.exists(path)) with open(path) as fp: return fp.read() finally: if os.path.exists(path): os.remove(path) self._temp_suffix += 1 self.tmux.prepare() def sk(self, *opts): tmp = self.tempname() return f'{SK} {" ".join(map(str, opts))} > {tmp}.tmp; mv {tmp}.tmp {tmp}' def command_until(self, until_predicate, sk_options, stdin="echo -e 'a1\\na2\\na3'"): command_keys = stdin + " | " + self.sk(*sk_options) self.tmux.send_keys(command_keys) self.tmux.send_keys(Key("Enter")) self.tmux.until(until_predicate, debug_info="SK args: {}".format(sk_options)) self.tmux.send_keys(Key('Enter')) class TestSkim(TestBase): def setUp(self): self.tmux = Tmux() def tearDown(self): self.tmux.kill() pass def test_vanilla(self): self.tmux.send_keys(Key(f'seq 1 100000 | {self.sk()}'), Key('Enter')) self.tmux.until(lambda lines: re.match(r'^>', lines[-1]) and re.match(r'^ 100000', lines[-2])) lines = self.tmux.capture() self.assertEqual(' 2', lines[-4]) self.assertEqual('> 1', lines[-3]) self.assertTrue(re.match('^ 100000/100000 *0', lines[-2])) self.assertEqual('>', lines[-1]) # testing basic key binding self.tmux.send_keys(Key('99')) self.tmux.until(lambda ls: ls[-2].startswith(' 8146/100000')) self.tmux.until(lambda ls: ls[-1].startswith('> 99')) self.tmux.send_keys(Ctrl('a'), Key('1')) self.tmux.until(lambda ls: ls[-2].startswith(' 856/100000')) self.tmux.until(lambda ls: ls[-1].startswith('> 199')) self.tmux.send_keys(Ctrl('f'), Key('3')) self.tmux.until(lambda ls: ls[-2].startswith(' 46/100000')) self.tmux.until(lambda ls: ls[-1].startswith('> 1939')) self.tmux.send_keys(Ctrl('b'), Ctrl('h')) self.tmux.until(lambda ls: ls[-2].startswith(' 856/100000')) self.tmux.until(lambda ls: ls[-1].startswith('> 139')) self.tmux.send_keys(Ctrl('e'), Ctrl('b')) self.tmux.send_keys(Ctrl('k')) self.tmux.until(lambda ls: ls[-4].startswith('> 1390')) self.tmux.until(lambda ls: ls[-3].startswith(' 139')) self.tmux.send_keys(Key('Tab')) self.tmux.until(lambda ls: ls[-4].startswith(' 1390')) self.tmux.until(lambda ls: ls[-3].startswith('> 139')) self.tmux.send_keys(Key('BTab')) self.tmux.until(lambda ls: ls[-4].startswith('> 1390')) self.tmux.until(lambda ls: ls[-3].startswith(' 139')) lines = self.tmux.capture() self.assertEqual('> 1390', lines[-4]) self.assertEqual(' 139', lines[-3]) self.assertTrue(lines[-2].startswith(' 856/100000')) self.assertEqual('> 139', lines[-1]) self.tmux.send_keys(Key('Enter')) self.assertEqual('1390', self.readonce().strip()) def test_default_command(self): self.tmux.send_keys(self.sk().replace('SKIM_DEFAULT_COMMAND=', "SKIM_DEFAULT_COMMAND='echo hello'")) self.tmux.send_keys(Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Key('Enter')) self.assertEqual('hello', self.readonce().strip()) def test_key_bindings(self): self.tmux.send_keys(f"{SK} -q 'foo bar foo-bar'", Key('Enter')) self.tmux.until(lambda lines: lines[-1].startswith('>')) # Ctrl-A self.tmux.send_keys(Ctrl('a'), Key('(')) self.tmux.until(lambda lines: lines[-1] == '> (foo bar foo-bar') ## Meta-F self.tmux.send_keys(Alt('f'), Key(')')) self.tmux.until(lambda lines: lines[-1] == '> (foo) bar foo-bar') # CTRL-B self.tmux.send_keys(Ctrl('b'), 'var') self.tmux.until(lambda lines: lines[-1] == '> (foovar) bar foo-bar') # Left, CTRL-D self.tmux.send_keys(Key('Left'), Key('Left'), Ctrl('d')) self.tmux.until(lambda lines: lines[-1] == '> (foovr) bar foo-bar') # # META-BS self.tmux.send_keys(Alt('BSpace')) self.tmux.until(lambda lines: lines[-1] == '> (r) bar foo-bar') # # # CTRL-Y self.tmux.send_keys(Ctrl('y'), Ctrl('y')) self.tmux.until(lambda lines: lines[-1] == '> (foovfoovr) bar foo-bar') # META-B self.tmux.send_keys(Alt('b'), Key('Space'), Key('Space')) self.tmux.until(lambda lines: lines[-1] == '> ( foovfoovr) bar foo-bar') # CTRL-F / Right self.tmux.send_keys( Ctrl('f'), Key('Right'), '/') self.tmux.until(lambda lines: lines[-1] == '> ( fo/ovfoovr) bar foo-bar') # CTRL-H / BS self.tmux.send_keys( Ctrl('h'), Key('BSpace')) self.tmux.until(lambda lines: lines[-1] == '> ( fovfoovr) bar foo-bar') # CTRL-E self.tmux.send_keys(Ctrl('e'), 'baz') self.tmux.until(lambda lines: lines[-1] == '> ( fovfoovr) bar foo-barbaz') # CTRL-U self.tmux.send_keys( Ctrl('u')) self.tmux.until(lambda lines: lines[-1] == '>') # CTRL-Y self.tmux.send_keys( Ctrl('y')) self.tmux.until(lambda lines: lines[-1] == '> ( fovfoovr) bar foo-barbaz') # CTRL-W self.tmux.send_keys( Ctrl('w'), 'bar-foo') self.tmux.until(lambda lines: lines[-1] == '> ( fovfoovr) bar bar-foo') # # META-D self.tmux.send_keys(Alt('b'), Alt('b'), Alt('d'), Ctrl('a'), Ctrl('y')) self.tmux.until(lambda lines: lines[-1] == '> bar( fovfoovr) bar -foo') # CTRL-M self.tmux.send_keys(Ctrl('m')) self.tmux.until(lambda lines: not lines[-1].startswith('>')) def test_key_bindings_interactive(self): self.tmux.send_keys(f"{SK} -i --cmd-query 'foo bar foo-bar'", Key('Enter')) self.tmux.until(lambda lines: lines[-1].startswith('c>')) # Ctrl-A self.tmux.send_keys(Ctrl('a'), Key('(')) self.tmux.until(lambda lines: lines[-1] == 'c> (foo bar foo-bar') ## Meta-F self.tmux.send_keys(Alt('f'), Key(')')) self.tmux.until(lambda lines: lines[-1] == 'c> (foo) bar foo-bar') # CTRL-B self.tmux.send_keys(Ctrl('b'), 'var') self.tmux.until(lambda lines: lines[-1] == 'c> (foovar) bar foo-bar') # Left, CTRL-D self.tmux.send_keys(Key('Left'), Key('Left'), Ctrl('d')) self.tmux.until(lambda lines: lines[-1] == 'c> (foovr) bar foo-bar') # # META-BS self.tmux.send_keys(Alt('BSpace')) self.tmux.until(lambda lines: lines[-1] == 'c> (r) bar foo-bar') # # # CTRL-Y self.tmux.send_keys(Ctrl('y'), Ctrl('y')) self.tmux.until(lambda lines: lines[-1] == 'c> (foovfoovr) bar foo-bar') # META-B self.tmux.send_keys(Alt('b'), Key('Space'), Key('Space')) self.tmux.until(lambda lines: lines[-1] == 'c> ( foovfoovr) bar foo-bar') # CTRL-F / Right self.tmux.send_keys( Ctrl('f'), Key('Right'), '/') self.tmux.until(lambda lines: lines[-1] == 'c> ( fo/ovfoovr) bar foo-bar') # CTRL-H / BS self.tmux.send_keys( Ctrl('h'), Key('BSpace')) self.tmux.until(lambda lines: lines[-1] == 'c> ( fovfoovr) bar foo-bar') # CTRL-E self.tmux.send_keys(Ctrl('e'), 'baz') self.tmux.until(lambda lines: lines[-1] == 'c> ( fovfoovr) bar foo-barbaz') # CTRL-U self.tmux.send_keys( Ctrl('u')) self.tmux.until(lambda lines: lines[-1] == 'c>') # CTRL-Y self.tmux.send_keys( Ctrl('y')) self.tmux.until(lambda lines: lines[-1] == 'c> ( fovfoovr) bar foo-barbaz') # CTRL-W self.tmux.send_keys( Ctrl('w'), 'bar-foo') self.tmux.until(lambda lines: lines[-1] == 'c> ( fovfoovr) bar bar-foo') # # META-D self.tmux.send_keys(Alt('b'), Alt('b'), Alt('d'), Ctrl('a'), Ctrl('y')) self.tmux.until(lambda lines: lines[-1] == 'c> bar( fovfoovr) bar -foo') # CTRL-M self.tmux.send_keys(Ctrl('m')) self.tmux.until(lambda lines: not lines[-1].startswith('c>')) def test_read0(self): nfiles = subprocess.check_output("find .", shell=True).decode("utf-8").strip().split("\n") num_of_files = len(nfiles) self.tmux.send_keys(f"find . | {self.sk()}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(num_of_files)) self.tmux.send_keys(Key('Enter')) orig = self.readonce().strip() self.tmux.send_keys(f"find . -print0 | {self.sk('--read0')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(num_of_files)) self.tmux.send_keys(Key('Enter')) self.assertEqual(orig, self.readonce().strip()) def test_print0(self): self.tmux.send_keys(f"echo -e 'a\\nb' | {self.sk('-m', '--print0')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(2)) self.tmux.send_keys(Key('BTab'), Key('BTab'), Key('Enter')) lines = self.readonce().strip() self.assertEqual(lines, 'a\0b\0') self.tmux.send_keys(f"echo -e 'a\\naa\\nb' | {self.sk('-f a', '--print0')}", Key('Enter')) lines = self.readonce().strip() self.assertEqual(lines, 'a\0aa\0') def test_with_nth_preview(self): sk_command = self.sk("--delimiter ','", '--with-nth 2..', '--preview', "'echo X{1}Y'") self.tmux.send_keys("echo -e 'field1,field2,field3,field4' |" + sk_command, Key('Enter')) self.tmux.until(lambda lines: lines.any_include("Xfield1Y")) self.tmux.send_keys(Key('Enter')) def test_with_nth(self): # fields, expected tests = [ ('1', 'field1,'), ('2', 'field2,'), ('3', 'field3,'), ('4', 'field4'), ('5', ''), ('-1', 'field4'), ('-2', 'field3,'), ('-3', 'field2,'), ('-4', 'field1,'), ('-5', ''), ('2..', 'field2,field3,field4'), ('..3', 'field1,field2,field3,'), ('2..3', 'field2,field3,'), ('3..2', ''), ] for field, expected in tests: sk_command = self.sk("--delimiter ','", f'--with-nth={field}') self.tmux.send_keys("echo -e 'field1,field2,field3,field4' |" + sk_command, Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) lines = self.tmux.capture() self.tmux.send_keys(Key('Enter')) self.assertEqual(f'> {expected}'.strip(), lines[-3]) def test_nth(self): # fields, query, match_count(0/1) tests = [ ('1', 'field1', 1), ('1', 'field2', 0), ('-1', 'field4', 1), ('-1', 'field3', 0), ('-5', 'f', 0), ('2..', 'field2', 1), ('2..', 'field4', 1), ('..3', 'field1', 1), ('..3', 'field3,', 1), ('2..3', '2,3', 1), ('3..2', 'f', 0), ] for field, query, count in tests: sk_command = self.sk(f"--delimiter ',' --nth={field} -q {query}") self.tmux.send_keys("echo -e 'field1,field2,field3,field4' |" + sk_command, Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key('Enter')) def test_print_query(self): self.tmux.send_keys(f"seq 1 1000 | {self.sk('-q 10', '--print-query')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1000)) self.tmux.send_keys(Key('Enter')) lines = self.readonce().strip() self.assertEqual(lines, '10\n10') def test_print_cmd(self): self.tmux.send_keys(f"seq 1 1000 | {self.sk('--cmd-query 10', '--print-cmd')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1000)) self.tmux.send_keys(Key('Enter')) lines = self.readonce().strip() self.assertEqual(lines, '10\n1') def test_print_cmd_and_query(self): self.tmux.send_keys(f"seq 1 1000 | {self.sk('-q 10', '--cmd-query cmd', '--print-cmd', '--print-query')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1000)) self.tmux.send_keys(Key('Enter')) lines = self.readonce().strip() self.assertEqual(lines, '10\ncmd\n10') def test_hscroll(self): # XXXXXXXXXXXXXXXXX.. self.tmux.send_keys(f"cat <<EOF | {self.sk('-q b')}", Key('Enter')) self.tmux.send_keys(f"b{'a'*1000}", Key('Enter')) self.tmux.send_keys(f"EOF", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].endswith('..')) self.tmux.send_keys(Key('Enter')) # ..XXXXXXXXXXXXXXXXXM self.tmux.send_keys(f"cat <<EOF | {self.sk('-q b')}", Key('Enter')) self.tmux.send_keys(f"{'a'*1000}b", Key('Enter')) self.tmux.send_keys(f"EOF", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].endswith('b')) self.tmux.send_keys(Key('Enter')) # ..XXXXXXXMXXXXXXX.. self.tmux.send_keys(f"cat <<EOF | {self.sk('-q b')}", Key('Enter')) self.tmux.send_keys(f"{'a'*1000}b{'a'*1000}", Key('Enter')) self.tmux.send_keys(f"EOF", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> ..')) self.tmux.until(lambda lines: lines[-3].endswith('..')) self.tmux.send_keys(Key('Enter')) def test_no_hscroll(self): self.tmux.send_keys(f"cat <<EOF | {self.sk('-q b', '--no-hscroll')}", Key('Enter')) self.tmux.send_keys(f"{'a'*1000}b", Key('Enter')) self.tmux.send_keys(f"EOF", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> a')) self.tmux.send_keys(Key('Enter')) def test_tabstop(self): self.tmux.send_keys(f"echo -e 'a\\tb' | {self.sk()}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> a b')) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f"echo -e 'a\\tb' | {self.sk('--tabstop 1')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> a b')) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f"echo -e 'aa\\tb' | {self.sk('--tabstop 2')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> aa b')) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f"echo -e 'aa\\tb' | {self.sk('--tabstop 3')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> aa b')) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f"echo -e 'a\\tb' | {self.sk('--tabstop 4')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines[-3].startswith('> a b')) self.tmux.send_keys(Key('Enter')) def test_inline_info(self): INLINE_INFO_SEP = " <" ## the dot accounts for spinner RE = re.compile(r'[^0-9]*([0-9]+)/([0-9]+)(?: \[([0-9]+)\])?') self.tmux.send_keys(f"echo -e 'a1\\na2\\na3\\na4' | {self.sk('--inline-info')}", Key('Enter')) self.tmux.until(lambda lines: lines.match_count() == lines.item_count()) self.tmux.send_keys("a") self.tmux.until(lambda lines: lines[-1].find(INLINE_INFO_SEP) != -1) lines = self.tmux.capture() self.tmux.send_keys(Key('Enter')) query_line = lines[-1] bef, after = query_line.split(INLINE_INFO_SEP) mat = RE.match(after) self.assertTrue(mat is not None) ret = tuple(map(lambda x: int(x) if x is not None else 0, mat.groups())) self.assertEqual(len(ret), 3) self.assertEqual((bef, ret[0], ret[1], ret[2]), ("> a ", 4, 4, 0)) # test that inline info is does not overwrite query self.tmux.send_keys(f"echo -e '<KEY>' | {self.sk('--inline-info')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(4)) self.tmux.send_keys("bc", Ctrl("a"), "a") self.tmux.until(lambda lines: lines[-1].find(INLINE_INFO_SEP) != -1 and lines[-1].split(INLINE_INFO_SEP)[0] == "> abc ") self.tmux.send_keys(Key('Enter')) def test_header(self): self.command_until(sk_options=['--header', 'hello'], until_predicate=lambda lines: lines[-3].find("hello") != -1) self.command_until(sk_options=['--inline-info', '--header', 'hello'], until_predicate=lambda lines: lines[-2].find("hello") != -1) self.command_until(sk_options=['--reverse', '--inline-info', '--header', 'hello'], until_predicate=lambda lines: lines[1].find("hello") != -1) self.command_until(sk_options=['--reverse', '--header', 'hello'], until_predicate=lambda lines: lines[2].find("hello") != -1) def test_header_lines(self): self.command_until(sk_options=['--header-lines', '1'], until_predicate=lambda lines: lines[-3].find(" a1") != -1) self.command_until(sk_options=['--header-lines', '4'], until_predicate=lambda lines: lines[-5].find(" a3") != -1) self.command_until(sk_options=['--inline-info', '--header-lines', '1'], until_predicate=lambda lines: lines[-2].find(" a1") != -1) self.command_until(sk_options=['--reverse', '--inline-info', '--header-lines', '1'], until_predicate=lambda lines: lines[1].find(" a1") != -1) self.command_until(sk_options=['--reverse', '--header-lines', '1'], until_predicate=lambda lines: lines[2].find(" a1") != -1) def test_reserved_options(self): options = [ '--extended', '--algo=TYPE', '--literal', '--no-mouse', '--cycle', '--hscroll-off=COL', '--filepath-word', '--jump-labels=CHARS', '--border', '--inline-info', '--header=STR', '--header-lines=N', '--no-bold', '--history-size=10', '--sync', '--no-sort', # --select-1 '--select-1', '-1', # --exit-0 '--exit-0', '-0'] for opt in options: self.command_until(sk_options=[opt], until_predicate=find_prompt) def test_multiple_option_values_should_be_accepted(self): # normally we'll put some default options to SKIM_DEFAULT_OPTIONS and override it in command # line. this test will ensure multiple values are accepted. options = [ '--bind=ctrl-a:cancel --bind ctrl-b:cancel', '--expect=ctrl-a --expect=ctrl-v', '--tiebreak=index --tiebreak=score', '--cmd asdf --cmd find', '--query asdf -q xyz', '--delimiter , --delimiter . -d ,', '--nth 1,2 --nth=1,3 -n 1,3', '--with-nth 1,2 --with-nth=1,3', '-I {} -I XX', '--color base --color light', '--margin 30% --margin 0', '--min-height 30% --min-height 10', '--height 30% --height 10', '--preview "ls {}" --preview "cat {}"', '--preview-window up --preview-window down', '--multi -m', '--no-multi --no-multi', '--tac --tac', '--ansi --ansi', '--exact -e', '--regex --regex', '--literal --literal', '--no-mouse --no-mouse', '--cycle --cycle', '--no-hscroll --no-hscroll', '--filepath-word --filepath-word', '--border --border', '--inline-info --inline-info', '--no-bold --no-bold', '--print-query --print-query', '--print-cmd --print-cmd', '--print0 --print0', '--sync --sync', '--extended --extended', '--no-sort --no-sort', '--select-1 --select-1', '--exit-0 --exit-0', ] for opt in options: self.command_until(sk_options=[opt], until_predicate=find_prompt) options = [ ('--prompt a --prompt b -p c', lambda lines: lines[-1].startswith("c")), ('-i --cmd-prompt a --cmd-prompt b', lambda lines: lines[-1].startswith("b")), ('-i --cmd-query asdf --cmd-query xyz', lambda lines: lines[-1].startswith("c> xyz")), ('--interactive -i', lambda lines: find_prompt(lines, interactive=True)), ('--reverse --reverse', lambda lines: find_prompt(lines, reverse=True)) ] for opt, pred in options: self.command_until(sk_options=[opt], until_predicate=pred) self.command_until(stdin="echo -e a\\0b", sk_options=['--read0 --read0'], until_predicate=find_prompt) def test_single_quote_of_preview_command(self): # echo "'\"ABC\"'" | sk --preview="echo X{}X" => X'"ABC"'X echo_command = '''echo "'\\"ABC\\"'" | ''' sk_command = self.sk('--preview=\"echo X{}X\"') command = echo_command + sk_command self.tmux.send_keys(command, Key('Enter')) self.tmux.until(lambda lines: lines.any_include('''X'"ABC"'X''')) # echo "'\"ABC\"'" | sk --preview="echo X\{}X" => X{}X echo_command = '''echo "'\\"ABC\\"'" | ''' sk_command = self.sk('--preview=\"echo X\\{}X\"') command = echo_command + sk_command self.tmux.send_keys(command, Key('Enter')) self.tmux.until(lambda lines: lines.any_include('''X{}X''')) def test_ansi_and_read0(self): """should keep the NULL character, see #142""" self.tmux.send_keys(f"echo -e 'a\\0b' | {self.sk('--ansi')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key('Enter')) output = ":".join("{:02x}".format(ord(c)) for c in self.readonce()) self.assertTrue(output.find("61:00:62:0a") >= 0) def test_smart_case_fuzzy(self): """should behave correctly on case, #219""" # smart case self.tmux.send_keys(f"echo -e 'aBcXyZ' | {self.sk('')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key('abc')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key('aBc')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key('ABc')) self.tmux.until(lambda lines: lines.ready_with_matches(0)) def test_smart_case_exact(self): """should behave correctly on case, #219""" # smart case self.tmux.send_keys(f"echo -e 'aBcXyZ' | {self.sk('')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key("'abc")) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key("'aBc")) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key("'ABc")) self.tmux.until(lambda lines: lines.ready_with_matches(0)) def test_ignore_case_fuzzy(self): """should behave correctly on case, #219""" # ignore case self.tmux.send_keys(f"echo -e 'aBcXyZ' | {self.sk('--case ignore')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key('abc')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key('aBc')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key('ABc')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) def test_ignore_case_exact(self): """should behave correctly on case, #219""" # ignore case self.tmux.send_keys(f"echo -e 'aBcXyZ' | {self.sk('--case ignore')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key("'abc")) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key("'aBc")) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('u'), Key("'ABc")) self.tmux.until(lambda lines: lines.ready_with_matches(1)) def test_respect_case_fuzzy(self): """should behave correctly on case, #219""" # respect case self.tmux.send_keys(f"echo -e 'aBcXyZ' | {self.sk('--case respect')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key('abc')) self.tmux.until(lambda lines: lines.ready_with_matches(0)) def test_respect_case_exact(self): """should behave correctly on case, #219""" # respect case self.tmux.send_keys(f"echo -e 'aBcXyZ' | {self.sk('--case respect')}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Key("'abc")) self.tmux.until(lambda lines: lines.ready_with_matches(0)) def test_query_history(self): """query history should work""" history_file = f'{self.tempname()}.history' self.tmux.send_keys(f"echo -e '<KEY> > {history_file}", Key('Enter')) history_mtime = os.stat(history_file).st_mtime self.tmux.send_keys(f"echo -e 'a\nb\nc' | {self.sk('--history', history_file)}", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(3)) self.tmux.send_keys(Ctrl('p')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-3].startswith('> c')) self.tmux.send_keys(Ctrl('p')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-3].startswith('> b')) self.tmux.send_keys('b') self.tmux.until(lambda lines: lines.ready_with_matches(0)) self.tmux.send_keys(Ctrl('p')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-3].startswith('> a')) self.tmux.send_keys(Ctrl('n')) self.tmux.until(lambda lines: lines.ready_with_matches(0)) self.tmux.until(lambda lines: lines[-1].startswith('> bb')) self.tmux.send_keys(Ctrl('n')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-1].startswith('> c')) self.tmux.send_keys('d') self.tmux.until(lambda lines: lines[-1].startswith('> cd')) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f'[[ "$(echo -n $(cat {history_file}))" == "a b c cd" ]] && echo ok') self.tmux.send_keys(Key('Enter')) self.tmux.until(lambda lines: lines[-1].startswith('ok')) def test_cmd_history(self): """query history should work""" history_file = f'{self.tempname()}.cmd-history' self.tmux.send_keys(f"echo -e 'a\nb\nc' > {history_file}", Key('Enter')) self.tmux.send_keys(f"""{self.sk("-i -c 'echo {}'", '--cmd-history', history_file)}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.send_keys(Ctrl('p')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-1].startswith('c> c')) self.tmux.send_keys(Ctrl('p')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-1].startswith('c> b')) self.tmux.send_keys('b') self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Ctrl('p')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-1].startswith('c> a')) self.tmux.send_keys(Ctrl('n')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-1].startswith('c> bb')) self.tmux.send_keys(Ctrl('n')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-1].startswith('c> c')) self.tmux.send_keys('d') self.tmux.until(lambda lines: lines[-1].startswith('c> cd')) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f'[[ "$(echo -n $(cat {history_file}))" == "a b c cd" ]] && echo ok') self.tmux.send_keys(Key('Enter')) self.tmux.until(lambda lines: lines[-1].startswith('ok')) def test_execute_with_zero_result_ref(self): """execute should not panic with zero results #276""" self.tmux.send_keys(f"""echo -n "" | {self.sk("--bind 'enter:execute(less {})'")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(0)) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(Key('q')) self.tmux.until(lambda lines: lines.ready_with_lines(0)) self.tmux.until(lambda lines: lines[-1].startswith('> q')) # less is not executed at all self.tmux.send_keys(Ctrl('g')) def test_execute_with_zero_result_no_ref(self): """execute should not panic with zero results #276""" self.tmux.send_keys(f"""echo -n "" | {self.sk("--bind 'enter:execute(less)'")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(0)) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(Key('q')) self.tmux.until(lambda lines: lines.ready_with_lines(0)) self.tmux.send_keys(Ctrl('g')) def test_if_non_matched(self): """commands only effect if no item is matched""" self.tmux.send_keys(f"""echo "a\nb" | {self.sk("--bind 'enter:if-non-matched(backward-delete-char)'", "-q ab")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_matches(0)) self.tmux.send_keys(Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.send_keys(Key('Enter')) # not triggered anymore self.tmux.until(lambda lines: lines.ready_with_matches(1)) def test_nul_in_execute(self): """NUL should work in preview command see #278""" self.tmux.send_keys(f"""echo -ne 'a\\0b' | {self.sk("--preview='echo -en {} | xxd'")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines.any_include('6100 62')) def test_skip_to_pattern(self): self.tmux.send_keys(f"""echo -ne 'a/b/c' | {self.sk("--skip-to-pattern '[^/]*$'")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(1)) self.tmux.until(lambda lines: lines.any_include('..c')) def test_multi_selection(self): self.tmux.send_keys(f"""echo -n 'a\nb\nc' | {self.sk("-m")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(3)) self.tmux.until(lambda lines: lines[-3].startswith('> a')) self.tmux.send_keys(Key('b')) self.tmux.until(lambda lines: lines[-3].startswith('> b')) self.tmux.send_keys(Key('TAB')) self.tmux.until(lambda lines: lines[-3].startswith('>>b')) self.tmux.send_keys(Key('C-h')) self.tmux.until(lambda lines: lines[-4].startswith(' >b')) self.tmux.until(lambda lines: lines[-3].startswith('> a')) self.tmux.send_keys(Key('c')) self.tmux.until(lambda lines: lines[-3].startswith('> c')) self.tmux.send_keys(Key('TAB')) self.tmux.until(lambda lines: lines[-3].startswith('>>c')) self.tmux.send_keys(Key('C-h')) self.tmux.until(lambda lines: lines[-5].startswith(' >c')) self.tmux.until(lambda lines: lines[-4].startswith(' >b')) self.tmux.until(lambda lines: lines[-3].startswith('> a')) self.tmux.send_keys(Key('Enter')) self.assertEqual('b\nc', self.readonce().strip()) def test_append_and_select(self): self.tmux.send_keys(f"""echo -n 'a\nb\nc' | {self.sk("-m --bind 'ctrl-f:append-and-select'")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_lines(3)) self.tmux.send_keys(Key('xyz')) self.tmux.until(lambda lines: lines.ready_with_matches(0)) self.tmux.send_keys(Key('C-f')) self.tmux.until(lambda lines: lines[-3].startswith('>>xyz')) self.tmux.send_keys(Key('C-u')) self.tmux.until(lambda lines: lines[-6].startswith(' >xyz')) self.tmux.until(lambda lines: lines[-5].startswith(' c')) self.tmux.until(lambda lines: lines[-4].startswith(' b')) self.tmux.until(lambda lines: lines[-3].startswith('> a')) def test_pre_select_n(self): self.tmux.send_keys(f"""echo -n 'a\nb\nc' | {self.sk("-m --pre-select-n=1")}""", Key('Enter')) self.tmux.until(lambda lines: lines[-5].startswith(' c')) self.tmux.until(lambda lines: lines[-4].startswith(' b')) self.tmux.until(lambda lines: lines[-3].startswith('>>a')) def test_pre_select_items(self): args = "-m --pre-select-items=$'b\\nc'" self.tmux.send_keys(f"""echo -n 'a\nb\nc' | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: lines[-5].startswith(' >c')) self.tmux.until(lambda lines: lines[-4].startswith(' >b')) self.tmux.until(lambda lines: lines[-3].startswith('> a')) def test_pre_select_pat(self): self.tmux.send_keys(f"""echo -n 'a\nb\nc' | {self.sk("-m --pre-select-pat='[b|c]'")}""", Key('Enter')) self.tmux.until(lambda lines: lines[-5].startswith(' >c')) self.tmux.until(lambda lines: lines[-4].startswith(' >b')) self.tmux.until(lambda lines: lines[-3].startswith('> a')) def test_pre_select_file(self): pre_select_file = f'{self.tempname()}.pre_select' self.tmux.send_keys(f"echo -e 'b\nc' > {pre_select_file}", Key('Enter')) args = f'''-m --pre-select-file={pre_select_file}''' self.tmux.send_keys(f"""echo -n 'a\nb\nc' | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: lines[-5].startswith(' >c')) self.tmux.until(lambda lines: lines[-4].startswith(' >b')) self.tmux.until(lambda lines: lines[-3].startswith('> a')) def test_no_clear_if_empty(self): text_file = f'{self.tempname()}.txt' self.tmux.send_keys(f"echo -e 'b\\nc' > {text_file}", Key('Enter')) args = "-c 'cat {}'" + f''' -i --cmd-query='{text_file}' --no-clear-if-empty''' self.tmux.send_keys(f"""{self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: lines[-4].startswith(' c')) self.tmux.until(lambda lines: lines[-3].startswith('> b')) self.tmux.send_keys(Key('xx')) self.tmux.until(lambda lines: lines.ready_with_matches(0)) self.tmux.until(lambda lines: lines[-4].startswith(' c')) self.tmux.until(lambda lines: lines[-3].startswith('> b')) def test_preview_scroll_const(self): self.tmux.send_keys(f"""echo foo 123 321 | {self.sk("--preview 'seq 1000' --preview-window left:+123")}""", Key('Enter')) self.tmux.until(lambda lines: re.match(r'123.*123/1000', lines[0])) def test_preview_scroll_expr(self): args = "--preview 'seq 1000' --preview-window left:+{3}" self.tmux.send_keys(f"""echo foo 123 321 | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: re.match(r'321.*321/1000', lines[0])) def test_preview_scroll_and_offset(self): args = "--preview 'seq 1000' --preview-window left:+{2}-2" self.tmux.send_keys(f"""echo foo 123 321 | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: re.match(r'121.*121/1000', lines[0])) self.tmux.send_keys(Key('Enter')) self.tmux.send_keys(f"""echo foo :123: 321 | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: re.match(r'121.*121/1000', lines[0])) self.tmux.send_keys(Key('Enter')) def test_issue_359_multi_byte_and_regex(self): self.tmux.send_keys(f"""echo 'ああa' | {self.sk("--regex -q 'a'")}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-3].startswith('> ああa')) def test_issue_361_literal_space(self): args = '''-q "'foo\\ bar"''' self.tmux.send_keys(f"""echo 'foo bar\nfoo bar' | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-3].startswith('> foo bar')) self.tmux.send_keys(Key('Enter')) args = '''-q "!foo\\ bar"''' self.tmux.send_keys(f"""echo 'foo bar\nfoo bar' | {self.sk(args)}""", Key('Enter')) self.tmux.until(lambda lines: lines.ready_with_matches(1)) self.tmux.until(lambda lines: lines[-3].startswith('> foo bar')) self.tmux.send_keys(Key('Enter')) def find_prompt(lines, interactive=False, reverse=False): linen = -1 prompt = ">" if interactive: prompt = "c>" if reverse: linen = 0 return lines[linen].startswith(prompt) if __name__ == '__main__': unittest.main()
en
0.549882
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # The integration test of skim # Modeled after fzf's test: https://github.com/junegunn/fzf/blob/master/test/test_go.rb The shell configurations for tmux tests Represent a key to send to tmux Represent a control key Represent an alt key A list that contains the output of tmux # match the status line # normal: `| 10/219 [2] 8/0.` # inline: `> query < 10/219 [2] 8/0.` # preview: `> query < 10/219 [2] 8/0.│...` # match_count item_count select_count item_cursor matcher_stopped Object to manipulate tmux and get result Run tmux command and return result in list of strings (lines) :returns: List<String> # testing basic key binding # Ctrl-A ## Meta-F # CTRL-B # Left, CTRL-D # # META-BS # # # CTRL-Y # META-B # CTRL-F / Right # CTRL-H / BS # CTRL-E # CTRL-U # CTRL-Y # CTRL-W # # META-D # CTRL-M # Ctrl-A ## Meta-F # CTRL-B # Left, CTRL-D # # META-BS # # # CTRL-Y # META-B # CTRL-F / Right # CTRL-H / BS # CTRL-E # CTRL-U # CTRL-Y # CTRL-W # # META-D # CTRL-M # fields, expected # fields, query, match_count(0/1) # XXXXXXXXXXXXXXXXX.. # ..XXXXXXXXXXXXXXXXXM # ..XXXXXXXMXXXXXXX.. ## the dot accounts for spinner # test that inline info is does not overwrite query # --select-1 # --exit-0 # normally we'll put some default options to SKIM_DEFAULT_OPTIONS and override it in command # line. this test will ensure multiple values are accepted. # echo "'\"ABC\"'" | sk --preview="echo X{}X" => X'"ABC"'X echo "'\\"ABC\\"'" | X'"ABC"'X # echo "'\"ABC\"'" | sk --preview="echo X\{}X" => X{}X echo "'\\"ABC\\"'" | X{}X should keep the NULL character, see #142 should behave correctly on case, #219 # smart case should behave correctly on case, #219 # smart case should behave correctly on case, #219 # ignore case should behave correctly on case, #219 # ignore case should behave correctly on case, #219 # respect case should behave correctly on case, #219 # respect case query history should work query history should work {self.sk("-i -c 'echo {}'", '--cmd-history', history_file)} execute should not panic with zero results #276 echo -n "" | {self.sk("--bind 'enter:execute(less {})'")} # less is not executed at all execute should not panic with zero results #276 echo -n "" | {self.sk("--bind 'enter:execute(less)'")} commands only effect if no item is matched echo "a\nb" | {self.sk("--bind 'enter:if-non-matched(backward-delete-char)'", "-q ab")} # not triggered anymore NUL should work in preview command see #278 echo -ne 'a\\0b' | {self.sk("--preview='echo -en {} | xxd'")} echo -ne 'a/b/c' | {self.sk("--skip-to-pattern '[^/]*$'")} echo -n 'a\nb\nc' | {self.sk("-m")} echo -n 'a\nb\nc' | {self.sk("-m --bind 'ctrl-f:append-and-select'")} echo -n 'a\nb\nc' | {self.sk("-m --pre-select-n=1")} echo -n 'a\nb\nc' | {self.sk(args)} echo -n 'a\nb\nc' | {self.sk("-m --pre-select-pat='[b|c]'")} -m --pre-select-file={pre_select_file} echo -n 'a\nb\nc' | {self.sk(args)} -i --cmd-query='{text_file}' --no-clear-if-empty {self.sk(args)} echo foo 123 321 | {self.sk("--preview 'seq 1000' --preview-window left:+123")} echo foo 123 321 | {self.sk(args)} echo foo 123 321 | {self.sk(args)} echo foo :123: 321 | {self.sk(args)} echo 'ああa' | {self.sk("--regex -q 'a'")} -q "'foo\\ bar" echo 'foo bar\nfoo bar' | {self.sk(args)} -q "!foo\\ bar" echo 'foo bar\nfoo bar' | {self.sk(args)}
2.16677
2
present/markdown.py
kazukazuinaina/present
4,252
6631281
<gh_stars>1000+ # -*- coding: utf-8 -*- import os import warnings import yaml from mistune import markdown from .slide import ( Slide, Heading, Paragraph, Text, Strong, Codespan, Emphasis, Link, List, Image, Codio, BlockCode, BlockHtml, BlockQuote, ) class Markdown(object): """Parse and traverse through the markdown abstract syntax tree.""" def __init__(self, filename): self.filename = filename self.dirname = os.path.dirname(os.path.realpath(filename)) def parse(self): with open(self.filename, "r") as f: text = f.read() slides = [] ast = markdown(text, renderer="ast") sliden = 0 buffer = [] for i, obj in enumerate(ast): if obj["type"] in ["newline"]: continue if obj["type"] == "thematic_break" and buffer: slides.append(Slide(elements=buffer)) sliden += 1 buffer = [] continue try: if obj["type"] == "paragraph": images = [c for c in obj["children"] if c["type"] == "image"] not_images = [c for c in obj["children"] if c["type"] != "image"] for image in images: image["src"] = os.path.join(self.dirname, os.path.expanduser(image["src"])) if image["alt"] == "codio": with open(image["src"], "r") as f: codio = yaml.load(f, Loader=yaml.Loader) buffer.append(Codio(obj=codio)) else: buffer.append(Image(obj=image)) obj["children"] = not_images buffer.append(Paragraph(obj=obj)) else: element_name = obj["type"].title().replace("_", "") Element = eval(element_name) buffer.append(Element(obj=obj)) except NameError: warnings.warn(f"(Slide {sliden + 1}) {element_name} is not supported") if i == len(ast) - 1: slides.append(Slide(elements=buffer)) sliden += 1 return slides
# -*- coding: utf-8 -*- import os import warnings import yaml from mistune import markdown from .slide import ( Slide, Heading, Paragraph, Text, Strong, Codespan, Emphasis, Link, List, Image, Codio, BlockCode, BlockHtml, BlockQuote, ) class Markdown(object): """Parse and traverse through the markdown abstract syntax tree.""" def __init__(self, filename): self.filename = filename self.dirname = os.path.dirname(os.path.realpath(filename)) def parse(self): with open(self.filename, "r") as f: text = f.read() slides = [] ast = markdown(text, renderer="ast") sliden = 0 buffer = [] for i, obj in enumerate(ast): if obj["type"] in ["newline"]: continue if obj["type"] == "thematic_break" and buffer: slides.append(Slide(elements=buffer)) sliden += 1 buffer = [] continue try: if obj["type"] == "paragraph": images = [c for c in obj["children"] if c["type"] == "image"] not_images = [c for c in obj["children"] if c["type"] != "image"] for image in images: image["src"] = os.path.join(self.dirname, os.path.expanduser(image["src"])) if image["alt"] == "codio": with open(image["src"], "r") as f: codio = yaml.load(f, Loader=yaml.Loader) buffer.append(Codio(obj=codio)) else: buffer.append(Image(obj=image)) obj["children"] = not_images buffer.append(Paragraph(obj=obj)) else: element_name = obj["type"].title().replace("_", "") Element = eval(element_name) buffer.append(Element(obj=obj)) except NameError: warnings.warn(f"(Slide {sliden + 1}) {element_name} is not supported") if i == len(ast) - 1: slides.append(Slide(elements=buffer)) sliden += 1 return slides
en
0.764365
# -*- coding: utf-8 -*- Parse and traverse through the markdown abstract syntax tree.
2.633495
3
antioch/client/antioch.py
HuygensING/antioch-python-client
0
6631282
""" Copyright 2017 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import time from http import HTTPStatus from urllib.parse import urljoin import requests import antioch.client.util as util from antioch.client.about_endpoint import AboutEndpoint from antioch.client.annotations_endpoint import AnnotationsEndpoint from antioch.client.resources_endpoint import ResourcesEndpoint from antioch.client.rest_requester import RestRequester class Antioch: def __init__(self, server, admin_key="", auth="", auto_confirm=True): self.server = server if server.endswith('/') else server + '/' self.session = requests.Session() self.session.headers['x-ssl-client-s-dn-cn'] = auth self.session.headers['auth'] = 'SimpleAuth ' + admin_key self.session.headers['content-type'] = 'application/json' self.auto_confirm = auto_confirm self.about = AboutEndpoint(self) self.resources = ResourcesEndpoint(self) # self.searches = SearchesEndpoint(self) self.annotations = AnnotationsEndpoint(self) def get(self, uri): url = urljoin(self.server, uri) r = self.session.get(url=url) r.raise_for_status() return r def put(self, uri, data): url = urljoin(self.server, uri) r = self.session.put(url=url, json=data) r.raise_for_status() return r def put_data(self, uri, data): url = urljoin(self.server, uri) current_content_type = self.session.headers.get('content-type') self.session.headers['content-type'] = 'text/xml' r = self.session.put(url=url, data=data) self.session.headers['content-type'] = current_content_type r.raise_for_status() return r def post(self, uri, data): url = urljoin(self.server, uri) r = self.session.post(url=url, json=data) r.raise_for_status() return r def delete(self, uri): r = self.session.delete(url=urljoin(self.server, uri)) r.raise_for_status() return r def do_xpath(self, resource_view_ids, xpath): entity = { 'resourceIds': resource_view_ids, 'xpath': xpath } def poster(): return self.post(util.endpoint_uri('commands', 'xpath'), entity) def status_getter(): return self.antioch.get(uri=util.endpoint_uri(self.endpoint, self.uuid, 'text', 'status')) return RestRequester(poster).on_status(HTTPStatus.OK, util.entity_as_json).invoke().json
""" Copyright 2017 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import time from http import HTTPStatus from urllib.parse import urljoin import requests import antioch.client.util as util from antioch.client.about_endpoint import AboutEndpoint from antioch.client.annotations_endpoint import AnnotationsEndpoint from antioch.client.resources_endpoint import ResourcesEndpoint from antioch.client.rest_requester import RestRequester class Antioch: def __init__(self, server, admin_key="", auth="", auto_confirm=True): self.server = server if server.endswith('/') else server + '/' self.session = requests.Session() self.session.headers['x-ssl-client-s-dn-cn'] = auth self.session.headers['auth'] = 'SimpleAuth ' + admin_key self.session.headers['content-type'] = 'application/json' self.auto_confirm = auto_confirm self.about = AboutEndpoint(self) self.resources = ResourcesEndpoint(self) # self.searches = SearchesEndpoint(self) self.annotations = AnnotationsEndpoint(self) def get(self, uri): url = urljoin(self.server, uri) r = self.session.get(url=url) r.raise_for_status() return r def put(self, uri, data): url = urljoin(self.server, uri) r = self.session.put(url=url, json=data) r.raise_for_status() return r def put_data(self, uri, data): url = urljoin(self.server, uri) current_content_type = self.session.headers.get('content-type') self.session.headers['content-type'] = 'text/xml' r = self.session.put(url=url, data=data) self.session.headers['content-type'] = current_content_type r.raise_for_status() return r def post(self, uri, data): url = urljoin(self.server, uri) r = self.session.post(url=url, json=data) r.raise_for_status() return r def delete(self, uri): r = self.session.delete(url=urljoin(self.server, uri)) r.raise_for_status() return r def do_xpath(self, resource_view_ids, xpath): entity = { 'resourceIds': resource_view_ids, 'xpath': xpath } def poster(): return self.post(util.endpoint_uri('commands', 'xpath'), entity) def status_getter(): return self.antioch.get(uri=util.endpoint_uri(self.endpoint, self.uuid, 'text', 'status')) return RestRequester(poster).on_status(HTTPStatus.OK, util.entity_as_json).invoke().json
en
0.837271
Copyright 2017 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. # self.searches = SearchesEndpoint(self)
1.974482
2
LTHW/ex5.py
hectorip/ProjectsLearnPython
0
6631283
<filename>LTHW/ex5.py # -*- coding: utf-8 -*- my_name = '<NAME>' my_age = 25 # not a lie my_height = 68 # inches my_weight = 180 # lbs my_eyes = 'Brown' my_teeth = 'White' my_hair = 'Black' print "Let's talk about %s" % my_name print "He's %d inches tall." % my_height print "He's %d pounds heavy." % my_weight print "Actually that's not too heavy." print "He's got %s eyes and %s hair." % (my_eyes, my_hair) print "His teeth are usally %s depending on the coffee." % my_teeth print "If I add %d, %d and %d I get %d." % ( my_age, my_height, my_weight, my_age + my_height + my_weight)
<filename>LTHW/ex5.py # -*- coding: utf-8 -*- my_name = '<NAME>' my_age = 25 # not a lie my_height = 68 # inches my_weight = 180 # lbs my_eyes = 'Brown' my_teeth = 'White' my_hair = 'Black' print "Let's talk about %s" % my_name print "He's %d inches tall." % my_height print "He's %d pounds heavy." % my_weight print "Actually that's not too heavy." print "He's got %s eyes and %s hair." % (my_eyes, my_hair) print "His teeth are usally %s depending on the coffee." % my_teeth print "If I add %d, %d and %d I get %d." % ( my_age, my_height, my_weight, my_age + my_height + my_weight)
en
0.735219
# -*- coding: utf-8 -*- # not a lie # inches # lbs
2.674673
3
tests/command_acceptor/user_controllerTests.py
andrii-z4i/xmind-telegram
0
6631284
from unittest import TestCase from unittest.mock import Mock, MagicMock from cmp_command_acceptor.app.controllers.user_controller import UserController from cmp_command_acceptor.app.dependencies import dependencies class UserControllerTests(TestCase): def setUp(self): self.queue = Mock() dependencies.queue = self.queue self.message_holder = MagicMock() def test_get_user_throws_on_add_to_queue(self): self.queue.add.side_effect = Exception('Can\'t add') controller = UserController(self.message_holder) with self.assertRaises(Exception) as ex: result = controller.get() self.assertIsNone(result) self.assertFalse(True) self.assertEqual(repr(ex.exception), repr(Exception('Can\'t add'))) self.queue.add.assert_called_once_with('someValue') def test_get_successfully_add_to_queue(self): self.queue.add.return_value = True controller = UserController(self.message_holder) result = controller.get() expectation = ({'status': True}, 200) self.assertEqual(result, expectation) self.queue.add.assert_called_once_with('someValue')
from unittest import TestCase from unittest.mock import Mock, MagicMock from cmp_command_acceptor.app.controllers.user_controller import UserController from cmp_command_acceptor.app.dependencies import dependencies class UserControllerTests(TestCase): def setUp(self): self.queue = Mock() dependencies.queue = self.queue self.message_holder = MagicMock() def test_get_user_throws_on_add_to_queue(self): self.queue.add.side_effect = Exception('Can\'t add') controller = UserController(self.message_holder) with self.assertRaises(Exception) as ex: result = controller.get() self.assertIsNone(result) self.assertFalse(True) self.assertEqual(repr(ex.exception), repr(Exception('Can\'t add'))) self.queue.add.assert_called_once_with('someValue') def test_get_successfully_add_to_queue(self): self.queue.add.return_value = True controller = UserController(self.message_holder) result = controller.get() expectation = ({'status': True}, 200) self.assertEqual(result, expectation) self.queue.add.assert_called_once_with('someValue')
none
1
3.00309
3
src/opnsense/scripts/unbound/download_blacklists.py
jdeluyck/core
0
6631285
<reponame>jdeluyck/core<filename>src/opnsense/scripts/unbound/download_blacklists.py #!/usr/local/bin/python3 """ Copyright (c) 2020 <NAME> <<EMAIL>> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import os import sys import re import syslog import tempfile import time import fcntl from configparser import ConfigParser import requests def uri_reader(uri): req_opts = { 'url': uri, 'timeout': 120, 'stream': True } try: req = requests.get(**req_opts) except Exception as e: syslog.syslog(syslog.LOG_ERR,'blacklist download : unable to download file from %s (error : %s)' % (uri, e)) return if req.status_code >= 200 and req.status_code <= 299: req.raw.decode_content = True prev_chop = '' while True: chop = req.raw.read(1024).decode() if not chop: if prev_chop: yield prev_chop break else: parts = (prev_chop + chop).split('\n') if parts[-1] != "\n": prev_chop = parts.pop() else: prev_chop = '' for part in parts: yield part else: syslog.syslog(syslog.LOG_ERR, 'blacklist download : unable to download file from %s (status_code: %d)' % (uri, req.status_code) ) if __name__ == '__main__': # check for a running download process, this may take a while so it's better to check... try: lck = open('/tmp/unbound-download_blacklists.tmp', 'w+') fcntl.flock(lck, fcntl.LOCK_EX | fcntl.LOCK_NB) except IOError: # already running, exit status 99 sys.exit(99) domain_pattern = re.compile( r'^(([\da-zA-Z_])([_\w-]{,62})\.){,127}(([\da-zA-Z])[_\w-]{,61})' r'?([\da-zA-Z]\.((xn\-\-[a-zA-Z\d]+)|([a-zA-Z\d]{2,})))$' ) startup_time = time.time() syslog.openlog('unbound', logoption=syslog.LOG_DAEMON, facility=syslog.LOG_LOCAL4) blacklist_items = set() if os.path.exists('/var/unbound/etc/blacklists.ini'): cnf = ConfigParser() cnf.read('/var/unbound/etc/blacklists.ini') # exclude (white) lists, compile to regex to be used to filter blacklist entries if cnf.has_section('exclude'): exclude_list = set() for exclude_item in cnf['exclude']: try: re.compile(cnf['exclude'][exclude_item], re.IGNORECASE) exclude_list.add(cnf['exclude'][exclude_item]) except re.error: syslog.syslog(syslog.LOG_ERR, 'blacklist download : skip invalid whitelist exclude pattern "%s" (%s)' % ( exclude_item, cnf['exclude'][exclude_item] ) ) if not exclude_list: exclude_list.add('$^') wp = '|'.join(exclude_list) whitelist_pattern = re.compile(wp, re.IGNORECASE) syslog.syslog(syslog.LOG_NOTICE, 'blacklist download : exclude domains matching %s' % wp) # fetch all blacklists if cnf.has_section('blacklists'): for blacklist in cnf['blacklists']: file_stats = {'uri': cnf['blacklists'][blacklist], 'skip' : 0, 'blacklist': 0, 'lines' :0} for line in uri_reader(cnf['blacklists'][blacklist]): file_stats['lines'] += 1 # cut line into parts before comment marker (if any) tmp = line.split('#')[0].split() entry = None while tmp: entry = tmp.pop(-1) if entry not in ['127.0.0.1', '0.0.0.0']: break if entry: domain = entry.lower() if whitelist_pattern.match(entry): file_stats['skip'] += 1 else: if domain_pattern.match(domain): file_stats['blacklist'] += 1 blacklist_items.add(entry) else: file_stats['skip'] += 1 syslog.syslog( syslog.LOG_NOTICE, 'blacklist download %(uri)s (lines: %(lines)d exclude: %(skip)d black: %(blacklist)d)' % file_stats ) # write out results with open("/var/unbound/etc/dnsbl.conf", 'w') as unbound_outf: if blacklist_items: unbound_outf.write('server:\n') for entry in blacklist_items: unbound_outf.write("local-data: \"%s A 0.0.0.0\"\n" % entry) syslog.syslog(syslog.LOG_NOTICE, "blacklist download done in %0.2f seconds (%d records)" % ( time.time() - startup_time, len(blacklist_items) ))
#!/usr/local/bin/python3 """ Copyright (c) 2020 <NAME> <<EMAIL>> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import os import sys import re import syslog import tempfile import time import fcntl from configparser import ConfigParser import requests def uri_reader(uri): req_opts = { 'url': uri, 'timeout': 120, 'stream': True } try: req = requests.get(**req_opts) except Exception as e: syslog.syslog(syslog.LOG_ERR,'blacklist download : unable to download file from %s (error : %s)' % (uri, e)) return if req.status_code >= 200 and req.status_code <= 299: req.raw.decode_content = True prev_chop = '' while True: chop = req.raw.read(1024).decode() if not chop: if prev_chop: yield prev_chop break else: parts = (prev_chop + chop).split('\n') if parts[-1] != "\n": prev_chop = parts.pop() else: prev_chop = '' for part in parts: yield part else: syslog.syslog(syslog.LOG_ERR, 'blacklist download : unable to download file from %s (status_code: %d)' % (uri, req.status_code) ) if __name__ == '__main__': # check for a running download process, this may take a while so it's better to check... try: lck = open('/tmp/unbound-download_blacklists.tmp', 'w+') fcntl.flock(lck, fcntl.LOCK_EX | fcntl.LOCK_NB) except IOError: # already running, exit status 99 sys.exit(99) domain_pattern = re.compile( r'^(([\da-zA-Z_])([_\w-]{,62})\.){,127}(([\da-zA-Z])[_\w-]{,61})' r'?([\da-zA-Z]\.((xn\-\-[a-zA-Z\d]+)|([a-zA-Z\d]{2,})))$' ) startup_time = time.time() syslog.openlog('unbound', logoption=syslog.LOG_DAEMON, facility=syslog.LOG_LOCAL4) blacklist_items = set() if os.path.exists('/var/unbound/etc/blacklists.ini'): cnf = ConfigParser() cnf.read('/var/unbound/etc/blacklists.ini') # exclude (white) lists, compile to regex to be used to filter blacklist entries if cnf.has_section('exclude'): exclude_list = set() for exclude_item in cnf['exclude']: try: re.compile(cnf['exclude'][exclude_item], re.IGNORECASE) exclude_list.add(cnf['exclude'][exclude_item]) except re.error: syslog.syslog(syslog.LOG_ERR, 'blacklist download : skip invalid whitelist exclude pattern "%s" (%s)' % ( exclude_item, cnf['exclude'][exclude_item] ) ) if not exclude_list: exclude_list.add('$^') wp = '|'.join(exclude_list) whitelist_pattern = re.compile(wp, re.IGNORECASE) syslog.syslog(syslog.LOG_NOTICE, 'blacklist download : exclude domains matching %s' % wp) # fetch all blacklists if cnf.has_section('blacklists'): for blacklist in cnf['blacklists']: file_stats = {'uri': cnf['blacklists'][blacklist], 'skip' : 0, 'blacklist': 0, 'lines' :0} for line in uri_reader(cnf['blacklists'][blacklist]): file_stats['lines'] += 1 # cut line into parts before comment marker (if any) tmp = line.split('#')[0].split() entry = None while tmp: entry = tmp.pop(-1) if entry not in ['127.0.0.1', '0.0.0.0']: break if entry: domain = entry.lower() if whitelist_pattern.match(entry): file_stats['skip'] += 1 else: if domain_pattern.match(domain): file_stats['blacklist'] += 1 blacklist_items.add(entry) else: file_stats['skip'] += 1 syslog.syslog( syslog.LOG_NOTICE, 'blacklist download %(uri)s (lines: %(lines)d exclude: %(skip)d black: %(blacklist)d)' % file_stats ) # write out results with open("/var/unbound/etc/dnsbl.conf", 'w') as unbound_outf: if blacklist_items: unbound_outf.write('server:\n') for entry in blacklist_items: unbound_outf.write("local-data: \"%s A 0.0.0.0\"\n" % entry) syslog.syslog(syslog.LOG_NOTICE, "blacklist download done in %0.2f seconds (%d records)" % ( time.time() - startup_time, len(blacklist_items) ))
en
0.743978
#!/usr/local/bin/python3 Copyright (c) 2020 <NAME> <<EMAIL>> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # check for a running download process, this may take a while so it's better to check... # already running, exit status 99 # exclude (white) lists, compile to regex to be used to filter blacklist entries # fetch all blacklists # cut line into parts before comment marker (if any) # write out results
1.610834
2
practice/find_pivot.py
haandol/dojo
0
6631286
<reponame>haandol/dojo<filename>practice/find_pivot.py def find_pivot(nums, lo, hi): while lo < hi: mid = (lo+hi)//2 if nums[hi] < nums[mid]: lo = mid + 1 else: hi = mid return lo arr = [4, 5, 6, 7, 0, 1, 2, 3] print(find_pivot(arr, 0, len(arr)-1))
def find_pivot(nums, lo, hi): while lo < hi: mid = (lo+hi)//2 if nums[hi] < nums[mid]: lo = mid + 1 else: hi = mid return lo arr = [4, 5, 6, 7, 0, 1, 2, 3] print(find_pivot(arr, 0, len(arr)-1))
none
1
3.528704
4
tests/ssg_test_suite/rule.py
spensireli/content
1
6631287
from __future__ import print_function import logging import os import shutil import os.path import re import subprocess import collections import json import fnmatch import tempfile import contextlib from ssg.constants import OSCAP_PROFILE, OSCAP_PROFILE_ALL_ID, OSCAP_RULE from ssg_test_suite import oscap from ssg_test_suite import xml_operations from ssg_test_suite import test_env from ssg_test_suite import common from ssg_test_suite.log import LogHelper logging.getLogger(__name__).addHandler(logging.NullHandler()) Scenario = collections.namedtuple( "Scenario", ["script", "context", "script_params"]) def get_viable_profiles(selected_profiles, datastream, benchmark, script=None): """Read datastream, and return set intersection of profiles of given benchmark and those provided in `selected_profiles` parameter. """ valid_profiles = [] all_profiles_elements = xml_operations.get_all_profiles_in_benchmark( datastream, benchmark, logging) all_profiles = [el.attrib["id"] for el in all_profiles_elements] all_profiles.append(OSCAP_PROFILE_ALL_ID) for ds_profile in all_profiles: if 'ALL' in selected_profiles: valid_profiles += [ds_profile] continue for sel_profile in selected_profiles: if ds_profile.endswith(sel_profile): valid_profiles += [ds_profile] if not valid_profiles: if script: logging.warning('Script {0} - profile {1} not found in datastream' .format(script, ", ".join(selected_profiles))) else: logging.warning('Profile {0} not found in datastream' .format(", ".join(selected_profiles))) return valid_profiles def generate_xslt_change_value_template(value_short_id, new_value): XSLT_TEMPLATE = """<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ds="http://scap.nist.gov/schema/scap/source/1.2" xmlns:xccdf-1.2="http://checklists.nist.gov/xccdf/1.2"> <xsl:output omit-xml-declaration="yes" indent="yes"/> <xsl:strip-space elements="*"/> <xsl:template match="node()|@*"> <xsl:copy> <xsl:apply-templates select="node()|@*"/> </xsl:copy> </xsl:template> <xsl:template match="ds:component/xccdf-1.2:Benchmark//xccdf-1.2:Value[@id='xccdf_org.ssgproject.content_value_{value_short_id}']/xccdf-1.2:value[not(@selector)]/text()">{new_value}</xsl:template> </xsl:stylesheet>""" return XSLT_TEMPLATE.format(value_short_id=value_short_id, new_value=new_value) def _apply_script(rule_dir, test_env, script): """Run particular test script on VM and log it's output.""" logging.debug("Applying script {0}".format(script)) rule_name = os.path.basename(rule_dir) log_file_name = os.path.join( LogHelper.LOG_DIR, rule_name + ".prescripts.log") with open(log_file_name, 'a') as log_file: log_file.write('##### {0} / {1} #####\n'.format(rule_name, script)) shared_dir = os.path.join(common.REMOTE_TEST_SCENARIOS_DIRECTORY, "shared") command = "cd {0}; SHARED={1} bash -x {2}".format(rule_dir, shared_dir, script) try: test_env.execute_ssh_command(command, log_file) except subprocess.CalledProcessError as exc: logging.error("Rule testing script {script} failed with exit code {rc}" .format(script=script, rc=exc.returncode)) return False return True def _get_script_context(script): """Return context of the script.""" result = re.search(r'.*\.([^.]*)\.[^.]*$', script) if result is None: return None return result.group(1) class RuleChecker(oscap.Checker): """ Rule checks generally work like this - for every profile that supports that rule: - Alter the system. - Run the scan, check that the result meets expectations. If the test scenario passed as requested, return True, if it failed or passed unexpectedly, return False. The following sequence applies if the initial scan has failed as expected: - If there are no remediations, return True. - Run remediation, return False if it failed. - Return result of the final scan of remediated system. """ def __init__(self, test_env): super(RuleChecker, self).__init__(test_env) self._matching_rule_found = False self.results = list() self._current_result = None self.remote_dir = "" def _run_test(self, profile, test_data): scenario = test_data["scenario"] rule_id = test_data["rule_id"] remediation_available = test_data["remediation_available"] LogHelper.preload_log( logging.INFO, "Script {0} using profile {1} OK".format(scenario.script, profile), log_target='pass') LogHelper.preload_log( logging.WARNING, "Script {0} using profile {1} notapplicable".format(scenario.script, profile), log_target='notapplicable') LogHelper.preload_log( logging.ERROR, "Script {0} using profile {1} found issue:".format(scenario.script, profile), log_target='fail') runner_cls = oscap.REMEDIATION_RULE_RUNNERS[self.remediate_using] runner = runner_cls( self.test_env, oscap.process_profile_id(profile), self.datastream, self.benchmark_id, rule_id, scenario.script, self.dont_clean, self.manual_debug) initial_scan_res = self._initial_scan_went_ok(runner, rule_id, scenario.context) if not initial_scan_res: return False if initial_scan_res == 2: # notapplicable return True supported_and_available_remediations = self._get_available_remediations(scenario) if (scenario.context not in ['fail', 'error'] or not supported_and_available_remediations): return True if remediation_available: if not self._remediation_went_ok(runner, rule_id): return False return self._final_scan_went_ok(runner, rule_id) else: msg = ("No remediation is available for rule '{}'." .format(rule_id)) logging.warning(msg) return False def _initial_scan_went_ok(self, runner, rule_id, context): success = runner.run_stage_with_context("initial", context) self._current_result.record_stage_result("initial_scan", success) if not success: msg = ("The initial scan failed for rule '{}'." .format(rule_id)) logging.error(msg) return success def _is_remediation_available(self, rule): if xml_operations.find_fix_in_benchmark( self.datastream, self.benchmark_id, rule.id, self.remediate_using) is None: return False else: return True def _get_available_remediations(self, scenario): is_supported = set(['all']) is_supported.add( oscap.REMEDIATION_RUNNER_TO_REMEDIATION_MEANS[self.remediate_using]) supported_and_available_remediations = set( scenario.script_params['remediation']).intersection(is_supported) return supported_and_available_remediations def _remediation_went_ok(self, runner, rule_id): success = runner.run_stage_with_context('remediation', 'fixed') self._current_result.record_stage_result("remediation", success) if not success: msg = ("The remediation failed for rule '{}'." .format(rule_id)) logging.error(msg) return success def _final_scan_went_ok(self, runner, rule_id): success = runner.run_stage_with_context('final', 'pass') self._current_result.record_stage_result("final_scan", success) if not success: msg = ("The check after remediation failed for rule '{}'." .format(rule_id)) logging.error(msg) return success def _rule_should_be_tested(self, rule, rules_to_be_tested): if 'ALL' in rules_to_be_tested: return True else: for rule_to_be_tested in rules_to_be_tested: # we check for a substring if rule_to_be_tested.startswith(OSCAP_RULE): pattern = rule_to_be_tested else: pattern = OSCAP_RULE + rule_to_be_tested if fnmatch.fnmatch(rule.id, pattern): return True return False def _ensure_package_present_for_all_scenarios(self, scenarios_by_rule): packages_required = set() for rule, scenarios in scenarios_by_rule.items(): for s in scenarios: scenario_packages = s.script_params["packages"] packages_required.update(scenario_packages) if packages_required: common.install_packages(self.test_env, packages_required) def _prepare_environment(self, scenarios_by_rule): domain_ip = self.test_env.domain_ip try: self.remote_dir = common.send_scripts(self.test_env) except RuntimeError as exc: msg = "Unable to upload test scripts: {more_info}".format(more_info=str(exc)) raise RuntimeError(msg) self._ensure_package_present_for_all_scenarios(scenarios_by_rule) def _get_rules_to_test(self, target): rules_to_test = [] for rule in common.iterate_over_rules(): if not self._rule_should_be_tested(rule, target): continue if not xml_operations.find_rule_in_benchmark( self.datastream, self.benchmark_id, rule.id): logging.error( "Rule '{0}' isn't present in benchmark '{1}' in '{2}'" .format(rule.id, self.benchmark_id, self.datastream)) continue rules_to_test.append(rule) return rules_to_test def test_rule(self, state, rule, scenarios): remediation_available = self._is_remediation_available(rule) self._check_rule( rule, scenarios, self.remote_dir, state, remediation_available) def _test_target(self, target): rules_to_test = self._get_rules_to_test(target) if not rules_to_test: self._matching_rule_found = False logging.error("No matching rule ID found for '{0}'".format(target)) return self._matching_rule_found = True scenarios_by_rule = dict() for rule in rules_to_test: rule_scenarios = self._get_scenarios( rule.directory, rule.files, self.scenarios_regex, self.benchmark_cpes) scenarios_by_rule[rule.id] = rule_scenarios self._prepare_environment(scenarios_by_rule) with test_env.SavedState.create_from_environment(self.test_env, "tests_uploaded") as state: for rule in rules_to_test: self.test_rule(state, rule, scenarios_by_rule[rule.id]) def _modify_parameters(self, script, params): if self.scenarios_profile: params['profiles'] = [self.scenarios_profile] if not params["profiles"]: params["profiles"].append(OSCAP_PROFILE_ALL_ID) logging.debug( "Added the {0} profile to the list of available profiles for {1}" .format(OSCAP_PROFILE_ALL_ID, script)) return params def _parse_parameters(self, script): """Parse parameters from script header""" params = {'profiles': [], 'templates': [], 'packages': [], 'platform': ['multi_platform_all'], 'remediation': ['all'], 'variables': [], } with open(script, 'r') as script_file: script_content = script_file.read() for parameter in params: found = re.search(r'^# {0} = ([ =,_\.\-\w\(\)]*)$'.format(parameter), script_content, re.MULTILINE) if found is None: continue splitted = found.group(1).split(',') params[parameter] = [value.strip() for value in splitted] return params def _get_scenarios(self, rule_dir, scripts, scenarios_regex, benchmark_cpes): """ Returns only valid scenario files, rest is ignored (is not meant to be executed directly. """ if scenarios_regex is not None: scenarios_pattern = re.compile(scenarios_regex) scenarios = [] for script in scripts: if scenarios_regex is not None: if scenarios_pattern.match(script) is None: logging.debug("Skipping script %s - it did not match " "--scenarios regex" % script) continue script_context = _get_script_context(script) if script_context is not None: script_params = self._parse_parameters(os.path.join(rule_dir, script)) script_params = self._modify_parameters(script, script_params) if common.matches_platform(script_params["platform"], benchmark_cpes): scenarios += [Scenario(script, script_context, script_params)] else: logging.warning("Script %s is not applicable on given platform" % script) return scenarios def _check_rule(self, rule, scenarios, remote_dir, state, remediation_available): remote_rule_dir = os.path.join(remote_dir, rule.short_id) logging.info(rule.id) logging.debug("Testing rule directory {0}".format(rule.directory)) args_list = [ (s, remote_rule_dir, rule.id, remediation_available) for s in scenarios ] state.map_on_top(self._check_and_record_rule_scenario, args_list) def _check_and_record_rule_scenario(self, scenario, remote_rule_dir, rule_id, remediation_available): self._current_result = common.RuleResult() self._current_result.conditions = common.Scenario_conditions( self.test_env.name, self.test_env.scanning_mode, self.remediate_using, self.datastream) self._current_result.scenario = common.Scenario_run(rule_id, scenario.script) self._current_result.when = self.test_timestamp_str with self.copy_of_datastream(): self._check_rule_scenario(scenario, remote_rule_dir, rule_id, remediation_available) self.results.append(self._current_result.save_to_dict()) @contextlib.contextmanager def copy_of_datastream(self, new_filename=None): old_filename = self.datastream if not new_filename: _, new_filename = tempfile.mkstemp(prefix="ssgts_ds_modified", dir="/tmp") shutil.copy(old_filename, new_filename) self.datastream = new_filename yield new_filename self.datastream = old_filename os.unlink(new_filename) def _change_variable_value(self, varname, value): _, xslt_filename = tempfile.mkstemp(prefix="xslt-change-value", dir="/tmp") template = generate_xslt_change_value_template(varname, value) with open(xslt_filename, "w") as fp: fp.write(template) _, temp_datastream = tempfile.mkstemp(prefix="ds-temp", dir="/tmp") log_file_name = os.path.join(LogHelper.LOG_DIR, "env-preparation.log") with open(log_file_name, "a") as log_file: common.run_with_stdout_logging( "xsltproc", ("--output", temp_datastream, xslt_filename, self.datastream), log_file) os.rename(temp_datastream, self.datastream) os.unlink(xslt_filename) def _check_rule_scenario(self, scenario, remote_rule_dir, rule_id, remediation_available): if not _apply_script( remote_rule_dir, self.test_env, scenario.script): logging.error("Environment failed to prepare, skipping test") self._current_result.record_stage_result("preparation", False) return if scenario.script_params["variables"]: for assignment in scenario.script_params["variables"]: varname, value = assignment.split("=", 1) self._change_variable_value(varname, value) self._current_result.record_stage_result("preparation", True) logging.debug('Using test script {0} with context {1}' .format(scenario.script, scenario.context)) if scenario.script_params['profiles']: profiles = get_viable_profiles( scenario.script_params['profiles'], self.datastream, self.benchmark_id, scenario.script) else: # Special case for combined mode when scenario.script_params['profiles'] # is empty which means scenario is not applicable on given profile. logging.warning('Script {0} is not applicable on given profile' .format(scenario.script)) return test_data = dict(scenario=scenario, rule_id=rule_id, remediation_available=remediation_available) self.run_test_for_all_profiles(profiles, test_data) self.executed_tests += 1 def finalize(self): super(RuleChecker, self).finalize() with open(os.path.join(LogHelper.LOG_DIR, "results.json"), "w") as f: json.dump(self.results, f) def perform_rule_check(options): checker = RuleChecker(options.test_env) checker.datastream = options.datastream checker.benchmark_id = options.benchmark_id checker.remediate_using = options.remediate_using checker.dont_clean = options.dont_clean checker.manual_debug = options.manual_debug checker.benchmark_cpes = options.benchmark_cpes checker.scenarios_regex = options.scenarios_regex checker.scenarios_profile = options.scenarios_profile # check if target is a complete profile ID, if not prepend profile prefix if (checker.scenarios_profile is not None and not checker.scenarios_profile.startswith(OSCAP_PROFILE) and not oscap.is_virtual_oscap_profile(checker.scenarios_profile)): checker.scenarios_profile = OSCAP_PROFILE+options.scenarios_profile checker.test_target(options.target)
from __future__ import print_function import logging import os import shutil import os.path import re import subprocess import collections import json import fnmatch import tempfile import contextlib from ssg.constants import OSCAP_PROFILE, OSCAP_PROFILE_ALL_ID, OSCAP_RULE from ssg_test_suite import oscap from ssg_test_suite import xml_operations from ssg_test_suite import test_env from ssg_test_suite import common from ssg_test_suite.log import LogHelper logging.getLogger(__name__).addHandler(logging.NullHandler()) Scenario = collections.namedtuple( "Scenario", ["script", "context", "script_params"]) def get_viable_profiles(selected_profiles, datastream, benchmark, script=None): """Read datastream, and return set intersection of profiles of given benchmark and those provided in `selected_profiles` parameter. """ valid_profiles = [] all_profiles_elements = xml_operations.get_all_profiles_in_benchmark( datastream, benchmark, logging) all_profiles = [el.attrib["id"] for el in all_profiles_elements] all_profiles.append(OSCAP_PROFILE_ALL_ID) for ds_profile in all_profiles: if 'ALL' in selected_profiles: valid_profiles += [ds_profile] continue for sel_profile in selected_profiles: if ds_profile.endswith(sel_profile): valid_profiles += [ds_profile] if not valid_profiles: if script: logging.warning('Script {0} - profile {1} not found in datastream' .format(script, ", ".join(selected_profiles))) else: logging.warning('Profile {0} not found in datastream' .format(", ".join(selected_profiles))) return valid_profiles def generate_xslt_change_value_template(value_short_id, new_value): XSLT_TEMPLATE = """<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ds="http://scap.nist.gov/schema/scap/source/1.2" xmlns:xccdf-1.2="http://checklists.nist.gov/xccdf/1.2"> <xsl:output omit-xml-declaration="yes" indent="yes"/> <xsl:strip-space elements="*"/> <xsl:template match="node()|@*"> <xsl:copy> <xsl:apply-templates select="node()|@*"/> </xsl:copy> </xsl:template> <xsl:template match="ds:component/xccdf-1.2:Benchmark//xccdf-1.2:Value[@id='xccdf_org.ssgproject.content_value_{value_short_id}']/xccdf-1.2:value[not(@selector)]/text()">{new_value}</xsl:template> </xsl:stylesheet>""" return XSLT_TEMPLATE.format(value_short_id=value_short_id, new_value=new_value) def _apply_script(rule_dir, test_env, script): """Run particular test script on VM and log it's output.""" logging.debug("Applying script {0}".format(script)) rule_name = os.path.basename(rule_dir) log_file_name = os.path.join( LogHelper.LOG_DIR, rule_name + ".prescripts.log") with open(log_file_name, 'a') as log_file: log_file.write('##### {0} / {1} #####\n'.format(rule_name, script)) shared_dir = os.path.join(common.REMOTE_TEST_SCENARIOS_DIRECTORY, "shared") command = "cd {0}; SHARED={1} bash -x {2}".format(rule_dir, shared_dir, script) try: test_env.execute_ssh_command(command, log_file) except subprocess.CalledProcessError as exc: logging.error("Rule testing script {script} failed with exit code {rc}" .format(script=script, rc=exc.returncode)) return False return True def _get_script_context(script): """Return context of the script.""" result = re.search(r'.*\.([^.]*)\.[^.]*$', script) if result is None: return None return result.group(1) class RuleChecker(oscap.Checker): """ Rule checks generally work like this - for every profile that supports that rule: - Alter the system. - Run the scan, check that the result meets expectations. If the test scenario passed as requested, return True, if it failed or passed unexpectedly, return False. The following sequence applies if the initial scan has failed as expected: - If there are no remediations, return True. - Run remediation, return False if it failed. - Return result of the final scan of remediated system. """ def __init__(self, test_env): super(RuleChecker, self).__init__(test_env) self._matching_rule_found = False self.results = list() self._current_result = None self.remote_dir = "" def _run_test(self, profile, test_data): scenario = test_data["scenario"] rule_id = test_data["rule_id"] remediation_available = test_data["remediation_available"] LogHelper.preload_log( logging.INFO, "Script {0} using profile {1} OK".format(scenario.script, profile), log_target='pass') LogHelper.preload_log( logging.WARNING, "Script {0} using profile {1} notapplicable".format(scenario.script, profile), log_target='notapplicable') LogHelper.preload_log( logging.ERROR, "Script {0} using profile {1} found issue:".format(scenario.script, profile), log_target='fail') runner_cls = oscap.REMEDIATION_RULE_RUNNERS[self.remediate_using] runner = runner_cls( self.test_env, oscap.process_profile_id(profile), self.datastream, self.benchmark_id, rule_id, scenario.script, self.dont_clean, self.manual_debug) initial_scan_res = self._initial_scan_went_ok(runner, rule_id, scenario.context) if not initial_scan_res: return False if initial_scan_res == 2: # notapplicable return True supported_and_available_remediations = self._get_available_remediations(scenario) if (scenario.context not in ['fail', 'error'] or not supported_and_available_remediations): return True if remediation_available: if not self._remediation_went_ok(runner, rule_id): return False return self._final_scan_went_ok(runner, rule_id) else: msg = ("No remediation is available for rule '{}'." .format(rule_id)) logging.warning(msg) return False def _initial_scan_went_ok(self, runner, rule_id, context): success = runner.run_stage_with_context("initial", context) self._current_result.record_stage_result("initial_scan", success) if not success: msg = ("The initial scan failed for rule '{}'." .format(rule_id)) logging.error(msg) return success def _is_remediation_available(self, rule): if xml_operations.find_fix_in_benchmark( self.datastream, self.benchmark_id, rule.id, self.remediate_using) is None: return False else: return True def _get_available_remediations(self, scenario): is_supported = set(['all']) is_supported.add( oscap.REMEDIATION_RUNNER_TO_REMEDIATION_MEANS[self.remediate_using]) supported_and_available_remediations = set( scenario.script_params['remediation']).intersection(is_supported) return supported_and_available_remediations def _remediation_went_ok(self, runner, rule_id): success = runner.run_stage_with_context('remediation', 'fixed') self._current_result.record_stage_result("remediation", success) if not success: msg = ("The remediation failed for rule '{}'." .format(rule_id)) logging.error(msg) return success def _final_scan_went_ok(self, runner, rule_id): success = runner.run_stage_with_context('final', 'pass') self._current_result.record_stage_result("final_scan", success) if not success: msg = ("The check after remediation failed for rule '{}'." .format(rule_id)) logging.error(msg) return success def _rule_should_be_tested(self, rule, rules_to_be_tested): if 'ALL' in rules_to_be_tested: return True else: for rule_to_be_tested in rules_to_be_tested: # we check for a substring if rule_to_be_tested.startswith(OSCAP_RULE): pattern = rule_to_be_tested else: pattern = OSCAP_RULE + rule_to_be_tested if fnmatch.fnmatch(rule.id, pattern): return True return False def _ensure_package_present_for_all_scenarios(self, scenarios_by_rule): packages_required = set() for rule, scenarios in scenarios_by_rule.items(): for s in scenarios: scenario_packages = s.script_params["packages"] packages_required.update(scenario_packages) if packages_required: common.install_packages(self.test_env, packages_required) def _prepare_environment(self, scenarios_by_rule): domain_ip = self.test_env.domain_ip try: self.remote_dir = common.send_scripts(self.test_env) except RuntimeError as exc: msg = "Unable to upload test scripts: {more_info}".format(more_info=str(exc)) raise RuntimeError(msg) self._ensure_package_present_for_all_scenarios(scenarios_by_rule) def _get_rules_to_test(self, target): rules_to_test = [] for rule in common.iterate_over_rules(): if not self._rule_should_be_tested(rule, target): continue if not xml_operations.find_rule_in_benchmark( self.datastream, self.benchmark_id, rule.id): logging.error( "Rule '{0}' isn't present in benchmark '{1}' in '{2}'" .format(rule.id, self.benchmark_id, self.datastream)) continue rules_to_test.append(rule) return rules_to_test def test_rule(self, state, rule, scenarios): remediation_available = self._is_remediation_available(rule) self._check_rule( rule, scenarios, self.remote_dir, state, remediation_available) def _test_target(self, target): rules_to_test = self._get_rules_to_test(target) if not rules_to_test: self._matching_rule_found = False logging.error("No matching rule ID found for '{0}'".format(target)) return self._matching_rule_found = True scenarios_by_rule = dict() for rule in rules_to_test: rule_scenarios = self._get_scenarios( rule.directory, rule.files, self.scenarios_regex, self.benchmark_cpes) scenarios_by_rule[rule.id] = rule_scenarios self._prepare_environment(scenarios_by_rule) with test_env.SavedState.create_from_environment(self.test_env, "tests_uploaded") as state: for rule in rules_to_test: self.test_rule(state, rule, scenarios_by_rule[rule.id]) def _modify_parameters(self, script, params): if self.scenarios_profile: params['profiles'] = [self.scenarios_profile] if not params["profiles"]: params["profiles"].append(OSCAP_PROFILE_ALL_ID) logging.debug( "Added the {0} profile to the list of available profiles for {1}" .format(OSCAP_PROFILE_ALL_ID, script)) return params def _parse_parameters(self, script): """Parse parameters from script header""" params = {'profiles': [], 'templates': [], 'packages': [], 'platform': ['multi_platform_all'], 'remediation': ['all'], 'variables': [], } with open(script, 'r') as script_file: script_content = script_file.read() for parameter in params: found = re.search(r'^# {0} = ([ =,_\.\-\w\(\)]*)$'.format(parameter), script_content, re.MULTILINE) if found is None: continue splitted = found.group(1).split(',') params[parameter] = [value.strip() for value in splitted] return params def _get_scenarios(self, rule_dir, scripts, scenarios_regex, benchmark_cpes): """ Returns only valid scenario files, rest is ignored (is not meant to be executed directly. """ if scenarios_regex is not None: scenarios_pattern = re.compile(scenarios_regex) scenarios = [] for script in scripts: if scenarios_regex is not None: if scenarios_pattern.match(script) is None: logging.debug("Skipping script %s - it did not match " "--scenarios regex" % script) continue script_context = _get_script_context(script) if script_context is not None: script_params = self._parse_parameters(os.path.join(rule_dir, script)) script_params = self._modify_parameters(script, script_params) if common.matches_platform(script_params["platform"], benchmark_cpes): scenarios += [Scenario(script, script_context, script_params)] else: logging.warning("Script %s is not applicable on given platform" % script) return scenarios def _check_rule(self, rule, scenarios, remote_dir, state, remediation_available): remote_rule_dir = os.path.join(remote_dir, rule.short_id) logging.info(rule.id) logging.debug("Testing rule directory {0}".format(rule.directory)) args_list = [ (s, remote_rule_dir, rule.id, remediation_available) for s in scenarios ] state.map_on_top(self._check_and_record_rule_scenario, args_list) def _check_and_record_rule_scenario(self, scenario, remote_rule_dir, rule_id, remediation_available): self._current_result = common.RuleResult() self._current_result.conditions = common.Scenario_conditions( self.test_env.name, self.test_env.scanning_mode, self.remediate_using, self.datastream) self._current_result.scenario = common.Scenario_run(rule_id, scenario.script) self._current_result.when = self.test_timestamp_str with self.copy_of_datastream(): self._check_rule_scenario(scenario, remote_rule_dir, rule_id, remediation_available) self.results.append(self._current_result.save_to_dict()) @contextlib.contextmanager def copy_of_datastream(self, new_filename=None): old_filename = self.datastream if not new_filename: _, new_filename = tempfile.mkstemp(prefix="ssgts_ds_modified", dir="/tmp") shutil.copy(old_filename, new_filename) self.datastream = new_filename yield new_filename self.datastream = old_filename os.unlink(new_filename) def _change_variable_value(self, varname, value): _, xslt_filename = tempfile.mkstemp(prefix="xslt-change-value", dir="/tmp") template = generate_xslt_change_value_template(varname, value) with open(xslt_filename, "w") as fp: fp.write(template) _, temp_datastream = tempfile.mkstemp(prefix="ds-temp", dir="/tmp") log_file_name = os.path.join(LogHelper.LOG_DIR, "env-preparation.log") with open(log_file_name, "a") as log_file: common.run_with_stdout_logging( "xsltproc", ("--output", temp_datastream, xslt_filename, self.datastream), log_file) os.rename(temp_datastream, self.datastream) os.unlink(xslt_filename) def _check_rule_scenario(self, scenario, remote_rule_dir, rule_id, remediation_available): if not _apply_script( remote_rule_dir, self.test_env, scenario.script): logging.error("Environment failed to prepare, skipping test") self._current_result.record_stage_result("preparation", False) return if scenario.script_params["variables"]: for assignment in scenario.script_params["variables"]: varname, value = assignment.split("=", 1) self._change_variable_value(varname, value) self._current_result.record_stage_result("preparation", True) logging.debug('Using test script {0} with context {1}' .format(scenario.script, scenario.context)) if scenario.script_params['profiles']: profiles = get_viable_profiles( scenario.script_params['profiles'], self.datastream, self.benchmark_id, scenario.script) else: # Special case for combined mode when scenario.script_params['profiles'] # is empty which means scenario is not applicable on given profile. logging.warning('Script {0} is not applicable on given profile' .format(scenario.script)) return test_data = dict(scenario=scenario, rule_id=rule_id, remediation_available=remediation_available) self.run_test_for_all_profiles(profiles, test_data) self.executed_tests += 1 def finalize(self): super(RuleChecker, self).finalize() with open(os.path.join(LogHelper.LOG_DIR, "results.json"), "w") as f: json.dump(self.results, f) def perform_rule_check(options): checker = RuleChecker(options.test_env) checker.datastream = options.datastream checker.benchmark_id = options.benchmark_id checker.remediate_using = options.remediate_using checker.dont_clean = options.dont_clean checker.manual_debug = options.manual_debug checker.benchmark_cpes = options.benchmark_cpes checker.scenarios_regex = options.scenarios_regex checker.scenarios_profile = options.scenarios_profile # check if target is a complete profile ID, if not prepend profile prefix if (checker.scenarios_profile is not None and not checker.scenarios_profile.startswith(OSCAP_PROFILE) and not oscap.is_virtual_oscap_profile(checker.scenarios_profile)): checker.scenarios_profile = OSCAP_PROFILE+options.scenarios_profile checker.test_target(options.target)
en
0.569837
Read datastream, and return set intersection of profiles of given benchmark and those provided in `selected_profiles` parameter. <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:ds="http://scap.nist.gov/schema/scap/source/1.2" xmlns:xccdf-1.2="http://checklists.nist.gov/xccdf/1.2"> <xsl:output omit-xml-declaration="yes" indent="yes"/> <xsl:strip-space elements="*"/> <xsl:template match="node()|@*"> <xsl:copy> <xsl:apply-templates select="node()|@*"/> </xsl:copy> </xsl:template> <xsl:template match="ds:component/xccdf-1.2:Benchmark//xccdf-1.2:Value[@id='xccdf_org.ssgproject.content_value_{value_short_id}']/xccdf-1.2:value[not(@selector)]/text()">{new_value}</xsl:template> </xsl:stylesheet> Run particular test script on VM and log it's output. #### {0} / {1} #####\n'.format(rule_name, script)) Return context of the script. Rule checks generally work like this - for every profile that supports that rule: - Alter the system. - Run the scan, check that the result meets expectations. If the test scenario passed as requested, return True, if it failed or passed unexpectedly, return False. The following sequence applies if the initial scan has failed as expected: - If there are no remediations, return True. - Run remediation, return False if it failed. - Return result of the final scan of remediated system. # notapplicable # we check for a substring Parse parameters from script header # {0} = ([ =,_\.\-\w\(\)]*)$'.format(parameter), Returns only valid scenario files, rest is ignored (is not meant to be executed directly. # Special case for combined mode when scenario.script_params['profiles'] # is empty which means scenario is not applicable on given profile. # check if target is a complete profile ID, if not prepend profile prefix
2.015163
2
set_database.py
ReadySetOdds/Thelinebacker
0
6631288
<filename>set_database.py # import dependencies import pymysql, json #BESTBETS rotation, league, date, match_details, play, line, odds, play_amount #GAME league, home_team, away_team, date, home_win, away_win, home_proj_score, away_proj_score, spread_total, home_spread_1, home_spread_2, away_spread_1, away_spread_2, total, home_total, odds_under, away_total, odds_total #ODDS league, home_team, away_team, date, odds_group, home_odds_1, home_odds_2, away_odds_1, away_odds_2, price_total, over, under # main if __name__ == '__main__': # log into database database = pymysql.connect(**json.load(open('database.json'))) cursor = database.cursor() # create tables for table_name, values in ( ('bestbets', 'rotation INTEGER, league TEXT, date TIMESTAMP, match_details TEXT, play TEXT, line FLOAT, odds INTEGER, play_amount INTEGER'), ('games', 'league TEXT, home_team TEXT, away_team TEXT, date TIMESTAMP, home_win FLOAT, away_win FLOAT, home_proj_score FLOAT, away_proj_score FLOAT, spread_total FLOAT, home_spread_1 FLOAT, home_spread_2 FLOAT, away_spread_1 FLOAT, away_spread_2 FLOAT, total FLOAT, home_total FLOAT, odds_under FLOAT, away_total FLOAT, odds_total FLOAT'), ('odds', 'league TEXT, home_team TEXT, away_team TEXT, date TIMESTAMP, odds_group TEXT, home_odds_1 FLOAT, home_odds_2 FLOAT, away_odds_1 FLOAT, away_odds_2 FLOAT, price_total FLOAT, odds_over FLOAT, odds_under FLOAT'), ): # delete existing cursor.execute('DROP TABLE IF EXISTS {};'.format(table_name)) database.commit() # create table cursor.execute('create table {} ({});'.format(table_name, values)) database.commit() # finished database.close()
<filename>set_database.py # import dependencies import pymysql, json #BESTBETS rotation, league, date, match_details, play, line, odds, play_amount #GAME league, home_team, away_team, date, home_win, away_win, home_proj_score, away_proj_score, spread_total, home_spread_1, home_spread_2, away_spread_1, away_spread_2, total, home_total, odds_under, away_total, odds_total #ODDS league, home_team, away_team, date, odds_group, home_odds_1, home_odds_2, away_odds_1, away_odds_2, price_total, over, under # main if __name__ == '__main__': # log into database database = pymysql.connect(**json.load(open('database.json'))) cursor = database.cursor() # create tables for table_name, values in ( ('bestbets', 'rotation INTEGER, league TEXT, date TIMESTAMP, match_details TEXT, play TEXT, line FLOAT, odds INTEGER, play_amount INTEGER'), ('games', 'league TEXT, home_team TEXT, away_team TEXT, date TIMESTAMP, home_win FLOAT, away_win FLOAT, home_proj_score FLOAT, away_proj_score FLOAT, spread_total FLOAT, home_spread_1 FLOAT, home_spread_2 FLOAT, away_spread_1 FLOAT, away_spread_2 FLOAT, total FLOAT, home_total FLOAT, odds_under FLOAT, away_total FLOAT, odds_total FLOAT'), ('odds', 'league TEXT, home_team TEXT, away_team TEXT, date TIMESTAMP, odds_group TEXT, home_odds_1 FLOAT, home_odds_2 FLOAT, away_odds_1 FLOAT, away_odds_2 FLOAT, price_total FLOAT, odds_over FLOAT, odds_under FLOAT'), ): # delete existing cursor.execute('DROP TABLE IF EXISTS {};'.format(table_name)) database.commit() # create table cursor.execute('create table {} ({});'.format(table_name, values)) database.commit() # finished database.close()
en
0.887571
# import dependencies #BESTBETS rotation, league, date, match_details, play, line, odds, play_amount #GAME league, home_team, away_team, date, home_win, away_win, home_proj_score, away_proj_score, spread_total, home_spread_1, home_spread_2, away_spread_1, away_spread_2, total, home_total, odds_under, away_total, odds_total #ODDS league, home_team, away_team, date, odds_group, home_odds_1, home_odds_2, away_odds_1, away_odds_2, price_total, over, under # main # log into database # create tables # delete existing # create table # finished
2.668667
3
ncaabb/game.py
aspic2/NCAABB
1
6631289
<filename>ncaabb/game.py import random import statistics import csv class Game(object): """Game class compares two teams ratings to determine which team is better. The higher rated team is declared as winner and returned. Scoring property also prints a projected score for the game. Scoring defaults to False, as it is only used for the championship game. """ def __init__(self, team1, team2, round_no=0, scoring=False): self.team1 = team1 self.team2 = team2 self.winner = None self.scoring = scoring self.team1_score = None self.team2_score = None self.round_no = round_no def play(self): if self.team1.rating > self.team2.rating: self.winner = self.team1 elif self.team1.rating < self.team2.rating: self.winner = self.team2 else: self.winner = random.choice([self.team1, self.team2]) print("%s\n\t > %s\n%s\n" % (self.team1.name, self.winner.name, self.team2.name)) return self def score_game(self): """Winner's score is median of their season points scored. loser's score is median of winner's points allowed. """ # TODO: does this solve the 'loser scored more points' problem? if self.winner == self.team1: self.team1_score = round(statistics.median(self.team1.get_scores().points_scored)) self.team2_score = round(statistics.median(self.team1.points_allowed)) else: self.team2_score = round(statistics.median(self.team2.get_scores().points_scored)) self.team1_score = round(statistics.median(self.team2.points_allowed)) print("Projected score: %s: %d - %s: %d" % ( self.team1.name, self.team1_score, self.team2.name, self.team2_score)) return self def return_formatted_results(self): return [str(self.round_no), self.team1.region, self.team1.name, \ str(self.team1_score), self.team2.name, str(self.team2_score), self.winner.name] def write_csv(self, target): with open(target, 'a', newline='') as csvfile: writer = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) writer.writerow(self.return_formatted_results())
<filename>ncaabb/game.py import random import statistics import csv class Game(object): """Game class compares two teams ratings to determine which team is better. The higher rated team is declared as winner and returned. Scoring property also prints a projected score for the game. Scoring defaults to False, as it is only used for the championship game. """ def __init__(self, team1, team2, round_no=0, scoring=False): self.team1 = team1 self.team2 = team2 self.winner = None self.scoring = scoring self.team1_score = None self.team2_score = None self.round_no = round_no def play(self): if self.team1.rating > self.team2.rating: self.winner = self.team1 elif self.team1.rating < self.team2.rating: self.winner = self.team2 else: self.winner = random.choice([self.team1, self.team2]) print("%s\n\t > %s\n%s\n" % (self.team1.name, self.winner.name, self.team2.name)) return self def score_game(self): """Winner's score is median of their season points scored. loser's score is median of winner's points allowed. """ # TODO: does this solve the 'loser scored more points' problem? if self.winner == self.team1: self.team1_score = round(statistics.median(self.team1.get_scores().points_scored)) self.team2_score = round(statistics.median(self.team1.points_allowed)) else: self.team2_score = round(statistics.median(self.team2.get_scores().points_scored)) self.team1_score = round(statistics.median(self.team2.points_allowed)) print("Projected score: %s: %d - %s: %d" % ( self.team1.name, self.team1_score, self.team2.name, self.team2_score)) return self def return_formatted_results(self): return [str(self.round_no), self.team1.region, self.team1.name, \ str(self.team1_score), self.team2.name, str(self.team2_score), self.winner.name] def write_csv(self, target): with open(target, 'a', newline='') as csvfile: writer = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) writer.writerow(self.return_formatted_results())
en
0.976346
Game class compares two teams ratings to determine which team is better. The higher rated team is declared as winner and returned. Scoring property also prints a projected score for the game. Scoring defaults to False, as it is only used for the championship game. Winner's score is median of their season points scored. loser's score is median of winner's points allowed. # TODO: does this solve the 'loser scored more points' problem?
