max_stars_repo_path
stringlengths
4
286
max_stars_repo_name
stringlengths
5
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.03M
content_cleaned
stringlengths
6
1.03M
language
stringclasses
111 values
language_score
float64
0.03
1
comments
stringlengths
0
556k
edu_score
float64
0.32
5.03
edu_int_score
int64
0
5
fetch_pbd_interaction/src/fetch_pbd_interaction/action.py
fetchrobotics/fetch_pbd
16
6632951
<filename>fetch_pbd_interaction/src/fetch_pbd_interaction/action.py '''The in-program representation of a programmed action.''' # ###################################################################### # Imports # ###################################################################### # Core ROS imports come first. import rospy # System builtins import threading # ROS builtins from geometry_msgs.msg import Vector3, PoseStamped, Quaternion from std_msgs.msg import Header, ColorRGBA, String from visualization_msgs.msg import MarkerArray, Marker import tf # Local from fetch_pbd_interaction.arm_target import ArmTarget from fetch_pbd_interaction.arm_trajectory import ArmTrajectory from fetch_pbd_interaction.grasp import Grasp from fetch_pbd_interaction.msg import ExecutionStatus, OrientationRPY, \ ArmState, Landmark # ###################################################################### # Module level constants # ###################################################################### # Marker properties for little arrows drawn between consecutive primitives. LINK_MARKER_LIFETIME = rospy.Duration() LINK_SCALE = Vector3(0.01, 0.03, 0.03) LINK_COLOR = ColorRGBA(0.8, 0.8, 0.8, 0.3) # sort of light gray # ROS topics, etc. TOPIC_MARKERS = '/fetch_pbd/visualization_marker_array' # TODO(sarah): Is this necessary? BASE_LINK = 'base_link' # ###################################################################### # Classes # ###################################################################### class Action: '''Holds information for one action.''' # TODO(sarah) : Probably get rid of this. Should the class get passed a # shared marker publisher from the Session or each instance should have # its own? _marker_publisher = None def __init__(self, robot, tf_listener, im_server, primitive_click_cb, action_change_cb, action_id=None, grasp_suggestion_service=None, grasp_feedback_topic=None, external_ee_link=None): ''' Args: robot (Robot) : interface to lower level robot functionality tf_listener (TransformListener) im_server (InteractiveMarkerSerever) primitive_click_cb (function(int)): The function to call when a primitive is clicked on (normally in the GUI). The function should take the number of the primitive action_id (int, optional): The index of this action. ''' # Initialize a bunch of state. self._name = "" # Human-friendly name for this action. self._im_server = im_server self._seq = [] self._action_id = action_id self._robot = robot self._primitive_click_cb = primitive_click_cb self._action_change_cb = action_change_cb self._status = ExecutionStatus.NOT_EXECUTING self._preempt = False self._tf_listener = tf_listener self._primitive_counter = 0 # Markers to connect consecutive primitives together self._link_markers = {} self._grasp_suggestion_service = grasp_suggestion_service self._grasp_feedback_topic = grasp_feedback_topic self._external_ee_link = external_ee_link # TODO(sarah): Understand this note better # NOTE(mbforbes): It appears that this is locking manipulation # of the internal sequence (self._seq). There have been race # conditions involving this (e.g. marker_click_cb(...)). # # In general, be aware the other code calling these methods # with data about this class (like how many primitives it holds) # is bad because that means the outside code is assuming that it # knows about state internal to this class, and that information # may not be true by the time the code here gets executed. This # is because there are several callbacks that trigger here so # we must reason asyncronously. # # Unless the information you have (e.g. about the number of # primitives that exist) was learned while this lock was acquired, # you cannot assume it is true. self._lock = threading.Lock() self._status_publisher = rospy.Publisher('/fetch_pbd/fetch_pbd_status', String, queue_size=10) if Action._marker_publisher is None: Action._marker_publisher = rospy.Publisher(TOPIC_MARKERS, MarkerArray, queue_size=10, latch=True) # ################################################################## # Instance methods: Public (API) # ################################################################## def head_busy(self): '''Returns true if head is busy Returns: bool ''' for primitive in self._seq: if primitive.head_busy(): return True return False def get_action_id(self): ''' Returns action_id Returns: int ''' return self._action_id def set_action_id(self, action_id): ''' Returns action_id Args: action_id (int) ''' self._action_id = action_id def set_name(self, name): '''Sets human-readable name for action Args: name (string) ''' self._name = name def get_name(self): '''Returns human-readable name for action Returns (string) ''' return self._name def get_json(self): '''Return json for this action for saving to db Returns: dict ''' json = {} json['name'] = self._name json['primitive_counter'] = self._primitive_counter json['id'] = self._action_id json['seq'] = [] for primitive in self._seq: json['seq'].append(primitive.get_json()) return json def build_from_json(self, json): '''Fills out action using information using json from db Args: dict : json/dict retrieved from couchdb ''' enabled = True self._action_id = json['id'] self._name = json['name'] self._primitive_counter = json['primitive_counter'] for primitive in json['seq']: if primitive.has_key('arm_target'): target = primitive['arm_target'] primitive = ArmTarget(self._robot, self._tf_listener, self._im_server) primitive.build_from_json(target) elif primitive.has_key('arm_trajectory'): target = primitive['arm_trajectory'] primitive = ArmTrajectory(self._robot, self._tf_listener, self._im_server) primitive.build_from_json(target) elif primitive.has_key('grasp'): if self._grasp_suggestion_service == "": enabled = False target = primitive['grasp'] primitive = Grasp(self._robot, self._tf_listener, self._im_server, self._grasp_suggestion_service, self._grasp_feedback_topic, self._external_ee_link) primitive.build_from_json(target) self.add_primitive(primitive, False, False) self.reset_viz() return enabled def start_execution(self): ''' Starts execution of action. This method spawns a new thread. Args: z_offset (float): Amount to add to z-values of pose positions. ''' # This will take long; create a thread. self._preempt = False self._status = ExecutionStatus.EXECUTING thread = threading.Thread( group=None, target=self._execute_action, name="action_execution_thread" ) thread.start() def stop_execution(self): ''' Indicate that user wants to preempt action execution ''' self._preempt = True def end_execution(self): ''' Indicate that execution status can reset to ExecutionStatus.NOT_EXECUTING ''' self._status = ExecutionStatus.NOT_EXECUTING def get_status(self): '''Return execution status of action Returns: ExecutionStatus.EXECUTING|NOT_EXECUTING|...etc ''' return self._status def set_status(self, status): '''Set execution status of action Args: status (ExecutionStatus.EXECUTING|NOT_EXECUTING|...etc) ''' self._status = status def add_primitive(self, primitive, add_marker=True, add_name=True): '''Add primitive to action. Args: primitive (Primitive) add_marker (bool) add_name (bool) ''' self._lock.acquire() rospy.loginfo("Adding primitive") if add_name: primitive.set_name("primitive_" + str(self._primitive_counter)) self._primitive_counter += 1 primitive.add_marker_callbacks( self.select_primitive, # marker_click_cb self.delete_primitive, self._primitive_pose_change, self._action_change_cb ) if primitive.get_ref_type() == ArmState.PREVIOUS_TARGET: primitive.change_ref_frame(ArmState.PREVIOUS_TARGET, Landmark()) self._seq.append(primitive) if add_marker: # self._marker_visibility.append(True) primitive.show_marker() self._update_markers() self._lock.release() self.update_viz() else: # self._marker_visibility.append(False) primitive.hide_marker() self._lock.release() rospy.loginfo("Primitive added") def update_objects(self): '''For each primitive, updates the reference frames based on the locations of objects in the world ''' self._lock.acquire() rospy.loginfo("Updating objects") for primitive in self._seq: if not primitive.update_ref_frames(): primitive.hide_marker() else: primitive.show_marker() self._update_markers() self._lock.release() self._action_change_cb() def n_primitives(self): '''Returns the number of primitives in this action. Returns: int ''' return len(self._seq) def reset_viz(self): '''Removes all visualization relating to this action.''' self._lock.acquire() # Destroy the primitive markers. for primitive in self._seq: primitive.hide_marker() self._im_server.clear() # Mark the links for destruction. for i in self._link_markers.keys(): self._link_markers[i].action = Marker.DELETE # Publish the link destructions. m_array = MarkerArray() for i in self._link_markers.keys(): m_array.markers.append(self._link_markers[i]) self._marker_publisher.publish(m_array) self._link_markers = {} self._lock.release() def delete_primitive_marker(self, primitive_number): '''Delete marker with certain index Args: primitive_number (int) ''' # self._marker_visibility[primitive_number] = False if self.n_primitives() > 0: primitive = self._seq[primitive_number] primitive.hide_marker() def make_primitive_marker(self, primitive_number): '''Show marker with certain index Args: primitive_number (int) ''' # self._marker_visibility[primitive_number] = True primitive = self._seq[primitive_number] if not primitive.show_marker(): rospy.logwarn self._status_publisher.publish( 'Not showing marker for {}'.format(primitive.get_name()) + ' because no matching object found. Try "record objects"?') def get_marker_visibility(self): '''Returns visibility status of primitive markers Returns: [bool] ''' marker_visibility = [] for primitive in self._seq: marker_visibility += [primitive.marker_visible()] return marker_visibility def select_primitive(self, primitive_number, is_selected): '''Callback for when one of the markers is clicked. Selects clicked marker and unselects others. Args: primitive_number (int) is_selected(bool): Whether the marker was selected (True) or de-selected (False). ''' self._lock.acquire() for primitive in self._seq: # If we match the one we've clicked on, select it. if primitive.get_primitive_number() == primitive_number: primitive.select(is_selected) primitive.update_viz() else: # Otherwise, deselect it. if primitive.is_control_visible(): primitive.select(False) primitive.update_viz() # If we selected it, really click on it. if is_selected: self._primitive_click_cb(primitive_number) else: self._primitive_click_cb(-1) self._lock.release() self.update_viz() def initialize_viz(self): '''Initialize visualization.''' rospy.loginfo("Initialising viz for: {}".format(self.get_action_id())) # self._lock.acquire() # self._marker_visibility = [True] * len(self._seq) marker_visibility = [] for i in range(len(self._seq)): primitive = self._seq[i] # Construct the markers. marker_visibility.append(primitive.show_marker()) if False in marker_visibility: rospy.logwarn("Not showing primitive markers because " + "no objects present") self._status_publisher.publish( String("Not showing primitive markers because " + "no objects present")) self._update_markers() # self._lock.release() self.update_viz() def delete_last_primitive(self): '''Deletes the last primitive of the action.''' if self.n_primitives() > 0: self.delete_primitive(len(self._seq) - 1) def is_object_required(self): '''Returns whether this action has any primitives that are relative to objects in the world (instead of absolute). Returns: bool ''' is_required = False self._lock.acquire() for primitive in self._seq: is_required = primitive.is_object_required() if is_required: break self._lock.release() return is_required def get_ref_frame_names(self): '''Returns the names of the reference frame objects for all action primitives. Returns: [str] ''' self._lock.acquire() ref_frame_names = [] for primitive in self._seq: ref_frame_names += [primitive.get_ref_frame_name()] self._lock.release() return ref_frame_names def get_primitive_names(self): '''Returns the names of primitives. Returns: [str] ''' self._lock.acquire() names = [] for primitive in self._seq: names += [primitive.get_name()] self._lock.release() return names def get_primitive_positions_orientations(self): '''Returns the positions and orientations of primitives Returns: Point[], OrientationRPY[] ''' self._lock.acquire() positions = [] orientations = [] for primitive in self._seq: pose = primitive.get_relative_pose() quaternion = ( pose.pose.orientation.x, pose.pose.orientation.y, pose.pose.orientation.z, pose.pose.orientation.w) euler = tf.transformations.euler_from_quaternion(quaternion) rpy = OrientationRPY(euler[0], euler[1], euler[2]) positions += [pose.pose.position] orientations += [rpy] self._lock.release() return positions, orientations def get_primitives_editable(self): '''Returns list of whether primitive poses are editable Returns: [bool] ''' self._lock.acquire() editable = [] for primitive in self._seq: editable += [primitive.pose_editable()] self._lock.release() return editable def update_primitive_pose(self, primitive_number, position, orientation): '''Update pose of primitive given by primitive_number Args: primitive_number (int) position (Point) orientation (OrientationRPY) ''' rospy.loginfo("Updating primitive pose") frame_id = self.get_ref_frame_names()[primitive_number] pose_stamped = PoseStamped() pose_stamped.header.frame_id = frame_id pose_stamped.pose.position = position roll = orientation.r pitch = orientation.p yaw = orientation.y quat = tf.transformations.quaternion_from_euler(roll, pitch, yaw) pose_stamped.pose.orientation = Quaternion(quat[0], quat[1], quat[2], quat[3]) primitive = self._seq[primitive_number] primitive.set_pose(pose_stamped) self._primitive_pose_change() def get_primitives(self): '''Return list of primitives Returns: [Primitive] ''' # self._lock.acquire() primitives = self._seq # self._lock.release() return primitives def get_primitive(self, index): '''Returns primitive of the action based on index. Args: index (int): Index (0-based) of primitive to return. Returns: Primitive|None: Returns None if no such primitive exists. ''' # NOTE(mbforbes): For this lock to be meaningful, we have to # check that the index is valid within it. self._lock.acquire() n_primitives = len(self._seq) if index < 0 or index >= n_primitives: rospy.logerr("Requested primitive index " + str(index) + ", but only have " + str(n_primitives) + " primitives.") requested_primitive = None else: requested_primitive = self._seq[index] self._lock.release() return requested_primitive def update_viz(self): '''Updates the visualization of the action.''' self._lock.acquire() self._update_links() m_array = MarkerArray() for i in self._link_markers.keys(): m_array.markers.append(self._link_markers[i]) self._marker_publisher.publish(m_array) self._lock.release() def clear(self): '''Clears the action.''' self.reset_viz() self._lock.acquire() self._seq = [] self._link_markers = dict() self._lock.release() def decrease_id(self): '''Decrement the action's id by one''' self._action_id = self._action_id - 1 def switch_primitive_order(self, old_index, new_index): '''Change the order of primitives in action Args: old_index (int) new_index (int) ''' self._lock.acquire() primitive = self._seq.pop(old_index) self._seq.insert(new_index, primitive) relative_primitives = {} for i in range(self.n_primitives()): primitive = self._seq[i] if primitive.get_ref_type() == ArmState.PREVIOUS_TARGET: relative_primitives[i] = primitive.get_absolute_pose() primitive.set_primitive_number(i) for key in relative_primitives: primitive = self._seq[key] if primitive.get_ref_type() == ArmState.PREVIOUS_TARGET: if key == 0: primitive.change_ref_frame(ArmState.ROBOT_BASE, Landmark()) else: pose = relative_primitives[key] new_pose = self._tf_listener.transformPose( primitive.get_ref_frame_name(), pose) primitive.set_pose(new_pose) self._lock.release() self.update_viz() for idx, primitive in enumerate(self._seq): if primitive.is_selected(): self._primitive_click_cb(idx) self._action_change_cb() def delete_primitive(self, to_delete): '''Deletes a primitive from the action. NOTE(mbforbes): The lock should be acquired before calling this method. Args: to_delete (int): The index of the primitive to delete. ''' if self.n_primitives() == 0: rospy.logwarn("No primitives to delete") return self._lock.acquire() # if (to_delete + 1) < self.n_primitives(): self._seq[to_delete].hide_marker() if self._seq[to_delete].is_selected(): self._primitive_click_cb(-1) for i in range(to_delete + 1, self.n_primitives()): self._seq[i].decrease_id() if self.n_primitives() > (to_delete + 1): next_primitive = self._seq[to_delete + 1] if next_primitive.get_ref_type() == ArmState.PREVIOUS_TARGET: if to_delete == 0: next_primitive.change_ref_frame(ArmState.ROBOT_BASE, Landmark()) else: pose = next_primitive.get_absolute_pose() new_pose = self._tf_listener.transformPose( next_primitive.get_ref_frame_name(), pose) next_primitive.set_pose(new_pose) self._seq.pop(to_delete) # self._marker_visibility.pop(to_delete) self._lock.release() self.update_viz() self._action_change_cb() def execute_primitive(self, to_execute): '''Execute specified primitive Args: to_execute (int) ''' self._seq[to_execute].execute() # ################################################################## # Static methods: Internal ("private") # ################################################################## @staticmethod def _get_link(primitive0, primitive1, marker_id): '''Returns a marker representing a link b/w two consecutive primitives (both must already exist). Args: primitive0 (Primitive) primitive1 (Primitive) marker_id (int) : id for link marker between to primitives Returns: Marker|None ''' start = primitive0.get_absolute_marker_position(use_final=True) end = primitive1.get_absolute_marker_position(use_final=False) if start == end: return None elif not start is None and not end is None: return Marker(type=Marker.ARROW, id=marker_id, lifetime=LINK_MARKER_LIFETIME, scale=LINK_SCALE, header=Header(frame_id=BASE_LINK), color=LINK_COLOR, points=[start, end]) else: return None # ################################################################## # Instance methods: Internal ("private") # ################################################################## def _primitive_pose_change(self): '''Update links when primitive pose changes''' for primitive in self._seq: primitive.update_viz() # self._lock.release() self.update_viz() def _execute_action(self): ''' Function to replay the demonstrated action.''' primitive = self.get_primitive(0) rospy.loginfo("Starting to execute action!") # Make sure the primitive exists. if primitive is None: rospy.logwarn("First primitive does not exist.") self._status = ExecutionStatus.CONDITION_ERROR self._status_publisher.publish( String("First primitive does not exist.")) # Check if the very first precondition is met. # Not actually implemented right now. elif not self._check_pre_conditions(): self._status = ExecutionStatus.CONDITION_ERROR else: # Check that all parts of the action are reachable if not self._is_action_reachable(): rospy.logwarn("Problem finding IK solutions.") self._status = ExecutionStatus.NO_IK self._status_publisher.publish( String("Problem finding IK solutions.")) else: self._loop_through_primitives() self._robot.reset_arm_movement_history() # If we haven't been preempted, we now report success. if self._status == ExecutionStatus.EXECUTING: self._status = ExecutionStatus.SUCCEEDED rospy.loginfo("Action execution has succeeded.") def _check_pre_conditions(self): '''Loop through primitives and make sure all of their preconditions are met Returns: bool ''' for i in range(self.n_primitives()): rospy.loginfo("checking preconditions " + str(i)) primitive = self.get_primitive(i) # Make sure primitive exists. if primitive is None: rospy.logwarn("Primitive " + str(primitive.get_name()) + " does not exist.") self._status = ExecutionStatus.CONDITION_ERROR self._status_publisher.publish( String("Primitive " + str(primitive.get_name()) + " does not exist.")) return False # Check that preconditions are met (doesn't do anything right now) else: success, msg = primitive.check_pre_condition() if not success: rospy.logwarn( "\tPreconditions of primitive " + str(primitive.get_name()) + " are not " + "satisfied. " + msg) self._status = ExecutionStatus.CONDITION_ERROR self._status_publisher.publish( String("Preconditions of primitive " + str(primitive.get_name()) + " are not satisfied. " + msg)) return False return True def _is_action_reachable(self): '''Make sure that action is possible to execute entire action''' for i in range(len(self._seq)): primitive = self.get_primitive(i) if primitive is None: rospy.logwarn("Primitive " + str(i) + " does not exist.") break else: if not primitive.is_reachable(): return False return True def _loop_through_primitives(self): '''Goes through the primitives of the current action and moves to each. ''' # Go over primitives of the action for i in range(self.n_primitives()): rospy.loginfo("Executing primitive " + str(i)) primitive = self.get_primitive(i) # Make sure primitive exists. if primitive is None: rospy.logwarn("Primitive " + str(i) + " does not exist.") self._status = ExecutionStatus.CONDITION_ERROR self._status_publisher.publish( String("Primitive " + str(i) + " does not exist.")) break # Check that preconditions are met (doesn't do anything right now) else: # Try executing. self._status = ExecutionStatus.EXECUTING success, msg = primitive.execute() if not success: self._status = ExecutionStatus.NO_IK self._status_publisher.publish( String(msg)) break # Finished executing; check that postconditions are met success, msg = primitive.check_post_condition() if success: rospy.loginfo('\tPost-conditions of the action are met.') else: rospy.logwarn( "\tPost-conditions of action primitive " + str(i) + " are not satisfied. Aborting.") self._status = ExecutionStatus.CONDITION_ERROR self._status_publisher.publish( String("Post-conditions of action primitive " + str(i) + " are not satisfied. " + msg)) break # Perhaps the execution was pre-empted by the user. Check # this before continuing onto the next primitive. if self._preempt: rospy.logwarn("\tExecution preempted by user.") self._status = ExecutionStatus.PREEMPTED self._status_publisher.publish( String("Execution preempted by user.")) break # Primitive completed successfully. rospy.loginfo("\tPrimitive " + str(i) + " of action is complete.") def _update_markers(self): '''Updates the markers after a change.''' rospy.loginfo("Updating viz markers") for primitive in self._seq: primitive.update_viz() def _update_links(self): '''Updates the visualized links b/w action primitives.''' current_num_links = len(self._link_markers) new_num_links = len(self._seq) - 1 self._link_markers = {} if new_num_links >= 1: for i in range(new_num_links): link_marker = Action._get_link(self._seq[i], self._seq[i + 1], i) if not link_marker is None: self._link_markers[i] = link_marker if (current_num_links - new_num_links) > 0: for i in range(new_num_links, current_num_links): self._link_markers[i] = Marker(id=i, action=Marker.DELETE) else: marker = Marker() marker.id = 0 self._link_markers[0] = marker self._link_markers[0].action = Marker.DELETE
<filename>fetch_pbd_interaction/src/fetch_pbd_interaction/action.py '''The in-program representation of a programmed action.''' # ###################################################################### # Imports # ###################################################################### # Core ROS imports come first. import rospy # System builtins import threading # ROS builtins from geometry_msgs.msg import Vector3, PoseStamped, Quaternion from std_msgs.msg import Header, ColorRGBA, String from visualization_msgs.msg import MarkerArray, Marker import tf # Local from fetch_pbd_interaction.arm_target import ArmTarget from fetch_pbd_interaction.arm_trajectory import ArmTrajectory from fetch_pbd_interaction.grasp import Grasp from fetch_pbd_interaction.msg import ExecutionStatus, OrientationRPY, \ ArmState, Landmark # ###################################################################### # Module level constants # ###################################################################### # Marker properties for little arrows drawn between consecutive primitives. LINK_MARKER_LIFETIME = rospy.Duration() LINK_SCALE = Vector3(0.01, 0.03, 0.03) LINK_COLOR = ColorRGBA(0.8, 0.8, 0.8, 0.3) # sort of light gray # ROS topics, etc. TOPIC_MARKERS = '/fetch_pbd/visualization_marker_array' # TODO(sarah): Is this necessary? BASE_LINK = 'base_link' # ###################################################################### # Classes # ###################################################################### class Action: '''Holds information for one action.''' # TODO(sarah) : Probably get rid of this. Should the class get passed a # shared marker publisher from the Session or each instance should have # its own? _marker_publisher = None def __init__(self, robot, tf_listener, im_server, primitive_click_cb, action_change_cb, action_id=None, grasp_suggestion_service=None, grasp_feedback_topic=None, external_ee_link=None): ''' Args: robot (Robot) : interface to lower level robot functionality tf_listener (TransformListener) im_server (InteractiveMarkerSerever) primitive_click_cb (function(int)): The function to call when a primitive is clicked on (normally in the GUI). The function should take the number of the primitive action_id (int, optional): The index of this action. ''' # Initialize a bunch of state. self._name = "" # Human-friendly name for this action. self._im_server = im_server self._seq = [] self._action_id = action_id self._robot = robot self._primitive_click_cb = primitive_click_cb self._action_change_cb = action_change_cb self._status = ExecutionStatus.NOT_EXECUTING self._preempt = False self._tf_listener = tf_listener self._primitive_counter = 0 # Markers to connect consecutive primitives together self._link_markers = {} self._grasp_suggestion_service = grasp_suggestion_service self._grasp_feedback_topic = grasp_feedback_topic self._external_ee_link = external_ee_link # TODO(sarah): Understand this note better # NOTE(mbforbes): It appears that this is locking manipulation # of the internal sequence (self._seq). There have been race # conditions involving this (e.g. marker_click_cb(...)). # # In general, be aware the other code calling these methods # with data about this class (like how many primitives it holds) # is bad because that means the outside code is assuming that it # knows about state internal to this class, and that information # may not be true by the time the code here gets executed. This # is because there are several callbacks that trigger here so # we must reason asyncronously. # # Unless the information you have (e.g. about the number of # primitives that exist) was learned while this lock was acquired, # you cannot assume it is true. self._lock = threading.Lock() self._status_publisher = rospy.Publisher('/fetch_pbd/fetch_pbd_status', String, queue_size=10) if Action._marker_publisher is None: Action._marker_publisher = rospy.Publisher(TOPIC_MARKERS, MarkerArray, queue_size=10, latch=True) # ################################################################## # Instance methods: Public (API) # ################################################################## def head_busy(self): '''Returns true if head is busy Returns: bool ''' for primitive in self._seq: if primitive.head_busy(): return True return False def get_action_id(self): ''' Returns action_id Returns: int ''' return self._action_id def set_action_id(self, action_id): ''' Returns action_id Args: action_id (int) ''' self._action_id = action_id def set_name(self, name): '''Sets human-readable name for action Args: name (string) ''' self._name = name def get_name(self): '''Returns human-readable name for action Returns (string) ''' return self._name def get_json(self): '''Return json for this action for saving to db Returns: dict ''' json = {} json['name'] = self._name json['primitive_counter'] = self._primitive_counter json['id'] = self._action_id json['seq'] = [] for primitive in self._seq: json['seq'].append(primitive.get_json()) return json def build_from_json(self, json): '''Fills out action using information using json from db Args: dict : json/dict retrieved from couchdb ''' enabled = True self._action_id = json['id'] self._name = json['name'] self._primitive_counter = json['primitive_counter'] for primitive in json['seq']: if primitive.has_key('arm_target'): target = primitive['arm_target'] primitive = ArmTarget(self._robot, self._tf_listener, self._im_server) primitive.build_from_json(target) elif primitive.has_key('arm_trajectory'): target = primitive['arm_trajectory'] primitive = ArmTrajectory(self._robot, self._tf_listener, self._im_server) primitive.build_from_json(target) elif primitive.has_key('grasp'): if self._grasp_suggestion_service == "": enabled = False target = primitive['grasp'] primitive = Grasp(self._robot, self._tf_listener, self._im_server, self._grasp_suggestion_service, self._grasp_feedback_topic, self._external_ee_link) primitive.build_from_json(target) self.add_primitive(primitive, False, False) self.reset_viz() return enabled def start_execution(self): ''' Starts execution of action. This method spawns a new thread. Args: z_offset (float): Amount to add to z-values of pose positions. ''' # This will take long; create a thread. self._preempt = False self._status = ExecutionStatus.EXECUTING thread = threading.Thread( group=None, target=self._execute_action, name="action_execution_thread" ) thread.start() def stop_execution(self): ''' Indicate that user wants to preempt action execution ''' self._preempt = True def end_execution(self): ''' Indicate that execution status can reset to ExecutionStatus.NOT_EXECUTING ''' self._status = ExecutionStatus.NOT_EXECUTING def get_status(self): '''Return execution status of action Returns: ExecutionStatus.EXECUTING|NOT_EXECUTING|...etc ''' return self._status def set_status(self, status): '''Set execution status of action Args: status (ExecutionStatus.EXECUTING|NOT_EXECUTING|...etc) ''' self._status = status def add_primitive(self, primitive, add_marker=True, add_name=True): '''Add primitive to action. Args: primitive (Primitive) add_marker (bool) add_name (bool) ''' self._lock.acquire() rospy.loginfo("Adding primitive") if add_name: primitive.set_name("primitive_" + str(self._primitive_counter)) self._primitive_counter += 1 primitive.add_marker_callbacks( self.select_primitive, # marker_click_cb self.delete_primitive, self._primitive_pose_change, self._action_change_cb ) if primitive.get_ref_type() == ArmState.PREVIOUS_TARGET: primitive.change_ref_frame(ArmState.PREVIOUS_TARGET, Landmark()) self._seq.append(primitive) if add_marker: # self._marker_visibility.append(True) primitive.show_marker() self._update_markers() self._lock.release() self.update_viz() else: # self._marker_visibility.append(False) primitive.hide_marker() self._lock.release() rospy.loginfo("Primitive added") def update_objects(self): '''For each primitive, updates the reference frames based on the locations of objects in the world ''' self._lock.acquire() rospy.loginfo("Updating objects") for primitive in self._seq: if not primitive.update_ref_frames(): primitive.hide_marker() else: primitive.show_marker() self._update_markers() self._lock.release() self._action_change_cb() def n_primitives(self): '''Returns the number of primitives in this action. Returns: int ''' return len(self._seq) def reset_viz(self): '''Removes all visualization relating to this action.''' self._lock.acquire() # Destroy the primitive markers. for primitive in self._seq: primitive.hide_marker() self._im_server.clear() # Mark the links for destruction. for i in self._link_markers.keys(): self._link_markers[i].action = Marker.DELETE # Publish the link destructions. m_array = MarkerArray() for i in self._link_markers.keys(): m_array.markers.append(self._link_markers[i]) self._marker_publisher.publish(m_array) self._link_markers = {} self._lock.release() def delete_primitive_marker(self, primitive_number): '''Delete marker with certain index Args: primitive_number (int) ''' # self._marker_visibility[primitive_number] = False if self.n_primitives() > 0: primitive = self._seq[primitive_number] primitive.hide_marker() def make_primitive_marker(self, primitive_number): '''Show marker with certain index Args: primitive_number (int) ''' # self._marker_visibility[primitive_number] = True primitive = self._seq[primitive_number] if not primitive.show_marker(): rospy.logwarn self._status_publisher.publish( 'Not showing marker for {}'.format(primitive.get_name()) + ' because no matching object found. Try "record objects"?') def get_marker_visibility(self): '''Returns visibility status of primitive markers Returns: [bool] ''' marker_visibility = [] for primitive in self._seq: marker_visibility += [primitive.marker_visible()] return marker_visibility def select_primitive(self, primitive_number, is_selected): '''Callback for when one of the markers is clicked. Selects clicked marker and unselects others. Args: primitive_number (int) is_selected(bool): Whether the marker was selected (True) or de-selected (False). ''' self._lock.acquire() for primitive in self._seq: # If we match the one we've clicked on, select it. if primitive.get_primitive_number() == primitive_number: primitive.select(is_selected) primitive.update_viz() else: # Otherwise, deselect it. if primitive.is_control_visible(): primitive.select(False) primitive.update_viz() # If we selected it, really click on it. if is_selected: self._primitive_click_cb(primitive_number) else: self._primitive_click_cb(-1) self._lock.release() self.update_viz() def initialize_viz(self): '''Initialize visualization.''' rospy.loginfo("Initialising viz for: {}".format(self.get_action_id())) # self._lock.acquire() # self._marker_visibility = [True] * len(self._seq) marker_visibility = [] for i in range(len(self._seq)): primitive = self._seq[i] # Construct the markers. marker_visibility.append(primitive.show_marker()) if False in marker_visibility: rospy.logwarn("Not showing primitive markers because " + "no objects present") self._status_publisher.publish( String("Not showing primitive markers because " + "no objects present")) self._update_markers() # self._lock.release() self.update_viz() def delete_last_primitive(self): '''Deletes the last primitive of the action.''' if self.n_primitives() > 0: self.delete_primitive(len(self._seq) - 1) def is_object_required(self): '''Returns whether this action has any primitives that are relative to objects in the world (instead of absolute). Returns: bool ''' is_required = False self._lock.acquire() for primitive in self._seq: is_required = primitive.is_object_required() if is_required: break self._lock.release() return is_required def get_ref_frame_names(self): '''Returns the names of the reference frame objects for all action primitives. Returns: [str] ''' self._lock.acquire() ref_frame_names = [] for primitive in self._seq: ref_frame_names += [primitive.get_ref_frame_name()] self._lock.release() return ref_frame_names def get_primitive_names(self): '''Returns the names of primitives. Returns: [str] ''' self._lock.acquire() names = [] for primitive in self._seq: names += [primitive.get_name()] self._lock.release() return names def get_primitive_positions_orientations(self): '''Returns the positions and orientations of primitives Returns: Point[], OrientationRPY[] ''' self._lock.acquire() positions = [] orientations = [] for primitive in self._seq: pose = primitive.get_relative_pose() quaternion = ( pose.pose.orientation.x, pose.pose.orientation.y, pose.pose.orientation.z, pose.pose.orientation.w) euler = tf.transformations.euler_from_quaternion(quaternion) rpy = OrientationRPY(euler[0], euler[1], euler[2]) positions += [pose.pose.position] orientations += [rpy] self._lock.release() return positions, orientations def get_primitives_editable(self): '''Returns list of whether primitive poses are editable Returns: [bool] ''' self._lock.acquire() editable = [] for primitive in self._seq: editable += [primitive.pose_editable()] self._lock.release() return editable def update_primitive_pose(self, primitive_number, position, orientation): '''Update pose of primitive given by primitive_number Args: primitive_number (int) position (Point) orientation (OrientationRPY) ''' rospy.loginfo("Updating primitive pose") frame_id = self.get_ref_frame_names()[primitive_number] pose_stamped = PoseStamped() pose_stamped.header.frame_id = frame_id pose_stamped.pose.position = position roll = orientation.r pitch = orientation.p yaw = orientation.y quat = tf.transformations.quaternion_from_euler(roll, pitch, yaw) pose_stamped.pose.orientation = Quaternion(quat[0], quat[1], quat[2], quat[3]) primitive = self._seq[primitive_number] primitive.set_pose(pose_stamped) self._primitive_pose_change() def get_primitives(self): '''Return list of primitives Returns: [Primitive] ''' # self._lock.acquire() primitives = self._seq # self._lock.release() return primitives def get_primitive(self, index): '''Returns primitive of the action based on index. Args: index (int): Index (0-based) of primitive to return. Returns: Primitive|None: Returns None if no such primitive exists. ''' # NOTE(mbforbes): For this lock to be meaningful, we have to # check that the index is valid within it. self._lock.acquire() n_primitives = len(self._seq) if index < 0 or index >= n_primitives: rospy.logerr("Requested primitive index " + str(index) + ", but only have " + str(n_primitives) + " primitives.") requested_primitive = None else: requested_primitive = self._seq[index] self._lock.release() return requested_primitive def update_viz(self): '''Updates the visualization of the action.''' self._lock.acquire() self._update_links() m_array = MarkerArray() for i in self._link_markers.keys(): m_array.markers.append(self._link_markers[i]) self._marker_publisher.publish(m_array) self._lock.release() def clear(self): '''Clears the action.''' self.reset_viz() self._lock.acquire() self._seq = [] self._link_markers = dict() self._lock.release() def decrease_id(self): '''Decrement the action's id by one''' self._action_id = self._action_id - 1 def switch_primitive_order(self, old_index, new_index): '''Change the order of primitives in action Args: old_index (int) new_index (int) ''' self._lock.acquire() primitive = self._seq.pop(old_index) self._seq.insert(new_index, primitive) relative_primitives = {} for i in range(self.n_primitives()): primitive = self._seq[i] if primitive.get_ref_type() == ArmState.PREVIOUS_TARGET: relative_primitives[i] = primitive.get_absolute_pose() primitive.set_primitive_number(i) for key in relative_primitives: primitive = self._seq[key] if primitive.get_ref_type() == ArmState.PREVIOUS_TARGET: if key == 0: primitive.change_ref_frame(ArmState.ROBOT_BASE, Landmark()) else: pose = relative_primitives[key] new_pose = self._tf_listener.transformPose( primitive.get_ref_frame_name(), pose) primitive.set_pose(new_pose) self._lock.release() self.update_viz() for idx, primitive in enumerate(self._seq): if primitive.is_selected(): self._primitive_click_cb(idx) self._action_change_cb() def delete_primitive(self, to_delete): '''Deletes a primitive from the action. NOTE(mbforbes): The lock should be acquired before calling this method. Args: to_delete (int): The index of the primitive to delete. ''' if self.n_primitives() == 0: rospy.logwarn("No primitives to delete") return self._lock.acquire() # if (to_delete + 1) < self.n_primitives(): self._seq[to_delete].hide_marker() if self._seq[to_delete].is_selected(): self._primitive_click_cb(-1) for i in range(to_delete + 1, self.n_primitives()): self._seq[i].decrease_id() if self.n_primitives() > (to_delete + 1): next_primitive = self._seq[to_delete + 1] if next_primitive.get_ref_type() == ArmState.PREVIOUS_TARGET: if to_delete == 0: next_primitive.change_ref_frame(ArmState.ROBOT_BASE, Landmark()) else: pose = next_primitive.get_absolute_pose() new_pose = self._tf_listener.transformPose( next_primitive.get_ref_frame_name(), pose) next_primitive.set_pose(new_pose) self._seq.pop(to_delete) # self._marker_visibility.pop(to_delete) self._lock.release() self.update_viz() self._action_change_cb() def execute_primitive(self, to_execute): '''Execute specified primitive Args: to_execute (int) ''' self._seq[to_execute].execute() # ################################################################## # Static methods: Internal ("private") # ################################################################## @staticmethod def _get_link(primitive0, primitive1, marker_id): '''Returns a marker representing a link b/w two consecutive primitives (both must already exist). Args: primitive0 (Primitive) primitive1 (Primitive) marker_id (int) : id for link marker between to primitives Returns: Marker|None ''' start = primitive0.get_absolute_marker_position(use_final=True) end = primitive1.get_absolute_marker_position(use_final=False) if start == end: return None elif not start is None and not end is None: return Marker(type=Marker.ARROW, id=marker_id, lifetime=LINK_MARKER_LIFETIME, scale=LINK_SCALE, header=Header(frame_id=BASE_LINK), color=LINK_COLOR, points=[start, end]) else: return None # ################################################################## # Instance methods: Internal ("private") # ################################################################## def _primitive_pose_change(self): '''Update links when primitive pose changes''' for primitive in self._seq: primitive.update_viz() # self._lock.release() self.update_viz() def _execute_action(self): ''' Function to replay the demonstrated action.''' primitive = self.get_primitive(0) rospy.loginfo("Starting to execute action!") # Make sure the primitive exists. if primitive is None: rospy.logwarn("First primitive does not exist.") self._status = ExecutionStatus.CONDITION_ERROR self._status_publisher.publish( String("First primitive does not exist.")) # Check if the very first precondition is met. # Not actually implemented right now. elif not self._check_pre_conditions(): self._status = ExecutionStatus.CONDITION_ERROR else: # Check that all parts of the action are reachable if not self._is_action_reachable(): rospy.logwarn("Problem finding IK solutions.") self._status = ExecutionStatus.NO_IK self._status_publisher.publish( String("Problem finding IK solutions.")) else: self._loop_through_primitives() self._robot.reset_arm_movement_history() # If we haven't been preempted, we now report success. if self._status == ExecutionStatus.EXECUTING: self._status = ExecutionStatus.SUCCEEDED rospy.loginfo("Action execution has succeeded.") def _check_pre_conditions(self): '''Loop through primitives and make sure all of their preconditions are met Returns: bool ''' for i in range(self.n_primitives()): rospy.loginfo("checking preconditions " + str(i)) primitive = self.get_primitive(i) # Make sure primitive exists. if primitive is None: rospy.logwarn("Primitive " + str(primitive.get_name()) + " does not exist.") self._status = ExecutionStatus.CONDITION_ERROR self._status_publisher.publish( String("Primitive " + str(primitive.get_name()) + " does not exist.")) return False # Check that preconditions are met (doesn't do anything right now) else: success, msg = primitive.check_pre_condition() if not success: rospy.logwarn( "\tPreconditions of primitive " + str(primitive.get_name()) + " are not " + "satisfied. " + msg) self._status = ExecutionStatus.CONDITION_ERROR self._status_publisher.publish( String("Preconditions of primitive " + str(primitive.get_name()) + " are not satisfied. " + msg)) return False return True def _is_action_reachable(self): '''Make sure that action is possible to execute entire action''' for i in range(len(self._seq)): primitive = self.get_primitive(i) if primitive is None: rospy.logwarn("Primitive " + str(i) + " does not exist.") break else: if not primitive.is_reachable(): return False return True def _loop_through_primitives(self): '''Goes through the primitives of the current action and moves to each. ''' # Go over primitives of the action for i in range(self.n_primitives()): rospy.loginfo("Executing primitive " + str(i)) primitive = self.get_primitive(i) # Make sure primitive exists. if primitive is None: rospy.logwarn("Primitive " + str(i) + " does not exist.") self._status = ExecutionStatus.CONDITION_ERROR self._status_publisher.publish( String("Primitive " + str(i) + " does not exist.")) break # Check that preconditions are met (doesn't do anything right now) else: # Try executing. self._status = ExecutionStatus.EXECUTING success, msg = primitive.execute() if not success: self._status = ExecutionStatus.NO_IK self._status_publisher.publish( String(msg)) break # Finished executing; check that postconditions are met success, msg = primitive.check_post_condition() if success: rospy.loginfo('\tPost-conditions of the action are met.') else: rospy.logwarn( "\tPost-conditions of action primitive " + str(i) + " are not satisfied. Aborting.") self._status = ExecutionStatus.CONDITION_ERROR self._status_publisher.publish( String("Post-conditions of action primitive " + str(i) + " are not satisfied. " + msg)) break # Perhaps the execution was pre-empted by the user. Check # this before continuing onto the next primitive. if self._preempt: rospy.logwarn("\tExecution preempted by user.") self._status = ExecutionStatus.PREEMPTED self._status_publisher.publish( String("Execution preempted by user.")) break # Primitive completed successfully. rospy.loginfo("\tPrimitive " + str(i) + " of action is complete.") def _update_markers(self): '''Updates the markers after a change.''' rospy.loginfo("Updating viz markers") for primitive in self._seq: primitive.update_viz() def _update_links(self): '''Updates the visualized links b/w action primitives.''' current_num_links = len(self._link_markers) new_num_links = len(self._seq) - 1 self._link_markers = {} if new_num_links >= 1: for i in range(new_num_links): link_marker = Action._get_link(self._seq[i], self._seq[i + 1], i) if not link_marker is None: self._link_markers[i] = link_marker if (current_num_links - new_num_links) > 0: for i in range(new_num_links, current_num_links): self._link_markers[i] = Marker(id=i, action=Marker.DELETE) else: marker = Marker() marker.id = 0 self._link_markers[0] = marker self._link_markers[0].action = Marker.DELETE
en
0.721188
The in-program representation of a programmed action. # ###################################################################### # Imports # ###################################################################### # Core ROS imports come first. # System builtins # ROS builtins # Local # ###################################################################### # Module level constants # ###################################################################### # Marker properties for little arrows drawn between consecutive primitives. # sort of light gray # ROS topics, etc. # TODO(sarah): Is this necessary? # ###################################################################### # Classes # ###################################################################### Holds information for one action. # TODO(sarah) : Probably get rid of this. Should the class get passed a # shared marker publisher from the Session or each instance should have # its own? Args: robot (Robot) : interface to lower level robot functionality tf_listener (TransformListener) im_server (InteractiveMarkerSerever) primitive_click_cb (function(int)): The function to call when a primitive is clicked on (normally in the GUI). The function should take the number of the primitive action_id (int, optional): The index of this action. # Initialize a bunch of state. # Human-friendly name for this action. # Markers to connect consecutive primitives together # TODO(sarah): Understand this note better # NOTE(mbforbes): It appears that this is locking manipulation # of the internal sequence (self._seq). There have been race # conditions involving this (e.g. marker_click_cb(...)). # # In general, be aware the other code calling these methods # with data about this class (like how many primitives it holds) # is bad because that means the outside code is assuming that it # knows about state internal to this class, and that information # may not be true by the time the code here gets executed. This # is because there are several callbacks that trigger here so # we must reason asyncronously. # # Unless the information you have (e.g. about the number of # primitives that exist) was learned while this lock was acquired, # you cannot assume it is true. # ################################################################## # Instance methods: Public (API) # ################################################################## Returns true if head is busy Returns: bool Returns action_id Returns: int Returns action_id Args: action_id (int) Sets human-readable name for action Args: name (string) Returns human-readable name for action Returns (string) Return json for this action for saving to db Returns: dict Fills out action using information using json from db Args: dict : json/dict retrieved from couchdb Starts execution of action. This method spawns a new thread. Args: z_offset (float): Amount to add to z-values of pose positions. # This will take long; create a thread. Indicate that user wants to preempt action execution Indicate that execution status can reset to ExecutionStatus.NOT_EXECUTING Return execution status of action Returns: ExecutionStatus.EXECUTING|NOT_EXECUTING|...etc Set execution status of action Args: status (ExecutionStatus.EXECUTING|NOT_EXECUTING|...etc) Add primitive to action. Args: primitive (Primitive) add_marker (bool) add_name (bool) # marker_click_cb # self._marker_visibility.append(True) # self._marker_visibility.append(False) For each primitive, updates the reference frames based on the locations of objects in the world Returns the number of primitives in this action. Returns: int Removes all visualization relating to this action. # Destroy the primitive markers. # Mark the links for destruction. # Publish the link destructions. Delete marker with certain index Args: primitive_number (int) # self._marker_visibility[primitive_number] = False Show marker with certain index Args: primitive_number (int) # self._marker_visibility[primitive_number] = True Returns visibility status of primitive markers Returns: [bool] Callback for when one of the markers is clicked. Selects clicked marker and unselects others. Args: primitive_number (int) is_selected(bool): Whether the marker was selected (True) or de-selected (False). # If we match the one we've clicked on, select it. # Otherwise, deselect it. # If we selected it, really click on it. Initialize visualization. # self._lock.acquire() # self._marker_visibility = [True] * len(self._seq) # Construct the markers. # self._lock.release() Deletes the last primitive of the action. Returns whether this action has any primitives that are relative to objects in the world (instead of absolute). Returns: bool Returns the names of the reference frame objects for all action primitives. Returns: [str] Returns the names of primitives. Returns: [str] Returns the positions and orientations of primitives Returns: Point[], OrientationRPY[] Returns list of whether primitive poses are editable Returns: [bool] Update pose of primitive given by primitive_number Args: primitive_number (int) position (Point) orientation (OrientationRPY) Return list of primitives Returns: [Primitive] # self._lock.acquire() # self._lock.release() Returns primitive of the action based on index. Args: index (int): Index (0-based) of primitive to return. Returns: Primitive|None: Returns None if no such primitive exists. # NOTE(mbforbes): For this lock to be meaningful, we have to # check that the index is valid within it. Updates the visualization of the action. Clears the action. Decrement the action's id by one Change the order of primitives in action Args: old_index (int) new_index (int) Deletes a primitive from the action. NOTE(mbforbes): The lock should be acquired before calling this method. Args: to_delete (int): The index of the primitive to delete. # if (to_delete + 1) < self.n_primitives(): # self._marker_visibility.pop(to_delete) Execute specified primitive Args: to_execute (int) # ################################################################## # Static methods: Internal ("private") # ################################################################## Returns a marker representing a link b/w two consecutive primitives (both must already exist). Args: primitive0 (Primitive) primitive1 (Primitive) marker_id (int) : id for link marker between to primitives Returns: Marker|None # ################################################################## # Instance methods: Internal ("private") # ################################################################## Update links when primitive pose changes # self._lock.release() Function to replay the demonstrated action. # Make sure the primitive exists. # Check if the very first precondition is met. # Not actually implemented right now. # Check that all parts of the action are reachable # If we haven't been preempted, we now report success. Loop through primitives and make sure all of their preconditions are met Returns: bool # Make sure primitive exists. # Check that preconditions are met (doesn't do anything right now) Make sure that action is possible to execute entire action Goes through the primitives of the current action and moves to each. # Go over primitives of the action # Make sure primitive exists. # Check that preconditions are met (doesn't do anything right now) # Try executing. # Finished executing; check that postconditions are met # Perhaps the execution was pre-empted by the user. Check # this before continuing onto the next primitive. # Primitive completed successfully. Updates the markers after a change. Updates the visualized links b/w action primitives.