4.07155
4
identify_freq_schema.py
snatch59/oecd-data-mining
6
6631290
<filename>identify_freq_schema.py import pandas as pd import xml.etree.ElementTree as ET import os # where to load or save SCHEMA_DIR = 'OECD_schema' DATA_DIR = 'OECD_keys' KEY_NAMES_FILE = os.path.join(DATA_DIR, 'OECD_key_names.csv') DATA_FILE = os.path.join(DATA_DIR, 'FREQ_key_names.csv') # performance metrics dataset_files_cnt = 0 has_datasettype_node_cnt = 0 # data to be collected usable_datasets = [] frequency_keywords = [] # Load a list of data set ids dataset_ids_df = pd.read_csv(KEY_NAMES_FILE) dataset_ids = dataset_ids_df['KeyFamilyId'].tolist() # go through each data set schema file and see if it # support the FREQUENCY or FREQ dimension for observations for dataset_id in dataset_ids: try: tree = ET.parse(os.path.join(SCHEMA_DIR, dataset_id + '.xml')) except FileNotFoundError: pass else: dataset_files_cnt += 1 root = tree.getroot() childIndex = 0 for rootChild in root: rootChildAttrib = rootChild.attrib if 'name' in rootChildAttrib: attribName = rootChildAttrib['name'] if attribName == 'DataSetType': # print(dataset_id, 'has DataSetType') has_datasettype_node_cnt += 1 dstNode = root[childIndex][0][0] for dstChild in dstNode: dstChildAttrib = dstChild.attrib if 'name' in dstChildAttrib: dimension = dstChildAttrib['name'] # print(val2) if dimension == 'FREQUENCY' or dimension == 'FREQ': usable_datasets.append(dataset_id) frequency_keywords.append(dimension) print(dataset_id, 'pandasdmx usable with', dimension) childIndex += 1 if len(usable_datasets): usableDF = pd.DataFrame({'KeyFamilyId': usable_datasets, 'Dimension': frequency_keywords}) usableDF.set_index('KeyFamilyId', inplace=True) usableDF.to_csv(DATA_FILE) print() print('completed ...') print('Out of', dataset_files_cnt, 'data set files,', len(usable_datasets), 'are usable by pandasdmx.') print(has_datasettype_node_cnt, 'have DataSetType nodes')
<filename>identify_freq_schema.py import pandas as pd import xml.etree.ElementTree as ET import os # where to load or save SCHEMA_DIR = 'OECD_schema' DATA_DIR = 'OECD_keys' KEY_NAMES_FILE = os.path.join(DATA_DIR, 'OECD_key_names.csv') DATA_FILE = os.path.join(DATA_DIR, 'FREQ_key_names.csv') # performance metrics dataset_files_cnt = 0 has_datasettype_node_cnt = 0 # data to be collected usable_datasets = [] frequency_keywords = [] # Load a list of data set ids dataset_ids_df = pd.read_csv(KEY_NAMES_FILE) dataset_ids = dataset_ids_df['KeyFamilyId'].tolist() # go through each data set schema file and see if it # support the FREQUENCY or FREQ dimension for observations for dataset_id in dataset_ids: try: tree = ET.parse(os.path.join(SCHEMA_DIR, dataset_id + '.xml')) except FileNotFoundError: pass else: dataset_files_cnt += 1 root = tree.getroot() childIndex = 0 for rootChild in root: rootChildAttrib = rootChild.attrib if 'name' in rootChildAttrib: attribName = rootChildAttrib['name'] if attribName == 'DataSetType': # print(dataset_id, 'has DataSetType') has_datasettype_node_cnt += 1 dstNode = root[childIndex][0][0] for dstChild in dstNode: dstChildAttrib = dstChild.attrib if 'name' in dstChildAttrib: dimension = dstChildAttrib['name'] # print(val2) if dimension == 'FREQUENCY' or dimension == 'FREQ': usable_datasets.append(dataset_id) frequency_keywords.append(dimension) print(dataset_id, 'pandasdmx usable with', dimension) childIndex += 1 if len(usable_datasets): usableDF = pd.DataFrame({'KeyFamilyId': usable_datasets, 'Dimension': frequency_keywords}) usableDF.set_index('KeyFamilyId', inplace=True) usableDF.to_csv(DATA_FILE) print() print('completed ...') print('Out of', dataset_files_cnt, 'data set files,', len(usable_datasets), 'are usable by pandasdmx.') print(has_datasettype_node_cnt, 'have DataSetType nodes')
en
0.660803
# where to load or save # performance metrics # data to be collected # Load a list of data set ids # go through each data set schema file and see if it # support the FREQUENCY or FREQ dimension for observations # print(dataset_id, 'has DataSetType') # print(val2)
2.486446
2
tests/test_helpers.py
will-jj/arim
14
6631291
<reponame>will-jj/arim import enum import logging import numpy as np import pytest import arim.helpers from arim.exceptions import InvalidShape, InvalidDimension, NotAnArray def test_get_name(): metadata = dict(long_name="Nicolas", short_name="Nic") assert arim.helpers.get_name(metadata) == "Nicolas" del metadata["long_name"] assert arim.helpers.get_name(metadata) == "Nic" del metadata["short_name"] assert isinstance(arim.helpers.get_name(metadata), str) def test_parse_enum_constant(): Foo = enum.Enum("Foo", "foo bar") assert arim.helpers.parse_enum_constant("foo", Foo) is Foo.foo assert arim.helpers.parse_enum_constant(Foo.foo, Foo) is Foo.foo assert arim.helpers.parse_enum_constant("bar", Foo) is Foo.bar assert arim.helpers.parse_enum_constant(Foo.bar, Foo) is Foo.bar with pytest.raises(ValueError): arim.helpers.parse_enum_constant("baz", Foo) with pytest.raises(ValueError): arim.helpers.parse_enum_constant(Foo, Foo) def test_timeit(capsys): logger = logging.getLogger(__name__) with arim.helpers.timeit(logger=logger): 1 + 1 out, err = capsys.readouterr() assert out == "" assert err == "" with arim.helpers.timeit("Foobar"): 1 + 1 out, err = capsys.readouterr() assert out.startswith("Foobar") assert err == "" def test_cache(): cache = arim.helpers.Cache() assert len(cache) == 0 assert cache.hits == 0 assert cache.misses == 0 cache["toto"] = "titi" assert len(cache) == 1 assert cache.hits == 0 assert cache.misses == 0 a = cache["toto"] assert a == "titi" assert len(cache) == 1 assert cache.hits == 1 assert cache.misses == 0 a = cache.get("toto") assert a == "titi" assert len(cache) == 1 assert cache.hits == 2 assert cache.misses == 0 b = cache.get("foo", None) assert len(cache) == 1 assert cache.hits == 2 assert cache.misses == 1 with pytest.raises(KeyError): b = cache["another_miss"] assert len(cache) == 1 assert cache.hits == 2 assert cache.misses == 2 # 'in' statement do not change the hits/misses count: "toto" in cache "tata" in cache assert len(cache) == 1 assert cache.hits == 2 assert cache.misses == 2 str(cache) cache.stat() cache.clear() def test_nocache(): cache = arim.helpers.NoCache() assert len(cache) == 0 assert cache.hits == 0 assert cache.misses == 0 cache["toto"] = "titi" # this should do nothing assert "toto" not in cache assert len(cache) == 0 assert cache.hits == 0 assert cache.misses == 0 with pytest.raises(KeyError): a = cache["toto"] assert len(cache) == 0 assert cache.hits == 0 assert cache.misses == 1 a = cache.get("toto") assert len(cache) == 0 assert cache.hits == 0 assert cache.misses == 2 # 'in' statement do not change the hits/misses count: "toto" in cache "tata" in cache assert len(cache) == 0 assert cache.hits == 0 assert cache.misses == 2 str(cache) cache.stat() cache.clear() def test_git_version(): v = arim.helpers.get_git_version() assert isinstance(v, str) assert v != "" v_short = arim.helpers.get_git_version(short=True) assert v_short == v v_long = arim.helpers.get_git_version(short=False) assert isinstance(v_long, str) assert v_long != "" assert len(v_long) >= len(v_short) def test_get_shape_safely(): shape = (3, 4, 5) x = np.arange(3 * 4 * 5).reshape(shape) assert arim.helpers.get_shape_safely(x, "x", shape) == shape assert arim.helpers.get_shape_safely(x, "x", (3, None, 5)) == shape assert arim.helpers.get_shape_safely(x, "x") == shape assert arim.helpers.get_shape_safely(x, "x", (None, None, None)) == shape with pytest.raises(InvalidShape): arim.helpers.get_shape_safely(x, "x", (3, 4, 666)) with pytest.raises(InvalidDimension): arim.helpers.get_shape_safely(x, "x", (3, 4, 5, 6)) with pytest.raises(NotAnArray): arim.helpers.get_shape_safely(x.tolist(), "x", (3, 4, 5)) def test_chunk_array(): # 1D: x = np.arange(10) size = 3 res = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] for (sel, w2) in zip(arim.helpers.chunk_array(x.shape, size), res): w1 = x[sel] assert np.all(w1 == w2) # 1D: x = np.arange(9) size = 3 res = [[0, 1, 2], [3, 4, 5], [6, 7, 8]] for (sel, w2) in zip(arim.helpers.chunk_array(x.shape, size), res): w1 = x[sel] assert np.all(w1 == w2) # 2D dim 0: x = np.arange(20).reshape((10, 2)) size = 3 res = [x[0:3, :], x[3:6, :], x[6:9, :], x[9:, :]] for (sel, w2) in zip(arim.helpers.chunk_array(x.shape, size), res): w1 = x[sel] assert np.all(w1 == w2) # 2D dim 1: x = np.arange(20).reshape((2, 10)) size = 3 res = [x[:, 0:3], x[:, 3:6], x[:, 6:9], x[:, 9:]] for (sel, w2) in zip(arim.helpers.chunk_array(x.shape, size, axis=1), res): w1 = x[sel] assert np.all(w1 == w2) # 3D dim 1: x = np.arange(5 * 10 * 3).reshape((5, 10, 3)) size = 3 res = [x[:, 0:3, :], x[:, 3:6, :], x[:, 6:9, :], x[:, 9:, :]] for (sel, w2) in zip(arim.helpers.chunk_array(x.shape, size, axis=1), res): w1 = x[sel] assert np.all(w1 == w2) def test_smallest_uint_that_fits(): assert arim.helpers.smallest_uint_that_fits(2 ** 8 - 1) is np.uint8 assert arim.helpers.smallest_uint_that_fits(2 ** 8) is np.uint16 assert arim.helpers.smallest_uint_that_fits(2 ** 64 - 1) is np.uint64 def test_sizeof_fmt(): assert arim.helpers.sizeof_fmt(1) == "1.0 B" assert arim.helpers.sizeof_fmt(1024) == "1.0 KiB" assert arim.helpers.sizeof_fmt(2 * 1024) == "2.0 KiB" assert arim.helpers.sizeof_fmt(5 * 1024 ** 2) == "5.0 MiB"
import enum import logging import numpy as np import pytest import arim.helpers from arim.exceptions import InvalidShape, InvalidDimension, NotAnArray def test_get_name(): metadata = dict(long_name="Nicolas", short_name="Nic") assert arim.helpers.get_name(metadata) == "Nicolas" del metadata["long_name"] assert arim.helpers.get_name(metadata) == "Nic" del metadata["short_name"] assert isinstance(arim.helpers.get_name(metadata), str) def test_parse_enum_constant(): Foo = enum.Enum("Foo", "foo bar") assert arim.helpers.parse_enum_constant("foo", Foo) is Foo.foo assert arim.helpers.parse_enum_constant(Foo.foo, Foo) is Foo.foo assert arim.helpers.parse_enum_constant("bar", Foo) is Foo.bar assert arim.helpers.parse_enum_constant(Foo.bar, Foo) is Foo.bar with pytest.raises(ValueError): arim.helpers.parse_enum_constant("baz", Foo) with pytest.raises(ValueError): arim.helpers.parse_enum_constant(Foo, Foo) def test_timeit(capsys): logger = logging.getLogger(__name__) with arim.helpers.timeit(logger=logger): 1 + 1 out, err = capsys.readouterr() assert out == "" assert err == "" with arim.helpers.timeit("Foobar"): 1 + 1 out, err = capsys.readouterr() assert out.startswith("Foobar") assert err == "" def test_cache(): cache = arim.helpers.Cache() assert len(cache) == 0 assert cache.hits == 0 assert cache.misses == 0 cache["toto"] = "titi" assert len(cache) == 1 assert cache.hits == 0 assert cache.misses == 0 a = cache["toto"] assert a == "titi" assert len(cache) == 1 assert cache.hits == 1 assert cache.misses == 0 a = cache.get("toto") assert a == "titi" assert len(cache) == 1 assert cache.hits == 2 assert cache.misses == 0 b = cache.get("foo", None) assert len(cache) == 1 assert cache.hits == 2 assert cache.misses == 1 with pytest.raises(KeyError): b = cache["another_miss"] assert len(cache) == 1 assert cache.hits == 2 assert cache.misses == 2 # 'in' statement do not change the hits/misses count: "toto" in cache "tata" in cache assert len(cache) == 1 assert cache.hits == 2 assert cache.misses == 2 str(cache) cache.stat() cache.clear() def test_nocache(): cache = arim.helpers.NoCache() assert len(cache) == 0 assert cache.hits == 0 assert cache.misses == 0 cache["toto"] = "titi" # this should do nothing assert "toto" not in cache assert len(cache) == 0 assert cache.hits == 0 assert cache.misses == 0 with pytest.raises(KeyError): a = cache["toto"] assert len(cache) == 0 assert cache.hits == 0 assert cache.misses == 1 a = cache.get("toto") assert len(cache) == 0 assert cache.hits == 0 assert cache.misses == 2 # 'in' statement do not change the hits/misses count: "toto" in cache "tata" in cache assert len(cache) == 0 assert cache.hits == 0 assert cache.misses == 2 str(cache) cache.stat() cache.clear() def test_git_version(): v = arim.helpers.get_git_version() assert isinstance(v, str) assert v != "" v_short = arim.helpers.get_git_version(short=True) assert v_short == v v_long = arim.helpers.get_git_version(short=False) assert isinstance(v_long, str) assert v_long != "" assert len(v_long) >= len(v_short) def test_get_shape_safely(): shape = (3, 4, 5) x = np.arange(3 * 4 * 5).reshape(shape) assert arim.helpers.get_shape_safely(x, "x", shape) == shape assert arim.helpers.get_shape_safely(x, "x", (3, None, 5)) == shape assert arim.helpers.get_shape_safely(x, "x") == shape assert arim.helpers.get_shape_safely(x, "x", (None, None, None)) == shape with pytest.raises(InvalidShape): arim.helpers.get_shape_safely(x, "x", (3, 4, 666)) with pytest.raises(InvalidDimension): arim.helpers.get_shape_safely(x, "x", (3, 4, 5, 6)) with pytest.raises(NotAnArray): arim.helpers.get_shape_safely(x.tolist(), "x", (3, 4, 5)) def test_chunk_array(): # 1D: x = np.arange(10) size = 3 res = [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] for (sel, w2) in zip(arim.helpers.chunk_array(x.shape, size), res): w1 = x[sel] assert np.all(w1 == w2) # 1D: x = np.arange(9) size = 3 res = [[0, 1, 2], [3, 4, 5], [6, 7, 8]] for (sel, w2) in zip(arim.helpers.chunk_array(x.shape, size), res): w1 = x[sel] assert np.all(w1 == w2) # 2D dim 0: x = np.arange(20).reshape((10, 2)) size = 3 res = [x[0:3, :], x[3:6, :], x[6:9, :], x[9:, :]] for (sel, w2) in zip(arim.helpers.chunk_array(x.shape, size), res): w1 = x[sel] assert np.all(w1 == w2) # 2D dim 1: x = np.arange(20).reshape((2, 10)) size = 3 res = [x[:, 0:3], x[:, 3:6], x[:, 6:9], x[:, 9:]] for (sel, w2) in zip(arim.helpers.chunk_array(x.shape, size, axis=1), res): w1 = x[sel] assert np.all(w1 == w2) # 3D dim 1: x = np.arange(5 * 10 * 3).reshape((5, 10, 3)) size = 3 res = [x[:, 0:3, :], x[:, 3:6, :], x[:, 6:9, :], x[:, 9:, :]] for (sel, w2) in zip(arim.helpers.chunk_array(x.shape, size, axis=1), res): w1 = x[sel] assert np.all(w1 == w2) def test_smallest_uint_that_fits(): assert arim.helpers.smallest_uint_that_fits(2 ** 8 - 1) is np.uint8 assert arim.helpers.smallest_uint_that_fits(2 ** 8) is np.uint16 assert arim.helpers.smallest_uint_that_fits(2 ** 64 - 1) is np.uint64 def test_sizeof_fmt(): assert arim.helpers.sizeof_fmt(1) == "1.0 B" assert arim.helpers.sizeof_fmt(1024) == "1.0 KiB" assert arim.helpers.sizeof_fmt(2 * 1024) == "2.0 KiB" assert arim.helpers.sizeof_fmt(5 * 1024 ** 2) == "5.0 MiB"
en
0.724837
# 'in' statement do not change the hits/misses count: # this should do nothing # 'in' statement do not change the hits/misses count: # 1D: # 1D: # 2D dim 0: # 2D dim 1: # 3D dim 1:
2.144009
2
ReProcess.py
ziyangz5/UCIWebSocDataAnalysis
1
6631292
<filename>ReProcess.py import re from collections import defaultdict import course_database class reprocess: def __init__(self,text,deptname): self.deptname = deptname db = self.data_rough_process(text) self.re_match(db) self.data_process() def data_rough_process(self,text)->{str:[str]}:#粗处理数据,不过滤dis,该字典包括课号下所有行 count = 0 inner_text = [] db = defaultdict(list) for line in text: line = line.rstrip().lstrip() if '_________________________________________________________________' in line: count+=1 continue if 'Total Classes Displayed:' in line: break if count >= 2: if '#' in line: break inner_text.append(line) inner_text_iter = iter(inner_text) temp_database = {} key_name = '' begin_write = False while True: try: line = next(inner_text_iter) except StopIteration: break line_text = line.rstrip().lstrip() if line_text.startswith('CCode'):continue if 'Same as' in line_text:continue if 'ON LINE' in line_text:continue if begin_write == True: if line_text == '': begin_write = False continue temp_database[key_name].append(line_text) if (self.deptname.lower() in line_text.lower())and not(',' in line_text.lower()): key_name = line_text temp_database[key_name] = [] begin_write = True return temp_database def re_match(self,db): #细处理数据,过滤dis,create a Course Object which contains all the lectures of this course,参数格式为[CCode,Unt,Instructor,Week,Time,Place,Final,Max,Enr,Req,Rstr,Status] rp = re.compile(r"([\d]{5})[\ ]*LEC[^\d]*([\d]*)[\ ]*([A-Za-z\,\ ]*.)[\ ]*([MWFTuTh]*)[\ ]*((?:1[0-2]|[0-9])(?:\:[0-5][0-9]){0,2}-[\ ]*(?:1[0-2]|[0-9])(?:\:[0-5][0-9]){0,2}p?\ ?)[\ ]*([\w]*[\ ]*[\d]*)[\ ]*((?:(?:[^,]*,[^,]*,)[\ ]*(?:(?:1[0-2]|[0-9])(?:\:[0-5][0-9]){0,2}-[\ ]*(?:1[0-2]|[0-9])(?:\:[0-5][0-9]){0,2}\ ?(?:(?:am|pm)?))\ ?(?:\@[A-Z\ ]*[\w]*)?)|TBA)[\ ]*(\d*)[\ ]*(\d*(?:\/?\d*))[\ ]*([\d]*)[\ ]*([A-Z&]*)[\ ]*([\w]*)") self.courses = [] for item in db.items(): course = course_database.Course(item[0]) for info_str in item[1]: #Can you do it in 1 line? info_list = [] info_re = rp.match(info_str) if info_re == None: continue for info in info_re.groups(): info_list.append(info) course.add_lec(info_list) self.courses.append(course) def data_process(self): pass def get_data(self)->course_database: return self.courses
<filename>ReProcess.py import re from collections import defaultdict import course_database class reprocess: def __init__(self,text,deptname): self.deptname = deptname db = self.data_rough_process(text) self.re_match(db) self.data_process() def data_rough_process(self,text)->{str:[str]}:#粗处理数据,不过滤dis,该字典包括课号下所有行 count = 0 inner_text = [] db = defaultdict(list) for line in text: line = line.rstrip().lstrip() if '_________________________________________________________________' in line: count+=1 continue if 'Total Classes Displayed:' in line: break if count >= 2: if '#' in line: break inner_text.append(line) inner_text_iter = iter(inner_text) temp_database = {} key_name = '' begin_write = False while True: try: line = next(inner_text_iter) except StopIteration: break line_text = line.rstrip().lstrip() if line_text.startswith('CCode'):continue if 'Same as' in line_text:continue if 'ON LINE' in line_text:continue if begin_write == True: if line_text == '': begin_write = False continue temp_database[key_name].append(line_text) if (self.deptname.lower() in line_text.lower())and not(',' in line_text.lower()): key_name = line_text temp_database[key_name] = [] begin_write = True return temp_database def re_match(self,db): #细处理数据,过滤dis,create a Course Object which contains all the lectures of this course,参数格式为[CCode,Unt,Instructor,Week,Time,Place,Final,Max,Enr,Req,Rstr,Status] rp = re.compile(r"([\d]{5})[\ ]*LEC[^\d]*([\d]*)[\ ]*([A-Za-z\,\ ]*.)[\ ]*([MWFTuTh]*)[\ ]*((?:1[0-2]|[0-9])(?:\:[0-5][0-9]){0,2}-[\ ]*(?:1[0-2]|[0-9])(?:\:[0-5][0-9]){0,2}p?\ ?)[\ ]*([\w]*[\ ]*[\d]*)[\ ]*((?:(?:[^,]*,[^,]*,)[\ ]*(?:(?:1[0-2]|[0-9])(?:\:[0-5][0-9]){0,2}-[\ ]*(?:1[0-2]|[0-9])(?:\:[0-5][0-9]){0,2}\ ?(?:(?:am|pm)?))\ ?(?:\@[A-Z\ ]*[\w]*)?)|TBA)[\ ]*(\d*)[\ ]*(\d*(?:\/?\d*))[\ ]*([\d]*)[\ ]*([A-Z&]*)[\ ]*([\w]*)") self.courses = [] for item in db.items(): course = course_database.Course(item[0]) for info_str in item[1]: #Can you do it in 1 line? info_list = [] info_re = rp.match(info_str) if info_re == None: continue for info in info_re.groups(): info_list.append(info) course.add_lec(info_list) self.courses.append(course) def data_process(self): pass def get_data(self)->course_database: return self.courses
en
0.526504
#粗处理数据,不过滤dis,该字典包括课号下所有行 #细处理数据,过滤dis,create a Course Object which contains all the lectures of this course,参数格式为[CCode,Unt,Instructor,Week,Time,Place,Final,Max,Enr,Req,Rstr,Status] #Can you do it in 1 line?
3.241051
3
scripts/export_to_gcloud.py
khromiumos/chromiumos-chromite
0
6631293
<filename>scripts/export_to_gcloud.py<gh_stars>0 # -*- coding: utf-8 -*- # Copyright 2016 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Export entities to gcloud datastore.""" from __future__ import print_function import ast import json import sys from chromite.lib import commandline from chromite.lib import dslib try: import pytest # pylint: disable=import-error datastore = pytest.importorskip('gcloud.datastore') except ImportError: from gcloud import datastore # pylint: disable=import-error assert sys.version_info >= (3, 6), 'This module requires Python 3.6+' def GetParser(): """Creates the argparse parser.""" parser = commandline.ArgumentParser(description=__doc__) parser.add_argument('service_acct_json', type=str, action='store', help='Path to service account credentials JSON file.') parser.add_argument('entities', type=str, action='store', help=('Path to file with entities to export. ' 'File should be newline-separated JSON entries.')) parser.add_argument('--project_id', '-i', type=str, action='store', default=None, help=('Optional project_id of datastore to write to. If ' 'not supplied, will be taken from credentials ' 'file.')) parser.add_argument('--namespace', '-n', type=str, action='store', default=None, help='Optional namespace in which to store entities.') parser.add_argument('--parent_key', '-p', type=str, action='store', default=None, help='Key of parent entity to insert into. This should ' 'be in python tuple-literal form, e.g. ("Foo", 1)') return parser class DuplicateKeyError(ValueError): """Raised when two Entities have the same key.""" def GetEntities(project_id, json_lines, outer_parent_key=None, namespace=None): """Create gcloud entities from json string entries. project_id: String gcloud project id that entities are for. json_lines: File or other line-by-line iterator of json strings to turn into entities. outer_parent_key: Optional datastore.Key instance to act as the parent_key of all top level entities. namespace: Optional string namespace for entities. """ entity_keys = {} for line in json_lines: item = json.loads(line) kind, idx = item.pop('id') parent = item.pop('parent', None) if (kind, idx) in entity_keys: raise DuplicateKeyError( 'Duplicate entities with id (%s, %s)' % (kind, idx)) if parent: parent_key = entity_keys[tuple(parent)] else: parent_key = outer_parent_key key = datastore.Key( kind, idx, project=project_id, parent=parent_key, namespace=namespace) e = datastore.Entity(key=key) e.update(item) entity_keys[(kind, idx)] = key entity_keys[idx] = key yield e def main(argv): parser = GetParser() options = parser.parse_args(argv) entities_path = options.entities creds_file = options.service_acct_json project_id = options.project_id namespace = options.namespace entities = [] c, project_id = dslib.GetClient(creds_file, project_id, namespace) if options.parent_key: upper_parent_key = c.key(*ast.literal_eval(options.parent_key)) else: upper_parent_key = None with open(entities_path, 'r') as f: entities = GetEntities(project_id, f, upper_parent_key, namespace) dslib.ChunkedBatchWrite(entities, c)
<filename>scripts/export_to_gcloud.py<gh_stars>0 # -*- coding: utf-8 -*- # Copyright 2016 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Export entities to gcloud datastore.""" from __future__ import print_function import ast import json import sys from chromite.lib import commandline from chromite.lib import dslib try: import pytest # pylint: disable=import-error datastore = pytest.importorskip('gcloud.datastore') except ImportError: from gcloud import datastore # pylint: disable=import-error assert sys.version_info >= (3, 6), 'This module requires Python 3.6+' def GetParser(): """Creates the argparse parser.""" parser = commandline.ArgumentParser(description=__doc__) parser.add_argument('service_acct_json', type=str, action='store', help='Path to service account credentials JSON file.') parser.add_argument('entities', type=str, action='store', help=('Path to file with entities to export. ' 'File should be newline-separated JSON entries.')) parser.add_argument('--project_id', '-i', type=str, action='store', default=None, help=('Optional project_id of datastore to write to. If ' 'not supplied, will be taken from credentials ' 'file.')) parser.add_argument('--namespace', '-n', type=str, action='store', default=None, help='Optional namespace in which to store entities.') parser.add_argument('--parent_key', '-p', type=str, action='store', default=None, help='Key of parent entity to insert into. This should ' 'be in python tuple-literal form, e.g. ("Foo", 1)') return parser class DuplicateKeyError(ValueError): """Raised when two Entities have the same key.""" def GetEntities(project_id, json_lines, outer_parent_key=None, namespace=None): """Create gcloud entities from json string entries. project_id: String gcloud project id that entities are for. json_lines: File or other line-by-line iterator of json strings to turn into entities. outer_parent_key: Optional datastore.Key instance to act as the parent_key of all top level entities. namespace: Optional string namespace for entities. """ entity_keys = {} for line in json_lines: item = json.loads(line) kind, idx = item.pop('id') parent = item.pop('parent', None) if (kind, idx) in entity_keys: raise DuplicateKeyError( 'Duplicate entities with id (%s, %s)' % (kind, idx)) if parent: parent_key = entity_keys[tuple(parent)] else: parent_key = outer_parent_key key = datastore.Key( kind, idx, project=project_id, parent=parent_key, namespace=namespace) e = datastore.Entity(key=key) e.update(item) entity_keys[(kind, idx)] = key entity_keys[idx] = key yield e def main(argv): parser = GetParser() options = parser.parse_args(argv) entities_path = options.entities creds_file = options.service_acct_json project_id = options.project_id namespace = options.namespace entities = [] c, project_id = dslib.GetClient(creds_file, project_id, namespace) if options.parent_key: upper_parent_key = c.key(*ast.literal_eval(options.parent_key)) else: upper_parent_key = None with open(entities_path, 'r') as f: entities = GetEntities(project_id, f, upper_parent_key, namespace) dslib.ChunkedBatchWrite(entities, c)
en
0.761217
# -*- coding: utf-8 -*- # Copyright 2016 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. Export entities to gcloud datastore. # pylint: disable=import-error # pylint: disable=import-error Creates the argparse parser. Raised when two Entities have the same key. Create gcloud entities from json string entries. project_id: String gcloud project id that entities are for. json_lines: File or other line-by-line iterator of json strings to turn into entities. outer_parent_key: Optional datastore.Key instance to act as the parent_key of all top level entities. namespace: Optional string namespace for entities.
2.445979
2
app/routers/__init__.py
BlueJillYang/blog
0
6631294
from .contorl import contorller # this is the final controller which is controlling other apps
from .contorl import contorller # this is the final controller which is controlling other apps
en
0.957275
# this is the final controller which is controlling other apps
1.25359
1
applied_python/applied_python/lib/python2.7/site-packages/ncclient/devices/iosxe.py
mith1979/ansible_automation
0
6631295
""" Handler for Cisco IOS-XE device specific information. Note that for proper import, the classname has to be: "<Devicename>DeviceHandler" ...where <Devicename> is something like "Default", "Nexus", etc. All device-specific handlers derive from the DefaultDeviceHandler, which implements the generic information needed for interaction with a Netconf server. """ from .default import DefaultDeviceHandler def iosxe_unknown_host_cb(host, fingerprint): #This will ignore the unknown host check when connecting to CSR devices return True class IosxeDeviceHandler(DefaultDeviceHandler): """ Cisco IOS-XE handler for device specific information. """ def __init__(self, device_params): super(IosxeDeviceHandler, self).__init__(device_params) def add_additional_operations(self): dict = {} dict["save_config"] = SaveConfig return dict def add_additional_ssh_connect_params(self, kwargs): kwargs['allow_agent'] = False kwargs['look_for_keys'] = False kwargs['unknown_host_cb'] = csr_unknown_host_cb def perform_qualify_check(self): return False
""" Handler for Cisco IOS-XE device specific information. Note that for proper import, the classname has to be: "<Devicename>DeviceHandler" ...where <Devicename> is something like "Default", "Nexus", etc. All device-specific handlers derive from the DefaultDeviceHandler, which implements the generic information needed for interaction with a Netconf server. """ from .default import DefaultDeviceHandler def iosxe_unknown_host_cb(host, fingerprint): #This will ignore the unknown host check when connecting to CSR devices return True class IosxeDeviceHandler(DefaultDeviceHandler): """ Cisco IOS-XE handler for device specific information. """ def __init__(self, device_params): super(IosxeDeviceHandler, self).__init__(device_params) def add_additional_operations(self): dict = {} dict["save_config"] = SaveConfig return dict def add_additional_ssh_connect_params(self, kwargs): kwargs['allow_agent'] = False kwargs['look_for_keys'] = False kwargs['unknown_host_cb'] = csr_unknown_host_cb def perform_qualify_check(self): return False
en
0.739228
Handler for Cisco IOS-XE device specific information. Note that for proper import, the classname has to be: "<Devicename>DeviceHandler" ...where <Devicename> is something like "Default", "Nexus", etc. All device-specific handlers derive from the DefaultDeviceHandler, which implements the generic information needed for interaction with a Netconf server. #This will ignore the unknown host check when connecting to CSR devices Cisco IOS-XE handler for device specific information.
2.511989
3
models.py
ECruz25/music-app-backend
0
6631296
from application import db from sqlalchemy.dialects.postgresql import JSON from datetime import date class SpotifyUserSongInPlaylist(db.Model): __tablename__ = 'spotifyusersonginplaylist' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.String()) date_added = db.Column(db.DateTime()) track_id = db.Column(db.String()) popularity = db.Column(db.Integer()) explicit = db.Column(db.Boolean()) def __init__(self, user_id, date_added, track_id, popularity, explicit): self.user_id = user_id self.date_added = date_added self.track_id = track_id self.popularity = popularity self.explicit = explicit class User(db.Model): __tablename__ = 'user' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.String()) mind_aspect = db.Column(db.String(), nullable=True) energy_aspect = db.Column(db.String(), nullable=True) nature_aspect = db.Column(db.String(), nullable=True) tactics_aspect = db.Column(db.String(), nullable=True) identity_aspect = db.Column(db.String(), nullable=True) country = db.Column(db.String()) def __init__(self, user_id, mind_aspect, energy_aspect, nature_aspect, tactics_aspect, identity_aspect, country): self.user_id = user_id self.identity_aspect = identity_aspect self.tactics_aspect = tactics_aspect self.nature_aspect = nature_aspect self.mind_aspect = mind_aspect self.energy_aspect = energy_aspect self.country = country class Playlist(db.Model): __tablename__ = 'playlist' id = db.Column(db.Integer, primary_key=True) playlist_id = db.Column(db.String()) name = db.Column(db.String()) owner = db.Column(db.String()) checked = db.Column(db.Boolean()) def __init__(self, playlist_id, name, owner): self.playlist_id = playlist_id self.name = name self.owner = owner self.checked = False class Recommendation(db.Model): __tablename__ = 'recommendation' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.String()) track_id = db.Column(db.String()) date_recommended_for = db.Column(db.Date()) def __init__(self, user_id, track_id): self.track_id = track_id self.user_id = user_id self.date_recommended_for = date.today()
from application import db from sqlalchemy.dialects.postgresql import JSON from datetime import date class SpotifyUserSongInPlaylist(db.Model): __tablename__ = 'spotifyusersonginplaylist' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.String()) date_added = db.Column(db.DateTime()) track_id = db.Column(db.String()) popularity = db.Column(db.Integer()) explicit = db.Column(db.Boolean()) def __init__(self, user_id, date_added, track_id, popularity, explicit): self.user_id = user_id self.date_added = date_added self.track_id = track_id self.popularity = popularity self.explicit = explicit class User(db.Model): __tablename__ = 'user' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.String()) mind_aspect = db.Column(db.String(), nullable=True) energy_aspect = db.Column(db.String(), nullable=True) nature_aspect = db.Column(db.String(), nullable=True) tactics_aspect = db.Column(db.String(), nullable=True) identity_aspect = db.Column(db.String(), nullable=True) country = db.Column(db.String()) def __init__(self, user_id, mind_aspect, energy_aspect, nature_aspect, tactics_aspect, identity_aspect, country): self.user_id = user_id self.identity_aspect = identity_aspect self.tactics_aspect = tactics_aspect self.nature_aspect = nature_aspect self.mind_aspect = mind_aspect self.energy_aspect = energy_aspect self.country = country class Playlist(db.Model): __tablename__ = 'playlist' id = db.Column(db.Integer, primary_key=True) playlist_id = db.Column(db.String()) name = db.Column(db.String()) owner = db.Column(db.String()) checked = db.Column(db.Boolean()) def __init__(self, playlist_id, name, owner): self.playlist_id = playlist_id self.name = name self.owner = owner self.checked = False class Recommendation(db.Model): __tablename__ = 'recommendation' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.String()) track_id = db.Column(db.String()) date_recommended_for = db.Column(db.Date()) def __init__(self, user_id, track_id): self.track_id = track_id self.user_id = user_id self.date_recommended_for = date.today()
none
1
2.664783
3
QRCode_generator/.env/qrcode/lib/python3.8/site-packages/pyqrcode/tables.py
Aayush3thoughtwin/nft_metaplex
332
6631297
<filename>QRCode_generator/.env/qrcode/lib/python3.8/site-packages/pyqrcode/tables.py # -*- coding: utf-8 -*- # Copyright (c) 2013, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """This module lists out all of the tables needed to create a QR code. If you are viewing this in the HTML documentation, I recommend reading the actual file instead. The formating for the tables is much more readable. """ from __future__ import division, unicode_literals #: This defines the QR Code's 'mode' which sets what #: type of code it is along with its size. modes = { 'numeric': 1, 'alphanumeric': 2, 'binary': 4, 'kanji': 8, } #: This defines the amount of error correction. The dictionary #: allows the user to specify this in several ways. error_level = {'L': 'L', 'l': 'L', '7%': 'L', .7: 'L', 'M': 'M', 'm': 'M', '15%': 'M', .15: 'M', 'Q': 'Q', 'q': 'Q', '25%': 'Q', .25: 'Q', 'H': 'H', 'h': 'H', '30%': 'H', .30: 'H'} #: This is a dictionary holds how long the "data length" field is for #: each version and mode of the QR Code. data_length_field = {9: {1: 10, 2: 9, 4: 8, 8: 8}, 26: {1: 12, 2: 11, 4: 16, 8: 10}, 40: {1: 14, 2: 13, 4: 16, 8: 12}} #: QR Codes uses a unique ASCII-like table for the 'alphanumeric' mode. #: This is a dictionary representing that unique table, where the #: keys are the possible characters in the data and the values #: are the character's numeric representation. ascii_codes = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, 'A': 10, 'B': 11, 'C': 12, 'D': 13, 'E': 14, 'F': 15, 'G': 16, 'H': 17, 'I': 18, 'J': 19, 'K': 20, 'L': 21, 'M': 22, 'N': 23, 'O': 24, 'P': 25, 'Q': 26, 'R': 27, 'S': 28, 'T': 29, 'U': 30, 'V': 31, 'W': 32, 'X': 33, 'Y': 34, 'Z': 35, ' ': 36, '$': 37, '%': 38, '*': 39, '+': 40, '-': 41, '.': 42, '/': 43, ':': 44} #: This array specifies the size of a QR Code in pixels. These numbers are #: defined in the standard. The indexes correspond to the QR Code's #: version number. This array was taken from: #: #: http://www.denso-wave.com/qrcode/vertable1-e.html version_size = [None, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177] #: This dictionary lists the data capacity for all possible QR Codes. #: This dictionary is organized where the first key corresponds to the #: QR Code version number. The next key corresponds to the error #: correction level, see error. The final key corresponds to #: the mode number, see modes. The zero mode number represents the #: possible "data bits." This table was taken from: #: #: http://www.denso-wave.com/qrcode/vertable1-e.html data_capacity = { 1: { "L": {0: 152, 1: 41, 2: 25, 4: 17, 8: 10, }, "M": {0: 128, 1: 34, 2: 20, 4: 14, 8: 8, }, "Q": {0: 104, 1: 27, 2: 16, 4: 11, 8: 7, }, "H": {0: 72, 1: 17, 2: 10, 4: 7, 8: 4, }}, 2: { "L": {0: 272, 1: 77, 2: 47, 4: 32, 8: 20, }, "M": {0: 224, 1: 63, 2: 38, 4: 26, 8: 16, }, "Q": {0: 176, 1: 48, 2: 29, 4: 20, 8: 12, }, "H": {0: 128, 1: 34, 2: 20, 4: 14, 8: 8, }}, 3: { "L": {0: 440, 1: 127, 2: 77, 4: 53, 8: 32, }, "M": {0: 352, 1: 101, 2: 61, 4: 42, 8: 26, }, "Q": {0: 272, 1: 77, 2: 47, 4: 32, 8: 20, }, "H": {0: 208, 1: 58, 2: 35, 4: 24, 8: 15, }}, 4: { "L": {0: 640, 1: 187, 2: 114, 4: 78, 8: 48, }, "M": {0: 512, 1: 149, 2: 90, 4: 62, 8: 38, }, "Q": {0: 384, 1: 111, 2: 67, 4: 46, 8: 28, }, "H": {0: 288, 1: 82, 2: 50, 4: 34, 8: 21, }}, 5: { "L": {0: 864, 1: 255, 2: 154, 4: 106, 8: 65, }, "M": {0: 688, 1: 202, 2: 122, 4: 84, 8: 52, }, "Q": {0: 496, 1: 144, 2: 87, 4: 60, 8: 37, }, "H": {0: 368, 1: 106, 2: 64, 4: 44, 8: 27, }}, 6: { "L": {0: 1088, 1: 322, 2: 195, 4: 134, 8: 82, }, "M": {0: 864, 1: 255, 2: 154, 4: 106, 8: 65, }, "Q": {0: 608, 1: 178, 2: 108, 4: 74, 8: 45, }, "H": {0: 480, 1: 139, 2: 84, 4: 58, 8: 36, }}, 7: { "L": {0: 1248, 1: 370, 2: 224, 4: 154, 8: 95, }, "M": {0: 992, 1: 293, 2: 178, 4: 122, 8: 75, }, "Q": {0: 704, 1: 207, 2: 125, 4: 86, 8: 53, }, "H": {0: 528, 1: 154, 2: 93, 4: 64, 8: 39, }}, 8: { "L": {0: 1552, 1: 461, 2: 279, 4: 192, 8: 118, }, "M": {0: 1232, 1: 365, 2: 221, 4: 152, 8: 93, }, "Q": {0: 880, 1: 259, 2: 157, 4: 108, 8: 66, }, "H": {0: 688, 1: 202, 2: 122, 4: 84, 8: 52, }}, 9: { "L": {0: 1856, 1: 552, 2: 335, 4: 230, 8: 141, }, "M": {0: 1456, 1: 432, 2: 262, 4: 180, 8: 111, }, "Q": {0: 1056, 1: 312, 2: 189, 4: 130, 8: 80, }, "H": {0: 800, 1: 235, 2: 143, 4: 98, 8: 60, }}, 10: { "L": {0: 2192, 1: 652, 2: 395, 4: 271, 8: 167, }, "M": {0: 1728, 1: 513, 2: 311, 4: 213, 8: 131, }, "Q": {0: 1232, 1: 364, 2: 221, 4: 151, 8: 93, }, "H": {0: 976, 1: 288, 2: 174, 4: 119, 8: 74, }}, 11: { "L": {0: 2592, 1: 772, 2: 468, 4: 321, 8: 198, }, "M": {0: 2032, 1: 604, 2: 366, 4: 251, 8: 155, }, "Q": {0: 1440, 1: 427, 2: 259, 4: 177, 8: 109, }, "H": {0: 1120, 1: 331, 2: 200, 4: 137, 8: 85, }}, 12: { "L": {0: 2960, 1: 883, 2: 535, 4: 367, 8: 226, }, "M": {0: 2320, 1: 691, 2: 419, 4: 287, 8: 177, }, "Q": {0: 1648, 1: 489, 2: 296, 4: 203, 8: 125, }, "H": {0: 1264, 1: 374, 2: 227, 4: 155, 8: 96, }}, 13: { "L": {0: 3424, 1: 1022, 2: 619, 4: 425, 8: 262, }, "M": {0: 2672, 1: 796, 2: 483, 4: 331, 8: 204, }, "Q": {0: 1952, 1: 580, 2: 352, 4: 241, 8: 149, }, "H": {0: 1440, 1: 427, 2: 259, 4: 177, 8: 109, }}, 14: { "L": {0: 3688, 1: 1101, 2: 667, 4: 458, 8: 282, }, "M": {0: 2920, 1: 871, 2: 528, 4: 362, 8: 223, }, "Q": {0: 2088, 1: 621, 2: 376, 4: 258, 8: 159, }, "H": {0: 1576, 1: 468, 2: 283, 4: 194, 8: 120, }}, 15: { "L": {0: 4184, 1: 1250, 2: 758, 4: 520, 8: 320, }, "M": {0: 3320, 1: 991, 2: 600, 4: 412, 8: 254, }, "Q": {0: 2360, 1: 703, 2: 426, 4: 292, 8: 180, }, "H": {0: 1784, 1: 530, 2: 321, 4: 220, 8: 136, }}, 16: { "L": {0: 4712, 1: 1408, 2: 854, 4: 586, 8: 361, }, "M": {0: 3624, 1: 1082, 2: 656, 4: 450, 8: 277, }, "Q": {0: 2600, 1: 775, 2: 470, 4: 322, 8: 198, }, "H": {0: 2024, 1: 602, 2: 365, 4: 250, 8: 154, }}, 17: { "L": {0: 5176, 1: 1548, 2: 938, 4: 644, 8: 397, }, "M": {0: 4056, 1: 1212, 2: 734, 4: 504, 8: 310, }, "Q": {0: 2936, 1: 876, 2: 531, 4: 364, 8: 224, }, "H": {0: 2264, 1: 674, 2: 408, 4: 280, 8: 173, }}, 18: { "L": {0: 5768, 1: 1725, 2: 1046, 4: 718, 8: 442, }, "M": {0: 4504, 1: 1346, 2: 816, 4: 560, 8: 345, }, "Q": {0: 3176, 1: 948, 2: 574, 4: 394, 8: 243, }, "H": {0: 2504, 1: 746, 2: 452, 4: 310, 8: 191, }}, 19: { "L": {0: 6360, 1: 1903, 2: 1153, 4: 792, 8: 488, }, "M": {0: 5016, 1: 1500, 2: 909, 4: 624, 8: 384, }, "Q": {0: 3560, 1: 1063, 2: 644, 4: 442, 8: 272, }, "H": {0: 2728, 1: 813, 2: 493, 4: 338, 8: 208, }}, 20: { "L": {0: 6888, 1: 2061, 2: 1249, 4: 858, 8: 528, }, "M": {0: 5352, 1: 1600, 2: 970, 4: 666, 8: 410, }, "Q": {0: 3880, 1: 1159, 2: 702, 4: 482, 8: 297, }, "H": {0: 3080, 1: 919, 2: 557, 4: 382, 8: 235, }}, 21: { "L": {0: 7456, 1: 2232, 2: 1352, 4: 929, 8: 572, }, "M": {0: 5712, 1: 1708, 2: 1035, 4: 711, 8: 438, }, "Q": {0: 4096, 1: 1224, 2: 742, 4: 509, 8: 314, }, "H": {0: 3248, 1: 969, 2: 587, 4: 403, 8: 248, }}, 22: { "L": {0: 8048, 1: 2409, 2: 1460, 4: 1003, 8: 618, }, "M": {0: 6256, 1: 1872, 2: 1134, 4: 779, 8: 480, }, "Q": {0: 4544, 1: 1358, 2: 823, 4: 565, 8: 348, }, "H": {0: 3536, 1: 1056, 2: 640, 4: 439, 8: 270, }}, 23: { "L": {0: 8752, 1: 2620, 2: 1588, 4: 1091, 8: 672, }, "M": {0: 6880, 1: 2059, 2: 1248, 4: 857, 8: 528, }, "Q": {0: 4912, 1: 1468, 2: 890, 4: 611, 8: 376, }, "H": {0: 3712, 1: 1108, 2: 672, 4: 461, 8: 284, }}, 24: { "L": {0: 9392, 1: 2812, 2: 1704, 4: 1171, 8: 721, }, "M": {0: 7312, 1: 2188, 2: 1326, 4: 911, 8: 561, }, "Q": {0: 5312, 1: 1588, 2: 963, 4: 661, 8: 407, }, "H": {0: 4112, 1: 1228, 2: 744, 4: 511, 8: 315, }}, 25: { "L": {0: 10208, 1: 3057, 2: 1853, 4: 1273, 8: 784, }, "M": {0: 8000, 1: 2395, 2: 1451, 4: 997, 8: 614, }, "Q": {0: 5744, 1: 1718, 2: 1041, 4: 715, 8: 440, }, "H": {0: 4304, 1: 1286, 2: 779, 4: 535, 8: 330, }}, 26: { "L": {0: 10960, 1: 3283, 2: 1990, 4: 1367, 8: 842, }, "M": {0: 8496, 1: 2544, 2: 1542, 4: 1059, 8: 652, }, "Q": {0: 6032, 1: 1804, 2: 1094, 4: 751, 8: 462, }, "H": {0: 4768, 1: 1425, 2: 864, 4: 593, 8: 365, }}, 27: { "L": {0: 11744, 1: 3514, 2: 2132, 4: 1465, 8: 902, }, "M": {0: 9024, 1: 2701, 2: 1637, 4: 1125, 8: 692, }, "Q": {0: 6464, 1: 1933, 2: 1172, 4: 805, 8: 496, }, "H": {0: 5024, 1: 1501, 2: 910, 4: 625, 8: 385, }}, 28: { "L": {0: 12248, 1: 3669, 2: 2223, 4: 1528, 8: 940, }, "M": {0: 9544, 1: 2857, 2: 1732, 4: 1190, 8: 732, }, "Q": {0: 6968, 1: 2085, 2: 1263, 4: 868, 8: 534, }, "H": {0: 5288, 1: 1581, 2: 958, 4: 658, 8: 405, }}, 29: { "L": {0: 13048, 1: 3909, 2: 2369, 4: 1628, 8: 1002, }, "M": {0: 10136, 1: 3035, 2: 1839, 4: 1264, 8: 778, }, "Q": {0: 7288, 1: 2181, 2: 1322, 4: 908, 8: 559, }, "H": {0: 5608, 1: 1677, 2: 1016, 4: 698, 8: 430, }}, 30: { "L": {0: 13880, 1: 4158, 2: 2520, 4: 1732, 8: 1066, }, "M": {0: 10984, 1: 3289, 2: 1994, 4: 1370, 8: 843, }, "Q": {0: 7880, 1: 2358, 2: 1429, 4: 982, 8: 604, }, "H": {0: 5960, 1: 1782, 2: 1080, 4: 742, 8: 457, }}, 31: { "L": {0: 14744, 1: 4417, 2: 2677, 4: 1840, 8: 1132, }, "M": {0: 11640, 1: 3486, 2: 2113, 4: 1452, 8: 894, }, "Q": {0: 8264, 1: 2473, 2: 1499, 4: 1030, 8: 634, }, "H": {0: 6344, 1: 1897, 2: 1150, 4: 790, 8: 486, }}, 32: { "L": {0: 15640, 1: 4686, 2: 2840, 4: 1952, 8: 1201, }, "M": {0: 12328, 1: 3693, 2: 2238, 4: 1538, 8: 947, }, "Q": {0: 8920, 1: 2670, 2: 1618, 4: 1112, 8: 684, }, "H": {0: 6760, 1: 2022, 2: 1226, 4: 842, 8: 518, }}, 33: { "L": {0: 16568, 1: 4965, 2: 3009, 4: 2068, 8: 1273, }, "M": {0: 13048, 1: 3909, 2: 2369, 4: 1628, 8: 1002, }, "Q": {0: 9368, 1: 2805, 2: 1700, 4: 1168, 8: 719, }, "H": {0: 7208, 1: 2157, 2: 1307, 4: 898, 8: 553, }}, 34: { "L": {0: 17528, 1: 5253, 2: 3183, 4: 2188, 8: 1347, }, "M": {0: 13800, 1: 4134, 2: 2506, 4: 1722, 8: 1060, }, "Q": {0: 9848, 1: 2949, 2: 1787, 4: 1228, 8: 756, }, "H": {0: 7688, 1: 2301, 2: 1394, 4: 958, 8: 590, }}, 35: { "L": {0: 18448, 1: 5529, 2: 3351, 4: 2303, 8: 1417, }, "M": {0: 14496, 1: 4343, 2: 2632, 4: 1809, 8: 1113, }, "Q": {0: 10288, 1: 3081, 2: 1867, 4: 1283, 8: 790, }, "H": {0: 7888, 1: 2361, 2: 1431, 4: 983, 8: 605, }}, 36: { "L": {0: 19472, 1: 5836, 2: 3537, 4: 2431, 8: 1496, }, "M": {0: 15312, 1: 4588, 2: 2780, 4: 1911, 8: 1176, }, "Q": {0: 10832, 1: 3244, 2: 1966, 4: 1351, 8: 832, }, "H": {0: 8432, 1: 2524, 2: 1530, 4: 1051, 8: 647, }}, 37: { "L": {0: 20528, 1: 6153, 2: 3729, 4: 2563, 8: 1577, }, "M": {0: 15936, 1: 4775, 2: 2894, 4: 1989, 8: 1224, }, "Q": {0: 11408, 1: 3417, 2: 2071, 4: 1423, 8: 876, }, "H": {0: 8768, 1: 2625, 2: 1591, 4: 1093, 8: 673, }}, 38: { "L": {0: 21616, 1: 6479, 2: 3927, 4: 2699, 8: 1661, }, "M": {0: 16816, 1: 5039, 2: 3054, 4: 2099, 8: 1292, }, "Q": {0: 12016, 1: 3599, 2: 2181, 4: 1499, 8: 923, }, "H": {0: 9136, 1: 2735, 2: 1658, 4: 1139, 8: 701, }}, 39: { "L": {0: 22496, 1: 6743, 2: 4087, 4: 2809, 8: 1729, }, "M": {0: 17728, 1: 5313, 2: 3220, 4: 2213, 8: 1362, }, "Q": {0: 12656, 1: 3791, 2: 2298, 4: 1579, 8: 972, }, "H": {0: 9776, 1: 2927, 2: 1774, 4: 1219, 8: 750, }}, 40: { "L": {0: 23648, 1: 7089, 2: 4296, 4: 2953, 8: 1817, }, "M": {0: 18672, 1: 5596, 2: 3391, 4: 2331, 8: 1435, }, "Q": {0: 13328, 1: 3993, 2: 2420, 4: 1663, 8: 1024, }, "H": {0: 10208, 1: 3057, 2: 1852, 4: 1273, 8: 784, }} } #: This table defines the "Error Correction Code Words and Block Information." #: The table lists the number of error correction words that are required #: to be generated for each version and error correction level. The table #: is accessed by first using the version number as a key and then the #: error level. The array values correspond to these columns from the source #: table: #: #: +----------------------------+ #: |0 | EC Code Words Per Block | #: +----------------------------+ #: |1 | Block 1 Count | #: +----------------------------+ #: |2 | Block 1 Data Code Words | #: +----------------------------+ #: |3 | Block 2 Count | #: +----------------------------+ #: |4 | Block 2 Data Code Words | #: +----------------------------+ #: #: This table was taken from: #: #: http://www.thonky.com/qr-code-tutorial/error-correction-table/ eccwbi = { 1: { 'L': [7, 1, 19, 0, 0, ], 'M': [10, 1, 16, 0, 0, ], 'Q': [13, 1, 13, 0, 0, ], 'H': [17, 1, 9, 0, 0, ], }, 2: { 'L': [10, 1, 34, 0, 0, ], 'M': [16, 1, 28, 0, 0, ], 'Q': [22, 1, 22, 0, 0, ], 'H': [28, 1, 16, 0, 0, ], }, 3: { 'L': [15, 1, 55, 0, 0, ], 'M': [26, 1, 44, 0, 0, ], 'Q': [18, 2, 17, 0, 0, ], 'H': [22, 2, 13, 0, 0, ], }, 4: { 'L': [20, 1, 80, 0, 0, ], 'M': [18, 2, 32, 0, 0, ], 'Q': [26, 2, 24, 0, 0, ], 'H': [16, 4, 9, 0, 0, ], }, 5: { 'L': [26, 1, 108, 0, 0, ], 'M': [24, 2, 43, 0, 0, ], 'Q': [18, 2, 15, 2, 16, ], 'H': [22, 2, 11, 2, 12, ], }, 6: { 'L': [18, 2, 68, 0, 0, ], 'M': [16, 4, 27, 0, 0, ], 'Q': [24, 4, 19, 0, 0, ], 'H': [28, 4, 15, 0, 0, ], }, 7: { 'L': [20, 2, 78, 0, 0, ], 'M': [18, 4, 31, 0, 0, ], 'Q': [18, 2, 14, 4, 15, ], 'H': [26, 4, 13, 1, 14, ], }, 8: { 'L': [24, 2, 97, 0, 0, ], 'M': [22, 2, 38, 2, 39, ], 'Q': [22, 4, 18, 2, 19, ], 'H': [26, 4, 14, 2, 15, ], }, 9: { 'L': [30, 2, 116, 0, 0, ], 'M': [22, 3, 36, 2, 37, ], 'Q': [20, 4, 16, 4, 17, ], 'H': [24, 4, 12, 4, 13, ], }, 10: { 'L': [18, 2, 68, 2, 69, ], 'M': [26, 4, 43, 1, 44, ], 'Q': [24, 6, 19, 2, 20, ], 'H': [28, 6, 15, 2, 16, ], }, 11: { 'L': [20, 4, 81, 0, 0, ], 'M': [30, 1, 50, 4, 51, ], 'Q': [28, 4, 22, 4, 23, ], 'H': [24, 3, 12, 8, 13, ], }, 12: { 'L': [24, 2, 92, 2, 93, ], 'M': [22, 6, 36, 2, 37, ], 'Q': [26, 4, 20, 6, 21, ], 'H': [28, 7, 14, 4, 15, ], }, 13: { 'L': [26, 4, 107, 0, 0, ], 'M': [22, 8, 37, 1, 38, ], 'Q': [24, 8, 20, 4, 21, ], 'H': [22, 12, 11, 4, 12, ], }, 14: { 'L': [30, 3, 115, 1, 116, ], 'M': [24, 4, 40, 5, 41, ], 'Q': [20, 11, 16, 5, 17, ], 'H': [24, 11, 12, 5, 13, ], }, 15: { 'L': [22, 5, 87, 1, 88, ], 'M': [24, 5, 41, 5, 42, ], 'Q': [30, 5, 24, 7, 25, ], 'H': [24, 11, 12, 7, 13, ], }, 16: { 'L': [24, 5, 98, 1, 99, ], 'M': [28, 7, 45, 3, 46, ], 'Q': [24, 15, 19, 2, 20, ], 'H': [30, 3, 15, 13, 16, ], }, 17: { 'L': [28, 1, 107, 5, 108, ], 'M': [28, 10, 46, 1, 47, ], 'Q': [28, 1, 22, 15, 23, ], 'H': [28, 2, 14, 17, 15, ], }, 18: { 'L': [30, 5, 120, 1, 121, ], 'M': [26, 9, 43, 4, 44, ], 'Q': [28, 17, 22, 1, 23, ], 'H': [28, 2, 14, 19, 15, ], }, 19: { 'L': [28, 3, 113, 4, 114, ], 'M': [26, 3, 44, 11, 45, ], 'Q': [26, 17, 21, 4, 22, ], 'H': [26, 9, 13, 16, 14, ], }, 20: { 'L': [28, 3, 107, 5, 108, ], 'M': [26, 3, 41, 13, 42, ], 'Q': [30, 15, 24, 5, 25, ], 'H': [28, 15, 15, 10, 16, ], }, 21: { 'L': [28, 4, 116, 4, 117, ], 'M': [26, 17, 42, 0, 0, ], 'Q': [28, 17, 22, 6, 23, ], 'H': [30, 19, 16, 6, 17, ], }, 22: { 'L': [28, 2, 111, 7, 112, ], 'M': [28, 17, 46, 0, 0, ], 'Q': [30, 7, 24, 16, 25, ], 'H': [24, 34, 13, 0, 0, ], }, 23: { 'L': [30, 4, 121, 5, 122, ], 'M': [28, 4, 47, 14, 48, ], 'Q': [30, 11, 24, 14, 25, ], 'H': [30, 16, 15, 14, 16, ], }, 24: { 'L': [30, 6, 117, 4, 118, ], 'M': [28, 6, 45, 14, 46, ], 'Q': [30, 11, 24, 16, 25, ], 'H': [30, 30, 16, 2, 17, ], }, 25: { 'L': [26, 8, 106, 4, 107, ], 'M': [28, 8, 47, 13, 48, ], 'Q': [30, 7, 24, 22, 25, ], 'H': [30, 22, 15, 13, 16, ], }, 26: { 'L': [28, 10, 114, 2, 115, ], 'M': [28, 19, 46, 4, 47, ], 'Q': [28, 28, 22, 6, 23, ], 'H': [30, 33, 16, 4, 17, ], }, 27: { 'L': [30, 8, 122, 4, 123, ], 'M': [28, 22, 45, 3, 46, ], 'Q': [30, 8, 23, 26, 24, ], 'H': [30, 12, 15, 28, 16, ], }, 28: { 'L': [30, 3, 117, 10, 118, ], 'M': [28, 3, 45, 23, 46, ], 'Q': [30, 4, 24, 31, 25, ], 'H': [30, 11, 15, 31, 16, ], }, 29: { 'L': [30, 7, 116, 7, 117, ], 'M': [28, 21, 45, 7, 46, ], 'Q': [30, 1, 23, 37, 24, ], 'H': [30, 19, 15, 26, 16, ], }, 30: { 'L': [30, 5, 115, 10, 116, ], 'M': [28, 19, 47, 10, 48, ], 'Q': [30, 15, 24, 25, 25, ], 'H': [30, 23, 15, 25, 16, ], }, 31: { 'L': [30, 13, 115, 3, 116, ], 'M': [28, 2, 46, 29, 47, ], 'Q': [30, 42, 24, 1, 25, ], 'H': [30, 23, 15, 28, 16, ], }, 32: { 'L': [30, 17, 115, 0, 0, ], 'M': [28, 10, 46, 23, 47, ], 'Q': [30, 10, 24, 35, 25, ], 'H': [30, 19, 15, 35, 16, ], }, 33: { 'L': [30, 17, 115, 1, 116, ], 'M': [28, 14, 46, 21, 47, ], 'Q': [30, 29, 24, 19, 25, ], 'H': [30, 11, 15, 46, 16, ], }, 34: { 'L': [30, 13, 115, 6, 116, ], 'M': [28, 14, 46, 23, 47, ], 'Q': [30, 44, 24, 7, 25, ], 'H': [30, 59, 16, 1, 17, ], }, 35: { 'L': [30, 12, 121, 7, 122, ], 'M': [28, 12, 47, 26, 48, ], 'Q': [30, 39, 24, 14, 25, ], 'H': [30, 22, 15, 41, 16, ], }, 36: { 'L': [30, 6, 121, 14, 122, ], 'M': [28, 6, 47, 34, 48, ], 'Q': [30, 46, 24, 10, 25, ], 'H': [30, 2, 15, 64, 16, ], }, 37: { 'L': [30, 17, 122, 4, 123, ], 'M': [28, 29, 46, 14, 47, ], 'Q': [30, 49, 24, 10, 25, ], 'H': [30, 24, 15, 46, 16, ], }, 38: { 'L': [30, 4, 122, 18, 123, ], 'M': [28, 13, 46, 32, 47, ], 'Q': [30, 48, 24, 14, 25, ], 'H': [30, 42, 15, 32, 16, ], }, 39: { 'L': [30, 20, 117, 4, 118, ], 'M': [28, 40, 47, 7, 48, ], 'Q': [30, 43, 24, 22, 25, ], 'H': [30, 10, 15, 67, 16, ], }, 40: { 'L': [30, 19, 118, 6, 119, ], 'M': [28, 18, 47, 31, 48, ], 'Q': [30, 34, 24, 34, 25, ], 'H': [30, 20, 15, 61, 16, ], }, } #: This table lists all of the generator polynomials used by QR Codes. #: They are indexed by the number of "ECC Code Words" (see table above). #: This table is taken from: #: #: http://www.matchadesign.com/blog/qr-code-demystified-part-4/ generator_polynomials = { 7: [87, 229, 146, 149, 238, 102, 21], 10: [251, 67, 46, 61, 118, 70, 64, 94, 32, 45], 13: [74, 152, 176, 100, 86, 100, 106, 104, 130, 218, 206, 140, 78], 15: [8, 183, 61, 91, 202, 37, 51, 58, 58, 237, 140, 124, 5, 99, 105], 16: [120, 104, 107, 109, 102, 161, 76, 3, 91, 191, 147, 169, 182, 194, 225, 120], 17: [43, 139, 206, 78, 43, 239, 123, 206, 214, 147, 24, 99, 150, 39, 243, 163, 136], 18: [215, 234, 158, 94, 184, 97, 118, 170, 79, 187, 152, 148, 252, 179, 5, 98, 96, 153], 20: [17, 60, 79, 50, 61, 163, 26, 187, 202, 180, 221, 225, 83, 239, 156, 164, 212, 212, 188, 190], 22: [210, 171, 247, 242, 93, 230, 14, 109, 221, 53, 200, 74, 8, 172, 98, 80, 219, 134, 160, 105, 165, 231], 24: [229, 121, 135, 48, 211, 117, 251, 126, 159, 180, 169, 152, 192, 226, 228, 218, 111, 0, 117, 232, 87, 96, 227, 21], 26: [173, 125, 158, 2, 103, 182, 118, 17, 145, 201, 111, 28, 165, 53, 161, 21, 245, 142, 13, 102, 48, 227, 153, 145, 218, 70], 28: [168, 223, 200, 104, 224, 234, 108, 180, 110, 190, 195, 147, 205, 27, 232, 201, 21, 43, 245, 87, 42, 195, 212, 119, 242, 37, 9, 123], 30: [41, 173, 145, 152, 216, 31, 179, 182, 50, 48, 110, 86, 239, 96, 222, 125, 42, 173, 226, 193, 224, 130, 156, 37, 251, 216, 238, 40, 192, 180] } #: This table contains the log and values used in GF(256) arithmetic. #: They are used to generate error correction codes for QR Codes. #: This table is taken from: #: #: vhttp://www.thonky.com/qr-code-tutorial/log-antilog-table/ galois_log = [ 1, 2, 4, 8, 16, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38, 76, 152, 45, 90, 180, 117, 234, 201, 143, 3, 6, 12, 24, 48, 96, 192, 157, 39, 78, 156, 37, 74, 148, 53, 106, 212, 181, 119, 238, 193, 159, 35, 70, 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222, 161, 95, 190, 97, 194, 153, 47, 94, 188, 101, 202, 137, 15, 30, 60, 120, 240, 253, 231, 211, 187, 107, 214, 177, 127, 254, 225, 223, 163, 91, 182, 113, 226, 217, 175, 67, 134, 17, 34, 68, 136, 13, 26, 52, 104, 208, 189, 103, 206, 129, 31, 62, 124, 248, 237, 199, 147, 59, 118, 236, 197, 151, 51, 102, 204, 133, 23, 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, 132, 21, 42, 84, 168, 77, 154, 41, 82, 164, 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, 230, 209, 191, 99, 198, 145, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227, 219, 171, 75, 150, 49, 98, 196, 149, 55, 110, 220, 165, 87, 174, 65, 130, 25, 50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167, 83, 166, 81, 162, 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9, 18, 36, 72, 144, 61, 122, 244, 245, 247, 243, 251, 235, 203, 139, 11, 22, 44, 88, 176, 125, 250, 233, 207, 131, 27, 54, 108, 216, 173, 71, 142, 1,] #: This table contains the antilog and values used in GF(256) arithmetic. #: They are used to generate error correction codes for QR Codes. #: This table is taken from: #: #: http://www.thonky.com/qr-code-tutorial/log-antilog-table/ galois_antilog = [ None, 0, 1, 25, 2, 50, 26, 198, 3, 223, 51, 238, 27, 104, 199, 75, 4, 100, 224, 14, 52, 141, 239, 129, 28, 193, 105, 248, 200, 8, 76, 113, 5, 138, 101, 47, 225, 36, 15, 33, 53, 147, 142, 218, 240, 18, 130, 69, 29, 181, 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, 77, 228, 114, 166, 6, 191, 139, 98, 102, 221, 48, 253, 226, 152, 37, 179, 16, 145, 34, 136, 54, 208, 148, 206, 143, 150, 219, 189, 241, 210, 19, 92, 131, 56, 70, 64, 30, 66, 182, 163, 195, 72, 126, 110, 107, 58, 40, 84, 250, 133, 186, 61, 202, 94, 155, 159, 10, 21, 121, 43, 78, 212, 229, 172, 115, 243, 167, 87, 7, 112, 192, 247, 140, 128, 99, 13, 103, 74, 222, 237, 49, 197, 254, 24, 227, 165, 153, 119, 38, 184, 180, 124, 17, 68, 146, 217, 35, 32, 137, 46, 55, 63, 209, 91, 149, 188, 207, 205, 144, 135, 151, 178, 220, 252, 190, 97, 242, 86, 211, 171, 20, 42, 93, 158, 132, 60, 57, 83, 71, 109, 65, 162, 31, 45, 67, 216, 183, 123, 164, 118, 196, 23, 73, 236, 127, 12, 111, 246, 108, 161, 59, 82, 41, 157, 85, 170, 251, 96, 134, 177, 187, 204, 62, 90, 203, 89, 95, 176, 156, 169, 160, 81, 11, 245, 22, 235, 122, 117, 44, 215, 79, 174, 213, 233, 230, 231, 173, 232, 116, 214, 244, 234, 168, 80, 88, 175,] #: This table contains the coordinates for the position adjustment patterns. #: The index of the table corresponds to the QR Code's version number. #: This table is taken from: #: #: http://www.thonky.com/qr-code-tutorial/part-3-mask-pattern/ position_adjustment = [ None, #There is not version 0 None, #Version 1 does not need adjustment [6, 18, ], [6, 22, ], [6, 26, ], [6, 30, ], [6, 34, ], [6, 22, 38, ], [6, 24, 42, ], [6, 26, 46, ], [6, 28, 50, ], [6, 30, 54, ], [6, 32, 58, ], [6, 34, 62, ], [6, 26, 46, 66, ], [6, 26, 48, 70, ], [6, 26, 50, 74, ], [6, 30, 54, 78, ], [6, 30, 56, 82, ], [6, 30, 58, 86, ], [6, 34, 62, 90, ], [6, 28, 50, 72, 94, ], [6, 26, 50, 74, 98, ], [6, 30, 54, 78, 102, ], [6, 28, 54, 80, 106, ], [6, 32, 58, 84, 110, ], [6, 30, 58, 86, 114, ], [6, 34, 62, 90, 118, ], [6, 26, 50, 74, 98, 122, ], [6, 30, 54, 78, 102, 126, ], [6, 26, 52, 78, 104, 130, ], [6, 30, 56, 82, 108, 134, ], [6, 34, 60, 86, 112, 138, ], [6, 30, 58, 86, 114, 142, ], [6, 34, 62, 90, 118, 146, ], [6, 30, 54, 78, 102, 126, 150, ], [6, 24, 50, 76, 102, 128, 154, ], [6, 28, 54, 80, 106, 132, 158, ], [6, 32, 58, 84, 110, 136, 162, ], [6, 26, 54, 82, 110, 138, 166, ], [6, 30, 58, 86, 114, 142, 170, ], ] #: This table specifies the bit pattern to be added to a QR Code's #: image to specify what version the code is. Note, this pattern #: is not used for versions 1-6. This table is taken from: #: #: http://www.thonky.com/qr-code-tutorial/part-3-mask-pattern/ version_pattern = [None, None, None, None, None, None, None, #0-6 '000111110010010100', '001000010110111100', '001001101010011001', '001010010011010011', '001011101111110110', '001100011101100010', '001101100001000111', '001110011000001101', '001111100100101000', '010000101101111000', '010001010001011101', '010010101000010111', '010011010100110010', '010100100110100110', '010101011010000011', '010110100011001001', '010111011111101100', '011000111011000100', '011001000111100001', '011010111110101011', '011011000010001110', '011100110000011010', '011101001100111111', '011110110101110101', '011111001001010000', '100000100111010101', '100001011011110000', '100010100010111010', '100011011110011111', '100100101100001011', '100101010000101110', '100110101001100100', '100111010101000001', '101000110001101001' ] #: This table contains the bit fields needed to specify the error code level and #: mask pattern used by a QR Code. This table is take from: #: #: http://www.thonky.com/qr-code-tutorial/part-3-mask-pattern/ type_bits = { 'L': { 0: '111011111000100', 1: '111001011110011', 2: '111110110101010', 3: '111100010011101', 4: '110011000101111', 5: '110001100011000', 6: '110110001000001', 7: '110100101110110', }, 'M': { 0: '101010000010010', 1: '101000100100101', 2: '101111001111100', 3: '101101101001011', 4: '100010111111001', 5: '100000011001110', 6: '100111110010111', 7: '100101010100000', }, 'Q': { 0: '011010101011111', 1: '011000001101000', 2: '011111100110001', 3: '011101000000110', 4: '010010010110100', 5: '010000110000011', 6: '010111011011010', 7: '010101111101101', }, 'H': { 0: '001011010001001', 1: '001001110111110', 2: '001110011100111', 3: '001100111010000', 4: '000011101100010', 5: '000001001010101', 6: '000110100001100', 7: '000100000111011', }, } #: This table contains *functions* to compute whether to change current bit when #: creating the masks. All of the functions in the table return a boolean value. #: A True result means you should add the bit to the QR Code exactly as is. A #: False result means you should add the opposite bit. This table was taken #: from: #: #: http://www.thonky.com/qr-code-tutorial/mask-patterns/ mask_patterns = [ lambda row, col: (row + col) % 2 == 0, lambda row, col: row % 2 == 0, lambda row, col: col % 3 == 0, lambda row, col: (row + col) % 3 == 0, lambda row, col: ((row // 2) + (col // 3)) % 2 == 0, lambda row, col: ((row * col) % 2) + ((row * col) % 3) == 0, lambda row, col: (((row * col) % 2) + ((row * col) % 3)) % 2 == 0, lambda row, col: (((row + col) % 2) + ((row * col) % 3)) % 2 == 0] #: This is a table of ASCII escape code for terminal colors. QR codes #: are drawn using a space with a colored background. Hence, only #: codes affecting background colors have been added. #: http://misc.flogisoft.com/bash/tip_colors_and_formatting term_colors = { 'default': 49, 'background': 49, 'reverse': 7, 'reversed': 7, 'inverse': 7, 'inverted': 7, 'black': 40, 'red': 41, 'green': 42, 'yellow': 43, 'blue': 44, 'magenta': 45, 'cyan': 46, 'light gray': 47, 'light grey': 47, 'dark gray': 100, 'dark grey': 100, 'light red': 101, 'light green': 102, 'light blue': 103, 'light yellow': 104, 'light magenta': 105, 'light cyan': 106, 'white': 107 }
<filename>QRCode_generator/.env/qrcode/lib/python3.8/site-packages/pyqrcode/tables.py # -*- coding: utf-8 -*- # Copyright (c) 2013, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """This module lists out all of the tables needed to create a QR code. If you are viewing this in the HTML documentation, I recommend reading the actual file instead. The formating for the tables is much more readable. """ from __future__ import division, unicode_literals #: This defines the QR Code's 'mode' which sets what #: type of code it is along with its size. modes = { 'numeric': 1, 'alphanumeric': 2, 'binary': 4, 'kanji': 8, } #: This defines the amount of error correction. The dictionary #: allows the user to specify this in several ways. error_level = {'L': 'L', 'l': 'L', '7%': 'L', .7: 'L', 'M': 'M', 'm': 'M', '15%': 'M', .15: 'M', 'Q': 'Q', 'q': 'Q', '25%': 'Q', .25: 'Q', 'H': 'H', 'h': 'H', '30%': 'H', .30: 'H'} #: This is a dictionary holds how long the "data length" field is for #: each version and mode of the QR Code. data_length_field = {9: {1: 10, 2: 9, 4: 8, 8: 8}, 26: {1: 12, 2: 11, 4: 16, 8: 10}, 40: {1: 14, 2: 13, 4: 16, 8: 12}} #: QR Codes uses a unique ASCII-like table for the 'alphanumeric' mode. #: This is a dictionary representing that unique table, where the #: keys are the possible characters in the data and the values #: are the character's numeric representation. ascii_codes = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9, 'A': 10, 'B': 11, 'C': 12, 'D': 13, 'E': 14, 'F': 15, 'G': 16, 'H': 17, 'I': 18, 'J': 19, 'K': 20, 'L': 21, 'M': 22, 'N': 23, 'O': 24, 'P': 25, 'Q': 26, 'R': 27, 'S': 28, 'T': 29, 'U': 30, 'V': 31, 'W': 32, 'X': 33, 'Y': 34, 'Z': 35, ' ': 36, '$': 37, '%': 38, '*': 39, '+': 40, '-': 41, '.': 42, '/': 43, ':': 44} #: This array specifies the size of a QR Code in pixels. These numbers are #: defined in the standard. The indexes correspond to the QR Code's #: version number. This array was taken from: #: #: http://www.denso-wave.com/qrcode/vertable1-e.html version_size = [None, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177] #: This dictionary lists the data capacity for all possible QR Codes. #: This dictionary is organized where the first key corresponds to the #: QR Code version number. The next key corresponds to the error #: correction level, see error. The final key corresponds to #: the mode number, see modes. The zero mode number represents the #: possible "data bits." This table was taken from: #: #: http://www.denso-wave.com/qrcode/vertable1-e.html data_capacity = { 1: { "L": {0: 152, 1: 41, 2: 25, 4: 17, 8: 10, }, "M": {0: 128, 1: 34, 2: 20, 4: 14, 8: 8, }, "Q": {0: 104, 1: 27, 2: 16, 4: 11, 8: 7, }, "H": {0: 72, 1: 17, 2: 10, 4: 7, 8: 4, }}, 2: { "L": {0: 272, 1: 77, 2: 47, 4: 32, 8: 20, }, "M": {0: 224, 1: 63, 2: 38, 4: 26, 8: 16, }, "Q": {0: 176, 1: 48, 2: 29, 4: 20, 8: 12, }, "H": {0: 128, 1: 34, 2: 20, 4: 14, 8: 8, }}, 3: { "L": {0: 440, 1: 127, 2: 77, 4: 53, 8: 32, }, "M": {0: 352, 1: 101, 2: 61, 4: 42, 8: 26, }, "Q": {0: 272, 1: 77, 2: 47, 4: 32, 8: 20, }, "H": {0: 208, 1: 58, 2: 35, 4: 24, 8: 15, }}, 4: { "L": {0: 640, 1: 187, 2: 114, 4: 78, 8: 48, }, "M": {0: 512, 1: 149, 2: 90, 4: 62, 8: 38, }, "Q": {0: 384, 1: 111, 2: 67, 4: 46, 8: 28, }, "H": {0: 288, 1: 82, 2: 50, 4: 34, 8: 21, }}, 5: { "L": {0: 864, 1: 255, 2: 154, 4: 106, 8: 65, }, "M": {0: 688, 1: 202, 2: 122, 4: 84, 8: 52, }, "Q": {0: 496, 1: 144, 2: 87, 4: 60, 8: 37, }, "H": {0: 368, 1: 106, 2: 64, 4: 44, 8: 27, }}, 6: { "L": {0: 1088, 1: 322, 2: 195, 4: 134, 8: 82, }, "M": {0: 864, 1: 255, 2: 154, 4: 106, 8: 65, }, "Q": {0: 608, 1: 178, 2: 108, 4: 74, 8: 45, }, "H": {0: 480, 1: 139, 2: 84, 4: 58, 8: 36, }}, 7: { "L": {0: 1248, 1: 370, 2: 224, 4: 154, 8: 95, }, "M": {0: 992, 1: 293, 2: 178, 4: 122, 8: 75, }, "Q": {0: 704, 1: 207, 2: 125, 4: 86, 8: 53, }, "H": {0: 528, 1: 154, 2: 93, 4: 64, 8: 39, }}, 8: { "L": {0: 1552, 1: 461, 2: 279, 4: 192, 8: 118, }, "M": {0: 1232, 1: 365, 2: 221, 4: 152, 8: 93, }, "Q": {0: 880, 1: 259, 2: 157, 4: 108, 8: 66, }, "H": {0: 688, 1: 202, 2: 122, 4: 84, 8: 52, }}, 9: { "L": {0: 1856, 1: 552, 2: 335, 4: 230, 8: 141, }, "M": {0: 1456, 1: 432, 2: 262, 4: 180, 8: 111, }, "Q": {0: 1056, 1: 312, 2: 189, 4: 130, 8: 80, }, "H": {0: 800, 1: 235, 2: 143, 4: 98, 8: 60, }}, 10: { "L": {0: 2192, 1: 652, 2: 395, 4: 271, 8: 167, }, "M": {0: 1728, 1: 513, 2: 311, 4: 213, 8: 131, }, "Q": {0: 1232, 1: 364, 2: 221, 4: 151, 8: 93, }, "H": {0: 976, 1: 288, 2: 174, 4: 119, 8: 74, }}, 11: { "L": {0: 2592, 1: 772, 2: 468, 4: 321, 8: 198, }, "M": {0: 2032, 1: 604, 2: 366, 4: 251, 8: 155, }, "Q": {0: 1440, 1: 427, 2: 259, 4: 177, 8: 109, }, "H": {0: 1120, 1: 331, 2: 200, 4: 137, 8: 85, }}, 12: { "L": {0: 2960, 1: 883, 2: 535, 4: 367, 8: 226, }, "M": {0: 2320, 1: 691, 2: 419, 4: 287, 8: 177, }, "Q": {0: 1648, 1: 489, 2: 296, 4: 203, 8: 125, }, "H": {0: 1264, 1: 374, 2: 227, 4: 155, 8: 96, }}, 13: { "L": {0: 3424, 1: 1022, 2: 619, 4: 425, 8: 262, }, "M": {0: 2672, 1: 796, 2: 483, 4: 331, 8: 204, }, "Q": {0: 1952, 1: 580, 2: 352, 4: 241, 8: 149, }, "H": {0: 1440, 1: 427, 2: 259, 4: 177, 8: 109, }}, 14: { "L": {0: 3688, 1: 1101, 2: 667, 4: 458, 8: 282, }, "M": {0: 2920, 1: 871, 2: 528, 4: 362, 8: 223, }, "Q": {0: 2088, 1: 621, 2: 376, 4: 258, 8: 159, }, "H": {0: 1576, 1: 468, 2: 283, 4: 194, 8: 120, }}, 15: { "L": {0: 4184, 1: 1250, 2: 758, 4: 520, 8: 320, }, "M": {0: 3320, 1: 991, 2: 600, 4: 412, 8: 254, }, "Q": {0: 2360, 1: 703, 2: 426, 4: 292, 8: 180, }, "H": {0: 1784, 1: 530, 2: 321, 4: 220, 8: 136, }}, 16: { "L": {0: 4712, 1: 1408, 2: 854, 4: 586, 8: 361, }, "M": {0: 3624, 1: 1082, 2: 656, 4: 450, 8: 277, }, "Q": {0: 2600, 1: 775, 2: 470, 4: 322, 8: 198, }, "H": {0: 2024, 1: 602, 2: 365, 4: 250, 8: 154, }}, 17: { "L": {0: 5176, 1: 1548, 2: 938, 4: 644, 8: 397, }, "M": {0: 4056, 1: 1212, 2: 734, 4: 504, 8: 310, }, "Q": {0: 2936, 1: 876, 2: 531, 4: 364, 8: 224, }, "H": {0: 2264, 1: 674, 2: 408, 4: 280, 8: 173, }}, 18: { "L": {0: 5768, 1: 1725, 2: 1046, 4: 718, 8: 442, }, "M": {0: 4504, 1: 1346, 2: 816, 4: 560, 8: 345, }, "Q": {0: 3176, 1: 948, 2: 574, 4: 394, 8: 243, }, "H": {0: 2504, 1: 746, 2: 452, 4: 310, 8: 191, }}, 19: { "L": {0: 6360, 1: 1903, 2: 1153, 4: 792, 8: 488, }, "M": {0: 5016, 1: 1500, 2: 909, 4: 624, 8: 384, }, "Q": {0: 3560, 1: 1063, 2: 644, 4: 442, 8: 272, }, "H": {0: 2728, 1: 813, 2: 493, 4: 338, 8: 208, }}, 20: { "L": {0: 6888, 1: 2061, 2: 1249, 4: 858, 8: 528, }, "M": {0: 5352, 1: 1600, 2: 970, 4: 666, 8: 410, }, "Q": {0: 3880, 1: 1159, 2: 702, 4: 482, 8: 297, }, "H": {0: 3080, 1: 919, 2: 557, 4: 382, 8: 235, }}, 21: { "L": {0: 7456, 1: 2232, 2: 1352, 4: 929, 8: 572, }, "M": {0: 5712, 1: 1708, 2: 1035, 4: 711, 8: 438, }, "Q": {0: 4096, 1: 1224, 2: 742, 4: 509, 8: 314, }, "H": {0: 3248, 1: 969, 2: 587, 4: 403, 8: 248, }}, 22: { "L": {0: 8048, 1: 2409, 2: 1460, 4: 1003, 8: 618, }, "M": {0: 6256, 1: 1872, 2: 1134, 4: 779, 8: 480, }, "Q": {0: 4544, 1: 1358, 2: 823, 4: 565, 8: 348, }, "H": {0: 3536, 1: 1056, 2: 640, 4: 439, 8: 270, }}, 23: { "L": {0: 8752, 1: 2620, 2: 1588, 4: 1091, 8: 672, }, "M": {0: 6880, 1: 2059, 2: 1248, 4: 857, 8: 528, }, "Q": {0: 4912, 1: 1468, 2: 890, 4: 611, 8: 376, }, "H": {0: 3712, 1: 1108, 2: 672, 4: 461, 8: 284, }}, 24: { "L": {0: 9392, 1: 2812, 2: 1704, 4: 1171, 8: 721, }, "M": {0: 7312, 1: 2188, 2: 1326, 4: 911, 8: 561, }, "Q": {0: 5312, 1: 1588, 2: 963, 4: 661, 8: 407, }, "H": {0: 4112, 1: 1228, 2: 744, 4: 511, 8: 315, }}, 25: { "L": {0: 10208, 1: 3057, 2: 1853, 4: 1273, 8: 784, }, "M": {0: 8000, 1: 2395, 2: 1451, 4: 997, 8: 614, }, "Q": {0: 5744, 1: 1718, 2: 1041, 4: 715, 8: 440, }, "H": {0: 4304, 1: 1286, 2: 779, 4: 535, 8: 330, }}, 26: { "L": {0: 10960, 1: 3283, 2: 1990, 4: 1367, 8: 842, }, "M": {0: 8496, 1: 2544, 2: 1542, 4: 1059, 8: 652, }, "Q": {0: 6032, 1: 1804, 2: 1094, 4: 751, 8: 462, }, "H": {0: 4768, 1: 1425, 2: 864, 4: 593, 8: 365, }}, 27: { "L": {0: 11744, 1: 3514, 2: 2132, 4: 1465, 8: 902, }, "M": {0: 9024, 1: 2701, 2: 1637, 4: 1125, 8: 692, }, "Q": {0: 6464, 1: 1933, 2: 1172, 4: 805, 8: 496, }, "H": {0: 5024, 1: 1501, 2: 910, 4: 625, 8: 385, }}, 28: { "L": {0: 12248, 1: 3669, 2: 2223, 4: 1528, 8: 940, }, "M": {0: 9544, 1: 2857, 2: 1732, 4: 1190, 8: 732, }, "Q": {0: 6968, 1: 2085, 2: 1263, 4: 868, 8: 534, }, "H": {0: 5288, 1: 1581, 2: 958, 4: 658, 8: 405, }}, 29: { "L": {0: 13048, 1: 3909, 2: 2369, 4: 1628, 8: 1002, }, "M": {0: 10136, 1: 3035, 2: 1839, 4: 1264, 8: 778, }, "Q": {0: 7288, 1: 2181, 2: 1322, 4: 908, 8: 559, }, "H": {0: 5608, 1: 1677, 2: 1016, 4: 698, 8: 430, }}, 30: { "L": {0: 13880, 1: 4158, 2: 2520, 4: 1732, 8: 1066, }, "M": {0: 10984, 1: 3289, 2: 1994, 4: 1370, 8: 843, }, "Q": {0: 7880, 1: 2358, 2: 1429, 4: 982, 8: 604, }, "H": {0: 5960, 1: 1782, 2: 1080, 4: 742, 8: 457, }}, 31: { "L": {0: 14744, 1: 4417, 2: 2677, 4: 1840, 8: 1132, }, "M": {0: 11640, 1: 3486, 2: 2113, 4: 1452, 8: 894, }, "Q": {0: 8264, 1: 2473, 2: 1499, 4: 1030, 8: 634, }, "H": {0: 6344, 1: 1897, 2: 1150, 4: 790, 8: 486, }}, 32: { "L": {0: 15640, 1: 4686, 2: 2840, 4: 1952, 8: 1201, }, "M": {0: 12328, 1: 3693, 2: 2238, 4: 1538, 8: 947, }, "Q": {0: 8920, 1: 2670, 2: 1618, 4: 1112, 8: 684, }, "H": {0: 6760, 1: 2022, 2: 1226, 4: 842, 8: 518, }}, 33: { "L": {0: 16568, 1: 4965, 2: 3009, 4: 2068, 8: 1273, }, "M": {0: 13048, 1: 3909, 2: 2369, 4: 1628, 8: 1002, }, "Q": {0: 9368, 1: 2805, 2: 1700, 4: 1168, 8: 719, }, "H": {0: 7208, 1: 2157, 2: 1307, 4: 898, 8: 553, }}, 34: { "L": {0: 17528, 1: 5253, 2: 3183, 4: 2188, 8: 1347, }, "M": {0: 13800, 1: 4134, 2: 2506, 4: 1722, 8: 1060, }, "Q": {0: 9848, 1: 2949, 2: 1787, 4: 1228, 8: 756, }, "H": {0: 7688, 1: 2301, 2: 1394, 4: 958, 8: 590, }}, 35: { "L": {0: 18448, 1: 5529, 2: 3351, 4: 2303, 8: 1417, }, "M": {0: 14496, 1: 4343, 2: 2632, 4: 1809, 8: 1113, }, "Q": {0: 10288, 1: 3081, 2: 1867, 4: 1283, 8: 790, }, "H": {0: 7888, 1: 2361, 2: 1431, 4: 983, 8: 605, }}, 36: { "L": {0: 19472, 1: 5836, 2: 3537, 4: 2431, 8: 1496, }, "M": {0: 15312, 1: 4588, 2: 2780, 4: 1911, 8: 1176, }, "Q": {0: 10832, 1: 3244, 2: 1966, 4: 1351, 8: 832, }, "H": {0: 8432, 1: 2524, 2: 1530, 4: 1051, 8: 647, }}, 37: { "L": {0: 20528, 1: 6153, 2: 3729, 4: 2563, 8: 1577, }, "M": {0: 15936, 1: 4775, 2: 2894, 4: 1989, 8: 1224, }, "Q": {0: 11408, 1: 3417, 2: 2071, 4: 1423, 8: 876, }, "H": {0: 8768, 1: 2625, 2: 1591, 4: 1093, 8: 673, }}, 38: { "L": {0: 21616, 1: 6479, 2: 3927, 4: 2699, 8: 1661, }, "M": {0: 16816, 1: 5039, 2: 3054, 4: 2099, 8: 1292, }, "Q": {0: 12016, 1: 3599, 2: 2181, 4: 1499, 8: 923, }, "H": {0: 9136, 1: 2735, 2: 1658, 4: 1139, 8: 701, }}, 39: { "L": {0: 22496, 1: 6743, 2: 4087, 4: 2809, 8: 1729, }, "M": {0: 17728, 1: 5313, 2: 3220, 4: 2213, 8: 1362, }, "Q": {0: 12656, 1: 3791, 2: 2298, 4: 1579, 8: 972, }, "H": {0: 9776, 1: 2927, 2: 1774, 4: 1219, 8: 750, }}, 40: { "L": {0: 23648, 1: 7089, 2: 4296, 4: 2953, 8: 1817, }, "M": {0: 18672, 1: 5596, 2: 3391, 4: 2331, 8: 1435, }, "Q": {0: 13328, 1: 3993, 2: 2420, 4: 1663, 8: 1024, }, "H": {0: 10208, 1: 3057, 2: 1852, 4: 1273, 8: 784, }} } #: This table defines the "Error Correction Code Words and Block Information." #: The table lists the number of error correction words that are required #: to be generated for each version and error correction level. The table #: is accessed by first using the version number as a key and then the #: error level. The array values correspond to these columns from the source #: table: #: #: +----------------------------+ #: |0 | EC Code Words Per Block | #: +----------------------------+ #: |1 | Block 1 Count | #: +----------------------------+ #: |2 | Block 1 Data Code Words | #: +----------------------------+ #: |3 | Block 2 Count | #: +----------------------------+ #: |4 | Block 2 Data Code Words | #: +----------------------------+ #: #: This table was taken from: #: #: http://www.thonky.com/qr-code-tutorial/error-correction-table/ eccwbi = { 1: { 'L': [7, 1, 19, 0, 0, ], 'M': [10, 1, 16, 0, 0, ], 'Q': [13, 1, 13, 0, 0, ], 'H': [17, 1, 9, 0, 0, ], }, 2: { 'L': [10, 1, 34, 0, 0, ], 'M': [16, 1, 28, 0, 0, ], 'Q': [22, 1, 22, 0, 0, ], 'H': [28, 1, 16, 0, 0, ], }, 3: { 'L': [15, 1, 55, 0, 0, ], 'M': [26, 1, 44, 0, 0, ], 'Q': [18, 2, 17, 0, 0, ], 'H': [22, 2, 13, 0, 0, ], }, 4: { 'L': [20, 1, 80, 0, 0, ], 'M': [18, 2, 32, 0, 0, ], 'Q': [26, 2, 24, 0, 0, ], 'H': [16, 4, 9, 0, 0, ], }, 5: { 'L': [26, 1, 108, 0, 0, ], 'M': [24, 2, 43, 0, 0, ], 'Q': [18, 2, 15, 2, 16, ], 'H': [22, 2, 11, 2, 12, ], }, 6: { 'L': [18, 2, 68, 0, 0, ], 'M': [16, 4, 27, 0, 0, ], 'Q': [24, 4, 19, 0, 0, ], 'H': [28, 4, 15, 0, 0, ], }, 7: { 'L': [20, 2, 78, 0, 0, ], 'M': [18, 4, 31, 0, 0, ], 'Q': [18, 2, 14, 4, 15, ], 'H': [26, 4, 13, 1, 14, ], }, 8: { 'L': [24, 2, 97, 0, 0, ], 'M': [22, 2, 38, 2, 39, ], 'Q': [22, 4, 18, 2, 19, ], 'H': [26, 4, 14, 2, 15, ], }, 9: { 'L': [30, 2, 116, 0, 0, ], 'M': [22, 3, 36, 2, 37, ], 'Q': [20, 4, 16, 4, 17, ], 'H': [24, 4, 12, 4, 13, ], }, 10: { 'L': [18, 2, 68, 2, 69, ], 'M': [26, 4, 43, 1, 44, ], 'Q': [24, 6, 19, 2, 20, ], 'H': [28, 6, 15, 2, 16, ], }, 11: { 'L': [20, 4, 81, 0, 0, ], 'M': [30, 1, 50, 4, 51, ], 'Q': [28, 4, 22, 4, 23, ], 'H': [24, 3, 12, 8, 13, ], }, 12: { 'L': [24, 2, 92, 2, 93, ], 'M': [22, 6, 36, 2, 37, ], 'Q': [26, 4, 20, 6, 21, ], 'H': [28, 7, 14, 4, 15, ], }, 13: { 'L': [26, 4, 107, 0, 0, ], 'M': [22, 8, 37, 1, 38, ], 'Q': [24, 8, 20, 4, 21, ], 'H': [22, 12, 11, 4, 12, ], }, 14: { 'L': [30, 3, 115, 1, 116, ], 'M': [24, 4, 40, 5, 41, ], 'Q': [20, 11, 16, 5, 17, ], 'H': [24, 11, 12, 5, 13, ], }, 15: { 'L': [22, 5, 87, 1, 88, ], 'M': [24, 5, 41, 5, 42, ], 'Q': [30, 5, 24, 7, 25, ], 'H': [24, 11, 12, 7, 13, ], }, 16: { 'L': [24, 5, 98, 1, 99, ], 'M': [28, 7, 45, 3, 46, ], 'Q': [24, 15, 19, 2, 20, ], 'H': [30, 3, 15, 13, 16, ], }, 17: { 'L': [28, 1, 107, 5, 108, ], 'M': [28, 10, 46, 1, 47, ], 'Q': [28, 1, 22, 15, 23, ], 'H': [28, 2, 14, 17, 15, ], }, 18: { 'L': [30, 5, 120, 1, 121, ], 'M': [26, 9, 43, 4, 44, ], 'Q': [28, 17, 22, 1, 23, ], 'H': [28, 2, 14, 19, 15, ], }, 19: { 'L': [28, 3, 113, 4, 114, ], 'M': [26, 3, 44, 11, 45, ], 'Q': [26, 17, 21, 4, 22, ], 'H': [26, 9, 13, 16, 14, ], }, 20: { 'L': [28, 3, 107, 5, 108, ], 'M': [26, 3, 41, 13, 42, ], 'Q': [30, 15, 24, 5, 25, ], 'H': [28, 15, 15, 10, 16, ], }, 21: { 'L': [28, 4, 116, 4, 117, ], 'M': [26, 17, 42, 0, 0, ], 'Q': [28, 17, 22, 6, 23, ], 'H': [30, 19, 16, 6, 17, ], }, 22: { 'L': [28, 2, 111, 7, 112, ], 'M': [28, 17, 46, 0, 0, ], 'Q': [30, 7, 24, 16, 25, ], 'H': [24, 34, 13, 0, 0, ], }, 23: { 'L': [30, 4, 121, 5, 122, ], 'M': [28, 4, 47, 14, 48, ], 'Q': [30, 11, 24, 14, 25, ], 'H': [30, 16, 15, 14, 16, ], }, 24: { 'L': [30, 6, 117, 4, 118, ], 'M': [28, 6, 45, 14, 46, ], 'Q': [30, 11, 24, 16, 25, ], 'H': [30, 30, 16, 2, 17, ], }, 25: { 'L': [26, 8, 106, 4, 107, ], 'M': [28, 8, 47, 13, 48, ], 'Q': [30, 7, 24, 22, 25, ], 'H': [30, 22, 15, 13, 16, ], }, 26: { 'L': [28, 10, 114, 2, 115, ], 'M': [28, 19, 46, 4, 47, ], 'Q': [28, 28, 22, 6, 23, ], 'H': [30, 33, 16, 4, 17, ], }, 27: { 'L': [30, 8, 122, 4, 123, ], 'M': [28, 22, 45, 3, 46, ], 'Q': [30, 8, 23, 26, 24, ], 'H': [30, 12, 15, 28, 16, ], }, 28: { 'L': [30, 3, 117, 10, 118, ], 'M': [28, 3, 45, 23, 46, ], 'Q': [30, 4, 24, 31, 25, ], 'H': [30, 11, 15, 31, 16, ], }, 29: { 'L': [30, 7, 116, 7, 117, ], 'M': [28, 21, 45, 7, 46, ], 'Q': [30, 1, 23, 37, 24, ], 'H': [30, 19, 15, 26, 16, ], }, 30: { 'L': [30, 5, 115, 10, 116, ], 'M': [28, 19, 47, 10, 48, ], 'Q': [30, 15, 24, 25, 25, ], 'H': [30, 23, 15, 25, 16, ], }, 31: { 'L': [30, 13, 115, 3, 116, ], 'M': [28, 2, 46, 29, 47, ], 'Q': [30, 42, 24, 1, 25, ], 'H': [30, 23, 15, 28, 16, ], }, 32: { 'L': [30, 17, 115, 0, 0, ], 'M': [28, 10, 46, 23, 47, ], 'Q': [30, 10, 24, 35, 25, ], 'H': [30, 19, 15, 35, 16, ], }, 33: { 'L': [30, 17, 115, 1, 116, ], 'M': [28, 14, 46, 21, 47, ], 'Q': [30, 29, 24, 19, 25, ], 'H': [30, 11, 15, 46, 16, ], }, 34: { 'L': [30, 13, 115, 6, 116, ], 'M': [28, 14, 46, 23, 47, ], 'Q': [30, 44, 24, 7, 25, ], 'H': [30, 59, 16, 1, 17, ], }, 35: { 'L': [30, 12, 121, 7, 122, ], 'M': [28, 12, 47, 26, 48, ], 'Q': [30, 39, 24, 14, 25, ], 'H': [30, 22, 15, 41, 16, ], }, 36: { 'L': [30, 6, 121, 14, 122, ], 'M': [28, 6, 47, 34, 48, ], 'Q': [30, 46, 24, 10, 25, ], 'H': [30, 2, 15, 64, 16, ], }, 37: { 'L': [30, 17, 122, 4, 123, ], 'M': [28, 29, 46, 14, 47, ], 'Q': [30, 49, 24, 10, 25, ], 'H': [30, 24, 15, 46, 16, ], }, 38: { 'L': [30, 4, 122, 18, 123, ], 'M': [28, 13, 46, 32, 47, ], 'Q': [30, 48, 24, 14, 25, ], 'H': [30, 42, 15, 32, 16, ], }, 39: { 'L': [30, 20, 117, 4, 118, ], 'M': [28, 40, 47, 7, 48, ], 'Q': [30, 43, 24, 22, 25, ], 'H': [30, 10, 15, 67, 16, ], }, 40: { 'L': [30, 19, 118, 6, 119, ], 'M': [28, 18, 47, 31, 48, ], 'Q': [30, 34, 24, 34, 25, ], 'H': [30, 20, 15, 61, 16, ], }, } #: This table lists all of the generator polynomials used by QR Codes. #: They are indexed by the number of "ECC Code Words" (see table above). #: This table is taken from: #: #: http://www.matchadesign.com/blog/qr-code-demystified-part-4/ generator_polynomials = { 7: [87, 229, 146, 149, 238, 102, 21], 10: [251, 67, 46, 61, 118, 70, 64, 94, 32, 45], 13: [74, 152, 176, 100, 86, 100, 106, 104, 130, 218, 206, 140, 78], 15: [8, 183, 61, 91, 202, 37, 51, 58, 58, 237, 140, 124, 5, 99, 105], 16: [120, 104, 107, 109, 102, 161, 76, 3, 91, 191, 147, 169, 182, 194, 225, 120], 17: [43, 139, 206, 78, 43, 239, 123, 206, 214, 147, 24, 99, 150, 39, 243, 163, 136], 18: [215, 234, 158, 94, 184, 97, 118, 170, 79, 187, 152, 148, 252, 179, 5, 98, 96, 153], 20: [17, 60, 79, 50, 61, 163, 26, 187, 202, 180, 221, 225, 83, 239, 156, 164, 212, 212, 188, 190], 22: [210, 171, 247, 242, 93, 230, 14, 109, 221, 53, 200, 74, 8, 172, 98, 80, 219, 134, 160, 105, 165, 231], 24: [229, 121, 135, 48, 211, 117, 251, 126, 159, 180, 169, 152, 192, 226, 228, 218, 111, 0, 117, 232, 87, 96, 227, 21], 26: [173, 125, 158, 2, 103, 182, 118, 17, 145, 201, 111, 28, 165, 53, 161, 21, 245, 142, 13, 102, 48, 227, 153, 145, 218, 70], 28: [168, 223, 200, 104, 224, 234, 108, 180, 110, 190, 195, 147, 205, 27, 232, 201, 21, 43, 245, 87, 42, 195, 212, 119, 242, 37, 9, 123], 30: [41, 173, 145, 152, 216, 31, 179, 182, 50, 48, 110, 86, 239, 96, 222, 125, 42, 173, 226, 193, 224, 130, 156, 37, 251, 216, 238, 40, 192, 180] } #: This table contains the log and values used in GF(256) arithmetic. #: They are used to generate error correction codes for QR Codes. #: This table is taken from: #: #: vhttp://www.thonky.com/qr-code-tutorial/log-antilog-table/ galois_log = [ 1, 2, 4, 8, 16, 32, 64, 128, 29, 58, 116, 232, 205, 135, 19, 38, 76, 152, 45, 90, 180, 117, 234, 201, 143, 3, 6, 12, 24, 48, 96, 192, 157, 39, 78, 156, 37, 74, 148, 53, 106, 212, 181, 119, 238, 193, 159, 35, 70, 140, 5, 10, 20, 40, 80, 160, 93, 186, 105, 210, 185, 111, 222, 161, 95, 190, 97, 194, 153, 47, 94, 188, 101, 202, 137, 15, 30, 60, 120, 240, 253, 231, 211, 187, 107, 214, 177, 127, 254, 225, 223, 163, 91, 182, 113, 226, 217, 175, 67, 134, 17, 34, 68, 136, 13, 26, 52, 104, 208, 189, 103, 206, 129, 31, 62, 124, 248, 237, 199, 147, 59, 118, 236, 197, 151, 51, 102, 204, 133, 23, 46, 92, 184, 109, 218, 169, 79, 158, 33, 66, 132, 21, 42, 84, 168, 77, 154, 41, 82, 164, 85, 170, 73, 146, 57, 114, 228, 213, 183, 115, 230, 209, 191, 99, 198, 145, 63, 126, 252, 229, 215, 179, 123, 246, 241, 255, 227, 219, 171, 75, 150, 49, 98, 196, 149, 55, 110, 220, 165, 87, 174, 65, 130, 25, 50, 100, 200, 141, 7, 14, 28, 56, 112, 224, 221, 167, 83, 166, 81, 162, 89, 178, 121, 242, 249, 239, 195, 155, 43, 86, 172, 69, 138, 9, 18, 36, 72, 144, 61, 122, 244, 245, 247, 243, 251, 235, 203, 139, 11, 22, 44, 88, 176, 125, 250, 233, 207, 131, 27, 54, 108, 216, 173, 71, 142, 1,] #: This table contains the antilog and values used in GF(256) arithmetic. #: They are used to generate error correction codes for QR Codes. #: This table is taken from: #: #: http://www.thonky.com/qr-code-tutorial/log-antilog-table/ galois_antilog = [ None, 0, 1, 25, 2, 50, 26, 198, 3, 223, 51, 238, 27, 104, 199, 75, 4, 100, 224, 14, 52, 141, 239, 129, 28, 193, 105, 248, 200, 8, 76, 113, 5, 138, 101, 47, 225, 36, 15, 33, 53, 147, 142, 218, 240, 18, 130, 69, 29, 181, 194, 125, 106, 39, 249, 185, 201, 154, 9, 120, 77, 228, 114, 166, 6, 191, 139, 98, 102, 221, 48, 253, 226, 152, 37, 179, 16, 145, 34, 136, 54, 208, 148, 206, 143, 150, 219, 189, 241, 210, 19, 92, 131, 56, 70, 64, 30, 66, 182, 163, 195, 72, 126, 110, 107, 58, 40, 84, 250, 133, 186, 61, 202, 94, 155, 159, 10, 21, 121, 43, 78, 212, 229, 172, 115, 243, 167, 87, 7, 112, 192, 247, 140, 128, 99, 13, 103, 74, 222, 237, 49, 197, 254, 24, 227, 165, 153, 119, 38, 184, 180, 124, 17, 68, 146, 217, 35, 32, 137, 46, 55, 63, 209, 91, 149, 188, 207, 205, 144, 135, 151, 178, 220, 252, 190, 97, 242, 86, 211, 171, 20, 42, 93, 158, 132, 60, 57, 83, 71, 109, 65, 162, 31, 45, 67, 216, 183, 123, 164, 118, 196, 23, 73, 236, 127, 12, 111, 246, 108, 161, 59, 82, 41, 157, 85, 170, 251, 96, 134, 177, 187, 204, 62, 90, 203, 89, 95, 176, 156, 169, 160, 81, 11, 245, 22, 235, 122, 117, 44, 215, 79, 174, 213, 233, 230, 231, 173, 232, 116, 214, 244, 234, 168, 80, 88, 175,] #: This table contains the coordinates for the position adjustment patterns. #: The index of the table corresponds to the QR Code's version number. #: This table is taken from: #: #: http://www.thonky.com/qr-code-tutorial/part-3-mask-pattern/ position_adjustment = [ None, #There is not version 0 None, #Version 1 does not need adjustment [6, 18, ], [6, 22, ], [6, 26, ], [6, 30, ], [6, 34, ], [6, 22, 38, ], [6, 24, 42, ], [6, 26, 46, ], [6, 28, 50, ], [6, 30, 54, ], [6, 32, 58, ], [6, 34, 62, ], [6, 26, 46, 66, ], [6, 26, 48, 70, ], [6, 26, 50, 74, ], [6, 30, 54, 78, ], [6, 30, 56, 82, ], [6, 30, 58, 86, ], [6, 34, 62, 90, ], [6, 28, 50, 72, 94, ], [6, 26, 50, 74, 98, ], [6, 30, 54, 78, 102, ], [6, 28, 54, 80, 106, ], [6, 32, 58, 84, 110, ], [6, 30, 58, 86, 114, ], [6, 34, 62, 90, 118, ], [6, 26, 50, 74, 98, 122, ], [6, 30, 54, 78, 102, 126, ], [6, 26, 52, 78, 104, 130, ], [6, 30, 56, 82, 108, 134, ], [6, 34, 60, 86, 112, 138, ], [6, 30, 58, 86, 114, 142, ], [6, 34, 62, 90, 118, 146, ], [6, 30, 54, 78, 102, 126, 150, ], [6, 24, 50, 76, 102, 128, 154, ], [6, 28, 54, 80, 106, 132, 158, ], [6, 32, 58, 84, 110, 136, 162, ], [6, 26, 54, 82, 110, 138, 166, ], [6, 30, 58, 86, 114, 142, 170, ], ] #: This table specifies the bit pattern to be added to a QR Code's #: image to specify what version the code is. Note, this pattern #: is not used for versions 1-6. This table is taken from: #: #: http://www.thonky.com/qr-code-tutorial/part-3-mask-pattern/ version_pattern = [None, None, None, None, None, None, None, #0-6 '000111110010010100', '001000010110111100', '001001101010011001', '001010010011010011', '001011101111110110', '001100011101100010', '001101100001000111', '001110011000001101', '001111100100101000', '010000101101111000', '010001010001011101', '010010101000010111', '010011010100110010', '010100100110100110', '010101011010000011', '010110100011001001', '010111011111101100', '011000111011000100', '011001000111100001', '011010111110101011', '011011000010001110', '011100110000011010', '011101001100111111', '011110110101110101', '011111001001010000', '100000100111010101', '100001011011110000', '100010100010111010', '100011011110011111', '100100101100001011', '100101010000101110', '100110101001100100', '100111010101000001', '101000110001101001' ] #: This table contains the bit fields needed to specify the error code level and #: mask pattern used by a QR Code. This table is take from: #: #: http://www.thonky.com/qr-code-tutorial/part-3-mask-pattern/ type_bits = { 'L': { 0: '111011111000100', 1: '111001011110011', 2: '111110110101010', 3: '111100010011101', 4: '110011000101111', 5: '110001100011000', 6: '110110001000001', 7: '110100101110110', }, 'M': { 0: '101010000010010', 1: '101000100100101', 2: '101111001111100', 3: '101101101001011', 4: '100010111111001', 5: '100000011001110', 6: '100111110010111', 7: '100101010100000', }, 'Q': { 0: '011010101011111', 1: '011000001101000', 2: '011111100110001', 3: '011101000000110', 4: '010010010110100', 5: '010000110000011', 6: '010111011011010', 7: '010101111101101', }, 'H': { 0: '001011010001001', 1: '001001110111110', 2: '001110011100111', 3: '001100111010000', 4: '000011101100010', 5: '000001001010101', 6: '000110100001100', 7: '000100000111011', }, } #: This table contains *functions* to compute whether to change current bit when #: creating the masks. All of the functions in the table return a boolean value. #: A True result means you should add the bit to the QR Code exactly as is. A #: False result means you should add the opposite bit. This table was taken #: from: #: #: http://www.thonky.com/qr-code-tutorial/mask-patterns/ mask_patterns = [ lambda row, col: (row + col) % 2 == 0, lambda row, col: row % 2 == 0, lambda row, col: col % 3 == 0, lambda row, col: (row + col) % 3 == 0, lambda row, col: ((row // 2) + (col // 3)) % 2 == 0, lambda row, col: ((row * col) % 2) + ((row * col) % 3) == 0, lambda row, col: (((row * col) % 2) + ((row * col) % 3)) % 2 == 0, lambda row, col: (((row + col) % 2) + ((row * col) % 3)) % 2 == 0] #: This is a table of ASCII escape code for terminal colors. QR codes #: are drawn using a space with a colored background. Hence, only #: codes affecting background colors have been added. #: http://misc.flogisoft.com/bash/tip_colors_and_formatting term_colors = { 'default': 49, 'background': 49, 'reverse': 7, 'reversed': 7, 'inverse': 7, 'inverted': 7, 'black': 40, 'red': 41, 'green': 42, 'yellow': 43, 'blue': 44, 'magenta': 45, 'cyan': 46, 'light gray': 47, 'light grey': 47, 'dark gray': 100, 'dark grey': 100, 'light red': 101, 'light green': 102, 'light blue': 103, 'light yellow': 104, 'light magenta': 105, 'light cyan': 106, 'white': 107 }
en
0.746835
# -*- coding: utf-8 -*- # Copyright (c) 2013, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This module lists out all of the tables needed to create a QR code. If you are viewing this in the HTML documentation, I recommend reading the actual file instead. The formating for the tables is much more readable. #: This defines the QR Code's 'mode' which sets what #: type of code it is along with its size. #: This defines the amount of error correction. The dictionary #: allows the user to specify this in several ways. #: This is a dictionary holds how long the "data length" field is for #: each version and mode of the QR Code. #: QR Codes uses a unique ASCII-like table for the 'alphanumeric' mode. #: This is a dictionary representing that unique table, where the #: keys are the possible characters in the data and the values #: are the character's numeric representation. #: This array specifies the size of a QR Code in pixels. These numbers are #: defined in the standard. The indexes correspond to the QR Code's #: version number. This array was taken from: #: #: http://www.denso-wave.com/qrcode/vertable1-e.html #: This dictionary lists the data capacity for all possible QR Codes. #: This dictionary is organized where the first key corresponds to the #: QR Code version number. The next key corresponds to the error #: correction level, see error. The final key corresponds to #: the mode number, see modes. The zero mode number represents the #: possible "data bits." This table was taken from: #: #: http://www.denso-wave.com/qrcode/vertable1-e.html #: This table defines the "Error Correction Code Words and Block Information." #: The table lists the number of error correction words that are required #: to be generated for each version and error correction level. The table #: is accessed by first using the version number as a key and then the #: error level. The array values correspond to these columns from the source #: table: #: #: +----------------------------+ #: |0 | EC Code Words Per Block | #: +----------------------------+ #: |1 | Block 1 Count | #: +----------------------------+ #: |2 | Block 1 Data Code Words | #: +----------------------------+ #: |3 | Block 2 Count | #: +----------------------------+ #: |4 | Block 2 Data Code Words | #: +----------------------------+ #: #: This table was taken from: #: #: http://www.thonky.com/qr-code-tutorial/error-correction-table/ #: This table lists all of the generator polynomials used by QR Codes. #: They are indexed by the number of "ECC Code Words" (see table above). #: This table is taken from: #: #: http://www.matchadesign.com/blog/qr-code-demystified-part-4/ #: This table contains the log and values used in GF(256) arithmetic. #: They are used to generate error correction codes for QR Codes. #: This table is taken from: #: #: vhttp://www.thonky.com/qr-code-tutorial/log-antilog-table/ #: This table contains the antilog and values used in GF(256) arithmetic. #: They are used to generate error correction codes for QR Codes. #: This table is taken from: #: #: http://www.thonky.com/qr-code-tutorial/log-antilog-table/ #: This table contains the coordinates for the position adjustment patterns. #: The index of the table corresponds to the QR Code's version number. #: This table is taken from: #: #: http://www.thonky.com/qr-code-tutorial/part-3-mask-pattern/ #There is not version 0 #Version 1 does not need adjustment #: This table specifies the bit pattern to be added to a QR Code's #: image to specify what version the code is. Note, this pattern #: is not used for versions 1-6. This table is taken from: #: #: http://www.thonky.com/qr-code-tutorial/part-3-mask-pattern/ #0-6 #: This table contains the bit fields needed to specify the error code level and #: mask pattern used by a QR Code. This table is take from: #: #: http://www.thonky.com/qr-code-tutorial/part-3-mask-pattern/ #: This table contains *functions* to compute whether to change current bit when #: creating the masks. All of the functions in the table return a boolean value. #: A True result means you should add the bit to the QR Code exactly as is. A #: False result means you should add the opposite bit. This table was taken #: from: #: #: http://www.thonky.com/qr-code-tutorial/mask-patterns/ #: This is a table of ASCII escape code for terminal colors. QR codes #: are drawn using a space with a colored background. Hence, only #: codes affecting background colors have been added. #: http://misc.flogisoft.com/bash/tip_colors_and_formatting
1.031432
1
fluent_contents/plugins/oembeditem/content_plugins.py
jayvdb/django-fluent-contents
0
6631298
""" Definition of the plugin. """ import re from fluent_contents.extensions import ContentPlugin, plugin_pool from fluent_contents.plugins.oembeditem.models import OEmbedItem re_safe = re.compile(r"[^\w_-]") @plugin_pool.register class OEmbedPlugin(ContentPlugin): model = OEmbedItem category = ContentPlugin.MEDIA admin_form_template = "admin/fluent_contents/plugins/oembeditem/admin_form.html" render_template = "fluent_contents/plugins/oembed/default.html" #: Custom render template render_template_base = "fluent_contents/plugins/oembed/{type}.html" fieldsets = ( (None, {"fields": ("embed_url", ("embed_max_width", "embed_max_height"))}), ) class Media: css = {"screen": ("fluent_contents/plugins/oembed/oembed_admin.css",)} def get_render_template(self, request, instance, **kwargs): """ Allow to style the item based on the type. """ safe_filename = re_safe.sub("", instance.type or "default") return [ self.render_template_base.format(type=safe_filename), self.render_template, ]
""" Definition of the plugin. """ import re from fluent_contents.extensions import ContentPlugin, plugin_pool from fluent_contents.plugins.oembeditem.models import OEmbedItem re_safe = re.compile(r"[^\w_-]") @plugin_pool.register class OEmbedPlugin(ContentPlugin): model = OEmbedItem category = ContentPlugin.MEDIA admin_form_template = "admin/fluent_contents/plugins/oembeditem/admin_form.html" render_template = "fluent_contents/plugins/oembed/default.html" #: Custom render template render_template_base = "fluent_contents/plugins/oembed/{type}.html" fieldsets = ( (None, {"fields": ("embed_url", ("embed_max_width", "embed_max_height"))}), ) class Media: css = {"screen": ("fluent_contents/plugins/oembed/oembed_admin.css",)} def get_render_template(self, request, instance, **kwargs): """ Allow to style the item based on the type. """ safe_filename = re_safe.sub("", instance.type or "default") return [ self.render_template_base.format(type=safe_filename), self.render_template, ]
en
0.719456
Definition of the plugin. #: Custom render template Allow to style the item based on the type.
2.377124
2
kale/queue_selector.py
ORIGINALLIFE/ndkale
210
6631299
"""Module containing queue selection algorithms. How to implement your own queue selection algorithm? class MyQueueSelector(SelectQueueBase): def get_queue(self): # Get a list of all queues defined in the YAML file that is # specified at QUEUE_CONFIG in settings file. # # You may use these two properties of a queue object to select # a queue: # # - name: string of queue name # - priority: integer of queue priority; larger value, # higher priority queues = self.queue_info.get_queues() # Implement your algorithm here # ... # Eventually, return one of queue object from queues return queue """ from __future__ import absolute_import import random from six.moves import range class SelectQueueBase(object): """Base class for selecting a queue. The only method that needs to be implemented: get_queue: it's called for each task processing cycle on task worker. """ def __init__(self, queue_info): self.queue_info = queue_info def get_queue(self, *args, **kwargs): """Returns a TaskQueue object.""" raise NotImplementedError('Base class cannot be used directly.') class Random(SelectQueueBase): """Randomly selects a queue without considering priority.""" def get_queue(self): queues = self.queue_info.get_queues() return random.choice(queues) class Lottery(SelectQueueBase): """Use lottery scheduling algorithm to select a queue based on priority.""" @staticmethod def _run_lottery(queues): """Draw lottery from a list of candidate queues. :param list[TaskQueue] queues: a list of candidate queues. :return: A TaskQueue object that wins lottery. If it fails (e.g., invalid priority of queues), it returns None. :rtype: TaskQueue """ tickets = {} total_tickets = 0 for queue in queues: # Queue priority should be within 1 to 100. if queue.priority < 1 or queue.priority > 100: continue priority = queue.priority low = total_tickets total_tickets += priority high = total_tickets tickets[queue.name] = (low, high) # [0, total_tickets) try: number = random.randrange(0, total_tickets) for queue in queues: if number >= tickets[ queue.name][0] and number < tickets[queue.name][1]: return queue except ValueError: return None # Something wrong happens return None def get_queue(self, *args, **kwargs): return self._run_lottery(self.queue_info.get_queues()) class HighestPriorityFirst(SelectQueueBase): """Highest priority first. Get the highest priority non-empty queue first. If all queues are empty, get the highest priority empty queue. """ def get_queue(self, *args, **kwargs): queue = self.queue_info.get_highest_priority_queue_that_needs_work() if queue: return queue queues = self.queue_info.get_queues() queues.sort(key=lambda x: x.priority, reverse=True) return queues[0] class HighestPriorityLottery(Lottery): """Highest priority first + lottery. Get highest priority non-empty queue first. If all queues are empty, run lottery on empty queues. """ def get_queue(self, *args, **kwargs): queue = self.queue_info.get_highest_priority_queue_that_needs_work() if queue: return queue return self._run_lottery(self.queue_info.get_queues()) class LotteryLottery(Lottery): """Run lottery on both non-empty and empty queues. Run lottery on all queues. When we get an non-empty queue, return immediately. If we get 10 empty queues in a row, run lottery again, and long poll on whatever queue we get. """ def get_queue(self, *args, **kwargs): retry_empty_queue_count = 10 for i in range(retry_empty_queue_count): queue = self._run_lottery(self.queue_info.get_queues()) if self.queue_info.does_queue_need_work(queue): return queue return self._run_lottery(self.queue_info.get_queues()) class ReducedLottery(Lottery): """Improved lottery scheduling. Limiting the lottery pool by removing known empty queues. When we get an non-empty queue, return immediately. If we get an empty queue, we'll remove this empty queue out of the lottery pool and rerun lottery again. If all queues are empty, run lottery on all queues, and long poll on whatever queue we get. """ def get_queue(self, *args, **kwargs): # Make a new copy of list, so no side effect on queue_info.queues candidate_queues = self.queue_info.get_queues()[:] while len(candidate_queues) > 0: queue = self._run_lottery(candidate_queues) if self.queue_info.does_queue_need_work(queue): return queue else: candidate_queues.remove(queue) return self._run_lottery(self.queue_info.get_queues())
"""Module containing queue selection algorithms. How to implement your own queue selection algorithm? class MyQueueSelector(SelectQueueBase): def get_queue(self): # Get a list of all queues defined in the YAML file that is # specified at QUEUE_CONFIG in settings file. # # You may use these two properties of a queue object to select # a queue: # # - name: string of queue name # - priority: integer of queue priority; larger value, # higher priority queues = self.queue_info.get_queues() # Implement your algorithm here # ... # Eventually, return one of queue object from queues return queue """ from __future__ import absolute_import import random from six.moves import range class SelectQueueBase(object): """Base class for selecting a queue. The only method that needs to be implemented: get_queue: it's called for each task processing cycle on task worker. """ def __init__(self, queue_info): self.queue_info = queue_info def get_queue(self, *args, **kwargs): """Returns a TaskQueue object.""" raise NotImplementedError('Base class cannot be used directly.') class Random(SelectQueueBase): """Randomly selects a queue without considering priority.""" def get_queue(self): queues = self.queue_info.get_queues() return random.choice(queues) class Lottery(SelectQueueBase): """Use lottery scheduling algorithm to select a queue based on priority.""" @staticmethod def _run_lottery(queues): """Draw lottery from a list of candidate queues. :param list[TaskQueue] queues: a list of candidate queues. :return: A TaskQueue object that wins lottery. If it fails (e.g., invalid priority of queues), it returns None. :rtype: TaskQueue """ tickets = {} total_tickets = 0 for queue in queues: # Queue priority should be within 1 to 100. if queue.priority < 1 or queue.priority > 100: continue priority = queue.priority low = total_tickets total_tickets += priority high = total_tickets tickets[queue.name] = (low, high) # [0, total_tickets) try: number = random.randrange(0, total_tickets) for queue in queues: if number >= tickets[ queue.name][0] and number < tickets[queue.name][1]: return queue except ValueError: return None # Something wrong happens return None def get_queue(self, *args, **kwargs): return self._run_lottery(self.queue_info.get_queues()) class HighestPriorityFirst(SelectQueueBase): """Highest priority first. Get the highest priority non-empty queue first. If all queues are empty, get the highest priority empty queue. """ def get_queue(self, *args, **kwargs): queue = self.queue_info.get_highest_priority_queue_that_needs_work() if queue: return queue queues = self.queue_info.get_queues() queues.sort(key=lambda x: x.priority, reverse=True) return queues[0] class HighestPriorityLottery(Lottery): """Highest priority first + lottery. Get highest priority non-empty queue first. If all queues are empty, run lottery on empty queues. """ def get_queue(self, *args, **kwargs): queue = self.queue_info.get_highest_priority_queue_that_needs_work() if queue: return queue return self._run_lottery(self.queue_info.get_queues()) class LotteryLottery(Lottery): """Run lottery on both non-empty and empty queues. Run lottery on all queues. When we get an non-empty queue, return immediately. If we get 10 empty queues in a row, run lottery again, and long poll on whatever queue we get. """ def get_queue(self, *args, **kwargs): retry_empty_queue_count = 10 for i in range(retry_empty_queue_count): queue = self._run_lottery(self.queue_info.get_queues()) if self.queue_info.does_queue_need_work(queue): return queue return self._run_lottery(self.queue_info.get_queues()) class ReducedLottery(Lottery): """Improved lottery scheduling. Limiting the lottery pool by removing known empty queues. When we get an non-empty queue, return immediately. If we get an empty queue, we'll remove this empty queue out of the lottery pool and rerun lottery again. If all queues are empty, run lottery on all queues, and long poll on whatever queue we get. """ def get_queue(self, *args, **kwargs): # Make a new copy of list, so no side effect on queue_info.queues candidate_queues = self.queue_info.get_queues()[:] while len(candidate_queues) > 0: queue = self._run_lottery(candidate_queues) if self.queue_info.does_queue_need_work(queue): return queue else: candidate_queues.remove(queue) return self._run_lottery(self.queue_info.get_queues())
en
0.795965
Module containing queue selection algorithms. How to implement your own queue selection algorithm? class MyQueueSelector(SelectQueueBase): def get_queue(self): # Get a list of all queues defined in the YAML file that is # specified at QUEUE_CONFIG in settings file. # # You may use these two properties of a queue object to select # a queue: # # - name: string of queue name # - priority: integer of queue priority; larger value, # higher priority queues = self.queue_info.get_queues() # Implement your algorithm here # ... # Eventually, return one of queue object from queues return queue Base class for selecting a queue. The only method that needs to be implemented: get_queue: it's called for each task processing cycle on task worker. Returns a TaskQueue object. Randomly selects a queue without considering priority. Use lottery scheduling algorithm to select a queue based on priority. Draw lottery from a list of candidate queues. :param list[TaskQueue] queues: a list of candidate queues. :return: A TaskQueue object that wins lottery. If it fails (e.g., invalid priority of queues), it returns None. :rtype: TaskQueue # Queue priority should be within 1 to 100. # [0, total_tickets) # Something wrong happens Highest priority first. Get the highest priority non-empty queue first. If all queues are empty, get the highest priority empty queue. Highest priority first + lottery. Get highest priority non-empty queue first. If all queues are empty, run lottery on empty queues. Run lottery on both non-empty and empty queues. Run lottery on all queues. When we get an non-empty queue, return immediately. If we get 10 empty queues in a row, run lottery again, and long poll on whatever queue we get. Improved lottery scheduling. Limiting the lottery pool by removing known empty queues. When we get an non-empty queue, return immediately. If we get an empty queue, we'll remove this empty queue out of the lottery pool and rerun lottery again. If all queues are empty, run lottery on all queues, and long poll on whatever queue we get. # Make a new copy of list, so no side effect on queue_info.queues
3.724429
4
python/helpers/epydoc/gui.py
truthiswill/intellij-community
339
6631300
<filename>python/helpers/epydoc/gui.py #!/usr/bin/env python # # objdoc: epydoc command-line interface # <NAME> # # Created [03/15/02 10:31 PM] # $Id: gui.py 646 2004-03-19 19:01:37Z edloper $ # """ Graphical interface to epydoc. This interface might be useful for systems where it's inconvenient to use the command-line interface (such as Windows). It supports many (but not all) of the features that are supported by the command-line interface. It also supports loading and saving of X{project files}, which store a set of related modules, and the options that should be used to generate the documentation for those modules. Usage:: epydocgui [OPTIONS] [FILE.prj | MODULES...] FILE.prj An epydoc GUI project file. MODULES... A list of Python modules to document. -V, --version Print the version of epydoc. -h, -?, --help, --usage Display this usage message --debug Do not suppress error messages @todo: Use ini-style project files, rather than pickles (using the same format as the CLI). """ __docformat__ = 'epytext en' import sys, os.path, re, glob from Tkinter import * from tkFileDialog import askopenfilename, asksaveasfilename from thread import start_new_thread, exit_thread from pickle import dump, load # askdirectory is only defined in python 2.2+; fall back on # asksaveasfilename if it's not available. try: from tkFileDialog import askdirectory except: askdirectory = None # Include support for Zope, if it's available. try: import ZODB except: pass ##///////////////////////////////////////////////////////////////////////// ## CONSTANTS ##///////////////////////////////////////////////////////////////////////// DEBUG = 0 # Colors for tkinter display BG_COLOR='#e0e0e0' ACTIVEBG_COLOR='#e0e0e0' TEXT_COLOR='black' ENTRYSELECT_COLOR = ACTIVEBG_COLOR SELECT_COLOR = '#208070' MESSAGE_COLOR = '#000060' ERROR_COLOR = '#600000' GUIERROR_COLOR = '#600000' WARNING_COLOR = '#604000' HEADER_COLOR = '#000000' # Convenience dictionaries for specifying widget colors COLOR_CONFIG = {'background':BG_COLOR, 'highlightcolor': BG_COLOR, 'foreground':TEXT_COLOR, 'highlightbackground': BG_COLOR} ENTRY_CONFIG = {'background':BG_COLOR, 'highlightcolor': BG_COLOR, 'foreground':TEXT_COLOR, 'highlightbackground': BG_COLOR, 'selectbackground': ENTRYSELECT_COLOR, 'selectforeground': TEXT_COLOR} SB_CONFIG = {'troughcolor':BG_COLOR, 'activebackground':BG_COLOR, 'background':BG_COLOR, 'highlightbackground':BG_COLOR} LISTBOX_CONFIG = {'highlightcolor': BG_COLOR, 'highlightbackground': BG_COLOR, 'foreground':TEXT_COLOR, 'selectforeground': TEXT_COLOR, 'selectbackground': ACTIVEBG_COLOR, 'background':BG_COLOR} BUTTON_CONFIG = {'background':BG_COLOR, 'highlightthickness':0, 'padx':4, 'highlightbackground': BG_COLOR, 'foreground':TEXT_COLOR, 'highlightcolor': BG_COLOR, 'activeforeground': TEXT_COLOR, 'activebackground': ACTIVEBG_COLOR, 'pady':0} CBUTTON_CONFIG = {'background':BG_COLOR, 'highlightthickness':0, 'padx':4, 'highlightbackground': BG_COLOR, 'foreground':TEXT_COLOR, 'highlightcolor': BG_COLOR, 'activeforeground': TEXT_COLOR, 'activebackground': ACTIVEBG_COLOR, 'pady':0, 'selectcolor': SELECT_COLOR} SHOWMSG_CONFIG = CBUTTON_CONFIG.copy() SHOWMSG_CONFIG['foreground'] = MESSAGE_COLOR SHOWWRN_CONFIG = CBUTTON_CONFIG.copy() SHOWWRN_CONFIG['foreground'] = WARNING_COLOR SHOWERR_CONFIG = CBUTTON_CONFIG.copy() SHOWERR_CONFIG['foreground'] = ERROR_COLOR # Colors for the progress bar PROGRESS_HEIGHT = 16 PROGRESS_WIDTH = 200 PROGRESS_BG='#305060' PROGRESS_COLOR1 = '#30c070' PROGRESS_COLOR2 = '#60ffa0' PROGRESS_COLOR3 = '#106030' # On tkinter canvases, where's the zero coordinate? if sys.platform.lower().startswith('win'): DX = 3; DY = 3 DH = 0; DW = 7 else: DX = 1; DY = 1 DH = 1; DW = 3 # How much of the progress is in each subtask? IMPORT_PROGRESS = 0.1 BUILD_PROGRESS = 0.2 WRITE_PROGRESS = 1.0 - BUILD_PROGRESS - IMPORT_PROGRESS ##///////////////////////////////////////////////////////////////////////// ## IMAGE CONSTANTS ##///////////////////////////////////////////////////////////////////////// UP_GIF = '''\ R0lGODlhCwAMALMAANnZ2QDMmQCZZgBmZgAAAAAzM////////wAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAACH5BAEAAAAALAAAAAALAAwAAAQjEMhJKxCW4gzCIJxXZIEwFGDlDadqsii1sq1U0nA64+ON 5xEAOw== ''' DOWN_GIF = '''\ R0lGODlhCwAMALMAANnZ2QDMmQCZZgBmZgAAAAAzM////////wAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAACH5BAEAAAAALAAAAAALAAwAAAQmEIQxgLVUCsppsVPngVtXEFfIfWk5nBe4xuSL0tKLy/cu 7JffJQIAOw== ''' LEFT_GIF='''\ R0lGODlhDAALAKIAANnZ2QDMmQCZZgBmZgAAAAAzM////////yH5BAEAAAAALAAAAAAMAAsAAAM4 CLocgaCrESiDoBshOAoAgBEyMzgAEIGCowsiOLoLgEBVOLoIqlSFo4OgC1RYM4Ogq1RYg6DLVJgA Ow== ''' RIGHT_GIF='''\ R0lGODlhDAALAKIAANnZ2QDMmQBmZgCZZgAzMwAAAP///////yH5BAEAAAAALAAAAAAMAAsAAAM5 GIGgyzIYgaCrIigTgaALIigyEQiqKLoTgaAoujuDgKJLVAgqIoJEBQAIIkKEhaArRFgIukqFoMsJ ADs= ''' ##///////////////////////////////////////////////////////////////////////// ## MessageIO ##///////////////////////////////////////////////////////////////////////// from epydoc import log from epydoc.util import wordwrap class GUILogger(log.Logger): _STAGES = [40, 7, 1, 3, 1, 30, 1, 2, 100] def __init__(self, progress, cancel): self._progress = progress self._cancel = cancel self.clear() def clear(self): self._messages = [] self._n = 0 self._stage = 0 self._message_blocks = [] def log(self, level, message): message = wordwrap(str(message)).rstrip() + '\n' if self._message_blocks: self._message_blocks[-1][-1].append( (level, message) ) else: self._messages.append( (level, message) ) def start_block(self, header): self._message_blocks.append( (header, []) ) def end_block(self): header, messages = self._message_blocks.pop() if messages: self._messages.append( ('uline', ' '*75+'\n') ) self.log('header', header) self._messages += messages self._messages.append( ('uline', ' '*75+'\n') ) def start_progress(self, header=None): self.log(log.INFO, header) self._stage += 1 def end_progress(self): pass def progress(self, percent, message=''): if self._cancel[0]: exit_thread() i = self._stage - 1 p = ((sum(self._STAGES[:i]) + percent*self._STAGES[i]) / float(sum(self._STAGES))) self._progress[0] = p def read(self): if self._n >= len(self._messages): return None, None else: self._n += 1 return self._messages[self._n-1] ##///////////////////////////////////////////////////////////////////////// ## THREADED DOCUMENTER ##///////////////////////////////////////////////////////////////////////// def document(options, cancel, done): """ Create the documentation for C{modules}, using the options specified by C{options}. C{document} is designed to be started in its own thread by L{EpydocGUI._go}. @param options: The options to use for generating documentation. This includes keyword options that can be given to L{docwriter.html.HTMLWriter}, as well as the option C{target}, which controls where the output is written to. @type options: C{dictionary} """ from epydoc.docwriter.html import HTMLWriter from epydoc.docbuilder import build_doc_index import epydoc.docstringparser # Set the default docformat. docformat = options.get('docformat', 'epytext') epydoc.docstringparser.DEFAULT_DOCFORMAT = docformat try: parse = options['introspect_or_parse'] in ('parse', 'both') introspect = options['introspect_or_parse'] in ('introspect', 'both') docindex = build_doc_index(options['modules'], parse, introspect) html_writer = HTMLWriter(docindex, **options) log.start_progress('Writing HTML docs to %r' % options['target']) html_writer.write(options['target']) log.end_progress() # We're done. log.warning('Finished!') done[0] = 'done' except SystemExit: # Cancel. log.error('Cancelled!') done[0] ='cancel' raise except Exception, e: # We failed. log.error('Internal error: %s' % e) done[0] ='cancel' raise except: # We failed. log.error('Internal error!') done[0] ='cancel' raise ##///////////////////////////////////////////////////////////////////////// ## GUI ##///////////////////////////////////////////////////////////////////////// class EpydocGUI: """ A graphical user interace to epydoc. """ def __init__(self): self._afterid = 0 self._progress = [None] self._cancel = [0] self._filename = None self._init_dir = None # Store a copy of sys.modules, so that we can restore it # later. This is useful for making sure that we reload # everything when we re-build its documentation. This will # *not* reload the modules that are present when the EpydocGUI # is created, but that should only contain some builtins, some # epydoc modules, Tkinter, pickle, and thread.. self._old_modules = sys.modules.keys() # Create the main window. self._root = Tk() self._root['background']=BG_COLOR self._root.bind('<Control-q>', self.destroy) self._root.bind('<Alt-q>', self.destroy) self._root.bind('<Alt-x>', self.destroy) self._root.bind('<Control-x>', self.destroy) #self._root.bind('<Control-d>', self.destroy) self._root.title('Epydoc') self._rootframe = Frame(self._root, background=BG_COLOR, border=2, relief='raised') self._rootframe.pack(expand=1, fill='both', padx=2, pady=2) # Set up the basic frames. Do not pack the options frame or # the messages frame; the GUI has buttons to expand them. leftframe = Frame(self._rootframe, background=BG_COLOR) leftframe.pack(expand=1, fill='both', side='left') optsframe = Frame(self._rootframe, background=BG_COLOR) mainframe = Frame(leftframe, background=BG_COLOR) mainframe.pack(expand=1, fill='both', side='top') ctrlframe = Frame(mainframe, background=BG_COLOR) ctrlframe.pack(side="bottom", fill='x', expand=0) msgsframe = Frame(leftframe, background=BG_COLOR) self._optsframe = optsframe self._msgsframe = msgsframe # Initialize all the frames, etc. self._init_menubar() self._init_progress_bar(mainframe) self._init_module_list(mainframe) self._init_options(optsframe, ctrlframe) self._init_messages(msgsframe, ctrlframe) self._init_bindings() # Set up logging self._logger = GUILogger(self._progress, self._cancel) log.register_logger(self._logger) # Open the messages pane by default. self._messages_toggle() ## For testing options: #self._options_toggle() def _init_menubar(self): menubar = Menu(self._root, borderwidth=2, background=BG_COLOR, activebackground=BG_COLOR) filemenu = Menu(menubar, tearoff=0) filemenu.add_command(label='New Project', underline=0, command=self._new, accelerator='Ctrl-n') filemenu.add_command(label='Open Project', underline=0, command=self._open, accelerator='Ctrl-o') filemenu.add_command(label='Save Project', underline=0, command=self._save, accelerator='Ctrl-s') filemenu.add_command(label='Save As..', underline=5, command=self._saveas, accelerator='Ctrl-a') filemenu.add_separator() filemenu.add_command(label='Exit', underline=1, command=self.destroy, accelerator='Ctrl-x') menubar.add_cascade(label='File', underline=0, menu=filemenu) gomenu = Menu(menubar, tearoff=0) gomenu.add_command(label='Run Epydoc', command=self._open, underline=0, accelerator='Alt-g') menubar.add_cascade(label='Run', menu=gomenu, underline=0) self._root.config(menu=menubar) def _init_module_list(self, mainframe): mframe1 = Frame(mainframe, relief='groove', border=2, background=BG_COLOR) mframe1.pack(side="top", fill='both', expand=1, padx=4, pady=3) l = Label(mframe1, text="Modules to document:", justify='left', **COLOR_CONFIG) l.pack(side='top', fill='none', anchor='nw', expand=0) mframe2 = Frame(mframe1, background=BG_COLOR) mframe2.pack(side="top", fill='both', expand=1) mframe3 = Frame(mframe1, background=BG_COLOR) mframe3.pack(side="bottom", fill='x', expand=0) self._module_list = Listbox(mframe2, width=80, height=10, selectmode='multiple', **LISTBOX_CONFIG) self._module_list.pack(side="left", fill='both', expand=1) sb = Scrollbar(mframe2, orient='vertical',**SB_CONFIG) sb['command']=self._module_list.yview sb.pack(side='right', fill='y') self._module_list.config(yscrollcommand=sb.set) Label(mframe3, text="Add:", **COLOR_CONFIG).pack(side='left') self._module_entry = Entry(mframe3, **ENTRY_CONFIG) self._module_entry.pack(side='left', fill='x', expand=1) self._module_entry.bind('<Return>', self._entry_module) self._module_delete = Button(mframe3, text="Remove", command=self._delete_module, **BUTTON_CONFIG) self._module_delete.pack(side='right', expand=0, padx=2) self._module_browse = Button(mframe3, text="Browse", command=self._browse_module, **BUTTON_CONFIG) self._module_browse.pack(side='right', expand=0, padx=2) def _init_progress_bar(self, mainframe): pframe1 = Frame(mainframe, background=BG_COLOR) pframe1.pack(side="bottom", fill='x', expand=0) self._go_button = Button(pframe1, width=4, text='Start', underline=0, command=self._go, **BUTTON_CONFIG) self._go_button.pack(side='left', padx=4) pframe2 = Frame(pframe1, relief='groove', border=2, background=BG_COLOR) pframe2.pack(side="top", fill='x', expand=1, padx=4, pady=3) Label(pframe2, text='Progress:', **COLOR_CONFIG).pack(side='left') H = self._H = PROGRESS_HEIGHT W = self._W = PROGRESS_WIDTH c = self._canvas = Canvas(pframe2, height=H+DH, width=W+DW, background=PROGRESS_BG, border=0, selectborderwidth=0, relief='sunken', insertwidth=0, insertborderwidth=0, highlightbackground=BG_COLOR) self._canvas.pack(side='left', fill='x', expand=1, padx=4) self._r2 = c.create_rectangle(0,0,0,0, outline=PROGRESS_COLOR2) self._r3 = c.create_rectangle(0,0,0,0, outline=PROGRESS_COLOR3) self._r1 = c.create_rectangle(0,0,0,0, fill=PROGRESS_COLOR1, outline='') self._canvas.bind('<Configure>', self._configure) def _init_messages(self, msgsframe, ctrlframe): self._downImage = PhotoImage(master=self._root, data=DOWN_GIF) self._upImage = PhotoImage(master=self._root, data=UP_GIF) # Set up the messages control frame b1 = Button(ctrlframe, text="Messages", justify='center', command=self._messages_toggle, underline=0, highlightthickness=0, activebackground=BG_COLOR, border=0, relief='flat', padx=2, pady=0, **COLOR_CONFIG) b2 = Button(ctrlframe, image=self._downImage, relief='flat', border=0, command=self._messages_toggle, activebackground=BG_COLOR, **COLOR_CONFIG) self._message_button = b2 self._messages_visible = 0 b2.pack(side="left") b1.pack(side="left") f = Frame(msgsframe, background=BG_COLOR) f.pack(side='top', expand=1, fill='both') messages = Text(f, width=80, height=10, **ENTRY_CONFIG) messages['state'] = 'disabled' messages.pack(fill='both', expand=1, side='left') self._messages = messages # Add a scrollbar sb = Scrollbar(f, orient='vertical', **SB_CONFIG) sb.pack(fill='y', side='right') sb['command'] = messages.yview messages['yscrollcommand'] = sb.set # Set up some colorization tags messages.tag_config('error', foreground=ERROR_COLOR) messages.tag_config('warning', foreground=WARNING_COLOR) messages.tag_config('guierror', foreground=GUIERROR_COLOR) messages.tag_config('message', foreground=MESSAGE_COLOR) messages.tag_config('header', foreground=HEADER_COLOR) messages.tag_config('uline', underline=1) # Keep track of tag state.. self._in_header = 0 self._last_tag = 'error' # Add some buttons buttons = Frame(msgsframe, background=BG_COLOR) buttons.pack(side='bottom', fill='x') self._show_errors = IntVar(self._root) self._show_errors.set(1) self._show_warnings = IntVar(self._root) self._show_warnings.set(1) self._show_messages = IntVar(self._root) self._show_messages.set(0) Checkbutton(buttons, text='Show Messages', var=self._show_messages, command=self._update_msg_tags, **SHOWMSG_CONFIG).pack(side='left') Checkbutton(buttons, text='Show Warnings', var=self._show_warnings, command=self._update_msg_tags, **SHOWWRN_CONFIG).pack(side='left') Checkbutton(buttons, text='Show Errors', var=self._show_errors, command=self._update_msg_tags, **SHOWERR_CONFIG).pack(side='left') self._update_msg_tags() def _update_msg_tags(self, *e): elide_errors = not self._show_errors.get() elide_warnings = not self._show_warnings.get() elide_messages = not self._show_messages.get() elide_headers = elide_errors and elide_warnings self._messages.tag_config('error', elide=elide_errors) self._messages.tag_config('guierror', elide=elide_errors) self._messages.tag_config('warning', elide=elide_warnings) self._messages.tag_config('message', elide=elide_messages) self._messages.tag_config('header', elide=elide_headers) def _init_options(self, optsframe, ctrlframe): self._leftImage=PhotoImage(master=self._root, data=LEFT_GIF) self._rightImage=PhotoImage(master=self._root, data=RIGHT_GIF) # Set up the options control frame b1 = Button(ctrlframe, text="Options", justify='center', border=0, relief='flat', command=self._options_toggle, padx=2, underline=0, pady=0, highlightthickness=0, activebackground=BG_COLOR, **COLOR_CONFIG) b2 = Button(ctrlframe, image=self._rightImage, relief='flat', border=0, command=self._options_toggle, activebackground=BG_COLOR, **COLOR_CONFIG) self._option_button = b2 self._options_visible = 0 b2.pack(side="right") b1.pack(side="right") oframe2 = Frame(optsframe, relief='groove', border=2, background=BG_COLOR) oframe2.pack(side="right", fill='both', expand=0, padx=4, pady=3, ipadx=4) Label(oframe2, text="Project Options", font='helvetica -16', **COLOR_CONFIG).pack(anchor='w') oframe3 = Frame(oframe2, background=BG_COLOR) oframe3.pack(fill='x') oframe4 = Frame(oframe2, background=BG_COLOR) oframe4.pack(fill='x') oframe7 = Frame(oframe2, background=BG_COLOR) oframe7.pack(fill='x') div = Frame(oframe2, background=BG_COLOR, border=1, relief='sunk') div.pack(ipady=1, fill='x', padx=4, pady=2) Label(oframe2, text="Help File", font='helvetica -16', **COLOR_CONFIG).pack(anchor='w') oframe5 = Frame(oframe2, background=BG_COLOR) oframe5.pack(fill='x') div = Frame(oframe2, background=BG_COLOR, border=1, relief='sunk') div.pack(ipady=1, fill='x', padx=4, pady=2) Label(oframe2, text="CSS Stylesheet", font='helvetica -16', **COLOR_CONFIG).pack(anchor='w') oframe6 = Frame(oframe2, background=BG_COLOR) oframe6.pack(fill='x') #==================== oframe3 ==================== # -n NAME, --name NAME row = 0 l = Label(oframe3, text="Project Name:", **COLOR_CONFIG) l.grid(row=row, column=0, sticky='e') self._name_entry = Entry(oframe3, **ENTRY_CONFIG) self._name_entry.grid(row=row, column=1, sticky='ew', columnspan=3) # -u URL, --url URL row += 1 l = Label(oframe3, text="Project URL:", **COLOR_CONFIG) l.grid(row=row, column=0, sticky='e') self._url_entry = Entry(oframe3, **ENTRY_CONFIG) self._url_entry.grid(row=row, column=1, sticky='ew', columnspan=3) # -o DIR, --output DIR row += 1 l = Label(oframe3, text="Output Directory:", **COLOR_CONFIG) l.grid(row=row, column=0, sticky='e') self._out_entry = Entry(oframe3, **ENTRY_CONFIG) self._out_entry.grid(row=row, column=1, sticky='ew', columnspan=2) self._out_browse = Button(oframe3, text="Browse", command=self._browse_out, **BUTTON_CONFIG) self._out_browse.grid(row=row, column=3, sticky='ew', padx=2) #==================== oframe4 ==================== # --no-frames row = 0 self._frames_var = IntVar(self._root) self._frames_var.set(1) l = Label(oframe4, text="Generate a frame-based table of contents", **COLOR_CONFIG) l.grid(row=row, column=1, sticky='w') cb = Checkbutton(oframe4, var=self._frames_var, **CBUTTON_CONFIG) cb.grid(row=row, column=0, sticky='e') # --no-private row += 1 self._private_var = IntVar(self._root) self._private_var.set(1) l = Label(oframe4, text="Generate documentation for private objects", **COLOR_CONFIG) l.grid(row=row, column=1, sticky='w') cb = Checkbutton(oframe4, var=self._private_var, **CBUTTON_CONFIG) cb.grid(row=row, column=0, sticky='e') # --show-imports row += 1 self._imports_var = IntVar(self._root) self._imports_var.set(0) l = Label(oframe4, text="List imported classes and functions", **COLOR_CONFIG) l.grid(row=row, column=1, sticky='w') cb = Checkbutton(oframe4, var=self._imports_var, **CBUTTON_CONFIG) cb.grid(row=row, column=0, sticky='e') #==================== oframe7 ==================== # --docformat row += 1 l = Label(oframe7, text="Default Docformat:", **COLOR_CONFIG) l.grid(row=row, column=0, sticky='e') df_var = self._docformat_var = StringVar(self._root) self._docformat_var.set('epytext') b = Radiobutton(oframe7, var=df_var, text='Epytext', value='epytext', **CBUTTON_CONFIG) b.grid(row=row, column=1, sticky='w') b = Radiobutton(oframe7, var=df_var, text='ReStructuredText', value='restructuredtext', **CBUTTON_CONFIG) b.grid(row=row, column=2, columnspan=2, sticky='w') row += 1 b = Radiobutton(oframe7, var=df_var, text='Plaintext', value='plaintext', **CBUTTON_CONFIG) b.grid(row=row, column=1, sticky='w') b = Radiobutton(oframe7, var=df_var, text='Javadoc', value='javadoc', **CBUTTON_CONFIG) b.grid(row=row, column=2, columnspan=2, sticky='w') row += 1 # Separater Frame(oframe7, background=BG_COLOR).grid(row=row, column=1, pady=3) row += 1 # --inheritance l = Label(oframe7, text="Inheritance Style:", **COLOR_CONFIG) l.grid(row=row, column=0, sticky='e') inh_var = self._inheritance_var = StringVar(self._root) self._inheritance_var.set('grouped') b = Radiobutton(oframe7, var=inh_var, text='Grouped', value='grouped', **CBUTTON_CONFIG) b.grid(row=row, column=1, sticky='w') b = Radiobutton(oframe7, var=inh_var, text='Listed', value='listed', **CBUTTON_CONFIG) b.grid(row=row, column=2, sticky='w') b = Radiobutton(oframe7, var=inh_var, text='Included', value='included', **CBUTTON_CONFIG) b.grid(row=row, column=3, sticky='w') row += 1 # Separater Frame(oframe7, background=BG_COLOR).grid(row=row, column=1, pady=3) row += 1 # --parse-only, --introspect-only l = Label(oframe7, text="Get docs from:", **COLOR_CONFIG) l.grid(row=row, column=0, sticky='e') iop_var = self._introspect_or_parse_var = StringVar(self._root) self._introspect_or_parse_var.set('both') b = Radiobutton(oframe7, var=iop_var, text='Parsing', value='parse', **CBUTTON_CONFIG) b.grid(row=row, column=1, sticky='w') b = Radiobutton(oframe7, var=iop_var, text='Introspecting', value='introspect', **CBUTTON_CONFIG) b.grid(row=row, column=2, sticky='w') b = Radiobutton(oframe7, var=iop_var, text='Both', value='both', **CBUTTON_CONFIG) b.grid(row=row, column=3, sticky='w') row += 1 #==================== oframe5 ==================== # --help-file FILE row = 0 self._help_var = StringVar(self._root) self._help_var.set('default') b = Radiobutton(oframe5, var=self._help_var, text='Default', value='default', **CBUTTON_CONFIG) b.grid(row=row, column=1, sticky='w') row += 1 b = Radiobutton(oframe5, var=self._help_var, text='Select File', value='-other-', **CBUTTON_CONFIG) b.grid(row=row, column=1, sticky='w') self._help_entry = Entry(oframe5, **ENTRY_CONFIG) self._help_entry.grid(row=row, column=2, sticky='ew') self._help_browse = Button(oframe5, text='Browse', command=self._browse_help, **BUTTON_CONFIG) self._help_browse.grid(row=row, column=3, sticky='ew', padx=2) from epydoc.docwriter.html_css import STYLESHEETS items = STYLESHEETS.items() def _css_sort(css1, css2): if css1[0] == 'default': return -1 elif css2[0] == 'default': return 1 else: return cmp(css1[0], css2[0]) items.sort(_css_sort) #==================== oframe6 ==================== # -c CSS, --css CSS # --private-css CSS row = 0 #l = Label(oframe6, text="Public", **COLOR_CONFIG) #l.grid(row=row, column=0, sticky='e') #l = Label(oframe6, text="Private", **COLOR_CONFIG) #l.grid(row=row, column=1, sticky='w') row += 1 css_var = self._css_var = StringVar(self._root) css_var.set('default') #private_css_var = self._private_css_var = StringVar(self._root) #private_css_var.set('default') for (name, (sheet, descr)) in items: b = Radiobutton(oframe6, var=css_var, value=name, **CBUTTON_CONFIG) b.grid(row=row, column=0, sticky='e') #b = Radiobutton(oframe6, var=private_css_var, value=name, # text=name, **CBUTTON_CONFIG) #b.grid(row=row, column=1, sticky='w') l = Label(oframe6, text=descr, **COLOR_CONFIG) l.grid(row=row, column=1, sticky='w') row += 1 b = Radiobutton(oframe6, var=css_var, value='-other-', **CBUTTON_CONFIG) b.grid(row=row, column=0, sticky='e') #b = Radiobutton(oframe6, text='Select File', var=private_css_var, # value='-other-', **CBUTTON_CONFIG) #b.grid(row=row, column=1, sticky='w') #l = Label(oframe6, text='Select File', **COLOR_CONFIG) #l.grid(row=row, column=1, sticky='w') self._css_entry = Entry(oframe6, **ENTRY_CONFIG) self._css_entry.grid(row=row, column=1, sticky='ew') self._css_browse = Button(oframe6, text="Browse", command=self._browse_css, **BUTTON_CONFIG) self._css_browse.grid(row=row, column=2, sticky='ew', padx=2) def _init_bindings(self): self._root.bind('<Delete>', self._delete_module) self._root.bind('<Alt-o>', self._options_toggle) self._root.bind('<Alt-m>', self._messages_toggle) self._root.bind('<F5>', self._go) self._root.bind('<Alt-s>', self._go) self._root.bind('<Control-n>', self._new) self._root.bind('<Control-o>', self._open) self._root.bind('<Control-s>', self._save) self._root.bind('<Control-a>', self._saveas) def _options_toggle(self, *e): if self._options_visible: self._optsframe.forget() self._option_button['image'] = self._rightImage self._options_visible = 0 else: self._optsframe.pack(fill='both', side='right') self._option_button['image'] = self._leftImage self._options_visible = 1 def _messages_toggle(self, *e): if self._messages_visible: self._msgsframe.forget() self._message_button['image'] = self._rightImage self._messages_visible = 0 else: self._msgsframe.pack(fill='both', side='bottom', expand=1) self._message_button['image'] = self._leftImage self._messages_visible = 1 def _configure(self, event): self._W = event.width-DW def _delete_module(self, *e): selection = self._module_list.curselection() if len(selection) != 1: return self._module_list.delete(selection[0]) def _entry_module(self, *e): modules = [self._module_entry.get()] if glob.has_magic(modules[0]): modules = glob.glob(modules[0]) for name in modules: self.add_module(name, check=1) self._module_entry.delete(0, 'end') def _browse_module(self, *e): title = 'Select a module for documentation' ftypes = [('Python module', '.py'), ('Python extension', '.so'), ('All files', '*')] filename = askopenfilename(filetypes=ftypes, title=title, defaultextension='.py', initialdir=self._init_dir) if not filename: return self._init_dir = os.path.dirname(filename) self.add_module(filename, check=1) def _browse_css(self, *e): title = 'Select a CSS stylesheet' ftypes = [('CSS Stylesheet', '.css'), ('All files', '*')] filename = askopenfilename(filetypes=ftypes, title=title, defaultextension='.css') if not filename: return self._css_entry.delete(0, 'end') self._css_entry.insert(0, filename) def _browse_help(self, *e): title = 'Select a help file' self._help_var.set('-other-') ftypes = [('HTML file', '.html'), ('All files', '*')] filename = askopenfilename(filetypes=ftypes, title=title, defaultextension='.html') if not filename: return self._help_entry.delete(0, 'end') self._help_entry.insert(0, filename) def _browse_out(self, *e): ftypes = [('All files', '*')] title = 'Choose the output directory' if askdirectory is not None: filename = askdirectory(mustexist=0, title=title) if not filename: return else: # Hack for Python 2.1 or earlier: filename = asksaveasfilename(filetypes=ftypes, title=title, initialfile='--this directory--') if not filename: return (f1, f2) = os.path.split(filename) if f2 == '--this directory--': filename = f1 self._out_entry.delete(0, 'end') self._out_entry.insert(0, filename) def destroy(self, *e): if self._root is None: return # Unload any modules that we've imported for m in sys.modules.keys(): if m not in self._old_modules: del sys.modules[m] self._root.destroy() self._root = None def add_module(self, name, check=0): from epydoc.util import is_package_dir, is_pyname, is_module_file from epydoc.docintrospecter import get_value_from_name from epydoc.docintrospecter import get_value_from_filename if (os.path.isfile(name) or is_package_dir(name) or is_pyname(name)): # Check that it's a good module, if requested. if check: try: if is_module_file(name) or is_package_dir(name): get_value_from_filename(name) elif os.path.isfile(name): get_value_from_scriptname(name) else: get_value_from_name(name) except ImportError, e: log.error(e) self._update_messages() self._root.bell() return # Add the module to the list of modules. self._module_list.insert('end', name) self._module_list.yview('end') else: log.error("Couldn't find %r" % name) self._update_messages() self._root.bell() def mainloop(self, *args, **kwargs): self._root.mainloop(*args, **kwargs) def _getopts(self): options = {} options['modules'] = self._module_list.get(0, 'end') options['prj_name'] = self._name_entry.get() or '' options['prj_url'] = self._url_entry.get() or None options['docformat'] = self._docformat_var.get() options['inheritance'] = self._inheritance_var.get() options['introspect_or_parse'] = self._introspect_or_parse_var.get() options['target'] = self._out_entry.get() or 'html' options['frames'] = self._frames_var.get() options['private'] = self._private_var.get() options['show_imports'] = self._imports_var.get() if self._help_var.get() == '-other-': options['help'] = self._help_entry.get() or None else: options['help'] = None if self._css_var.get() == '-other-': options['css'] = self._css_entry.get() or 'default' else: options['css'] = self._css_var.get() or 'default' #if self._private_css_var.get() == '-other-': # options['private_css'] = self._css_entry.get() or 'default' #else: # options['private_css'] = self._private_css_var.get() or 'default' return options def _go(self, *e): if len(self._module_list.get(0,'end')) == 0: self._root.bell() return if self._progress[0] != None: self._cancel[0] = 1 return # Construct the argument list for document(). opts = self._getopts() self._progress[0] = 0.0 self._cancel[0] = 0 args = (opts, self._cancel, self._progress) # Clear the messages window. self._messages['state'] = 'normal' self._messages.delete('0.0', 'end') self._messages['state'] = 'disabled' self._logger.clear() # Restore the module list. This will force re-loading of # anything that we're documenting. for m in sys.modules.keys(): if m not in self._old_modules: del sys.modules[m] # [xx] Reset caches?? # Start documenting start_new_thread(document, args) # Start the progress bar. self._go_button['text'] = 'Stop' self._afterid += 1 dt = 300 # How often to update, in milliseconds self._update(dt, self._afterid) def _update_messages(self): while 1: level, data = self._logger.read() if data is None: break self._messages['state'] = 'normal' if level == 'header': self._messages.insert('end', data, 'header') elif level == 'uline': self._messages.insert('end', data, 'uline header') elif level >= log.ERROR: data= data.rstrip()+'\n\n' self._messages.insert('end', data, 'guierror') elif level >= log.DOCSTRING_WARNING: data= data.rstrip()+'\n\n' self._messages.insert('end', data, 'warning') elif log >= log.INFO: data= data.rstrip()+'\n\n' self._messages.insert('end', data, 'message') # if data == '\n': # if self._last_tag != 'header2': # self._messages.insert('end', '\n', self._last_tag) # elif data == '='*75: # if self._messages.get('end-3c', 'end') == '\n\n\n': # self._messages.delete('end-1c') # self._in_header = 1 # self._messages.insert('end', ' '*75, 'uline header') # self._last_tag = 'header' # elif data == '-'*75: # self._in_header = 0 # self._last_tag = 'header2' # elif self._in_header: # self._messages.insert('end', data, 'header') # self._last_tag = 'header' # elif re.match(r'\s*(L\d+:|-)?\s*Warning: ', data): # self._messages.insert('end', data, 'warning') # self._last_tag = 'warning' # else: # self._messages.insert('end', data, 'error') # self._last_tag = 'error' self._messages['state'] = 'disabled' self._messages.yview('end') def _update(self, dt, id): if self._root is None: return if self._progress[0] is None: return if id != self._afterid: return # Update the messages box self._update_messages() # Update the progress bar. if self._progress[0] == 'done': p = self._W + DX elif self._progress[0] == 'cancel': p = -5 else: p = DX + self._W * self._progress[0] self._canvas.coords(self._r1, DX+1, DY+1, p, self._H+1) self._canvas.coords(self._r2, DX, DY, p-1, self._H) self._canvas.coords(self._r3, DX+1, DY+1, p, self._H+1) # Are we done? if self._progress[0] in ('done', 'cancel'): if self._progress[0] == 'cancel': self._root.bell() self._go_button['text'] = 'Start' self._progress[0] = None return self._root.after(dt, self._update, dt, id) def _new(self, *e): self._module_list.delete(0, 'end') self._name_entry.delete(0, 'end') self._url_entry.delete(0, 'end') self._docformat_var.set('epytext') self._inheritance_var.set('grouped') self._introspect_or_parse_var.set('both') self._out_entry.delete(0, 'end') self._module_entry.delete(0, 'end') self._css_entry.delete(0, 'end') self._help_entry.delete(0, 'end') self._frames_var.set(1) self._private_var.set(1) self._imports_var.set(0) self._css_var.set('default') #self._private_css_var.set('default') self._help_var.set('default') self._filename = None self._init_dir = None def _open(self, *e): title = 'Open project' ftypes = [('Project file', '.prj'), ('All files', '*')] filename = askopenfilename(filetypes=ftypes, title=title, defaultextension='.css') if not filename: return self.open(filename) def open(self, prjfile): from epydoc.docwriter.html_css import STYLESHEETS self._filename = prjfile try: opts = load(open(prjfile, 'r')) modnames = list(opts.get('modules', [])) modnames.sort() self._module_list.delete(0, 'end') for name in modnames: self.add_module(name) self._module_entry.delete(0, 'end') self._name_entry.delete(0, 'end') if opts.get('prj_name'): self._name_entry.insert(0, opts['prj_name']) self._url_entry.delete(0, 'end') if opts.get('prj_url'): self._url_entry.insert(0, opts['prj_url']) self._docformat_var.set(opts.get('docformat', 'epytext')) self._inheritance_var.set(opts.get('inheritance', 'grouped')) self._introspect_or_parse_var.set( opts.get('introspect_or_parse', 'both')) self._help_entry.delete(0, 'end') if opts.get('help') is None: self._help_var.set('default') else: self._help_var.set('-other-') self._help_entry.insert(0, opts.get('help')) self._out_entry.delete(0, 'end') self._out_entry.insert(0, opts.get('target', 'html')) self._frames_var.set(opts.get('frames', 1)) self._private_var.set(opts.get('private', 1)) self._imports_var.set(opts.get('show_imports', 0)) self._css_entry.delete(0, 'end') if opts.get('css', 'default') in STYLESHEETS.keys(): self._css_var.set(opts.get('css', 'default')) else: self._css_var.set('-other-') self._css_entry.insert(0, opts.get('css', 'default')) #if opts.get('private_css', 'default') in STYLESHEETS.keys(): # self._private_css_var.set(opts.get('private_css', 'default')) #else: # self._private_css_var.set('-other-') # self._css_entry.insert(0, opts.get('private_css', 'default')) except Exception, e: log.error('Error opening %s: %s' % (prjfile, e)) self._root.bell() def _save(self, *e): if self._filename is None: return self._saveas() try: opts = self._getopts() dump(opts, open(self._filename, 'w')) except Exception, e: if self._filename is None: log.error('Error saving: %s' % e) else: log.error('Error saving %s: %s' % (self._filename, e)) self._root.bell() def _saveas(self, *e): title = 'Save project as' ftypes = [('Project file', '.prj'), ('All files', '*')] filename = asksaveasfilename(filetypes=ftypes, title=title, defaultextension='.prj') if not filename: return self._filename = filename self._save() def _version(): """ Display the version information, and exit. @rtype: C{None} """ import epydoc print "Epydoc version %s" % epydoc.__version__ sys.exit(0) # At some point I could add: # --show-messages, --hide-messages # --show-options, --hide-options def _usage(): print print 'Usage: epydocgui [OPTIONS] [FILE.prj | MODULES...]' print print ' FILE.prj An epydoc GUI project file.' print ' MODULES... A list of Python modules to document.' print ' -V, --version Print the version of epydoc.' print ' -h, -?, --help, --usage Display this usage message' print ' --debug Do not suppress error messages' print sys.exit(0) def _error(s): s = '%s; run "%s -h" for usage' % (s, os.path.basename(sys.argv[0])) if len(s) > 80: i = s.rfind(' ', 0, 80) if i>0: s = s[:i]+'\n'+s[i+1:] print >>sys.stderr, s sys.exit(1) def gui(): global DEBUG sys.stderr = sys.__stderr__ projects = [] modules = [] for arg in sys.argv[1:]: if arg[0] == '-': if arg != '-V': arg = arg.lower() if arg in ('-h', '--help', '-?', '--usage'): _usage() elif arg in ('-V', '--version'): _version() elif arg in ('--debug',): DEBUG = 1 else: _error('Unknown parameter %r' % arg) elif arg[-4:] == '.prj': projects.append(arg) else: modules.append(arg) if len(projects) > 1: _error('Too many projects') if len(projects) == 1: if len(modules) > 0: _error('You must specify either a project or a list of modules') if not os.path.exists(projects[0]): _error('Cannot open project file %s' % projects[0]) gui = EpydocGUI() gui.open(projects[0]) gui.mainloop() else: gui = EpydocGUI() for module in modules: gui.add_module(module, check=1) gui.mainloop() if __name__ == '__main__': gui()