1.961164
2
src/chip8/lib/system.py
slastrina/pyChip8SDL
0
6632952
import os import tkinter as tk from tkinter import filedialog from chip8 import rom_path from chip8.lib.cpu import Cpu from chip8.lib.display import Display from chip8.lib.ram import Ram class System: flags = { 'draw': False, 'running': False } def __init__(self): self.ram = Ram() self.display = Display(64, 32) self.cpu = Cpu(self.ram.get_program_address(), self.ram, self.display) def reset(self): self.ram.reset() self.display.reset() self.cpu.reset() def load_font(self): font = [0xF0, 0x90, 0x90, 0x90, 0xF0, # 0 0x20, 0x60, 0x20, 0x20, 0x70, # 1 0xF0, 0x10, 0xF0, 0x80, 0xF0, # 2 0xF0, 0x10, 0xF0, 0x10, 0xF0, # 3 0x90, 0x90, 0xF0, 0x10, 0x10, # 4 0xF0, 0x80, 0xF0, 0x10, 0xF0, # 5 0xF0, 0x80, 0xF0, 0x90, 0xF0, # 6 0xF0, 0x10, 0x20, 0x40, 0x40, # 7 0xF0, 0x90, 0xF0, 0x90, 0xF0, # 8 0xF0, 0x90, 0xF0, 0x10, 0xF0, # 9 0xF0, 0x90, 0xF0, 0x90, 0x90, # A 0xE0, 0x90, 0xE0, 0x90, 0xE0, # B 0xF0, 0x80, 0x80, 0x80, 0xF0, # C 0xE0, 0x90, 0x90, 0x90, 0xE0, # D 0xF0, 0x80, 0xF0, 0x80, 0xF0, # E 0xF0, 0x80, 0xF0, 0x80, 0x80] # F self.ram.set_block(font, 0) def load_rom(self, filename=None): if filename: file_path = os.path.join(rom_path, filename) else: root = tk.Tk() root.withdraw() file_path = filedialog.askopenfilename(initialdir=rom_path) with open(file_path, 'rb') as f: self.ram.set_block(f.read(), self.ram.get_program_address()) def start(self): # Consider running in a dedicated thread self.cpu.running = True while self.cpu.running: self.cpu.tick()
import os import tkinter as tk from tkinter import filedialog from chip8 import rom_path from chip8.lib.cpu import Cpu from chip8.lib.display import Display from chip8.lib.ram import Ram class System: flags = { 'draw': False, 'running': False } def __init__(self): self.ram = Ram() self.display = Display(64, 32) self.cpu = Cpu(self.ram.get_program_address(), self.ram, self.display) def reset(self): self.ram.reset() self.display.reset() self.cpu.reset() def load_font(self): font = [0xF0, 0x90, 0x90, 0x90, 0xF0, # 0 0x20, 0x60, 0x20, 0x20, 0x70, # 1 0xF0, 0x10, 0xF0, 0x80, 0xF0, # 2 0xF0, 0x10, 0xF0, 0x10, 0xF0, # 3 0x90, 0x90, 0xF0, 0x10, 0x10, # 4 0xF0, 0x80, 0xF0, 0x10, 0xF0, # 5 0xF0, 0x80, 0xF0, 0x90, 0xF0, # 6 0xF0, 0x10, 0x20, 0x40, 0x40, # 7 0xF0, 0x90, 0xF0, 0x90, 0xF0, # 8 0xF0, 0x90, 0xF0, 0x10, 0xF0, # 9 0xF0, 0x90, 0xF0, 0x90, 0x90, # A 0xE0, 0x90, 0xE0, 0x90, 0xE0, # B 0xF0, 0x80, 0x80, 0x80, 0xF0, # C 0xE0, 0x90, 0x90, 0x90, 0xE0, # D 0xF0, 0x80, 0xF0, 0x80, 0xF0, # E 0xF0, 0x80, 0xF0, 0x80, 0x80] # F self.ram.set_block(font, 0) def load_rom(self, filename=None): if filename: file_path = os.path.join(rom_path, filename) else: root = tk.Tk() root.withdraw() file_path = filedialog.askopenfilename(initialdir=rom_path) with open(file_path, 'rb') as f: self.ram.set_block(f.read(), self.ram.get_program_address()) def start(self): # Consider running in a dedicated thread self.cpu.running = True while self.cpu.running: self.cpu.tick()
en
0.741148
# 0 # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # A # B # C # D # E # F # Consider running in a dedicated thread
2.860827
3
Demos/light_demo.py
jr-garcia/Engendro3D
8
6632953
<reponame>jr-garcia/Engendro3D from math import sin from random import randint, random from cycgkit.cgtypes import vec3 from _base._BaseDemo import _Demo_Base, runDemo, tubeMODEL, logLevelsEnum class Demo(_Demo_Base): def __init__(self): super(Demo, self).__init__() self.texturesToLoad = [['e3dlogo.png', 'logo'], ['./textures/n_deep.png', 'defND', True], ['./textures/n_irr.png', 'defNI', True], ['./textures/nmap_test.png', 'testN', True]] # TODO: credit textures or replace them self.bumpymats = [] self.texmats = [] self.spots = [] self.spotAngles = {} def createLightSphere(self, ltype, pos, color): nlight = self.scene1.addLight(ltype, pos, vec3(0, 0, 0)) nlight.color = color nlight.spotIntensity = random() # .1 nlight.spotRange = .9 nlight.attenuation = randint(150, 300) if ltype == 2: self.spotAngles[nlight] = (randint(1, 30) - randint(10, 50)), (randint(1, 30) - randint(10, 50)) lmod = self.scene1.addModel('conemodel', nlight.ID + 'sph', pos, [0, 0, 0], 1) self.spots.append((nlight, lmod)) else: lmod = self.scene1.addModel('spheremodel', nlight.ID + 'sph', pos, [0, 0, 0], 1) mat = lmod._materials[0] mat.emissiveColor = color mat.isLightAffected = False def loadModels(self): engine = self.engine self.camera.rotateX(40) self.camera.position = vec3(0, 340, 350) engine.models.loadSphere("mainspheremodel", 32) self.sphere1 = self.scene1.addModel('mainspheremodel', 'sphere1', [0, 10, 0], [0, 0, 0], 4, mass=8) # self.sphere1.physicsBody.isDynamic = True mats = self.sphere1.getMaterialByIndex(0) mats.specularPower = 50 mats.useDiffuseTexture = True mats.useNormalMapTexture = True mats.normalMapTextureID = 'defND' mats.textureRepeat = 4 self.bumpymats.append(mats) self.texmats.append(mats) engine.models.loadSphere("spheremodel", 12) engine.models.loadCone("conemodel", 20, 10, radialSegments=20) engine.models.loadBox("boxmodel", [6], 1) self.box1 = self.scene1.addModel('boxmodel', 'box1', [0, 90, 0], [0, 90, 0], 5, mass=7) mt = self.box1._materials[0] mt.specularPower = 40 mt.useDiffuseTexture = True mt.useNormalMapTexture = True mt.normalMapTextureID = 'defNI' self.bumpymats.append(mt) self.texmats.append(mt) engine.models.loadPlane("floorplane", 600, 600, 50) # engine.models.loadPlane("planemodelback", 600, 300, 10) engine.models.loadPlane("planemodelWalls", 600, 300, 50) # IMPORTANT!: High number of segments (tesselation) is needed for large objects. See: # https://www.opengl.org/archives/resources/features/KilgardTechniques/oglpitfall/ # 2. Poor Tessellation Hurts Lighting self.floor = self.scene1.addModel('floorplane', 'floor', [0, 0, 0], [0, 0, 0], 1) mt = self.floor._materials[0] mt.specularPower = 50 mt.useDiffuseTexture = True mt.useNormalMapTexture = True mt.normalMapTextureID = 'defNI' mt.textureRepeat = 10 self.bumpymats.append(mt) self.texmats.append(mt) self.planer = self.scene1.addModel('planemodelWalls', 'planer', [300, 150, 0], [90, 0, 0], 1) self.planer.rotateY(-90) mt = self.planer._materials[0] mt.useNormalMapTexture = True mt.normalMapTextureID = 'testN' mt.textureRepeat = 10 self.bumpymats.append(mt) self.planel = self.scene1.addModel('planemodelWalls', 'planel', [-300, 150, 0], [90, 0, 0], 1) self.planel.rotateY(90) self.planel._materials[0] = mt self.planef = self.scene1.addModel('planemodelWalls', 'planef', [0, 150, -300], [90, 0, 0], 1) self.planef.moveUp(self.planer.getSize().y) self.planef._materials[0] = mt engine.models.loadModel(tubeMODEL, "tubemodel") self.tube = self.scene1.addModel('tubemodel', 'tube1', [-150, 0, 0], [0, 0, 0], 9) self.tube.setAnimation(self.tube.getAnimationsList()[0], True) self.tube2 = self.scene1.addModel('tubemodel', 'tube2', [150, 0, 0], [0, 0, 0], 9) self.tube2.setAnimation(self.tube2.getAnimationsList()[1], True) def addLights(self): print('Adding Lights') super(Demo, self).addLights() self.dlight.enabled = False self.createLightSphere(2, vec3(-259.0, 120.0, 0.0), vec3(1.0, 0.0, 0.0)) self.createLightSphere(2, vec3(0.0, 270.0, -190.0), vec3(1.0, 1.0, 0.0)) self.createLightSphere(1, vec3(-50.0, 30.0, 290.0), vec3(0.0, 1.0, 0.0)) self.createLightSphere(2, vec3(0.0, 150.0, 0.0), vec3(.50, .0, 1.0)) self.createLightSphere(1, vec3(280.0, 30.0, 10.0), vec3(0.0, .0, 1.0)) def mouseMove(self, ev): if ev.eventName == 'motion': if self.window.hasFocus(): r = 1.0 / 10 if self.window.mouseLock else 1 self.camera.rotateY(-ev.xRel * r) self.camera.rotateX(ev.yRel * r) def keydown(self, e): if e.eventName == 'keyUp': return keyName = e.keyName if 'shift' in keyName: self.window.mouseLock = not self.window.mouseLock if keyName == 'escape': # ESC self.close() if keyName == 'f8': self.window.backend.debugModeActive = not self.window.backend.debugModeActive if keyName == 'f4': self.window.backend.showAsWireframe = not self.window.backend.showAsWireframe if keyName == 'space': self.window.setFullScreen(not self.window.isFullScreen()) if keyName.__contains__('ctrl'): self.dorot = not self.dorot if keyName == 'f1': np = [round(d, 3) for d in self.camera.position] engine = self.engine engine.log('Camera pos:{0}'.format(str(np)), logLevelsEnum.info) engine.log('Poligons drawn:{}'.format(self.window.backend.poligonsDrawnThisUpdate), logLevelsEnum.info) if keyName == 'g': val = self.window.gamma print('old gamma:' + str(val)) if val <= 1.8: self.window.gamma = 2.5 else: self.window.gamma = 1.7 print('new gamma:' + str(self.window.gamma)) if keyName == 'l': self.dlight.enabled = not self.dlight.enabled if keyName == 'n': for mat in self.bumpymats: mat.useNormalMapTexture = not mat.useNormalMapTexture if keyName == 't': for mat in self.texmats: mat.useDiffuseTexture = not mat.useDiffuseTexture def scene1Update(self, ev): ft = ev[0] + .01 movespeed = ft / 10.0 self.scene1.ambientColor = vec3(.004, .006, .009) self.scene1.bgColor = vec3(.04, .06, .09) for s, m in self.spots: rotVec = vec3(self.spotAngles[s][0] * sin(ev[1] / 1000.0), 0, self.spotAngles[s][1] * sin(ev[1] / 500.0)) s.rotation = rotVec m.rotation = rotVec if self.dorot: self.sphere1.rotateY(-.07 * ft) if self.window.events.isKeyPressed('w'): self.camera.moveForward(movespeed) elif self.window.events.isKeyPressed('s'): self.camera.moveBackward(movespeed) if self.window.events.isKeyPressed('a'): self.camera.moveLeft(movespeed) elif self.window.events.isKeyPressed('d'): self.camera.moveRight(movespeed) if self.window.events.isKeyPressed('up'): self.camera.moveUp(movespeed) elif self.window.events.isKeyPressed('down'): self.camera.moveDown(movespeed) if __name__ == '__main__': runDemo(Demo(), 'Light Demo')
from math import sin from random import randint, random from cycgkit.cgtypes import vec3 from _base._BaseDemo import _Demo_Base, runDemo, tubeMODEL, logLevelsEnum class Demo(_Demo_Base): def __init__(self): super(Demo, self).__init__() self.texturesToLoad = [['e3dlogo.png', 'logo'], ['./textures/n_deep.png', 'defND', True], ['./textures/n_irr.png', 'defNI', True], ['./textures/nmap_test.png', 'testN', True]] # TODO: credit textures or replace them self.bumpymats = [] self.texmats = [] self.spots = [] self.spotAngles = {} def createLightSphere(self, ltype, pos, color): nlight = self.scene1.addLight(ltype, pos, vec3(0, 0, 0)) nlight.color = color nlight.spotIntensity = random() # .1 nlight.spotRange = .9 nlight.attenuation = randint(150, 300) if ltype == 2: self.spotAngles[nlight] = (randint(1, 30) - randint(10, 50)), (randint(1, 30) - randint(10, 50)) lmod = self.scene1.addModel('conemodel', nlight.ID + 'sph', pos, [0, 0, 0], 1) self.spots.append((nlight, lmod)) else: lmod = self.scene1.addModel('spheremodel', nlight.ID + 'sph', pos, [0, 0, 0], 1) mat = lmod._materials[0] mat.emissiveColor = color mat.isLightAffected = False def loadModels(self): engine = self.engine self.camera.rotateX(40) self.camera.position = vec3(0, 340, 350) engine.models.loadSphere("mainspheremodel", 32) self.sphere1 = self.scene1.addModel('mainspheremodel', 'sphere1', [0, 10, 0], [0, 0, 0], 4, mass=8) # self.sphere1.physicsBody.isDynamic = True mats = self.sphere1.getMaterialByIndex(0) mats.specularPower = 50 mats.useDiffuseTexture = True mats.useNormalMapTexture = True mats.normalMapTextureID = 'defND' mats.textureRepeat = 4 self.bumpymats.append(mats) self.texmats.append(mats) engine.models.loadSphere("spheremodel", 12) engine.models.loadCone("conemodel", 20, 10, radialSegments=20) engine.models.loadBox("boxmodel", [6], 1) self.box1 = self.scene1.addModel('boxmodel', 'box1', [0, 90, 0], [0, 90, 0], 5, mass=7) mt = self.box1._materials[0] mt.specularPower = 40 mt.useDiffuseTexture = True mt.useNormalMapTexture = True mt.normalMapTextureID = 'defNI' self.bumpymats.append(mt) self.texmats.append(mt) engine.models.loadPlane("floorplane", 600, 600, 50) # engine.models.loadPlane("planemodelback", 600, 300, 10) engine.models.loadPlane("planemodelWalls", 600, 300, 50) # IMPORTANT!: High number of segments (tesselation) is needed for large objects. See: # https://www.opengl.org/archives/resources/features/KilgardTechniques/oglpitfall/ # 2. Poor Tessellation Hurts Lighting self.floor = self.scene1.addModel('floorplane', 'floor', [0, 0, 0], [0, 0, 0], 1) mt = self.floor._materials[0] mt.specularPower = 50 mt.useDiffuseTexture = True mt.useNormalMapTexture = True mt.normalMapTextureID = 'defNI' mt.textureRepeat = 10 self.bumpymats.append(mt) self.texmats.append(mt) self.planer = self.scene1.addModel('planemodelWalls', 'planer', [300, 150, 0], [90, 0, 0], 1) self.planer.rotateY(-90) mt = self.planer._materials[0] mt.useNormalMapTexture = True mt.normalMapTextureID = 'testN' mt.textureRepeat = 10 self.bumpymats.append(mt) self.planel = self.scene1.addModel('planemodelWalls', 'planel', [-300, 150, 0], [90, 0, 0], 1) self.planel.rotateY(90) self.planel._materials[0] = mt self.planef = self.scene1.addModel('planemodelWalls', 'planef', [0, 150, -300], [90, 0, 0], 1) self.planef.moveUp(self.planer.getSize().y) self.planef._materials[0] = mt engine.models.loadModel(tubeMODEL, "tubemodel") self.tube = self.scene1.addModel('tubemodel', 'tube1', [-150, 0, 0], [0, 0, 0], 9) self.tube.setAnimation(self.tube.getAnimationsList()[0], True) self.tube2 = self.scene1.addModel('tubemodel', 'tube2', [150, 0, 0], [0, 0, 0], 9) self.tube2.setAnimation(self.tube2.getAnimationsList()[1], True) def addLights(self): print('Adding Lights') super(Demo, self).addLights() self.dlight.enabled = False self.createLightSphere(2, vec3(-259.0, 120.0, 0.0), vec3(1.0, 0.0, 0.0)) self.createLightSphere(2, vec3(0.0, 270.0, -190.0), vec3(1.0, 1.0, 0.0)) self.createLightSphere(1, vec3(-50.0, 30.0, 290.0), vec3(0.0, 1.0, 0.0)) self.createLightSphere(2, vec3(0.0, 150.0, 0.0), vec3(.50, .0, 1.0)) self.createLightSphere(1, vec3(280.0, 30.0, 10.0), vec3(0.0, .0, 1.0)) def mouseMove(self, ev): if ev.eventName == 'motion': if self.window.hasFocus(): r = 1.0 / 10 if self.window.mouseLock else 1 self.camera.rotateY(-ev.xRel * r) self.camera.rotateX(ev.yRel * r) def keydown(self, e): if e.eventName == 'keyUp': return keyName = e.keyName if 'shift' in keyName: self.window.mouseLock = not self.window.mouseLock if keyName == 'escape': # ESC self.close() if keyName == 'f8': self.window.backend.debugModeActive = not self.window.backend.debugModeActive if keyName == 'f4': self.window.backend.showAsWireframe = not self.window.backend.showAsWireframe if keyName == 'space': self.window.setFullScreen(not self.window.isFullScreen()) if keyName.__contains__('ctrl'): self.dorot = not self.dorot if keyName == 'f1': np = [round(d, 3) for d in self.camera.position] engine = self.engine engine.log('Camera pos:{0}'.format(str(np)), logLevelsEnum.info) engine.log('Poligons drawn:{}'.format(self.window.backend.poligonsDrawnThisUpdate), logLevelsEnum.info) if keyName == 'g': val = self.window.gamma print('old gamma:' + str(val)) if val <= 1.8: self.window.gamma = 2.5 else: self.window.gamma = 1.7 print('new gamma:' + str(self.window.gamma)) if keyName == 'l': self.dlight.enabled = not self.dlight.enabled if keyName == 'n': for mat in self.bumpymats: mat.useNormalMapTexture = not mat.useNormalMapTexture if keyName == 't': for mat in self.texmats: mat.useDiffuseTexture = not mat.useDiffuseTexture def scene1Update(self, ev): ft = ev[0] + .01 movespeed = ft / 10.0 self.scene1.ambientColor = vec3(.004, .006, .009) self.scene1.bgColor = vec3(.04, .06, .09) for s, m in self.spots: rotVec = vec3(self.spotAngles[s][0] * sin(ev[1] / 1000.0), 0, self.spotAngles[s][1] * sin(ev[1] / 500.0)) s.rotation = rotVec m.rotation = rotVec if self.dorot: self.sphere1.rotateY(-.07 * ft) if self.window.events.isKeyPressed('w'): self.camera.moveForward(movespeed) elif self.window.events.isKeyPressed('s'): self.camera.moveBackward(movespeed) if self.window.events.isKeyPressed('a'): self.camera.moveLeft(movespeed) elif self.window.events.isKeyPressed('d'): self.camera.moveRight(movespeed) if self.window.events.isKeyPressed('up'): self.camera.moveUp(movespeed) elif self.window.events.isKeyPressed('down'): self.camera.moveDown(movespeed) if __name__ == '__main__': runDemo(Demo(), 'Light Demo')