<filename>python/helpers/epydoc/gui.py #!/usr/bin/env python # # objdoc: epydoc command-line interface # <NAME> # # Created [03/15/02 10:31 PM] # $Id: gui.py 646 2004-03-19 19:01:37Z edloper $ # """ Graphical interface to epydoc. This interface might be useful for systems where it's inconvenient to use the command-line interface (such as Windows). It supports many (but not all) of the features that are supported by the command-line interface. It also supports loading and saving of X{project files}, which store a set of related modules, and the options that should be used to generate the documentation for those modules. Usage:: epydocgui [OPTIONS] [FILE.prj | MODULES...] FILE.prj An epydoc GUI project file. MODULES... A list of Python modules to document. -V, --version Print the version of epydoc. -h, -?, --help, --usage Display this usage message --debug Do not suppress error messages @todo: Use ini-style project files, rather than pickles (using the same format as the CLI). """ __docformat__ = 'epytext en' import sys, os.path, re, glob from Tkinter import * from tkFileDialog import askopenfilename, asksaveasfilename from thread import start_new_thread, exit_thread from pickle import dump, load # askdirectory is only defined in python 2.2+; fall back on # asksaveasfilename if it's not available. try: from tkFileDialog import askdirectory except: askdirectory = None # Include support for Zope, if it's available. try: import ZODB except: pass ##///////////////////////////////////////////////////////////////////////// ## CONSTANTS ##///////////////////////////////////////////////////////////////////////// DEBUG = 0 # Colors for tkinter display BG_COLOR='#e0e0e0' ACTIVEBG_COLOR='#e0e0e0' TEXT_COLOR='black' ENTRYSELECT_COLOR = ACTIVEBG_COLOR SELECT_COLOR = '#208070' MESSAGE_COLOR = '#000060' ERROR_COLOR = '#600000' GUIERROR_COLOR = '#600000' WARNING_COLOR = '#604000' HEADER_COLOR = '#000000' # Convenience dictionaries for specifying widget colors COLOR_CONFIG = {'background':BG_COLOR, 'highlightcolor': BG_COLOR, 'foreground':TEXT_COLOR, 'highlightbackground': BG_COLOR} ENTRY_CONFIG = {'background':BG_COLOR, 'highlightcolor': BG_COLOR, 'foreground':TEXT_COLOR, 'highlightbackground': BG_COLOR, 'selectbackground': ENTRYSELECT_COLOR, 'selectforeground': TEXT_COLOR} SB_CONFIG = {'troughcolor':BG_COLOR, 'activebackground':BG_COLOR, 'background':BG_COLOR, 'highlightbackground':BG_COLOR} LISTBOX_CONFIG = {'highlightcolor': BG_COLOR, 'highlightbackground': BG_COLOR, 'foreground':TEXT_COLOR, 'selectforeground': TEXT_COLOR, 'selectbackground': ACTIVEBG_COLOR, 'background':BG_COLOR} BUTTON_CONFIG = {'background':BG_COLOR, 'highlightthickness':0, 'padx':4, 'highlightbackground': BG_COLOR, 'foreground':TEXT_COLOR, 'highlightcolor': BG_COLOR, 'activeforeground': TEXT_COLOR, 'activebackground': ACTIVEBG_COLOR, 'pady':0} CBUTTON_CONFIG = {'background':BG_COLOR, 'highlightthickness':0, 'padx':4, 'highlightbackground': BG_COLOR, 'foreground':TEXT_COLOR, 'highlightcolor': BG_COLOR, 'activeforeground': TEXT_COLOR, 'activebackground': ACTIVEBG_COLOR, 'pady':0, 'selectcolor': SELECT_COLOR} SHOWMSG_CONFIG = CBUTTON_CONFIG.copy() SHOWMSG_CONFIG['foreground'] = MESSAGE_COLOR SHOWWRN_CONFIG = CBUTTON_CONFIG.copy() SHOWWRN_CONFIG['foreground'] = WARNING_COLOR SHOWERR_CONFIG = CBUTTON_CONFIG.copy() SHOWERR_CONFIG['foreground'] = ERROR_COLOR # Colors for the progress bar PROGRESS_HEIGHT = 16 PROGRESS_WIDTH = 200 PROGRESS_BG='#305060' PROGRESS_COLOR1 = '#30c070' PROGRESS_COLOR2 = '#60ffa0' PROGRESS_COLOR3 = '#106030' # On tkinter canvases, where's the zero coordinate? if sys.platform.lower().startswith('win'): DX = 3; DY = 3 DH = 0; DW = 7 else: DX = 1; DY = 1 DH = 1; DW = 3 # How much of the progress is in each subtask? IMPORT_PROGRESS = 0.1 BUILD_PROGRESS = 0.2 WRITE_PROGRESS = 1.0 - BUILD_PROGRESS - IMPORT_PROGRESS ##///////////////////////////////////////////////////////////////////////// ## IMAGE CONSTANTS ##///////////////////////////////////////////////////////////////////////// UP_GIF = '''\ R0lGODlhCwAMALMAANnZ2QDMmQCZZgBmZgAAAAAzM////////wAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAACH5BAEAAAAALAAAAAALAAwAAAQjEMhJKxCW4gzCIJxXZIEwFGDlDadqsii1sq1U0nA64+ON 5xEAOw== ''' DOWN_GIF = '''\ R0lGODlhCwAMALMAANnZ2QDMmQCZZgBmZgAAAAAzM////////wAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAACH5BAEAAAAALAAAAAALAAwAAAQmEIQxgLVUCsppsVPngVtXEFfIfWk5nBe4xuSL0tKLy/cu 7JffJQIAOw== ''' LEFT_GIF='''\ R0lGODlhDAALAKIAANnZ2QDMmQCZZgBmZgAAAAAzM////////yH5BAEAAAAALAAAAAAMAAsAAAM4 CLocgaCrESiDoBshOAoAgBEyMzgAEIGCowsiOLoLgEBVOLoIqlSFo4OgC1RYM4Ogq1RYg6DLVJgA Ow== ''' RIGHT_GIF='''\ R0lGODlhDAALAKIAANnZ2QDMmQBmZgCZZgAzMwAAAP///////yH5BAEAAAAALAAAAAAMAAsAAAM5 GIGgyzIYgaCrIigTgaALIigyEQiqKLoTgaAoujuDgKJLVAgqIoJEBQAIIkKEhaArRFgIukqFoMsJ ADs= ''' ##///////////////////////////////////////////////////////////////////////// ## MessageIO ##///////////////////////////////////////////////////////////////////////// from epydoc import log from epydoc.util import wordwrap class GUILogger(log.Logger): _STAGES = [40, 7, 1, 3, 1, 30, 1, 2, 100] def __init__(self, progress, cancel): self._progress = progress self._cancel = cancel self.clear() def clear(self): self._messages = [] self._n = 0 self._stage = 0 self._message_blocks = [] def log(self, level, message): message = wordwrap(str(message)).rstrip() + '\n' if self._message_blocks: self._message_blocks[-1][-1].append( (level, message) ) else: self._messages.append( (level, message) ) def start_block(self, header): self._message_blocks.append( (header, []) ) def end_block(self): header, messages = self._message_blocks.pop() if messages: self._messages.append( ('uline', ' '*75+'\n') ) self.log('header', header) self._messages += messages self._messages.append( ('uline', ' '*75+'\n') ) def start_progress(self, header=None): self.log(log.INFO, header) self._stage += 1 def end_progress(self): pass def progress(self, percent, message=''): if self._cancel[0]: exit_thread() i = self._stage - 1 p = ((sum(self._STAGES[:i]) + percent*self._STAGES[i]) / float(sum(self._STAGES))) self._progress[0] = p def read(self): if self._n >= len(self._messages): return None, None else: self._n += 1 return self._messages[self._n-1] ##///////////////////////////////////////////////////////////////////////// ## THREADED DOCUMENTER ##///////////////////////////////////////////////////////////////////////// def document(options, cancel, done): """ Create the documentation for C{modules}, using the options specified by C{options}. C{document} is designed to be started in its own thread by L{EpydocGUI._go}. @param options: The options to use for generating documentation. This includes keyword options that can be given to L{docwriter.html.HTMLWriter}, as well as the option C{target}, which controls where the output is written to. @type options: C{dictionary} """ from epydoc.docwriter.html import HTMLWriter from epydoc.docbuilder import build_doc_index import epydoc.docstringparser # Set the default docformat. docformat = options.get('docformat', 'epytext') epydoc.docstringparser.DEFAULT_DOCFORMAT = docformat try: parse = options['introspect_or_parse'] in ('parse', 'both') introspect = options['introspect_or_parse'] in ('introspect', 'both') docindex = build_doc_index(options['modules'], parse, introspect) html_writer = HTMLWriter(docindex, **options) log.start_progress('Writing HTML docs to %r' % options['target']) html_writer.write(options['target']) log.end_progress() # We're done. log.warning('Finished!') done[0] = 'done' except SystemExit: # Cancel. log.error('Cancelled!') done[0] ='cancel' raise except Exception, e: # We failed. log.error('Internal error: %s' % e) done[0] ='cancel' raise except: # We failed. log.error('Internal error!') done[0] ='cancel' raise ##///////////////////////////////////////////////////////////////////////// ## GUI ##///////////////////////////////////////////////////////////////////////// class EpydocGUI: """ A graphical user interace to epydoc. """ def __init__(self): self._afterid = 0 self._progress = [None] self._cancel = [0] self._filename = None self._init_dir = None # Store a copy of sys.modules, so that we can restore it # later. This is useful for making sure that we reload # everything when we re-build its documentation. This will # *not* reload the modules that are present when the EpydocGUI # is created, but that should only contain some builtins, some # epydoc modules, Tkinter, pickle, and thread.. self._old_modules = sys.modules.keys() # Create the main window. self._root = Tk() self._root['background']=BG_COLOR self._root.bind('<Control-q>', self.destroy) self._root.bind('<Alt-q>', self.destroy) self._root.bind('<Alt-x>', self.destroy) self._root.bind('<Control-x>', self.destroy) #self._root.bind('<Control-d>', self.destroy) self._root.title('Epydoc') self._rootframe = Frame(self._root, background=BG_COLOR, border=2, relief='raised') self._rootframe.pack(expand=1, fill='both', padx=2, pady=2) # Set up the basic frames. Do not pack the options frame or # the messages frame; the GUI has buttons to expand them. leftframe = Frame(self._rootframe, background=BG_COLOR) leftframe.pack(expand=1, fill='both', side='left') optsframe = Frame(self._rootframe, background=BG_COLOR) mainframe = Frame(leftframe, background=BG_COLOR) mainframe.pack(expand=1, fill='both', side='top') ctrlframe = Frame(mainframe, background=BG_COLOR) ctrlframe.pack(side="bottom", fill='x', expand=0) msgsframe = Frame(leftframe, background=BG_COLOR) self._optsframe = optsframe self._msgsframe = msgsframe # Initialize all the frames, etc. self._init_menubar() self._init_progress_bar(mainframe) self._init_module_list(mainframe) self._init_options(optsframe, ctrlframe) self._init_messages(msgsframe, ctrlframe) self._init_bindings() # Set up logging self._logger = GUILogger(self._progress, self._cancel) log.register_logger(self._logger) # Open the messages pane by default. self._messages_toggle() ## For testing options: #self._options_toggle() def _init_menubar(self): menubar = Menu(self._root, borderwidth=2, background=BG_COLOR, activebackground=BG_COLOR) filemenu = Menu(menubar, tearoff=0) filemenu.add_command(label='New Project', underline=0, command=self._new, accelerator='Ctrl-n') filemenu.add_command(label='Open Project', underline=0, command=self._open, accelerator='Ctrl-o') filemenu.add_command(label='Save Project', underline=0, command=self._save, accelerator='Ctrl-s') filemenu.add_command(label='Save As..', underline=5, command=self._saveas, accelerator='Ctrl-a') filemenu.add_separator() filemenu.add_command(label='Exit', underline=1, command=self.destroy, accelerator='Ctrl-x') menubar.add_cascade(label='File', underline=0, menu=filemenu) gomenu = Menu(menubar, tearoff=0) gomenu.add_command(label='Run Epydoc', command=self._open, underline=0, accelerator='Alt-g') menubar.add_cascade(label='Run', menu=gomenu, underline=0) self._root.config(menu=menubar) def _init_module_list(self, mainframe): mframe1 = Frame(mainframe, relief='groove', border=2, background=BG_COLOR) mframe1.pack(side="top", fill='both', expand=1, padx=4, pady=3) l = Label(mframe1, text="Modules to document:", justify='left', **COLOR_CONFIG) l.pack(side='top', fill='none', anchor='nw', expand=0) mframe2 = Frame(mframe1, background=BG_COLOR) mframe2.pack(side="top", fill='both', expand=1) mframe3 = Frame(mframe1, background=BG_COLOR) mframe3.pack(side="bottom", fill='x', expand=0) self._module_list = Listbox(mframe2, width=80, height=10, selectmode='multiple', **LISTBOX_CONFIG) self._module_list.pack(side="left", fill='both', expand=1) sb = Scrollbar(mframe2, orient='vertical',**SB_CONFIG) sb['command']=self._module_list.yview sb.pack(side='right', fill='y') self._module_list.config(yscrollcommand=sb.set) Label(mframe3, text="Add:", **COLOR_CONFIG).pack(side='left') self._module_entry = Entry(mframe3, **ENTRY_CONFIG) self._module_entry.pack(side='left', fill='x', expand=1) self._module_entry.bind('<Return>', self._entry_module) self._module_delete = Button(mframe3, text="Remove", command=self._delete_module, **BUTTON_CONFIG) self._module_delete.pack(side='right', expand=0, padx=2) self._module_browse = Button(mframe3, text="Browse", command=self._browse_module, **BUTTON_CONFIG) self._module_browse.pack(side='right', expand=0, padx=2) def _init_progress_bar(self, mainframe): pframe1 = Frame(mainframe, background=BG_COLOR) pframe1.pack(side="bottom", fill='x', expand=0) self._go_button = Button(pframe1, width=4, text='Start', underline=0, command=self._go, **BUTTON_CONFIG) self._go_button.pack(side='left', padx=4) pframe2 = Frame(pframe1, relief='groove', border=2, background=BG_COLOR) pframe2.pack(side="top", fill='x', expand=1, padx=4, pady=3) Label(pframe2, text='Progress:', **COLOR_CONFIG).pack(side='left') H = self._H = PROGRESS_HEIGHT W = self._W = PROGRESS_WIDTH c = self._canvas = Canvas(pframe2, height=H+DH, width=W+DW, background=PROGRESS_BG, border=0, selectborderwidth=0, relief='sunken', insertwidth=0, insertborderwidth=0, highlightbackground=BG_COLOR) self._canvas.pack(side='left', fill='x', expand=1, padx=4) self._r2 = c.create_rectangle(0,0,0,0, outline=PROGRESS_COLOR2) self._r3 = c.create_rectangle(0,0,0,0, outline=PROGRESS_COLOR3) self._r1 = c.create_rectangle(0,0,0,0, fill=PROGRESS_COLOR1, outline='') self._canvas.bind('<Configure>', self._configure) def _init_messages(self, msgsframe, ctrlframe): self._downImage = PhotoImage(master=self._root, data=DOWN_GIF) self._upImage = PhotoImage(master=self._root, data=UP_GIF) # Set up the messages control frame b1 = Button(ctrlframe, text="Messages", justify='center', command=self._messages_toggle, underline=0, highlightthickness=0, activebackground=BG_COLOR, border=0, relief='flat', padx=2, pady=0, **COLOR_CONFIG) b2 = Button(ctrlframe, image=self._downImage, relief='flat', border=0, command=self._messages_toggle, activebackground=BG_COLOR, **COLOR_CONFIG) self._message_button = b2 self._messages_visible = 0 b2.pack(side="left") b1.pack(side="left") f = Frame(msgsframe, background=BG_COLOR) f.pack(side='top', expand=1, fill='both') messages = Text(f, width=80, height=10, **ENTRY_CONFIG) messages['state'] = 'disabled' messages.pack(fill='both', expand=1, side='left') self._messages = messages # Add a scrollbar sb = Scrollbar(f, orient='vertical', **SB_CONFIG) sb.pack(fill='y', side='right') sb['command'] = messages.yview messages['yscrollcommand'] = sb.set # Set up some colorization tags messages.tag_config('error', foreground=ERROR_COLOR) messages.tag_config('warning', foreground=WARNING_COLOR) messages.tag_config('guierror', foreground=GUIERROR_COLOR) messages.tag_config('message', foreground=MESSAGE_COLOR) messages.tag_config('header', foreground=HEADER_COLOR) messages.tag_config('uline', underline=1) # Keep track of tag state.. self._in_header = 0 self._last_tag = 'error' # Add some buttons buttons = Frame(msgsframe, background=BG_COLOR) buttons.pack(side='bottom', fill='x') self._show_errors = IntVar(self._root) self._show_errors.set(1) self._show_warnings = IntVar(self._root) self._show_warnings.set(1) self._show_messages = IntVar(self._root) self._show_messages.set(0) Checkbutton(buttons, text='Show Messages', var=self._show_messages, command=self._update_msg_tags, **SHOWMSG_CONFIG).pack(side='left') Checkbutton(buttons, text='Show Warnings', var=self._show_warnings, command=self._update_msg_tags, **SHOWWRN_CONFIG).pack(side='left') Checkbutton(buttons, text='Show Errors', var=self._show_errors, command=self._update_msg_tags, **SHOWERR_CONFIG).pack(side='left') self._update_msg_tags() def _update_msg_tags(self, *e): elide_errors = not self._show_errors.get() elide_warnings = not self._show_warnings.get() elide_messages = not self._show_messages.get() elide_headers = elide_errors and elide_warnings self._messages.tag_config('error', elide=elide_errors) self._messages.tag_config('guierror', elide=elide_errors) self._messages.tag_config('warning', elide=elide_warnings) self._messages.tag_config('message', elide=elide_messages) self._messages.tag_config('header', elide=elide_headers) def _init_options(self, optsframe, ctrlframe): self._leftImage=PhotoImage(master=self._root, data=LEFT_GIF) self._rightImage=PhotoImage(master=self._root, data=RIGHT_GIF) # Set up the options control frame b1 = Button(ctrlframe, text="Options", justify='center', border=0, relief='flat', command=self._options_toggle, padx=2, underline=0, pady=0, highlightthickness=0, activebackground=BG_COLOR, **COLOR_CONFIG) b2 = Button(ctrlframe, image=self._rightImage, relief='flat', border=0, command=self._options_toggle, activebackground=BG_COLOR, **COLOR_CONFIG) self._option_button = b2 self._options_visible = 0 b2.pack(side="right") b1.pack(side="right") oframe2 = Frame(optsframe, relief='groove', border=2, background=BG_COLOR) oframe2.pack(side="right", fill='both', expand=0, padx=4, pady=3, ipadx=4) Label(oframe2, text="Project Options", font='helvetica -16', **COLOR_CONFIG).pack(anchor='w') oframe3 = Frame(oframe2, background=BG_COLOR) oframe3.pack(fill='x') oframe4 = Frame(oframe2, background=BG_COLOR) oframe4.pack(fill='x') oframe7 = Frame(oframe2, background=BG_COLOR) oframe7.pack(fill='x') div = Frame(oframe2, background=BG_COLOR, border=1, relief='sunk') div.pack(ipady=1, fill='x', padx=4, pady=2) Label(oframe2, text="Help File", font='helvetica -16', **COLOR_CONFIG).pack(anchor='w') oframe5 = Frame(oframe2, background=BG_COLOR) oframe5.pack(fill='x') div = Frame(oframe2, background=BG_COLOR, border=1, relief='sunk') div.pack(ipady=1, fill='x', padx=4, pady=2) Label(oframe2, text="CSS Stylesheet", font='helvetica -16', **COLOR_CONFIG).pack(anchor='w') oframe6 = Frame(oframe2, background=BG_COLOR) oframe6.pack(fill='x') #==================== oframe3 ==================== # -n NAME, --name NAME row = 0 l = Label(oframe3, text="Project Name:", **COLOR_CONFIG) l.grid(row=row, column=0, sticky='e') self._name_entry = Entry(oframe3, **ENTRY_CONFIG) self._name_entry.grid(row=row, column=1, sticky='ew', columnspan=3) # -u URL, --url URL row += 1 l = Label(oframe3, text="Project URL:", **COLOR_CONFIG) l.grid(row=row, column=0, sticky='e') self._url_entry = Entry(oframe3, **ENTRY_CONFIG) self._url_entry.grid(row=row, column=1, sticky='ew', columnspan=3) # -o DIR, --output DIR row += 1 l = Label(oframe3, text="Output Directory:", **COLOR_CONFIG) l.grid(row=row, column=0, sticky='e') self._out_entry = Entry(oframe3, **ENTRY_CONFIG) self._out_entry.grid(row=row, column=1, sticky='ew', columnspan=2) self._out_browse = Button(oframe3, text="Browse", command=self._browse_out, **BUTTON_CONFIG) self._out_browse.grid(row=row, column=3, sticky='ew', padx=2) #==================== oframe4 ==================== # --no-frames row = 0 self._frames_var = IntVar(self._root) self._frames_var.set(1) l = Label(oframe4, text="Generate a frame-based table of contents", **COLOR_CONFIG) l.grid(row=row, column=1, sticky='w') cb = Checkbutton(oframe4, var=self._frames_var, **CBUTTON_CONFIG) cb.grid(row=row, column=0, sticky='e') # --no-private row += 1 self._private_var = IntVar(self._root) self._private_var.set(1) l = Label(oframe4, text="Generate documentation for private objects", **COLOR_CONFIG) l.grid(row=row, column=1, sticky='w') cb = Checkbutton(oframe4, var=self._private_var, **CBUTTON_CONFIG) cb.grid(row=row, column=0, sticky='e') # --show-imports row += 1 self._imports_var = IntVar(self._root) self._imports_var.set(0) l = Label(oframe4, text="List imported classes and functions", **COLOR_CONFIG) l.grid(row=row, column=1, sticky='w') cb = Checkbutton(oframe4, var=self._imports_var, **CBUTTON_CONFIG) cb.grid(row=row, column=0, sticky='e') #==================== oframe7 ==================== # --docformat row += 1 l = Label(oframe7, text="Default Docformat:", **COLOR_CONFIG) l.grid(row=row, column=0, sticky='e') df_var = self._docformat_var = StringVar(self._root) self._docformat_var.set('epytext') b = Radiobutton(oframe7, var=df_var, text='Epytext', value='epytext', **CBUTTON_CONFIG) b.grid(row=row, column=1, sticky='w') b = Radiobutton(oframe7, var=df_var, text='ReStructuredText', value='restructuredtext', **CBUTTON_CONFIG) b.grid(row=row, column=2, columnspan=2, sticky='w') row += 1 b = Radiobutton(oframe7, var=df_var, text='Plaintext', value='plaintext', **CBUTTON_CONFIG) b.grid(row=row, column=1, sticky='w') b = Radiobutton(oframe7, var=df_var, text='Javadoc', value='javadoc', **CBUTTON_CONFIG) b.grid(row=row, column=2, columnspan=2, sticky='w') row += 1 # Separater Frame(oframe7, background=BG_COLOR).grid(row=row, column=1, pady=3) row += 1 # --inheritance l = Label(oframe7, text="Inheritance Style:", **COLOR_CONFIG) l.grid(row=row, column=0, sticky='e') inh_var = self._inheritance_var = StringVar(self._root) self._inheritance_var.set('grouped') b = Radiobutton(oframe7, var=inh_var, text='Grouped', value='grouped', **CBUTTON_CONFIG) b.grid(row=row, column=1, sticky='w') b = Radiobutton(oframe7, var=inh_var, text='Listed', value='listed', **CBUTTON_CONFIG) b.grid(row=row, column=2, sticky='w') b = Radiobutton(oframe7, var=inh_var, text='Included', value='included', **CBUTTON_CONFIG) b.grid(row=row, column=3, sticky='w') row += 1 # Separater Frame(oframe7, background=BG_COLOR).grid(row=row, column=1, pady=3) row += 1 # --parse-only, --introspect-only l = Label(oframe7, text="Get docs from:", **COLOR_CONFIG) l.grid(row=row, column=0, sticky='e') iop_var = self._introspect_or_parse_var = StringVar(self._root) self._introspect_or_parse_var.set('both') b = Radiobutton(oframe7, var=iop_var, text='Parsing', value='parse', **CBUTTON_CONFIG) b.grid(row=row, column=1, sticky='w') b = Radiobutton(oframe7, var=iop_var, text='Introspecting', value='introspect', **CBUTTON_CONFIG) b.grid(row=row, column=2, sticky='w') b = Radiobutton(oframe7, var=iop_var, text='Both', value='both', **CBUTTON_CONFIG) b.grid(row=row, column=3, sticky='w') row += 1 #==================== oframe5 ==================== # --help-file FILE row = 0 self._help_var = StringVar(self._root) self._help_var.set('default') b = Radiobutton(oframe5, var=self._help_var, text='Default', value='default', **CBUTTON_CONFIG) b.grid(row=row, column=1, sticky='w') row += 1 b = Radiobutton(oframe5, var=self._help_var, text='Select File', value='-other-', **CBUTTON_CONFIG) b.grid(row=row, column=1, sticky='w') self._help_entry = Entry(oframe5, **ENTRY_CONFIG) self._help_entry.grid(row=row, column=2, sticky='ew') self._help_browse = Button(oframe5, text='Browse', command=self._browse_help, **BUTTON_CONFIG) self._help_browse.grid(row=row, column=3, sticky='ew', padx=2) from epydoc.docwriter.html_css import STYLESHEETS items = STYLESHEETS.items() def _css_sort(css1, css2): if css1[0] == 'default': return -1 elif css2[0] == 'default': return 1 else: return cmp(css1[0], css2[0]) items.sort(_css_sort) #==================== oframe6 ==================== # -c CSS, --css CSS # --private-css CSS row = 0 #l = Label(oframe6, text="Public", **COLOR_CONFIG) #l.grid(row=row, column=0, sticky='e') #l = Label(oframe6, text="Private", **COLOR_CONFIG) #l.grid(row=row, column=1, sticky='w') row += 1 css_var = self._css_var = StringVar(self._root) css_var.set('default') #private_css_var = self._private_css_var = StringVar(self._root) #private_css_var.set('default') for (name, (sheet, descr)) in items: b = Radiobutton(oframe6, var=css_var, value=name, **CBUTTON_CONFIG) b.grid(row=row, column=0, sticky='e') #b = Radiobutton(oframe6, var=private_css_var, value=name, # text=name, **CBUTTON_CONFIG) #b.grid(row=row, column=1, sticky='w') l = Label(oframe6, text=descr, **COLOR_CONFIG) l.grid(row=row, column=1, sticky='w') row += 1 b = Radiobutton(oframe6, var=css_var, value='-other-', **CBUTTON_CONFIG) b.grid(row=row, column=0, sticky='e') #b = Radiobutton(oframe6, text='Select File', var=private_css_var, # value='-other-', **CBUTTON_CONFIG) #b.grid(row=row, column=1, sticky='w') #l = Label(oframe6, text='Select File', **COLOR_CONFIG) #l.grid(row=row, column=1, sticky='w') self._css_entry = Entry(oframe6, **ENTRY_CONFIG) self._css_entry.grid(row=row, column=1, sticky='ew') self._css_browse = Button(oframe6, text="Browse", command=self._browse_css, **BUTTON_CONFIG) self._css_browse.grid(row=row, column=2, sticky='ew', padx=2) def _init_bindings(self): self._root.bind('<Delete>', self._delete_module) self._root.bind('<Alt-o>', self._options_toggle) self._root.bind('<Alt-m>', self._messages_toggle) self._root.bind('<F5>', self._go) self._root.bind('<Alt-s>', self._go) self._root.bind('<Control-n>', self._new) self._root.bind('<Control-o>', self._open) self._root.bind('<Control-s>', self._save) self._root.bind('<Control-a>', self._saveas) def _options_toggle(self, *e): if self._options_visible: self._optsframe.forget() self._option_button['image'] = self._rightImage self._options_visible = 0 else: self._optsframe.pack(fill='both', side='right') self._option_button['image'] = self._leftImage self._options_visible = 1 def _messages_toggle(self, *e): if self._messages_visible: self._msgsframe.forget() self._message_button['image'] = self._rightImage self._messages_visible = 0 else: self._msgsframe.pack(fill='both', side='bottom', expand=1) self._message_button['image'] = self._leftImage self._messages_visible = 1 def _configure(self, event): self._W = event.width-DW def _delete_module(self, *e): selection = self._module_list.curselection() if len(selection) != 1: return self._module_list.delete(selection[0]) def _entry_module(self, *e): modules = [self._module_entry.get()] if glob.has_magic(modules[0]): modules = glob.glob(modules[0]) for name in modules: self.add_module(name, check=1) self._module_entry.delete(0, 'end') def _browse_module(self, *e): title = 'Select a module for documentation' ftypes = [('Python module', '.py'), ('Python extension', '.so'), ('All files', '*')] filename = askopenfilename(filetypes=ftypes, title=title, defaultextension='.py', initialdir=self._init_dir) if not filename: return self._init_dir = os.path.dirname(filename) self.add_module(filename, check=1) def _browse_css(self, *e): title = 'Select a CSS stylesheet' ftypes = [('CSS Stylesheet', '.css'), ('All files', '*')] filename = askopenfilename(filetypes=ftypes, title=title, defaultextension='.css') if not filename: return self._css_entry.delete(0, 'end') self._css_entry.insert(0, filename) def _browse_help(self, *e): title = 'Select a help file' self._help_var.set('-other-') ftypes = [('HTML file', '.html'), ('All files', '*')] filename = askopenfilename(filetypes=ftypes, title=title, defaultextension='.html') if not filename: return self._help_entry.delete(0, 'end') self._help_entry.insert(0, filename) def _browse_out(self, *e): ftypes = [('All files', '*')] title = 'Choose the output directory' if askdirectory is not None: filename = askdirectory(mustexist=0, title=title) if not filename: return else: # Hack for Python 2.1 or earlier: filename = asksaveasfilename(filetypes=ftypes, title=title, initialfile='--this directory--') if not filename: return (f1, f2) = os.path.split(filename) if f2 == '--this directory--': filename = f1 self._out_entry.delete(0, 'end') self._out_entry.insert(0, filename) def destroy(self, *e): if self._root is None: return # Unload any modules that we've imported for m in sys.modules.keys(): if m not in self._old_modules: del sys.modules[m] self._root.destroy() self._root = None def add_module(self, name, check=0): from epydoc.util import is_package_dir, is_pyname, is_module_file from epydoc.docintrospecter import get_value_from_name from epydoc.docintrospecter import get_value_from_filename if (os.path.isfile(name) or is_package_dir(name) or is_pyname(name)): # Check that it's a good module, if requested. if check: try: if is_module_file(name) or is_package_dir(name): get_value_from_filename(name) elif os.path.isfile(name): get_value_from_scriptname(name) else: get_value_from_name(name) except ImportError, e: log.error(e) self._update_messages() self._root.bell() return # Add the module to the list of modules. self._module_list.insert('end', name) self._module_list.yview('end') else: log.error("Couldn't find %r" % name) self._update_messages() self._root.bell() def mainloop(self, *args, **kwargs): self._root.mainloop(*args, **kwargs) def _getopts(self): options = {} options['modules'] = self._module_list.get(0, 'end') options['prj_name'] = self._name_entry.get() or '' options['prj_url'] = self._url_entry.get() or None options['docformat'] = self._docformat_var.get() options['inheritance'] = self._inheritance_var.get() options['introspect_or_parse'] = self._introspect_or_parse_var.get() options['target'] = self._out_entry.get() or 'html' options['frames'] = self._frames_var.get() options['private'] = self._private_var.get() options['show_imports'] = self._imports_var.get() if self._help_var.get() == '-other-': options['help'] = self._help_entry.get() or None else: options['help'] = None if self._css_var.get() == '-other-': options['css'] = self._css_entry.get() or 'default' else: options['css'] = self._css_var.get() or 'default' #if self._private_css_var.get() == '-other-': # options['private_css'] = self._css_entry.get() or 'default' #else: # options['private_css'] = self._private_css_var.get() or 'default' return options def _go(self, *e): if len(self._module_list.get(0,'end')) == 0: self._root.bell() return if self._progress[0] != None: self._cancel[0] = 1 return # Construct the argument list for document(). opts = self._getopts() self._progress[0] = 0.0 self._cancel[0] = 0 args = (opts, self._cancel, self._progress) # Clear the messages window. self._messages['state'] = 'normal' self._messages.delete('0.0', 'end') self._messages['state'] = 'disabled' self._logger.clear() # Restore the module list. This will force re-loading of # anything that we're documenting. for m in sys.modules.keys(): if m not in self._old_modules: del sys.modules[m] # [xx] Reset caches?? # Start documenting start_new_thread(document, args) # Start the progress bar. self._go_button['text'] = 'Stop' self._afterid += 1 dt = 300 # How often to update, in milliseconds self._update(dt, self._afterid) def _update_messages(self): while 1: level, data = self._logger.read() if data is None: break self._messages['state'] = 'normal' if level == 'header': self._messages.insert('end', data, 'header') elif level == 'uline': self._messages.insert('end', data, 'uline header') elif level >= log.ERROR: data= data.rstrip()+'\n\n' self._messages.insert('end', data, 'guierror') elif level >= log.DOCSTRING_WARNING: data= data.rstrip()+'\n\n' self._messages.insert('end', data, 'warning') elif log >= log.INFO: data= data.rstrip()+'\n\n' self._messages.insert('end', data, 'message') # if data == '\n': # if self._last_tag != 'header2': # self._messages.insert('end', '\n', self._last_tag) # elif data == '='*75: # if self._messages.get('end-3c', 'end') == '\n\n\n': # self._messages.delete('end-1c') # self._in_header = 1 # self._messages.insert('end', ' '*75, 'uline header') # self._last_tag = 'header' # elif data == '-'*75: # self._in_header = 0 # self._last_tag = 'header2' # elif self._in_header: # self._messages.insert('end', data, 'header') # self._last_tag = 'header' # elif re.match(r'\s*(L\d+:|-)?\s*Warning: ', data): # self._messages.insert('end', data, 'warning') # self._last_tag = 'warning' # else: # self._messages.insert('end', data, 'error') # self._last_tag = 'error' self._messages['state'] = 'disabled' self._messages.yview('end') def _update(self, dt, id): if self._root is None: return if self._progress[0] is None: return if id != self._afterid: return # Update the messages box self._update_messages() # Update the progress bar. if self._progress[0] == 'done': p = self._W + DX elif self._progress[0] == 'cancel': p = -5 else: p = DX + self._W * self._progress[0] self._canvas.coords(self._r1, DX+1, DY+1, p, self._H+1) self._canvas.coords(self._r2, DX, DY, p-1, self._H) self._canvas.coords(self._r3, DX+1, DY+1, p, self._H+1) # Are we done? if self._progress[0] in ('done', 'cancel'): if self._progress[0] == 'cancel': self._root.bell() self._go_button['text'] = 'Start' self._progress[0] = None return self._root.after(dt, self._update, dt, id) def _new(self, *e): self._module_list.delete(0, 'end') self._name_entry.delete(0, 'end') self._url_entry.delete(0, 'end') self._docformat_var.set('epytext') self._inheritance_var.set('grouped') self._introspect_or_parse_var.set('both') self._out_entry.delete(0, 'end') self._module_entry.delete(0, 'end') self._css_entry.delete(0, 'end') self._help_entry.delete(0, 'end') self._frames_var.set(1) self._private_var.set(1) self._imports_var.set(0) self._css_var.set('default') #self._private_css_var.set('default') self._help_var.set('default') self._filename = None self._init_dir = None def _open(self, *e): title = 'Open project' ftypes = [('Project file', '.prj'), ('All files', '*')] filename = askopenfilename(filetypes=ftypes, title=title, defaultextension='.css') if not filename: return self.open(filename) def open(self, prjfile): from epydoc.docwriter.html_css import STYLESHEETS self._filename = prjfile try: opts = load(open(prjfile, 'r')) modnames = list(opts.get('modules', [])) modnames.sort() self._module_list.delete(0, 'end') for name in modnames: self.add_module(name) self._module_entry.delete(0, 'end') self._name_entry.delete(0, 'end') if opts.get('prj_name'): self._name_entry.insert(0, opts['prj_name']) self._url_entry.delete(0, 'end') if opts.get('prj_url'): self._url_entry.insert(0, opts['prj_url']) self._docformat_var.set(opts.get('docformat', 'epytext')) self._inheritance_var.set(opts.get('inheritance', 'grouped')) self._introspect_or_parse_var.set( opts.get('introspect_or_parse', 'both')) self._help_entry.delete(0, 'end') if opts.get('help') is None: self._help_var.set('default') else: self._help_var.set('-other-') self._help_entry.insert(0, opts.get('help')) self._out_entry.delete(0, 'end') self._out_entry.insert(0, opts.get('target', 'html')) self._frames_var.set(opts.get('frames', 1)) self._private_var.set(opts.get('private', 1)) self._imports_var.set(opts.get('show_imports', 0)) self._css_entry.delete(0, 'end') if opts.get('css', 'default') in STYLESHEETS.keys(): self._css_var.set(opts.get('css', 'default')) else: self._css_var.set('-other-') self._css_entry.insert(0, opts.get('css', 'default')) #if opts.get('private_css', 'default') in STYLESHEETS.keys(): # self._private_css_var.set(opts.get('private_css', 'default')) #else: # self._private_css_var.set('-other-') # self._css_entry.insert(0, opts.get('private_css', 'default')) except Exception, e: log.error('Error opening %s: %s' % (prjfile, e)) self._root.bell() def _save(self, *e): if self._filename is None: return self._saveas() try: opts = self._getopts() dump(opts, open(self._filename, 'w')) except Exception, e: if self._filename is None: log.error('Error saving: %s' % e) else: log.error('Error saving %s: %s' % (self._filename, e)) self._root.bell() def _saveas(self, *e): title = 'Save project as' ftypes = [('Project file', '.prj'), ('All files', '*')] filename = asksaveasfilename(filetypes=ftypes, title=title, defaultextension='.prj') if not filename: return self._filename = filename self._save() def _version(): """ Display the version information, and exit. @rtype: C{None} """ import epydoc print "Epydoc version %s" % epydoc.__version__ sys.exit(0) # At some point I could add: # --show-messages, --hide-messages # --show-options, --hide-options def _usage(): print print 'Usage: epydocgui [OPTIONS] [FILE.prj | MODULES...]' print print ' FILE.prj An epydoc GUI project file.' print ' MODULES... A list of Python modules to document.' print ' -V, --version Print the version of epydoc.' print ' -h, -?, --help, --usage Display this usage message' print ' --debug Do not suppress error messages' print sys.exit(0) def _error(s): s = '%s; run "%s -h" for usage' % (s, os.path.basename(sys.argv[0])) if len(s) > 80: i = s.rfind(' ', 0, 80) if i>0: s = s[:i]+'\n'+s[i+1:] print >>sys.stderr, s sys.exit(1) def gui(): global DEBUG sys.stderr = sys.__stderr__ projects = [] modules = [] for arg in sys.argv[1:]: if arg[0] == '-': if arg != '-V': arg = arg.lower() if arg in ('-h', '--help', '-?', '--usage'): _usage() elif arg in ('-V', '--version'): _version() elif arg in ('--debug',): DEBUG = 1 else: _error('Unknown parameter %r' % arg) elif arg[-4:] == '.prj': projects.append(arg) else: modules.append(arg) if len(projects) > 1: _error('Too many projects') if len(projects) == 1: if len(modules) > 0: _error('You must specify either a project or a list of modules') if not os.path.exists(projects[0]): _error('Cannot open project file %s' % projects[0]) gui = EpydocGUI() gui.open(projects[0]) gui.mainloop() else: gui = EpydocGUI() for module in modules: gui.add_module(module, check=1) gui.mainloop() if __name__ == '__main__': gui()
en
0.343344
#!/usr/bin/env python # # objdoc: epydoc command-line interface # <NAME> # # Created [03/15/02 10:31 PM] # $Id: gui.py 646 2004-03-19 19:01:37Z edloper $ # Graphical interface to epydoc. This interface might be useful for systems where it's inconvenient to use the command-line interface (such as Windows). It supports many (but not all) of the features that are supported by the command-line interface. It also supports loading and saving of X{project files}, which store a set of related modules, and the options that should be used to generate the documentation for those modules. Usage:: epydocgui [OPTIONS] [FILE.prj | MODULES...] FILE.prj An epydoc GUI project file. MODULES... A list of Python modules to document. -V, --version Print the version of epydoc. -h, -?, --help, --usage Display this usage message --debug Do not suppress error messages @todo: Use ini-style project files, rather than pickles (using the same format as the CLI). # askdirectory is only defined in python 2.2+; fall back on # asksaveasfilename if it's not available. # Include support for Zope, if it's available. ##///////////////////////////////////////////////////////////////////////// ## CONSTANTS ##///////////////////////////////////////////////////////////////////////// # Colors for tkinter display # Convenience dictionaries for specifying widget colors # Colors for the progress bar # On tkinter canvases, where's the zero coordinate? # How much of the progress is in each subtask? ##///////////////////////////////////////////////////////////////////////// ## IMAGE CONSTANTS ##///////////////////////////////////////////////////////////////////////// \ R0lGODlhCwAMALMAANnZ2QDMmQCZZgBmZgAAAAAzM////////wAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAACH5BAEAAAAALAAAAAALAAwAAAQjEMhJKxCW4gzCIJxXZIEwFGDlDadqsii1sq1U0nA64+ON 5xEAOw== \ R0lGODlhCwAMALMAANnZ2QDMmQCZZgBmZgAAAAAzM////////wAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAACH5BAEAAAAALAAAAAALAAwAAAQmEIQxgLVUCsppsVPngVtXEFfIfWk5nBe4xuSL0tKLy/cu 7JffJQIAOw== \ R0lGODlhDAALAKIAANnZ2QDMmQCZZgBmZgAAAAAzM////////yH5BAEAAAAALAAAAAAMAAsAAAM4 CLocgaCrESiDoBshOAoAgBEyMzgAEIGCowsiOLoLgEBVOLoIqlSFo4OgC1RYM4Ogq1RYg6DLVJgA Ow== \ R0lGODlhDAALAKIAANnZ2QDMmQBmZgCZZgAzMwAAAP///////yH5BAEAAAAALAAAAAAMAAsAAAM5 GIGgyzIYgaCrIigTgaALIigyEQiqKLoTgaAoujuDgKJLVAgqIoJEBQAIIkKEhaArRFgIukqFoMsJ ADs= ##///////////////////////////////////////////////////////////////////////// ## MessageIO ##///////////////////////////////////////////////////////////////////////// ##///////////////////////////////////////////////////////////////////////// ## THREADED DOCUMENTER ##///////////////////////////////////////////////////////////////////////// Create the documentation for C{modules}, using the options specified by C{options}. C{document} is designed to be started in its own thread by L{EpydocGUI._go}. @param options: The options to use for generating documentation. This includes keyword options that can be given to L{docwriter.html.HTMLWriter}, as well as the option C{target}, which controls where the output is written to. @type options: C{dictionary} # Set the default docformat. # We're done. # Cancel. # We failed. # We failed. ##///////////////////////////////////////////////////////////////////////// ## GUI ##///////////////////////////////////////////////////////////////////////// A graphical user interace to epydoc. # Store a copy of sys.modules, so that we can restore it # later. This is useful for making sure that we reload # everything when we re-build its documentation. This will # *not* reload the modules that are present when the EpydocGUI # is created, but that should only contain some builtins, some # epydoc modules, Tkinter, pickle, and thread.. # Create the main window. #self._root.bind('<Control-d>', self.destroy) # Set up the basic frames. Do not pack the options frame or # the messages frame; the GUI has buttons to expand them. # Initialize all the frames, etc. # Set up logging # Open the messages pane by default. ## For testing options: #self._options_toggle() # Set up the messages control frame # Add a scrollbar # Set up some colorization tags # Keep track of tag state.. # Add some buttons # Set up the options control frame #==================== oframe3 ==================== # -n NAME, --name NAME # -u URL, --url URL # -o DIR, --output DIR #==================== oframe4 ==================== # --no-frames # --no-private # --show-imports #==================== oframe7 ==================== # --docformat # Separater # --inheritance # Separater # --parse-only, --introspect-only #==================== oframe5 ==================== # --help-file FILE #==================== oframe6 ==================== # -c CSS, --css CSS # --private-css CSS #l = Label(oframe6, text="Public", **COLOR_CONFIG) #l.grid(row=row, column=0, sticky='e') #l = Label(oframe6, text="Private", **COLOR_CONFIG) #l.grid(row=row, column=1, sticky='w') #private_css_var = self._private_css_var = StringVar(self._root) #private_css_var.set('default') #b = Radiobutton(oframe6, var=private_css_var, value=name, # text=name, **CBUTTON_CONFIG) #b.grid(row=row, column=1, sticky='w') #b = Radiobutton(oframe6, text='Select File', var=private_css_var, # value='-other-', **CBUTTON_CONFIG) #b.grid(row=row, column=1, sticky='w') #l = Label(oframe6, text='Select File', **COLOR_CONFIG) #l.grid(row=row, column=1, sticky='w') # Hack for Python 2.1 or earlier: # Unload any modules that we've imported # Check that it's a good module, if requested. # Add the module to the list of modules. #if self._private_css_var.get() == '-other-': # options['private_css'] = self._css_entry.get() or 'default' #else: # options['private_css'] = self._private_css_var.get() or 'default' # Construct the argument list for document(). # Clear the messages window. # Restore the module list. This will force re-loading of # anything that we're documenting. # [xx] Reset caches?? # Start documenting # Start the progress bar. # How often to update, in milliseconds # if data == '\n': # if self._last_tag != 'header2': # self._messages.insert('end', '\n', self._last_tag) # elif data == '='*75: # if self._messages.get('end-3c', 'end') == '\n\n\n': # self._messages.delete('end-1c') # self._in_header = 1 # self._messages.insert('end', ' '*75, 'uline header') # self._last_tag = 'header' # elif data == '-'*75: # self._in_header = 0 # self._last_tag = 'header2' # elif self._in_header: # self._messages.insert('end', data, 'header') # self._last_tag = 'header' # elif re.match(r'\s*(L\d+:|-)?\s*Warning: ', data): # self._messages.insert('end', data, 'warning') # self._last_tag = 'warning' # else: # self._messages.insert('end', data, 'error') # self._last_tag = 'error' # Update the messages box # Update the progress bar. # Are we done? #self._private_css_var.set('default') #if opts.get('private_css', 'default') in STYLESHEETS.keys(): # self._private_css_var.set(opts.get('private_css', 'default')) #else: # self._private_css_var.set('-other-') # self._css_entry.insert(0, opts.get('private_css', 'default')) Display the version information, and exit. @rtype: C{None} # At some point I could add: # --show-messages, --hide-messages # --show-options, --hide-options
2.403937
2
python/paddle/fluid/tests/unittests/dygraph_to_static/test_dict.py
TochkaAI/Paddle
3
6631301
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import six import numpy as np import unittest import paddle import paddle.fluid as fluid from paddle.jit import to_static from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator PLACE = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace( ) class SubNetWithDict(fluid.dygraph.Layer): def __init__(self, hidden_size=16, output_size=16): super(SubNetWithDict, self).__init__() init_weight = lambda x: fluid.ParamAttr(initializer=fluid.initializer.Constant(x)) self.q_fc = fluid.dygraph.Linear( input_dim=hidden_size, output_dim=output_size, bias_attr=False, param_attr=init_weight(0.6)) self.k_fc = fluid.dygraph.Linear( input_dim=hidden_size, output_dim=output_size, bias_attr=False, param_attr=init_weight(0.5)) self.v_fc = fluid.dygraph.Linear( input_dim=hidden_size, output_dim=output_size, bias_attr=False, param_attr=init_weight(0.2)) def forward(self, input, cache=None): input = fluid.dygraph.to_variable(input) q = self.q_fc(input) k = self.k_fc(input) v = self.v_fc(input) if cache is not None: cache_k, cache_v = cache["k"], cache["v"] k = 0.1 * cache_k + k v = 0.2 * cache_v + v cache["k"], cache["v"] = k, v weight = fluid.layers.matmul(x=q, y=k, transpose_y=True) weight = fluid.layers.softmax(weight) out = fluid.layers.matmul(weight, v) return out class MainNetWithDict(fluid.dygraph.Layer): def __init__(self, batch_size=64, hidden_size=16, output_size=16): super(MainNetWithDict, self).__init__() self.batch_size = batch_size self.hidden_size = hidden_size self.output_size = output_size self.sub_net = SubNetWithDict(hidden_size, output_size) @to_static def forward(self, input, max_len=4): input = fluid.dygraph.to_variable(input) cache = { "k": fluid.layers.fill_constant( shape=[self.batch_size, self.output_size], dtype='float32', value=0), "v": fluid.layers.fill_constant( shape=[self.batch_size, self.output_size], dtype='float32', value=0), } # TODO(Aurelius84): The following code will be converted into: # max_len = layers.cond(layers.shape(input)[0] != max_len, # lambda: layers.shape(input)[0], lambda: max_len) # But max_len should be wrapped into tensor, which is not supported. # Comment out this line of code for now. # max_len = input.shape[0] if input.shape[0] != max_len else max_len out = input for i in range(max_len): out = self.sub_net(out, cache) cache = update_cache(cache) return out # Test to call function defined outside of class. def update_cache(cache): for k, val in six.iteritems(cache): cache[k] = fluid.layers.softmax(val) return cache class TestNetWithDict(unittest.TestCase): """ TestCase for the transformation from control flow `if/else` dependent on tensor in Dygraph into Static `fluid.layers.cond`. """ def setUp(self): self.x = np.random.random([10, 16]).astype('float32') self.batch_size = self.x.shape[0] def _run_static(self): return self.train(to_static=True) def _run_dygraph(self): return self.train(to_static=False) def train(self, to_static=False): prog_trans = ProgramTranslator() prog_trans.enable(to_static) with fluid.dygraph.guard(PLACE): net = MainNetWithDict(batch_size=self.batch_size) ret = net(self.x) return ret.numpy() def test_ast_to_func(self): self.assertTrue((self._run_dygraph() == self._run_static()).all()) # Tests for dict pop @paddle.jit.to_static def test_dic_pop(x): x = paddle.to_tensor(x) dict_a = {"red": 0, "green": 1, "blue": 2} m = dict_a.pop("red") n = dict_a.pop("black", 3) out = x + m + n return out @paddle.jit.to_static def test_dic_pop_2(x): x = paddle.to_tensor(x) dict_a = {"red": x, "green": x + 1, "blue": x + 3} m = dict_a.pop("red") n = dict_a.pop("black", 3) out = x + m + n return out class TestDictPop(unittest.TestCase): def setUp(self): self.input = np.random.random((3)).astype('int32') self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda( ) else paddle.CPUPlace() self._set_test_func() def _set_test_func(self): self.dygraph_func = test_dic_pop def _run_static(self): return self._run(to_static=True) def _run_dygraph(self): return self._run(to_static=False) def _run(self, to_static): prog_trans = ProgramTranslator() prog_trans.enable(to_static) result = self.dygraph_func(self.input) return result.numpy() def test_transformed_result(self): dygraph_res = self._run_dygraph() static_res = self._run_static() self.assertTrue( np.allclose(dygraph_res, static_res), msg='dygraph result is {}\nstatic result is {}'.format(dygraph_res, static_res)) class TestDictPop2(TestDictPop): def _set_test_func(self): self.dygraph_func = test_dic_pop_2 class NetWithDictPop(paddle.nn.Layer): def __init__(self): super(NetWithDictPop, self).__init__() @to_static def forward(self, x, **kwargs): x = paddle.to_tensor(x) y = kwargs.pop('y', None) if y: y = paddle.to_tensor(x) x += y x.mean() return x class TestDictPop(TestNetWithDict): def setUp(self): self.x = np.array([2, 2]).astype('float32') def train(self, to_static=False): prog_trans = ProgramTranslator() prog_trans.enable(to_static) with fluid.dygraph.guard(PLACE): net = NetWithDictPop() ret = net(z=0, x=self.x, y=True) return ret.numpy() def test_ast_to_func(self): dygraph_result = self._run_dygraph() static_result = self._run_static() self.assertTrue( (dygraph_result == static_result).all(), msg="dygraph result: {}\nstatic result: {}".format(dygraph_result, static_result)) class TestDictCmpInFor(unittest.TestCase): def test_with_for(self): def func(): pos = [1, 3] neg = [-1, -3] dict_val = {'minus': 0} # test `zip` with `for` for (x, y) in zip(pos, neg): val = x - y dict_val.update( {k: val + dict_val[k] for k, v in dict_val.items()}) return dict_val self.assertEqual(paddle.jit.to_static(func)()['minus'], 8) def test_with_for_enumerate(self): def func(): pos = [1, 3] neg = [-1, -3] dict_val = {'minus': 0} # test `zip` with `for` for i, (x, y) in enumerate(zip(pos, neg)): val = x - y dict_val.update( {k: val + dict_val[k] for k, v in dict_val.items()}) return dict_val self.assertEqual(paddle.jit.to_static(func)()['minus'], 8) if __name__ == '__main__': unittest.main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import six import numpy as np import unittest import paddle import paddle.fluid as fluid from paddle.jit import to_static from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator PLACE = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace( ) class SubNetWithDict(fluid.dygraph.Layer): def __init__(self, hidden_size=16, output_size=16): super(SubNetWithDict, self).__init__() init_weight = lambda x: fluid.ParamAttr(initializer=fluid.initializer.Constant(x)) self.q_fc = fluid.dygraph.Linear( input_dim=hidden_size, output_dim=output_size, bias_attr=False, param_attr=init_weight(0.6)) self.k_fc = fluid.dygraph.Linear( input_dim=hidden_size, output_dim=output_size, bias_attr=False, param_attr=init_weight(0.5)) self.v_fc = fluid.dygraph.Linear( input_dim=hidden_size, output_dim=output_size, bias_attr=False, param_attr=init_weight(0.2)) def forward(self, input, cache=None): input = fluid.dygraph.to_variable(input) q = self.q_fc(input) k = self.k_fc(input) v = self.v_fc(input) if cache is not None: cache_k, cache_v = cache["k"], cache["v"] k = 0.1 * cache_k + k v = 0.2 * cache_v + v cache["k"], cache["v"] = k, v weight = fluid.layers.matmul(x=q, y=k, transpose_y=True) weight = fluid.layers.softmax(weight) out = fluid.layers.matmul(weight, v) return out class MainNetWithDict(fluid.dygraph.Layer): def __init__(self, batch_size=64, hidden_size=16, output_size=16): super(MainNetWithDict, self).__init__() self.batch_size = batch_size self.hidden_size = hidden_size self.output_size = output_size self.sub_net = SubNetWithDict(hidden_size, output_size) @to_static def forward(self, input, max_len=4): input = fluid.dygraph.to_variable(input) cache = { "k": fluid.layers.fill_constant( shape=[self.batch_size, self.output_size], dtype='float32', value=0), "v": fluid.layers.fill_constant( shape=[self.batch_size, self.output_size], dtype='float32', value=0), } # TODO(Aurelius84): The following code will be converted into: # max_len = layers.cond(layers.shape(input)[0] != max_len, # lambda: layers.shape(input)[0], lambda: max_len) # But max_len should be wrapped into tensor, which is not supported. # Comment out this line of code for now. # max_len = input.shape[0] if input.shape[0] != max_len else max_len out = input for i in range(max_len): out = self.sub_net(out, cache) cache = update_cache(cache) return out # Test to call function defined outside of class. def update_cache(cache): for k, val in six.iteritems(cache): cache[k] = fluid.layers.softmax(val) return cache class TestNetWithDict(unittest.TestCase): """ TestCase for the transformation from control flow `if/else` dependent on tensor in Dygraph into Static `fluid.layers.cond`. """ def setUp(self): self.x = np.random.random([10, 16]).astype('float32') self.batch_size = self.x.shape[0] def _run_static(self): return self.train(to_static=True) def _run_dygraph(self): return self.train(to_static=False) def train(self, to_static=False): prog_trans = ProgramTranslator() prog_trans.enable(to_static) with fluid.dygraph.guard(PLACE): net = MainNetWithDict(batch_size=self.batch_size) ret = net(self.x) return ret.numpy() def test_ast_to_func(self): self.assertTrue((self._run_dygraph() == self._run_static()).all()) # Tests for dict pop @paddle.jit.to_static def test_dic_pop(x): x = paddle.to_tensor(x) dict_a = {"red": 0, "green": 1, "blue": 2} m = dict_a.pop("red") n = dict_a.pop("black", 3) out = x + m + n return out @paddle.jit.to_static def test_dic_pop_2(x): x = paddle.to_tensor(x) dict_a = {"red": x, "green": x + 1, "blue": x + 3} m = dict_a.pop("red") n = dict_a.pop("black", 3) out = x + m + n return out class TestDictPop(unittest.TestCase): def setUp(self): self.input = np.random.random((3)).astype('int32') self.place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda( ) else paddle.CPUPlace() self._set_test_func() def _set_test_func(self): self.dygraph_func = test_dic_pop def _run_static(self): return self._run(to_static=True) def _run_dygraph(self): return self._run(to_static=False) def _run(self, to_static): prog_trans = ProgramTranslator() prog_trans.enable(to_static) result = self.dygraph_func(self.input) return result.numpy() def test_transformed_result(self): dygraph_res = self._run_dygraph() static_res = self._run_static() self.assertTrue( np.allclose(dygraph_res, static_res), msg='dygraph result is {}\nstatic result is {}'.format(dygraph_res, static_res)) class TestDictPop2(TestDictPop): def _set_test_func(self): self.dygraph_func = test_dic_pop_2 class NetWithDictPop(paddle.nn.Layer): def __init__(self): super(NetWithDictPop, self).__init__() @to_static def forward(self, x, **kwargs): x = paddle.to_tensor(x) y = kwargs.pop('y', None) if y: y = paddle.to_tensor(x) x += y x.mean() return x class TestDictPop(TestNetWithDict): def setUp(self): self.x = np.array([2, 2]).astype('float32') def train(self, to_static=False): prog_trans = ProgramTranslator() prog_trans.enable(to_static) with fluid.dygraph.guard(PLACE): net = NetWithDictPop() ret = net(z=0, x=self.x, y=True) return ret.numpy() def test_ast_to_func(self): dygraph_result = self._run_dygraph() static_result = self._run_static() self.assertTrue( (dygraph_result == static_result).all(), msg="dygraph result: {}\nstatic result: {}".format(dygraph_result, static_result)) class TestDictCmpInFor(unittest.TestCase): def test_with_for(self): def func(): pos = [1, 3] neg = [-1, -3] dict_val = {'minus': 0} # test `zip` with `for` for (x, y) in zip(pos, neg): val = x - y dict_val.update( {k: val + dict_val[k] for k, v in dict_val.items()}) return dict_val self.assertEqual(paddle.jit.to_static(func)()['minus'], 8) def test_with_for_enumerate(self): def func(): pos = [1, 3] neg = [-1, -3] dict_val = {'minus': 0} # test `zip` with `for` for i, (x, y) in enumerate(zip(pos, neg)): val = x - y dict_val.update( {k: val + dict_val[k] for k, v in dict_val.items()}) return dict_val self.assertEqual(paddle.jit.to_static(func)()['minus'], 8) if __name__ == '__main__': unittest.main()
en
0.789072
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO(Aurelius84): The following code will be converted into: # max_len = layers.cond(layers.shape(input)[0] != max_len, # lambda: layers.shape(input)[0], lambda: max_len) # But max_len should be wrapped into tensor, which is not supported. # Comment out this line of code for now. # max_len = input.shape[0] if input.shape[0] != max_len else max_len # Test to call function defined outside of class. TestCase for the transformation from control flow `if/else` dependent on tensor in Dygraph into Static `fluid.layers.cond`. # Tests for dict pop # test `zip` with `for` # test `zip` with `for`
2.001274
2
example/bulk.py
loevlie/ce_expansion
1
6631302
<filename>example/bulk.py<gh_stars>1-10 import os import numpy as np from ce_expansion.atomgraph import atomgraph from ce_expansion.npdb import db_inter # GLOBAL fontsize of axis labels and text FS = 40 shape = ['icosahedron', 'cuboctahedron', 'elongated-pentagonal-bipyramid', 'fcc-cube'][0] metals = 'aucu' minn = 1 if shape.startswith('cub') else 2 # number of shells on inside and outside to ignore in calculation buffer = 3 for s in range(2 * buffer + 1, 11): if shape.startswith('cub'): s -= 1 # get number of atoms n = db_inter.get_shell2num(shape, s) # get half such that metal1 has the extra atom (if natoms is odd) n = (n + n % 2) // 2 res = db_inter.get_bimet_result(metals, shape=shape, num_shells=s, n_metal1=n) # get ordering array ordering = np.array([int(i) for i in res.ordering]) # load bonds list bonds = res.nanoparticle.load_bonds_list() # build atomgraph object ag = atomgraph.AtomGraph(bonds, 'Au', 'Cu') # get atom indices for each shell shells = db_inter.build_atoms_in_shell_dict(shape, s) # create a 'Test Atom' to ensure shells are being correctly counted test_atom = res.build_atoms_obj() # remove shells from dict not in study maxshell = max(shells.keys()) dropcount = 0 for drop in range(buffer): # pop inner and outer <buffer> layers for d in shells.pop(drop) + shells.pop(maxshell - drop): # set symbol of dropped atoms to Br test_atom[d].symbol = 'Br' # track number of atoms dropped dropcount += 1 # track counts # [Au-Au, Au-Cu, Cu-Cu] counts = np.zeros((len(test_atom) - dropcount, 3)) # number of shells in study nshellstudy = len(shells) atomi = 0 for s in sorted(shells): for i in shells[s]: # base atom type (0: Au, 1: Cu) a1 = ordering[i] matches = np.unique(bonds[np.where(bonds == i)[0]]) i2s = np.array([j for j in matches if j != atomi]) for i2 in i2s: a2 = ordering[i2] counts[atomi, a1 + a2] += 1 atomi += 1 # get each count type au_counts = counts[np.where(counts[:, 2] == 0)[0]][:, :2] cu_counts = np.flip(counts[np.where(counts[:, 0] == 0)[0]][:, 1:], 0) # ensure that all atoms have been correctly accounted for assert len(au_counts) + len(cu_counts) == len(test_atom) - dropcount assert len(au_counts) == (test_atom.symbols == 'Au').sum() assert len(cu_counts) == (test_atom.symbols == 'Cu').sum() # calc count fractions au_fracs = au_counts.mean(0) / 12 cu_fracs = cu_counts.mean(0) / 12 # TEMP FIX!!! # only look at CN 12 atoms tokeepcn = np.where(ag.cns == 12)[0] todropcn = np.where(ag.cns != 12)[0] # save half of test_atom if nshellstudy > 0: test_atom.positions -= test_atom.positions.mean(0) test_ato2 = test_atom[np.where( abs(test_atom.positions[:, 0]) < 1)[0]] test_ato2.write(os.path.expanduser('~') + '\\desktop\\SAMPLES\\slice-%ishells_%s.xyz' % (nshellstudy, shape[:3])) del test_atom[test_atom.symbols == 'Br'] test_atom.write(os.path.expanduser('~') + '\\desktop\\SAMPLES\\%ishells_%s.xyz' % (nshellstudy, shape[:3])) print(''.center(20, '-')) print(shape) print('%i total atoms' % res.num_atoms) print('%i atoms ignored' % dropcount) print('%i atoms studied' % len(counts)) print('%i shells studied' % nshellstudy) print('Au: -Au (%.2f), -Cu (%.2f)' % (au_fracs[0], au_fracs[1])) print('Cu: -Cu (%.2f), -Au (%.2f)' % (cu_fracs[0], cu_fracs[1])) print(''.center(20, '-'))