en
0.680271
# TODO: credit textures or replace them # .1 # self.sphere1.physicsBody.isDynamic = True # engine.models.loadPlane("planemodelback", 600, 300, 10) # IMPORTANT!: High number of segments (tesselation) is needed for large objects. See: # https://www.opengl.org/archives/resources/features/KilgardTechniques/oglpitfall/ # 2. Poor Tessellation Hurts Lighting # ESC
2.166114
2
Python/C1 - Intro/buggy_fixed.py
mrbinx/mrbinx_python
0
6632954
""" Task 1 @purpose This program requests for a positive integer, and prints out all primes less than the specified integer. @author <NAME> 25461257 @since 20140803 @modified 20140806 @complexity O(n^2) @precondition: The user inputs a positive integer @postcondition: Primes less than the input are printed out Changes: Line 17: original was (n=2), should be == comparison operator Line 22,24,29: Boolean value True/False should be capitalised for first character, original was true/false Line 23: n%2==1 should be n%2==0 in order to check for even numbers Line 26: Instead of k*k<n, should be k<n Line 20: Added a default flag=True assumption to catch errors about unassigned flag values, since if it's not 2, not even, not 1, and not divisible by any integer up to sqrt(n), we can say that it's a prime number Line 37: Added a check to see if integer is a positive number """ #import math def is_prime(n): """ @purpose Checks whether the passed number, n is prime, and return True/False @parameters: n - the number to be checked for primeness @complexity: O(n) @precondition: The function is passed a positive integer value @postcondition: Returns a true/false depending on primeness """ k = 3 flag = True if (n == 2): #if it's 2, it's prime flag = True elif (n % 2 == 0 or n == 1): #if even number or 1, then not prime flag = False else: while (k < n): #while (k <= math.sqrt(n)): alternative, we only have to do trial divison on numbers up to sqrt(n) if (n % k == 0): flag = False break k += 1 return flag #MAIN BLOCK try: n = int(input('Please enter a positive integer: ')) #request input from user if n >= 0: #check if integer is positive for i in range(n): #iterate from 0 to n if (is_prime(i)): #if i is prime, print i print(i) else: print("The integer inputted is not positive.") except ValueError: print("Invalid input.")
""" Task 1 @purpose This program requests for a positive integer, and prints out all primes less than the specified integer. @author <NAME> 25461257 @since 20140803 @modified 20140806 @complexity O(n^2) @precondition: The user inputs a positive integer @postcondition: Primes less than the input are printed out Changes: Line 17: original was (n=2), should be == comparison operator Line 22,24,29: Boolean value True/False should be capitalised for first character, original was true/false Line 23: n%2==1 should be n%2==0 in order to check for even numbers Line 26: Instead of k*k<n, should be k<n Line 20: Added a default flag=True assumption to catch errors about unassigned flag values, since if it's not 2, not even, not 1, and not divisible by any integer up to sqrt(n), we can say that it's a prime number Line 37: Added a check to see if integer is a positive number """ #import math def is_prime(n): """ @purpose Checks whether the passed number, n is prime, and return True/False @parameters: n - the number to be checked for primeness @complexity: O(n) @precondition: The function is passed a positive integer value @postcondition: Returns a true/false depending on primeness """ k = 3 flag = True if (n == 2): #if it's 2, it's prime flag = True elif (n % 2 == 0 or n == 1): #if even number or 1, then not prime flag = False else: while (k < n): #while (k <= math.sqrt(n)): alternative, we only have to do trial divison on numbers up to sqrt(n) if (n % k == 0): flag = False break k += 1 return flag #MAIN BLOCK try: n = int(input('Please enter a positive integer: ')) #request input from user if n >= 0: #check if integer is positive for i in range(n): #iterate from 0 to n if (is_prime(i)): #if i is prime, print i print(i) else: print("The integer inputted is not positive.") except ValueError: print("Invalid input.")
en
0.806017
Task 1 @purpose This program requests for a positive integer, and prints out all primes less than the specified integer. @author <NAME> 25461257 @since 20140803 @modified 20140806 @complexity O(n^2) @precondition: The user inputs a positive integer @postcondition: Primes less than the input are printed out Changes: Line 17: original was (n=2), should be == comparison operator Line 22,24,29: Boolean value True/False should be capitalised for first character, original was true/false Line 23: n%2==1 should be n%2==0 in order to check for even numbers Line 26: Instead of k*k<n, should be k<n Line 20: Added a default flag=True assumption to catch errors about unassigned flag values, since if it's not 2, not even, not 1, and not divisible by any integer up to sqrt(n), we can say that it's a prime number Line 37: Added a check to see if integer is a positive number #import math @purpose Checks whether the passed number, n is prime, and return True/False @parameters: n - the number to be checked for primeness @complexity: O(n) @precondition: The function is passed a positive integer value @postcondition: Returns a true/false depending on primeness #if it's 2, it's prime #if even number or 1, then not prime #while (k <= math.sqrt(n)): alternative, we only have to do trial divison on numbers up to sqrt(n) #MAIN BLOCK #request input from user #check if integer is positive #iterate from 0 to n #if i is prime, print i
4.126724
4
workspace/module/python-2.7/LxMtx/mtxObjAbs.py
no7hings/Lynxi
2
6632955
<filename>workspace/module/python-2.7/LxMtx/mtxObjAbs.py # coding:utf-8 from LxBasic import bscMethods from LxData import datObjAbs from LxGraphic import grhObjAbs from . import mtxCfg class Abs_MtxBasic(mtxCfg.MtxUtility): pass # ******************************************************************************************************************** # class Abs_MtxObjLoader(grhObjAbs.Abs_GrhObjLoader): def _initAbsMtxObjLoader(self, *args): self._initAbsGrhObjLoader(*args) # **************************************************************************************************************** # @classmethod def _obj_loader_cls__set_node_raw_create_(cls, *args): ( nodeRawDict, typepathStr, orig_node_raw_dict, orig_otport_raw_list_dict, orig_child_port_raw_list_dict ) = args _datatypeStr = orig_node_raw_dict[cls.DEF_grh__key_node_datatype] # property nodeRawDict[cls.DEF_grh__key_node_typepath] = typepathStr nodeRawDict[cls.DEF_grh__key_node_datatype] = _datatypeStr # port _portRawList = [] _orig_port_raw_list = orig_node_raw_dict[cls.DEF_grh__key_port] cls._obj_loader_cls__set_ports_create_(_portRawList, _orig_port_raw_list, orig_child_port_raw_list_dict) _orig_otport_raw_list = orig_otport_raw_list_dict.get(_datatypeStr, []) cls._obj_loader_cls__set_ports_create_(_portRawList, _orig_otport_raw_list, orig_child_port_raw_list_dict) nodeRawDict[cls.DEF_grh__key_port] = _portRawList # **************************************************************************************************************** # @classmethod def _obj_loader_cls__set_ports_create_(cls, *args): portRawList, orig_port_raw_list, orig_child_port_raw_list_dict = args for orig_port_raw in orig_port_raw_list: cls._obj_loader_cls__set_port_create_(portRawList, orig_port_raw, orig_child_port_raw_list_dict) @classmethod def _obj_loader_cls__set_port_create_(cls, *args): portRawList, orig_port_raw, orig_child_port_raw_list_dict = args _portpathStr = orig_port_raw[cls.DEF_grh__key_portpath] if cls.DEF_grh__key_porttype in orig_port_raw: _porttypeStr = orig_port_raw[cls.DEF_grh__key_porttype] else: _porttypeStr = None _datatypeStr = orig_port_raw[cls.DEF_grh__key_port_datatype] _portrawStr = orig_port_raw[cls.DEF_grh__key_portraw] _assignStr = orig_port_raw[cls.DEF_grh__key_assign] _childStrList = [] # add parent first cls._obj_loader_cls__set_port_raw_add_( portRawList, portpath=_portpathStr, porttype=_porttypeStr, datatype=_datatypeStr, portraw=_portrawStr, assign=_assignStr, children=_childStrList ) orig_child_port_raw_list = orig_child_port_raw_list_dict.get(_datatypeStr, []) cls._obj_loader_cls__set_port_children_create_( portRawList, _childStrList, orig_port_raw, orig_child_port_raw_list ) @classmethod def _obj_loader_cls__set_port_children_create_(cls, *args): portRawList, childStrList, orig_parent_port_raw, orig_child_port_raw_list = args for _index, _orig_child_port_raw in enumerate(orig_child_port_raw_list): cls._obj_loader_cls__set_port_child_create_( portRawList, childStrList, orig_parent_port_raw, _orig_child_port_raw, _index ) @classmethod def _obj_loader_cls__set_port_child_create_(cls, *args): portRawList, childStrList, origParentPortRaw, origPortRaw, childIndex = args _parentPortpathStr = origParentPortRaw[cls.DEF_grh__key_portpath] _parentPorttypeStr = origParentPortRaw[cls.DEF_grh__key_port_datatype] parentPortrawString = origParentPortRaw[cls.DEF_grh__key_portraw] parentAssignString = origParentPortRaw[cls.DEF_grh__key_assign] _formatString = origPortRaw[cls.DEF_grh__key_format] _portpathStr = _formatString.format( **{ cls.DEF_grh__key_portpath: _parentPortpathStr } ) _datatypeStr = origPortRaw[cls.DEF_grh__key_port_datatype] if parentPortrawString: _portrawStr = parentPortrawString.split(u',')[childIndex].rstrip().lstrip() else: _portrawStr = origPortRaw[cls.DEF_grh__key_portraw] if parentAssignString == cls.DEF_grh__keyword__gnport: _portAssignString = cls.DEF_grh__keyword__gnport_channel if parentAssignString == cls.DEF_grh__keyword__inport: _portAssignString = cls.DEF_grh__keyword__inport_channel elif parentAssignString == cls.DEF_grh__keyword__otport: _portAssignString = cls.DEF_grh__keyword__otport_channel else: raise TypeError() cls._obj_loader_cls__set_port_raw_add_( portRawList, portpath=_portpathStr, porttype=_parentPorttypeStr, datatype=_parentPorttypeStr, portraw=_portrawStr, assign=_portAssignString, parent=_parentPortpathStr, children=[] ) childStrList.append(_portpathStr) # **************************************************************************************************************** # @classmethod def _grh__obj_loader_cls__get_definition_node_raw_(cls, *args): out_node_raw_dict = cls.CLS_ordered_dict() cls._obj_loader_cls__set_node_raw_create_( out_node_raw_dict, *args ) return out_node_raw_dict # ******************************************************************************************************************** # class Abs_MtxObjQueryBuilder(grhObjAbs.Abs_GrhObjQueryrawCreator): def _initAbsMtxObjQueryBuilder(self, *args): self._initAbsGrhObjQueryBuilder(*args) # **************************************************************************************************************** # def _queryraw_loader__set_build_(self): self._nodeRaws = bscMethods.OsJsonFile.read( self.VAR_grh__node_file ) or {} self._materialRaws = bscMethods.OsJsonFile.read( self.VAR_grh__material_file ) or {} self._geometryRaws = bscMethods.OsJsonFile.read( self.VAR_grh__geometry_file ) or {} self._origOtportRaw = bscMethods.OsJsonFile.read( self.VAR_grh__output_file ) or {} self._origPortChildRaw = bscMethods.OsJsonFile.read( self.VAR_grh__port_child_file ) or {} self._origNodeRaws = self.CLS_ordered_dict() for i in [ self._nodeRaws, self._materialRaws, self._geometryRaws ]: self._origNodeRaws.update(i) # **************************************************************************************************************** # def _queryraw_loader__get_node_raw_(self, *args): typepathStr = args[0] if typepathStr in self._origNodeRaws: origNodeRaw = self._origNodeRaws[typepathStr] return self.CLS_grh__obj_query_creator__obj_loader.getDefinitionNodeRaw( typepathStr, origNodeRaw, self._origOtportRaw, self._origPortChildRaw ) # **************************************************************************************************************** # def _queryraw_loader__get_category_exist_(self, *args): typepathStr = args[0] return typepathStr in self._origNodeRaws def _queryraw_loader__get_categories_(self): return self._origNodeRaws.keys() # ******************************************************************************************************************** # class Abs_MtxObjQueue(grhObjAbs.Abs_GrhObjQueue): def _initAbsMtxObjQueue(self, *args): self._initAbsGrhObjQueue(*args) # raw **************************************************************************************************************** # class Abs_MtxRaw( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatRaw ): def _initAbsMtxRaw(self, *args): self._initAbsDatRaw(*args) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxDatatype( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatDatatype ): def _initAbsMtxDatatype(self, *args): self._initAbsDatDatatype(*args) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxObjProxyNamespace( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatObjNamespace ): def _initAbsMtxObjProxyNamespace(self, *args): self._initAbsDatObjNamespace(*args) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxName( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatName ): def _initAbsMtxName(self, *args): self._initAbsDatName(*args) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxObjTypename( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatObjName, ): def _initAbsMtxObjTypename(self, *args): self._initAbsDatObjName(*args) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxObjName( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatObjName, ): def _initAbsMtxObjName(self, *args): self._initAbsDatObjName(*args) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxPath( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatObjPath ): def _initAbsMtxPath(self, *args): self._initAbsDatObjPath(*args) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxAttrpath( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatObjComppath ): def _initAbsMtxAttrpath(self, *args): self._initAbsDatObjComppath(*args) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] # object set ********************************************************************************************************* # class Abs_MtxObjSet( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhObjStack ): def _initAbsMtxObjSet(self, *args): self._initAbsGrhObjStack(*args) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] # value ************************************************************************************************************** # class Abs_MtxValue( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatValue ): def _initAbsMtxValue(self, *args): self._initAbsDatValue(*args) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ self.datatype(), self.data() ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] # ******************************************************************************************************************** # class Abs_MtxPort( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhPort ): def _initAbsMtxPort(self, *args, **kwargs): self._initAbsGrhPort(*args, **kwargs) self._initAbsDatXmlObj() self._proxyObj = None # xml ************************************************************************************************************ # def _xml_obj__get_attribute_attach_value_str_(self): return self.portpathString() def _xml_obj__get_attribute_attach_list_(self): if self.isChannel() is True: # <... nodename="nodepath" member="parent portpath" channel="portname" /> return [ self.parent(), (self._xml_obj__get_attribute_attach_key_str_(), self.portnameString()) ] else: # <... nodename = "nodepath" member = "portpath" /> return [ self.node(), (self._xml_obj__get_attribute_attach_key_str_(), self.portpathString()) ] def _xml_obj__get_attribute_list_(self): return [ self.portpath(), self.datatype(), self.portgiven() ] class Abs_MtxNode( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhNode ): def _initAbsMtxNode(self, *args, **kwargs): self._initAbsGrhNode(*args, **kwargs) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_element_prefix_str(self): return self.typepathString() def _xml_obj__get_attribute_list_(self): return [ self.path(), self.datatype() ] def _xml_obj__get_child_element_list_(self): return self.changedInport() def _xml_obj__get_attribute_attach_value_str_(self): return self.pathString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxConnector( grhObjAbs.Abs_GrhConnector ): def _initAbsMtxConnector(self, *args): self._initAbsGrhConnector(*args) # port proxy ********************************************************************************************************* # class Abs_MtxPortProxy( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhPortProxy, ): def _initAbsMtxPortProxy(self, *args, **kwargs): self._initAbsGrhPortProxy(*args, **kwargs) self._initAbsDatXmlObj() def _xml_obj__get_attribute_list_(self): return [ self.bindObject().portpath(), self.bindObject().datatype(), self.bindPortgiven() ] class Abs_MtxShaderProxy( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhShaderProxy ): def _initAbsMtxShaderProxy(self, *args, **kwargs): self._initAbsGrhShaderProxy(*args, **kwargs) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ self.path(), self.bindObject().typepath(), [(u'context', self._shader_proxy__get_material_context_())] ] def _xml_obj__get_child_element_list_(self): return self.changedBindInportProxies() class Abs_MtxMaterialProxy( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhMaterialProxy ): def _initAbsMtxMaterialProxy(self, *args, **kwargs): self._initAbsGrhMaterialProxy(*args, **kwargs) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ self.path() ] def _xml_obj__get_child_element_list_(self): # update shader's node graph first for shaderProxyObj in self.shaders(): nodeGraphObj = shaderProxyObj.inputNodeGraph() nodeGraphObj._node_graph__set_bind_obj_update_() return self.shaders() def _xml_obj__get_sibling_element_list_(self): lis = [] # node graph for shaderProxyObj in self.shaders(): nodeGraphObjs = shaderProxyObj.inputNodeGraphs() if nodeGraphObjs: for nodeGraphObj in nodeGraphObjs: if nodeGraphObj.hasBindNodes(): if not nodeGraphObj in lis: lis.append(nodeGraphObj) return lis def _xml_obj__get_attribute_attach_value_str_(self): return self.pathString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxGeometryProxy( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhGeometryProxy ): def _initAbsMtxGeometryProxy(self, *args, **kwargs): self._initAbsGrhGeometryProxy(*args, **kwargs) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ self.path(), self.bindObject().typepath() ] def _xml_obj__get_child_element_list_(self): return self.changedProperties() + self.changedVisibilities() # node graph ********************************************************************************************************* # class Abs_MtxNodeGraph( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhNodeGraph ): def _initAbsMtxNodeGraph(self, *args, **kwargs): self._initAbsGrhNodeGraph(*args, **kwargs) # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ self.path() ] def _xml_obj__get_child_element_list_(self): return self.bindNodes() + self.bindOtportProxies() def _xml_obj__get_attribute_attach_value_str_(self): return self.pathString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxNodeGraphOtportProxy( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhNodeGraphPortProxy, ): def _initAbsMtxNodeGraphOtportProxy(self, *args, **kwargs): self._initAbsGrhNodeGraphPortProxy(*args, **kwargs) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ self.path(), self.bindObject().datatype(), self.bindObject() ] def _xml_obj__get_attribute_attach_value_str_(self): return self.pathString() def _xml_obj__get_attribute_attach_list_(self): return [ self.bindNodeGraph(), (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] # portset ************************************************************************************************************ # class Abs_MtxPortset( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj ): CLS_mtx__name = None CLS_grh__node__port_stack = None def _initAbsMtxPortset(self, *args): self._nameObj = self.CLS_mtx__name(*args) self._portStackObj = self.CLS_grh__node__port_stack() self._initAbsDatXmlObj() def restore(self): self._portStackObj.restore() def name(self): return self._nameObj def nameString(self): """ :return: str """ return self._nameObj.raw() def setNameString(self, nameString): """ :param nameString: str :return: None """ self._nameObj.setRaw(nameString) def addPort(self, portObject): self._portStackObj.addObject(portObject) def addPorts(self, *args): if isinstance(args[0], (list, tuple)): _ = args[0] else: _ = args [self.addPort(i) for i in _] def ports(self): return self._portStackObj.objects() def hasPorts(self): return self._portStackObj.hasObjects() def _xml_obj__get_attribute_attach_value_str_(self): return self.name()._xml_obj__get_attribute_attach_value_str_() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] def _xml_obj__get_attribute_list_(self): return [ self.name() ] def _xml_obj__get_child_element_list_(self): return self.ports() # geometry collection class Abs_MtxCollection( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj ): CLS_mtx__name = None CLS_mtx__look__geometry_proxy_stack = None CLS_mtx__collection_set = None DEF_geometry_separator = None def _initAbsMtxCollection(self, *args): self._nameObj = self.CLS_mtx__name(*args) self._geometryProxyStackObj = self.CLS_mtx__look__geometry_proxy_stack() self._collectionStackObj = self.CLS_mtx__collection_set() self._excludeGeometryStackObj = self.CLS_mtx__look__geometry_proxy_stack() self._initAbsDatXmlObj() # **************************************************************************************************************** # def nameString(self): """ :return: str """ return self._nameObj.toString() def setNameString(self, nameString): """ :param nameString: str :return: None """ self._nameObj.setRaw(nameString) def addGeometry(self, geometryProxyObj): """ :param geometryProxyObj: object of Geometry :return: """ self._geometryProxyStackObj.addObject(geometryProxyObj) def addGeometries(self, *args): if isinstance(args[0], (list, tuple)): _ = args[0] else: _ = args [self.addGeometry(i) for i in list(_)] def geometries(self): """ :return: list(object or geometry, ...) """ return self._geometryProxyStackObj.objects() def hasGeometries(self): """ :return: bool """ return self._geometryProxyStackObj.hasObjects() def geometryNameStrings(self): """ :return: list(str, ...) """ return [i.bindPathString() for i in self.geometries()] def geometryPathStrings(self): """ :return: list(str, ...) """ return [i.bindPathString() for i in self.geometries()] def excludeGeometrySet(self): return self._excludeGeometryStackObj def addExcludeGeometry(self, geometryProxyObj): self._excludeGeometryStackObj.addObject(geometryProxyObj) def addExcludeGeometries(self, *args): if isinstance(args[0], (list, tuple)): _ = args[0] else: _ = args [self.addExcludeGeometry(i) for i in list(_)] def excludeGeometries(self): return self._excludeGeometryStackObj.objects() def collectionSet(self): return self._collectionStackObj def addCollection(self, collectionObject): """ :param collectionObject: object of Collection :return: None """ self._collectionStackObj.addObject(collectionObject) def hasCollections(self): """ :return: bool """ return self._collectionStackObj.hasObjects() def collections(self): """ :return: list(object of Collection, ...) """ return self._collectionStackObj.objects() def collectionNames(self): """ :return: list(str, ...) """ return [i.nameString() for i in self.collections()] def toString(self): return self.nameString() def _xml_obj__get_attribute_list_(self): return [ self._nameObj, self._geometryProxyStackObj, self.collectionSet(), self.excludeGeometrySet() ] def _xml_obj__get_attribute_attach_value_str_(self): return self.nameString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] # assign ************************************************************************************************************* # class Abs_MtxAssign( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj ): CLS_mtx__name = None CLS_mtx__look__geometry_proxy_stack = None DEF_geometry_separator = None def _initAbsMtxAssign(self, *args): lookArg, nameArg = args self._lookObj = lookArg self._nameObj = self.CLS_mtx__name(nameArg) self._geometryProxyStackObj = self.CLS_mtx__look__geometry_proxy_stack( self.nameString() ) self._collectionObj = None self._initAbsDatXmlObj() # **************************************************************************************************************** # def name(self): return self._nameObj def nameString(self): """ :return: str """ return self._nameObj.raw() def setNameString(self, nameString): """ :param nameString: str :return: None """ self._nameObj._raw__set_create_by_str_(nameString) # **************************************************************************************************************** # def look(self): return self._lookObj # **************************************************************************************************************** # def _assign__set_geometry_proxy_add_(self, *args): geometryProxyObj = args[0] self._geometryProxyStackObj.addObject(geometryProxyObj) def hasGeometry(self, *args): return self._geometryProxyStackObj._obj_stack__get_obj_exist_(*args) def addGeometry(self, geometryProxyObj): """ :param geometryProxyObj: object of Geometry :return: None """ self._assign__set_geometry_proxy_add_(geometryProxyObj) def addGeometries(self, *args): if isinstance(args[0], (list, tuple)): _ = args[0] else: _ = args [self.addGeometry(i) for i in list(_)] def geometries(self): """ :return: list(object or geometry, ...) """ return self._geometryProxyStackObj.objects() def hasGeometries(self): """ :return: bool """ return self._geometryProxyStackObj.hasObjects() def geometryNameStrings(self): """ :return: list(str, ...) """ return [i.nameString() for i in self.geometries()] def geometryPathStrings(self): """ :return: list(str, ...) """ return [i.bindPathString() for i in self.geometries()] # **************************************************************************************************************** # def setCollection(self, collectionObject): """ :param collectionObject: object of Collection :return: None """ self._collectionObj = collectionObject def collection(self): """ :return: object of Collection """ return self._collectionObj def _xmlElementAttaches_(self): pass class Abs_MtxMaterialAssign(Abs_MtxAssign): def _initAbsMtxMaterialAssign(self, *args): self._initAbsMtxAssign(*args) self._materialProxyObj = None def setMaterial(self, tgtMaterialObj): """ :param tgtMaterialObj: object of MaterialProxy :return: """ self._materialProxyObj = tgtMaterialObj def material(self): """ :return: object of ShaderSet """ return self._materialProxyObj def _xmlElementAttaches_(self): return [ self._materialProxyObj, self._collectionObj ] def _xml_obj__get_attribute_attach_value_str_(self): self.nameString() def _xml_obj__get_attribute_list_(self): return [ self.name(), self.material(), self._geometryProxyStackObj, self.collection() ] class Abs_MtxPropertyAssign(Abs_MtxAssign): def _initAbsMtxPropertyAssign(self, *args): pass class Abs_MtxPropertysetAssign(Abs_MtxAssign): CLS_mtx__propertyset = None def _initAbsMtxPropertysetAssign(self, *args): self._initAbsMtxAssign(*args) self._propertysetObj = None def _setPropertyset_(self, *args): if isinstance(args[0], (str, unicode)): propertysetObject = self.CLS_mtx__propertyset(args[0]) else: propertysetObject = args[0] self._propertysetObj = propertysetObject return self._propertysetObj def setPropertyset(self, *args): """ :param args: 1.str 2.instance of "Propertyset" :return: instance of "Propertyset" """ return self._setPropertyset_(*args) def hasPropertyset(self): return self._propertysetObj is not None def propertyset(self): """ :return: object of Propertyset """ return self._propertysetObj def _xmlElementAttaches_(self): return [ self._propertysetObj, self._collectionObj ] def _xml_obj__get_attribute_list_(self): return [ self.name(), self.propertyset(), self._geometryProxyStackObj, self.collection() ] class Abs_MtxVisibilityAssign(Abs_MtxAssign): CLS_grh__type = None CLS_mtx__value_visibility = None CLS_mtx__geometry_viewer_set = None def _initAbsMtxVisibilityAssign(self, *args): self._initAbsMtxAssign(*args) self._vistypeObj = None self._visibilityValueObj = None self._viewerGeometryStackObj = self.CLS_mtx__geometry_viewer_set() def type(self): return self._vistypeObj def typeString(self): return self._vistypeObj.toString() def visible(self): return self._visibilityValueObj def assignVisibility(self, portObj): visibilityString = portObj.portpathString() self._vistypeObj = self.CLS_grh__type(visibilityString) self._visibilityValueObj = portObj.value() def addViewerGeometry(self, geometryProxyObj): self._viewerGeometryStackObj.addObject(geometryProxyObj) def viewerGeometries(self): return self._viewerGeometryStackObj.objsets() # xml ************************************************************************************************************ # def _xmlElementAttaches_(self): return [ self._collectionObj ] def _xml_obj__get_attribute_list_(self): return [ self.name(), self.type(), self.visible(), self._geometryProxyStackObj, self._viewerGeometryStackObj, self.collection() ] # ******************************************************************************************************************** # class Abs_MtxLook( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj ): CLS_mtx__look__name = None CLS_mtx__look__namespace = None CLS_mtx__look__assign_stack = None CLS_mtx__look__material_assign = None CLS_mtx__look__material_assign_stack = None CLS_mtx__look__propertyset_assign = None CLS_mtx__look__propertyset_assign_stack = None CLS_mtx__look__visibility_assign = None CLS_mtx__look__visibility_assign_stack = None CLS_mtx__look__geometry_proxy_stack = None def _initAbsMtxLook(self, *args): fileArg, nameArg = args self._fileObj = fileArg self._nameObj = self.CLS_mtx__look__name(nameArg) self._visibilityAssignStackObj = self.CLS_mtx__look__visibility_assign_stack(nameArg) self._materialAssignStackObj = self.CLS_mtx__look__material_assign_stack(nameArg) self._propertysetAssignStackObj = self.CLS_mtx__look__propertyset_assign_stack(nameArg) self._geometryProxyStackObj = self.CLS_mtx__look__geometry_proxy_stack(nameArg) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _look__set_assigns_create_(self): for i in self._geometryProxyStackObj.objects(): self._look__set_material_assigns_create_(i) self._look__set_propertyset_assigns_create_(i) self._look__set_visibility_assigns_create_(i) def _look__set_material_assigns_create_(self, geometryProxyObj): def addFnc_(geometryProxyObj_, materialProxyObj_): _materialNodeObj = materialProxyObj_.bindObject() _count = self._materialAssignStackObj.objectsCount() _keyString = _materialNodeObj.pathString() if self._materialAssignStackObj._obj_stack__get_obj_exist_(_keyString): _materialAssignObj = self._materialAssignStackObj._obj_stack__get_obj_(_keyString) else: _materialAssignObj = self.CLS_mtx__look__material_assign( self, u'material_assign_{}'.format(_count) ) _materialAssignObj.setMaterial(materialProxyObj_) self._materialAssignStackObj._obj_stack__set_obj_add_(_keyString, _materialAssignObj) if _materialAssignObj.hasGeometry(geometryProxyObj_) is False: _materialAssignObj.addGeometry(geometryProxyObj_) # # namespaceStr = self.nameString() # materialProxyObj = geometryProxyObj.inputNodeProxy(namespaceStr) # if materialProxyObj is not None: # addFnc_(geometryProxyObj, materialProxyObj) materialProxyObjList = geometryProxyObj.assignmentMaterialProxies() for materialProxyObj in materialProxyObjList: addFnc_(geometryProxyObj, materialProxyObj) def _look__set_propertyset_assigns_create_(self, geometryProxyObj): def addFnc_(geometryProxyObj_, propertysetObj_): _count = self._propertysetAssignStackObj.objectsCount() _keyString = geometryProxyObj_.bindPathString() if self._propertysetAssignStackObj._obj_stack__get_obj_exist_(_keyString): _propertysetAssignObj = self._propertysetAssignStackObj._obj_stack__get_obj_(_keyString) else: _propertysetAssignObj = self.CLS_mtx__look__propertyset_assign( self, propertysetObj_.nameString() ) # _materialAssignObj = self.CLS_mtx__look__material_assign( # self, u'material_assign_{}'.format(_count) # ) self._propertysetAssignStackObj._obj_stack__set_obj_add_(_keyString, _propertysetAssignObj) _propertysetAssignObj.setPropertyset(propertysetObj_) if _propertysetAssignObj.hasGeometry(geometryProxyObj_) is False: _propertysetAssignObj.addGeometry(geometryProxyObj_) bindPortsetNamespaceStr = geometryProxyObj.bindPortsetNamespaceString() propertysetObj = geometryProxyObj._geometry_proxy__set_propertyset_update_(bindPortsetNamespaceStr) if propertysetObj.hasPorts(): addFnc_(geometryProxyObj, propertysetObj) def _look__set_visibility_assigns_create_(self, geometryProxyObj): def addFnc_(geometryProxyObj_, portProxyObj_): _portObject = portProxyObj_.bindObject() _count = self._visibilityAssignStackObj.objectsCount() _keyString = _portObject.portpathString() if self._visibilityAssignStackObj._obj_stack__get_obj_exist_(_keyString): _visibilityObject = self._visibilityAssignStackObj._obj_stack__get_obj_(_keyString) else: _visibilityObject = self.CLS_mtx__look__visibility_assign( self, u'visibility_assign_{}'.format(_count) ) _visibilityObject.assignVisibility(_portObject) self._visibilityAssignStackObj._obj_stack__set_obj_add_(_keyString, _visibilityObject) if _visibilityObject.hasGeometry(geometryProxyObj_) is False: _visibilityObject.addGeometry(geometryProxyObj_) geometryVisibilities = geometryProxyObj.changedVisibilities() if geometryVisibilities: [addFnc_(geometryProxyObj, i) for i in geometryVisibilities] # **************************************************************************************************************** # def _look__get_geometry_namespace_str_(self): return self.nameString() def geometryNamespaceString(self): return self._look__get_geometry_namespace_str_() # **************************************************************************************************************** # def file(self): return self._fileObj # **************************************************************************************************************** # def name(self): return self._nameObj def nameString(self): return self._nameObj.toString() # **************************************************************************************************************** # def geometries(self): return self._geometryProxyStackObj.objects() def hasGeometries(self): return self._geometryProxyStackObj.hasObjects() def _look__set_geometry_proxy_add_(self, *args): geometryProxyObj = args[0] if geometryProxyObj.namespace().isRoot() is True: geometryNamespaceStr = self.geometryNamespaceString() geometryProxyObj.setNamespaceString(geometryNamespaceStr) # add Variant # geometryObj = geometryProxyObj.bindObject() # geometryObj.addVariantObject(self.nameString()) # add geometry self._geometryProxyStackObj.addObject(geometryProxyObj) def addGeometry(self, geometryProxyObj): self._look__set_geometry_proxy_add_(geometryProxyObj) def addGeometries(self, *args): if isinstance(args[0], (tuple, list)): [self.addGeometry(i) for i in list(args[0])] else: [self.addGeometry(i) for i in list(args)] def geometry(self, geometryString): return self._geometryProxyStackObj.object(geometryString) def hasGeometry(self, *args): return self._geometryProxyStackObj._obj_stack__get_obj_exist_(*args) # **************************************************************************************************************** # def materialAssigns(self): return self._materialAssignStackObj.objects() def propertysetAssigns(self): return self._propertysetAssignStackObj.objects() def visibilityAssigns(self): return self._visibilityAssignStackObj.objects() # **************************************************************************************************************** # def hasAssigns(self): return self.assigns() != [] def assigns(self): return self.materialAssigns() + self.propertysetAssigns() + self.visibilityAssigns() def _xmlElementAttaches_(self): lis = [] for assignObject in self.assigns(): for xmlObject in assignObject._xmlElementAttaches_(): if xmlObject is not None: if xmlObject not in lis: lis.append(xmlObject) return lis def _xml_obj__get_attribute_list_(self): return [ self._nameObj ] def _xml_obj__get_child_element_list_(self): self._look__set_assigns_create_() return self.assigns() def _xml_obj__get_sibling_element_list_(self): return self._xmlElementAttaches_() class Abs_MtxFile( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj ): CLS_mtx__file__path = None CLS_mtx__file__version = None CLS_mtx__file__reference_stack = None CLS_mtx__file__reference = None CLS_mtx__file__look_stack = None CLS_mtx__file__look = None VAR_mtx__file__version = None def __init__(self, *args, **kwargs): pass def _initAbsMtxFile(self, *args): self._filepathObj = self.CLS_mtx__file__path(*args) self._versionObj = self.CLS_mtx__file__version(self.VAR_mtx__file__version) self._referenceStackObj = self.CLS_mtx__file__reference_stack() self._lookStackObj = self.CLS_mtx__file__look_stack(self) self._initAbsDatXmlObj() def _file__set_look_add_(self, *args): if args: _ = args[0] if isinstance(_, (str, unicode)): lookStr = _ lookObject = self.CLS_mtx__file__look(self, lookStr) elif isinstance(_, self.CLS_mtx__file__look): lookObject = _ else: raise TypeError else: lookObject = self.CLS_mtx__file__look(self, u'default_look') self._lookStackObj.addObject(lookObject) return lookObject def _file__set_reference_add_(self, *args): if self.CLS_mtx__file__reference is not None: referenceCls = self.CLS_mtx__file__reference else: referenceCls = self.__class__ if isinstance(args[0], (str, unicode)): fileObj = referenceCls(args[0]) elif isinstance(args[0], referenceCls): fileObj = args[0] else: fileObj = referenceCls(u'default') keyString = fileObj.fullpathFilename() self._referenceStackObj._obj_stack__set_obj_add_(keyString, fileObj) def filepath(self): return self._filepathObj def fullpathFilename(self): return self._filepathObj.toString() def version(self): return self._versionObj def versionString(self): return self._versionObj.toString() def addReference(self, fileObject): self._file__set_reference_add_(fileObject) def references(self): return self._referenceStackObj.objects() def reference(self, fileString): return self._referenceStackObj.object(fileString) def hasLook(self, lookStr): return self._lookStackObj._obj_stack__get_obj_exist_(lookStr) def addLook(self, *args): """ :param args: 1.str 2.instance of "Look" :return: """ return self._file__set_look_add_(*args) def looks(self): return self._lookStackObj.objects() def look(self, lookStr): return self._lookStackObj.object(lookStr) def lookIndex(self, *args): return self._lookStackObj._obj_stack__get_obj_index_(*args) def save(self): xmlDoc = self.__str__() bscMethods.OsFile.write( self.fullpathFilename(), xmlDoc ) def _xml_obj__get_attribute_list_(self): return [ self.version() ] def _xml_obj__get_child_element_list_(self): return self.references() + self.looks() class Abs_MtxReference(Abs_MtxFile): def _initAbsMtxReference(self, *args): self._initAbsMtxFile(*args) # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ self._filepathObj ] # ******************************************************************************************************************** # class Abs_MtxTrsLook(Abs_MtxBasic): CLS_mtx__trs_look__tgt_look = None CLS_mtx__trs_look__trs_geometry_proxy = None def _initAbsMtxTrsLook(self, *args): trsFileArg, tgtLookArg = args self._trsFileObj = trsFileArg tgtFileObj = trsFileArg.tgtFile() self._tgtLookObj = self.CLS_mtx__trs_look__tgt_look(tgtFileObj, tgtLookArg) def trsFile(self): return self._trsFileObj def tgtLook(self): return self._tgtLookObj def addSrcGeometry(self, srcNodepathStr): # geometry namespace = look name namespaceStr = self.tgtLook().nameString() trsGeometryProxyObj = self.CLS_mtx__trs_look__trs_geometry_proxy( srcNodepathStr, namespace=namespaceStr ) # target tgtGeometryProxyObj = trsGeometryProxyObj.tgtNodeProxy() if self.tgtLook().hasGeometry(tgtGeometryProxyObj) is False: self.tgtLook().addGeometry(tgtGeometryProxyObj) else: bscMethods.PyMessage.traceWarning( u'''Geometry "{}" is Exist.'''.format(tgtGeometryProxyObj.pathString()) ) def addSrcGeometries(self, *args): if isinstance(args[0], (list, tuple)): _ = args[0] else: _ = args [self.addSrcGeometry(i) for i in _] def _mtx__trs_look__set_material_assign_add_(self, *args): pass def addAssign(self, *args): self._mtx__trs_look__set_material_assign_add_(*args) def __str__(self): return self._tgtLookObj.__str__() # ******************************************************************************************************************** # class Abs_MtxTrsFile(Abs_MtxBasic): CLS_mtx__trs_file__tgt_file = None CLS_mtx__trs_file__trs_look = None IST_mtx__trs_file__trs_obj_queue = None def _initAbsMtxTrsFile(self, *args): fileString = args[0] self._tgtFileObj = self.CLS_mtx__trs_file__tgt_file(fileString) self._tgtFileObj.addReference( u'materialx/arnold/nodedefs.mtlx' ) def tgtFile(self): return self._tgtFileObj def addLook(self, lookStr): trsLookObj = self.CLS_mtx__trs_file__trs_look(self, lookStr) if self._tgtFileObj.hasLook(lookStr) is False: tgtLookObk = trsLookObj.tgtLook() self._tgtFileObj.addLook(tgtLookObk) else: bscMethods.PyMessage.traceWarning( u'''Look "{}" is Exist.'''.format(lookStr) ) return trsLookObj def tgtLook(self, lookStr): return self._tgtFileObj.look(lookStr) def tgtLooks(self): return self._tgtFileObj.looks() def save(self): for i in self.IST_mtx__trs_file__trs_obj_queue.nodes(): i._grh__trs_node__set_after_expressions_run_() self._tgtFileObj.save() bscMethods.PyMessage.traceResult( u'save file "{}"'.format( self._tgtFileObj.fullpathFilename() ) ) def __str__(self): for i in self.IST_mtx__trs_file__trs_obj_queue.nodes(): i._grh__trs_node__set_after_expressions_run_() return self._tgtFileObj.__str__()