<filename>example/bulk.py<gh_stars>1-10 import os import numpy as np from ce_expansion.atomgraph import atomgraph from ce_expansion.npdb import db_inter # GLOBAL fontsize of axis labels and text FS = 40 shape = ['icosahedron', 'cuboctahedron', 'elongated-pentagonal-bipyramid', 'fcc-cube'][0] metals = 'aucu' minn = 1 if shape.startswith('cub') else 2 # number of shells on inside and outside to ignore in calculation buffer = 3 for s in range(2 * buffer + 1, 11): if shape.startswith('cub'): s -= 1 # get number of atoms n = db_inter.get_shell2num(shape, s) # get half such that metal1 has the extra atom (if natoms is odd) n = (n + n % 2) // 2 res = db_inter.get_bimet_result(metals, shape=shape, num_shells=s, n_metal1=n) # get ordering array ordering = np.array([int(i) for i in res.ordering]) # load bonds list bonds = res.nanoparticle.load_bonds_list() # build atomgraph object ag = atomgraph.AtomGraph(bonds, 'Au', 'Cu') # get atom indices for each shell shells = db_inter.build_atoms_in_shell_dict(shape, s) # create a 'Test Atom' to ensure shells are being correctly counted test_atom = res.build_atoms_obj() # remove shells from dict not in study maxshell = max(shells.keys()) dropcount = 0 for drop in range(buffer): # pop inner and outer <buffer> layers for d in shells.pop(drop) + shells.pop(maxshell - drop): # set symbol of dropped atoms to Br test_atom[d].symbol = 'Br' # track number of atoms dropped dropcount += 1 # track counts # [Au-Au, Au-Cu, Cu-Cu] counts = np.zeros((len(test_atom) - dropcount, 3)) # number of shells in study nshellstudy = len(shells) atomi = 0 for s in sorted(shells): for i in shells[s]: # base atom type (0: Au, 1: Cu) a1 = ordering[i] matches = np.unique(bonds[np.where(bonds == i)[0]]) i2s = np.array([j for j in matches if j != atomi]) for i2 in i2s: a2 = ordering[i2] counts[atomi, a1 + a2] += 1 atomi += 1 # get each count type au_counts = counts[np.where(counts[:, 2] == 0)[0]][:, :2] cu_counts = np.flip(counts[np.where(counts[:, 0] == 0)[0]][:, 1:], 0) # ensure that all atoms have been correctly accounted for assert len(au_counts) + len(cu_counts) == len(test_atom) - dropcount assert len(au_counts) == (test_atom.symbols == 'Au').sum() assert len(cu_counts) == (test_atom.symbols == 'Cu').sum() # calc count fractions au_fracs = au_counts.mean(0) / 12 cu_fracs = cu_counts.mean(0) / 12 # TEMP FIX!!! # only look at CN 12 atoms tokeepcn = np.where(ag.cns == 12)[0] todropcn = np.where(ag.cns != 12)[0] # save half of test_atom if nshellstudy > 0: test_atom.positions -= test_atom.positions.mean(0) test_ato2 = test_atom[np.where( abs(test_atom.positions[:, 0]) < 1)[0]] test_ato2.write(os.path.expanduser('~') + '\\desktop\\SAMPLES\\slice-%ishells_%s.xyz' % (nshellstudy, shape[:3])) del test_atom[test_atom.symbols == 'Br'] test_atom.write(os.path.expanduser('~') + '\\desktop\\SAMPLES\\%ishells_%s.xyz' % (nshellstudy, shape[:3])) print(''.center(20, '-')) print(shape) print('%i total atoms' % res.num_atoms) print('%i atoms ignored' % dropcount) print('%i atoms studied' % len(counts)) print('%i shells studied' % nshellstudy) print('Au: -Au (%.2f), -Cu (%.2f)' % (au_fracs[0], au_fracs[1])) print('Cu: -Cu (%.2f), -Au (%.2f)' % (cu_fracs[0], cu_fracs[1])) print(''.center(20, '-'))
en
0.798014
# GLOBAL fontsize of axis labels and text # number of shells on inside and outside to ignore in calculation # get number of atoms # get half such that metal1 has the extra atom (if natoms is odd) # get ordering array # load bonds list # build atomgraph object # get atom indices for each shell # create a 'Test Atom' to ensure shells are being correctly counted # remove shells from dict not in study # pop inner and outer <buffer> layers # set symbol of dropped atoms to Br # track number of atoms dropped # track counts # [Au-Au, Au-Cu, Cu-Cu] # number of shells in study # base atom type (0: Au, 1: Cu) # get each count type # ensure that all atoms have been correctly accounted for # calc count fractions # TEMP FIX!!! # only look at CN 12 atoms # save half of test_atom
2.331858
2
Documentation/GuidesFromPlosCompBioPaper/ExampleCaseC/AdditionalInputFiles/PRSCondition/LAD2coronaryRdController.py
carthurs/CRIMSONGUI
10
6631303
version https://git-lfs.github.com/spec/v1 oid sha256:61bea305f96063c5fb171c13e8b1ca15cae0d5682a9a7b4ecc29798ff2741fbd size 11919
version https://git-lfs.github.com/spec/v1 oid sha256:61bea305f96063c5fb171c13e8b1ca15cae0d5682a9a7b4ecc29798ff2741fbd size 11919
none
1
0.765739
1
proj/pred/app/archive_logfile.py
kant/predictprotein-webserver-proq3
0
6631304
#!/usr/bin/python # Filename: archive_logfile.py # Description: archive logfile using gnu gzip import os import sys import re import gzip progname = os.path.basename(sys.argv[0]) wspace = ''.join([" "]*len(progname)) usage_short=""" Usage: %s FILE [FILE ...] [-maxsize STR] """%(progname) usage_ext=""" Description: Archive (gzip) the logfile if its size is over maxsize OPTIONS: -l LISTFILE List of log files -maxsize STR Set the threshold of the filesize, the logfile will be gzipped if its file size is >= maxsize, (default: 20M) e.g. 500k, 20M, 500000b, 5000, 1G -h, --help Print this help message and exit Created 2014-05-22, updated 2014-05-22, <NAME> """ usage_exp=""" Examples: %s /var/log/program.output.log """%(progname) def PrintHelp(fpout=sys.stdout):#{{{ print >> fpout, usage_short print >> fpout, usage_ext print >> fpout, usage_exp#}}} def my_getopt_str(argv, i):#{{{ """ Get a string from the argument list, return the string and the updated index to the argument list """ try: opt = argv[i+1] if opt[0] == "-": msg = "Error! option '%s' must be followed by a string"\ ", not an option arg." print >> sys.stderr, msg%(argv[i]) sys.exit(1) return (opt, i+2) except IndexError: msg = "Error! option '%s' must be followed by a string" print >> sys.stderr, msg%(argv[i]) raise #}}} def Size_human2byte(s):#{{{ if s.isdigit(): return int(s) else: s = s.upper() match = re.match(r"([0-9]+)([A-Z]+)", s , re.I) if match: items = match.groups() size = int(items[0]) if items[1] in ["B"]: return size elif items[1] in ["K", "KB"]: return size*1024 elif items[1] in ["M", "MB"]: return size*1024*1024 elif items[1] in ["G", "GB"]: return size*1024*1024*1024 else: print >> sys.stderr, "Bad maxsize argument:",s return -1 else: print >> sys.stderr, "Bad maxsize argument:",s return -1 #}}} def ArchiveFile(filename, maxsize):#{{{ """ Archive the logfile if its size exceeds the limit """ if not os.path.exists(filename): print >> sys.stderr, filename, "does not exist. ignore." return 1 else: filesize = os.path.getsize(filename) if filesize > maxsize: cnt = 0 zipfile = "" while 1: cnt += 1 zipfile = "%s.%d.gz"%(filename, cnt) if not os.path.exists(zipfile): break # write zip file try: f_in = open(filename, 'rb') except IOError: print >> sys.stderr, "Failed to read %s"%(filename) return 1 try: f_out = gzip.open(zipfile, 'wb') except IOError: print >> sys.stderr, "Failed to write to %s"%(zipfile) return 1 f_out.writelines(f_in) f_out.close() f_in.close() print "%s is archived to %s"%(filename, zipfile) os.remove(filename) return 0 #}}} def main(g_params):#{{{ argv = sys.argv numArgv = len(argv) if numArgv < 2: PrintHelp() return 1 fileList = [] fileListFile = "" maxsize_str = "" i = 1 isNonOptionArg=False while i < numArgv: if isNonOptionArg == True: fileList.append(argv[i]) isNonOptionArg = False i += 1 elif argv[i] == "--": isNonOptionArg = True i += 1 elif argv[i][0] == "-": if argv[i] in ["-h", "--help"]: PrintHelp() return 1 elif argv[i] in ["-maxsize", "--maxsize"]: (maxsize_str, i) = my_getopt_str(argv, i) elif argv[i] in ["-l", "--l"] : (fileListFile, i) = my_getopt_str(argv, i) elif argv[i] in ["-q", "--q"]: g_params['isQuiet'] = True i += 1 else: print >> sys.stderr, "Error! Wrong argument:", argv[i] return 1 else: fileList.append(argv[i]) i += 1 if maxsize_str != "": maxsize = Size_human2byte(maxsize_str) if maxsize > 0: g_params['maxsize'] = maxsize else: return 1 # print "maxsize=", g_params['maxsize'] if fileListFile != "": tmplist = open(fileListFile, "r").read().split('\n') tmplist = [x.strip() for x in tmplist] fileList += tmplist if len(fileList) < 1: print >> sys.stderr, "No input file is set. exit." for i in xrange(len(fileList)): # print "%d --> %s" %(i, fileList[i]) ArchiveFile(fileList[i], g_params['maxsize']) #}}} def InitGlobalParameter():#{{{ g_params = {} g_params['isQuiet'] = True g_params['maxsize'] = 20*1024*1024 return g_params #}}} if __name__ == '__main__' : g_params = InitGlobalParameter() sys.exit(main(g_params))
#!/usr/bin/python # Filename: archive_logfile.py # Description: archive logfile using gnu gzip import os import sys import re import gzip progname = os.path.basename(sys.argv[0]) wspace = ''.join([" "]*len(progname)) usage_short=""" Usage: %s FILE [FILE ...] [-maxsize STR] """%(progname) usage_ext=""" Description: Archive (gzip) the logfile if its size is over maxsize OPTIONS: -l LISTFILE List of log files -maxsize STR Set the threshold of the filesize, the logfile will be gzipped if its file size is >= maxsize, (default: 20M) e.g. 500k, 20M, 500000b, 5000, 1G -h, --help Print this help message and exit Created 2014-05-22, updated 2014-05-22, <NAME> """ usage_exp=""" Examples: %s /var/log/program.output.log """%(progname) def PrintHelp(fpout=sys.stdout):#{{{ print >> fpout, usage_short print >> fpout, usage_ext print >> fpout, usage_exp#}}} def my_getopt_str(argv, i):#{{{ """ Get a string from the argument list, return the string and the updated index to the argument list """ try: opt = argv[i+1] if opt[0] == "-": msg = "Error! option '%s' must be followed by a string"\ ", not an option arg." print >> sys.stderr, msg%(argv[i]) sys.exit(1) return (opt, i+2) except IndexError: msg = "Error! option '%s' must be followed by a string" print >> sys.stderr, msg%(argv[i]) raise #}}} def Size_human2byte(s):#{{{ if s.isdigit(): return int(s) else: s = s.upper() match = re.match(r"([0-9]+)([A-Z]+)", s , re.I) if match: items = match.groups() size = int(items[0]) if items[1] in ["B"]: return size elif items[1] in ["K", "KB"]: return size*1024 elif items[1] in ["M", "MB"]: return size*1024*1024 elif items[1] in ["G", "GB"]: return size*1024*1024*1024 else: print >> sys.stderr, "Bad maxsize argument:",s return -1 else: print >> sys.stderr, "Bad maxsize argument:",s return -1 #}}} def ArchiveFile(filename, maxsize):#{{{ """ Archive the logfile if its size exceeds the limit """ if not os.path.exists(filename): print >> sys.stderr, filename, "does not exist. ignore." return 1 else: filesize = os.path.getsize(filename) if filesize > maxsize: cnt = 0 zipfile = "" while 1: cnt += 1 zipfile = "%s.%d.gz"%(filename, cnt) if not os.path.exists(zipfile): break # write zip file try: f_in = open(filename, 'rb') except IOError: print >> sys.stderr, "Failed to read %s"%(filename) return 1 try: f_out = gzip.open(zipfile, 'wb') except IOError: print >> sys.stderr, "Failed to write to %s"%(zipfile) return 1 f_out.writelines(f_in) f_out.close() f_in.close() print "%s is archived to %s"%(filename, zipfile) os.remove(filename) return 0 #}}} def main(g_params):#{{{ argv = sys.argv numArgv = len(argv) if numArgv < 2: PrintHelp() return 1 fileList = [] fileListFile = "" maxsize_str = "" i = 1 isNonOptionArg=False while i < numArgv: if isNonOptionArg == True: fileList.append(argv[i]) isNonOptionArg = False i += 1 elif argv[i] == "--": isNonOptionArg = True i += 1 elif argv[i][0] == "-": if argv[i] in ["-h", "--help"]: PrintHelp() return 1 elif argv[i] in ["-maxsize", "--maxsize"]: (maxsize_str, i) = my_getopt_str(argv, i) elif argv[i] in ["-l", "--l"] : (fileListFile, i) = my_getopt_str(argv, i) elif argv[i] in ["-q", "--q"]: g_params['isQuiet'] = True i += 1 else: print >> sys.stderr, "Error! Wrong argument:", argv[i] return 1 else: fileList.append(argv[i]) i += 1 if maxsize_str != "": maxsize = Size_human2byte(maxsize_str) if maxsize > 0: g_params['maxsize'] = maxsize else: return 1 # print "maxsize=", g_params['maxsize'] if fileListFile != "": tmplist = open(fileListFile, "r").read().split('\n') tmplist = [x.strip() for x in tmplist] fileList += tmplist if len(fileList) < 1: print >> sys.stderr, "No input file is set. exit." for i in xrange(len(fileList)): # print "%d --> %s" %(i, fileList[i]) ArchiveFile(fileList[i], g_params['maxsize']) #}}} def InitGlobalParameter():#{{{ g_params = {} g_params['isQuiet'] = True g_params['maxsize'] = 20*1024*1024 return g_params #}}} if __name__ == '__main__' : g_params = InitGlobalParameter() sys.exit(main(g_params))
en
0.44535
#!/usr/bin/python # Filename: archive_logfile.py # Description: archive logfile using gnu gzip Usage: %s FILE [FILE ...] [-maxsize STR] Description: Archive (gzip) the logfile if its size is over maxsize OPTIONS: -l LISTFILE List of log files -maxsize STR Set the threshold of the filesize, the logfile will be gzipped if its file size is >= maxsize, (default: 20M) e.g. 500k, 20M, 500000b, 5000, 1G -h, --help Print this help message and exit Created 2014-05-22, updated 2014-05-22, <NAME> Examples: %s /var/log/program.output.log #{{{ #}}} #{{{ Get a string from the argument list, return the string and the updated index to the argument list #}}} #{{{ #}}} #{{{ Archive the logfile if its size exceeds the limit # write zip file #}}} #{{{ # print "maxsize=", g_params['maxsize'] # print "%d --> %s" %(i, fileList[i]) #}}} #{{{ #}}}
3.069352
3
python/client/azure/mgmt/redhatopenshift/v2020_10_31_preview/_azure_red_hat_open_shift_client.py
dkorzuno/ARO-RP
0
6631305
<filename>python/client/azure/mgmt/redhatopenshift/v2020_10_31_preview/_azure_red_hat_open_shift_client.py<gh_stars>0 # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.service_client import SDKClient from msrest import Serializer, Deserializer from ._configuration import AzureRedHatOpenShiftClientConfiguration from .operations import Operations from .operations import OpenShiftClustersOperations from . import models class AzureRedHatOpenShiftClient(SDKClient): """Rest API for Azure Red Hat OpenShift 4 :ivar config: Configuration for client. :vartype config: AzureRedHatOpenShiftClientConfiguration :ivar operations: Operations operations :vartype operations: azure.mgmt.redhatopenshift.v2020_10_31_preview.operations.Operations :ivar open_shift_clusters: OpenShiftClusters operations :vartype open_shift_clusters: azure.mgmt.redhatopenshift.v2020_10_31_preview.operations.OpenShiftClustersOperations :param credentials: Credentials needed for the client to connect to Azure. :type credentials: :mod:`A msrestazure Credentials object<msrestazure.azure_active_directory>` :param subscription_id: The ID of the target subscription. :type subscription_id: str :param str base_url: Service URL """ def __init__( self, credentials, subscription_id, base_url=None): self.config = AzureRedHatOpenShiftClientConfiguration(credentials, subscription_id, base_url) super(AzureRedHatOpenShiftClient, self).__init__(self.config.credentials, self.config) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self.api_version = '2020-10-31-preview' self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self.operations = Operations( self._client, self.config, self._serialize, self._deserialize) self.open_shift_clusters = OpenShiftClustersOperations( self._client, self.config, self._serialize, self._deserialize)
<filename>python/client/azure/mgmt/redhatopenshift/v2020_10_31_preview/_azure_red_hat_open_shift_client.py<gh_stars>0 # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.service_client import SDKClient from msrest import Serializer, Deserializer from ._configuration import AzureRedHatOpenShiftClientConfiguration from .operations import Operations from .operations import OpenShiftClustersOperations from . import models class AzureRedHatOpenShiftClient(SDKClient): """Rest API for Azure Red Hat OpenShift 4 :ivar config: Configuration for client. :vartype config: AzureRedHatOpenShiftClientConfiguration :ivar operations: Operations operations :vartype operations: azure.mgmt.redhatopenshift.v2020_10_31_preview.operations.Operations :ivar open_shift_clusters: OpenShiftClusters operations :vartype open_shift_clusters: azure.mgmt.redhatopenshift.v2020_10_31_preview.operations.OpenShiftClustersOperations :param credentials: Credentials needed for the client to connect to Azure. :type credentials: :mod:`A msrestazure Credentials object<msrestazure.azure_active_directory>` :param subscription_id: The ID of the target subscription. :type subscription_id: str :param str base_url: Service URL """ def __init__( self, credentials, subscription_id, base_url=None): self.config = AzureRedHatOpenShiftClientConfiguration(credentials, subscription_id, base_url) super(AzureRedHatOpenShiftClient, self).__init__(self.config.credentials, self.config) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self.api_version = '2020-10-31-preview' self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) self.operations = Operations( self._client, self.config, self._serialize, self._deserialize) self.open_shift_clusters = OpenShiftClustersOperations( self._client, self.config, self._serialize, self._deserialize)
en
0.626722
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- Rest API for Azure Red Hat OpenShift 4 :ivar config: Configuration for client. :vartype config: AzureRedHatOpenShiftClientConfiguration :ivar operations: Operations operations :vartype operations: azure.mgmt.redhatopenshift.v2020_10_31_preview.operations.Operations :ivar open_shift_clusters: OpenShiftClusters operations :vartype open_shift_clusters: azure.mgmt.redhatopenshift.v2020_10_31_preview.operations.OpenShiftClustersOperations :param credentials: Credentials needed for the client to connect to Azure. :type credentials: :mod:`A msrestazure Credentials object<msrestazure.azure_active_directory>` :param subscription_id: The ID of the target subscription. :type subscription_id: str :param str base_url: Service URL
1.409257
1
docs/notebooks/active_learning.pct.py
ChrisMorter/trieste
0
6631306
<reponame>ChrisMorter/trieste # %% [markdown] # # Active Learning # %% [markdown] # Sometimes, we may just want to learn a black-box function, rather than optimizing it. This goal is known as active learning and corresponds to choosing query points that reduce our model uncertainty. This notebook demonstrates how to perform Bayesian active learning using Trieste. # %% # %matplotlib inline import numpy as np import tensorflow as tf np.random.seed(1793) tf.random.set_seed(1793) # %% [markdown] # ## Describe the problem # # In this example, we will perform active learning for the scaled Branin function. # %% from trieste.objectives import scaled_branin from util.plotting_plotly import plot_function_plotly from trieste.space import Box search_space = Box([0, 0], [1, 1]) fig = plot_function_plotly(scaled_branin, search_space.lower, search_space.upper, grid_density=20) fig.update_layout(height=400, width=400) fig.show() # %% [markdown] # We begin our Bayesian active learning from a two-point initial design built from a space-filling Halton sequence. # %% import trieste observer = trieste.objectives.utils.mk_observer(scaled_branin) num_initial_points = 4 initial_query_points = search_space.sample_halton(num_initial_points) initial_data = observer(initial_query_points) # %% [markdown] # ## Surrogate model # # Just like in sequential optimization, we fit a surrogate Gaussian process model as implemented in GPflow to the initial data. The GPflow models cannot be used directly in our Bayesian optimization routines, so we build a GPflow's `GPR` model and pass it to the `GaussianProcessRegression` wrapper. # %% import gpflow from trieste.models.gpflow.models import GaussianProcessRegression def build_model(data): variance = tf.math.reduce_variance(data.observations) kernel = gpflow.kernels.RBF(variance=variance, lengthscales=[2, 2]) gpr = gpflow.models.GPR(data.astuple(), kernel, noise_variance=1e-5) gpflow.set_trainable(gpr.likelihood, False) return GaussianProcessRegression(gpr) model = build_model(initial_data) # %% [markdown] # ## Active learning using predictive variance # # For our first active learning example, we will use a simple acquisition function known as `PredictiveVariance` which chooses points for which we are highly uncertain (i.e. the predictive posterior covariance matrix at these points has large determinant), as discussed in <cite data-cite="MacKay1992"/>. Note that this also implies that our model needs to have `predict_joint` method to be able to return the full covariance, and it's likely to be expensive to compute. # # We will now demonstrate how to choose individual query points using `PredictiveVariance` before moving onto batch active learning. For both cases, we can utilize Trieste's `BayesianOptimizer` to do the active learning steps. # # %% from trieste.acquisition.function import PredictiveVariance from trieste.acquisition.optimizer import generate_continuous_optimizer from trieste.acquisition.rule import EfficientGlobalOptimization acq = PredictiveVariance() rule = EfficientGlobalOptimization( builder=acq, optimizer=generate_continuous_optimizer() ) bo = trieste.bayesian_optimizer.BayesianOptimizer(observer, search_space) # %% [markdown] # To plot the contour of variance of our model at each step, we can set the `track_state` parameter to `True` in `bo.optimize()`, this will make Trieste record our model at each iteration. # %% bo_iter = 5 result = bo.optimize(bo_iter, initial_data, model, rule, track_state=True) # %% [markdown] # Then we can retrieve our final dataset from the active learning steps. # %% dataset = result.try_get_final_dataset() query_points = dataset.query_points.numpy() observations = dataset.observations.numpy() # %% [markdown] # Finally, we can check the performance of our `PredictiveVariance` active learning acquisition function by plotting the predictive variance landscape of our model. We can see how it samples regions for which our model is highly uncertain. # %% from util.plotting import plot_bo_points, plot_function_2d def plot_active_learning_query(result, bo_iter, num_initial_points, query_points, num_query=1): for i in range(bo_iter): def pred_var(x): _, var = result.history[i].models["OBJECTIVE"].model.predict_f(x) return var _, ax = plot_function_2d( pred_var, search_space.lower - 0.01, search_space.upper + 0.01, grid_density=100, contour=True, colorbar=True, figsize=(10, 6), title=["Variance contour with queried points at iter:" + str(i + 1)], xlabel="$X_1$", ylabel="$X_2$", ) plot_bo_points( query_points[: num_initial_points + (i * num_query)], ax[0, 0], num_initial_points ) plot_active_learning_query(result, bo_iter, num_initial_points, query_points) # %% [markdown] # ## Batch active learning using predictive variance # # For some cases, query several points at a time can be convenient by doing batch active learning. For this case, we must pass a num_query_points input to our `EfficientGlobalOptimization` rule. The drawback of the batch predictive variance is, it tends to query in high variance area less accurately, compared to the sequentially drawing one point at a time. # %% bo_iter = 5 num_query = 3 model = build_model(initial_data) acq = PredictiveVariance() rule = EfficientGlobalOptimization( num_query_points=num_query, builder=acq, optimizer=generate_continuous_optimizer() ) bo = trieste.bayesian_optimizer.BayesianOptimizer(observer, search_space) result = bo.optimize(bo_iter, initial_data, model, rule, track_state=True) # %% [markdown] # After that, we can retrieve our final dataset. # %% dataset = result.try_get_final_dataset() query_points = dataset.query_points.numpy() observations = dataset.observations.numpy() # %% [markdown] # Now we can visualize the batch predictive variance using our plotting function. # %% from util.plotting import plot_bo_points, plot_function_2d plot_active_learning_query(result, bo_iter, num_initial_points, query_points, num_query) # %% [markdown] # ## LICENSE # # [Apache License 2.0](https://github.com/secondmind-labs/trieste/blob/develop/LICENSE)
# %% [markdown] # # Active Learning # %% [markdown] # Sometimes, we may just want to learn a black-box function, rather than optimizing it. This goal is known as active learning and corresponds to choosing query points that reduce our model uncertainty. This notebook demonstrates how to perform Bayesian active learning using Trieste. # %% # %matplotlib inline import numpy as np import tensorflow as tf np.random.seed(1793) tf.random.set_seed(1793) # %% [markdown] # ## Describe the problem # # In this example, we will perform active learning for the scaled Branin function. # %% from trieste.objectives import scaled_branin from util.plotting_plotly import plot_function_plotly from trieste.space import Box search_space = Box([0, 0], [1, 1]) fig = plot_function_plotly(scaled_branin, search_space.lower, search_space.upper, grid_density=20) fig.update_layout(height=400, width=400) fig.show() # %% [markdown] # We begin our Bayesian active learning from a two-point initial design built from a space-filling Halton sequence. # %% import trieste observer = trieste.objectives.utils.mk_observer(scaled_branin) num_initial_points = 4 initial_query_points = search_space.sample_halton(num_initial_points) initial_data = observer(initial_query_points) # %% [markdown] # ## Surrogate model # # Just like in sequential optimization, we fit a surrogate Gaussian process model as implemented in GPflow to the initial data. The GPflow models cannot be used directly in our Bayesian optimization routines, so we build a GPflow's `GPR` model and pass it to the `GaussianProcessRegression` wrapper. # %% import gpflow from trieste.models.gpflow.models import GaussianProcessRegression def build_model(data): variance = tf.math.reduce_variance(data.observations) kernel = gpflow.kernels.RBF(variance=variance, lengthscales=[2, 2]) gpr = gpflow.models.GPR(data.astuple(), kernel, noise_variance=1e-5) gpflow.set_trainable(gpr.likelihood, False) return GaussianProcessRegression(gpr) model = build_model(initial_data) # %% [markdown] # ## Active learning using predictive variance # # For our first active learning example, we will use a simple acquisition function known as `PredictiveVariance` which chooses points for which we are highly uncertain (i.e. the predictive posterior covariance matrix at these points has large determinant), as discussed in <cite data-cite="MacKay1992"/>. Note that this also implies that our model needs to have `predict_joint` method to be able to return the full covariance, and it's likely to be expensive to compute. # # We will now demonstrate how to choose individual query points using `PredictiveVariance` before moving onto batch active learning. For both cases, we can utilize Trieste's `BayesianOptimizer` to do the active learning steps. # # %% from trieste.acquisition.function import PredictiveVariance from trieste.acquisition.optimizer import generate_continuous_optimizer from trieste.acquisition.rule import EfficientGlobalOptimization acq = PredictiveVariance() rule = EfficientGlobalOptimization( builder=acq, optimizer=generate_continuous_optimizer() ) bo = trieste.bayesian_optimizer.BayesianOptimizer(observer, search_space) # %% [markdown] # To plot the contour of variance of our model at each step, we can set the `track_state` parameter to `True` in `bo.optimize()`, this will make Trieste record our model at each iteration. # %% bo_iter = 5 result = bo.optimize(bo_iter, initial_data, model, rule, track_state=True) # %% [markdown] # Then we can retrieve our final dataset from the active learning steps. # %% dataset = result.try_get_final_dataset() query_points = dataset.query_points.numpy() observations = dataset.observations.numpy() # %% [markdown] # Finally, we can check the performance of our `PredictiveVariance` active learning acquisition function by plotting the predictive variance landscape of our model. We can see how it samples regions for which our model is highly uncertain. # %% from util.plotting import plot_bo_points, plot_function_2d def plot_active_learning_query(result, bo_iter, num_initial_points, query_points, num_query=1): for i in range(bo_iter): def pred_var(x): _, var = result.history[i].models["OBJECTIVE"].model.predict_f(x) return var _, ax = plot_function_2d( pred_var, search_space.lower - 0.01, search_space.upper + 0.01, grid_density=100, contour=True, colorbar=True, figsize=(10, 6), title=["Variance contour with queried points at iter:" + str(i + 1)], xlabel="$X_1$", ylabel="$X_2$", ) plot_bo_points( query_points[: num_initial_points + (i * num_query)], ax[0, 0], num_initial_points ) plot_active_learning_query(result, bo_iter, num_initial_points, query_points) # %% [markdown] # ## Batch active learning using predictive variance # # For some cases, query several points at a time can be convenient by doing batch active learning. For this case, we must pass a num_query_points input to our `EfficientGlobalOptimization` rule. The drawback of the batch predictive variance is, it tends to query in high variance area less accurately, compared to the sequentially drawing one point at a time. # %% bo_iter = 5 num_query = 3 model = build_model(initial_data) acq = PredictiveVariance() rule = EfficientGlobalOptimization( num_query_points=num_query, builder=acq, optimizer=generate_continuous_optimizer() ) bo = trieste.bayesian_optimizer.BayesianOptimizer(observer, search_space) result = bo.optimize(bo_iter, initial_data, model, rule, track_state=True) # %% [markdown] # After that, we can retrieve our final dataset. # %% dataset = result.try_get_final_dataset() query_points = dataset.query_points.numpy() observations = dataset.observations.numpy() # %% [markdown] # Now we can visualize the batch predictive variance using our plotting function. # %% from util.plotting import plot_bo_points, plot_function_2d plot_active_learning_query(result, bo_iter, num_initial_points, query_points, num_query) # %% [markdown] # ## LICENSE # # [Apache License 2.0](https://github.com/secondmind-labs/trieste/blob/develop/LICENSE)
en
0.861726
# %% [markdown] # # Active Learning # %% [markdown] # Sometimes, we may just want to learn a black-box function, rather than optimizing it. This goal is known as active learning and corresponds to choosing query points that reduce our model uncertainty. This notebook demonstrates how to perform Bayesian active learning using Trieste. # %% # %matplotlib inline # %% [markdown] # ## Describe the problem # # In this example, we will perform active learning for the scaled Branin function. # %% # %% [markdown] # We begin our Bayesian active learning from a two-point initial design built from a space-filling Halton sequence. # %% # %% [markdown] # ## Surrogate model # # Just like in sequential optimization, we fit a surrogate Gaussian process model as implemented in GPflow to the initial data. The GPflow models cannot be used directly in our Bayesian optimization routines, so we build a GPflow's `GPR` model and pass it to the `GaussianProcessRegression` wrapper. # %% # %% [markdown] # ## Active learning using predictive variance # # For our first active learning example, we will use a simple acquisition function known as `PredictiveVariance` which chooses points for which we are highly uncertain (i.e. the predictive posterior covariance matrix at these points has large determinant), as discussed in <cite data-cite="MacKay1992"/>. Note that this also implies that our model needs to have `predict_joint` method to be able to return the full covariance, and it's likely to be expensive to compute. # # We will now demonstrate how to choose individual query points using `PredictiveVariance` before moving onto batch active learning. For both cases, we can utilize Trieste's `BayesianOptimizer` to do the active learning steps. # # %% # %% [markdown] # To plot the contour of variance of our model at each step, we can set the `track_state` parameter to `True` in `bo.optimize()`, this will make Trieste record our model at each iteration. # %% # %% [markdown] # Then we can retrieve our final dataset from the active learning steps. # %% # %% [markdown] # Finally, we can check the performance of our `PredictiveVariance` active learning acquisition function by plotting the predictive variance landscape of our model. We can see how it samples regions for which our model is highly uncertain. # %% # %% [markdown] # ## Batch active learning using predictive variance # # For some cases, query several points at a time can be convenient by doing batch active learning. For this case, we must pass a num_query_points input to our `EfficientGlobalOptimization` rule. The drawback of the batch predictive variance is, it tends to query in high variance area less accurately, compared to the sequentially drawing one point at a time. # %% # %% [markdown] # After that, we can retrieve our final dataset. # %% # %% [markdown] # Now we can visualize the batch predictive variance using our plotting function. # %% # %% [markdown] # ## LICENSE # # [Apache License 2.0](https://github.com/secondmind-labs/trieste/blob/develop/LICENSE)
3.188941
3
euler5.py
G00364756/Programming_Exercises
0
6631307
<reponame>G00364756/Programming_Exercises # <NAME> - G00364756 - 22/02/2018 # Exercise 4, Topic 4: euler5.py # Project Euler_Problem 5: # 2520 is the smallest number that can be divided by # each of the numbers from 1 to 10 without any remainder. # What is the smallest positive number that is evenly # divisible by all of the numbers from 1 to 20? # This code is cumbersome and inefficient but gets the job done. # I imagine the aim of the exercise is to become more capable with # loops, ranges and lists but I wanted to see if I could # intuitively create code to solve this problem rather than googling # how to do it. # I originally set n to 1 and incremented n by 1 but this took # over 30 seconds to compute. Setting n to 20 as the starting point, # because the range of numbers that we have to divide by ends at 20, # and incrimenting by 20 speeds the code up drastically without # comprimising what the code is intended to do. def divisable(x): """Function created to find the number which is divisable by all the numbers from 1 to 20 without leaving a remainder""" # Set n greater than 0 as zero modulus anything gives a remainder of 0. n = 20 # This is where the code could encounter problems, if the # end result is a larger than the number we set the loop limit to # the code will never reach the end result. Need to put in a very large number # to account for this, or in this case set the loop to something it will # never reach ( i.e. while n is not equal to zero "n != 0") # The improvements mean the code spits out the final value in 5 seconds. while n != 0: # I wasn't sure how to do the modulus operand with arrays so I had # to list the criteria individually and link them with and "and" # operand. if (n % 1 == 0) and (n % 2 == 0) and (n % 3 == 0) and (n % 4 == 0) and (n % 5 == 0) and (n % 6 == 0) and (n % 7 == 0) and (n % 8 == 0) and (n % 9 == 0) and (n % 10 == 0) and (n % 11 == 0) and (n % 12 == 0) and (n % 13 == 0) and (n % 14 == 0) and (n % 15 == 0) and (n % 16 == 0) and (n % 17 == 0) and (n % 18 == 0) and (n % 19 == 0) and (n % 20 == 0): return(n) break # It is important to use break otherwise the code will continue # to spit out the final value, an endless loop. else: n = n + 20 print(divisable(1))
# <NAME> - G00364756 - 22/02/2018 # Exercise 4, Topic 4: euler5.py # Project Euler_Problem 5: # 2520 is the smallest number that can be divided by # each of the numbers from 1 to 10 without any remainder. # What is the smallest positive number that is evenly # divisible by all of the numbers from 1 to 20? # This code is cumbersome and inefficient but gets the job done. # I imagine the aim of the exercise is to become more capable with # loops, ranges and lists but I wanted to see if I could # intuitively create code to solve this problem rather than googling # how to do it. # I originally set n to 1 and incremented n by 1 but this took # over 30 seconds to compute. Setting n to 20 as the starting point, # because the range of numbers that we have to divide by ends at 20, # and incrimenting by 20 speeds the code up drastically without # comprimising what the code is intended to do. def divisable(x): """Function created to find the number which is divisable by all the numbers from 1 to 20 without leaving a remainder""" # Set n greater than 0 as zero modulus anything gives a remainder of 0. n = 20 # This is where the code could encounter problems, if the # end result is a larger than the number we set the loop limit to # the code will never reach the end result. Need to put in a very large number # to account for this, or in this case set the loop to something it will # never reach ( i.e. while n is not equal to zero "n != 0") # The improvements mean the code spits out the final value in 5 seconds. while n != 0: # I wasn't sure how to do the modulus operand with arrays so I had # to list the criteria individually and link them with and "and" # operand. if (n % 1 == 0) and (n % 2 == 0) and (n % 3 == 0) and (n % 4 == 0) and (n % 5 == 0) and (n % 6 == 0) and (n % 7 == 0) and (n % 8 == 0) and (n % 9 == 0) and (n % 10 == 0) and (n % 11 == 0) and (n % 12 == 0) and (n % 13 == 0) and (n % 14 == 0) and (n % 15 == 0) and (n % 16 == 0) and (n % 17 == 0) and (n % 18 == 0) and (n % 19 == 0) and (n % 20 == 0): return(n) break # It is important to use break otherwise the code will continue # to spit out the final value, an endless loop. else: n = n + 20 print(divisable(1))
en
0.948493
# <NAME> - G00364756 - 22/02/2018 # Exercise 4, Topic 4: euler5.py # Project Euler_Problem 5: # 2520 is the smallest number that can be divided by # each of the numbers from 1 to 10 without any remainder. # What is the smallest positive number that is evenly # divisible by all of the numbers from 1 to 20? # This code is cumbersome and inefficient but gets the job done. # I imagine the aim of the exercise is to become more capable with # loops, ranges and lists but I wanted to see if I could # intuitively create code to solve this problem rather than googling # how to do it. # I originally set n to 1 and incremented n by 1 but this took # over 30 seconds to compute. Setting n to 20 as the starting point, # because the range of numbers that we have to divide by ends at 20, # and incrimenting by 20 speeds the code up drastically without # comprimising what the code is intended to do. Function created to find the number which is divisable by all the numbers from 1 to 20 without leaving a remainder # Set n greater than 0 as zero modulus anything gives a remainder of 0. # This is where the code could encounter problems, if the # end result is a larger than the number we set the loop limit to # the code will never reach the end result. Need to put in a very large number # to account for this, or in this case set the loop to something it will # never reach ( i.e. while n is not equal to zero "n != 0") # The improvements mean the code spits out the final value in 5 seconds. # I wasn't sure how to do the modulus operand with arrays so I had # to list the criteria individually and link them with and "and" # operand. # It is important to use break otherwise the code will continue # to spit out the final value, an endless loop.
3.712294
4
python/764.largest-plus-sign.py
stavanmehta/leetcode
0
6631308
<reponame>stavanmehta/leetcode class Solution: def orderOfLargestPlusSign(self, N: int, mines: List[List[int]]) -> int:
class Solution: def orderOfLargestPlusSign(self, N: int, mines: List[List[int]]) -> int:
none
1
2.079668
2
mywork/adult_income.py
qiudebo/13learn
1
6631309
#!/usr/bin/python # -*- coding: utf-8 -*- from pyspark.sql import SparkSession spark = SparkSession.builder.appName("python Spark SQL basic adult")\ .config("spark.some.config.option", "some-value")\ .getOrCreate() df = spark.read.text("/Users/qiudebo/PycharmProjects/stanford_cs231/spark_example/data/adult/adult.data") print(type(df)) print(df.columns) df.take(1) spark.stop()
#!/usr/bin/python # -*- coding: utf-8 -*- from pyspark.sql import SparkSession spark = SparkSession.builder.appName("python Spark SQL basic adult")\ .config("spark.some.config.option", "some-value")\ .getOrCreate() df = spark.read.text("/Users/qiudebo/PycharmProjects/stanford_cs231/spark_example/data/adult/adult.data") print(type(df)) print(df.columns) df.take(1) spark.stop()
en
0.44423
#!/usr/bin/python # -*- coding: utf-8 -*-
3.181182
3
tests/test.py
Confy255/group3predict
1
6631310
from . import ourmodule
from . import ourmodule
none
1
1.198964
1
blog/views.py
jeanlucancey/pronunciamento
0
6631311
from django.shortcuts import ( get_object_or_404, redirect, render) from django.views.decorators.http import \ require_http_methods from django.views.generic import View from .forms import PostForm from .models import Post class PostCreate(View): form_class = PostForm template_name = 'blog/post_form.html' def get(self, request): return render( request, self.template_name, {'form': self.form_class()}) def post(self, request): bound_form = self.form_class(request.POST) if bound_form.is_valid(): new_post = bound_form.save() return redirect(new_post) else: return render( request, self.template_name, {'form': bound_form}) class PostDelete(View): def get(self, request, year, month, slug): post = get_object_or_404( Post, pub_date__year=year, pub_date__month=month, slug__iexact=slug) return render( request, 'blog/post_confirm_delete.html', {'post': post}) def post(self, request, year, month, slug): post = get_object_or_404( Post, pub_date__year=year, pub_date__month=month, slug__iexact=slug) post.delete() return redirect('blog_post_list') @require_http_methods(['HEAD', 'GET']) def post_detail(request, year, month, slug): post = get_object_or_404( Post, pub_date__year=year, pub_date__month=month, slug=slug) return render( request, 'blog/post_detail.html', {'post': post}) class PostList(View): def get(self, request): return render( request, 'blog/post_list.html', {'post_list': Post.objects.all()}) class PostUpdate(View): form_class = PostForm model = Post template_name = 'blog/post_form_update.html' def get_object(self, year, month, slug): return get_object_or_404( self.model, pub_date__year=year, pub_date__month=month, slug=slug) def get(self, request, year, month, slug): post = self.get_object(year, month, slug) context = { 'form': self.form_class( instance=post), 'post': post, } return render( request, self.template_name, context) def post(self, request, year, month, slug): post = self.get_object(year, month, slug) bound_form = self.form_class( request.POST, instance=post) if bound_form.is_valid(): new_post = bound_form.save() return redirect(new_post) else: context = { 'form': bound_form, 'post': post, } return render( request, self.template_name, context)
from django.shortcuts import ( get_object_or_404, redirect, render) from django.views.decorators.http import \ require_http_methods from django.views.generic import View from .forms import PostForm from .models import Post class PostCreate(View): form_class = PostForm template_name = 'blog/post_form.html' def get(self, request): return render( request, self.template_name, {'form': self.form_class()}) def post(self, request): bound_form = self.form_class(request.POST) if bound_form.is_valid(): new_post = bound_form.save() return redirect(new_post) else: return render( request, self.template_name, {'form': bound_form}) class PostDelete(View): def get(self, request, year, month, slug): post = get_object_or_404( Post, pub_date__year=year, pub_date__month=month, slug__iexact=slug) return render( request, 'blog/post_confirm_delete.html', {'post': post}) def post(self, request, year, month, slug): post = get_object_or_404( Post, pub_date__year=year, pub_date__month=month, slug__iexact=slug) post.delete() return redirect('blog_post_list') @require_http_methods(['HEAD', 'GET']) def post_detail(request, year, month, slug): post = get_object_or_404( Post, pub_date__year=year, pub_date__month=month, slug=slug) return render( request, 'blog/post_detail.html', {'post': post}) class PostList(View): def get(self, request): return render( request, 'blog/post_list.html', {'post_list': Post.objects.all()}) class PostUpdate(View): form_class = PostForm model = Post template_name = 'blog/post_form_update.html' def get_object(self, year, month, slug): return get_object_or_404( self.model, pub_date__year=year, pub_date__month=month, slug=slug) def get(self, request, year, month, slug): post = self.get_object(year, month, slug) context = { 'form': self.form_class( instance=post), 'post': post, } return render( request, self.template_name, context) def post(self, request, year, month, slug): post = self.get_object(year, month, slug) bound_form = self.form_class( request.POST, instance=post) if bound_form.is_valid(): new_post = bound_form.save() return redirect(new_post) else: context = { 'form': bound_form, 'post': post, } return render( request, self.template_name, context)
none
1
2.122144
2
ticker.py
reaganking/Ticker
0
6631312
<filename>ticker.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- '''show scores of today's NHL games''' import datetime import json import os import platform import sys import time import requests from colorama import init, Fore, Style from pytz import reference # API purportedly updates every 60 seconds REFRESH_TIME = 30 API_URL = 'http://live.nhle.com/GameData/RegularSeasonScoreboardv3.jsonp' TEST = False def main(): '''generates a scoreboard of today's NHL games''' games_today = False playoffs = False # Today's date t_object = datetime.datetime.now() today_date = "" + t_object.strftime("%A") + " " + "%s/%s" % (t_object.month, t_object.day) # Yesterday's date y_object = t_object - datetime.timedelta(days=1) yesterday_date = "" + y_object.strftime("%A") + " " + "%s/%s" % (y_object.month, y_object.day) while True: scraped_page = requests.get(API_URL) # Convert the scraped page to text and trim scraped_page = scraped_page.text.replace('loadScoreboard(', '') scraped_page = scraped_page[:-1] # Create JSON object data = json.loads(scraped_page) clear_screen() for key in data: if key == 'games': for game_info in data[key]: # extract useful info from JSON game_id = str(game_info['id']) game_clock = game_info['ts'] game_stage = game_info['tsc'] status = game_info['bs'] away_locale = fix_locale(game_info['atn']) away_name = fix_name(game_info['atv']).title() away_score = game_info['ats'] away_result = game_info['atc'] home_locale = fix_locale(game_info['htn']) home_name = fix_name(game_info['htv']).title() home_score = game_info['hts'] home_result = game_info['htc'] if game_id[4:6] == '03': playoffs = True series_game_number = game_id[-1:] # Show today's games if today_date in game_clock.title() \ or 'TODAY' in game_clock \ or 'LIVE' in status: games_today = True header_text = away_locale + ' ' + away_name + \ ' @ ' + home_locale + ' ' + home_name # Show the game number of current 7-game series, # if it's playoff time if playoffs: header_text += ' -- Game ' + series_game_number # Different displays for different states of game: # Game from yesterday, ex: YESTERDAY (FINAL 2nd OT) # Game from today finished, ex: TODAY (FINAL 2nd OT) if 'FINAL' in status: if yesterday_date in game_clock.title(): header_text += '\nYESTERDAY ' elif today_date in game_clock.title() or 'TODAY' in game_clock: header_text += '\nTODAY ' else: header_text += game_clock.title() header_text += '(' + status + ')' # Upcoming game, ex: TUESDAY 4/21, 7:00 PM MDT) elif 'DAY' in game_clock and 'FINAL' not in status: timezone = local_time() header_text += Fore.YELLOW + \ '\n(' + game_clock + ', ' + status + \ ' ' + timezone + ')' + Fore.RESET # Last 5 minutes of game and all of overtime, # eg. (1:59 3rd PERIOD) in *red* font elif 'LIVE' in status and 'critical' in game_stage: header_text += Fore.RED + \ '\n(' + game_clock + ' PERIOD)' + Fore.RESET # Any other time in game # eg. (10:34 1st PERIOD) else: header_text += Fore.YELLOW + \ '\n(' + game_clock + Style.RESET_ALL if 'PRE GAME' not in game_clock: header_text += Fore.YELLOW + ' PERIOD' header_text += Fore.YELLOW + ')' + Style.RESET_ALL print(header_text) # Highlight the winner of finished games in blue, games underway in green: if away_result == 'winner': # Away team wins print(Style.BRIGHT + Fore.BLUE + away_name + ' ' + away_score + Style.RESET_ALL + ' - ' + home_score + ' ' + home_name) elif home_result == 'winner': # Home team wins print(away_name + ' ' + away_score + ' - ' + Style.BRIGHT + Fore.BLUE + home_score + ' ' + home_name + Style.RESET_ALL) elif 'progress' in game_stage or 'critical' in game_stage: # Game underway print(Fore.GREEN + away_name + ' ' + away_score + ' - ' + home_score + ' ' + home_name + Fore.RESET) print('') if not games_today: print('\nThere are no NHL games scheduled for today.\n') # Perform the sleep only if we're not currently testing if TEST is True: sys.exit(0) else: time.sleep(REFRESH_TIME) print('\n') def clear_screen(): '''os-adaptive screen wipe''' if platform.system() == 'Windows': os.system('cls') else: os.system('clear') def fix_locale(team_locale): '''modify place names from the values in JSON''' if 'NY ' in team_locale: return 'New York' elif 'Montr' in team_locale: return u'Montréal' return team_locale def fix_name(team_name): '''modify team names from the values in JSON''' if 'wings' in team_name: return 'Red Wings' elif 'jackets' in team_name: return 'Blue Jackets' elif 'leafs' in team_name: return 'Maple Leafs' elif 'knights' in team_name: return 'Golden Knights' return team_name def local_time(): '''get local timezone''' today = datetime.datetime.now() localtime = reference.LocalTimezone() return localtime.tzname(today) def parse_arguments(arguments): '''process the arguments provided at runtime''' for index in range(1, len(arguments)): argument = arguments[index] if argument == '--test' or argument == '-t': print('Running in TEST mode.\n') global TEST TEST = True if __name__ == '__main__': init() # colorama parse_arguments(sys.argv) main() # Originally forked from <NAME>'s NHL-Scores - https://github.com/jtf323/NHL-Scores
<filename>ticker.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- '''show scores of today's NHL games''' import datetime import json import os import platform import sys import time import requests from colorama import init, Fore, Style from pytz import reference # API purportedly updates every 60 seconds REFRESH_TIME = 30 API_URL = 'http://live.nhle.com/GameData/RegularSeasonScoreboardv3.jsonp' TEST = False def main(): '''generates a scoreboard of today's NHL games''' games_today = False playoffs = False # Today's date t_object = datetime.datetime.now() today_date = "" + t_object.strftime("%A") + " " + "%s/%s" % (t_object.month, t_object.day) # Yesterday's date y_object = t_object - datetime.timedelta(days=1) yesterday_date = "" + y_object.strftime("%A") + " " + "%s/%s" % (y_object.month, y_object.day) while True: scraped_page = requests.get(API_URL) # Convert the scraped page to text and trim scraped_page = scraped_page.text.replace('loadScoreboard(', '') scraped_page = scraped_page[:-1] # Create JSON object data = json.loads(scraped_page) clear_screen() for key in data: if key == 'games': for game_info in data[key]: # extract useful info from JSON game_id = str(game_info['id']) game_clock = game_info['ts'] game_stage = game_info['tsc'] status = game_info['bs'] away_locale = fix_locale(game_info['atn']) away_name = fix_name(game_info['atv']).title() away_score = game_info['ats'] away_result = game_info['atc'] home_locale = fix_locale(game_info['htn']) home_name = fix_name(game_info['htv']).title() home_score = game_info['hts'] home_result = game_info['htc'] if game_id[4:6] == '03': playoffs = True series_game_number = game_id[-1:] # Show today's games if today_date in game_clock.title() \ or 'TODAY' in game_clock \ or 'LIVE' in status: games_today = True header_text = away_locale + ' ' + away_name + \ ' @ ' + home_locale + ' ' + home_name # Show the game number of current 7-game series, # if it's playoff time if playoffs: header_text += ' -- Game ' + series_game_number # Different displays for different states of game: # Game from yesterday, ex: YESTERDAY (FINAL 2nd OT) # Game from today finished, ex: TODAY (FINAL 2nd OT) if 'FINAL' in status: if yesterday_date in game_clock.title(): header_text += '\nYESTERDAY ' elif today_date in game_clock.title() or 'TODAY' in game_clock: header_text += '\nTODAY ' else: header_text += game_clock.title() header_text += '(' + status + ')' # Upcoming game, ex: TUESDAY 4/21, 7:00 PM MDT) elif 'DAY' in game_clock and 'FINAL' not in status: timezone = local_time() header_text += Fore.YELLOW + \ '\n(' + game_clock + ', ' + status + \ ' ' + timezone + ')' + Fore.RESET # Last 5 minutes of game and all of overtime, # eg. (1:59 3rd PERIOD) in *red* font elif 'LIVE' in status and 'critical' in game_stage: header_text += Fore.RED + \ '\n(' + game_clock + ' PERIOD)' + Fore.RESET # Any other time in game # eg. (10:34 1st PERIOD) else: header_text += Fore.YELLOW + \ '\n(' + game_clock + Style.RESET_ALL if 'PRE GAME' not in game_clock: header_text += Fore.YELLOW + ' PERIOD' header_text += Fore.YELLOW + ')' + Style.RESET_ALL print(header_text) # Highlight the winner of finished games in blue, games underway in green: if away_result == 'winner': # Away team wins print(Style.BRIGHT + Fore.BLUE + away_name + ' ' + away_score + Style.RESET_ALL + ' - ' + home_score + ' ' + home_name) elif home_result == 'winner': # Home team wins print(away_name + ' ' + away_score + ' - ' + Style.BRIGHT + Fore.BLUE + home_score + ' ' + home_name + Style.RESET_ALL) elif 'progress' in game_stage or 'critical' in game_stage: # Game underway print(Fore.GREEN + away_name + ' ' + away_score + ' - ' + home_score + ' ' + home_name + Fore.RESET) print('') if not games_today: print('\nThere are no NHL games scheduled for today.\n') # Perform the sleep only if we're not currently testing if TEST is True: sys.exit(0) else: time.sleep(REFRESH_TIME) print('\n') def clear_screen(): '''os-adaptive screen wipe''' if platform.system() == 'Windows': os.system('cls') else: os.system('clear') def fix_locale(team_locale): '''modify place names from the values in JSON''' if 'NY ' in team_locale: return 'New York' elif 'Montr' in team_locale: return u'Montréal' return team_locale def fix_name(team_name): '''modify team names from the values in JSON''' if 'wings' in team_name: return 'Red Wings' elif 'jackets' in team_name: return 'Blue Jackets' elif 'leafs' in team_name: return 'Maple Leafs' elif 'knights' in team_name: return 'Golden Knights' return team_name def local_time(): '''get local timezone''' today = datetime.datetime.now() localtime = reference.LocalTimezone() return localtime.tzname(today) def parse_arguments(arguments): '''process the arguments provided at runtime''' for index in range(1, len(arguments)): argument = arguments[index] if argument == '--test' or argument == '-t': print('Running in TEST mode.\n') global TEST TEST = True if __name__ == '__main__': init() # colorama parse_arguments(sys.argv) main() # Originally forked from <NAME>'s NHL-Scores - https://github.com/jtf323/NHL-Scores
en
0.805939
#!/usr/bin/env python3 # -*- coding: utf-8 -*- show scores of today's NHL games # API purportedly updates every 60 seconds generates a scoreboard of today's NHL games # Today's date # Yesterday's date # Convert the scraped page to text and trim # Create JSON object # extract useful info from JSON # Show today's games # Show the game number of current 7-game series, # if it's playoff time # Different displays for different states of game: # Game from yesterday, ex: YESTERDAY (FINAL 2nd OT) # Game from today finished, ex: TODAY (FINAL 2nd OT) # Upcoming game, ex: TUESDAY 4/21, 7:00 PM MDT) # Last 5 minutes of game and all of overtime, # eg. (1:59 3rd PERIOD) in *red* font # Any other time in game # eg. (10:34 1st PERIOD) # Highlight the winner of finished games in blue, games underway in green: # Away team wins # Home team wins # Game underway # Perform the sleep only if we're not currently testing os-adaptive screen wipe modify place names from the values in JSON modify team names from the values in JSON get local timezone process the arguments provided at runtime # colorama # Originally forked from <NAME>'s NHL-Scores - https://github.com/jtf323/NHL-Scores
2.94339
3
simulation/utils/machine_learning/cycle_gan/image_translator.py
KITcar-Team/kitcar-gazebo-simulation
13
6631313
import argparse import os import pathlib import cv2 import numpy as np import torch from PIL import Image from simulation.utils.machine_learning.data.base_dataset import get_transform from simulation.utils.machine_learning.data.image_operations import tensor2im from simulation.utils.machine_learning.models import resnet_generator from simulation.utils.machine_learning.models.helper import get_norm_layer, init_net from .configs.test_options import CycleGANTestOptions, WassersteinCycleGANTestOptions from .models import generator from .models.cycle_gan_model import CycleGANModel from .models.wcycle_gan import WassersteinCycleGANModel class ImageTranslator: """Implementation of a simple ROS interface to translate simulated to "real" images.""" def __init__(self, use_wasserstein=True): """Initialize the ImageTranslator class. Use default test options but could be via command-line. Load and setup the model """ opt = WassersteinCycleGANTestOptions if use_wasserstein else CycleGANTestOptions opt.checkpoints_dir = os.path.join( pathlib.Path(__file__).parent.absolute(), opt.checkpoints_dir ) tf_properties = { "load_size": opt.load_size, "crop_size": opt.crop_size, "preprocess": opt.preprocess, "mask": os.path.join(os.path.dirname(__file__), opt.mask), "no_flip": True, "grayscale": True, } self.transform = get_transform(**tf_properties) self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if opt.is_wgan: netg_b_to_a = resnet_generator.ResnetGenerator( opt.input_nc, opt.output_nc, opt.ngf, get_norm_layer(opt.norm), dilations=opt.dilations, conv_layers_in_block=opt.conv_layers_in_block, ) else: netg_b_to_a = generator.create_generator( opt.input_nc, opt.output_nc, opt.ngf, opt.netg, opt.norm, not opt.no_dropout, opt.activation, opt.conv_layers_in_block, opt.dilations, ) netg_b_to_a = init_net(netg_b_to_a, opt.init_type, opt.init_gain, self.device) ModelClass = CycleGANModel if not opt.is_wgan else WassersteinCycleGANModel self.model = ModelClass.from_dict( netg_a_to_b=None, netg_b_to_a=netg_b_to_a, **opt.to_dict() ) self.model.networks.load( os.path.join(opt.checkpoints_dir, opt.name, f"{opt.epoch}_net_"), device=self.device, ) self.model.eval() def __call__( self, image: np.ndarray, f_keep_pixels: float = 0, f_keep_colored_pixels: float = 0, ) -> np.ndarray: """Translate an image to a "fake real" image by using the loaded model. Args: image: Image to be translated to "fake real" f_keep_pixels: Factor of original pixels that are kept f_keep_colored_pixels: Factor of colored pixels that are kept Returns: Translated image. """ # Store shape h, w, c = image.shape img_np = image # Apply transformations image: torch.Tensor = self.transform(Image.fromarray(image)) image = image.to(self.device) # Copy the numpy array because it's not writeable otherwise # Bring into shape [1,1,h,w] image.unsqueeze_(0) # Inference result = self.model.networks.g_b_to_a.forward(image).detach() # From [-1,1] to [0,256] result = tensor2im(result, to_rgb=False) # Resize to the size the input image has result = cv2.resize(result, dsize=(w, h), interpolation=cv2.INTER_LINEAR) if f_keep_pixels > 0: grey_img = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) colored_pxls = f_keep_pixels * np.ones((h, w)) result = (1 - f_keep_pixels) * result + f_keep_pixels * grey_img if f_keep_colored_pixels > 0: grey_img = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) colored_pxls = f_keep_colored_pixels * np.ones((h, w)) colored_pxls[img_np[:, :, 0] == img_np[:, :, 1]] = 0 result = ( np.ones_like(colored_pxls) - colored_pxls ) * result + colored_pxls * grey_img return result.astype(np.uint8) if __name__ == "__main__": """Run GAN over all files in folder.""" parser = argparse.ArgumentParser(description="Extract images from a ROS bag.") parser.add_argument("--input_dir", help="Directory with input images.") parser.add_argument("--output_dir", help="Directory for output images.") parser.add_argument( "--gan_type", type=str, default="default", help="Decide whether to use Wasserstein gan or default gan [default, wgan]", ) args = parser.parse_args() GAN = ImageTranslator(args.gan_type) files = [ file for file in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, file)) and file.lower().endswith((".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif")) ] os.makedirs(args.output_dir, exist_ok=True) for i, file in enumerate(files): input_file_path = os.path.join(args.input_dir, file) output_file_path = os.path.join(args.output_dir, file) img_np = np.array(Image.open(input_file_path)) img_np = cv2.cvtColor(img_np, cv2.COLOR_GRAY2BGR) translated_image = GAN(img_np) cv2.imwrite(output_file_path, translated_image) print(f"Processing: {100 * i / len(files):.2f}%")
import argparse import os import pathlib import cv2 import numpy as np import torch from PIL import Image from simulation.utils.machine_learning.data.base_dataset import get_transform from simulation.utils.machine_learning.data.image_operations import tensor2im from simulation.utils.machine_learning.models import resnet_generator from simulation.utils.machine_learning.models.helper import get_norm_layer, init_net from .configs.test_options import CycleGANTestOptions, WassersteinCycleGANTestOptions from .models import generator from .models.cycle_gan_model import CycleGANModel from .models.wcycle_gan import WassersteinCycleGANModel class ImageTranslator: """Implementation of a simple ROS interface to translate simulated to "real" images.""" def __init__(self, use_wasserstein=True): """Initialize the ImageTranslator class. Use default test options but could be via command-line. Load and setup the model """ opt = WassersteinCycleGANTestOptions if use_wasserstein else CycleGANTestOptions opt.checkpoints_dir = os.path.join( pathlib.Path(__file__).parent.absolute(), opt.checkpoints_dir ) tf_properties = { "load_size": opt.load_size, "crop_size": opt.crop_size, "preprocess": opt.preprocess, "mask": os.path.join(os.path.dirname(__file__), opt.mask), "no_flip": True, "grayscale": True, } self.transform = get_transform(**tf_properties) self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if opt.is_wgan: netg_b_to_a = resnet_generator.ResnetGenerator( opt.input_nc, opt.output_nc, opt.ngf, get_norm_layer(opt.norm), dilations=opt.dilations, conv_layers_in_block=opt.conv_layers_in_block, ) else: netg_b_to_a = generator.create_generator( opt.input_nc, opt.output_nc, opt.ngf, opt.netg, opt.norm, not opt.no_dropout, opt.activation, opt.conv_layers_in_block, opt.dilations, ) netg_b_to_a = init_net(netg_b_to_a, opt.init_type, opt.init_gain, self.device) ModelClass = CycleGANModel if not opt.is_wgan else WassersteinCycleGANModel self.model = ModelClass.from_dict( netg_a_to_b=None, netg_b_to_a=netg_b_to_a, **opt.to_dict() ) self.model.networks.load( os.path.join(opt.checkpoints_dir, opt.name, f"{opt.epoch}_net_"), device=self.device, ) self.model.eval() def __call__( self, image: np.ndarray, f_keep_pixels: float = 0, f_keep_colored_pixels: float = 0, ) -> np.ndarray: """Translate an image to a "fake real" image by using the loaded model. Args: image: Image to be translated to "fake real" f_keep_pixels: Factor of original pixels that are kept f_keep_colored_pixels: Factor of colored pixels that are kept Returns: Translated image. """ # Store shape h, w, c = image.shape img_np = image # Apply transformations image: torch.Tensor = self.transform(Image.fromarray(image)) image = image.to(self.device) # Copy the numpy array because it's not writeable otherwise # Bring into shape [1,1,h,w] image.unsqueeze_(0) # Inference result = self.model.networks.g_b_to_a.forward(image).detach() # From [-1,1] to [0,256] result = tensor2im(result, to_rgb=False) # Resize to the size the input image has result = cv2.resize(result, dsize=(w, h), interpolation=cv2.INTER_LINEAR) if f_keep_pixels > 0: grey_img = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) colored_pxls = f_keep_pixels * np.ones((h, w)) result = (1 - f_keep_pixels) * result + f_keep_pixels * grey_img if f_keep_colored_pixels > 0: grey_img = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) colored_pxls = f_keep_colored_pixels * np.ones((h, w)) colored_pxls[img_np[:, :, 0] == img_np[:, :, 1]] = 0 result = ( np.ones_like(colored_pxls) - colored_pxls ) * result + colored_pxls * grey_img return result.astype(np.uint8) if __name__ == "__main__": """Run GAN over all files in folder.""" parser = argparse.ArgumentParser(description="Extract images from a ROS bag.") parser.add_argument("--input_dir", help="Directory with input images.") parser.add_argument("--output_dir", help="Directory for output images.") parser.add_argument( "--gan_type", type=str, default="default", help="Decide whether to use Wasserstein gan or default gan [default, wgan]", ) args = parser.parse_args() GAN = ImageTranslator(args.gan_type) files = [ file for file in os.listdir(args.input_dir) if os.path.isfile(os.path.join(args.input_dir, file)) and file.lower().endswith((".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif")) ] os.makedirs(args.output_dir, exist_ok=True) for i, file in enumerate(files): input_file_path = os.path.join(args.input_dir, file) output_file_path = os.path.join(args.output_dir, file) img_np = np.array(Image.open(input_file_path)) img_np = cv2.cvtColor(img_np, cv2.COLOR_GRAY2BGR) translated_image = GAN(img_np) cv2.imwrite(output_file_path, translated_image) print(f"Processing: {100 * i / len(files):.2f}%")
en
0.83975
Implementation of a simple ROS interface to translate simulated to "real" images. Initialize the ImageTranslator class. Use default test options but could be via command-line. Load and setup the model Translate an image to a "fake real" image by using the loaded model. Args: image: Image to be translated to "fake real" f_keep_pixels: Factor of original pixels that are kept f_keep_colored_pixels: Factor of colored pixels that are kept Returns: Translated image. # Store shape # Apply transformations # Copy the numpy array because it's not writeable otherwise # Bring into shape [1,1,h,w] # Inference # From [-1,1] to [0,256] # Resize to the size the input image has Run GAN over all files in folder.
2.25051
2
src/cnn_class2/tf_resnet_first_layers.py
JouniVatanen/NLP-and-Deep-Learning
1
6631314
# https://deeplearningcourses.com/c/advanced-computer-vision # https://www.udemy.com/advanced-computer-vision from __future__ import print_function, division from builtins import range, input # Note: you may need to update your version of future # sudo pip install -U future # Let's go up to the end of the first conv block # to make sure everything has been loaded correctly # compared to keras import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import keras from keras.applications.resnet50 import ResNet50 from keras.models import Model from keras.preprocessing import image from keras.applications.resnet50 import preprocess_input, decode_predictions from tf_resnet_convblock import ConvLayer, BatchNormLayer, ConvBlock # NOTE: dependent on your Keras version # this script used 2.1.1 # [<keras.engine.topology.InputLayer at 0x112fe4358>, # <keras.layers.convolutional.Conv2D at 0x112fe46a0>, # <keras.layers.normalization.BatchNormalization at 0x112fe4630>, # <keras.layers.core.Activation at 0x112fe4eb8>, # <keras.layers.pooling.MaxPooling2D at 0x10ed4be48>, # <keras.layers.convolutional.Conv2D at 0x1130723c8>, # <keras.layers.normalization.BatchNormalization at 0x113064710>, # <keras.layers.core.Activation at 0x113092dd8>, # <keras.layers.convolutional.Conv2D at 0x11309e908>, # <keras.layers.normalization.BatchNormalization at 0x11308a550>, # <keras.layers.core.Activation at 0x11312ac88>, # <keras.layers.convolutional.Conv2D at 0x1131207b8>, # <keras.layers.convolutional.Conv2D at 0x1131b8da0>, # <keras.layers.normalization.BatchNormalization at 0x113115550>, # <keras.layers.normalization.BatchNormalization at 0x1131a01d0>, # <keras.layers.merge.Add at 0x11322f0f0>, # <keras.layers.core.Activation at 0x113246cf8>] # define some additional layers so they have a forward function class ReLULayer: def forward(self, X): return tf.nn.relu(X) def get_params(self): return [] class MaxPoolLayer: def __init__(self, dim): self.dim = dim def forward(self, X): return tf.nn.max_pool( X, ksize=[1, self.dim, self.dim, 1], strides=[1, 2, 2, 1], padding='VALID' ) def get_params(self): return [] class PartialResNet: def __init__(self): self.layers = [ # before conv block ConvLayer(d=7, mi=3, mo=64, stride=2, padding='SAME'), BatchNormLayer(64), ReLULayer(), MaxPoolLayer(dim=3), # conv block ConvBlock(mi=64, fm_sizes=[64, 64, 256], stride=1), ] self.input_ = tf.placeholder(tf.float32, shape=(None, 224, 224, 3)) self.output = self.forward(self.input_) def copyFromKerasLayers(self, layers): self.layers[0].copyFromKerasLayers(layers[1]) self.layers[1].copyFromKerasLayers(layers[2]) self.layers[4].copyFromKerasLayers(layers[5:]) def forward(self, X): for layer in self.layers: X = layer.forward(X) return X def predict(self, X): assert(self.session is not None) return self.session.run( self.output, feed_dict={self.input_: X} ) def set_session(self, session): self.session = session self.layers[0].session = session self.layers[1].session = session self.layers[4].set_session(session) def get_params(self): params = [] for layer in self.layers: params += layer.get_params() if __name__ == '__main__': # you can also set weights to None, it doesn't matter resnet = ResNet50(weights='imagenet') # you can determine the correct layer # by looking at resnet.layers in the console partial_model = Model( inputs=resnet.input, outputs=resnet.layers[16].output ) print(partial_model.summary()) # for layer in partial_model.layers: # layer.trainable = False my_partial_resnet = PartialResNet() # make a fake image X = np.random.random((1, 224, 224, 3)) # get keras output keras_output = partial_model.predict(X) # get my model output init = tf.variables_initializer(my_partial_resnet.get_params()) # note: starting a new session messes up the Keras model session = keras.backend.get_session() my_partial_resnet.set_session(session) session.run(init) # first, just make sure we can get any output first_output = my_partial_resnet.predict(X) print("first_output.shape:", first_output.shape) # copy params from Keras model my_partial_resnet.copyFromKerasLayers(partial_model.layers) # compare the 2 models output = my_partial_resnet.predict(X) diff = np.abs(output - keras_output).sum() if diff < 1e-10: print("Everything's great!") else: print("diff = %s" % diff)
# https://deeplearningcourses.com/c/advanced-computer-vision # https://www.udemy.com/advanced-computer-vision from __future__ import print_function, division from builtins import range, input # Note: you may need to update your version of future # sudo pip install -U future # Let's go up to the end of the first conv block # to make sure everything has been loaded correctly # compared to keras import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import keras from keras.applications.resnet50 import ResNet50 from keras.models import Model from keras.preprocessing import image from keras.applications.resnet50 import preprocess_input, decode_predictions from tf_resnet_convblock import ConvLayer, BatchNormLayer, ConvBlock # NOTE: dependent on your Keras version # this script used 2.1.1 # [<keras.engine.topology.InputLayer at 0x112fe4358>, # <keras.layers.convolutional.Conv2D at 0x112fe46a0>, # <keras.layers.normalization.BatchNormalization at 0x112fe4630>, # <keras.layers.core.Activation at 0x112fe4eb8>, # <keras.layers.pooling.MaxPooling2D at 0x10ed4be48>, # <keras.layers.convolutional.Conv2D at 0x1130723c8>, # <keras.layers.normalization.BatchNormalization at 0x113064710>, # <keras.layers.core.Activation at 0x113092dd8>, # <keras.layers.convolutional.Conv2D at 0x11309e908>, # <keras.layers.normalization.BatchNormalization at 0x11308a550>, # <keras.layers.core.Activation at 0x11312ac88>, # <keras.layers.convolutional.Conv2D at 0x1131207b8>, # <keras.layers.convolutional.Conv2D at 0x1131b8da0>, # <keras.layers.normalization.BatchNormalization at 0x113115550>, # <keras.layers.normalization.BatchNormalization at 0x1131a01d0>, # <keras.layers.merge.Add at 0x11322f0f0>, # <keras.layers.core.Activation at 0x113246cf8>] # define some additional layers so they have a forward function class ReLULayer: def forward(self, X): return tf.nn.relu(X) def get_params(self): return [] class MaxPoolLayer: def __init__(self, dim): self.dim = dim def forward(self, X): return tf.nn.max_pool( X, ksize=[1, self.dim, self.dim, 1], strides=[1, 2, 2, 1], padding='VALID' ) def get_params(self): return [] class PartialResNet: def __init__(self): self.layers = [ # before conv block ConvLayer(d=7, mi=3, mo=64, stride=2, padding='SAME'), BatchNormLayer(64), ReLULayer(), MaxPoolLayer(dim=3), # conv block ConvBlock(mi=64, fm_sizes=[64, 64, 256], stride=1), ] self.input_ = tf.placeholder(tf.float32, shape=(None, 224, 224, 3)) self.output = self.forward(self.input_) def copyFromKerasLayers(self, layers): self.layers[0].copyFromKerasLayers(layers[1]) self.layers[1].copyFromKerasLayers(layers[2]) self.layers[4].copyFromKerasLayers(layers[5:]) def forward(self, X): for layer in self.layers: X = layer.forward(X) return X def predict(self, X): assert(self.session is not None) return self.session.run( self.output, feed_dict={self.input_: X} ) def set_session(self, session): self.session = session self.layers[0].session = session self.layers[1].session = session self.layers[4].set_session(session) def get_params(self): params = [] for layer in self.layers: params += layer.get_params() if __name__ == '__main__': # you can also set weights to None, it doesn't matter resnet = ResNet50(weights='imagenet') # you can determine the correct layer # by looking at resnet.layers in the console partial_model = Model( inputs=resnet.input, outputs=resnet.layers[16].output ) print(partial_model.summary()) # for layer in partial_model.layers: # layer.trainable = False my_partial_resnet = PartialResNet() # make a fake image X = np.random.random((1, 224, 224, 3)) # get keras output keras_output = partial_model.predict(X) # get my model output init = tf.variables_initializer(my_partial_resnet.get_params()) # note: starting a new session messes up the Keras model session = keras.backend.get_session() my_partial_resnet.set_session(session) session.run(init) # first, just make sure we can get any output first_output = my_partial_resnet.predict(X) print("first_output.shape:", first_output.shape) # copy params from Keras model my_partial_resnet.copyFromKerasLayers(partial_model.layers) # compare the 2 models output = my_partial_resnet.predict(X) diff = np.abs(output - keras_output).sum() if diff < 1e-10: print("Everything's great!") else: print("diff = %s" % diff)
en
0.710429
# https://deeplearningcourses.com/c/advanced-computer-vision # https://www.udemy.com/advanced-computer-vision # Note: you may need to update your version of future # sudo pip install -U future # Let's go up to the end of the first conv block # to make sure everything has been loaded correctly # compared to keras # NOTE: dependent on your Keras version # this script used 2.1.1 # [<keras.engine.topology.InputLayer at 0x112fe4358>, # <keras.layers.convolutional.Conv2D at 0x112fe46a0>, # <keras.layers.normalization.BatchNormalization at 0x112fe4630>, # <keras.layers.core.Activation at 0x112fe4eb8>, # <keras.layers.pooling.MaxPooling2D at 0x10ed4be48>, # <keras.layers.convolutional.Conv2D at 0x1130723c8>, # <keras.layers.normalization.BatchNormalization at 0x113064710>, # <keras.layers.core.Activation at 0x113092dd8>, # <keras.layers.convolutional.Conv2D at 0x11309e908>, # <keras.layers.normalization.BatchNormalization at 0x11308a550>, # <keras.layers.core.Activation at 0x11312ac88>, # <keras.layers.convolutional.Conv2D at 0x1131207b8>, # <keras.layers.convolutional.Conv2D at 0x1131b8da0>, # <keras.layers.normalization.BatchNormalization at 0x113115550>, # <keras.layers.normalization.BatchNormalization at 0x1131a01d0>, # <keras.layers.merge.Add at 0x11322f0f0>, # <keras.layers.core.Activation at 0x113246cf8>] # define some additional layers so they have a forward function # before conv block # conv block # you can also set weights to None, it doesn't matter # you can determine the correct layer # by looking at resnet.layers in the console # for layer in partial_model.layers: # layer.trainable = False # make a fake image # get keras output # get my model output # note: starting a new session messes up the Keras model # first, just make sure we can get any output # copy params from Keras model # compare the 2 models
2.954269
3
configs/deepim/lmPbrSO/FlowNet512_1.5AugCosyAAEGray_Flat_lmPbr_SO/FlowNet512_1.5AugCosyAAEGray_Flat_Pbr_11_glue.py
THU-DA-6D-Pose-Group/self6dpp
33
6631315
<gh_stars>10-100 _base_ = ["./FlowNet512_1.5AugCosyAAEGray_Flat_Pbr_01_ape.py"] OUTPUT_DIR = "output/deepim/lmPbrSO/FlowNet512_1.5AugCosyAAEGray_Flat_lmPbr_SO/glue" DATASETS = dict(TRAIN=("lm_pbr_glue_train",), TEST=("lm_real_glue_test",)) # bbnc9 # objects glue Avg(1) # ad_2 20.95 20.95 # ad_5 59.46 59.46 # ad_10 89.58 89.58 # rete_2 5.79 5.79 # rete_5 70.17 70.17 # rete_10 97.30 97.30 # re_2 8.11 8.11 # re_5 73.46 73.46 # re_10 97.39 97.39 # te_2 62.64 62.64 # te_5 94.31 94.31 # te_10 99.81 99.81 # proj_2 19.11 19.11 # proj_5 92.28 92.28 # proj_10 99.61 99.61 # re 4.32 4.32 # te 0.02 0.02 # init by mlBCE # objects glue Avg(1) # ad_2 21.43 21.43 # ad_5 63.90 63.90 # ad_10 90.73 90.73 # rete_2 7.24 7.24 # rete_5 74.03 74.03 # rete_10 98.17 98.17 # re_2 9.27 9.27 # re_5 76.45 76.45 # re_10 98.26 98.26 # te_2 64.58 64.58 # te_5 95.75 95.75 # te_10 99.81 99.81 # proj_2 21.04 21.04 # proj_5 93.73 93.73 # proj_10 99.90 99.90 # re 3.97 3.97 # te 0.02 0.02
_base_ = ["./FlowNet512_1.5AugCosyAAEGray_Flat_Pbr_01_ape.py"] OUTPUT_DIR = "output/deepim/lmPbrSO/FlowNet512_1.5AugCosyAAEGray_Flat_lmPbr_SO/glue" DATASETS = dict(TRAIN=("lm_pbr_glue_train",), TEST=("lm_real_glue_test",)) # bbnc9 # objects glue Avg(1) # ad_2 20.95 20.95 # ad_5 59.46 59.46 # ad_10 89.58 89.58 # rete_2 5.79 5.79 # rete_5 70.17 70.17 # rete_10 97.30 97.30 # re_2 8.11 8.11 # re_5 73.46 73.46 # re_10 97.39 97.39 # te_2 62.64 62.64 # te_5 94.31 94.31 # te_10 99.81 99.81 # proj_2 19.11 19.11 # proj_5 92.28 92.28 # proj_10 99.61 99.61 # re 4.32 4.32 # te 0.02 0.02 # init by mlBCE # objects glue Avg(1) # ad_2 21.43 21.43 # ad_5 63.90 63.90 # ad_10 90.73 90.73 # rete_2 7.24 7.24 # rete_5 74.03 74.03 # rete_10 98.17 98.17 # re_2 9.27 9.27 # re_5 76.45 76.45 # re_10 98.26 98.26 # te_2 64.58 64.58 # te_5 95.75 95.75 # te_10 99.81 99.81 # proj_2 21.04 21.04 # proj_5 93.73 93.73 # proj_10 99.90 99.90 # re 3.97 3.97 # te 0.02 0.02
en
0.399192
# bbnc9 # objects glue Avg(1) # ad_2 20.95 20.95 # ad_5 59.46 59.46 # ad_10 89.58 89.58 # rete_2 5.79 5.79 # rete_5 70.17 70.17 # rete_10 97.30 97.30 # re_2 8.11 8.11 # re_5 73.46 73.46 # re_10 97.39 97.39 # te_2 62.64 62.64 # te_5 94.31 94.31 # te_10 99.81 99.81 # proj_2 19.11 19.11 # proj_5 92.28 92.28 # proj_10 99.61 99.61 # re 4.32 4.32 # te 0.02 0.02 # init by mlBCE # objects glue Avg(1) # ad_2 21.43 21.43 # ad_5 63.90 63.90 # ad_10 90.73 90.73 # rete_2 7.24 7.24 # rete_5 74.03 74.03 # rete_10 98.17 98.17 # re_2 9.27 9.27 # re_5 76.45 76.45 # re_10 98.26 98.26 # te_2 64.58 64.58 # te_5 95.75 95.75 # te_10 99.81 99.81 # proj_2 21.04 21.04 # proj_5 93.73 93.73 # proj_10 99.90 99.90 # re 3.97 3.97 # te 0.02 0.02
1.457994
1
async_v20/endpoints/annotations.py
gshklover/async_v20
23
6631316
<reponame>gshklover/async_v20<gh_stars>10-100 from ..definitions.types import ClientExtensions from ..definitions.primitives import InstrumentName from ..definitions.types import TransactionID from ..definitions.types import DateTime __all__ = ['Alias', 'AlignmentTimezone', 'Authorization', 'Count', 'DailyAlignment', 'FromTime', 'FromTransactionID', 'Ids', 'IncludeFirstQuery', 'Instruments', 'LastTransactionID', 'LongClientExtensions', 'LongUnits', 'PageSize', 'ShortClientExtensions', 'ShortUnits', 'Smooth', 'Snapshot', 'SinceTransactionID', 'ToTime', 'ToTransactionID', 'TradeClientExtensions', 'Type', 'Units', 'UserSpecifier'] class Bool(object): def __new__(cls, arg): return bool(arg) class Authorization(str): """Contains OANDA's v20 API authorization token""" pass class Instruments(str): pass class Alias(str): pass class Count(int): """The number of candlesticks to return in the reponse. Count should not be specified if both the start and end parameters are provided, as the time range combined with the graularity will determine the number of candlesticks to return. [default=500, maximum=5000]""" def __new__(cls, value=500): if not 0 < value <= 5000: raise ValueError(f'Count: MUST be within range(1,5001). Supplied {value}') return super().__new__(cls, value) class Smooth(Bool): """A flag that controls whether the candlestick is 'smoothed' or not. A smoothed candlestick uses the previous candle’s close price as its open price, while an unsmoothed candlestick uses the first price from its time range as its open price. [default=False]""" def __new__(cls, value=False): return super().__new__(cls, value) class IncludeFirstQuery(Bool): """A flag that controls whether the candlestick that is covered by the from time should be included in the results. This flag enables clients to use the timestamp of the last completed candlestick received to poll for future candlesticks but avoid receiving the previous candlestick repeatedly. [default=True]""" def __new__(cls, value=True): return super().__new__(cls, value) class DailyAlignment(int): """The hour of the day (in the specified timezone) to use for granularities that have daily alignments. [default=17, minimum=0, maximum=23]""" def __new__(cls, value=17): if not 0 <= value <= 23: raise ValueError(f'DailyAlignment: Must be within range(24). Supplied: {value}') return super().__new__(cls, value) class AlignmentTimezone(str): """The timezone to use for the dailyAlignment parameter. Candlesticks with daily alignment will be aligned to the dailyAlignment hour within the alignmentTimezone. [default=America/New_York]""" # TODO find out what are the valid time zones def __new__(cls, value='America/New_York'): return super().__new__(cls, value) class Ids(str): pass class LongUnits(str): """Indication of how much of the long Position to closeout. Either the string "ALL", the string "NONE", or a DecimalNumber representing how many units of the long position to close using a PositionCloseout MarketOrder. The units specified must always be positive. """ def __new__(cls, value='ALL'): return super().__new__(cls, value) class ShortUnits(str): """ Indication of how much of the short Position to closeout. Either the string "ALL", the string "NONE", or a DecimalNumber representing how many units of the short position to close using a PositionCloseout MarketOrder. The units specified must always be positive. """ def __new__(cls, value='ALL'): return super().__new__(cls, value) class Snapshot(Bool): """Flag that enables/disables the sending of a pricing snapshot when initially connecting to the stream. [default=True]""" def __new__(cls, value=True): return super().__new__(cls, value) class PageSize(int): """The number of Transactions to include in each page of the results. [default=100, maximum=1000]""" def __new__(cls, value=100): if not 0 < value <= 1000: raise ValueError(f'PageSize: Must be within range(). Supplied: {value}') return super().__new__(cls, value) class Type(str): pass class UserSpecifier(str): pass class FromTime(DateTime): """A DateTime to be used as the starting period of a query""" pass class ToTime(DateTime): """A DateTime to be used as the ending period of a query""" pass class TradeClientExtensions(ClientExtensions): pass class LongClientExtensions(ClientExtensions): """The client extensions to add to the MarketOrder used to close the long position """ pass class ShortClientExtensions(ClientExtensions): """The client extensions to add to the MarketOrder used to close the short position""" pass class Units(str): """Indication of how much of the Trade to close. Either the string "ALL" (indicating that all of the Trade should be closed), or a DecimalNumber representing the number of units of the open Trade to Close using a TradeClose MarketOrder. The units specified must always be positive, and the magnitude of the value cannot exceed the magnitude of the Trade’s open units """ def __new__(cls, value='ALL'): return super().__new__(cls, value) class LastTransactionID(TransactionID): """Contains the most recent TransactionID""" pass class SinceTransactionID(TransactionID): """The account changes to get Since LastTransactionID for account_changes() method""" pass class FromTransactionID(TransactionID): """A TransactionID to be used as the starting period of a query""" pass class ToTransactionID(TransactionID): """A TransactionID to be used as the ending period of a query""" pass class ServiceID(str): """The specifier of the service to get""" pass class ServiceListID(str): """Identification string of service list to get""" pass class Start(str): """Only show events which started after this date, inclusive. Suggested format RFC 2822 or RFC 1123""" pass class End(str): """Only show events which started before this date, inclusive. Suggested format RFC 2822 or RFC 1123""" pass class EventSid(str): """The SID of the event to get""" pass class StatusID(str): """The ID of the status to get""" pass
from ..definitions.types import ClientExtensions from ..definitions.primitives import InstrumentName from ..definitions.types import TransactionID from ..definitions.types import DateTime __all__ = ['Alias', 'AlignmentTimezone', 'Authorization', 'Count', 'DailyAlignment', 'FromTime', 'FromTransactionID', 'Ids', 'IncludeFirstQuery', 'Instruments', 'LastTransactionID', 'LongClientExtensions', 'LongUnits', 'PageSize', 'ShortClientExtensions', 'ShortUnits', 'Smooth', 'Snapshot', 'SinceTransactionID', 'ToTime', 'ToTransactionID', 'TradeClientExtensions', 'Type', 'Units', 'UserSpecifier'] class Bool(object): def __new__(cls, arg): return bool(arg) class Authorization(str): """Contains OANDA's v20 API authorization token""" pass class Instruments(str): pass class Alias(str): pass class Count(int): """The number of candlesticks to return in the reponse. Count should not be specified if both the start and end parameters are provided, as the time range combined with the graularity will determine the number of candlesticks to return. [default=500, maximum=5000]""" def __new__(cls, value=500): if not 0 < value <= 5000: raise ValueError(f'Count: MUST be within range(1,5001). Supplied {value}') return super().__new__(cls, value) class Smooth(Bool): """A flag that controls whether the candlestick is 'smoothed' or not. A smoothed candlestick uses the previous candle’s close price as its open price, while an unsmoothed candlestick uses the first price from its time range as its open price. [default=False]""" def __new__(cls, value=False): return super().__new__(cls, value) class IncludeFirstQuery(Bool): """A flag that controls whether the candlestick that is covered by the from time should be included in the results. This flag enables clients to use the timestamp of the last completed candlestick received to poll for future candlesticks but avoid receiving the previous candlestick repeatedly. [default=True]""" def __new__(cls, value=True): return super().__new__(cls, value) class DailyAlignment(int): """The hour of the day (in the specified timezone) to use for granularities that have daily alignments. [default=17, minimum=0, maximum=23]""" def __new__(cls, value=17): if not 0 <= value <= 23: raise ValueError(f'DailyAlignment: Must be within range(24). Supplied: {value}') return super().__new__(cls, value) class AlignmentTimezone(str): """The timezone to use for the dailyAlignment parameter. Candlesticks with daily alignment will be aligned to the dailyAlignment hour within the alignmentTimezone. [default=America/New_York]""" # TODO find out what are the valid time zones def __new__(cls, value='America/New_York'): return super().__new__(cls, value) class Ids(str): pass class LongUnits(str): """Indication of how much of the long Position to closeout. Either the string "ALL", the string "NONE", or a DecimalNumber representing how many units of the long position to close using a PositionCloseout MarketOrder. The units specified must always be positive. """ def __new__(cls, value='ALL'): return super().__new__(cls, value) class ShortUnits(str): """ Indication of how much of the short Position to closeout. Either the string "ALL", the string "NONE", or a DecimalNumber representing how many units of the short position to close using a PositionCloseout MarketOrder. The units specified must always be positive. """ def __new__(cls, value='ALL'): return super().__new__(cls, value) class Snapshot(Bool): """Flag that enables/disables the sending of a pricing snapshot when initially connecting to the stream. [default=True]""" def __new__(cls, value=True): return super().__new__(cls, value) class PageSize(int): """The number of Transactions to include in each page of the results. [default=100, maximum=1000]""" def __new__(cls, value=100): if not 0 < value <= 1000: raise ValueError(f'PageSize: Must be within range(). Supplied: {value}') return super().__new__(cls, value) class Type(str): pass class UserSpecifier(str): pass class FromTime(DateTime): """A DateTime to be used as the starting period of a query""" pass class ToTime(DateTime): """A DateTime to be used as the ending period of a query""" pass class TradeClientExtensions(ClientExtensions): pass class LongClientExtensions(ClientExtensions): """The client extensions to add to the MarketOrder used to close the long position """ pass class ShortClientExtensions(ClientExtensions): """The client extensions to add to the MarketOrder used to close the short position""" pass class Units(str): """Indication of how much of the Trade to close. Either the string "ALL" (indicating that all of the Trade should be closed), or a DecimalNumber representing the number of units of the open Trade to Close using a TradeClose MarketOrder. The units specified must always be positive, and the magnitude of the value cannot exceed the magnitude of the Trade’s open units """ def __new__(cls, value='ALL'): return super().__new__(cls, value) class LastTransactionID(TransactionID): """Contains the most recent TransactionID""" pass class SinceTransactionID(TransactionID): """The account changes to get Since LastTransactionID for account_changes() method""" pass class FromTransactionID(TransactionID): """A TransactionID to be used as the starting period of a query""" pass class ToTransactionID(TransactionID): """A TransactionID to be used as the ending period of a query""" pass class ServiceID(str): """The specifier of the service to get""" pass class ServiceListID(str): """Identification string of service list to get""" pass class Start(str): """Only show events which started after this date, inclusive. Suggested format RFC 2822 or RFC 1123""" pass class End(str): """Only show events which started before this date, inclusive. Suggested format RFC 2822 or RFC 1123""" pass class EventSid(str): """The SID of the event to get""" pass class StatusID(str): """The ID of the status to get""" pass
en
0.845138
Contains OANDA's v20 API authorization token The number of candlesticks to return in the reponse. Count should not be specified if both the start and end parameters are provided, as the time range combined with the graularity will determine the number of candlesticks to return. [default=500, maximum=5000] A flag that controls whether the candlestick is 'smoothed' or not. A smoothed candlestick uses the previous candle’s close price as its open price, while an unsmoothed candlestick uses the first price from its time range as its open price. [default=False] A flag that controls whether the candlestick that is covered by the from time should be included in the results. This flag enables clients to use the timestamp of the last completed candlestick received to poll for future candlesticks but avoid receiving the previous candlestick repeatedly. [default=True] The hour of the day (in the specified timezone) to use for granularities that have daily alignments. [default=17, minimum=0, maximum=23] The timezone to use for the dailyAlignment parameter. Candlesticks with daily alignment will be aligned to the dailyAlignment hour within the alignmentTimezone. [default=America/New_York] # TODO find out what are the valid time zones Indication of how much of the long Position to closeout. Either the string "ALL", the string "NONE", or a DecimalNumber representing how many units of the long position to close using a PositionCloseout MarketOrder. The units specified must always be positive. Indication of how much of the short Position to closeout. Either the string "ALL", the string "NONE", or a DecimalNumber representing how many units of the short position to close using a PositionCloseout MarketOrder. The units specified must always be positive. Flag that enables/disables the sending of a pricing snapshot when initially connecting to the stream. [default=True] The number of Transactions to include in each page of the results. [default=100, maximum=1000] A DateTime to be used as the starting period of a query A DateTime to be used as the ending period of a query The client extensions to add to the MarketOrder used to close the long position The client extensions to add to the MarketOrder used to close the short position Indication of how much of the Trade to close. Either the string "ALL" (indicating that all of the Trade should be closed), or a DecimalNumber representing the number of units of the open Trade to Close using a TradeClose MarketOrder. The units specified must always be positive, and the magnitude of the value cannot exceed the magnitude of the Trade’s open units Contains the most recent TransactionID The account changes to get Since LastTransactionID for account_changes() method A TransactionID to be used as the starting period of a query A TransactionID to be used as the ending period of a query The specifier of the service to get Identification string of service list to get Only show events which started after this date, inclusive. Suggested format RFC 2822 or RFC 1123 Only show events which started before this date, inclusive. Suggested format RFC 2822 or RFC 1123 The SID of the event to get The ID of the status to get
2.31923
2
pygpsnmea/gui/positionstab.py
tww-software/py_gps_nmea
0
6631317
<gh_stars>0 """ tab to display a table of all the positions we have recorded """ import tkinter class PosRepTab(tkinter.ttk.Frame): """ tab to display all the NMEA Sentences and descriptions + times Note: basically a tab with a table inside Args: tabcontrol(tkinter.ttk.Notebook): ttk notebook to add this tab to Attributes: autoscroll(tkinter.BooleanVar): if true autoscroll as new positions are added autoscrollchk(tkinter.Checkbutton): checkbox for autoscroll tabs(tkinter.ttk.Notebook): other tabs in the GUI counter(int): number of positions tree(tkinter.ttk.Treeview): table of positions """ def __init__(self, tabcontrol): tkinter.ttk.Frame.__init__(self, tabcontrol) self.autoscroll = tkinter.BooleanVar() self.autoscroll.set(1) self.autoscrollchk = tkinter.Checkbutton( self, text='autoscroll as new positions are added', var=self.autoscroll) self.autoscrollchk.select() self.autoscrollchk.pack(side=tkinter.TOP) self.tabs = tabcontrol self.counter = 0 self.tree = tkinter.ttk.Treeview(self) verticalscrollbar = tkinter.ttk.Scrollbar( self, orient=tkinter.VERTICAL, command=self.tree.yview) verticalscrollbar.pack(side=tkinter.RIGHT, fill=tkinter.Y) horizontalscrollbar = tkinter.ttk.Scrollbar( self, orient=tkinter.HORIZONTAL, command=self.tree.xview) horizontalscrollbar.pack(side=tkinter.BOTTOM, fill=tkinter.X) self.tree.configure(yscrollcommand=verticalscrollbar.set, xscrollcommand=horizontalscrollbar.set) self.create_message_table() def create_message_table(self): """ draw a large table in positions tab of all the NMEA sentences we have """ self.tree.delete(*self.tree.get_children()) headers = ['Position No', 'Latitude', 'Longitude', 'Timestamp'] self.tree["columns"] = headers for column in headers: self.tree.column(column, width=200, minwidth=70, stretch=tkinter.YES) self.tree.heading(column, text=column, anchor=tkinter.W) self.tree.pack(side=tkinter.TOP, fill='both', expand=tkinter.TRUE) self.tree['show'] = 'headings' def add_new_line(self, line): """ add a new line to the tree table and scroll down to it Args: line(list): items in line are pos no, lat, lon, time """ self.tree.insert('', self.counter, values=line) self.counter += 1 if self.autoscroll.get() == 1: self.tree.yview_moveto(1) def clear(self): """ clear the tree of all data """ self.tree.delete(*self.tree.get_children())
""" tab to display a table of all the positions we have recorded """ import tkinter class PosRepTab(tkinter.ttk.Frame): """ tab to display all the NMEA Sentences and descriptions + times Note: basically a tab with a table inside Args: tabcontrol(tkinter.ttk.Notebook): ttk notebook to add this tab to Attributes: autoscroll(tkinter.BooleanVar): if true autoscroll as new positions are added autoscrollchk(tkinter.Checkbutton): checkbox for autoscroll tabs(tkinter.ttk.Notebook): other tabs in the GUI counter(int): number of positions tree(tkinter.ttk.Treeview): table of positions """ def __init__(self, tabcontrol): tkinter.ttk.Frame.__init__(self, tabcontrol) self.autoscroll = tkinter.BooleanVar() self.autoscroll.set(1) self.autoscrollchk = tkinter.Checkbutton( self, text='autoscroll as new positions are added', var=self.autoscroll) self.autoscrollchk.select() self.autoscrollchk.pack(side=tkinter.TOP) self.tabs = tabcontrol self.counter = 0 self.tree = tkinter.ttk.Treeview(self) verticalscrollbar = tkinter.ttk.Scrollbar( self, orient=tkinter.VERTICAL, command=self.tree.yview) verticalscrollbar.pack(side=tkinter.RIGHT, fill=tkinter.Y) horizontalscrollbar = tkinter.ttk.Scrollbar( self, orient=tkinter.HORIZONTAL, command=self.tree.xview) horizontalscrollbar.pack(side=tkinter.BOTTOM, fill=tkinter.X) self.tree.configure(yscrollcommand=verticalscrollbar.set, xscrollcommand=horizontalscrollbar.set) self.create_message_table() def create_message_table(self): """ draw a large table in positions tab of all the NMEA sentences we have """ self.tree.delete(*self.tree.get_children()) headers = ['Position No', 'Latitude', 'Longitude', 'Timestamp'] self.tree["columns"] = headers for column in headers: self.tree.column(column, width=200, minwidth=70, stretch=tkinter.YES) self.tree.heading(column, text=column, anchor=tkinter.W) self.tree.pack(side=tkinter.TOP, fill='both', expand=tkinter.TRUE) self.tree['show'] = 'headings' def add_new_line(self, line): """ add a new line to the tree table and scroll down to it Args: line(list): items in line are pos no, lat, lon, time """ self.tree.insert('', self.counter, values=line) self.counter += 1 if self.autoscroll.get() == 1: self.tree.yview_moveto(1) def clear(self): """ clear the tree of all data """ self.tree.delete(*self.tree.get_children())
en
0.603557
tab to display a table of all the positions we have recorded tab to display all the NMEA Sentences and descriptions + times Note: basically a tab with a table inside Args: tabcontrol(tkinter.ttk.Notebook): ttk notebook to add this tab to Attributes: autoscroll(tkinter.BooleanVar): if true autoscroll as new positions are added autoscrollchk(tkinter.Checkbutton): checkbox for autoscroll tabs(tkinter.ttk.Notebook): other tabs in the GUI counter(int): number of positions tree(tkinter.ttk.Treeview): table of positions draw a large table in positions tab of all the NMEA sentences we have add a new line to the tree table and scroll down to it Args: line(list): items in line are pos no, lat, lon, time clear the tree of all data
3.243286
3
loam/cli.py
amorison/loam
0
6631318
<reponame>amorison/loam """Definition of CLI manager.""" from __future__ import annotations from dataclasses import fields import argparse import copy import pathlib import typing import warnings from types import MappingProxyType from . import error, _internal if typing.TYPE_CHECKING: from typing import Dict, List, Any, Optional, Mapping, TextIO, Union from argparse import ArgumentParser, Namespace from os import PathLike from .base import Section, ConfigBase BLK = ' \\\n' # cutting line in scripts def _names(section: Section, option: str) -> List[str]: """List of cli strings for a given option.""" entry = section.meta_(option).entry action = entry.cli_kwargs.get('action') if action is _internal.Switch: names = [f'-{option}', f'+{option}'] short = entry.cli_short if short is not None: names.append(f'-{short}') names.append(f'+{short}') else: names = [f'--{option}'] short = entry.cli_short if short is not None: names.append(f'-{short}') return names class Subcmd: """Metadata of sub commands. Attributes: help: short description of the sub command. sections: configuration sections used by the subcommand. defaults: default value of options associated to the subcommand. """ def __init__(self, help_msg: str, *sections: str, **defaults: Any): self.help = help_msg self.sections = sections self.defaults = defaults class CLIManager: """CLI manager. Args: config_: the :class:`~loam.base.ConfigBase` holding option definitions. common_: special subcommand, used to define the general description of the CLI tool as well as configuration sections used by every subcommand. bare_: special subcommand, use it to define the configuration sections that should be used when you call your CLI tool without any subcommand. subcmds: all the subcommands of your CLI tool. The name of each *subcommand* is the name of the keyword argument passed on to this function. """ def __init__(self, config_: ConfigBase, common_: Optional[Subcmd] = None, bare_: Optional[Subcmd] = None, **subcmds: Subcmd): self._conf = config_ self._subcmds = {} for sub_name, sub_meta in subcmds.items(): if sub_name.isidentifier(): self._subcmds[sub_name] = sub_meta else: raise error.SubcmdError(sub_name) self._common = common_ if common_ is not None else Subcmd('') self._bare = bare_ # dict of dict [command][option] = section self._opt_cmds: Dict[str, Dict[str, str]] = {} # same as above but for bare command only [option] = section self._opt_bare: Dict[str, str] = {} if self.bare is not None: self._cmd_opts_solver(None) for cmd_name in self.subcmds: self._opt_cmds[cmd_name] = {} self._cmd_opts_solver(cmd_name) self._parser = self._build_parser() @property def common(self) -> Subcmd: """Subcmd describing sections common to all subcommands.""" return self._common @property def bare(self) -> Optional[Subcmd]: """Subcmd used when the CLI tool is invoked without subcommand.""" return self._bare @property def subcmds(self) -> Mapping[str, Subcmd]: """Subcommands description.""" return MappingProxyType(self._subcmds) def sections_list(self, cmd: Optional[str] = None) -> List[str]: """List of config sections used by a command. Args: cmd: command name, set to ``None`` or ``''`` for the bare command. Returns: list of configuration sections used by that command. """ sections = list(self.common.sections) if not cmd: if self.bare is not None: sections.extend(self.bare.sections) return sections return [] sections.extend(self.subcmds[cmd].sections) if hasattr(self._conf, cmd): sections.append(cmd) return sections def _cmd_opts_solver(self, cmd_name: Optional[str]) -> None: """Scan options related to one command and enrich _opt_cmds.""" sections = self.sections_list(cmd_name) cmd_dict = self._opt_cmds[cmd_name] if cmd_name else self._opt_bare for sct in reversed(sections): section: Section = getattr(self._conf, sct) for fld in fields(section): opt = fld.name if not section.meta_(opt).entry.in_cli: continue if opt not in cmd_dict: cmd_dict[opt] = sct else: warnings.warn( 'Command <{0}>: {1}.{2} shadowed by {3}.{2}'.format( cmd_name, sct, opt, cmd_dict[opt]), error.LoamWarning, stacklevel=4) def _add_options_to_parser(self, opts_dict: Mapping[str, str], parser: ArgumentParser) -> None: """Add options to a parser.""" for opt, sct in opts_dict.items(): section: Section = getattr(self._conf, sct) entry = section.meta_(opt).entry kwargs = copy.deepcopy(entry.cli_kwargs) action = kwargs.get('action') if action is _internal.Switch: kwargs.update(nargs=0) kwargs.update(help=entry.doc) kwargs.setdefault('default', getattr(section, opt)) parser.add_argument(*_names(section, opt), **kwargs) def _build_parser(self) -> ArgumentParser: """Build command line argument parser. Returns: the command line argument parser. """ main_parser = argparse.ArgumentParser(description=self.common.help, prefix_chars='-+') self._add_options_to_parser(self._opt_bare, main_parser) main_parser.set_defaults(**self.common.defaults) if self.bare is not None: main_parser.set_defaults(**self.bare.defaults) subparsers = main_parser.add_subparsers(dest='loam_sub_name') for cmd_name, meta in self.subcmds.items(): kwargs = {'prefix_chars': '+-', 'help': meta.help} dummy_parser = subparsers.add_parser(cmd_name, **kwargs) self._add_options_to_parser(self._opt_cmds[cmd_name], dummy_parser) dummy_parser.set_defaults(**meta.defaults) return main_parser def parse_args(self, arglist: Optional[List[str]] = None) -> Namespace: """Parse arguments and update options accordingly. Args: arglist: list of arguments to parse. If set to None, ``sys.argv[1:]`` is used. Returns: the argument namespace returned by the :class:`argparse.ArgumentParser`. """ args = self._parser.parse_args(args=arglist) sub_cmd = args.loam_sub_name if sub_cmd is None: for opt, sct in self._opt_bare.items(): section: Section = getattr(self._conf, sct) val = getattr(args, opt, None) section.cast_and_set_(opt, val) else: for opt, sct in self._opt_cmds[sub_cmd].items(): section = getattr(self._conf, sct) val = getattr(args, opt, None) section.cast_and_set_(opt, val) return args def _zsh_comp_command(self, zcf: TextIO, cmd: Optional[str], grouping: bool, add_help: bool = True) -> None: """Write zsh _arguments compdef for a given command. Args: zcf: zsh compdef file. cmd: command name, set to None or '' for bare command. grouping: group options (zsh>=5.4). add_help: add an help option. """ if add_help: if grouping: print("+ '(help)'", end=BLK, file=zcf) print("'--help[show help message]'", end=BLK, file=zcf) print("'-h[show help message]'", end=BLK, file=zcf) # could deal with duplicate by iterating in reverse and keep set of # already defined opts. no_comp = ('store_true', 'store_false') cmd_dict = self._opt_cmds[cmd] if cmd else self._opt_bare for opt, sct in cmd_dict.items(): section: Section = getattr(self._conf, sct) entry = section.meta_(opt).entry comprule = entry.cli_zsh_comprule if entry.cli_kwargs.get('action') == 'append': grpfmt, optfmt = "+ '{}'", "'*{}[{}]{}'" if comprule is None: comprule = '' else: grpfmt, optfmt = "+ '({})'", "'{}[{}]{}'" if entry.cli_kwargs.get('action') in no_comp \ or entry.cli_kwargs.get('nargs') == 0: comprule = None if comprule is None: compstr = '' elif comprule == '': optfmt = optfmt.replace('[', '=[') compstr = ': :( )' else: optfmt = optfmt.replace('[', '=[') compstr = f': :{comprule}' if grouping: print(grpfmt.format(opt), end=BLK, file=zcf) for name in _names(section, opt): print(optfmt.format(name, entry.doc.replace("'", "'\"'\"'"), compstr), end=BLK, file=zcf) def zsh_complete(self, path: Union[str, PathLike], cmd: str, *cmds: str, sourceable: bool = False, force_grouping: bool = False) -> None: """Write zsh compdef script. Args: path: desired path of the compdef script. cmd: command name that should be completed. cmds: extra command names that should be completed. sourceable: if True, the generated file will contain an explicit call to ``compdef``, which means it can be sourced to activate CLI completion. force_grouping: if True, assume zsh supports grouping of options. Otherwise, loam will attempt to check whether zsh >= 5.4. """ grouping = force_grouping or _internal.zsh_version() >= (5, 4) path = pathlib.Path(path) firstline = ['#compdef', cmd] firstline.extend(cmds) subcmds = list(self.subcmds.keys()) with path.open('w') as zcf: print(*firstline, end='\n\n', file=zcf) # main function print(f'function _{cmd} {{', file=zcf) print('local line', file=zcf) print('_arguments -C', end=BLK, file=zcf) if subcmds: # list of subcommands and their description substrs = [rf"{sub}\:'{self.subcmds[sub].help}'" for sub in subcmds] print('"1:Commands:(({}))"'.format(' '.join(substrs)), end=BLK, file=zcf) self._zsh_comp_command(zcf, None, grouping) if subcmds: print("'*::arg:->args'", file=zcf) print('case $line[1] in', file=zcf) for sub in subcmds: print(f'{sub}) _{cmd}_{sub} ;;', file=zcf) print('esac', file=zcf) print('}', file=zcf) # all subcommand completion handlers for sub in subcmds: print(f'\nfunction _{cmd}_{sub} {{', file=zcf) print('_arguments', end=BLK, file=zcf) self._zsh_comp_command(zcf, sub, grouping) print('}', file=zcf) if sourceable: print(f'\ncompdef _{cmd} {cmd}', *cmds, file=zcf) def _bash_comp_command(self, cmd: Optional[str], add_help: bool = True) -> List[str]: """Build a list of all options for a given command. Args: cmd: command name, set to None or '' for bare command. add_help: add an help option. Returns: list of CLI options strings. """ out = ['-h', '--help'] if add_help else [] cmd_dict = self._opt_cmds[cmd] if cmd else self._opt_bare for opt, sct in cmd_dict.items(): section: Section = getattr(self._conf, sct) out.extend(_names(section, opt)) return out def bash_complete(self, path: Union[str, PathLike], cmd: str, *cmds: str) -> None: """Write bash complete script. Args: path: desired path of the complete script. cmd: command name that should be completed. cmds: extra command names that should be completed. """ path = pathlib.Path(path) subcmds = list(self.subcmds.keys()) with path.open('w') as bcf: # main function print(f'_{cmd}() {{', file=bcf) print('COMPREPLY=()', file=bcf) print(r'local cur=${COMP_WORDS[COMP_CWORD]}', end='\n\n', file=bcf) optstr = ' '.join(self._bash_comp_command(None)) print(f'local options="{optstr}"', end='\n\n', file=bcf) if subcmds: print('local commands="{}"'.format(' '.join(subcmds)), file=bcf) print('declare -A suboptions', file=bcf) for sub in subcmds: optstr = ' '.join(self._bash_comp_command(sub)) print(f'suboptions[{sub}]="{optstr}"', file=bcf) condstr = 'if' for sub in subcmds: print(condstr, r'[[ "${COMP_LINE}" == *"', sub, '"* ]] ; then', file=bcf) print(r'COMPREPLY=( `compgen -W "${suboptions[', sub, r']}" -- ${cur}` )', sep='', file=bcf) condstr = 'elif' print(condstr, r'[[ ${cur} == -* ]] ; then', file=bcf) print(r'COMPREPLY=( `compgen -W "${options}" -- ${cur}`)', file=bcf) if subcmds: print(r'else', file=bcf) print(r'COMPREPLY=( `compgen -W "${commands}" -- ${cur}`)', file=bcf) print('fi', file=bcf) print('}', end='\n\n', file=bcf) print(f'complete -F _{cmd} {cmd}', *cmds, file=bcf)
"""Definition of CLI manager.""" from __future__ import annotations from dataclasses import fields import argparse import copy import pathlib import typing import warnings from types import MappingProxyType from . import error, _internal if typing.TYPE_CHECKING: from typing import Dict, List, Any, Optional, Mapping, TextIO, Union from argparse import ArgumentParser, Namespace from os import PathLike from .base import Section, ConfigBase BLK = ' \\\n' # cutting line in scripts def _names(section: Section, option: str) -> List[str]: """List of cli strings for a given option.""" entry = section.meta_(option).entry action = entry.cli_kwargs.get('action') if action is _internal.Switch: names = [f'-{option}', f'+{option}'] short = entry.cli_short if short is not None: names.append(f'-{short}') names.append(f'+{short}') else: names = [f'--{option}'] short = entry.cli_short if short is not None: names.append(f'-{short}') return names class Subcmd: """Metadata of sub commands. Attributes: help: short description of the sub command. sections: configuration sections used by the subcommand. defaults: default value of options associated to the subcommand. """ def __init__(self, help_msg: str, *sections: str, **defaults: Any): self.help = help_msg self.sections = sections self.defaults = defaults class CLIManager: """CLI manager. Args: config_: the :class:`~loam.base.ConfigBase` holding option definitions. common_: special subcommand, used to define the general description of the CLI tool as well as configuration sections used by every subcommand. bare_: special subcommand, use it to define the configuration sections that should be used when you call your CLI tool without any subcommand. subcmds: all the subcommands of your CLI tool. The name of each *subcommand* is the name of the keyword argument passed on to this function. """ def __init__(self, config_: ConfigBase, common_: Optional[Subcmd] = None, bare_: Optional[Subcmd] = None, **subcmds: Subcmd): self._conf = config_ self._subcmds = {} for sub_name, sub_meta in subcmds.items(): if sub_name.isidentifier(): self._subcmds[sub_name] = sub_meta else: raise error.SubcmdError(sub_name) self._common = common_ if common_ is not None else Subcmd('') self._bare = bare_ # dict of dict [command][option] = section self._opt_cmds: Dict[str, Dict[str, str]] = {} # same as above but for bare command only [option] = section self._opt_bare: Dict[str, str] = {} if self.bare is not None: self._cmd_opts_solver(None) for cmd_name in self.subcmds: self._opt_cmds[cmd_name] = {} self._cmd_opts_solver(cmd_name) self._parser = self._build_parser() @property def common(self) -> Subcmd: """Subcmd describing sections common to all subcommands.""" return self._common @property def bare(self) -> Optional[Subcmd]: """Subcmd used when the CLI tool is invoked without subcommand.""" return self._bare @property def subcmds(self) -> Mapping[str, Subcmd]: """Subcommands description.""" return MappingProxyType(self._subcmds) def sections_list(self, cmd: Optional[str] = None) -> List[str]: """List of config sections used by a command. Args: cmd: command name, set to ``None`` or ``''`` for the bare command. Returns: list of configuration sections used by that command. """ sections = list(self.common.sections) if not cmd: if self.bare is not None: sections.extend(self.bare.sections) return sections return [] sections.extend(self.subcmds[cmd].sections) if hasattr(self._conf, cmd): sections.append(cmd) return sections def _cmd_opts_solver(self, cmd_name: Optional[str]) -> None: """Scan options related to one command and enrich _opt_cmds.""" sections = self.sections_list(cmd_name) cmd_dict = self._opt_cmds[cmd_name] if cmd_name else self._opt_bare for sct in reversed(sections): section: Section = getattr(self._conf, sct) for fld in fields(section): opt = fld.name if not section.meta_(opt).entry.in_cli: continue if opt not in cmd_dict: cmd_dict[opt] = sct else: warnings.warn( 'Command <{0}>: {1}.{2} shadowed by {3}.{2}'.format( cmd_name, sct, opt, cmd_dict[opt]), error.LoamWarning, stacklevel=4) def _add_options_to_parser(self, opts_dict: Mapping[str, str], parser: ArgumentParser) -> None: """Add options to a parser.""" for opt, sct in opts_dict.items(): section: Section = getattr(self._conf, sct) entry = section.meta_(opt).entry kwargs = copy.deepcopy(entry.cli_kwargs) action = kwargs.get('action') if action is _internal.Switch: kwargs.update(nargs=0) kwargs.update(help=entry.doc) kwargs.setdefault('default', getattr(section, opt)) parser.add_argument(*_names(section, opt), **kwargs) def _build_parser(self) -> ArgumentParser: """Build command line argument parser. Returns: the command line argument parser. """ main_parser = argparse.ArgumentParser(description=self.common.help, prefix_chars='-+') self._add_options_to_parser(self._opt_bare, main_parser) main_parser.set_defaults(**self.common.defaults) if self.bare is not None: main_parser.set_defaults(**self.bare.defaults) subparsers = main_parser.add_subparsers(dest='loam_sub_name') for cmd_name, meta in self.subcmds.items(): kwargs = {'prefix_chars': '+-', 'help': meta.help} dummy_parser = subparsers.add_parser(cmd_name, **kwargs) self._add_options_to_parser(self._opt_cmds[cmd_name], dummy_parser) dummy_parser.set_defaults(**meta.defaults) return main_parser def parse_args(self, arglist: Optional[List[str]] = None) -> Namespace: """Parse arguments and update options accordingly. Args: arglist: list of arguments to parse. If set to None, ``sys.argv[1:]`` is used. Returns: the argument namespace returned by the :class:`argparse.ArgumentParser`. """ args = self._parser.parse_args(args=arglist) sub_cmd = args.loam_sub_name if sub_cmd is None: for opt, sct in self._opt_bare.items(): section: Section = getattr(self._conf, sct) val = getattr(args, opt, None) section.cast_and_set_(opt, val) else: for opt, sct in self._opt_cmds[sub_cmd].items(): section = getattr(self._conf, sct) val = getattr(args, opt, None) section.cast_and_set_(opt, val) return args def _zsh_comp_command(self, zcf: TextIO, cmd: Optional[str], grouping: bool, add_help: bool = True) -> None: """Write zsh _arguments compdef for a given command. Args: zcf: zsh compdef file. cmd: command name, set to None or '' for bare command. grouping: group options (zsh>=5.4). add_help: add an help option. """ if add_help: if grouping: print("+ '(help)'", end=BLK, file=zcf) print("'--help[show help message]'", end=BLK, file=zcf) print("'-h[show help message]'", end=BLK, file=zcf) # could deal with duplicate by iterating in reverse and keep set of # already defined opts. no_comp = ('store_true', 'store_false') cmd_dict = self._opt_cmds[cmd] if cmd else self._opt_bare for opt, sct in cmd_dict.items(): section: Section = getattr(self._conf, sct) entry = section.meta_(opt).entry comprule = entry.cli_zsh_comprule if entry.cli_kwargs.get('action') == 'append': grpfmt, optfmt = "+ '{}'", "'*{}[{}]{}'" if comprule is None: comprule = '' else: grpfmt, optfmt = "+ '({})'", "'{}[{}]{}'" if entry.cli_kwargs.get('action') in no_comp \ or entry.cli_kwargs.get('nargs') == 0: comprule = None if comprule is None: compstr = '' elif comprule == '': optfmt = optfmt.replace('[', '=[') compstr = ': :( )' else: optfmt = optfmt.replace('[', '=[') compstr = f': :{comprule}' if grouping: print(grpfmt.format(opt), end=BLK, file=zcf) for name in _names(section, opt): print(optfmt.format(name, entry.doc.replace("'", "'\"'\"'"), compstr), end=BLK, file=zcf) def zsh_complete(self, path: Union[str, PathLike], cmd: str, *cmds: str, sourceable: bool = False, force_grouping: bool = False) -> None: """Write zsh compdef script. Args: path: desired path of the compdef script. cmd: command name that should be completed. cmds: extra command names that should be completed. sourceable: if True, the generated file will contain an explicit call to ``compdef``, which means it can be sourced to activate CLI completion. force_grouping: if True, assume zsh supports grouping of options. Otherwise, loam will attempt to check whether zsh >= 5.4. """ grouping = force_grouping or _internal.zsh_version() >= (5, 4) path = pathlib.Path(path) firstline = ['#compdef', cmd] firstline.extend(cmds) subcmds = list(self.subcmds.keys()) with path.open('w') as zcf: print(*firstline, end='\n\n', file=zcf) # main function print(f'function _{cmd} {{', file=zcf) print('local line', file=zcf) print('_arguments -C', end=BLK, file=zcf) if subcmds: # list of subcommands and their description substrs = [rf"{sub}\:'{self.subcmds[sub].help}'" for sub in subcmds] print('"1:Commands:(({}))"'.format(' '.join(substrs)), end=BLK, file=zcf) self._zsh_comp_command(zcf, None, grouping) if subcmds: print("'*::arg:->args'", file=zcf) print('case $line[1] in', file=zcf) for sub in subcmds: print(f'{sub}) _{cmd}_{sub} ;;', file=zcf) print('esac', file=zcf) print('}', file=zcf) # all subcommand completion handlers for sub in subcmds: print(f'\nfunction _{cmd}_{sub} {{', file=zcf) print('_arguments', end=BLK, file=zcf) self._zsh_comp_command(zcf, sub, grouping) print('}', file=zcf) if sourceable: print(f'\ncompdef _{cmd} {cmd}', *cmds, file=zcf) def _bash_comp_command(self, cmd: Optional[str], add_help: bool = True) -> List[str]: """Build a list of all options for a given command. Args: cmd: command name, set to None or '' for bare command. add_help: add an help option. Returns: list of CLI options strings. """ out = ['-h', '--help'] if add_help else [] cmd_dict = self._opt_cmds[cmd] if cmd else self._opt_bare for opt, sct in cmd_dict.items(): section: Section = getattr(self._conf, sct) out.extend(_names(section, opt)) return out def bash_complete(self, path: Union[str, PathLike], cmd: str, *cmds: str) -> None: """Write bash complete script. Args: path: desired path of the complete script. cmd: command name that should be completed. cmds: extra command names that should be completed. """ path = pathlib.Path(path) subcmds = list(self.subcmds.keys()) with path.open('w') as bcf: # main function print(f'_{cmd}() {{', file=bcf) print('COMPREPLY=()', file=bcf) print(r'local cur=${COMP_WORDS[COMP_CWORD]}', end='\n\n', file=bcf) optstr = ' '.join(self._bash_comp_command(None)) print(f'local options="{optstr}"', end='\n\n', file=bcf) if subcmds: print('local commands="{}"'.format(' '.join(subcmds)), file=bcf) print('declare -A suboptions', file=bcf) for sub in subcmds: optstr = ' '.join(self._bash_comp_command(sub)) print(f'suboptions[{sub}]="{optstr}"', file=bcf) condstr = 'if' for sub in subcmds: print(condstr, r'[[ "${COMP_LINE}" == *"', sub, '"* ]] ; then', file=bcf) print(r'COMPREPLY=( `compgen -W "${suboptions[', sub, r']}" -- ${cur}` )', sep='', file=bcf) condstr = 'elif' print(condstr, r'[[ ${cur} == -* ]] ; then', file=bcf) print(r'COMPREPLY=( `compgen -W "${options}" -- ${cur}`)', file=bcf) if subcmds: print(r'else', file=bcf) print(r'COMPREPLY=( `compgen -W "${commands}" -- ${cur}`)', file=bcf) print('fi', file=bcf) print('}', end='\n\n', file=bcf) print(f'complete -F _{cmd} {cmd}', *cmds, file=bcf)
en
0.784835
Definition of CLI manager. # cutting line in scripts List of cli strings for a given option. Metadata of sub commands. Attributes: help: short description of the sub command. sections: configuration sections used by the subcommand. defaults: default value of options associated to the subcommand. CLI manager. Args: config_: the :class:`~loam.base.ConfigBase` holding option definitions. common_: special subcommand, used to define the general description of the CLI tool as well as configuration sections used by every subcommand. bare_: special subcommand, use it to define the configuration sections that should be used when you call your CLI tool without any subcommand. subcmds: all the subcommands of your CLI tool. The name of each *subcommand* is the name of the keyword argument passed on to this function. # dict of dict [command][option] = section # same as above but for bare command only [option] = section Subcmd describing sections common to all subcommands. Subcmd used when the CLI tool is invoked without subcommand. Subcommands description. List of config sections used by a command. Args: cmd: command name, set to ``None`` or ``''`` for the bare command. Returns: list of configuration sections used by that command. Scan options related to one command and enrich _opt_cmds. Add options to a parser. Build command line argument parser. Returns: the command line argument parser. Parse arguments and update options accordingly. Args: arglist: list of arguments to parse. If set to None, ``sys.argv[1:]`` is used. Returns: the argument namespace returned by the :class:`argparse.ArgumentParser`. Write zsh _arguments compdef for a given command. Args: zcf: zsh compdef file. cmd: command name, set to None or '' for bare command. grouping: group options (zsh>=5.4). add_help: add an help option. # could deal with duplicate by iterating in reverse and keep set of # already defined opts. Write zsh compdef script. Args: path: desired path of the compdef script. cmd: command name that should be completed. cmds: extra command names that should be completed. sourceable: if True, the generated file will contain an explicit call to ``compdef``, which means it can be sourced to activate CLI completion. force_grouping: if True, assume zsh supports grouping of options. Otherwise, loam will attempt to check whether zsh >= 5.4. # main function # list of subcommands and their description # all subcommand completion handlers Build a list of all options for a given command. Args: cmd: command name, set to None or '' for bare command. add_help: add an help option. Returns: list of CLI options strings. Write bash complete script. Args: path: desired path of the complete script. cmd: command name that should be completed. cmds: extra command names that should be completed. # main function
2.537518
3
tests/app/test_schemas.py
cds-snc/notifier-api
41
6631319
<gh_stars>10-100 import pytest from marshmallow import ValidationError from sqlalchemy import desc from app.dao.provider_details_dao import dao_update_provider_details from app.models import ProviderDetailsHistory from tests.app.db import create_api_key def test_job_schema_doesnt_return_notifications(sample_notification_with_job): from app.schemas import job_schema job = sample_notification_with_job.job assert job.notifications.count() == 1 data, errors = job_schema.dump(job) assert not errors assert "notifications" not in data def test_notification_schema_ignores_absent_api_key(sample_notification_with_job): from app.schemas import notification_with_template_schema data = notification_with_template_schema.dump(sample_notification_with_job).data assert data["key_name"] is None def test_notification_schema_adds_api_key_name(sample_notification): from app.schemas import notification_with_template_schema api_key = create_api_key(sample_notification.service, key_name="Test key") sample_notification.api_key = api_key data = notification_with_template_schema.dump(sample_notification).data assert data["key_name"] == "Test key" @pytest.mark.parametrize( "schema_name", [ "notification_with_template_schema", "notification_schema", "notification_with_template_schema", "notification_with_personalisation_schema", ], ) def test_notification_schema_has_correct_status(sample_notification, schema_name): from app import schemas data = getattr(schemas, schema_name).dump(sample_notification).data assert data["status"] == sample_notification.status @pytest.mark.parametrize( "user_attribute, user_value", [ ("name", "New User"), ("email_address", "<EMAIL>"), ("mobile_number", "+16502532222"), ("blocked", False), ], ) def test_user_update_schema_accepts_valid_attribute_pairs(user_attribute, user_value): update_dict = {user_attribute: user_value} from app.schemas import user_update_schema_load_json data, errors = user_update_schema_load_json.load(update_dict) assert not errors @pytest.mark.parametrize( "user_attribute, user_value", [ ("name", None), ("name", ""), ("email_address", "<EMAIL>"), ("mobile_number", "+44077009"), ], ) def test_user_update_schema_rejects_invalid_attribute_pairs(user_attribute, user_value): from app.schemas import user_update_schema_load_json update_dict = {user_attribute: user_value} with pytest.raises(ValidationError): data, errors = user_update_schema_load_json.load(update_dict) @pytest.mark.parametrize( "user_attribute", [ "id", "updated_at", "created_at", "user_to_service", "_password", "verify_codes", "logged_in_at", "password_changed_at", "failed_login_count", "state", "platform_admin", ], ) def test_user_update_schema_rejects_disallowed_attribute_keys(user_attribute): update_dict = {user_attribute: "not important"} from app.schemas import user_update_schema_load_json with pytest.raises(ValidationError) as excinfo: data, errors = user_update_schema_load_json.load(update_dict) assert excinfo.value.messages["_schema"][0] == "Unknown field name {}".format(user_attribute) def test_provider_details_schema_returns_user_details(mocker, sample_user, current_sms_provider): from app.schemas import provider_details_schema mocker.patch("app.provider_details.switch_providers.get_user_by_id", return_value=sample_user) current_sms_provider.created_by = sample_user data = provider_details_schema.dump(current_sms_provider).data assert sorted(data["created_by"].keys()) == sorted(["id", "email_address", "name"]) def test_provider_details_history_schema_returns_user_details( mocker, sample_user, restore_provider_details, current_sms_provider ): from app.schemas import provider_details_schema mocker.patch("app.provider_details.switch_providers.get_user_by_id", return_value=sample_user) current_sms_provider.created_by_id = sample_user.id data = provider_details_schema.dump(current_sms_provider).data dao_update_provider_details(current_sms_provider) current_sms_provider_in_history = ( ProviderDetailsHistory.query.filter(ProviderDetailsHistory.id == current_sms_provider.id) .order_by(desc(ProviderDetailsHistory.version)) .first() ) data = provider_details_schema.dump(current_sms_provider_in_history).data assert sorted(data["created_by"].keys()) == sorted(["id", "email_address", "name"])
import pytest from marshmallow import ValidationError from sqlalchemy import desc from app.dao.provider_details_dao import dao_update_provider_details from app.models import ProviderDetailsHistory from tests.app.db import create_api_key def test_job_schema_doesnt_return_notifications(sample_notification_with_job): from app.schemas import job_schema job = sample_notification_with_job.job assert job.notifications.count() == 1 data, errors = job_schema.dump(job) assert not errors assert "notifications" not in data def test_notification_schema_ignores_absent_api_key(sample_notification_with_job): from app.schemas import notification_with_template_schema data = notification_with_template_schema.dump(sample_notification_with_job).data assert data["key_name"] is None def test_notification_schema_adds_api_key_name(sample_notification): from app.schemas import notification_with_template_schema api_key = create_api_key(sample_notification.service, key_name="Test key") sample_notification.api_key = api_key data = notification_with_template_schema.dump(sample_notification).data assert data["key_name"] == "Test key" @pytest.mark.parametrize( "schema_name", [ "notification_with_template_schema", "notification_schema", "notification_with_template_schema", "notification_with_personalisation_schema", ], ) def test_notification_schema_has_correct_status(sample_notification, schema_name): from app import schemas data = getattr(schemas, schema_name).dump(sample_notification).data assert data["status"] == sample_notification.status @pytest.mark.parametrize( "user_attribute, user_value", [ ("name", "New User"), ("email_address", "<EMAIL>"), ("mobile_number", "+16502532222"), ("blocked", False), ], ) def test_user_update_schema_accepts_valid_attribute_pairs(user_attribute, user_value): update_dict = {user_attribute: user_value} from app.schemas import user_update_schema_load_json data, errors = user_update_schema_load_json.load(update_dict) assert not errors @pytest.mark.parametrize( "user_attribute, user_value", [ ("name", None), ("name", ""), ("email_address", "<EMAIL>"), ("mobile_number", "+44077009"), ], ) def test_user_update_schema_rejects_invalid_attribute_pairs(user_attribute, user_value): from app.schemas import user_update_schema_load_json update_dict = {user_attribute: user_value} with pytest.raises(ValidationError): data, errors = user_update_schema_load_json.load(update_dict) @pytest.mark.parametrize( "user_attribute", [ "id", "updated_at", "created_at", "user_to_service", "_password", "verify_codes", "logged_in_at", "password_changed_at", "failed_login_count", "state", "platform_admin", ], ) def test_user_update_schema_rejects_disallowed_attribute_keys(user_attribute): update_dict = {user_attribute: "not important"} from app.schemas import user_update_schema_load_json with pytest.raises(ValidationError) as excinfo: data, errors = user_update_schema_load_json.load(update_dict) assert excinfo.value.messages["_schema"][0] == "Unknown field name {}".format(user_attribute) def test_provider_details_schema_returns_user_details(mocker, sample_user, current_sms_provider): from app.schemas import provider_details_schema mocker.patch("app.provider_details.switch_providers.get_user_by_id", return_value=sample_user) current_sms_provider.created_by = sample_user data = provider_details_schema.dump(current_sms_provider).data assert sorted(data["created_by"].keys()) == sorted(["id", "email_address", "name"]) def test_provider_details_history_schema_returns_user_details( mocker, sample_user, restore_provider_details, current_sms_provider ): from app.schemas import provider_details_schema mocker.patch("app.provider_details.switch_providers.get_user_by_id", return_value=sample_user) current_sms_provider.created_by_id = sample_user.id data = provider_details_schema.dump(current_sms_provider).data dao_update_provider_details(current_sms_provider) current_sms_provider_in_history = ( ProviderDetailsHistory.query.filter(ProviderDetailsHistory.id == current_sms_provider.id) .order_by(desc(ProviderDetailsHistory.version)) .first() ) data = provider_details_schema.dump(current_sms_provider_in_history).data assert sorted(data["created_by"].keys()) == sorted(["id", "email_address", "name"])
none
1
2.079191
2
chat/tests_apps.py
helmetwearer/dating-app
0
6631320
<filename>chat/tests_apps.py from django.apps import apps from django.test import TestCase from .apps import ChatConfig class test_chatconfig(TestCase): def test_app(self): self.assertEqual("chat", ChatConfig.name) self.assertEqual("chat", apps.get_app_config("chat").name)
<filename>chat/tests_apps.py from django.apps import apps from django.test import TestCase from .apps import ChatConfig class test_chatconfig(TestCase): def test_app(self): self.assertEqual("chat", ChatConfig.name) self.assertEqual("chat", apps.get_app_config("chat").name)
none
1
2.162179
2
server.py
Ailol/Simple-FTP-server
1
6631321
<filename>server.py<gh_stars>1-10 import argparse import os from network.sftp import Sftp class Server(object): """ Simple server implementation SFTP holds all the magic Starts the server up by arguments given by the user. """ def __init__(self, *args): try: self.sftp = Sftp(args[0], args[1]) except BaseException: raise ValueError('hepp') def connect(self): self.sftp.setup_connection() def list_content(self): for file in os.listdir("./server_disk"): print(file) if __name__ == '__main__': parser = argparse.ArgumentParser( description='A simple way to transfer encrypted files') parser.add_argument( 'host', type=str, help='Enter host (example: localhost)', default='localhost') parser.add_argument( 'port', type=int, help='Enter port(8000->)', default=8080) args = parser.parse_args() srv = Server(args.host, args.port) srv.connect()
<filename>server.py<gh_stars>1-10 import argparse import os from network.sftp import Sftp class Server(object): """ Simple server implementation SFTP holds all the magic Starts the server up by arguments given by the user. """ def __init__(self, *args): try: self.sftp = Sftp(args[0], args[1]) except BaseException: raise ValueError('hepp') def connect(self): self.sftp.setup_connection() def list_content(self): for file in os.listdir("./server_disk"): print(file) if __name__ == '__main__': parser = argparse.ArgumentParser( description='A simple way to transfer encrypted files') parser.add_argument( 'host', type=str, help='Enter host (example: localhost)', default='localhost') parser.add_argument( 'port', type=int, help='Enter port(8000->)', default=8080) args = parser.parse_args() srv = Server(args.host, args.port) srv.connect()
en
0.657727
Simple server implementation SFTP holds all the magic Starts the server up by arguments given by the user.
3.479287
3
Face_Enhancement/models/networks/__init__.py
abdullahselek/Bringing-Old-Photos-Back-to-Life
1
6631322
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch from models.networks.base_network import BaseNetwork from models.networks.generator import * from models.networks.encoder import * import util.util as util def find_network_using_name(target_network_name, filename): target_class_name = target_network_name + filename module_name = "models.networks." + filename network = util.find_class_in_module(target_class_name, module_name) assert issubclass(network, BaseNetwork), ( "Class %s should be a subclass of BaseNetwork" % network ) return network def modify_commandline_options(parser, is_train): opt, _ = parser.parse_known_args() netG_cls = find_network_using_name(opt.netG, "generator") parser = netG_cls.modify_commandline_options(parser, is_train) if is_train: netD_cls = find_network_using_name(opt.netD, "discriminator") parser = netD_cls.modify_commandline_options(parser, is_train) netE_cls = find_network_using_name("conv", "encoder") parser = netE_cls.modify_commandline_options(parser, is_train) return parser def create_network(cls, opt): net = cls(opt) net.print_network() if len(opt.gpu_ids) > 0: assert torch.cuda.is_available() net.cuda() net.init_weights(opt.init_type, opt.init_variance) return net def define_G(opt): netG_cls = find_network_using_name(opt.netG, "generator") return create_network(netG_cls, opt) def define_D(opt): netD_cls = find_network_using_name(opt.netD, "discriminator") return create_network(netD_cls, opt) def define_E(opt): # there exists only one encoder type netE_cls = find_network_using_name("conv", "encoder") return create_network(netE_cls, opt)
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch from models.networks.base_network import BaseNetwork from models.networks.generator import * from models.networks.encoder import * import util.util as util def find_network_using_name(target_network_name, filename): target_class_name = target_network_name + filename module_name = "models.networks." + filename network = util.find_class_in_module(target_class_name, module_name) assert issubclass(network, BaseNetwork), ( "Class %s should be a subclass of BaseNetwork" % network ) return network def modify_commandline_options(parser, is_train): opt, _ = parser.parse_known_args() netG_cls = find_network_using_name(opt.netG, "generator") parser = netG_cls.modify_commandline_options(parser, is_train) if is_train: netD_cls = find_network_using_name(opt.netD, "discriminator") parser = netD_cls.modify_commandline_options(parser, is_train) netE_cls = find_network_using_name("conv", "encoder") parser = netE_cls.modify_commandline_options(parser, is_train) return parser def create_network(cls, opt): net = cls(opt) net.print_network() if len(opt.gpu_ids) > 0: assert torch.cuda.is_available() net.cuda() net.init_weights(opt.init_type, opt.init_variance) return net def define_G(opt): netG_cls = find_network_using_name(opt.netG, "generator") return create_network(netG_cls, opt) def define_D(opt): netD_cls = find_network_using_name(opt.netD, "discriminator") return create_network(netD_cls, opt) def define_E(opt): # there exists only one encoder type netE_cls = find_network_using_name("conv", "encoder") return create_network(netE_cls, opt)
en
0.764855
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # there exists only one encoder type
2.156622
2
contrib/cli_scripts/pe_console_group_to_nm.py
coxmediagroup/nodemeister
0
6631323
#!/usr/bin/env python """ Script to migrate a group, along with its classes and parameters (but not nodes, parents, or child groups) from Puppet Enterprise Console (or Dashboard?) to NodeMeister. Since Console/Dashboard doesn't have a real API, this directly accesses the MySQL database. """ import MySQLdb import MySQLdb.cursors # I don't like positional refs in DB cursors import optparse import sys import requests import json VERBOSE = False NOOP = False def get_group_from_dashboard(cur, groupname): sql = "SELECT * FROM node_groups WHERE name='%s'" % groupname cur.execute(sql) result = cur.fetchone() group_id = result['id'] ret = {'params': {}, 'classes': []} sql = "SELECT `key`,`value` FROM parameters WHERE parameterable_type = 'NodeGroup' AND parameterable_id=%d" % group_id cur.execute(sql) result = cur.fetchall() for row in result: ret['params'][row['key']] = row['value'] sql = "SELECT nc.name FROM node_group_class_memberships AS ng LEFT JOIN node_classes AS nc ON nc.id=ng.node_class_id WHERE node_group_id=%d" % group_id cur.execute(sql) result = cur.fetchall() for row in result: ret['classes'].append(row['name']) return ret def get_nm_group_id(nm_host, name): r = requests.get("http://%s/enc/groups/" % nm_host) j = r.json() for n in j: if n['name'] == name: return n['id'] return False def add_group(base_url, name, description): """ adds a group to NodeMeister, retrns the ID of the added group or False on failure """ payload = {'name': name, 'description': description} headers = {'content-type': 'application/json'} r = requests.post("%senc/groups/" % base_url, data=json.dumps(payload), headers=headers) if r.status_code == 201: return get_group_id(base_url, name) return False def add_param_to_group(base_url, gid, pname, pval): """ adds a param to a group in NodeMeister, returns True on success or False on failure """ if pval.strip() == "" or pval == "" or pval == "''": pval = None payload = {'group': gid, 'paramkey': pname, 'paramvalue': pval} headers = {'content-type': 'application/json'} r = requests.post("%senc/parameters/groups/" % base_url, data=json.dumps(payload), headers=headers) if r.status_code == 201: return True return False def add_class_to_group(base_url, gid, classname, classparams=None): """ adds a class to a group in NodeMeister, returns True on success or False on failure """ payload = {'group': gid, 'classname': classname, 'classparams': classparams} headers = {'content-type': 'application/json'} r = requests.post("%senc/classes/groups/" % base_url, data=json.dumps(payload), headers=headers) if r.status_code == 201: return True return False def create_nodemeister_group(base_url, group, dash_group): """ Creates a group in nodemeister """ gid = get_group_id(base_url, group) if gid is not False: print("ERROR: group %s already exists in NodeMeister with id %d." % (group, gid)) return False # ok, try adding the group gid = add_group(base_url, group, "imported by pe_console_group_to_nm.py") if gid is False: print("ERROR adding group in Nodemeister.") return False else: print("Group added to NodeMeister with id %d" % gid) ok = True # add the params for p in dash_group['params']: res = add_param_to_group(base_url, gid, p, dash_group['params'][p]) if not res: print("ERROR adding param %s with value '%s' to group %d" % (p, dash_group['params'][p], gid)) ok = False if VERBOSE: print("\tadded param %s with value '%s' to group %d" % (p, dash_group['params'][p], gid)) for c in dash_group['classes']: res = add_class_to_group(base_url, gid, c) if not res: print("ERROR adding class %s to group %d" % (c, gid)) ok = False if VERBOSE: print("\tadded class %s to group %d" % (c, gid)) if ok is False: return False return gid def main(): p = optparse.OptionParser() p.add_option('-g', '--group', dest='group', help='group name to get from dashboard') p.add_option('-v', '--verbose', dest='verbose', default=False, action='store_true', help='verbose output') p.add_option('-t', '--noop', dest='noop', default=False, action='store_true', help='just print what would be done, do not update NodeMeister') p.add_option('-n', '--nodemeister', dest='nodemeister', action='store', type='string', help='nodemeister base URL in form http://host/') options, args = p.parse_args() VERBOSE = options.verbose NOOP = options.noop if not options.group: print("ERROR: you must specify a group to get with -g|--group") sys.exit(1) if not options.nodemeister: print("ERROR: You must specify NodeMeister Base URL with -n|--nodemeister") sys.exit(1) conn = MySQLdb.connect (host = "127.0.0.1", user = "puppetenterprise", passwd = "<PASSWORD>", db = "puppetenterprise", cursorclass=MySQLdb.cursors.DictCursor) cur = conn.cursor() dash_group = get_group_from_dashboard(cur, options.group) print("Classes:") for c in dash_group['classes']: print(" - %s" % c) print("\nParameters:") for p in dash_group['params']: print(" - %s : '%s'" % (p, dash_group['params'][p])) if not options.noop: res = create_nodemeister_group(options.nodemeister, options.group, dash_group) if res is False: print("Error.") sys.exit(1) else: print("Ok, group created with ID %d" % res) else: print("NOOP - doing nothing.") return 0 if __name__ == "__main__": main()
#!/usr/bin/env python """ Script to migrate a group, along with its classes and parameters (but not nodes, parents, or child groups) from Puppet Enterprise Console (or Dashboard?) to NodeMeister. Since Console/Dashboard doesn't have a real API, this directly accesses the MySQL database. """ import MySQLdb import MySQLdb.cursors # I don't like positional refs in DB cursors import optparse import sys import requests import json VERBOSE = False NOOP = False def get_group_from_dashboard(cur, groupname): sql = "SELECT * FROM node_groups WHERE name='%s'" % groupname cur.execute(sql) result = cur.fetchone() group_id = result['id'] ret = {'params': {}, 'classes': []} sql = "SELECT `key`,`value` FROM parameters WHERE parameterable_type = 'NodeGroup' AND parameterable_id=%d" % group_id cur.execute(sql) result = cur.fetchall() for row in result: ret['params'][row['key']] = row['value'] sql = "SELECT nc.name FROM node_group_class_memberships AS ng LEFT JOIN node_classes AS nc ON nc.id=ng.node_class_id WHERE node_group_id=%d" % group_id cur.execute(sql) result = cur.fetchall() for row in result: ret['classes'].append(row['name']) return ret def get_nm_group_id(nm_host, name): r = requests.get("http://%s/enc/groups/" % nm_host) j = r.json() for n in j: if n['name'] == name: return n['id'] return False def add_group(base_url, name, description): """ adds a group to NodeMeister, retrns the ID of the added group or False on failure """ payload = {'name': name, 'description': description} headers = {'content-type': 'application/json'} r = requests.post("%senc/groups/" % base_url, data=json.dumps(payload), headers=headers) if r.status_code == 201: return get_group_id(base_url, name) return False def add_param_to_group(base_url, gid, pname, pval): """ adds a param to a group in NodeMeister, returns True on success or False on failure """ if pval.strip() == "" or pval == "" or pval == "''": pval = None payload = {'group': gid, 'paramkey': pname, 'paramvalue': pval} headers = {'content-type': 'application/json'} r = requests.post("%senc/parameters/groups/" % base_url, data=json.dumps(payload), headers=headers) if r.status_code == 201: return True return False def add_class_to_group(base_url, gid, classname, classparams=None): """ adds a class to a group in NodeMeister, returns True on success or False on failure """ payload = {'group': gid, 'classname': classname, 'classparams': classparams} headers = {'content-type': 'application/json'} r = requests.post("%senc/classes/groups/" % base_url, data=json.dumps(payload), headers=headers) if r.status_code == 201: return True return False def create_nodemeister_group(base_url, group, dash_group): """ Creates a group in nodemeister """ gid = get_group_id(base_url, group) if gid is not False: print("ERROR: group %s already exists in NodeMeister with id %d." % (group, gid)) return False # ok, try adding the group gid = add_group(base_url, group, "imported by pe_console_group_to_nm.py") if gid is False: print("ERROR adding group in Nodemeister.") return False else: print("Group added to NodeMeister with id %d" % gid) ok = True # add the params for p in dash_group['params']: res = add_param_to_group(base_url, gid, p, dash_group['params'][p]) if not res: print("ERROR adding param %s with value '%s' to group %d" % (p, dash_group['params'][p], gid)) ok = False if VERBOSE: print("\tadded param %s with value '%s' to group %d" % (p, dash_group['params'][p], gid)) for c in dash_group['classes']: res = add_class_to_group(base_url, gid, c) if not res: print("ERROR adding class %s to group %d" % (c, gid)) ok = False if VERBOSE: print("\tadded class %s to group %d" % (c, gid)) if ok is False: return False return gid def main(): p = optparse.OptionParser() p.add_option('-g', '--group', dest='group', help='group name to get from dashboard') p.add_option('-v', '--verbose', dest='verbose', default=False, action='store_true', help='verbose output') p.add_option('-t', '--noop', dest='noop', default=False, action='store_true', help='just print what would be done, do not update NodeMeister') p.add_option('-n', '--nodemeister', dest='nodemeister', action='store', type='string', help='nodemeister base URL in form http://host/') options, args = p.parse_args() VERBOSE = options.verbose NOOP = options.noop if not options.group: print("ERROR: you must specify a group to get with -g|--group") sys.exit(1) if not options.nodemeister: print("ERROR: You must specify NodeMeister Base URL with -n|--nodemeister") sys.exit(1) conn = MySQLdb.connect (host = "127.0.0.1", user = "puppetenterprise", passwd = "<PASSWORD>", db = "puppetenterprise", cursorclass=MySQLdb.cursors.DictCursor) cur = conn.cursor() dash_group = get_group_from_dashboard(cur, options.group) print("Classes:") for c in dash_group['classes']: print(" - %s" % c) print("\nParameters:") for p in dash_group['params']: print(" - %s : '%s'" % (p, dash_group['params'][p])) if not options.noop: res = create_nodemeister_group(options.nodemeister, options.group, dash_group) if res is False: print("Error.") sys.exit(1) else: print("Ok, group created with ID %d" % res) else: print("NOOP - doing nothing.") return 0 if __name__ == "__main__": main()
en
0.741592
#!/usr/bin/env python Script to migrate a group, along with its classes and parameters (but not nodes, parents, or child groups) from Puppet Enterprise Console (or Dashboard?) to NodeMeister. Since Console/Dashboard doesn't have a real API, this directly accesses the MySQL database. # I don't like positional refs in DB cursors adds a group to NodeMeister, retrns the ID of the added group or False on failure adds a param to a group in NodeMeister, returns True on success or False on failure adds a class to a group in NodeMeister, returns True on success or False on failure Creates a group in nodemeister # ok, try adding the group # add the params
2.700965
3
rmgpy/rmg/inputTest.py
speth/RMG-Py
1
6631324
<reponame>speth/RMG-Py<filename>rmgpy/rmg/inputTest.py #!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # # # RMG - Reaction Mechanism Generator # # # # Copyright (c) 2002-2018 Prof. <NAME> (<EMAIL>), # # Prof. <NAME> (<EMAIL>) and the RMG Team (<EMAIL>) # # # # Permission is hereby granted, free of charge, to any person obtaining a # # copy of this software and associated documentation files (the 'Software'), # # to deal in the Software without restriction, including without limitation # # the rights to use, copy, modify, merge, publish, distribute, sublicense, # # and/or sell copies of the Software, and to permit persons to whom the # # Software is furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in # # all copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # # DEALINGS IN THE SOFTWARE. # # # ############################################################################### import unittest from rmgpy.rmg.main import RMG from rmgpy.rmg import input as inp ################################################### def setUpModule(self): """ A method that is run before the class. """ # set-up RMG object and get global rmg object in input.py file # so methods can be tested global rmg rmg = RMG() inp.setGlobalRMG(rmg) def tearDownModule(self): # remove RMG object global rmg rmg = None class TestInputDatabase(unittest.TestCase): """ Contains unit tests rmgpy.rmg.input.database """ def tearDown(self): # remove the reactionLibraries value global rmg rmg.reactionLibraries = None def testImportingDatabaseReactionLibrariesFromString(self): """ Test that we can import Reaction Libraries using the non-tuple form. """ global rmg # add database properties to RMG inp.database(reactionLibraries=['test']) self.assertIsInstance(rmg.reactionLibraries[0], tuple) self.assertFalse(rmg.reactionLibraries[0][1]) def testImportingDatabaseReactionLibrariesFromFalseTuple(self): """ Test that we can import Reaction Libraries using the Tuple False form. """ global rmg # add database properties to RMG inp.database(reactionLibraries=[('test',False)]) self.assertIsInstance(rmg.reactionLibraries[0], tuple) self.assertFalse(rmg.reactionLibraries[0][1]) def testImportingDatabaseReactionLibrariesFromTrueTuple(self): """ Test that we can import Reaction Libraries using the Tuple True form. """ global rmg # add database properties to RMG inp.database(reactionLibraries=[('test',True)]) self.assertIsInstance(rmg.reactionLibraries[0], tuple) self.assertTrue(rmg.reactionLibraries[0][1]) class TestInputMLEstimator(unittest.TestCase): """ Contains unit tests rmgpy.rmg.input.mlEstimator """ def tearDown(self): # remove the reactionLibraries value global rmg rmg.ml_estimator = None def testMLEstimator(self): """ Test that we can input. """ from rmgpy.ml.estimator import MLEstimator global rmg # add database properties to RMG inp.mlEstimator(thermo=True) self.assertIsInstance(rmg.ml_estimator, MLEstimator) self.assertIsInstance(rmg.ml_settings, dict) class TestInputThemoCentralDatabase(unittest.TestCase): """ Contains unit tests rmgpy.rmg.input.thermoCentralDatabase """ def tearDown(self): # remove the reactionLibraries value global rmg rmg.thermoCentralDatabase = None def testThemoCentralDatabase(self): """ Test that we can input. """ global rmg # add database properties to RMG inp.thermoCentralDatabase( host='some_host', port=0, username='some_usr', password='<PASSWORD>', application='some_app' ) self.assertEqual(rmg.thermoCentralDatabase.host, 'some_host') self.assertEqual(rmg.thermoCentralDatabase.port, 0) self.assertEqual(rmg.thermoCentralDatabase.username, 'some_usr') self.assertEqual(rmg.thermoCentralDatabase.password, '<PASSWORD>') self.assertEqual(rmg.thermoCentralDatabase.application, 'some_app') self.assertEqual(rmg.thermoCentralDatabase.client, None) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # # # RMG - Reaction Mechanism Generator # # # # Copyright (c) 2002-2018 Prof. <NAME> (<EMAIL>), # # Prof. <NAME> (<EMAIL>) and the RMG Team (<EMAIL>) # # # # Permission is hereby granted, free of charge, to any person obtaining a # # copy of this software and associated documentation files (the 'Software'), # # to deal in the Software without restriction, including without limitation # # the rights to use, copy, modify, merge, publish, distribute, sublicense, # # and/or sell copies of the Software, and to permit persons to whom the # # Software is furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in # # all copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # # DEALINGS IN THE SOFTWARE. # # # ############################################################################### import unittest from rmgpy.rmg.main import RMG from rmgpy.rmg import input as inp ################################################### def setUpModule(self): """ A method that is run before the class. """ # set-up RMG object and get global rmg object in input.py file # so methods can be tested global rmg rmg = RMG() inp.setGlobalRMG(rmg) def tearDownModule(self): # remove RMG object global rmg rmg = None class TestInputDatabase(unittest.TestCase): """ Contains unit tests rmgpy.rmg.input.database """ def tearDown(self): # remove the reactionLibraries value global rmg rmg.reactionLibraries = None def testImportingDatabaseReactionLibrariesFromString(self): """ Test that we can import Reaction Libraries using the non-tuple form. """ global rmg # add database properties to RMG inp.database(reactionLibraries=['test']) self.assertIsInstance(rmg.reactionLibraries[0], tuple) self.assertFalse(rmg.reactionLibraries[0][1]) def testImportingDatabaseReactionLibrariesFromFalseTuple(self): """ Test that we can import Reaction Libraries using the Tuple False form. """ global rmg # add database properties to RMG inp.database(reactionLibraries=[('test',False)]) self.assertIsInstance(rmg.reactionLibraries[0], tuple) self.assertFalse(rmg.reactionLibraries[0][1]) def testImportingDatabaseReactionLibrariesFromTrueTuple(self): """ Test that we can import Reaction Libraries using the Tuple True form. """ global rmg # add database properties to RMG inp.database(reactionLibraries=[('test',True)]) self.assertIsInstance(rmg.reactionLibraries[0], tuple) self.assertTrue(rmg.reactionLibraries[0][1]) class TestInputMLEstimator(unittest.TestCase): """ Contains unit tests rmgpy.rmg.input.mlEstimator """ def tearDown(self): # remove the reactionLibraries value global rmg rmg.ml_estimator = None def testMLEstimator(self): """ Test that we can input. """ from rmgpy.ml.estimator import MLEstimator global rmg # add database properties to RMG inp.mlEstimator(thermo=True) self.assertIsInstance(rmg.ml_estimator, MLEstimator) self.assertIsInstance(rmg.ml_settings, dict) class TestInputThemoCentralDatabase(unittest.TestCase): """ Contains unit tests rmgpy.rmg.input.thermoCentralDatabase """ def tearDown(self): # remove the reactionLibraries value global rmg rmg.thermoCentralDatabase = None def testThemoCentralDatabase(self): """ Test that we can input. """ global rmg # add database properties to RMG inp.thermoCentralDatabase( host='some_host', port=0, username='some_usr', password='<PASSWORD>', application='some_app' ) self.assertEqual(rmg.thermoCentralDatabase.host, 'some_host') self.assertEqual(rmg.thermoCentralDatabase.port, 0) self.assertEqual(rmg.thermoCentralDatabase.username, 'some_usr') self.assertEqual(rmg.thermoCentralDatabase.password, '<PASSWORD>') self.assertEqual(rmg.thermoCentralDatabase.application, 'some_app') self.assertEqual(rmg.thermoCentralDatabase.client, None) if __name__ == '__main__': unittest.main()
en
0.586151
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # # # RMG - Reaction Mechanism Generator # # # # Copyright (c) 2002-2018 Prof. <NAME> (<EMAIL>), # # Prof. <NAME> (<EMAIL>) and the RMG Team (<EMAIL>) # # # # Permission is hereby granted, free of charge, to any person obtaining a # # copy of this software and associated documentation files (the 'Software'), # # to deal in the Software without restriction, including without limitation # # the rights to use, copy, modify, merge, publish, distribute, sublicense, # # and/or sell copies of the Software, and to permit persons to whom the # # Software is furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in # # all copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # # DEALINGS IN THE SOFTWARE. # # # ############################################################################### ################################################### A method that is run before the class. # set-up RMG object and get global rmg object in input.py file # so methods can be tested # remove RMG object Contains unit tests rmgpy.rmg.input.database # remove the reactionLibraries value Test that we can import Reaction Libraries using the non-tuple form. # add database properties to RMG Test that we can import Reaction Libraries using the Tuple False form. # add database properties to RMG Test that we can import Reaction Libraries using the Tuple True form. # add database properties to RMG Contains unit tests rmgpy.rmg.input.mlEstimator # remove the reactionLibraries value Test that we can input. # add database properties to RMG Contains unit tests rmgpy.rmg.input.thermoCentralDatabase # remove the reactionLibraries value Test that we can input. # add database properties to RMG
1.675696
2
plib/leds.py
slowrunner/GoPiLgc
0
6631325
#!/usr/bin/python3 # File: leds.py # # Methods: # leds.all_on(egpg) turn two red blinker leds on and two "eyes" on bright white # leds.all_off(egpg) turn two red blinker leds off and two "eyes" off # wifi_blinker_on(egpg,color=RED) make wifi led blink on/off,on/off... # pass colors as leds.YELLOW or leds.GREEN ... # wifi_blinker_off(egpg) turn wifi blinker off # # Usage: # import leds # egpg=easygopigo3.EasyGoPiGo3() # leds.all_on(egpg) # leds.all_off(egpg) # leds.wifi_blinker_on(egpg,color=leds.ORANGE) # leds.wifi_blinker_off(egpg) # # or from command line: # > ./leds.py performs test on/off # > ./leds.py -s on turns leds on # > ./leds.py -s off turns leds off # > ./leds.py -c 5 turn all leds green import easygopigo3 import sys sys.path.insert(1,"/home/pi/GoPiLgc/plib") # import myconfig from time import sleep import argparse import threading WHITE_BRIGHT = (255, 255, 255) # color 0 RED = (255, 0, 0) # color 1 ORANGE = (255, 125, 0) # color 2 YELLOW = (255, 255, 0) # color 3 YELLOW_GREEN = (125, 255, 0) # color 4 GREEN = (0, 255, 0) # color 5 TURQUOISE = (0, 255, 125) # color 6 CYAN = (0, 255, 255) # color 7 light blue CYAN_BLUE = (0, 125, 255) # color 8 BLUE = (0, 0, 255) # color 9 VIOLET = (125, 0, 255) # color 10 MAGENTA = (255, 0, 255) # color 11 MAGENTA_RED = (255, 0, 125) # color 12 COLOR_LIST = [WHITE_BRIGHT, RED, ORANGE, YELLOW, YELLOW_GREEN, GREEN, TURQUOISE, CYAN, CYAN_BLUE, BLUE, VIOLET, MAGENTA, MAGENTA_RED] def all_on(egpg=None): egpg.blinker_on("left") egpg.blinker_on("right") egpg.led_on("left") egpg.led_on("right") egpg.set_eye_color(WHITE_BRIGHT) egpg.open_eyes() # can set wifi led to white, only if utils/wifi_led_off.sh has been run egpg.set_led(egpg.LED_WIFI,255,255,255) def all_off(egpg=None): egpg.blinker_off("left") egpg.blinker_off("right") egpg.led_off("left") egpg.led_off("right") egpg.close_eyes() # can turn wifi led off, only if utils/wifi_led_off.sh has been run egpg.set_led(egpg.LED_WIFI,0,0,0) def all_color(egpg=None, colornum=5): if colornum < len(COLOR_LIST): egpg.set_led(egpg.LED_WIFI,COLOR_LIST[colornum][0], COLOR_LIST[colornum][1], COLOR_LIST[colornum][2]) egpg.set_eye_color(COLOR_LIST[ colornum ]) egpg.open_eyes() else: print("ERROR: all_color({}) larger than {}".format(colornum,len(COLOR_LIST))) def do_wifi_blinking(egpg,color=RED): global wifi_blinker_thread_quit try: r,g,b = color while wifi_blinker_thread_quit is not True: egpg.set_led(egpg.LED_WIFI,r,g,b) sleep(1) egpg.set_led(egpg.LED_WIFI,0,0,0) sleep(1) except Exception as e: print("do_wifi_blinking: Exception {}".format(str(e))) raise e # print("do_wifi_blinking() exiting") wifi_blinker_thread_quit = False wifi_blinker_thread = None wifi_blinker_thread_quit = False def wifi_blinker_on(egpg,color=RED): global wifi_blinker_thread,wifi_blinker_thread_quit if wifi_blinker_thread: pass else: # need to start thread wifi_blinker_thread_quit = False wifi_blinker_thread = threading.Thread(target=do_wifi_blinking, args=(egpg,color,), daemon=True) wifi_blinker_thread.start() def wifi_blinker_off(egpg): global wifi_blinker_thread,wifi_blinker_thread_quit if wifi_blinker_thread: wifi_blinker_thread_quit = True # tell thread to quit # wifi_blinker_thread.join() # wait for thread to quit timer = 0 while wifi_blinker_thread_quit and (timer < 5): sleep(1) timer+=1 wifi_blinker_thread_quit = False wifi_blinker_thread = None else: pass def main(): ap = argparse.ArgumentParser() ap.add_argument("-s", "--set", action="store", default=None, help="set all leds 'on' or 'off'") ap.add_argument("-c", "--colornum", type=int, action="store", default=None, help="set all leds to color ") args = vars(ap.parse_args()) egpg = easygopigo3.EasyGoPiGo3(use_mutex=True) # myconfig.setParameters(egpg) set = args["set"] colornumber = args['colornum'] if set==None: if colornumber == None: print("leds.py: Test all_on()") all_on(egpg) sleep(5) print("leds.py: Test all_off()") all_off(egpg) sleep(5) print("leds.py: Test all_color() (green)") all_color(egpg) sleep(5) else: all_color(egpg,colornumber) elif set=='on': all_on(egpg) else: all_off(egpg) print("Test Wifi Blinker") wifi_blinker_on(egpg,color=RED) sleep(10) wifi_blinker_off(egpg) all_off(egpg) if (__name__ == '__main__'): main()
#!/usr/bin/python3 # File: leds.py # # Methods: # leds.all_on(egpg) turn two red blinker leds on and two "eyes" on bright white # leds.all_off(egpg) turn two red blinker leds off and two "eyes" off # wifi_blinker_on(egpg,color=RED) make wifi led blink on/off,on/off... # pass colors as leds.YELLOW or leds.GREEN ... # wifi_blinker_off(egpg) turn wifi blinker off # # Usage: # import leds # egpg=easygopigo3.EasyGoPiGo3() # leds.all_on(egpg) # leds.all_off(egpg) # leds.wifi_blinker_on(egpg,color=leds.ORANGE) # leds.wifi_blinker_off(egpg) # # or from command line: # > ./leds.py performs test on/off # > ./leds.py -s on turns leds on # > ./leds.py -s off turns leds off # > ./leds.py -c 5 turn all leds green import easygopigo3 import sys sys.path.insert(1,"/home/pi/GoPiLgc/plib") # import myconfig from time import sleep import argparse import threading WHITE_BRIGHT = (255, 255, 255) # color 0 RED = (255, 0, 0) # color 1 ORANGE = (255, 125, 0) # color 2 YELLOW = (255, 255, 0) # color 3 YELLOW_GREEN = (125, 255, 0) # color 4 GREEN = (0, 255, 0) # color 5 TURQUOISE = (0, 255, 125) # color 6 CYAN = (0, 255, 255) # color 7 light blue CYAN_BLUE = (0, 125, 255) # color 8 BLUE = (0, 0, 255) # color 9 VIOLET = (125, 0, 255) # color 10 MAGENTA = (255, 0, 255) # color 11 MAGENTA_RED = (255, 0, 125) # color 12 COLOR_LIST = [WHITE_BRIGHT, RED, ORANGE, YELLOW, YELLOW_GREEN, GREEN, TURQUOISE, CYAN, CYAN_BLUE, BLUE, VIOLET, MAGENTA, MAGENTA_RED] def all_on(egpg=None): egpg.blinker_on("left") egpg.blinker_on("right") egpg.led_on("left") egpg.led_on("right") egpg.set_eye_color(WHITE_BRIGHT) egpg.open_eyes() # can set wifi led to white, only if utils/wifi_led_off.sh has been run egpg.set_led(egpg.LED_WIFI,255,255,255) def all_off(egpg=None): egpg.blinker_off("left") egpg.blinker_off("right") egpg.led_off("left") egpg.led_off("right") egpg.close_eyes() # can turn wifi led off, only if utils/wifi_led_off.sh has been run egpg.set_led(egpg.LED_WIFI,0,0,0) def all_color(egpg=None, colornum=5): if colornum < len(COLOR_LIST): egpg.set_led(egpg.LED_WIFI,COLOR_LIST[colornum][0], COLOR_LIST[colornum][1], COLOR_LIST[colornum][2]) egpg.set_eye_color(COLOR_LIST[ colornum ]) egpg.open_eyes() else: print("ERROR: all_color({}) larger than {}".format(colornum,len(COLOR_LIST))) def do_wifi_blinking(egpg,color=RED): global wifi_blinker_thread_quit try: r,g,b = color while wifi_blinker_thread_quit is not True: egpg.set_led(egpg.LED_WIFI,r,g,b) sleep(1) egpg.set_led(egpg.LED_WIFI,0,0,0) sleep(1) except Exception as e: print("do_wifi_blinking: Exception {}".format(str(e))) raise e # print("do_wifi_blinking() exiting") wifi_blinker_thread_quit = False wifi_blinker_thread = None wifi_blinker_thread_quit = False def wifi_blinker_on(egpg,color=RED): global wifi_blinker_thread,wifi_blinker_thread_quit if wifi_blinker_thread: pass else: # need to start thread wifi_blinker_thread_quit = False wifi_blinker_thread = threading.Thread(target=do_wifi_blinking, args=(egpg,color,), daemon=True) wifi_blinker_thread.start() def wifi_blinker_off(egpg): global wifi_blinker_thread,wifi_blinker_thread_quit if wifi_blinker_thread: wifi_blinker_thread_quit = True # tell thread to quit # wifi_blinker_thread.join() # wait for thread to quit timer = 0 while wifi_blinker_thread_quit and (timer < 5): sleep(1) timer+=1 wifi_blinker_thread_quit = False wifi_blinker_thread = None else: pass def main(): ap = argparse.ArgumentParser() ap.add_argument("-s", "--set", action="store", default=None, help="set all leds 'on' or 'off'") ap.add_argument("-c", "--colornum", type=int, action="store", default=None, help="set all leds to color ") args = vars(ap.parse_args()) egpg = easygopigo3.EasyGoPiGo3(use_mutex=True) # myconfig.setParameters(egpg) set = args["set"] colornumber = args['colornum'] if set==None: if colornumber == None: print("leds.py: Test all_on()") all_on(egpg) sleep(5) print("leds.py: Test all_off()") all_off(egpg) sleep(5) print("leds.py: Test all_color() (green)") all_color(egpg) sleep(5) else: all_color(egpg,colornumber) elif set=='on': all_on(egpg) else: all_off(egpg) print("Test Wifi Blinker") wifi_blinker_on(egpg,color=RED) sleep(10) wifi_blinker_off(egpg) all_off(egpg) if (__name__ == '__main__'): main()
en
0.621432
#!/usr/bin/python3 # File: leds.py # # Methods: # leds.all_on(egpg) turn two red blinker leds on and two "eyes" on bright white # leds.all_off(egpg) turn two red blinker leds off and two "eyes" off # wifi_blinker_on(egpg,color=RED) make wifi led blink on/off,on/off... # pass colors as leds.YELLOW or leds.GREEN ... # wifi_blinker_off(egpg) turn wifi blinker off # # Usage: # import leds # egpg=easygopigo3.EasyGoPiGo3() # leds.all_on(egpg) # leds.all_off(egpg) # leds.wifi_blinker_on(egpg,color=leds.ORANGE) # leds.wifi_blinker_off(egpg) # # or from command line: # > ./leds.py performs test on/off # > ./leds.py -s on turns leds on # > ./leds.py -s off turns leds off # > ./leds.py -c 5 turn all leds green # import myconfig # color 0 # color 1 # color 2 # color 3 # color 4 # color 5 # color 6 # color 7 light blue # color 8 # color 9 # color 10 # color 11 # color 12 # can set wifi led to white, only if utils/wifi_led_off.sh has been run # can turn wifi led off, only if utils/wifi_led_off.sh has been run # print("do_wifi_blinking() exiting") # need to start thread # tell thread to quit # wifi_blinker_thread.join() # wait for thread to quit # myconfig.setParameters(egpg)
3.437557
3
aispace/models/question_answer/bento_services/bert_for_qa_with_impossible_service.py
SmileGoat/AiSpace
32
6631326
<gh_stars>10-100 # !/usr/bin/env python # coding=utf-8 # @Time : 2020/4/25 18:08 # @Author : <EMAIL> # @File : bert_for_qa_service.py __all__ = [ "BertQAWithImpossibleService" ] import os, sys from collections import defaultdict import tensorflow as tf from copy import deepcopy sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../" * 4))) from bentoml import api, env, BentoService, artifacts from bentoml.artifact import TensorflowSavedModelArtifact, PickleArtifact from bentoml.handlers import JsonHandler import numpy as np from scipy.special import softmax, expit from aispace.datasets.tokenizer import BertTokenizer from aispace.utils.hparams import Hparams from aispace.utils.str_utils import uuid_maker, preprocess_text, compute_md5_hash @artifacts([ TensorflowSavedModelArtifact('model'), PickleArtifact('tokenizer'), PickleArtifact("hparams"), ]) @env(auto_pip_dependencies=True) class BertQAWithImpossibleService(BentoService): def preprocessing(self, parsed_json): unique_id = 100000 for one_json in parsed_json: n_best_size = one_json.get('n_best_size', 5) threshold = one_json.get('threshold', 0.5) max_answer_length = one_json.get("max_answer_length", 64) max_query_length = one_json.get("max_query_length", 64) doc_stride = one_json.get("doc_stride", 128) question_text = one_json.get("question_text", "") trigger = one_json.get("trigger", "") role = one_json.get("role", "") event_type = one_json.get("event_type", "") para_text = one_json.get("context", "") # if question_text == "" or para_text == "": if trigger == "" or role == "" or event_type == "" or para_text == "": # unique_id = uuid_maker() print("[WARRING] query or context is empty!") item = { "unique_id": unique_id, "qas_id": unique_id, "question_text": question_text, "context_text": para_text, 'n_best_size': n_best_size, 'max_answer_length': max_answer_length, 'threshold': threshold } yield item if self.artifacts.hparams.dataset.tokenizer.do_lower_case: # question_text = question_text.lower() trigger = trigger.lower() role = role.lower() event_type = event_type.lower() # query_tokens = self.artifacts.tokenizer.tokenize(question_text) # query_tokens = query_tokens[: max_query_length] trigger_tokens = self.artifacts.tokenizer.tokenize(trigger) role_tokens = self.artifacts.tokenizer.tokenize(role) event_type_tokens = self.artifacts.tokenizer.tokenize(event_type) query_tokens = trigger_tokens + [self.artifacts.tokenizer.vocab.sep_token] + \ role_tokens + [self.artifacts.tokenizer.vocab.sep_token] + event_type_tokens query_tokens = query_tokens[: max_query_length] qas_id = one_json.get('qas_id', compute_md5_hash(self.artifacts.tokenizer.detokenizer(query_tokens) + para_text)) if self.artifacts.hparams.dataset.tokenizer.do_lower_case: para_text = para_text.lower() para_tokens = self.artifacts.tokenizer.tokenize(para_text) """ For getting token to raw char matching: 1) getting matching between token and tokenized text 2) getting matching between raw text and tokenized text 3) So, can get matching between token and raw """ # char idx to token idx char2token_index = [] # token start idx to char idx token2char_start_index = [] # token end idx to char idx token2char_end_index = [] char_idx = 0 for i, token in enumerate(para_tokens): char_len = len(token.replace("##", '')) char2token_index.extend([i] * char_len) token2char_start_index.append(char_idx) char_idx += char_len token2char_end_index.append(char_idx - 1) tokenized_para_text = self.artifacts.tokenizer.detokenizer(para_tokens) # matching between raw text and tokenized text N, M = len(para_text), len(tokenized_para_text) max_N, max_M = 1024, 1024 if N > max_N or M > max_M: max_N = max(N, max_N) max_M = max(M, max_M) match_mapping, mismatch = self._generate_match_mapping(para_text, tokenized_para_text, N, M, max_N, max_M) # raw idx to tokenized char idx raw2tokenized_char_index = [None] * (N + 1) # tokenized char idx to raw idx tokenized2raw_char_index = [None] * (M + 1) i, j = N - 1, M - 1 while i >= 0 and j >= 0: if (i, j) not in match_mapping: break # if 324 == i or 353 == j: # print() if match_mapping[(i, j)] == 2: raw2tokenized_char_index[i] = j tokenized2raw_char_index[j] = i i, j = i - 1, j - 1 elif match_mapping[(i, j)] == 1: j = j - 1 else: i = i - 1 if all(v is None for v in raw2tokenized_char_index) or mismatch: print("[WARRING] raw and tokenized paragraph mismatch detected") # unique_id = uuid_maker() item = { "unique_id": unique_id, "qas_id": qas_id, "question_text": question_text, "context_text": para_text, 'n_best_size': n_best_size, 'max_answer_length': max_answer_length, 'threshold': threshold } yield item # token start idx to raw char idx token2char_raw_start_index = [] # token end idx to raw char idx token2char_raw_end_index = [] for idx in range(len(para_tokens)): # token char idx start_pos = token2char_start_index[idx] end_pos = token2char_end_index[idx] # raw char idx raw_start_pos = self._convert_tokenized_index(tokenized2raw_char_index, start_pos, N, is_start=True) raw_end_pos = self._convert_tokenized_index(tokenized2raw_char_index, end_pos, N, is_start=False) # matching between token and raw char idx token2char_raw_start_index.append(raw_start_pos) token2char_raw_end_index.append(raw_end_pos) max_para_length = self.artifacts.hparams.dataset.tokenizer.max_len - len(query_tokens) - 3 total_para_length = len(para_tokens) # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. doc_spans = [] para_start = 0 while para_start < total_para_length: para_length = total_para_length - para_start if para_length > max_para_length: para_length = max_para_length doc_spans.append({ "start": para_start, "length": para_length }) if para_start + para_length == total_para_length: break para_start += min(para_length, doc_stride) for (doc_idx, doc_span) in enumerate(doc_spans): doc_token2char_raw_start_index = [] doc_token2char_raw_end_index = [] doc_token2doc_index = {} for i in range(doc_span['length']): token_idx = doc_span["start"] + i doc_token2char_raw_start_index.append(token2char_raw_start_index[token_idx]) doc_token2char_raw_end_index.append(token2char_raw_end_index[token_idx]) best_doc_idx = self._find_max_context(doc_spans, token_idx) doc_token2doc_index[i] = (best_doc_idx == doc_idx) encode_info = \ self.artifacts.tokenizer.encode( query_tokens, para_tokens[doc_span['start']: doc_span['start'] + doc_span['length']], return_mask=True, return_offset=True, return_cls_index=True) input_ids, segment_ids, input_mask, p_mask, q_mask, offset, cls_idx = \ encode_info['input_ids'], encode_info['segment_ids'], encode_info['input_mask'], \ encode_info['b_mask'], encode_info['a_mask'], encode_info['b_offset'], encode_info['cls_index'] # unique_id = uuid_maker() # p_mask[cls_idx] = 1 item = { "unique_id": unique_id, "qas_id": qas_id, "question_text": question_text, "context_text": para_text, "doc_token2char_raw_start_index": doc_token2char_raw_start_index, "doc_token2char_raw_end_index": doc_token2char_raw_end_index, 'doc_token2doc_index': doc_token2doc_index, "input_ids": input_ids, "token_type_ids": segment_ids, "attention_mask": input_mask, "p_mask": p_mask, 'offset': offset, 'n_best_size': n_best_size, 'max_answer_length': max_answer_length, 'cls_idx': cls_idx, 'threshold': threshold } unique_id += 1 yield item @api(JsonHandler) def qa_predict(self, parsed_json): input_data = { "input_ids": [], "token_type_ids": [], "attention_mask": [], "p_mask": [], "unique_id": [], "start_position": [] } no_answer_response = { 'predict_text': "", 'start_prob': 0., 'end_prob': 0., 'predict_score': 0. } pre_input_data = self.preprocessing(parsed_json) qas_id_2_examples = defaultdict(list) unique_id_to_example = defaultdict() qas_ids = [] for itm in pre_input_data: qas_ids.append(itm['qas_id']) if 'input_ids' not in itm: continue qas_id_2_examples[itm['qas_id']].append(itm) unique_id_to_example[itm['unique_id']] = itm input_data['input_ids'].append(itm['input_ids']) input_data['token_type_ids'].append(itm['token_type_ids']) input_data['attention_mask'].append(itm['attention_mask']) input_data['p_mask'].append(itm['p_mask']) # input_data['offset'].append(itm['offset']) # input_data['cls_idx'].append(itm['cls_idx']) input_data['unique_id'].append(itm['unique_id']) input_data['start_position'].append(0) if not input_data['input_ids']: print("[WARRING] Preprocessing some thing wrong!") return [no_answer_response] input_data['input_ids'] = tf.constant(input_data['input_ids'], name="input_ids") input_data['token_type_ids'] = tf.constant(input_data['token_type_ids'], name="token_type_ids") input_data['attention_mask'] = tf.constant(input_data['attention_mask'], name="attention_mask") input_data['p_mask'] = tf.constant(input_data['p_mask'], name="p_mask") input_data['unique_id'] = tf.constant(input_data['unique_id'], dtype=tf.float32, name="unique_id") input_data['start_position'] = tf.constant(input_data['start_position'], name="start_position") start_top_res, end_top_res, answer_prob, unique_id_res = self.artifacts.model(input_data, training=False) start_top_log_prob, start_top_index = start_top_res.numpy()[:, :, 0], start_top_res.numpy()[:, :, 1].astype(np.int) # [b, k] end_top_log_prob, end_top_index = end_top_res.numpy()[:, :, :, 0], end_top_res.numpy()[:, :, :, 1].astype(np.int) # [b, k, k] unique_id_res = unique_id_res.numpy().astype(np.int) start_n_top, end_n_top = start_top_index.shape[-1], end_top_index.shape[-1] unique_id_2_result = {} for i in range(end_top_index.shape[0]): unique_id = unique_id_res[i] itm = { 'unique_id': unique_id, 'start_top_log_prob': start_top_log_prob[i], 'start_top_index': start_top_index[i], 'end_top_log_prob': end_top_log_prob[i], 'end_top_index': end_top_index[i], 'is_impossible_prob': answer_prob.numpy()[i][0] } unique_id_2_result[unique_id] = itm answers = [] no_answer_response = { 'predict_text': "", 'span_start': -1, 'start_prob': 0., 'span_end': -1, 'end_prob': 0., 'predict_score': 0., 'is_impossible': 1, 'is_impossible_prob': 1. } for qas_id in qas_ids: examples = qas_id_2_examples.get(qas_id, []) if not examples: answers.append(no_answer_response) continue max_answer_length, n_best_size, threshold \ = examples[0].get('max_answer_length'), \ examples[0].get('n_best_size'), \ examples[0].get('threshold') example_all_predicts = [] for example in examples: cur_unique_id = example['unique_id'] if cur_unique_id not in unique_id_2_result: continue cur_result = unique_id_2_result.get(cur_unique_id) cur_start_top_log_prob = cur_result['start_top_log_prob'] cur_start_top_index = cur_result['start_top_index'] cur_end_top_log_prob = cur_result['end_top_log_prob'] cur_end_top_index = cur_result['end_top_index'] is_impossible = int(cur_result['is_impossible_prob'] >= threshold) cur_p_mask = example['p_mask'] for i in range(start_n_top): start_prob = cur_start_top_log_prob[i] start_index = cur_start_top_index[i] if not cur_p_mask[start_index]: continue for j in range(end_n_top): end_prob = cur_end_top_log_prob[i, j] end_index = cur_end_top_index[i, j] if not cur_p_mask[end_index]: continue answer_length = end_index - start_index + 1 if end_index < start_index or answer_length > max_answer_length: continue itm = { 'unique_id': cur_unique_id, 'start_prob': start_prob, 'start_index': start_index, 'end_prob': end_prob, 'end_index': end_index, 'predict_score': np.log(start_prob) + np.log(end_prob), 'cls_idx': example['cls_idx'], 'is_impossible': is_impossible, 'is_impossible_prob': cur_result['is_impossible_prob'] } example_all_predicts.append(itm) example_all_predicts.sort(key=lambda s: s['predict_score'], reverse=True) example_top_predicts = [] is_visited = set() for example_predict in example_all_predicts: if len(example_top_predicts) >= n_best_size: break # if example_predict['start_prob'] < threshold or example_predict['end_prob'] < threshold: # predict_text = "" # predict_start = -1 # predict_end = -1 # else: example_feature = unique_id_to_example[example_predict['unique_id']] predict_start = example_feature['doc_token2char_raw_start_index'][ example_predict['start_index'] - example_feature['offset']] predict_end = example_feature['doc_token2char_raw_end_index'][ example_predict['end_index'] - example_feature['offset']] predict_text = example_feature['context_text'][predict_start: predict_end + 1].strip() if predict_text in is_visited: continue itm = { 'predict_text': predict_text, 'span_start': predict_start, 'start_prob': example_predict['start_prob'], 'span_end': predict_end, 'end_prob': example_predict['end_prob'], 'predict_score': example_predict['predict_score'], 'is_impossible': example_predict['is_impossible'], 'is_impossible_prob': example_predict['is_impossible_prob'] } example_top_predicts.append(itm) if len(example_top_predicts) == 0: example_top_predicts.append( no_answer_response ) example_best_predict = example_top_predicts[0] answers.append(example_best_predict) return answers def _generate_match_mapping(self, para_text, tokenized_para_text, N, M, max_N, max_M): """Generate match mapping for raw and tokenized paragraph""" def _lcs_match(para_text, tokenized_para_text, N, M, max_N, max_M, max_dist): """longest common sub-sequence f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j)) unlike standard LCS, this is specifically optimized for the setting because the mismatch between sentence pieces and original text will be small """ f = np.zeros((max_N, max_M), dtype=np.float32) g = {} for i in range(N): # if i == 324: # print() for j in range(i - max_dist, i + max_dist): # if j == 353: # print() if j >= M or j < 0: continue if i > 0: g[(i, j)] = 0 f[i, j] = f[i - 1, j] if j > 0 and f[i, j - 1] > f[i, j]: g[(i, j)] = 1 f[i, j] = f[i, j - 1] f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0 raw_char = preprocess_text(para_text[i], self.artifacts.hparams.dataset.tokenizer.do_lower_case, remove_space=False, keep_accents=True) tokenized_char = tokenized_para_text[j] if raw_char == tokenized_char and f_prev + 1 > f[i, j]: g[(i, j)] = 2 f[i, j] = f_prev + 1 return f, g max_dist = abs(N - M) + 10 for _ in range(2): lcs_matrix, match_mapping = _lcs_match(para_text, tokenized_para_text, N, M, max_N, max_M, max_dist) if lcs_matrix[N - 1, M - 1] > 0.8 * N: break max_dist *= 2 mismatch = lcs_matrix[N - 1, M - 1] < 0.8 * N if lcs_matrix[N - 1, M - 1] == min(M, N): mismatch = False return match_mapping, mismatch def _convert_tokenized_index(self, index, pos, M=None, is_start=True): """Convert index for tokenized text""" if index[pos] is not None: return index[pos] N = len(index) rear = pos while rear < N - 1 and index[rear] is None: rear += 1 front = pos while front > 0 and index[front] is None: front -= 1 assert index[front] is not None or index[rear] is not None if index[front] is None: if index[rear] >= 1: if is_start: return 0 else: return index[rear] - 1 return index[rear] if index[rear] is None: if M is not None and index[front] < M - 1: if is_start: return index[front] + 1 else: return M - 1 return index[front] if is_start: if index[rear] > index[front] + 1: return index[front] + 1 else: return index[rear] else: if index[rear] > index[front] + 1: return index[rear] - 1 else: return index[front] def _find_max_context(self, doc_spans, token_idx): """Check if this is the 'max context' doc span for the token. Because of the sliding window approach taken to scoring documents, a single token can appear in multiple documents. E.g. Doc: the man went to the store and bought a gallon of milk Span A: the man went to the Span B: to the store and bought Span C: and bought a gallon of ... Now the word 'bought' will have two scores from spans B and C. We only want to consider the score with "maximum context", which we define as the *minimum* of its left and right context (the *sum* of left and right context will always be the same, of course). In the example the maximum context for 'bought' would be span C since it has 1 left context and 3 right context, while span B has 4 left context and 0 right context. """ best_doc_score = None best_doc_idx = None for (doc_idx, doc_span) in enumerate(doc_spans): doc_start = doc_span["start"] doc_length = doc_span["length"] doc_end = doc_start + doc_length - 1 if token_idx < doc_start or token_idx > doc_end: continue left_context_length = token_idx - doc_start right_context_length = doc_end - token_idx doc_score = min(left_context_length, right_context_length) + 0.01 * doc_length if best_doc_score is None or doc_score > best_doc_score: best_doc_score = doc_score best_doc_idx = doc_idx return best_doc_idx def _improve_answer_start(self, para_text, answer, raw_answer_start): answer = answer.lower().strip() real_start = para_text.find(answer) if real_start != -1: return real_start, answer else: return raw_answer_start, answer def _is_english(self, word: str) -> bool: """ Checks whether `word` is a english word. Note: this function is not standard and should be considered for BERT tokenization only. See the comments for more details. :param word: :return: """ flag = True for c in word: if 'a' <= c <= 'z' or 'A' <= c <= 'Z' or c == '#': continue else: flag = False break return flag
# !/usr/bin/env python # coding=utf-8 # @Time : 2020/4/25 18:08 # @Author : <EMAIL> # @File : bert_for_qa_service.py __all__ = [ "BertQAWithImpossibleService" ] import os, sys from collections import defaultdict import tensorflow as tf from copy import deepcopy sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../" * 4))) from bentoml import api, env, BentoService, artifacts from bentoml.artifact import TensorflowSavedModelArtifact, PickleArtifact from bentoml.handlers import JsonHandler import numpy as np from scipy.special import softmax, expit from aispace.datasets.tokenizer import BertTokenizer from aispace.utils.hparams import Hparams from aispace.utils.str_utils import uuid_maker, preprocess_text, compute_md5_hash @artifacts([ TensorflowSavedModelArtifact('model'), PickleArtifact('tokenizer'), PickleArtifact("hparams"), ]) @env(auto_pip_dependencies=True) class BertQAWithImpossibleService(BentoService): def preprocessing(self, parsed_json): unique_id = 100000 for one_json in parsed_json: n_best_size = one_json.get('n_best_size', 5) threshold = one_json.get('threshold', 0.5) max_answer_length = one_json.get("max_answer_length", 64) max_query_length = one_json.get("max_query_length", 64) doc_stride = one_json.get("doc_stride", 128) question_text = one_json.get("question_text", "") trigger = one_json.get("trigger", "") role = one_json.get("role", "") event_type = one_json.get("event_type", "") para_text = one_json.get("context", "") # if question_text == "" or para_text == "": if trigger == "" or role == "" or event_type == "" or para_text == "": # unique_id = uuid_maker() print("[WARRING] query or context is empty!") item = { "unique_id": unique_id, "qas_id": unique_id, "question_text": question_text, "context_text": para_text, 'n_best_size': n_best_size, 'max_answer_length': max_answer_length, 'threshold': threshold } yield item if self.artifacts.hparams.dataset.tokenizer.do_lower_case: # question_text = question_text.lower() trigger = trigger.lower() role = role.lower() event_type = event_type.lower() # query_tokens = self.artifacts.tokenizer.tokenize(question_text) # query_tokens = query_tokens[: max_query_length] trigger_tokens = self.artifacts.tokenizer.tokenize(trigger) role_tokens = self.artifacts.tokenizer.tokenize(role) event_type_tokens = self.artifacts.tokenizer.tokenize(event_type) query_tokens = trigger_tokens + [self.artifacts.tokenizer.vocab.sep_token] + \ role_tokens + [self.artifacts.tokenizer.vocab.sep_token] + event_type_tokens query_tokens = query_tokens[: max_query_length] qas_id = one_json.get('qas_id', compute_md5_hash(self.artifacts.tokenizer.detokenizer(query_tokens) + para_text)) if self.artifacts.hparams.dataset.tokenizer.do_lower_case: para_text = para_text.lower() para_tokens = self.artifacts.tokenizer.tokenize(para_text) """ For getting token to raw char matching: 1) getting matching between token and tokenized text 2) getting matching between raw text and tokenized text 3) So, can get matching between token and raw """ # char idx to token idx char2token_index = [] # token start idx to char idx token2char_start_index = [] # token end idx to char idx token2char_end_index = [] char_idx = 0 for i, token in enumerate(para_tokens): char_len = len(token.replace("##", '')) char2token_index.extend([i] * char_len) token2char_start_index.append(char_idx) char_idx += char_len token2char_end_index.append(char_idx - 1) tokenized_para_text = self.artifacts.tokenizer.detokenizer(para_tokens) # matching between raw text and tokenized text N, M = len(para_text), len(tokenized_para_text) max_N, max_M = 1024, 1024 if N > max_N or M > max_M: max_N = max(N, max_N) max_M = max(M, max_M) match_mapping, mismatch = self._generate_match_mapping(para_text, tokenized_para_text, N, M, max_N, max_M) # raw idx to tokenized char idx raw2tokenized_char_index = [None] * (N + 1) # tokenized char idx to raw idx tokenized2raw_char_index = [None] * (M + 1) i, j = N - 1, M - 1 while i >= 0 and j >= 0: if (i, j) not in match_mapping: break # if 324 == i or 353 == j: # print() if match_mapping[(i, j)] == 2: raw2tokenized_char_index[i] = j tokenized2raw_char_index[j] = i i, j = i - 1, j - 1 elif match_mapping[(i, j)] == 1: j = j - 1 else: i = i - 1 if all(v is None for v in raw2tokenized_char_index) or mismatch: print("[WARRING] raw and tokenized paragraph mismatch detected") # unique_id = uuid_maker() item = { "unique_id": unique_id, "qas_id": qas_id, "question_text": question_text, "context_text": para_text, 'n_best_size': n_best_size, 'max_answer_length': max_answer_length, 'threshold': threshold } yield item # token start idx to raw char idx token2char_raw_start_index = [] # token end idx to raw char idx token2char_raw_end_index = [] for idx in range(len(para_tokens)): # token char idx start_pos = token2char_start_index[idx] end_pos = token2char_end_index[idx] # raw char idx raw_start_pos = self._convert_tokenized_index(tokenized2raw_char_index, start_pos, N, is_start=True) raw_end_pos = self._convert_tokenized_index(tokenized2raw_char_index, end_pos, N, is_start=False) # matching between token and raw char idx token2char_raw_start_index.append(raw_start_pos) token2char_raw_end_index.append(raw_end_pos) max_para_length = self.artifacts.hparams.dataset.tokenizer.max_len - len(query_tokens) - 3 total_para_length = len(para_tokens) # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. doc_spans = [] para_start = 0 while para_start < total_para_length: para_length = total_para_length - para_start if para_length > max_para_length: para_length = max_para_length doc_spans.append({ "start": para_start, "length": para_length }) if para_start + para_length == total_para_length: break para_start += min(para_length, doc_stride) for (doc_idx, doc_span) in enumerate(doc_spans): doc_token2char_raw_start_index = [] doc_token2char_raw_end_index = [] doc_token2doc_index = {} for i in range(doc_span['length']): token_idx = doc_span["start"] + i doc_token2char_raw_start_index.append(token2char_raw_start_index[token_idx]) doc_token2char_raw_end_index.append(token2char_raw_end_index[token_idx]) best_doc_idx = self._find_max_context(doc_spans, token_idx) doc_token2doc_index[i] = (best_doc_idx == doc_idx) encode_info = \ self.artifacts.tokenizer.encode( query_tokens, para_tokens[doc_span['start']: doc_span['start'] + doc_span['length']], return_mask=True, return_offset=True, return_cls_index=True) input_ids, segment_ids, input_mask, p_mask, q_mask, offset, cls_idx = \ encode_info['input_ids'], encode_info['segment_ids'], encode_info['input_mask'], \ encode_info['b_mask'], encode_info['a_mask'], encode_info['b_offset'], encode_info['cls_index'] # unique_id = uuid_maker() # p_mask[cls_idx] = 1 item = { "unique_id": unique_id, "qas_id": qas_id, "question_text": question_text, "context_text": para_text, "doc_token2char_raw_start_index": doc_token2char_raw_start_index, "doc_token2char_raw_end_index": doc_token2char_raw_end_index, 'doc_token2doc_index': doc_token2doc_index, "input_ids": input_ids, "token_type_ids": segment_ids, "attention_mask": input_mask, "p_mask": p_mask, 'offset': offset, 'n_best_size': n_best_size, 'max_answer_length': max_answer_length, 'cls_idx': cls_idx, 'threshold': threshold } unique_id += 1 yield item @api(JsonHandler) def qa_predict(self, parsed_json): input_data = { "input_ids": [], "token_type_ids": [], "attention_mask": [], "p_mask": [], "unique_id": [], "start_position": [] } no_answer_response = { 'predict_text': "", 'start_prob': 0., 'end_prob': 0., 'predict_score': 0. } pre_input_data = self.preprocessing(parsed_json) qas_id_2_examples = defaultdict(list) unique_id_to_example = defaultdict() qas_ids = [] for itm in pre_input_data: qas_ids.append(itm['qas_id']) if 'input_ids' not in itm: continue qas_id_2_examples[itm['qas_id']].append(itm) unique_id_to_example[itm['unique_id']] = itm input_data['input_ids'].append(itm['input_ids']) input_data['token_type_ids'].append(itm['token_type_ids']) input_data['attention_mask'].append(itm['attention_mask']) input_data['p_mask'].append(itm['p_mask']) # input_data['offset'].append(itm['offset']) # input_data['cls_idx'].append(itm['cls_idx']) input_data['unique_id'].append(itm['unique_id']) input_data['start_position'].append(0) if not input_data['input_ids']: print("[WARRING] Preprocessing some thing wrong!") return [no_answer_response] input_data['input_ids'] = tf.constant(input_data['input_ids'], name="input_ids") input_data['token_type_ids'] = tf.constant(input_data['token_type_ids'], name="token_type_ids") input_data['attention_mask'] = tf.constant(input_data['attention_mask'], name="attention_mask") input_data['p_mask'] = tf.constant(input_data['p_mask'], name="p_mask") input_data['unique_id'] = tf.constant(input_data['unique_id'], dtype=tf.float32, name="unique_id") input_data['start_position'] = tf.constant(input_data['start_position'], name="start_position") start_top_res, end_top_res, answer_prob, unique_id_res = self.artifacts.model(input_data, training=False) start_top_log_prob, start_top_index = start_top_res.numpy()[:, :, 0], start_top_res.numpy()[:, :, 1].astype(np.int) # [b, k] end_top_log_prob, end_top_index = end_top_res.numpy()[:, :, :, 0], end_top_res.numpy()[:, :, :, 1].astype(np.int) # [b, k, k] unique_id_res = unique_id_res.numpy().astype(np.int) start_n_top, end_n_top = start_top_index.shape[-1], end_top_index.shape[-1] unique_id_2_result = {} for i in range(end_top_index.shape[0]): unique_id = unique_id_res[i] itm = { 'unique_id': unique_id, 'start_top_log_prob': start_top_log_prob[i], 'start_top_index': start_top_index[i], 'end_top_log_prob': end_top_log_prob[i], 'end_top_index': end_top_index[i], 'is_impossible_prob': answer_prob.numpy()[i][0] } unique_id_2_result[unique_id] = itm answers = [] no_answer_response = { 'predict_text': "", 'span_start': -1, 'start_prob': 0., 'span_end': -1, 'end_prob': 0., 'predict_score': 0., 'is_impossible': 1, 'is_impossible_prob': 1. } for qas_id in qas_ids: examples = qas_id_2_examples.get(qas_id, []) if not examples: answers.append(no_answer_response) continue max_answer_length, n_best_size, threshold \ = examples[0].get('max_answer_length'), \ examples[0].get('n_best_size'), \ examples[0].get('threshold') example_all_predicts = [] for example in examples: cur_unique_id = example['unique_id'] if cur_unique_id not in unique_id_2_result: continue cur_result = unique_id_2_result.get(cur_unique_id) cur_start_top_log_prob = cur_result['start_top_log_prob'] cur_start_top_index = cur_result['start_top_index'] cur_end_top_log_prob = cur_result['end_top_log_prob'] cur_end_top_index = cur_result['end_top_index'] is_impossible = int(cur_result['is_impossible_prob'] >= threshold) cur_p_mask = example['p_mask'] for i in range(start_n_top): start_prob = cur_start_top_log_prob[i] start_index = cur_start_top_index[i] if not cur_p_mask[start_index]: continue for j in range(end_n_top): end_prob = cur_end_top_log_prob[i, j] end_index = cur_end_top_index[i, j] if not cur_p_mask[end_index]: continue answer_length = end_index - start_index + 1 if end_index < start_index or answer_length > max_answer_length: continue itm = { 'unique_id': cur_unique_id, 'start_prob': start_prob, 'start_index': start_index, 'end_prob': end_prob, 'end_index': end_index, 'predict_score': np.log(start_prob) + np.log(end_prob), 'cls_idx': example['cls_idx'], 'is_impossible': is_impossible, 'is_impossible_prob': cur_result['is_impossible_prob'] } example_all_predicts.append(itm) example_all_predicts.sort(key=lambda s: s['predict_score'], reverse=True) example_top_predicts = [] is_visited = set() for example_predict in example_all_predicts: if len(example_top_predicts) >= n_best_size: break # if example_predict['start_prob'] < threshold or example_predict['end_prob'] < threshold: # predict_text = "" # predict_start = -1 # predict_end = -1 # else: example_feature = unique_id_to_example[example_predict['unique_id']] predict_start = example_feature['doc_token2char_raw_start_index'][ example_predict['start_index'] - example_feature['offset']] predict_end = example_feature['doc_token2char_raw_end_index'][ example_predict['end_index'] - example_feature['offset']] predict_text = example_feature['context_text'][predict_start: predict_end + 1].strip() if predict_text in is_visited: continue itm = { 'predict_text': predict_text, 'span_start': predict_start, 'start_prob': example_predict['start_prob'], 'span_end': predict_end, 'end_prob': example_predict['end_prob'], 'predict_score': example_predict['predict_score'], 'is_impossible': example_predict['is_impossible'], 'is_impossible_prob': example_predict['is_impossible_prob'] } example_top_predicts.append(itm) if len(example_top_predicts) == 0: example_top_predicts.append( no_answer_response ) example_best_predict = example_top_predicts[0] answers.append(example_best_predict) return answers def _generate_match_mapping(self, para_text, tokenized_para_text, N, M, max_N, max_M): """Generate match mapping for raw and tokenized paragraph""" def _lcs_match(para_text, tokenized_para_text, N, M, max_N, max_M, max_dist): """longest common sub-sequence f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j)) unlike standard LCS, this is specifically optimized for the setting because the mismatch between sentence pieces and original text will be small """ f = np.zeros((max_N, max_M), dtype=np.float32) g = {} for i in range(N): # if i == 324: # print() for j in range(i - max_dist, i + max_dist): # if j == 353: # print() if j >= M or j < 0: continue if i > 0: g[(i, j)] = 0 f[i, j] = f[i - 1, j] if j > 0 and f[i, j - 1] > f[i, j]: g[(i, j)] = 1 f[i, j] = f[i, j - 1] f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0 raw_char = preprocess_text(para_text[i], self.artifacts.hparams.dataset.tokenizer.do_lower_case, remove_space=False, keep_accents=True) tokenized_char = tokenized_para_text[j] if raw_char == tokenized_char and f_prev + 1 > f[i, j]: g[(i, j)] = 2 f[i, j] = f_prev + 1 return f, g max_dist = abs(N - M) + 10 for _ in range(2): lcs_matrix, match_mapping = _lcs_match(para_text, tokenized_para_text, N, M, max_N, max_M, max_dist) if lcs_matrix[N - 1, M - 1] > 0.8 * N: break max_dist *= 2 mismatch = lcs_matrix[N - 1, M - 1] < 0.8 * N if lcs_matrix[N - 1, M - 1] == min(M, N): mismatch = False return match_mapping, mismatch def _convert_tokenized_index(self, index, pos, M=None, is_start=True): """Convert index for tokenized text""" if index[pos] is not None: return index[pos] N = len(index) rear = pos while rear < N - 1 and index[rear] is None: rear += 1 front = pos while front > 0 and index[front] is None: front -= 1 assert index[front] is not None or index[rear] is not None if index[front] is None: if index[rear] >= 1: if is_start: return 0 else: return index[rear] - 1 return index[rear] if index[rear] is None: if M is not None and index[front] < M - 1: if is_start: return index[front] + 1 else: return M - 1 return index[front] if is_start: if index[rear] > index[front] + 1: return index[front] + 1 else: return index[rear] else: if index[rear] > index[front] + 1: return index[rear] - 1 else: return index[front] def _find_max_context(self, doc_spans, token_idx): """Check if this is the 'max context' doc span for the token. Because of the sliding window approach taken to scoring documents, a single token can appear in multiple documents. E.g. Doc: the man went to the store and bought a gallon of milk Span A: the man went to the Span B: to the store and bought Span C: and bought a gallon of ... Now the word 'bought' will have two scores from spans B and C. We only want to consider the score with "maximum context", which we define as the *minimum* of its left and right context (the *sum* of left and right context will always be the same, of course). In the example the maximum context for 'bought' would be span C since it has 1 left context and 3 right context, while span B has 4 left context and 0 right context. """ best_doc_score = None best_doc_idx = None for (doc_idx, doc_span) in enumerate(doc_spans): doc_start = doc_span["start"] doc_length = doc_span["length"] doc_end = doc_start + doc_length - 1 if token_idx < doc_start or token_idx > doc_end: continue left_context_length = token_idx - doc_start right_context_length = doc_end - token_idx doc_score = min(left_context_length, right_context_length) + 0.01 * doc_length if best_doc_score is None or doc_score > best_doc_score: best_doc_score = doc_score best_doc_idx = doc_idx return best_doc_idx def _improve_answer_start(self, para_text, answer, raw_answer_start): answer = answer.lower().strip() real_start = para_text.find(answer) if real_start != -1: return real_start, answer else: return raw_answer_start, answer def _is_english(self, word: str) -> bool: """ Checks whether `word` is a english word. Note: this function is not standard and should be considered for BERT tokenization only. See the comments for more details. :param word: :return: """ flag = True for c in word: if 'a' <= c <= 'z' or 'A' <= c <= 'Z' or c == '#': continue else: flag = False break return flag
en
0.744612
# !/usr/bin/env python # coding=utf-8 # @Time : 2020/4/25 18:08 # @Author : <EMAIL> # @File : bert_for_qa_service.py # if question_text == "" or para_text == "": # unique_id = uuid_maker() # question_text = question_text.lower() # query_tokens = self.artifacts.tokenizer.tokenize(question_text) # query_tokens = query_tokens[: max_query_length] For getting token to raw char matching: 1) getting matching between token and tokenized text 2) getting matching between raw text and tokenized text 3) So, can get matching between token and raw # char idx to token idx # token start idx to char idx # token end idx to char idx #", '')) # matching between raw text and tokenized text # raw idx to tokenized char idx # tokenized char idx to raw idx # if 324 == i or 353 == j: # print() # unique_id = uuid_maker() # token start idx to raw char idx # token end idx to raw char idx # token char idx # raw char idx # matching between token and raw char idx # We can have documents that are longer than the maximum sequence length. # To deal with this we do a sliding window approach, where we take chunks # of the up to our max length with a stride of `doc_stride`. # unique_id = uuid_maker() # p_mask[cls_idx] = 1 # input_data['offset'].append(itm['offset']) # input_data['cls_idx'].append(itm['cls_idx']) # [b, k] # [b, k, k] # if example_predict['start_prob'] < threshold or example_predict['end_prob'] < threshold: # predict_text = "" # predict_start = -1 # predict_end = -1 # else: Generate match mapping for raw and tokenized paragraph longest common sub-sequence f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j)) unlike standard LCS, this is specifically optimized for the setting because the mismatch between sentence pieces and original text will be small # if i == 324: # print() # if j == 353: # print() Convert index for tokenized text Check if this is the 'max context' doc span for the token. Because of the sliding window approach taken to scoring documents, a single token can appear in multiple documents. E.g. Doc: the man went to the store and bought a gallon of milk Span A: the man went to the Span B: to the store and bought Span C: and bought a gallon of ... Now the word 'bought' will have two scores from spans B and C. We only want to consider the score with "maximum context", which we define as the *minimum* of its left and right context (the *sum* of left and right context will always be the same, of course). In the example the maximum context for 'bought' would be span C since it has 1 left context and 3 right context, while span B has 4 left context and 0 right context. Checks whether `word` is a english word. Note: this function is not standard and should be considered for BERT tokenization only. See the comments for more details. :param word: :return:
1.996545
2
full_cost/full_cost/utils/facturing.py
CEMES-CNRS/full_cost_git
0
6631327
import importlib import os import datetime from openpyxl import load_workbook, utils from django.db.models import Q from openpyxl.styles import Border, Side, Alignment, Font from openpyxl.utils.cell import get_column_letter from io import BytesIO import numpy as np from datetime import date from django.http import HttpResponse from django.db.models import Max from django.urls import reverse from full_cost.utils.constants import get_activities_from_entity, get_subbillings_from_entity_short,\ get_subbillings_from_entity_long, get_entity_long, CNRS_PERCENTAGE from lab.models import Extraction, Price from full_cost import settings def get_border(style=None, color='FF000000'): return Border(left=Side(border_style=style, color=color), right=Side(border_style=style, color=color), top=Side(border_style=style, color=color), bottom=Side(border_style=style, color=color), diagonal=Side(border_style=style, color=color), diagonal_direction=0, outline=Side(border_style=style, color=color), vertical=Side(border_style=style, color=color), horizontal=Side(border_style=style, color=color) ) alignment = Alignment(horizontal='center', vertical='center', text_rotation=0, wrap_text=True, shrink_to_fit=False, indent=0) def as_text(value): return str(value) if value is not None else "" def set_columns_width(worksheet): for column_cells in worksheet.columns: length = max(len(as_text(cell.value)) for cell in column_cells) worksheet.column_dimensions[utils.get_column_letter(column_cells[0].column)].width = length def to_string(val): return '{:.02f}'.format(val) def calculate_wus(records_list, entity): subbillings_long = get_subbillings_from_entity_long(entity) Nwu = np.array([0. for idx in range(len(subbillings_long))]) for records in records_list: for r in records: if r.experiment.get_exp_type_display() in subbillings_long: ind = subbillings_long.index(r.experiment.get_exp_type_display()) Nwutmp = np.array([r.wu if idx == ind else 0 for idx in range(len(subbillings_long))]) Nwu += Nwutmp return Nwu def populate_releve(records_list, project, entity, show_time=True): subbilling_long = get_subbillings_from_entity_long(entity) wb = load_workbook(filename=os.path.join(settings.STATIC_ROOT, 'template_facturation.xlsx')) ws = wb.create_sheet('Relevé') ws.append([None]) ws.append([None]) if entity == 'MECA' or entity == 'ELEC': header = ['Date', 'Worker', 'Session'] else: header = ['Date', 'Experiment', 'Session'] header.extend(subbilling_long) ws.append(header) Nwu = calculate_wus(records_list, entity) for records in records_list: records = records.order_by('experiment', 'date_from') for r in records: date_to = None date_from = r.date_from.strftime('%d/%m/%Y') time_to = None time_from = None if hasattr(r, 'time_from'): if isinstance(r.time_from, datetime.time): time_from = r.time_from.strftime('%H:%M:%S') else: time_from = r.get_time_from_display() if hasattr(r, 'date_to'): date_to = r.date_to.strftime('%d/%m/%Y') if hasattr(r, 'time_to'): if isinstance(r.time_to, datetime.time): time_to = r.time_to.strftime('%H:%M:%S') else: time_to = r.get_time_to_display() if date_to is not None: session = f"du {date_from}-{time_from if show_time else ''} au {date_to}-{time_to if show_time else ''}" else: session = f"le {date_from}: {time_from if show_time else ''} - {time_to if show_time else ''}" ind = subbilling_long.index(r.experiment.get_exp_type_display()) wus = [r.wu if idx == ind else None for idx in range(len(subbilling_long))] row = [r.date_from, str(r.experiment.experiment), session] row.extend(wus) ws.append(row) res = [None, None, 'Total:'] res.extend(Nwu) ws.append(res) last_cell = ws.calculate_dimension().split(':')[1] cell = ws[last_cell] letter = get_column_letter(cell.column) icol = cell.column irow = cell.row cells = ws['A3':f'{letter}{irow}'] for row in cells: for cell in row: cell.border = get_border('medium') cell.alignment = alignment ws.append([None]) set_columns_width(ws) ws['A1'] = f"Relevé des séances sur le projet: {str(project)}" ws['A1'].font = Font(name='Times New Roman', size=10, bold=False,) return wb, Nwu def calculate_totals(project, records_list, entity): wus = calculate_wus(records_list, entity) subbilling_short = get_subbillings_from_entity_short(entity) totals = [0] for ind, bill in enumerate(subbilling_short): price, tarification = get_project_price(project, entity, bill) totals[0] += wus[ind]*price return totals def get_project_price(project, entity, bill): if project.is_academic: tarification = 'académique' if project.is_national: tarification += ' nationale' price = Price.objects.get(price_entity=entity, price_category='T3ANR', price_name=bill).price else: tarification += ' internationale ou privée' price = Price.objects.get(price_entity=entity, price_category='T3', price_name=bill).price if not project.is_cnrs: price += price * CNRS_PERCENTAGE / 100 tarification += ' non gérée par le CNRS' else: tarification += ' gérée par le CNRS' else: tarification = 'privée' price = Price.objects.get(price_entity=entity, price_category='T1', price_name=bill).price return price, tarification def populate_facture(extraction_name, extraction, entity): records_list = [] for act in get_activities_from_entity(entity): records_list.append(getattr(extraction, f'{act}_record_related').all()) project = extraction.project dates = [extraction.date_after.strftime('%d/%m/%Y'), extraction.date_before.strftime('%d/%m/%Y'),] wb, wus = populate_releve(records_list, project, entity) ws = wb['Facture'] totals = calculate_totals(project, records_list, entity) subbilling_short = get_subbillings_from_entity_short(entity) subbilling_long = get_subbillings_from_entity_long(entity) for ind, bill in enumerate(subbilling_short): price, tarification = get_project_price(project, entity, bill) row = [None, subbilling_long[ind], wus[ind], price, to_string(wus[ind]*price)] ws.append(row) ws.append([None, None, None, 'Total (€HT):', to_string(totals[0])]) letter = 'E' irow = 24 + len(subbilling_long) + 1 cells = ws['C24':f'{letter}{24}'] for row in cells: for cell in row: cell.border = get_border('medium') cell.alignment = alignment cells = ws['B25':f'{letter}{irow}'] for ind in range(25, irow+1): ws.row_dimensions[ind].height = 40 for row in cells: for cell in row: cell.border = get_border('medium') cell.alignment = alignment ws['C13'] = str(project.project_pi) ws['C14'] = project.project_name ws['C17'] = get_entity_long(entity) ws['C20'] = dates[0] ws['E20'] = dates[1] ws['G6'] = date.today().strftime('%d/%m/%Y') ws['C2'] = extraction_name facture_object = '" et de "'.join(subbilling_long) ws['C19'] = f'Séances de "{facture_object}"' ws['B22'] = f'Tarification {tarification}' return wb def export_book(wb): stream = BytesIO() wb.save(stream) return stream.getvalue() def generate_xlsx(extraction): ext_id = extraction.creation_id entity = extraction.billing extraction_name = f"{entity} {date.today().strftime('%y')}-{ext_id:03d}" wb = populate_facture(extraction_name, extraction, entity) data = export_book(wb) filename = f'extract_{extraction_name}.xlsx' response = HttpResponse(content_type="application/vnd.ms-excel") response["Content-Disposition"] = 'attachment; filename="{}"'.format(filename) response.write(data) return response def create_extraction(entity, records_list, project, filter): ext_id = Extraction.objects.all().filter(creation_date__year=date.today().year).aggregate(Max('creation_id'))['creation_id__max'] if ext_id is not None: ext_id += 1 else: ext_id = 0 totals = calculate_totals(project, records_list, entity) total = totals[0] ext = Extraction(project=project, date_after=filter.form.cleaned_data['date_from'].start, date_before=filter.form.cleaned_data['date_from'].stop, creation_id=ext_id, amount=total, billing=entity) ext.save() for records in records_list: for r in records: r.extraction = ext r.save() return ext
import importlib import os import datetime from openpyxl import load_workbook, utils from django.db.models import Q from openpyxl.styles import Border, Side, Alignment, Font from openpyxl.utils.cell import get_column_letter from io import BytesIO import numpy as np from datetime import date from django.http import HttpResponse from django.db.models import Max from django.urls import reverse from full_cost.utils.constants import get_activities_from_entity, get_subbillings_from_entity_short,\ get_subbillings_from_entity_long, get_entity_long, CNRS_PERCENTAGE from lab.models import Extraction, Price from full_cost import settings def get_border(style=None, color='FF000000'): return Border(left=Side(border_style=style, color=color), right=Side(border_style=style, color=color), top=Side(border_style=style, color=color), bottom=Side(border_style=style, color=color), diagonal=Side(border_style=style, color=color), diagonal_direction=0, outline=Side(border_style=style, color=color), vertical=Side(border_style=style, color=color), horizontal=Side(border_style=style, color=color) ) alignment = Alignment(horizontal='center', vertical='center', text_rotation=0, wrap_text=True, shrink_to_fit=False, indent=0) def as_text(value): return str(value) if value is not None else "" def set_columns_width(worksheet): for column_cells in worksheet.columns: length = max(len(as_text(cell.value)) for cell in column_cells) worksheet.column_dimensions[utils.get_column_letter(column_cells[0].column)].width = length def to_string(val): return '{:.02f}'.format(val) def calculate_wus(records_list, entity): subbillings_long = get_subbillings_from_entity_long(entity) Nwu = np.array([0. for idx in range(len(subbillings_long))]) for records in records_list: for r in records: if r.experiment.get_exp_type_display() in subbillings_long: ind = subbillings_long.index(r.experiment.get_exp_type_display()) Nwutmp = np.array([r.wu if idx == ind else 0 for idx in range(len(subbillings_long))]) Nwu += Nwutmp return Nwu def populate_releve(records_list, project, entity, show_time=True): subbilling_long = get_subbillings_from_entity_long(entity) wb = load_workbook(filename=os.path.join(settings.STATIC_ROOT, 'template_facturation.xlsx')) ws = wb.create_sheet('Relevé') ws.append([None]) ws.append([None]) if entity == 'MECA' or entity == 'ELEC': header = ['Date', 'Worker', 'Session'] else: header = ['Date', 'Experiment', 'Session'] header.extend(subbilling_long) ws.append(header) Nwu = calculate_wus(records_list, entity) for records in records_list: records = records.order_by('experiment', 'date_from') for r in records: date_to = None date_from = r.date_from.strftime('%d/%m/%Y') time_to = None time_from = None if hasattr(r, 'time_from'): if isinstance(r.time_from, datetime.time): time_from = r.time_from.strftime('%H:%M:%S') else: time_from = r.get_time_from_display() if hasattr(r, 'date_to'): date_to = r.date_to.strftime('%d/%m/%Y') if hasattr(r, 'time_to'): if isinstance(r.time_to, datetime.time): time_to = r.time_to.strftime('%H:%M:%S') else: time_to = r.get_time_to_display() if date_to is not None: session = f"du {date_from}-{time_from if show_time else ''} au {date_to}-{time_to if show_time else ''}" else: session = f"le {date_from}: {time_from if show_time else ''} - {time_to if show_time else ''}" ind = subbilling_long.index(r.experiment.get_exp_type_display()) wus = [r.wu if idx == ind else None for idx in range(len(subbilling_long))] row = [r.date_from, str(r.experiment.experiment), session] row.extend(wus) ws.append(row) res = [None, None, 'Total:'] res.extend(Nwu) ws.append(res) last_cell = ws.calculate_dimension().split(':')[1] cell = ws[last_cell] letter = get_column_letter(cell.column) icol = cell.column irow = cell.row cells = ws['A3':f'{letter}{irow}'] for row in cells: for cell in row: cell.border = get_border('medium') cell.alignment = alignment ws.append([None]) set_columns_width(ws) ws['A1'] = f"Relevé des séances sur le projet: {str(project)}" ws['A1'].font = Font(name='Times New Roman', size=10, bold=False,) return wb, Nwu def calculate_totals(project, records_list, entity): wus = calculate_wus(records_list, entity) subbilling_short = get_subbillings_from_entity_short(entity) totals = [0] for ind, bill in enumerate(subbilling_short): price, tarification = get_project_price(project, entity, bill) totals[0] += wus[ind]*price return totals def get_project_price(project, entity, bill): if project.is_academic: tarification = 'académique' if project.is_national: tarification += ' nationale' price = Price.objects.get(price_entity=entity, price_category='T3ANR', price_name=bill).price else: tarification += ' internationale ou privée' price = Price.objects.get(price_entity=entity, price_category='T3', price_name=bill).price if not project.is_cnrs: price += price * CNRS_PERCENTAGE / 100 tarification += ' non gérée par le CNRS' else: tarification += ' gérée par le CNRS' else: tarification = 'privée' price = Price.objects.get(price_entity=entity, price_category='T1', price_name=bill).price return price, tarification def populate_facture(extraction_name, extraction, entity): records_list = [] for act in get_activities_from_entity(entity): records_list.append(getattr(extraction, f'{act}_record_related').all()) project = extraction.project dates = [extraction.date_after.strftime('%d/%m/%Y'), extraction.date_before.strftime('%d/%m/%Y'),] wb, wus = populate_releve(records_list, project, entity) ws = wb['Facture'] totals = calculate_totals(project, records_list, entity) subbilling_short = get_subbillings_from_entity_short(entity) subbilling_long = get_subbillings_from_entity_long(entity) for ind, bill in enumerate(subbilling_short): price, tarification = get_project_price(project, entity, bill) row = [None, subbilling_long[ind], wus[ind], price, to_string(wus[ind]*price)] ws.append(row) ws.append([None, None, None, 'Total (€HT):', to_string(totals[0])]) letter = 'E' irow = 24 + len(subbilling_long) + 1 cells = ws['C24':f'{letter}{24}'] for row in cells: for cell in row: cell.border = get_border('medium') cell.alignment = alignment cells = ws['B25':f'{letter}{irow}'] for ind in range(25, irow+1): ws.row_dimensions[ind].height = 40 for row in cells: for cell in row: cell.border = get_border('medium') cell.alignment = alignment ws['C13'] = str(project.project_pi) ws['C14'] = project.project_name ws['C17'] = get_entity_long(entity) ws['C20'] = dates[0] ws['E20'] = dates[1] ws['G6'] = date.today().strftime('%d/%m/%Y') ws['C2'] = extraction_name facture_object = '" et de "'.join(subbilling_long) ws['C19'] = f'Séances de "{facture_object}"' ws['B22'] = f'Tarification {tarification}' return wb def export_book(wb): stream = BytesIO() wb.save(stream) return stream.getvalue() def generate_xlsx(extraction): ext_id = extraction.creation_id entity = extraction.billing extraction_name = f"{entity} {date.today().strftime('%y')}-{ext_id:03d}" wb = populate_facture(extraction_name, extraction, entity) data = export_book(wb) filename = f'extract_{extraction_name}.xlsx' response = HttpResponse(content_type="application/vnd.ms-excel") response["Content-Disposition"] = 'attachment; filename="{}"'.format(filename) response.write(data) return response def create_extraction(entity, records_list, project, filter): ext_id = Extraction.objects.all().filter(creation_date__year=date.today().year).aggregate(Max('creation_id'))['creation_id__max'] if ext_id is not None: ext_id += 1 else: ext_id = 0 totals = calculate_totals(project, records_list, entity) total = totals[0] ext = Extraction(project=project, date_after=filter.form.cleaned_data['date_from'].start, date_before=filter.form.cleaned_data['date_from'].stop, creation_id=ext_id, amount=total, billing=entity) ext.save() for records in records_list: for r in records: r.extraction = ext r.save() return ext
none
1
2.056441
2
datafiles/tests/test_mapper.py
jacebrowning/datafiles
151
6631328
# pylint: disable=unused-variable import platform from dataclasses import dataclass from pathlib import Path import pytest from datafiles.config import Meta from datafiles.mapper import Mapper, create_mapper @dataclass class MyClass: foobar: int class MyField: @classmethod def to_preserialization_data(cls, python_value): return python_value def describe_mapper(): @pytest.fixture def mapper(): return Mapper( instance=MyClass(foobar=42), attrs={}, pattern=None, manual=Meta.datafile_manual, defaults=Meta.datafile_defaults, infer=Meta.datafile_infer, ) def describe_path(): def is_none_when_no_pattern(expect, mapper): expect(mapper.path).is_(None) def is_relative_to_file_by_default(expect, mapper): mapper._pattern = '../../tmp/sample.yml' root = Path(__file__).parents[2] expect(mapper.path) == root / 'tmp' / 'sample.yml' def is_absolute_when_specified(expect, mapper): mapper._pattern = '/private/tmp/sample.yml' if platform.system() == 'Windows': path = Path('C:/private/tmp/sample.yml') else: path = Path('/private/tmp/sample.yml') expect(mapper.path) == path def is_relative_to_cwd_when_specified(expect, mapper): mapper._pattern = './foobar/sample.yml' if platform.system() == 'Windows': path = Path('foobar/sample.yml') else: path = Path.cwd() / 'foobar' / 'sample.yml' expect(mapper.path) == path def describe_relpath(): def when_cwd_is_parent(expect, mapper): mapper._pattern = '../../tmp/sample.yml' expect(mapper.relpath) == Path('tmp', 'sample.yml') def when_cwd_is_sibling(expect, mapper): mapper._pattern = '../../../tmp/sample.yml' expect(mapper.relpath) == Path('..', 'tmp', 'sample.yml') def describe_text(): def is_blank_when_no_attrs(expect, mapper): expect(mapper.text) == "" def is_yaml_by_default(expect, mapper): mapper.attrs = {'foobar': MyField} expect(mapper.text) == "foobar: 42\n" def with_json_format(expect, mapper): mapper._pattern = '_.json' mapper.attrs = {'foobar': MyField} expect(mapper.text) == '{\n "foobar": 42\n}' def with_toml_format(expect, mapper): mapper._pattern = '_.toml' mapper.attrs = {'foobar': MyField} expect(mapper.text) == "foobar = 42\n" def with_no_format(expect, mapper): mapper._pattern = '_' mapper.attrs = {'foobar': MyField} expect(mapper.text) == "foobar: 42\n" def with_unknown_format(expect, mapper): mapper._pattern = '_.xyz' mapper.attrs = {'foobar': MyField} with expect.raises(ValueError): print(mapper.text) def describe_load(): def it_requires_path(expect, mapper): with expect.raises(RuntimeError): mapper.load() def describe_save(): def it_requires_path(expect, mapper): with expect.raises(RuntimeError): mapper.save() def describe_create_mapper(): def it_reuses_existing_datafile(mocker, expect): obj = mocker.Mock() mapper = mocker.Mock() obj.datafile = mapper new_mapper = create_mapper(obj) expect(new_mapper) == obj.datafile
# pylint: disable=unused-variable import platform from dataclasses import dataclass from pathlib import Path import pytest from datafiles.config import Meta from datafiles.mapper import Mapper, create_mapper @dataclass class MyClass: foobar: int class MyField: @classmethod def to_preserialization_data(cls, python_value): return python_value def describe_mapper(): @pytest.fixture def mapper(): return Mapper( instance=MyClass(foobar=42), attrs={}, pattern=None, manual=Meta.datafile_manual, defaults=Meta.datafile_defaults, infer=Meta.datafile_infer, ) def describe_path(): def is_none_when_no_pattern(expect, mapper): expect(mapper.path).is_(None) def is_relative_to_file_by_default(expect, mapper): mapper._pattern = '../../tmp/sample.yml' root = Path(__file__).parents[2] expect(mapper.path) == root / 'tmp' / 'sample.yml' def is_absolute_when_specified(expect, mapper): mapper._pattern = '/private/tmp/sample.yml' if platform.system() == 'Windows': path = Path('C:/private/tmp/sample.yml') else: path = Path('/private/tmp/sample.yml') expect(mapper.path) == path def is_relative_to_cwd_when_specified(expect, mapper): mapper._pattern = './foobar/sample.yml' if platform.system() == 'Windows': path = Path('foobar/sample.yml') else: path = Path.cwd() / 'foobar' / 'sample.yml' expect(mapper.path) == path def describe_relpath(): def when_cwd_is_parent(expect, mapper): mapper._pattern = '../../tmp/sample.yml' expect(mapper.relpath) == Path('tmp', 'sample.yml') def when_cwd_is_sibling(expect, mapper): mapper._pattern = '../../../tmp/sample.yml' expect(mapper.relpath) == Path('..', 'tmp', 'sample.yml') def describe_text(): def is_blank_when_no_attrs(expect, mapper): expect(mapper.text) == "" def is_yaml_by_default(expect, mapper): mapper.attrs = {'foobar': MyField} expect(mapper.text) == "foobar: 42\n" def with_json_format(expect, mapper): mapper._pattern = '_.json' mapper.attrs = {'foobar': MyField} expect(mapper.text) == '{\n "foobar": 42\n}' def with_toml_format(expect, mapper): mapper._pattern = '_.toml' mapper.attrs = {'foobar': MyField} expect(mapper.text) == "foobar = 42\n" def with_no_format(expect, mapper): mapper._pattern = '_' mapper.attrs = {'foobar': MyField} expect(mapper.text) == "foobar: 42\n" def with_unknown_format(expect, mapper): mapper._pattern = '_.xyz' mapper.attrs = {'foobar': MyField} with expect.raises(ValueError): print(mapper.text) def describe_load(): def it_requires_path(expect, mapper): with expect.raises(RuntimeError): mapper.load() def describe_save(): def it_requires_path(expect, mapper): with expect.raises(RuntimeError): mapper.save() def describe_create_mapper(): def it_reuses_existing_datafile(mocker, expect): obj = mocker.Mock() mapper = mocker.Mock() obj.datafile = mapper new_mapper = create_mapper(obj) expect(new_mapper) == obj.datafile
en
0.542122
# pylint: disable=unused-variable
2.047433
2
code-example/ch03/vowels3.py
grahovsky/python-edu
0
6631329
<filename>code-example/ch03/vowels3.py vowels = ['a', 'e', 'i', 'o', 'u'] word = input("Provide a word to search for vowels: ") found = {} for letter in word: if letter in vowels: found.setdefault(letter, 0) found[letter] += 1 for vowel in sorted(found): print(vowel, 'occurred', found[vowel], 'times.') print() for vowel in sorted(found, key=found.get, reverse=True): print(vowel, 'occurred', found[vowel], 'times.')
<filename>code-example/ch03/vowels3.py vowels = ['a', 'e', 'i', 'o', 'u'] word = input("Provide a word to search for vowels: ") found = {} for letter in word: if letter in vowels: found.setdefault(letter, 0) found[letter] += 1 for vowel in sorted(found): print(vowel, 'occurred', found[vowel], 'times.') print() for vowel in sorted(found, key=found.get, reverse=True): print(vowel, 'occurred', found[vowel], 'times.')
none
1
4.138385
4
evaluation/evaluate_text_classification.py
dyrson11/NL-Augmenter
0
6631330
from tasks.TaskTypes import TaskType import numpy as np import enum from datasets import load_dataset from transformers import pipeline from dataset import TextLineDataset, KeyValueDataset import torch # make this to work for three task. class SENTIMENT_LABELS(enum.Enum): NEGATIVE = 0 POSITIVE = 1 class NLI_LABELS(enum.Enum): ENTAILMENT = 0 NEUTRAL = 1 CONTRADICTION = 2 class QQP_LABEL(enum.Enum): NON_DUPLICATE = 0 DUPLICATE = 1 def _process_data(dataset_name, split): if dataset_name in ["qqp", "sst2"]: hf_dataset = load_dataset("glue", dataset_name, split=split) elif dataset_name in ["clue"]: hf_dataset = load_dataset(dataset_name, "cluewsc2020", split=split) else: hf_dataset = load_dataset(dataset_name, split=split) if dataset_name == "imdb": label_name = "label" label_func = ( lambda x: SENTIMENT_LABELS.POSITIVE if x == 1 else SENTIMENT_LABELS.NEGATIVE ) instance_name = ["text"] data_class = TextLineDataset elif dataset_name == "sst2": label_name = "label" label_func = ( lambda x: SENTIMENT_LABELS.POSITIVE if x == 1 else SENTIMENT_LABELS.NEGATIVE ) instance_name = ["sentence"] data_class = TextLineDataset elif dataset_name == "clue": label_name = "label" label_func = ( lambda x: SENTIMENT_LABELS.POSITIVE if x == 1 else SENTIMENT_LABELS.NEGATIVE ) instance_name = ["text"] data_class = TextLineDataset elif dataset_name in ["multi_nli", "snli"]: label_name = "label" def label_func(d): if d == 0: return NLI_LABELS.ENTAILMENT elif d == 1: return NLI_LABELS.NEUTRAL elif d == 2: return NLI_LABELS.CONTRADICTION instance_name = ["premise", "hypothesis"] data_class = KeyValueDataset elif dataset_name == "qqp": label_name = "label" instance_name = ["question1", "question2"] def label_func(d): if d == 1: return QQP_LABEL.DUPLICATE else: return QQP_LABEL.NON_DUPLICATE data_class = KeyValueDataset datasets = data_class.from_huggingface( hf_dataset, fields=instance_name + [label_name], task_type=TaskType.TEXT_CLASSIFICATION, max_size=1000, ) return datasets, label_func def _process_data_with_training(dataset_name, split): if dataset_name in ["qqp", "sst2"]: train_dataset, hf_dataset = load_dataset( "glue", dataset_name, split=split ) else: train_dataset, hf_dataset = load_dataset(dataset_name, split=split) if dataset_name == "imdb": label_name = "label" label_func = ( lambda x: SENTIMENT_LABELS.POSITIVE if x == 1 else SENTIMENT_LABELS.NEGATIVE ) instance_name = ["text"] data_class = TextLineDataset elif dataset_name == "sst2": label_name = "label" label_func = ( lambda x: SENTIMENT_LABELS.POSITIVE if x == 1 else SENTIMENT_LABELS.NEGATIVE ) instance_name = ["sentence"] data_class = TextLineDataset elif dataset_name in ["multi_nli", "snli"]: label_name = "label" def label_func(d): if d == 0: return NLI_LABELS.ENTAILMENT elif d == 1: return NLI_LABELS.NEUTRAL elif d == 2: return NLI_LABELS.CONTRADICTION instance_name = ["premise", "hypothesis"] data_class = KeyValueDataset elif dataset_name == "qqp": label_name = "label" instance_name = ["question1", "question2"] def label_func(d): if d == 1: return QQP_LABEL.DUPLICATE else: return QQP_LABEL.NON_DUPLICATE data_class = KeyValueDataset datasets = data_class.from_huggingface_with_training( train_dataset, hf_dataset, fields=instance_name + [label_name], task_type=TaskType.TEXT_CLASSIFICATION, max_size=1000, ) return datasets, label_func def _get_instance_by_keys(example): if type(example) == str: return example elif len(example) == 1: return example[0] if type(example[0]) == str else example[0][0] else: return tuple([e if type(e) == str else e[0] for e in example]) def _process_model_pred(model_name, pred): if model_name == "aychang/roberta-base-imdb": return ( SENTIMENT_LABELS.POSITIVE if pred == "pos" else SENTIMENT_LABELS.NEGATIVE ) elif model_name in [ "textattack/roberta-base-imdb", "textattack/roberta-base-SST-2", "clue/roberta_chinese_base", "clue/roberta_chinese_clue_large", ]: return ( SENTIMENT_LABELS.POSITIVE if pred == "LABEL_1" else SENTIMENT_LABELS.NEGATIVE ) elif model_name in [ "ji-xin/roberta_base-QQP-two_stage", "textattack/bert-base-uncased-QQP", ]: return ( QQP_LABEL.DUPLICATE if pred == "LABEL_1" else QQP_LABEL.NON_DUPLICATE ) elif model_name == "roberta-large-mnli": if pred == "CONTRADICTION": return NLI_LABELS.CONTRADICTION elif pred == "ENTAILMENT": return NLI_LABELS.ENTAILMENT else: return NLI_LABELS.NEUTRAL elif model_name == "textattack/bert-base-uncased-snli": if pred == "LABEL_0": return NLI_LABELS.CONTRADICTION elif pred == "LABEL_1": return NLI_LABELS.ENTAILMENT else: return NLI_LABELS.NEUTRAL def evaluate_with_training( operation, evaluate_filter, model_name, dataset_name, split="test[:20%]", batch_size=8, is_cuda=torch.cuda.is_available(), ): if model_name is None: model_name = "aychang/roberta-base-imdb" if dataset_name is None: dataset_name = "imdb" print( f"Loading <{dataset_name}> dataset to evaluate <{model_name}> model." ) text_classification_pipeline = pipeline( "sentiment-analysis", model=model_name, tokenizer=model_name, device=0 if is_cuda else -1, ) percent = f"[{split.split('[')[-1]}" if "[" in split else "" if dataset_name == "multi_nli": split = ("train", f"validation_matched{percent}") elif dataset_name == "imdb": split = ("train", split) else: split = ("train", f"validation{percent}") print(split) performance = { "split": split, "model_name": model_name, "dataset_name": dataset_name, } dataset, label_func = _process_data_with_training(dataset_name, split) print( f"Here is the performance of the model {model_name} on the {split} split of the {dataset_name} dataset" ) if evaluate_filter: filtered_dataset = dataset.apply_filter(operation) print("Here is the performance of the model on the filtered set") accuracy, total = evaluate_dataset( text_classification_pipeline, filtered_dataset, model_name, label_func, batch_size=batch_size, ) performance["accuracy"] = accuracy performance["no_of_examples"] = total else: accuracy, total = evaluate_dataset( text_classification_pipeline, dataset, model_name, label_func, batch_size=batch_size, ) performance["accuracy"] = accuracy performance["no_of_examples"] = total pt_dataset = dataset.apply_transformation(operation) if pt_dataset is None: print(f"No transformation applied.") accuracy = 0 else: print( "Here is the performance of the model on the transformed set" ) accuracy, _ = evaluate_dataset( text_classification_pipeline, pt_dataset, model_name, label_func, batch_size=batch_size, ) performance["pt_accuracy"] = accuracy # (3) Execute perturbation # (4) Execute the performance of the original set and the perturbed set return performance def evaluate( operation, evaluate_filter, model_name, dataset_name, split="test[:20%]", batch_size=8, is_cuda=torch.cuda.is_available(), ): if model_name is None: model_name = "aychang/roberta-base-imdb" if dataset_name is None: dataset_name = "imdb" print( f"Loading <{dataset_name}> dataset to evaluate <{model_name}> model." ) # For the roberta_chinese_base model, you have to call the tokenizer for BERT instead: # https://huggingface.co/clue/roberta_chinese_base if model_name in [ "clue/roberta_chinese_base", "clue/roberta_chinese_clue_large", ]: text_classification_pipeline = pipeline( "sentiment-analysis", model=model_name, tokenizer="bert-base-chinese", device=0 if is_cuda else -1, ) else: text_classification_pipeline = pipeline( "sentiment-analysis", model=model_name, tokenizer=model_name, device=0 if is_cuda else -1, ) percent = f"[{split.split('[')[-1]}" if "[" in split else "" if dataset_name == "multi_nli": split = f"validation_matched{percent}" elif dataset_name != "imdb": split = f"validation{percent}" performance = { "model_name": model_name, "split": split, "dataset_name": dataset_name, } dataset, label_func = _process_data(dataset_name, split) print( f"Here is the performance of the model {model_name} on the {split} split of the {dataset_name} dataset" ) if evaluate_filter: filtered_dataset = dataset.apply_filter(operation) print("Here is the performance of the model on the filtered set") accuracy, total = evaluate_dataset( text_classification_pipeline, filtered_dataset, model_name, label_func, batch_size=batch_size, ) performance["accuracy"] = accuracy performance["no_of_examples"] = total else: accuracy, total = evaluate_dataset( text_classification_pipeline, dataset, model_name, label_func, batch_size=batch_size, ) performance["accuracy"] = accuracy performance["no_of_examples"] = total pt_dataset = dataset.apply_transformation(operation) if pt_dataset is None: print(f"No transformation applied.") accuracy = 0 else: print( "Here is the performance of the model on the transformed set" ) accuracy, _ = evaluate_dataset( text_classification_pipeline, pt_dataset, model_name, label_func, batch_size=batch_size, ) performance["pt_accuracy"] = accuracy # (3) Execute perturbation # (4) Execute the performance of the original set and the perturbed set return performance def _get_model_pred(model, examples, batch_size): all_preds = [] with torch.no_grad(): for e in range(0, len(examples), batch_size): all_preds += model(examples[e : e + batch_size], truncation=True) return [a["label"] for a in all_preds] def evaluate_dataset( text_classification_pipeline, dataset, model_name, label_func, batch_size=32, ): accuracy = 0 total = 0 examples = [ _get_instance_by_keys(list(raw_text)[:-1]) for raw_text in dataset ] labels = [label_func(list(raw_text)[-1]) for raw_text in dataset] raw_preds = _get_model_pred( text_classification_pipeline, examples, batch_size=batch_size ) preds = [ _process_model_pred(model_name, raw_pred) for raw_pred in raw_preds ] accuracy = np.round(100 * np.mean(np.array(labels) == np.array(preds))) total = len(labels) print( f"The accuracy on this subset which has {total} examples = {accuracy}" ) return accuracy, total
from tasks.TaskTypes import TaskType import numpy as np import enum from datasets import load_dataset from transformers import pipeline from dataset import TextLineDataset, KeyValueDataset import torch # make this to work for three task. class SENTIMENT_LABELS(enum.Enum): NEGATIVE = 0 POSITIVE = 1 class NLI_LABELS(enum.Enum): ENTAILMENT = 0 NEUTRAL = 1 CONTRADICTION = 2 class QQP_LABEL(enum.Enum): NON_DUPLICATE = 0 DUPLICATE = 1 def _process_data(dataset_name, split): if dataset_name in ["qqp", "sst2"]: hf_dataset = load_dataset("glue", dataset_name, split=split) elif dataset_name in ["clue"]: hf_dataset = load_dataset(dataset_name, "cluewsc2020", split=split) else: hf_dataset = load_dataset(dataset_name, split=split) if dataset_name == "imdb": label_name = "label" label_func = ( lambda x: SENTIMENT_LABELS.POSITIVE if x == 1 else SENTIMENT_LABELS.NEGATIVE ) instance_name = ["text"] data_class = TextLineDataset elif dataset_name == "sst2": label_name = "label" label_func = ( lambda x: SENTIMENT_LABELS.POSITIVE if x == 1 else SENTIMENT_LABELS.NEGATIVE ) instance_name = ["sentence"] data_class = TextLineDataset elif dataset_name == "clue": label_name = "label" label_func = ( lambda x: SENTIMENT_LABELS.POSITIVE if x == 1 else SENTIMENT_LABELS.NEGATIVE ) instance_name = ["text"] data_class = TextLineDataset elif dataset_name in ["multi_nli", "snli"]: label_name = "label" def label_func(d): if d == 0: return NLI_LABELS.ENTAILMENT elif d == 1: return NLI_LABELS.NEUTRAL elif d == 2: return NLI_LABELS.CONTRADICTION instance_name = ["premise", "hypothesis"] data_class = KeyValueDataset elif dataset_name == "qqp": label_name = "label" instance_name = ["question1", "question2"] def label_func(d): if d == 1: return QQP_LABEL.DUPLICATE else: return QQP_LABEL.NON_DUPLICATE data_class = KeyValueDataset datasets = data_class.from_huggingface( hf_dataset, fields=instance_name + [label_name], task_type=TaskType.TEXT_CLASSIFICATION, max_size=1000, ) return datasets, label_func def _process_data_with_training(dataset_name, split): if dataset_name in ["qqp", "sst2"]: train_dataset, hf_dataset = load_dataset( "glue", dataset_name, split=split ) else: train_dataset, hf_dataset = load_dataset(dataset_name, split=split) if dataset_name == "imdb": label_name = "label" label_func = ( lambda x: SENTIMENT_LABELS.POSITIVE if x == 1 else SENTIMENT_LABELS.NEGATIVE ) instance_name = ["text"] data_class = TextLineDataset elif dataset_name == "sst2": label_name = "label" label_func = ( lambda x: SENTIMENT_LABELS.POSITIVE if x == 1 else SENTIMENT_LABELS.NEGATIVE ) instance_name = ["sentence"] data_class = TextLineDataset elif dataset_name in ["multi_nli", "snli"]: label_name = "label" def label_func(d): if d == 0: return NLI_LABELS.ENTAILMENT elif d == 1: return NLI_LABELS.NEUTRAL elif d == 2: return NLI_LABELS.CONTRADICTION instance_name = ["premise", "hypothesis"] data_class = KeyValueDataset elif dataset_name == "qqp": label_name = "label" instance_name = ["question1", "question2"] def label_func(d): if d == 1: return QQP_LABEL.DUPLICATE else: return QQP_LABEL.NON_DUPLICATE data_class = KeyValueDataset datasets = data_class.from_huggingface_with_training( train_dataset, hf_dataset, fields=instance_name + [label_name], task_type=TaskType.TEXT_CLASSIFICATION, max_size=1000, ) return datasets, label_func def _get_instance_by_keys(example): if type(example) == str: return example elif len(example) == 1: return example[0] if type(example[0]) == str else example[0][0] else: return tuple([e if type(e) == str else e[0] for e in example]) def _process_model_pred(model_name, pred): if model_name == "aychang/roberta-base-imdb": return ( SENTIMENT_LABELS.POSITIVE if pred == "pos" else SENTIMENT_LABELS.NEGATIVE ) elif model_name in [ "textattack/roberta-base-imdb", "textattack/roberta-base-SST-2", "clue/roberta_chinese_base", "clue/roberta_chinese_clue_large", ]: return ( SENTIMENT_LABELS.POSITIVE if pred == "LABEL_1" else SENTIMENT_LABELS.NEGATIVE ) elif model_name in [ "ji-xin/roberta_base-QQP-two_stage", "textattack/bert-base-uncased-QQP", ]: return ( QQP_LABEL.DUPLICATE if pred == "LABEL_1" else QQP_LABEL.NON_DUPLICATE ) elif model_name == "roberta-large-mnli": if pred == "CONTRADICTION": return NLI_LABELS.CONTRADICTION elif pred == "ENTAILMENT": return NLI_LABELS.ENTAILMENT else: return NLI_LABELS.NEUTRAL elif model_name == "textattack/bert-base-uncased-snli": if pred == "LABEL_0": return NLI_LABELS.CONTRADICTION elif pred == "LABEL_1": return NLI_LABELS.ENTAILMENT else: return NLI_LABELS.NEUTRAL def evaluate_with_training( operation, evaluate_filter, model_name, dataset_name, split="test[:20%]", batch_size=8, is_cuda=torch.cuda.is_available(), ): if model_name is None: model_name = "aychang/roberta-base-imdb" if dataset_name is None: dataset_name = "imdb" print( f"Loading <{dataset_name}> dataset to evaluate <{model_name}> model." ) text_classification_pipeline = pipeline( "sentiment-analysis", model=model_name, tokenizer=model_name, device=0 if is_cuda else -1, ) percent = f"[{split.split('[')[-1]}" if "[" in split else "" if dataset_name == "multi_nli": split = ("train", f"validation_matched{percent}") elif dataset_name == "imdb": split = ("train", split) else: split = ("train", f"validation{percent}") print(split) performance = { "split": split, "model_name": model_name, "dataset_name": dataset_name, } dataset, label_func = _process_data_with_training(dataset_name, split) print( f"Here is the performance of the model {model_name} on the {split} split of the {dataset_name} dataset" ) if evaluate_filter: filtered_dataset = dataset.apply_filter(operation) print("Here is the performance of the model on the filtered set") accuracy, total = evaluate_dataset( text_classification_pipeline, filtered_dataset, model_name, label_func, batch_size=batch_size, ) performance["accuracy"] = accuracy performance["no_of_examples"] = total else: accuracy, total = evaluate_dataset( text_classification_pipeline, dataset, model_name, label_func, batch_size=batch_size, ) performance["accuracy"] = accuracy performance["no_of_examples"] = total pt_dataset = dataset.apply_transformation(operation) if pt_dataset is None: print(f"No transformation applied.") accuracy = 0 else: print( "Here is the performance of the model on the transformed set" ) accuracy, _ = evaluate_dataset( text_classification_pipeline, pt_dataset, model_name, label_func, batch_size=batch_size, ) performance["pt_accuracy"] = accuracy # (3) Execute perturbation # (4) Execute the performance of the original set and the perturbed set return performance def evaluate( operation, evaluate_filter, model_name, dataset_name, split="test[:20%]", batch_size=8, is_cuda=torch.cuda.is_available(), ): if model_name is None: model_name = "aychang/roberta-base-imdb" if dataset_name is None: dataset_name = "imdb" print( f"Loading <{dataset_name}> dataset to evaluate <{model_name}> model." ) # For the roberta_chinese_base model, you have to call the tokenizer for BERT instead: # https://huggingface.co/clue/roberta_chinese_base if model_name in [ "clue/roberta_chinese_base", "clue/roberta_chinese_clue_large", ]: text_classification_pipeline = pipeline( "sentiment-analysis", model=model_name, tokenizer="bert-base-chinese", device=0 if is_cuda else -1, ) else: text_classification_pipeline = pipeline( "sentiment-analysis", model=model_name, tokenizer=model_name, device=0 if is_cuda else -1, ) percent = f"[{split.split('[')[-1]}" if "[" in split else "" if dataset_name == "multi_nli": split = f"validation_matched{percent}" elif dataset_name != "imdb": split = f"validation{percent}" performance = { "model_name": model_name, "split": split, "dataset_name": dataset_name, } dataset, label_func = _process_data(dataset_name, split) print( f"Here is the performance of the model {model_name} on the {split} split of the {dataset_name} dataset" ) if evaluate_filter: filtered_dataset = dataset.apply_filter(operation) print("Here is the performance of the model on the filtered set") accuracy, total = evaluate_dataset( text_classification_pipeline, filtered_dataset, model_name, label_func, batch_size=batch_size, ) performance["accuracy"] = accuracy performance["no_of_examples"] = total else: accuracy, total = evaluate_dataset( text_classification_pipeline, dataset, model_name, label_func, batch_size=batch_size, ) performance["accuracy"] = accuracy performance["no_of_examples"] = total pt_dataset = dataset.apply_transformation(operation) if pt_dataset is None: print(f"No transformation applied.") accuracy = 0 else: print( "Here is the performance of the model on the transformed set" ) accuracy, _ = evaluate_dataset( text_classification_pipeline, pt_dataset, model_name, label_func, batch_size=batch_size, ) performance["pt_accuracy"] = accuracy # (3) Execute perturbation # (4) Execute the performance of the original set and the perturbed set return performance def _get_model_pred(model, examples, batch_size): all_preds = [] with torch.no_grad(): for e in range(0, len(examples), batch_size): all_preds += model(examples[e : e + batch_size], truncation=True) return [a["label"] for a in all_preds] def evaluate_dataset( text_classification_pipeline, dataset, model_name, label_func, batch_size=32, ): accuracy = 0 total = 0 examples = [ _get_instance_by_keys(list(raw_text)[:-1]) for raw_text in dataset ] labels = [label_func(list(raw_text)[-1]) for raw_text in dataset] raw_preds = _get_model_pred( text_classification_pipeline, examples, batch_size=batch_size ) preds = [ _process_model_pred(model_name, raw_pred) for raw_pred in raw_preds ] accuracy = np.round(100 * np.mean(np.array(labels) == np.array(preds))) total = len(labels) print( f"The accuracy on this subset which has {total} examples = {accuracy}" ) return accuracy, total
en
0.783627
# make this to work for three task. # (3) Execute perturbation # (4) Execute the performance of the original set and the perturbed set # For the roberta_chinese_base model, you have to call the tokenizer for BERT instead: # https://huggingface.co/clue/roberta_chinese_base # (3) Execute perturbation # (4) Execute the performance of the original set and the perturbed set
2.521698
3
tinder_py/tinder/entities/update.py
hc5aleksandrov/autotinder
0
6631331
<reponame>hc5aleksandrov/autotinder from typing import List class NewMessage: """ Container for a new message holding the message and match id. """ __slots__ = ["message_id", "match_id"] def __init__(self, message_id: str, match_id: str): self.message_id: str = message_id self.match_id: str = match_id class Update: """ Describes an update sent by Tinder containing information about new matches and messages. """ __slots__ = ["new_matches", "new_messages", "update"] def __init__(self, update: dict): self.new_matches: List[str] = [] """A list of all new matches""" self.new_messages: List[NewMessage] = [] """A list of all new messages""" for match in update["matches"]: seen = True if "seen" in match: seen = match["seen"]["match_seen"] if seen: for message in match["messages"]: self.new_messages.append(NewMessage(message["_id"], message["match_id"])) else: self.new_matches.append(match["_id"]) self.update: dict = update """The raw update event response"""
from typing import List class NewMessage: """ Container for a new message holding the message and match id. """ __slots__ = ["message_id", "match_id"] def __init__(self, message_id: str, match_id: str): self.message_id: str = message_id self.match_id: str = match_id class Update: """ Describes an update sent by Tinder containing information about new matches and messages. """ __slots__ = ["new_matches", "new_messages", "update"] def __init__(self, update: dict): self.new_matches: List[str] = [] """A list of all new matches""" self.new_messages: List[NewMessage] = [] """A list of all new messages""" for match in update["matches"]: seen = True if "seen" in match: seen = match["seen"]["match_seen"] if seen: for message in match["messages"]: self.new_messages.append(NewMessage(message["_id"], message["match_id"])) else: self.new_matches.append(match["_id"]) self.update: dict = update """The raw update event response"""
en
0.673338
Container for a new message holding the message and match id. Describes an update sent by Tinder containing information about new matches and messages. A list of all new matches A list of all new messages The raw update event response
3.289851
3
string/solution/1316.py
gpgun0/baekjoon_
0
6631332
<gh_stars>0 class Solution: def main(self, word: str) -> int: char_check_list = [0] * 26 char_check_list[ord(word[0]) - 97] = 1 for i in range(1, len(word)): if char_check_list[ord(word[i]) - 97] and word[i-1] != word[i]: return 0 char_check_list[ord(word[i]) - 97] = 1 return 1 sol = Solution() cnt = 0 n = int(input()) for _ in range(n): word = input() cnt += sol.main(word) print(cnt)
class Solution: def main(self, word: str) -> int: char_check_list = [0] * 26 char_check_list[ord(word[0]) - 97] = 1 for i in range(1, len(word)): if char_check_list[ord(word[i]) - 97] and word[i-1] != word[i]: return 0 char_check_list[ord(word[i]) - 97] = 1 return 1 sol = Solution() cnt = 0 n = int(input()) for _ in range(n): word = input() cnt += sol.main(word) print(cnt)
none
1
3.238958
3
GeneratorInterface/Core/test/test_FailingGeneratorFilter_cfg.py
AndrissP/cmssw
0
6631333
<filename>GeneratorInterface/Core/test/test_FailingGeneratorFilter_cfg.py import FWCore.ParameterSet.Config as cms import sys process = cms.Process("TEST") process.source = cms.Source("EmptySource") process.maxEvents = cms.untracked.PSet(input=cms.untracked.int32(10)) from GeneratorInterface.Core.ExternalGeneratorFilter import * process.generator = ExternalGeneratorFilter( cms.EDFilter("FailingGeneratorFilter", failAt=cms.int32(int(sys.argv[2])), failureType = cms.int32(int(sys.argv[3]))), _external_process_waitTime_ = cms.untracked.uint32(5), _external_process_verbose_ = cms.untracked.bool(True), _external_process_components_ =cms.vstring() ) process.p = cms.Path(process.generator) process.add_(cms.Service("RandomNumberGeneratorService", generator = cms.PSet( initialSeed = cms.untracked.uint32(123), engineName = cms.untracked.string('HepJamesRandom') ) ))
<filename>GeneratorInterface/Core/test/test_FailingGeneratorFilter_cfg.py import FWCore.ParameterSet.Config as cms import sys process = cms.Process("TEST") process.source = cms.Source("EmptySource") process.maxEvents = cms.untracked.PSet(input=cms.untracked.int32(10)) from GeneratorInterface.Core.ExternalGeneratorFilter import * process.generator = ExternalGeneratorFilter( cms.EDFilter("FailingGeneratorFilter", failAt=cms.int32(int(sys.argv[2])), failureType = cms.int32(int(sys.argv[3]))), _external_process_waitTime_ = cms.untracked.uint32(5), _external_process_verbose_ = cms.untracked.bool(True), _external_process_components_ =cms.vstring() ) process.p = cms.Path(process.generator) process.add_(cms.Service("RandomNumberGeneratorService", generator = cms.PSet( initialSeed = cms.untracked.uint32(123), engineName = cms.untracked.string('HepJamesRandom') ) ))
none
1
1.673215
2
tests/test_corpus.py
zhouyangnk/Montreal-Forced-Aligner
1
6631334
<filename>tests/test_corpus.py import os import sys import pytest import shutil from aligner.corpus import Corpus from aligner.dictionary import Dictionary from aligner.features.config import FeatureConfig def test_basic(basic_dict_path, basic_corpus_dir, generated_dir): dictionary = Dictionary(basic_dict_path, os.path.join(generated_dir, 'basic')) dictionary.write() output_directory = os.path.join(generated_dir, 'basic') c = Corpus(basic_corpus_dir, output_directory) c.initialize_corpus(dictionary) fc = FeatureConfig() fc.generate_features(c) assert c.get_feat_dim(fc) == 39 def test_basic_txt(basic_corpus_txt_dir, basic_dict_path, generated_dir): dictionary = Dictionary(basic_dict_path, os.path.join(generated_dir, 'basic')) dictionary.write() output_directory = os.path.join(generated_dir, 'basic') c = Corpus(basic_corpus_txt_dir, output_directory) assert len(c.no_transcription_files) == 0 c.initialize_corpus(dictionary) fc = FeatureConfig() fc.generate_features(c) assert c.get_feat_dim(fc) == 39 def test_extra(sick_dict, extra_corpus_dir, generated_dir): output_directory = os.path.join(generated_dir, 'extra') corpus = Corpus(extra_corpus_dir, output_directory, num_jobs=2) corpus.initialize_corpus(sick_dict) def test_stereo(basic_dict_path, stereo_corpus_dir, temp_dir): temp = os.path.join(temp_dir, 'stereo') dictionary = Dictionary(basic_dict_path, os.path.join(temp, 'basic')) dictionary.write() d = Corpus(stereo_corpus_dir, temp) d.initialize_corpus(dictionary) fc = FeatureConfig() fc.generate_features(d) assert d.get_feat_dim(fc) == 39 def test_short_segments(basic_dict_path, shortsegments_corpus_dir, temp_dir): temp = os.path.join(temp_dir, 'short_segments') dictionary = Dictionary(basic_dict_path, temp) dictionary.write() corpus = Corpus(shortsegments_corpus_dir, temp) corpus.initialize_corpus(dictionary) fc = FeatureConfig() fc.generate_features(corpus) assert len(corpus.feat_mapping.keys()) == 2 assert len(corpus.utt_speak_mapping.keys()) == 3 assert len(corpus.speak_utt_mapping.keys()) == 1 assert len(corpus.text_mapping.keys()) == 3 assert len(corpus.utt_wav_mapping.keys()) == 1 assert len(corpus.segments.keys()) == 3 assert len(corpus.ignored_utterances) == 1 def test_speaker_groupings(large_prosodylab_format_directory, temp_dir, large_dataset_dictionary): output_directory = os.path.join(temp_dir, 'large') shutil.rmtree(output_directory, ignore_errors=True) d = Dictionary(large_dataset_dictionary, output_directory) d.write() c = Corpus(large_prosodylab_format_directory, output_directory) c.initialize_corpus(d) fc = FeatureConfig() fc.generate_features(c) speakers = os.listdir(large_prosodylab_format_directory) for s in speakers: assert any(s in x for x in c.speaker_groups) for root, dirs, files in os.walk(large_prosodylab_format_directory): for f in files: name, ext = os.path.splitext(f) assert any(name in x for x in c.groups) for root, dirs, files in os.walk(large_prosodylab_format_directory): for f in files: name, ext = os.path.splitext(f) assert any(name in x for x in c.feat_mapping) shutil.rmtree(output_directory, ignore_errors=True) d.write() c = Corpus(large_prosodylab_format_directory, output_directory, num_jobs=2) c.initialize_corpus(d) fc.generate_features(c) for s in speakers: assert any(s in x for x in c.speaker_groups) for root, dirs, files in os.walk(large_prosodylab_format_directory): for f in files: name, ext = os.path.splitext(f) assert any(name in x for x in c.groups) for root, dirs, files in os.walk(large_prosodylab_format_directory): for f in files: name, ext = os.path.splitext(f) assert any(name in x for x in c.feat_mapping) def test_subset(large_prosodylab_format_directory, temp_dir, large_dataset_dictionary): output_directory = os.path.join(temp_dir, 'large_subset') shutil.rmtree(output_directory, ignore_errors=True) d = Dictionary(large_dataset_dictionary, output_directory) d.write() c = Corpus(large_prosodylab_format_directory, output_directory) c.initialize_corpus(d) sd = c.split_directory() fc = FeatureConfig() fc.generate_features(c) s = c.subset_directory(10, fc) assert os.path.exists(sd) assert os.path.exists(s)
<filename>tests/test_corpus.py import os import sys import pytest import shutil from aligner.corpus import Corpus from aligner.dictionary import Dictionary from aligner.features.config import FeatureConfig def test_basic(basic_dict_path, basic_corpus_dir, generated_dir): dictionary = Dictionary(basic_dict_path, os.path.join(generated_dir, 'basic')) dictionary.write() output_directory = os.path.join(generated_dir, 'basic') c = Corpus(basic_corpus_dir, output_directory) c.initialize_corpus(dictionary) fc = FeatureConfig() fc.generate_features(c) assert c.get_feat_dim(fc) == 39 def test_basic_txt(basic_corpus_txt_dir, basic_dict_path, generated_dir): dictionary = Dictionary(basic_dict_path, os.path.join(generated_dir, 'basic')) dictionary.write() output_directory = os.path.join(generated_dir, 'basic') c = Corpus(basic_corpus_txt_dir, output_directory) assert len(c.no_transcription_files) == 0 c.initialize_corpus(dictionary) fc = FeatureConfig() fc.generate_features(c) assert c.get_feat_dim(fc) == 39 def test_extra(sick_dict, extra_corpus_dir, generated_dir): output_directory = os.path.join(generated_dir, 'extra') corpus = Corpus(extra_corpus_dir, output_directory, num_jobs=2) corpus.initialize_corpus(sick_dict) def test_stereo(basic_dict_path, stereo_corpus_dir, temp_dir): temp = os.path.join(temp_dir, 'stereo') dictionary = Dictionary(basic_dict_path, os.path.join(temp, 'basic')) dictionary.write() d = Corpus(stereo_corpus_dir, temp) d.initialize_corpus(dictionary) fc = FeatureConfig() fc.generate_features(d) assert d.get_feat_dim(fc) == 39 def test_short_segments(basic_dict_path, shortsegments_corpus_dir, temp_dir): temp = os.path.join(temp_dir, 'short_segments') dictionary = Dictionary(basic_dict_path, temp) dictionary.write() corpus = Corpus(shortsegments_corpus_dir, temp) corpus.initialize_corpus(dictionary) fc = FeatureConfig() fc.generate_features(corpus) assert len(corpus.feat_mapping.keys()) == 2 assert len(corpus.utt_speak_mapping.keys()) == 3 assert len(corpus.speak_utt_mapping.keys()) == 1 assert len(corpus.text_mapping.keys()) == 3 assert len(corpus.utt_wav_mapping.keys()) == 1 assert len(corpus.segments.keys()) == 3 assert len(corpus.ignored_utterances) == 1 def test_speaker_groupings(large_prosodylab_format_directory, temp_dir, large_dataset_dictionary): output_directory = os.path.join(temp_dir, 'large') shutil.rmtree(output_directory, ignore_errors=True) d = Dictionary(large_dataset_dictionary, output_directory) d.write() c = Corpus(large_prosodylab_format_directory, output_directory) c.initialize_corpus(d) fc = FeatureConfig() fc.generate_features(c) speakers = os.listdir(large_prosodylab_format_directory) for s in speakers: assert any(s in x for x in c.speaker_groups) for root, dirs, files in os.walk(large_prosodylab_format_directory): for f in files: name, ext = os.path.splitext(f) assert any(name in x for x in c.groups) for root, dirs, files in os.walk(large_prosodylab_format_directory): for f in files: name, ext = os.path.splitext(f) assert any(name in x for x in c.feat_mapping) shutil.rmtree(output_directory, ignore_errors=True) d.write() c = Corpus(large_prosodylab_format_directory, output_directory, num_jobs=2) c.initialize_corpus(d) fc.generate_features(c) for s in speakers: assert any(s in x for x in c.speaker_groups) for root, dirs, files in os.walk(large_prosodylab_format_directory): for f in files: name, ext = os.path.splitext(f) assert any(name in x for x in c.groups) for root, dirs, files in os.walk(large_prosodylab_format_directory): for f in files: name, ext = os.path.splitext(f) assert any(name in x for x in c.feat_mapping) def test_subset(large_prosodylab_format_directory, temp_dir, large_dataset_dictionary): output_directory = os.path.join(temp_dir, 'large_subset') shutil.rmtree(output_directory, ignore_errors=True) d = Dictionary(large_dataset_dictionary, output_directory) d.write() c = Corpus(large_prosodylab_format_directory, output_directory) c.initialize_corpus(d) sd = c.split_directory() fc = FeatureConfig() fc.generate_features(c) s = c.subset_directory(10, fc) assert os.path.exists(sd) assert os.path.exists(s)
none
1
2.247202
2
saleor/product/migrations/0059_generate_variant_name_from_attrs.py
TysonRV/saleor
9
6631335
<reponame>TysonRV/saleor # Generated by Django 2.0.2 on 2018-03-11 18:54 from django.db import migrations from saleor.product.utils.attributes import get_attributes_display_map def get_name_from_attributes(variant): attributes = variant.product.product_type.variant_attributes.all() values = get_attributes_display_map(variant, attributes) return ' / '.join( attributechoice.name for attribute_pk, attributechoice in sorted( values.items(), key=lambda x: x[0])) def create_variant_name_based_on_attributes(apps, schema_editor): ProductVariant = apps.get_model('product', 'ProductVariant') for variant in ProductVariant.objects.prefetch_related( 'product__product_type__variant_attributes__values'): new_name = get_name_from_attributes(variant) if variant.name != new_name: variant.name = new_name variant.save() class Migration(migrations.Migration): dependencies = [ ('product', '0058_auto_20180329_0142'), ] operations = [ migrations.RunPython(create_variant_name_based_on_attributes, migrations.RunPython.noop) ]
# Generated by Django 2.0.2 on 2018-03-11 18:54 from django.db import migrations from saleor.product.utils.attributes import get_attributes_display_map def get_name_from_attributes(variant): attributes = variant.product.product_type.variant_attributes.all() values = get_attributes_display_map(variant, attributes) return ' / '.join( attributechoice.name for attribute_pk, attributechoice in sorted( values.items(), key=lambda x: x[0])) def create_variant_name_based_on_attributes(apps, schema_editor): ProductVariant = apps.get_model('product', 'ProductVariant') for variant in ProductVariant.objects.prefetch_related( 'product__product_type__variant_attributes__values'): new_name = get_name_from_attributes(variant) if variant.name != new_name: variant.name = new_name variant.save() class Migration(migrations.Migration): dependencies = [ ('product', '0058_auto_20180329_0142'), ] operations = [ migrations.RunPython(create_variant_name_based_on_attributes, migrations.RunPython.noop) ]
en
0.845188
# Generated by Django 2.0.2 on 2018-03-11 18:54
2.11269
2
classical/__init__.py
JosephGesnouin/Asymmetrical-Bi-RNNs-to-encode-pedestrian-trajectories
9
6631336
from .socialforce import predict from .orca import predict from .kalman import predict from .constant_velocity import predict
from .socialforce import predict from .orca import predict from .kalman import predict from .constant_velocity import predict
none
1
0.964587
1
signac/contrib/migration/__init__.py
rohanbabbar04/signac
0
6631337
<gh_stars>0 # Copyright (c) 2019 The Regents of the University of Michigan # All rights reserved. # This software is licensed under the BSD 3-Clause License. """Handle migrations of signac schema versions.""" import os import sys from filelock import FileLock from packaging import version from ...version import SCHEMA_VERSION, __version__ from .v0_to_v1 import _load_config_v1, _migrate_v0_to_v1 FN_MIGRATION_LOCKFILE = ".SIGNAC_PROJECT_MIGRATION_LOCK" # Config loaders must be functions with the signature # def config_loader(root_directory: str) -> MutableMapping # When a new schema version is introduced, a corresponding loader only needs to # be added if the old loader will no longer function. This dictionary must # contain all unique loaders for schema versions that are supported as starting # points for migration. The resulting MutableMapping config objects must be # writeable, i.e. it must be possible to persist in-memory changes from these # objects to the underlying config files. _CONFIG_LOADERS = { "1": _load_config_v1, } _MIGRATIONS = { ("0", "1"): _migrate_v0_to_v1, } _PARSED_SCHEMA_VERSION = version.parse(SCHEMA_VERSION) _VERSION_LIST = list(reversed(sorted(version.parse(v) for v in _CONFIG_LOADERS.keys()))) def _get_config_schema_version(root_directory, version_guess): # Try loading the schema using the loader corresponding to the expected # version if it has a configured loader. versions = _VERSION_LIST if version_guess in _CONFIG_LOADERS: versions = [version_guess] + versions for guess in versions: try: # Note: We could consider using a different component as the key # for _CONFIG_LOADERS, but since this is an internal detail it's # not terribly consequential. config = _CONFIG_LOADERS[guess.public](root_directory) break except Exception: # The load failed, go to the next pass else: raise RuntimeError("Unable to load config file.") try: return version.parse(config["schema_version"]) except KeyError: # The default schema version is version 0. return version.parse("0") def _collect_migrations(root_directory): schema_version = _PARSED_SCHEMA_VERSION current_schema_version = _get_config_schema_version( root_directory, _PARSED_SCHEMA_VERSION ) if current_schema_version > schema_version: # Project config schema version is newer and therefore not supported. raise RuntimeError( "The signac schema version used by this project is " f"{current_schema_version}, but signac {__version__} only " f"supports up to schema version {SCHEMA_VERSION}. Try updating " "signac." ) guess = current_schema_version while _get_config_schema_version(root_directory, guess) < schema_version: for (origin, destination), migration in _MIGRATIONS.items(): if version.parse(origin) == _get_config_schema_version( root_directory, guess ): yield (origin, destination), migration guess = version.parse(destination) break else: raise RuntimeError( "The signac schema version used by this project is " f"{_get_config_schema_version(root_directory, guess)}, but " f"signac {__version__} uses schema version {schema_version} " "and does not know how to migrate." ) def apply_migrations(root_directory): """Apply migrations to a project. This function identifies and performs all the necessary schema migrations to bring a project up to date with the current schema version of signac. The calling code does not require prior knowledge of the schema version of the project, and the function is idempotent when applied to projects that already have an up-to-date schema. Parameters ---------- root_directory : str The path to the project to migrate. """ try: lock = FileLock(os.path.join(root_directory, FN_MIGRATION_LOCKFILE)) with lock: for (origin, destination), migrate in _collect_migrations(root_directory): try: print( f"Applying migration for version {origin} to {destination}... ", end="", file=sys.stderr, ) migrate(root_directory) except Exception as e: raise RuntimeError( f"Failed to apply migration {destination}." ) from e else: config = _CONFIG_LOADERS[version.parse(destination).public]( root_directory ) config["schema_version"] = destination config.write() print("OK", file=sys.stderr) finally: try: os.unlink(lock.lock_file) except FileNotFoundError: pass __all__ = [ "apply_migrations", ]
# Copyright (c) 2019 The Regents of the University of Michigan # All rights reserved. # This software is licensed under the BSD 3-Clause License. """Handle migrations of signac schema versions.""" import os import sys from filelock import FileLock from packaging import version from ...version import SCHEMA_VERSION, __version__ from .v0_to_v1 import _load_config_v1, _migrate_v0_to_v1 FN_MIGRATION_LOCKFILE = ".SIGNAC_PROJECT_MIGRATION_LOCK" # Config loaders must be functions with the signature # def config_loader(root_directory: str) -> MutableMapping # When a new schema version is introduced, a corresponding loader only needs to # be added if the old loader will no longer function. This dictionary must # contain all unique loaders for schema versions that are supported as starting # points for migration. The resulting MutableMapping config objects must be # writeable, i.e. it must be possible to persist in-memory changes from these # objects to the underlying config files. _CONFIG_LOADERS = { "1": _load_config_v1, } _MIGRATIONS = { ("0", "1"): _migrate_v0_to_v1, } _PARSED_SCHEMA_VERSION = version.parse(SCHEMA_VERSION) _VERSION_LIST = list(reversed(sorted(version.parse(v) for v in _CONFIG_LOADERS.keys()))) def _get_config_schema_version(root_directory, version_guess): # Try loading the schema using the loader corresponding to the expected # version if it has a configured loader. versions = _VERSION_LIST if version_guess in _CONFIG_LOADERS: versions = [version_guess] + versions for guess in versions: try: # Note: We could consider using a different component as the key # for _CONFIG_LOADERS, but since this is an internal detail it's # not terribly consequential. config = _CONFIG_LOADERS[guess.public](root_directory) break except Exception: # The load failed, go to the next pass else: raise RuntimeError("Unable to load config file.") try: return version.parse(config["schema_version"]) except KeyError: # The default schema version is version 0. return version.parse("0") def _collect_migrations(root_directory): schema_version = _PARSED_SCHEMA_VERSION current_schema_version = _get_config_schema_version( root_directory, _PARSED_SCHEMA_VERSION ) if current_schema_version > schema_version: # Project config schema version is newer and therefore not supported. raise RuntimeError( "The signac schema version used by this project is " f"{current_schema_version}, but signac {__version__} only " f"supports up to schema version {SCHEMA_VERSION}. Try updating " "signac." ) guess = current_schema_version while _get_config_schema_version(root_directory, guess) < schema_version: for (origin, destination), migration in _MIGRATIONS.items(): if version.parse(origin) == _get_config_schema_version( root_directory, guess ): yield (origin, destination), migration guess = version.parse(destination) break else: raise RuntimeError( "The signac schema version used by this project is " f"{_get_config_schema_version(root_directory, guess)}, but " f"signac {__version__} uses schema version {schema_version} " "and does not know how to migrate." ) def apply_migrations(root_directory): """Apply migrations to a project. This function identifies and performs all the necessary schema migrations to bring a project up to date with the current schema version of signac. The calling code does not require prior knowledge of the schema version of the project, and the function is idempotent when applied to projects that already have an up-to-date schema. Parameters ---------- root_directory : str The path to the project to migrate. """ try: lock = FileLock(os.path.join(root_directory, FN_MIGRATION_LOCKFILE)) with lock: for (origin, destination), migrate in _collect_migrations(root_directory): try: print( f"Applying migration for version {origin} to {destination}... ", end="", file=sys.stderr, ) migrate(root_directory) except Exception as e: raise RuntimeError( f"Failed to apply migration {destination}." ) from e else: config = _CONFIG_LOADERS[version.parse(destination).public]( root_directory ) config["schema_version"] = destination config.write() print("OK", file=sys.stderr) finally: try: os.unlink(lock.lock_file) except FileNotFoundError: pass __all__ = [ "apply_migrations", ]
en
0.845021
# Copyright (c) 2019 The Regents of the University of Michigan # All rights reserved. # This software is licensed under the BSD 3-Clause License. Handle migrations of signac schema versions. # Config loaders must be functions with the signature # def config_loader(root_directory: str) -> MutableMapping # When a new schema version is introduced, a corresponding loader only needs to # be added if the old loader will no longer function. This dictionary must # contain all unique loaders for schema versions that are supported as starting # points for migration. The resulting MutableMapping config objects must be # writeable, i.e. it must be possible to persist in-memory changes from these # objects to the underlying config files. # Try loading the schema using the loader corresponding to the expected # version if it has a configured loader. # Note: We could consider using a different component as the key # for _CONFIG_LOADERS, but since this is an internal detail it's # not terribly consequential. # The load failed, go to the next # The default schema version is version 0. # Project config schema version is newer and therefore not supported. Apply migrations to a project. This function identifies and performs all the necessary schema migrations to bring a project up to date with the current schema version of signac. The calling code does not require prior knowledge of the schema version of the project, and the function is idempotent when applied to projects that already have an up-to-date schema. Parameters ---------- root_directory : str The path to the project to migrate.
1.917509
2
imcsdk/mometa/firmware/FirmwareRunning.py
kgrozis/UCS-CIMC-Scripts
0
6631338
"""This module contains the general information for FirmwareRunning ManagedObject.""" from ...imcmo import ManagedObject from ...imccoremeta import ImcVersion, MoPropertyMeta, MoMeta from ...imcmeta import VersionMeta class FirmwareRunningConsts(): DEPLOYMENT_BOOT_LOADER = "boot-loader" DEPLOYMENT_KERNEL = "kernel" DEPLOYMENT_SYSTEM = "system" DEPLOYMENT_UNSPECIFIED = "unspecified" TYPE_ADAPTOR = "adaptor" TYPE_BLADE_BIOS = "blade-bios" TYPE_BLADE_CONTROLLER = "blade-controller" TYPE_SIOC = "sioc" TYPE_STORAGE_CONTROLLER = "storage-controller" TYPE_SYSTEM = "system" TYPE_UNSPECIFIED = "unspecified" class FirmwareRunning(ManagedObject): """This is FirmwareRunning class.""" consts = FirmwareRunningConsts() naming_props = set([u'deployment']) mo_meta = MoMeta("FirmwareRunning", "firmwareRunning", "fw-[deployment]", VersionMeta.Version151f, "OutputOnly", 0xf, [], ["admin", "read-only", "user"], [u'biosUnit', u'mgmtController', u'storageController', u'systemIOController'], [], ["Get"]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version151f, MoPropertyMeta.INTERNAL, None, None, None, None, [], []), "deployment": MoPropertyMeta("deployment", "deployment", "string", VersionMeta.Version151f, MoPropertyMeta.NAMING, None, None, None, None, ["boot-loader", "kernel", "system", "unspecified"], []), "description": MoPropertyMeta("description", "description", "string", VersionMeta.Version201a, MoPropertyMeta.READ_ONLY, None, 0, 510, None, [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version151f, MoPropertyMeta.READ_ONLY, 0x2, 0, 255, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version151f, MoPropertyMeta.READ_ONLY, 0x4, 0, 255, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version151f, MoPropertyMeta.READ_ONLY, 0x8, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), "type": MoPropertyMeta("type", "type", "string", VersionMeta.Version151f, MoPropertyMeta.READ_ONLY, None, None, None, None, ["adaptor", "blade-bios", "blade-controller", "sioc", "storage-controller", "system", "unspecified"], []), "version": MoPropertyMeta("version", "version", "string", VersionMeta.Version151f, MoPropertyMeta.READ_ONLY, None, 0, 510, None, [], []), } prop_map = { "childAction": "child_action", "deployment": "deployment", "description": "description", "dn": "dn", "rn": "rn", "status": "status", "type": "type", "version": "version", } def __init__(self, parent_mo_or_dn, deployment, **kwargs): self._dirty_mask = 0 self.deployment = deployment self.child_action = None self.description = None self.status = None self.type = None self.version = None ManagedObject.__init__(self, "FirmwareRunning", parent_mo_or_dn, **kwargs)
"""This module contains the general information for FirmwareRunning ManagedObject.""" from ...imcmo import ManagedObject from ...imccoremeta import ImcVersion, MoPropertyMeta, MoMeta from ...imcmeta import VersionMeta class FirmwareRunningConsts(): DEPLOYMENT_BOOT_LOADER = "boot-loader" DEPLOYMENT_KERNEL = "kernel" DEPLOYMENT_SYSTEM = "system" DEPLOYMENT_UNSPECIFIED = "unspecified" TYPE_ADAPTOR = "adaptor" TYPE_BLADE_BIOS = "blade-bios" TYPE_BLADE_CONTROLLER = "blade-controller" TYPE_SIOC = "sioc" TYPE_STORAGE_CONTROLLER = "storage-controller" TYPE_SYSTEM = "system" TYPE_UNSPECIFIED = "unspecified" class FirmwareRunning(ManagedObject): """This is FirmwareRunning class.""" consts = FirmwareRunningConsts() naming_props = set([u'deployment']) mo_meta = MoMeta("FirmwareRunning", "firmwareRunning", "fw-[deployment]", VersionMeta.Version151f, "OutputOnly", 0xf, [], ["admin", "read-only", "user"], [u'biosUnit', u'mgmtController', u'storageController', u'systemIOController'], [], ["Get"]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version151f, MoPropertyMeta.INTERNAL, None, None, None, None, [], []), "deployment": MoPropertyMeta("deployment", "deployment", "string", VersionMeta.Version151f, MoPropertyMeta.NAMING, None, None, None, None, ["boot-loader", "kernel", "system", "unspecified"], []), "description": MoPropertyMeta("description", "description", "string", VersionMeta.Version201a, MoPropertyMeta.READ_ONLY, None, 0, 510, None, [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version151f, MoPropertyMeta.READ_ONLY, 0x2, 0, 255, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version151f, MoPropertyMeta.READ_ONLY, 0x4, 0, 255, None, [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version151f, MoPropertyMeta.READ_ONLY, 0x8, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), "type": MoPropertyMeta("type", "type", "string", VersionMeta.Version151f, MoPropertyMeta.READ_ONLY, None, None, None, None, ["adaptor", "blade-bios", "blade-controller", "sioc", "storage-controller", "system", "unspecified"], []), "version": MoPropertyMeta("version", "version", "string", VersionMeta.Version151f, MoPropertyMeta.READ_ONLY, None, 0, 510, None, [], []), } prop_map = { "childAction": "child_action", "deployment": "deployment", "description": "description", "dn": "dn", "rn": "rn", "status": "status", "type": "type", "version": "version", } def __init__(self, parent_mo_or_dn, deployment, **kwargs): self._dirty_mask = 0 self.deployment = deployment self.child_action = None self.description = None self.status = None self.type = None self.version = None ManagedObject.__init__(self, "FirmwareRunning", parent_mo_or_dn, **kwargs)
en
0.731699
This module contains the general information for FirmwareRunning ManagedObject. This is FirmwareRunning class. ((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}
1.932418
2
ReinforcedPy/__init__.py
ZibraMax/NSR10-design
0
6631339
<reponame>ZibraMax/NSR10-design<gh_stars>0 from .Elemento import * from .Material import * from .Concreto import * from .AceroRefuerzo import * from .Varilla import * from .Seccion import *
from .Elemento import * from .Material import * from .Concreto import * from .AceroRefuerzo import * from .Varilla import * from .Seccion import *
none
1
1.115751
1
tests/testdata/deploy_scripts/builtin/invalid_metadata.py
horus-view-and-explore/horus-deploy
3
6631340
<filename>tests/testdata/deploy_scripts/builtin/invalid_metadata.py<gh_stars>1-10 name = "invalid" METADATA = {"name": name}
<filename>tests/testdata/deploy_scripts/builtin/invalid_metadata.py<gh_stars>1-10 name = "invalid" METADATA = {"name": name}
none
1
1.20522
1
scripts/imgviewer_conversions.py
akashdhamasia/Facial-keypoints-recognition-using-CNN
184
6631341
# -*- coding: utf-8 -*- ''' Conversion functions for image viewer extension ''' import cv2 import six import numpy as np import drawing # logging from logging import getLogger, NullHandler logger = getLogger(__name__) logger.addHandler(NullHandler()) def face_img_func(key, entry, viewer): # Image conversion img = entry['img'][0] # Use only a first data in the batch assert(img.ndim == 3 and (img.shape[0] == 1 or img.shape[0] == 3)) img = np.transpose(img, (1, 2, 0)) img = img.copy() # for safety img += 0.5 # [-0.5:0.5] -> [0:1] # Draw try: detection_raw = entry['detection'][0] detection = (detection_raw > 0.5) if 0.0 <= detection_raw <= 1.0: drawing.draw_detection(img, detection) landmark = entry['landmark'][0] visibility = entry['visibility'][0] landmark_color = (0, 1, 0) if detection == 1 else (0, 0, 1) drawing.draw_landmark(img, landmark, visibility, landmark_color, 0.5) pose = entry['pose'][0] drawing.draw_pose(img, pose) gender = entry['gender'][0] if 0.0 <= gender <= 1.0: gender = (gender > 0.5) drawing.draw_gender(img, gender) except KeyError: pass img = (img * 255).astype(np.uint8) caption = '{:02d}'.format(viewer.img_cnts[key]) return {'img': img, 'cap': caption} def weights_img_func(key, entry, viewer): data = entry['weights'] assert(data.ndim == 4) img_cnt_max = viewer.img_cnt_max[key] res_data = list() # accumulate to 3 channels image for i in six.moves.range(min(data.shape[0], img_cnt_max)): img_shape = (3,) + data.shape[2:4] accum = np.zeros(img_shape, dtype=data.dtype) for ch in six.moves.range(data.shape[1]): accum[ch % 3] += data[i][ch] # normalize img = np.transpose(accum, (1, 2, 0)) img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX) width = img.shape[0] * 15 res_data.append({'img': img, 'width': width}) return res_data # ========================= Loss Graph (In a tab page) ======================== def lossgraph_entry_func(key, viewer, trainer): # Get a log log_report = trainer.get_extension('LogReport') log = log_report.log # Convert log to lists def extract_log(log, key, epoch_key): loss, epoch = list(), list() # TODO Consider duplication of epoch numbers for i, row in enumerate(log): if key in row and epoch_key in row: loss.append(row[key]) epoch.append(row[epoch_key]) return loss, epoch # Create a graph image from log def create_graph_img(log, kind): train_key = 'main/{}'.format(kind) test_key = 'validation/main/{}'.format(kind) train_loss, train_epoch = extract_log(log, train_key, 'epoch') test_loss, test_epoch = extract_log(log, test_key, 'epoch') if len(train_loss) == 0 and len(test_loss) == 0: return None else: return drawing.draw_loss_graph(train_loss, test_loss, train_epoch, test_epoch, title=kind) # Create loss graphs res = dict() loss_kinds = ['loss', 'loss_detection', 'loss_landmark', 'loss_visibility', 'loss_pose', 'loss_gender'] for k in loss_kinds: img = create_graph_img(log, k) if img is not None: # Use only valid ones res[k] = img return res def lossgraph_img_func(key, entry, viewer): # Convert to viewer format return [{'img': entry[k]} for k in entry.keys()]
# -*- coding: utf-8 -*- ''' Conversion functions for image viewer extension ''' import cv2 import six import numpy as np import drawing # logging from logging import getLogger, NullHandler logger = getLogger(__name__) logger.addHandler(NullHandler()) def face_img_func(key, entry, viewer): # Image conversion img = entry['img'][0] # Use only a first data in the batch assert(img.ndim == 3 and (img.shape[0] == 1 or img.shape[0] == 3)) img = np.transpose(img, (1, 2, 0)) img = img.copy() # for safety img += 0.5 # [-0.5:0.5] -> [0:1] # Draw try: detection_raw = entry['detection'][0] detection = (detection_raw > 0.5) if 0.0 <= detection_raw <= 1.0: drawing.draw_detection(img, detection) landmark = entry['landmark'][0] visibility = entry['visibility'][0] landmark_color = (0, 1, 0) if detection == 1 else (0, 0, 1) drawing.draw_landmark(img, landmark, visibility, landmark_color, 0.5) pose = entry['pose'][0] drawing.draw_pose(img, pose) gender = entry['gender'][0] if 0.0 <= gender <= 1.0: gender = (gender > 0.5) drawing.draw_gender(img, gender) except KeyError: pass img = (img * 255).astype(np.uint8) caption = '{:02d}'.format(viewer.img_cnts[key]) return {'img': img, 'cap': caption} def weights_img_func(key, entry, viewer): data = entry['weights'] assert(data.ndim == 4) img_cnt_max = viewer.img_cnt_max[key] res_data = list() # accumulate to 3 channels image for i in six.moves.range(min(data.shape[0], img_cnt_max)): img_shape = (3,) + data.shape[2:4] accum = np.zeros(img_shape, dtype=data.dtype) for ch in six.moves.range(data.shape[1]): accum[ch % 3] += data[i][ch] # normalize img = np.transpose(accum, (1, 2, 0)) img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX) width = img.shape[0] * 15 res_data.append({'img': img, 'width': width}) return res_data # ========================= Loss Graph (In a tab page) ======================== def lossgraph_entry_func(key, viewer, trainer): # Get a log log_report = trainer.get_extension('LogReport') log = log_report.log # Convert log to lists def extract_log(log, key, epoch_key): loss, epoch = list(), list() # TODO Consider duplication of epoch numbers for i, row in enumerate(log): if key in row and epoch_key in row: loss.append(row[key]) epoch.append(row[epoch_key]) return loss, epoch # Create a graph image from log def create_graph_img(log, kind): train_key = 'main/{}'.format(kind) test_key = 'validation/main/{}'.format(kind) train_loss, train_epoch = extract_log(log, train_key, 'epoch') test_loss, test_epoch = extract_log(log, test_key, 'epoch') if len(train_loss) == 0 and len(test_loss) == 0: return None else: return drawing.draw_loss_graph(train_loss, test_loss, train_epoch, test_epoch, title=kind) # Create loss graphs res = dict() loss_kinds = ['loss', 'loss_detection', 'loss_landmark', 'loss_visibility', 'loss_pose', 'loss_gender'] for k in loss_kinds: img = create_graph_img(log, k) if img is not None: # Use only valid ones res[k] = img return res def lossgraph_img_func(key, entry, viewer): # Convert to viewer format return [{'img': entry[k]} for k in entry.keys()]
en
0.718661
# -*- coding: utf-8 -*- Conversion functions for image viewer extension # logging # Image conversion # Use only a first data in the batch # for safety # [-0.5:0.5] -> [0:1] # Draw # accumulate to 3 channels image # normalize # ========================= Loss Graph (In a tab page) ======================== # Get a log # Convert log to lists # TODO Consider duplication of epoch numbers # Create a graph image from log # Create loss graphs # Use only valid ones # Convert to viewer format
2.809927
3
stolen_sugar/populate.py
daslater/knausj_talon
0
6631342
import boto3 import code.keys from code.keys import ctx as ctx_keys items_to_write = [] filename = code.keys.__file__.removeprefix('/Users/austin/Code/talon/') for (category, mappings) in ctx_keys.lists.items(): category = category.removeprefix('self.') context = ctx_keys.matches if hasattr(ctx_keys, 'matches') else 'default' for (invocation, target) in mappings.items(): mapping = {'target': target, 'invocation': invocation, 'category': category, 'file': filename, 'context': context} items_to_write.append(mapping) def load_mappings(mappings, dynamodb=None): if not dynamodb: dynamodb = boto3.resource('dynamodb') table = dynamodb.Table('mappings') for mapping in mappings: target = mapping['target'] context = mapping['context'] print("Adding mapping:", target, context) table.put_item(Item=mapping) if __name__ == '__main__': load_mappings(items_to_write)
import boto3 import code.keys from code.keys import ctx as ctx_keys items_to_write = [] filename = code.keys.__file__.removeprefix('/Users/austin/Code/talon/') for (category, mappings) in ctx_keys.lists.items(): category = category.removeprefix('self.') context = ctx_keys.matches if hasattr(ctx_keys, 'matches') else 'default' for (invocation, target) in mappings.items(): mapping = {'target': target, 'invocation': invocation, 'category': category, 'file': filename, 'context': context} items_to_write.append(mapping) def load_mappings(mappings, dynamodb=None): if not dynamodb: dynamodb = boto3.resource('dynamodb') table = dynamodb.Table('mappings') for mapping in mappings: target = mapping['target'] context = mapping['context'] print("Adding mapping:", target, context) table.put_item(Item=mapping) if __name__ == '__main__': load_mappings(items_to_write)
none
1
2.207919
2
bin/enREST.py
ubercomrade/enrest
0
6631343
import os import sys import argparse from enrest.functions import * from enrest.set import set_case from enrest.deg import deg_case from enrest.fasta import fasta_case def parse_args(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest='subparser_name', help='Available commands:') deg_parser = subparsers.add_parser('deg', help='Run test on DEGs') set_parser = subparsers.add_parser('set', help='Run test on SET of genes') fasta_parser = subparsers.add_parser('fasta', help='Run test on user FASTA files') deg_parser.add_argument('deg', action='store', help='TSV file with DEG with ..., The NAME column must contain ensemble gene IDS') deg_parser.add_argument('matrices', action='store', help='Path to matrices in HOCOMOCO (PCM) or in MEME (PFM) format') deg_parser.add_argument('promoters', action='store', choices=['mm10', 'hg38', 'tair10', 'rnor6'], metavar='N', help='promoters of organism (hg38, mm10, tair10)') deg_parser.add_argument('output', action='store', help='Name of directory for output files') deg_parser.add_argument('-p', '--parameter', action='store', choices=['enrichment', 'fraction'], metavar='PARAMETER', type=str, default='enrichment', help='Parameter estimated in test (enrichment or fraction), default= enrichment') deg_parser.add_argument('-f', '--format', action='store', choices=['meme', 'hocomoco'], metavar='FORMAT', type=str, default='meme', help='Format of file with matrices (meme or hocomoco), default= meme') deg_parser.add_argument('-P', '--pvalue', action='store', type=float, default=0.05, help='The pvalue is used as threshold to choose DEGs, default= 0.05') deg_parser.add_argument('-l', '--log2fc_deg', action='store', type=float, default=1., help='The absolute value of log2FoldChange used as threshold to choose DEGs promoters (DEGs >= thr OR DEGs <= -thr), default= 1') deg_parser.add_argument('-L', '--log2fc_back', action='store', type=float, default=0.32192809488736235, help='The absolute value of log2FoldChange used as threshold to choose background promoters (-thr <= BACK <= thr), default= log2(5/4)') set_parser.add_argument('set', action='store', help='File with list of genes. Genes must be in Ensemble format (ensemble gene IDS)') set_parser.add_argument('matrices', action='store', help='Path to matrices in HOCOMOCO (PCM) or in MEME (PFM) format') set_parser.add_argument('promoters', action='store', choices=['mm10', 'hg38', 'tair10', 'rnor6'], metavar='N', help='promoters of organism (hg38, mm10, tair10)') set_parser.add_argument('output', action='store', help='Name of directory for output files') set_parser.add_argument('-p', '--parameter', action='store', choices=['enrichment', 'fraction'], metavar='PARAMETER', type=str, default='enrichment', help='Parameter estimated in test (enrichment or fraction), default= enrichment') set_parser.add_argument('-f', '--format', action='store', choices=['meme', 'hocomoco'], metavar='FORMAT', type=str, default='meme', help='Format of file with matrices (meme or hocomoco), default= meme') fasta_parser.add_argument('foreground', action='store', help='Fasta file with sequences are used as foreground') fasta_parser.add_argument('background', action='store', help='Fasta file with sequences are used as background') fasta_parser.add_argument('matrices', action='store', help='Path to matrices in HOCOMOCO (PCM) or in MEME (PFM) format') fasta_parser.add_argument('promoters', action='store', choices=['mm10', 'hg38', 'tair10', 'rnor6'], metavar='N', help='promoters of organism (hg38, mm10, tair10)') fasta_parser.add_argument('output', action='store', help='Name of directory for output files') fasta_parser.add_argument('-p', '--parameter', action='store', choices=['enrichment', 'fraction'], metavar='PARAMETER', type=str, default='enrichment', help='Parameter estimated in test (enrichment or fraction), default= enrichment') fasta_parser.add_argument('-f', '--format', action='store', choices=['meme', 'hocomoco'], metavar='FORMAT', type=str, default='meme', help='Format of file with matrices (meme or hocomoco), default= meme') if len(sys.argv) == 1: parser.print_help(sys.stderr) sys.exit(1) return(parser.parse_args()) def main(): args = parse_args() if args.subparser_name == 'deg': path_to_deg = args.deg path_to_db = args.matrices output_dir = args.output promoters = args.promoters parameter = args.parameter file_format = args.format padj_thr= args.pvalue log2fc_thr_deg = args.log2fc_deg log2fc_thr_background = args.log2fc_back if not os.path.isdir(output_dir): os.mkdir(output_dir) this_dir, this_filename = os.path.split(__file__) if promoters == 'mm10': path_to_promoters = os.path.join(this_dir, "../data", "mm10.ensembl.promoters.fa.xz") elif promoters == 'hg38': path_to_promoters = os.path.join(this_dir, "../data", "hg38.ensembl.promoters.fa.xz") elif promoters == 'tair10': path_to_promoters = os.path.join(this_dir, "../data", "tair10.ensembl.promoters.fa.xz") elif promoters == 'rnor6': path_to_promoters = os.path.join(this_dir, "../data", "rnor6.ensembl.promoters.fa.xz") deg_case(path_to_deg, path_to_db, output_dir, path_to_promoters, file_format=file_format, parameter=parameter, padj_thr=padj_thr, log2fc_thr_deg=log2fc_thr_deg, log2fc_thr_background=log2fc_thr_background) elif args.subparser_name == 'set': path_to_set = args.set path_to_db = args.matrices output_dir = args.output promoters = args.promoters parameter = args.parameter file_format = args.format if not os.path.isdir(output_dir): os.mkdir(output_dir) this_dir, this_filename = os.path.split(__file__) if promoters == 'mm10': path_to_promoters = os.path.join(this_dir, "../data", "mm10.ensembl.promoters.fa.xz") elif promoters == 'hg38': path_to_promoters = os.path.join(this_dir, "../data", "hg38.ensembl.promoters.fa.xz") elif promoters == 'tair10': path_to_promoters = os.path.join(this_dir, "../data", "tair10.ensembl.promoters.fa.xz") elif promoters == 'rnor6': path_to_promoters = os.path.join(this_dir, "../data", "rnor6.ensembl.promoters.fa.xz") set_case(path_to_set, path_to_db, output_dir, path_to_promoters, file_format=file_format, parameter=parameter) elif args.subparser_name == 'fasta': path_to_foreground = args.foreground path_to_background = args.background path_to_db = args.matrices output_dir = args.output promoters = args.promoters parameter = args.parameter file_format = args.format if not os.path.isdir(output_dir): os.mkdir(output_dir) this_dir, this_filename = os.path.split(__file__) if promoters == 'mm10': path_to_promoters = os.path.join(this_dir, "../data", "mm10.ensembl.promoters.fa.xz") elif promoters == 'hg38': path_to_promoters = os.path.join(this_dir, "../data", "hg38.ensembl.promoters.fa.xz") elif promoters == 'tair10': path_to_promoters = os.path.join(this_dir, "../data", "tair10.ensembl.promoters.fa.xz") elif promoters == 'rnor6': path_to_promoters = os.path.join(this_dir, "../data", "rnor6.ensembl.promoters.fa.xz") fasta_case(path_to_foreground, path_to_background, path_to_db, output_dir, path_to_promoters, file_format=file_format, parameter=parameter) pass if __name__ == '__main__': main()
import os import sys import argparse from enrest.functions import * from enrest.set import set_case from enrest.deg import deg_case from enrest.fasta import fasta_case def parse_args(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest='subparser_name', help='Available commands:') deg_parser = subparsers.add_parser('deg', help='Run test on DEGs') set_parser = subparsers.add_parser('set', help='Run test on SET of genes') fasta_parser = subparsers.add_parser('fasta', help='Run test on user FASTA files') deg_parser.add_argument('deg', action='store', help='TSV file with DEG with ..., The NAME column must contain ensemble gene IDS') deg_parser.add_argument('matrices', action='store', help='Path to matrices in HOCOMOCO (PCM) or in MEME (PFM) format') deg_parser.add_argument('promoters', action='store', choices=['mm10', 'hg38', 'tair10', 'rnor6'], metavar='N', help='promoters of organism (hg38, mm10, tair10)') deg_parser.add_argument('output', action='store', help='Name of directory for output files') deg_parser.add_argument('-p', '--parameter', action='store', choices=['enrichment', 'fraction'], metavar='PARAMETER', type=str, default='enrichment', help='Parameter estimated in test (enrichment or fraction), default= enrichment') deg_parser.add_argument('-f', '--format', action='store', choices=['meme', 'hocomoco'], metavar='FORMAT', type=str, default='meme', help='Format of file with matrices (meme or hocomoco), default= meme') deg_parser.add_argument('-P', '--pvalue', action='store', type=float, default=0.05, help='The pvalue is used as threshold to choose DEGs, default= 0.05') deg_parser.add_argument('-l', '--log2fc_deg', action='store', type=float, default=1., help='The absolute value of log2FoldChange used as threshold to choose DEGs promoters (DEGs >= thr OR DEGs <= -thr), default= 1') deg_parser.add_argument('-L', '--log2fc_back', action='store', type=float, default=0.32192809488736235, help='The absolute value of log2FoldChange used as threshold to choose background promoters (-thr <= BACK <= thr), default= log2(5/4)') set_parser.add_argument('set', action='store', help='File with list of genes. Genes must be in Ensemble format (ensemble gene IDS)') set_parser.add_argument('matrices', action='store', help='Path to matrices in HOCOMOCO (PCM) or in MEME (PFM) format') set_parser.add_argument('promoters', action='store', choices=['mm10', 'hg38', 'tair10', 'rnor6'], metavar='N', help='promoters of organism (hg38, mm10, tair10)') set_parser.add_argument('output', action='store', help='Name of directory for output files') set_parser.add_argument('-p', '--parameter', action='store', choices=['enrichment', 'fraction'], metavar='PARAMETER', type=str, default='enrichment', help='Parameter estimated in test (enrichment or fraction), default= enrichment') set_parser.add_argument('-f', '--format', action='store', choices=['meme', 'hocomoco'], metavar='FORMAT', type=str, default='meme', help='Format of file with matrices (meme or hocomoco), default= meme') fasta_parser.add_argument('foreground', action='store', help='Fasta file with sequences are used as foreground') fasta_parser.add_argument('background', action='store', help='Fasta file with sequences are used as background') fasta_parser.add_argument('matrices', action='store', help='Path to matrices in HOCOMOCO (PCM) or in MEME (PFM) format') fasta_parser.add_argument('promoters', action='store', choices=['mm10', 'hg38', 'tair10', 'rnor6'], metavar='N', help='promoters of organism (hg38, mm10, tair10)') fasta_parser.add_argument('output', action='store', help='Name of directory for output files') fasta_parser.add_argument('-p', '--parameter', action='store', choices=['enrichment', 'fraction'], metavar='PARAMETER', type=str, default='enrichment', help='Parameter estimated in test (enrichment or fraction), default= enrichment') fasta_parser.add_argument('-f', '--format', action='store', choices=['meme', 'hocomoco'], metavar='FORMAT', type=str, default='meme', help='Format of file with matrices (meme or hocomoco), default= meme') if len(sys.argv) == 1: parser.print_help(sys.stderr) sys.exit(1) return(parser.parse_args()) def main(): args = parse_args() if args.subparser_name == 'deg': path_to_deg = args.deg path_to_db = args.matrices output_dir = args.output promoters = args.promoters parameter = args.parameter file_format = args.format padj_thr= args.pvalue log2fc_thr_deg = args.log2fc_deg log2fc_thr_background = args.log2fc_back if not os.path.isdir(output_dir): os.mkdir(output_dir) this_dir, this_filename = os.path.split(__file__) if promoters == 'mm10': path_to_promoters = os.path.join(this_dir, "../data", "mm10.ensembl.promoters.fa.xz") elif promoters == 'hg38': path_to_promoters = os.path.join(this_dir, "../data", "hg38.ensembl.promoters.fa.xz") elif promoters == 'tair10': path_to_promoters = os.path.join(this_dir, "../data", "tair10.ensembl.promoters.fa.xz") elif promoters == 'rnor6': path_to_promoters = os.path.join(this_dir, "../data", "rnor6.ensembl.promoters.fa.xz") deg_case(path_to_deg, path_to_db, output_dir, path_to_promoters, file_format=file_format, parameter=parameter, padj_thr=padj_thr, log2fc_thr_deg=log2fc_thr_deg, log2fc_thr_background=log2fc_thr_background) elif args.subparser_name == 'set': path_to_set = args.set path_to_db = args.matrices output_dir = args.output promoters = args.promoters parameter = args.parameter file_format = args.format if not os.path.isdir(output_dir): os.mkdir(output_dir) this_dir, this_filename = os.path.split(__file__) if promoters == 'mm10': path_to_promoters = os.path.join(this_dir, "../data", "mm10.ensembl.promoters.fa.xz") elif promoters == 'hg38': path_to_promoters = os.path.join(this_dir, "../data", "hg38.ensembl.promoters.fa.xz") elif promoters == 'tair10': path_to_promoters = os.path.join(this_dir, "../data", "tair10.ensembl.promoters.fa.xz") elif promoters == 'rnor6': path_to_promoters = os.path.join(this_dir, "../data", "rnor6.ensembl.promoters.fa.xz") set_case(path_to_set, path_to_db, output_dir, path_to_promoters, file_format=file_format, parameter=parameter) elif args.subparser_name == 'fasta': path_to_foreground = args.foreground path_to_background = args.background path_to_db = args.matrices output_dir = args.output promoters = args.promoters parameter = args.parameter file_format = args.format if not os.path.isdir(output_dir): os.mkdir(output_dir) this_dir, this_filename = os.path.split(__file__) if promoters == 'mm10': path_to_promoters = os.path.join(this_dir, "../data", "mm10.ensembl.promoters.fa.xz") elif promoters == 'hg38': path_to_promoters = os.path.join(this_dir, "../data", "hg38.ensembl.promoters.fa.xz") elif promoters == 'tair10': path_to_promoters = os.path.join(this_dir, "../data", "tair10.ensembl.promoters.fa.xz") elif promoters == 'rnor6': path_to_promoters = os.path.join(this_dir, "../data", "rnor6.ensembl.promoters.fa.xz") fasta_case(path_to_foreground, path_to_background, path_to_db, output_dir, path_to_promoters, file_format=file_format, parameter=parameter) pass if __name__ == '__main__': main()
none
1
2.631103
3
aoc2020/day_17/part_1.py
en0/aoc2020
0
6631344
<gh_stars>0 from aoc2020 import * from functools import reduce from .space import Space class Solution(SolutionABC): expected = 112 def solve(self) -> any: space = Space(reduce(lambda a, b: a + b, [ [((x, y, 0), s == '#') for x, s in enumerate(r)] for y, r in enumerate(self.resource_lines("input")) ])) return reduce(lambda a, b: space.simulate(), range(6), None)
from aoc2020 import * from functools import reduce from .space import Space class Solution(SolutionABC): expected = 112 def solve(self) -> any: space = Space(reduce(lambda a, b: a + b, [ [((x, y, 0), s == '#') for x, s in enumerate(r)] for y, r in enumerate(self.resource_lines("input")) ])) return reduce(lambda a, b: space.simulate(), range(6), None)
none
1
2.977612
3
mcw/logging.py
IonAgorria/meson-cmake-wrapper
63
6631345
import logging class ServerLogHandler(logging.Handler): def __init__(self, server): super().__init__() self.server = server def emit(self, record): log_entry = self.format(record) if self.server.connected: self.server.send_message(log_entry, log=False)
import logging class ServerLogHandler(logging.Handler): def __init__(self, server): super().__init__() self.server = server def emit(self, record): log_entry = self.format(record) if self.server.connected: self.server.send_message(log_entry, log=False)
none
1
2.805761
3
alembic/versions/d88d63c07199_.py
andreasots/lrrbot
24
6631346
revision = 'd88d63c07199' down_revision = ('<KEY>', '77dc71b483ed') branch_labels = None depends_on = None import alembic import sqlalchemy def upgrade(): pass def downgrade(): pass
revision = 'd88d63c07199' down_revision = ('<KEY>', '77dc71b483ed') branch_labels = None depends_on = None import alembic import sqlalchemy def upgrade(): pass def downgrade(): pass
none
1
1.014799
1
examples/__init__.py
dankilman/pages
97
6631347
exported_examples = { 'awe_examples': {}, 'hello_world': { 'screenshot': [195, 0, 195 + 300, 50], 'extension': 'png' }, 'button_and_input': { 'extension': 'gif' }, 'chart_simple': { 'terminate_after': 35, 'extension': 'gif' }, 'chart_complex': { 'terminate_after': 70, 'extension': 'gif' }, 'custom_element': { 'screenshot': [100, 0, 100 + 1000, 150], 'extension': 'png' }, 'raw_html': { 'screenshot': [195, 0, 195 + 1210, 740], 'extension': 'png' }, 'simple_report': { 'screenshot': [195, 0, 195 + 1210, 385], 'extension': 'png' }, 'showcase': { 'screenshot': [195, 0, 195 + 1210, 510], 'extension': 'png' }, 'dsl': { 'terminate_after': 60, 'extension': 'gif' }, 'page_properties': { 'screenshot': [190, 0, 195 + 1210, 85], 'extension': 'png' }, 'standard_output': { 'extension': 'gif' }, 'collapse': { 'screenshot': [195, 0, 195 + 1210, 210], 'extension': 'png' }, 'chart_flat': { 'terminate_after': 60, 'extension': 'gif' }, 'markdown': { 'screenshot': [195, 0, 195 + 1210, 210], 'extension': 'png' }, 'updater': { 'terminate_after': 3, 'extension': 'gif' } } examples_order = [ 'hello_world', 'chart_simple', 'chart_complex', 'chart_flat', 'page_properties', 'button_and_input', 'standard_output', 'collapse', 'custom_element', 'raw_html', 'simple_report', 'markdown', 'showcase', 'updater', 'dsl', ]
exported_examples = { 'awe_examples': {}, 'hello_world': { 'screenshot': [195, 0, 195 + 300, 50], 'extension': 'png' }, 'button_and_input': { 'extension': 'gif' }, 'chart_simple': { 'terminate_after': 35, 'extension': 'gif' }, 'chart_complex': { 'terminate_after': 70, 'extension': 'gif' }, 'custom_element': { 'screenshot': [100, 0, 100 + 1000, 150], 'extension': 'png' }, 'raw_html': { 'screenshot': [195, 0, 195 + 1210, 740], 'extension': 'png' }, 'simple_report': { 'screenshot': [195, 0, 195 + 1210, 385], 'extension': 'png' }, 'showcase': { 'screenshot': [195, 0, 195 + 1210, 510], 'extension': 'png' }, 'dsl': { 'terminate_after': 60, 'extension': 'gif' }, 'page_properties': { 'screenshot': [190, 0, 195 + 1210, 85], 'extension': 'png' }, 'standard_output': { 'extension': 'gif' }, 'collapse': { 'screenshot': [195, 0, 195 + 1210, 210], 'extension': 'png' }, 'chart_flat': { 'terminate_after': 60, 'extension': 'gif' }, 'markdown': { 'screenshot': [195, 0, 195 + 1210, 210], 'extension': 'png' }, 'updater': { 'terminate_after': 3, 'extension': 'gif' } } examples_order = [ 'hello_world', 'chart_simple', 'chart_complex', 'chart_flat', 'page_properties', 'button_and_input', 'standard_output', 'collapse', 'custom_element', 'raw_html', 'simple_report', 'markdown', 'showcase', 'updater', 'dsl', ]
none
1
1.531592
2
py_kit/check.py
SystemLight/py-kit
0
6631348
from functools import partial from typing import Dict, Any, Callable, List, Union """ python dict对象校验器 """ SOME_TYPE = 'some' EVERY_TYPE = 'every' class Undefined: pass undefined = Undefined() class BaseMessage: """ 自定义规则函数返回的对象,可以继承该类,自定义返回Message对象 该类是包含校验信息的消息类,当继承该类后,可以为该类添加方法 用于得到该类时直接调用处理 :param key: 系统调用,触发message的key值 :param status: 状态 :param msg: 自定义rule函数返回的自定义内容 """ def __init__(self, key=None, status=True, msg=None): self.key = key self.status = status self.msg = msg # 包含子元素从底部传导到顶层的key值 self.paths = [] def some(content: Dict, config: Dict) -> BaseMessage: """ 检验dict对象,当一个key值触发错误就返回message对象, 注意检查函数只会检查content中真实存在的内容,不会检查不存在内容, 如果预期值并不能放到content中,请用dict().update补充对应的默认值 校验字典:: print(some({ 'name': 'lisys', 'age': None }, { 'name': not_null(msg='自定义传参'), 'age': [not_null] }).__dict__) :param content: 检验dict对象 :param config: 配置dict对象 :return: dict """ for key in content: m = verify(content[key], config.get(key, [])) if not m.status: m.key = key m.paths.append(key) return m return BaseMessage(None, msg=content) def every(content: Dict, config: Dict) -> BaseMessage: """ 检验dict对象,当全部key值校验完所有规则函数返回message对象, 注意检查函数只会检查content中真实存在的内容,不会检查不存在内容, 如果预期值并不能放到content中,请用dict().update补充对应的默认值 校验字典:: print(every({ 'name': 'lisys', 'age': None }, { 'name': not_null, 'age': [not_null()] }).__dict__) :param content: 检验dict对象 :param config: 配置dict对象 :return: Message """ every_message = BaseMessage(None, status=True, msg=[]) for key in content: m = verify(content[key], config.get(key, []), True) if not m.status: m.key = key every_message.status = False every_message.msg.append(m) return every_message def verify(param: Any, preset: Union[Callable, List], strict: bool = False): """ 校验传入内容 strict为true,并且preset是一个rule列表时,verify会校验所有rule 并且返回一个主Message对象,该Message的msg是一个列表,包含所有的规则错误校验信息 如果有一个规则校验失败,那么主Message对象的status值将为False 使用预设即rule的列表进行校验:: # 检验value的值是否符合规则,not_null为非假的规则函数,verify函数返回BaseMessage对象 value = 'hello SystemLight' print(verify(value, [not_null]).__dict__) value = 'hello SystemLight' print(verify(value, [not_null(msg='自定义传参')]).__dict__) 直接传入rule函数:: value = None print(verify(value, not_null(msg='自定义传参')).__dict__) value = None print(verify(value, not_null).__dict__) :param param: 检验内容 :param preset: 预设preset,rule函数列表,也可以直接传递rule函数 :param strict: 是否为严格模式,即需要校验全部的rule函数才做错误返回 :return: Message """ if hasattr(preset, '__call__'): base_m = preset(param, caller=True) elif strict: base_m = BaseMessage(param) base_m.msg = [] for rule_call in preset: m = rule_call(param, caller=True) if not m.status: base_m.status = False base_m.msg.append(m) else: for rule_call in preset: base_m = rule_call(param, caller=True) if not base_m.status: return base_m base_m = BaseMessage(param) return base_m def build_check(check_type: str, config: Dict): """ 构建检查器 :param check_type: 检查器类型,every或者some :param config: 检查规则函数 :return: 检查器函数 """ if check_type == SOME_TYPE: return partial(some, config=config) if check_type == EVERY_TYPE: return partial(every, config=config) raise TypeError('check_type is not support') def rule(fn): """ 装饰器,用于装饰自定义规则rule函数 :param fn: 被装饰的普通函数 :return: None """ def wrap(*args, **kwargs): # 判断是被系统调用,还是用户调用 if kwargs.get('caller', False): # 系统调用会传入caller,如果被装饰的函数接收caller会造成错误 return fn(args[0]) # 用户调用了规则函数,用于自定义传参,同时让返回值仍然是一个可以被系统调用函数 return lambda param, caller: fn(param, *args, **kwargs) return wrap def __items(param, config, check_type=SOME_TYPE): if check_type == SOME_TYPE: return some(param, config) if check_type == EVERY_TYPE: return every(param, config) raise TypeError('check_type is not support') items = rule(__items) @rule def s_items(param, config): """ 子元素校验规则,通过传入子元素校验配置实现子元素内容校验, 使用some校验 :param param: :param config: :return: Message 所有继承BaseMessage的对象 """ return __items(param, config, SOME_TYPE) @rule def e_items(param, config): """ 子元素校验规则,通过传入子元素校验配置实现子元素内容校验, 使用every校验 :param param: :param config: :return: Message 所有继承BaseMessage的对象 """ return __items(param, config, EVERY_TYPE) @rule def not_null(param, error_msg='none'): """ 该rule函数是一个最简单的校验规则函数,用于校验值是否为真 内置规则函数,校验内容是否为真值,在使用时,使用者需要按照功能自行制定规则函数 切记规则函数需要使用@rule装饰器进行装饰,并且一定返回Message对象,使用者可以根据需求自行定制Message对象 也可以使用默认的BaseMessage对象 :param param: param 规则函数必须接收的值即验证的内容,类似self,用户只需接收,无须管理传入 :param error_msg: msg 用户自定义传参,在调用验证函数时被使用者传入规则函数的参数 :return: Message 所有继承BaseMessage的对象 """ if param: return BaseMessage() else: return BaseMessage(msg=error_msg, status=False)
from functools import partial from typing import Dict, Any, Callable, List, Union """ python dict对象校验器 """ SOME_TYPE = 'some' EVERY_TYPE = 'every' class Undefined: pass undefined = Undefined() class BaseMessage: """ 自定义规则函数返回的对象,可以继承该类,自定义返回Message对象 该类是包含校验信息的消息类,当继承该类后,可以为该类添加方法 用于得到该类时直接调用处理 :param key: 系统调用,触发message的key值 :param status: 状态 :param msg: 自定义rule函数返回的自定义内容 """ def __init__(self, key=None, status=True, msg=None): self.key = key self.status = status self.msg = msg # 包含子元素从底部传导到顶层的key值 self.paths = [] def some(content: Dict, config: Dict) -> BaseMessage: """ 检验dict对象,当一个key值触发错误就返回message对象, 注意检查函数只会检查content中真实存在的内容,不会检查不存在内容, 如果预期值并不能放到content中,请用dict().update补充对应的默认值 校验字典:: print(some({ 'name': 'lisys', 'age': None }, { 'name': not_null(msg='自定义传参'), 'age': [not_null] }).__dict__) :param content: 检验dict对象 :param config: 配置dict对象 :return: dict """ for key in content: m = verify(content[key], config.get(key, [])) if not m.status: m.key = key m.paths.append(key) return m return BaseMessage(None, msg=content) def every(content: Dict, config: Dict) -> BaseMessage: """ 检验dict对象,当全部key值校验完所有规则函数返回message对象, 注意检查函数只会检查content中真实存在的内容,不会检查不存在内容, 如果预期值并不能放到content中,请用dict().update补充对应的默认值 校验字典:: print(every({ 'name': 'lisys', 'age': None }, { 'name': not_null, 'age': [not_null()] }).__dict__) :param content: 检验dict对象 :param config: 配置dict对象 :return: Message """ every_message = BaseMessage(None, status=True, msg=[]) for key in content: m = verify(content[key], config.get(key, []), True) if not m.status: m.key = key every_message.status = False every_message.msg.append(m) return every_message def verify(param: Any, preset: Union[Callable, List], strict: bool = False): """ 校验传入内容 strict为true,并且preset是一个rule列表时,verify会校验所有rule 并且返回一个主Message对象,该Message的msg是一个列表,包含所有的规则错误校验信息 如果有一个规则校验失败,那么主Message对象的status值将为False 使用预设即rule的列表进行校验:: # 检验value的值是否符合规则,not_null为非假的规则函数,verify函数返回BaseMessage对象 value = 'hello SystemLight' print(verify(value, [not_null]).__dict__) value = 'hello SystemLight' print(verify(value, [not_null(msg='自定义传参')]).__dict__) 直接传入rule函数:: value = None print(verify(value, not_null(msg='自定义传参')).__dict__) value = None print(verify(value, not_null).__dict__) :param param: 检验内容 :param preset: 预设preset,rule函数列表,也可以直接传递rule函数 :param strict: 是否为严格模式,即需要校验全部的rule函数才做错误返回 :return: Message """ if hasattr(preset, '__call__'): base_m = preset(param, caller=True) elif strict: base_m = BaseMessage(param) base_m.msg = [] for rule_call in preset: m = rule_call(param, caller=True) if not m.status: base_m.status = False base_m.msg.append(m) else: for rule_call in preset: base_m = rule_call(param, caller=True) if not base_m.status: return base_m base_m = BaseMessage(param) return base_m def build_check(check_type: str, config: Dict): """ 构建检查器 :param check_type: 检查器类型,every或者some :param config: 检查规则函数 :return: 检查器函数 """ if check_type == SOME_TYPE: return partial(some, config=config) if check_type == EVERY_TYPE: return partial(every, config=config) raise TypeError('check_type is not support') def rule(fn): """ 装饰器,用于装饰自定义规则rule函数 :param fn: 被装饰的普通函数 :return: None """ def wrap(*args, **kwargs): # 判断是被系统调用,还是用户调用 if kwargs.get('caller', False): # 系统调用会传入caller,如果被装饰的函数接收caller会造成错误 return fn(args[0]) # 用户调用了规则函数,用于自定义传参,同时让返回值仍然是一个可以被系统调用函数 return lambda param, caller: fn(param, *args, **kwargs) return wrap def __items(param, config, check_type=SOME_TYPE): if check_type == SOME_TYPE: return some(param, config) if check_type == EVERY_TYPE: return every(param, config) raise TypeError('check_type is not support') items = rule(__items) @rule def s_items(param, config): """ 子元素校验规则,通过传入子元素校验配置实现子元素内容校验, 使用some校验 :param param: :param config: :return: Message 所有继承BaseMessage的对象 """ return __items(param, config, SOME_TYPE) @rule def e_items(param, config): """ 子元素校验规则,通过传入子元素校验配置实现子元素内容校验, 使用every校验 :param param: :param config: :return: Message 所有继承BaseMessage的对象 """ return __items(param, config, EVERY_TYPE) @rule def not_null(param, error_msg='none'): """ 该rule函数是一个最简单的校验规则函数,用于校验值是否为真 内置规则函数,校验内容是否为真值,在使用时,使用者需要按照功能自行制定规则函数 切记规则函数需要使用@rule装饰器进行装饰,并且一定返回Message对象,使用者可以根据需求自行定制Message对象 也可以使用默认的BaseMessage对象 :param param: param 规则函数必须接收的值即验证的内容,类似self,用户只需接收,无须管理传入 :param error_msg: msg 用户自定义传参,在调用验证函数时被使用者传入规则函数的参数 :return: Message 所有继承BaseMessage的对象 """ if param: return BaseMessage() else: return BaseMessage(msg=error_msg, status=False)
zh
0.867143
python dict对象校验器 自定义规则函数返回的对象,可以继承该类,自定义返回Message对象 该类是包含校验信息的消息类,当继承该类后,可以为该类添加方法 用于得到该类时直接调用处理 :param key: 系统调用,触发message的key值 :param status: 状态 :param msg: 自定义rule函数返回的自定义内容 # 包含子元素从底部传导到顶层的key值 检验dict对象,当一个key值触发错误就返回message对象, 注意检查函数只会检查content中真实存在的内容,不会检查不存在内容, 如果预期值并不能放到content中,请用dict().update补充对应的默认值 校验字典:: print(some({ 'name': 'lisys', 'age': None }, { 'name': not_null(msg='自定义传参'), 'age': [not_null] }).__dict__) :param content: 检验dict对象 :param config: 配置dict对象 :return: dict 检验dict对象,当全部key值校验完所有规则函数返回message对象, 注意检查函数只会检查content中真实存在的内容,不会检查不存在内容, 如果预期值并不能放到content中,请用dict().update补充对应的默认值 校验字典:: print(every({ 'name': 'lisys', 'age': None }, { 'name': not_null, 'age': [not_null()] }).__dict__) :param content: 检验dict对象 :param config: 配置dict对象 :return: Message 校验传入内容 strict为true,并且preset是一个rule列表时,verify会校验所有rule 并且返回一个主Message对象,该Message的msg是一个列表,包含所有的规则错误校验信息 如果有一个规则校验失败,那么主Message对象的status值将为False 使用预设即rule的列表进行校验:: # 检验value的值是否符合规则,not_null为非假的规则函数,verify函数返回BaseMessage对象 value = 'hello SystemLight' print(verify(value, [not_null]).__dict__) value = 'hello SystemLight' print(verify(value, [not_null(msg='自定义传参')]).__dict__) 直接传入rule函数:: value = None print(verify(value, not_null(msg='自定义传参')).__dict__) value = None print(verify(value, not_null).__dict__) :param param: 检验内容 :param preset: 预设preset,rule函数列表,也可以直接传递rule函数 :param strict: 是否为严格模式,即需要校验全部的rule函数才做错误返回 :return: Message 构建检查器 :param check_type: 检查器类型,every或者some :param config: 检查规则函数 :return: 检查器函数 装饰器,用于装饰自定义规则rule函数 :param fn: 被装饰的普通函数 :return: None # 判断是被系统调用,还是用户调用 # 系统调用会传入caller,如果被装饰的函数接收caller会造成错误 # 用户调用了规则函数,用于自定义传参,同时让返回值仍然是一个可以被系统调用函数 子元素校验规则,通过传入子元素校验配置实现子元素内容校验, 使用some校验 :param param: :param config: :return: Message 所有继承BaseMessage的对象 子元素校验规则,通过传入子元素校验配置实现子元素内容校验, 使用every校验 :param param: :param config: :return: Message 所有继承BaseMessage的对象 该rule函数是一个最简单的校验规则函数,用于校验值是否为真 内置规则函数,校验内容是否为真值,在使用时,使用者需要按照功能自行制定规则函数 切记规则函数需要使用@rule装饰器进行装饰,并且一定返回Message对象,使用者可以根据需求自行定制Message对象 也可以使用默认的BaseMessage对象 :param param: param 规则函数必须接收的值即验证的内容,类似self,用户只需接收,无须管理传入 :param error_msg: msg 用户自定义传参,在调用验证函数时被使用者传入规则函数的参数 :return: Message 所有继承BaseMessage的对象
2.932594
3
nindo/client.py
pascalkienast/stats-about-socialmedia
4
6631349
import asyncio import urllib.parse from .http import HTTPClient from .artist import Artist, RankedArtist, DetailedArtist from .util import AsyncIterator from .coupon import Coupon from .milestone import Milestone from .viral import Viral __all__ = ( "NindoClient", ) class NindoClient: def __init__(self, **kwargs): self.loop = kwargs.get("loop", asyncio.get_event_loop()) self._http = HTTPClient(**kwargs) async def get_artist(self, artist_id): data = await self._http.request(f"/artist/{artist_id}") return DetailedArtist(data, http=self._http) def search(self, term): async def _to_wrap(): data = await self._http.request(f"/search/smart/{urllib.parse.quote(term)}") for artists in data: yield Artist(artists, http=self._http) return AsyncIterator(_to_wrap()) def _ranked_artists(self, path): async def _to_wrap(): data = await self._http.request(path) for artist in data: yield RankedArtist(artist, http=self._http) return AsyncIterator(_to_wrap()) def youtube_views_charts(self): return self._ranked_artists("/ranks/charts/youtube/rankViews/big") def youtube_likes_charts(self): return self._ranked_artists("/ranks/charts/youtube/rankLikes/big") def youtube_followers_charts(self): return self._ranked_artists("/ranks/charts/youtube/rankSubGain/big") def youtube_charts(self): return self._ranked_artists("/ranks/charts/youtube/rank/big") def instagram_likes_charts(self): return self._ranked_artists("/ranks/charts/instagram/rankLikes/big") def instagram_followers_charts(self): return self._ranked_artists("/ranks/charts/instagram/rankSubGain/big") def instagram_charts(self): return self._ranked_artists("/ranks/charts/instagram/rank/big") def tiktok_likes_charts(self): return self._ranked_artists("/ranks/charts/tiktok/rankLikes/big") def tiktok_views_charts(self): return self._ranked_artists("/ranks/charts/tiktok/rankViews/big") def tiktok_followers_charts(self): return self._ranked_artists("/ranks/charts/tiktok/rankSubGain/big") def tiktok_charts(self): return self._ranked_artists("/ranks/charts/tiktok/rank/big") def twitter_likes_charts(self): return self._ranked_artists("/ranks/charts/twitter/rankLikes/big") def twitter_retweets_charts(self): return self._ranked_artists("/ranks/charts/twitter/rankRetweets/big") def twitter_followers_charts(self): return self._ranked_artists("/ranks/charts/twitter/rankSubGain/big") def twitter_charts(self): return self._ranked_artists("/ranks/charts/twitter/rank/big") def twitch_viewers_charts(self): return self._ranked_artists("/ranks/charts/twitch/rankViewer/big") def twitch_peak_viewers_charts(self): return self._ranked_artists("/ranks/charts/twitch/rankPeakViewer/big") def twitch_followers_charts(self): return self._ranked_artists("/ranks/charts/twitch/rankSubGain/big") def twitch_charts(self): return self._ranked_artists("/ranks/charts/twitch/rank/big") def coupons(self): # Coupons are the only resource that is paginated async def _to_wrap(): buffer = [] offset = 0 while True: if len(buffer) == 0: data = await self._http.request(f"/coupons?offset={offset}") buffer = [Coupon(c, http=self._http) for c in data["coupons"]] if len(buffer) == 0: break offset += len(buffer) yield buffer.pop(0) return AsyncIterator(_to_wrap()) def milestones(self): async def _to_wrap(): data = await self._http.request("/ranks/milestones") for milestone in data: yield Milestone(milestone, http=self._http) return AsyncIterator(_to_wrap()) def past_milestones(self): async def _to_wrap(): data = await self._http.request("/ranks/pastMilestones") for milestone in data: yield Milestone(milestone, http=self._http) return AsyncIterator(_to_wrap()) def viral(self): async def _to_wrap(): data = await self._http.request("/viral") for viral in data: yield Viral(viral, http=self._http) return AsyncIterator(_to_wrap())
import asyncio import urllib.parse from .http import HTTPClient from .artist import Artist, RankedArtist, DetailedArtist from .util import AsyncIterator from .coupon import Coupon from .milestone import Milestone from .viral import Viral __all__ = ( "NindoClient", ) class NindoClient: def __init__(self, **kwargs): self.loop = kwargs.get("loop", asyncio.get_event_loop()) self._http = HTTPClient(**kwargs) async def get_artist(self, artist_id): data = await self._http.request(f"/artist/{artist_id}") return DetailedArtist(data, http=self._http) def search(self, term): async def _to_wrap(): data = await self._http.request(f"/search/smart/{urllib.parse.quote(term)}") for artists in data: yield Artist(artists, http=self._http) return AsyncIterator(_to_wrap()) def _ranked_artists(self, path): async def _to_wrap(): data = await self._http.request(path) for artist in data: yield RankedArtist(artist, http=self._http) return AsyncIterator(_to_wrap()) def youtube_views_charts(self): return self._ranked_artists("/ranks/charts/youtube/rankViews/big") def youtube_likes_charts(self): return self._ranked_artists("/ranks/charts/youtube/rankLikes/big") def youtube_followers_charts(self): return self._ranked_artists("/ranks/charts/youtube/rankSubGain/big") def youtube_charts(self): return self._ranked_artists("/ranks/charts/youtube/rank/big") def instagram_likes_charts(self): return self._ranked_artists("/ranks/charts/instagram/rankLikes/big") def instagram_followers_charts(self): return self._ranked_artists("/ranks/charts/instagram/rankSubGain/big") def instagram_charts(self): return self._ranked_artists("/ranks/charts/instagram/rank/big") def tiktok_likes_charts(self): return self._ranked_artists("/ranks/charts/tiktok/rankLikes/big") def tiktok_views_charts(self): return self._ranked_artists("/ranks/charts/tiktok/rankViews/big") def tiktok_followers_charts(self): return self._ranked_artists("/ranks/charts/tiktok/rankSubGain/big") def tiktok_charts(self): return self._ranked_artists("/ranks/charts/tiktok/rank/big") def twitter_likes_charts(self): return self._ranked_artists("/ranks/charts/twitter/rankLikes/big") def twitter_retweets_charts(self): return self._ranked_artists("/ranks/charts/twitter/rankRetweets/big") def twitter_followers_charts(self): return self._ranked_artists("/ranks/charts/twitter/rankSubGain/big") def twitter_charts(self): return self._ranked_artists("/ranks/charts/twitter/rank/big") def twitch_viewers_charts(self): return self._ranked_artists("/ranks/charts/twitch/rankViewer/big") def twitch_peak_viewers_charts(self): return self._ranked_artists("/ranks/charts/twitch/rankPeakViewer/big") def twitch_followers_charts(self): return self._ranked_artists("/ranks/charts/twitch/rankSubGain/big") def twitch_charts(self): return self._ranked_artists("/ranks/charts/twitch/rank/big") def coupons(self): # Coupons are the only resource that is paginated async def _to_wrap(): buffer = [] offset = 0 while True: if len(buffer) == 0: data = await self._http.request(f"/coupons?offset={offset}") buffer = [Coupon(c, http=self._http) for c in data["coupons"]] if len(buffer) == 0: break offset += len(buffer) yield buffer.pop(0) return AsyncIterator(_to_wrap()) def milestones(self): async def _to_wrap(): data = await self._http.request("/ranks/milestones") for milestone in data: yield Milestone(milestone, http=self._http) return AsyncIterator(_to_wrap()) def past_milestones(self): async def _to_wrap(): data = await self._http.request("/ranks/pastMilestones") for milestone in data: yield Milestone(milestone, http=self._http) return AsyncIterator(_to_wrap()) def viral(self): async def _to_wrap(): data = await self._http.request("/viral") for viral in data: yield Viral(viral, http=self._http) return AsyncIterator(_to_wrap())
en
0.97723
# Coupons are the only resource that is paginated
2.595503
3
app.py
RTIInternational/ncrp-codes-app
0
6631350
import os from functools import partial from pathlib import Path from typing import Any, Dict, List import pandas as pd import streamlit as st from more_itertools import ichunked from stqdm import stqdm from download import download_link from model_utils import max_pred_bulk, predict, predict_bulk PRED_BATCH_SIZE = 16 st.set_page_config( page_title="NCRP Offense Code Classifier", initial_sidebar_state="collapsed" ) st.markdown(Path("readme.md").read_text()) st.markdown("---") st.markdown("## ✏️ Single Coder Demo") input_text = st.text_input( "Input Offense", value="FRAUDULENT USE OF A CREDIT CARD OR DEBT CARD >= $25,000", ) predictions = predict(input_text) st.markdown("Predictions") labels = ["Charge Category"] st.dataframe(pd.DataFrame(predictions[0])) st.markdown("---") st.markdown("## 📑 Bulk Coder") st.warning( "⚠️ *Note:* Your input data will be deduplicated" " on the selected column to reduce computation requirements." ) st.markdown("1️⃣ **Upload File**") uploaded_file = st.file_uploader("Bulk Upload", type=["xlsx", "csv"]) file_readers = {"csv": pd.read_csv, "xlsx": partial(pd.read_excel, engine="openpyxl")} if uploaded_file is not None: for filetype, reader in file_readers.items(): if uploaded_file.name.endswith(filetype): df = reader(uploaded_file) st.write("2️⃣ **Select Column of Offense Descriptions**") string_columns = list(df.select_dtypes("object").columns) longest_column = max( [(df[c].str.len().mean(), c) for c in string_columns], key=lambda x: x[0] )[1] selected_column = st.selectbox( "Select Column", options=list(string_columns), index=string_columns.index(longest_column), ) df = df.drop_duplicates(subset=[selected_column]) st.markdown(f"Uploaded Data Sample `(Deduplicated. N Rows = {len(df)})`") st.dataframe(df.head(20)) st.write(f"3️⃣ **Predict Using Column: `{selected_column}`**") if st.button(f"Compute Predictions"): input_texts = (value for _, value in df[selected_column].items()) n_batches = (len(df) // PRED_BATCH_SIZE) + 1 bulk_preds = [] for batch in stqdm( ichunked(input_texts, PRED_BATCH_SIZE), total=n_batches, desc="Bulk Predict Progress", ): batch_preds = predict_bulk(batch) bulk_preds.extend(batch_preds) df["charge_category_pred"] = max_pred_bulk(bulk_preds) # TODO: Add all scores # TODO: Add "confidence" st.write("**Sample Output**") st.dataframe(df.head(100)) tmp_download_link = download_link( df, f"{uploaded_file.name}-ncrp-predictions.csv", "⬇️ Download as CSV", ) st.markdown(tmp_download_link, unsafe_allow_html=True)
import os from functools import partial from pathlib import Path from typing import Any, Dict, List import pandas as pd import streamlit as st from more_itertools import ichunked from stqdm import stqdm from download import download_link from model_utils import max_pred_bulk, predict, predict_bulk PRED_BATCH_SIZE = 16 st.set_page_config( page_title="NCRP Offense Code Classifier", initial_sidebar_state="collapsed" ) st.markdown(Path("readme.md").read_text()) st.markdown("---") st.markdown("## ✏️ Single Coder Demo") input_text = st.text_input( "Input Offense", value="FRAUDULENT USE OF A CREDIT CARD OR DEBT CARD >= $25,000", ) predictions = predict(input_text) st.markdown("Predictions") labels = ["Charge Category"] st.dataframe(pd.DataFrame(predictions[0])) st.markdown("---") st.markdown("## 📑 Bulk Coder") st.warning( "⚠️ *Note:* Your input data will be deduplicated" " on the selected column to reduce computation requirements." ) st.markdown("1️⃣ **Upload File**") uploaded_file = st.file_uploader("Bulk Upload", type=["xlsx", "csv"]) file_readers = {"csv": pd.read_csv, "xlsx": partial(pd.read_excel, engine="openpyxl")} if uploaded_file is not None: for filetype, reader in file_readers.items(): if uploaded_file.name.endswith(filetype): df = reader(uploaded_file) st.write("2️⃣ **Select Column of Offense Descriptions**") string_columns = list(df.select_dtypes("object").columns) longest_column = max( [(df[c].str.len().mean(), c) for c in string_columns], key=lambda x: x[0] )[1] selected_column = st.selectbox( "Select Column", options=list(string_columns), index=string_columns.index(longest_column), ) df = df.drop_duplicates(subset=[selected_column]) st.markdown(f"Uploaded Data Sample `(Deduplicated. N Rows = {len(df)})`") st.dataframe(df.head(20)) st.write(f"3️⃣ **Predict Using Column: `{selected_column}`**") if st.button(f"Compute Predictions"): input_texts = (value for _, value in df[selected_column].items()) n_batches = (len(df) // PRED_BATCH_SIZE) + 1 bulk_preds = [] for batch in stqdm( ichunked(input_texts, PRED_BATCH_SIZE), total=n_batches, desc="Bulk Predict Progress", ): batch_preds = predict_bulk(batch) bulk_preds.extend(batch_preds) df["charge_category_pred"] = max_pred_bulk(bulk_preds) # TODO: Add all scores # TODO: Add "confidence" st.write("**Sample Output**") st.dataframe(df.head(100)) tmp_download_link = download_link( df, f"{uploaded_file.name}-ncrp-predictions.csv", "⬇️ Download as CSV", ) st.markdown(tmp_download_link, unsafe_allow_html=True)
en
0.175921
# ✏️ Single Coder Demo") # 📑 Bulk Coder") # TODO: Add all scores # TODO: Add "confidence"
2.588876
3