<filename>workspace/module/python-2.7/LxMtx/mtxObjAbs.py # coding:utf-8 from LxBasic import bscMethods from LxData import datObjAbs from LxGraphic import grhObjAbs from . import mtxCfg class Abs_MtxBasic(mtxCfg.MtxUtility): pass # ******************************************************************************************************************** # class Abs_MtxObjLoader(grhObjAbs.Abs_GrhObjLoader): def _initAbsMtxObjLoader(self, *args): self._initAbsGrhObjLoader(*args) # **************************************************************************************************************** # @classmethod def _obj_loader_cls__set_node_raw_create_(cls, *args): ( nodeRawDict, typepathStr, orig_node_raw_dict, orig_otport_raw_list_dict, orig_child_port_raw_list_dict ) = args _datatypeStr = orig_node_raw_dict[cls.DEF_grh__key_node_datatype] # property nodeRawDict[cls.DEF_grh__key_node_typepath] = typepathStr nodeRawDict[cls.DEF_grh__key_node_datatype] = _datatypeStr # port _portRawList = [] _orig_port_raw_list = orig_node_raw_dict[cls.DEF_grh__key_port] cls._obj_loader_cls__set_ports_create_(_portRawList, _orig_port_raw_list, orig_child_port_raw_list_dict) _orig_otport_raw_list = orig_otport_raw_list_dict.get(_datatypeStr, []) cls._obj_loader_cls__set_ports_create_(_portRawList, _orig_otport_raw_list, orig_child_port_raw_list_dict) nodeRawDict[cls.DEF_grh__key_port] = _portRawList # **************************************************************************************************************** # @classmethod def _obj_loader_cls__set_ports_create_(cls, *args): portRawList, orig_port_raw_list, orig_child_port_raw_list_dict = args for orig_port_raw in orig_port_raw_list: cls._obj_loader_cls__set_port_create_(portRawList, orig_port_raw, orig_child_port_raw_list_dict) @classmethod def _obj_loader_cls__set_port_create_(cls, *args): portRawList, orig_port_raw, orig_child_port_raw_list_dict = args _portpathStr = orig_port_raw[cls.DEF_grh__key_portpath] if cls.DEF_grh__key_porttype in orig_port_raw: _porttypeStr = orig_port_raw[cls.DEF_grh__key_porttype] else: _porttypeStr = None _datatypeStr = orig_port_raw[cls.DEF_grh__key_port_datatype] _portrawStr = orig_port_raw[cls.DEF_grh__key_portraw] _assignStr = orig_port_raw[cls.DEF_grh__key_assign] _childStrList = [] # add parent first cls._obj_loader_cls__set_port_raw_add_( portRawList, portpath=_portpathStr, porttype=_porttypeStr, datatype=_datatypeStr, portraw=_portrawStr, assign=_assignStr, children=_childStrList ) orig_child_port_raw_list = orig_child_port_raw_list_dict.get(_datatypeStr, []) cls._obj_loader_cls__set_port_children_create_( portRawList, _childStrList, orig_port_raw, orig_child_port_raw_list ) @classmethod def _obj_loader_cls__set_port_children_create_(cls, *args): portRawList, childStrList, orig_parent_port_raw, orig_child_port_raw_list = args for _index, _orig_child_port_raw in enumerate(orig_child_port_raw_list): cls._obj_loader_cls__set_port_child_create_( portRawList, childStrList, orig_parent_port_raw, _orig_child_port_raw, _index ) @classmethod def _obj_loader_cls__set_port_child_create_(cls, *args): portRawList, childStrList, origParentPortRaw, origPortRaw, childIndex = args _parentPortpathStr = origParentPortRaw[cls.DEF_grh__key_portpath] _parentPorttypeStr = origParentPortRaw[cls.DEF_grh__key_port_datatype] parentPortrawString = origParentPortRaw[cls.DEF_grh__key_portraw] parentAssignString = origParentPortRaw[cls.DEF_grh__key_assign] _formatString = origPortRaw[cls.DEF_grh__key_format] _portpathStr = _formatString.format( **{ cls.DEF_grh__key_portpath: _parentPortpathStr } ) _datatypeStr = origPortRaw[cls.DEF_grh__key_port_datatype] if parentPortrawString: _portrawStr = parentPortrawString.split(u',')[childIndex].rstrip().lstrip() else: _portrawStr = origPortRaw[cls.DEF_grh__key_portraw] if parentAssignString == cls.DEF_grh__keyword__gnport: _portAssignString = cls.DEF_grh__keyword__gnport_channel if parentAssignString == cls.DEF_grh__keyword__inport: _portAssignString = cls.DEF_grh__keyword__inport_channel elif parentAssignString == cls.DEF_grh__keyword__otport: _portAssignString = cls.DEF_grh__keyword__otport_channel else: raise TypeError() cls._obj_loader_cls__set_port_raw_add_( portRawList, portpath=_portpathStr, porttype=_parentPorttypeStr, datatype=_parentPorttypeStr, portraw=_portrawStr, assign=_portAssignString, parent=_parentPortpathStr, children=[] ) childStrList.append(_portpathStr) # **************************************************************************************************************** # @classmethod def _grh__obj_loader_cls__get_definition_node_raw_(cls, *args): out_node_raw_dict = cls.CLS_ordered_dict() cls._obj_loader_cls__set_node_raw_create_( out_node_raw_dict, *args ) return out_node_raw_dict # ******************************************************************************************************************** # class Abs_MtxObjQueryBuilder(grhObjAbs.Abs_GrhObjQueryrawCreator): def _initAbsMtxObjQueryBuilder(self, *args): self._initAbsGrhObjQueryBuilder(*args) # **************************************************************************************************************** # def _queryraw_loader__set_build_(self): self._nodeRaws = bscMethods.OsJsonFile.read( self.VAR_grh__node_file ) or {} self._materialRaws = bscMethods.OsJsonFile.read( self.VAR_grh__material_file ) or {} self._geometryRaws = bscMethods.OsJsonFile.read( self.VAR_grh__geometry_file ) or {} self._origOtportRaw = bscMethods.OsJsonFile.read( self.VAR_grh__output_file ) or {} self._origPortChildRaw = bscMethods.OsJsonFile.read( self.VAR_grh__port_child_file ) or {} self._origNodeRaws = self.CLS_ordered_dict() for i in [ self._nodeRaws, self._materialRaws, self._geometryRaws ]: self._origNodeRaws.update(i) # **************************************************************************************************************** # def _queryraw_loader__get_node_raw_(self, *args): typepathStr = args[0] if typepathStr in self._origNodeRaws: origNodeRaw = self._origNodeRaws[typepathStr] return self.CLS_grh__obj_query_creator__obj_loader.getDefinitionNodeRaw( typepathStr, origNodeRaw, self._origOtportRaw, self._origPortChildRaw ) # **************************************************************************************************************** # def _queryraw_loader__get_category_exist_(self, *args): typepathStr = args[0] return typepathStr in self._origNodeRaws def _queryraw_loader__get_categories_(self): return self._origNodeRaws.keys() # ******************************************************************************************************************** # class Abs_MtxObjQueue(grhObjAbs.Abs_GrhObjQueue): def _initAbsMtxObjQueue(self, *args): self._initAbsGrhObjQueue(*args) # raw **************************************************************************************************************** # class Abs_MtxRaw( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatRaw ): def _initAbsMtxRaw(self, *args): self._initAbsDatRaw(*args) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxDatatype( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatDatatype ): def _initAbsMtxDatatype(self, *args): self._initAbsDatDatatype(*args) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxObjProxyNamespace( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatObjNamespace ): def _initAbsMtxObjProxyNamespace(self, *args): self._initAbsDatObjNamespace(*args) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxName( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatName ): def _initAbsMtxName(self, *args): self._initAbsDatName(*args) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxObjTypename( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatObjName, ): def _initAbsMtxObjTypename(self, *args): self._initAbsDatObjName(*args) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxObjName( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatObjName, ): def _initAbsMtxObjName(self, *args): self._initAbsDatObjName(*args) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxPath( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatObjPath ): def _initAbsMtxPath(self, *args): self._initAbsDatObjPath(*args) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxAttrpath( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatObjComppath ): def _initAbsMtxAttrpath(self, *args): self._initAbsDatObjComppath(*args) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ [('raw', self.raw())] ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] # object set ********************************************************************************************************* # class Abs_MtxObjSet( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhObjStack ): def _initAbsMtxObjSet(self, *args): self._initAbsGrhObjStack(*args) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] # value ************************************************************************************************************** # class Abs_MtxValue( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, datObjAbs.Abs_DatValue ): def _initAbsMtxValue(self, *args): self._initAbsDatValue(*args) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ self.datatype(), self.data() ] def _xml_obj__get_attribute_attach_value_str_(self): return self.toString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] # ******************************************************************************************************************** # class Abs_MtxPort( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhPort ): def _initAbsMtxPort(self, *args, **kwargs): self._initAbsGrhPort(*args, **kwargs) self._initAbsDatXmlObj() self._proxyObj = None # xml ************************************************************************************************************ # def _xml_obj__get_attribute_attach_value_str_(self): return self.portpathString() def _xml_obj__get_attribute_attach_list_(self): if self.isChannel() is True: # <... nodename="nodepath" member="parent portpath" channel="portname" /> return [ self.parent(), (self._xml_obj__get_attribute_attach_key_str_(), self.portnameString()) ] else: # <... nodename = "nodepath" member = "portpath" /> return [ self.node(), (self._xml_obj__get_attribute_attach_key_str_(), self.portpathString()) ] def _xml_obj__get_attribute_list_(self): return [ self.portpath(), self.datatype(), self.portgiven() ] class Abs_MtxNode( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhNode ): def _initAbsMtxNode(self, *args, **kwargs): self._initAbsGrhNode(*args, **kwargs) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_element_prefix_str(self): return self.typepathString() def _xml_obj__get_attribute_list_(self): return [ self.path(), self.datatype() ] def _xml_obj__get_child_element_list_(self): return self.changedInport() def _xml_obj__get_attribute_attach_value_str_(self): return self.pathString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxConnector( grhObjAbs.Abs_GrhConnector ): def _initAbsMtxConnector(self, *args): self._initAbsGrhConnector(*args) # port proxy ********************************************************************************************************* # class Abs_MtxPortProxy( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhPortProxy, ): def _initAbsMtxPortProxy(self, *args, **kwargs): self._initAbsGrhPortProxy(*args, **kwargs) self._initAbsDatXmlObj() def _xml_obj__get_attribute_list_(self): return [ self.bindObject().portpath(), self.bindObject().datatype(), self.bindPortgiven() ] class Abs_MtxShaderProxy( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhShaderProxy ): def _initAbsMtxShaderProxy(self, *args, **kwargs): self._initAbsGrhShaderProxy(*args, **kwargs) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ self.path(), self.bindObject().typepath(), [(u'context', self._shader_proxy__get_material_context_())] ] def _xml_obj__get_child_element_list_(self): return self.changedBindInportProxies() class Abs_MtxMaterialProxy( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhMaterialProxy ): def _initAbsMtxMaterialProxy(self, *args, **kwargs): self._initAbsGrhMaterialProxy(*args, **kwargs) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ self.path() ] def _xml_obj__get_child_element_list_(self): # update shader's node graph first for shaderProxyObj in self.shaders(): nodeGraphObj = shaderProxyObj.inputNodeGraph() nodeGraphObj._node_graph__set_bind_obj_update_() return self.shaders() def _xml_obj__get_sibling_element_list_(self): lis = [] # node graph for shaderProxyObj in self.shaders(): nodeGraphObjs = shaderProxyObj.inputNodeGraphs() if nodeGraphObjs: for nodeGraphObj in nodeGraphObjs: if nodeGraphObj.hasBindNodes(): if not nodeGraphObj in lis: lis.append(nodeGraphObj) return lis def _xml_obj__get_attribute_attach_value_str_(self): return self.pathString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxGeometryProxy( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhGeometryProxy ): def _initAbsMtxGeometryProxy(self, *args, **kwargs): self._initAbsGrhGeometryProxy(*args, **kwargs) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ self.path(), self.bindObject().typepath() ] def _xml_obj__get_child_element_list_(self): return self.changedProperties() + self.changedVisibilities() # node graph ********************************************************************************************************* # class Abs_MtxNodeGraph( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhNodeGraph ): def _initAbsMtxNodeGraph(self, *args, **kwargs): self._initAbsGrhNodeGraph(*args, **kwargs) # **************************************************************************************************************** # def _xml_obj__get_attribute_list_(self): return [ self.path() ] def _xml_obj__get_child_element_list_(self): return self.bindNodes() + self.bindOtportProxies() def _xml_obj__get_attribute_attach_value_str_(self): return self.pathString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] class Abs_MtxNodeGraphOtportProxy( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj, grhObjAbs.Abs_GrhNodeGraphPortProxy, ): def _initAbsMtxNodeGraphOtportProxy(self, *args, **kwargs): self._initAbsGrhNodeGraphPortProxy(*args, **kwargs) self._initAbsDatXmlObj() # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ self.path(), self.bindObject().datatype(), self.bindObject() ] def _xml_obj__get_attribute_attach_value_str_(self): return self.pathString() def _xml_obj__get_attribute_attach_list_(self): return [ self.bindNodeGraph(), (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] # portset ************************************************************************************************************ # class Abs_MtxPortset( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj ): CLS_mtx__name = None CLS_grh__node__port_stack = None def _initAbsMtxPortset(self, *args): self._nameObj = self.CLS_mtx__name(*args) self._portStackObj = self.CLS_grh__node__port_stack() self._initAbsDatXmlObj() def restore(self): self._portStackObj.restore() def name(self): return self._nameObj def nameString(self): """ :return: str """ return self._nameObj.raw() def setNameString(self, nameString): """ :param nameString: str :return: None """ self._nameObj.setRaw(nameString) def addPort(self, portObject): self._portStackObj.addObject(portObject) def addPorts(self, *args): if isinstance(args[0], (list, tuple)): _ = args[0] else: _ = args [self.addPort(i) for i in _] def ports(self): return self._portStackObj.objects() def hasPorts(self): return self._portStackObj.hasObjects() def _xml_obj__get_attribute_attach_value_str_(self): return self.name()._xml_obj__get_attribute_attach_value_str_() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] def _xml_obj__get_attribute_list_(self): return [ self.name() ] def _xml_obj__get_child_element_list_(self): return self.ports() # geometry collection class Abs_MtxCollection( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj ): CLS_mtx__name = None CLS_mtx__look__geometry_proxy_stack = None CLS_mtx__collection_set = None DEF_geometry_separator = None def _initAbsMtxCollection(self, *args): self._nameObj = self.CLS_mtx__name(*args) self._geometryProxyStackObj = self.CLS_mtx__look__geometry_proxy_stack() self._collectionStackObj = self.CLS_mtx__collection_set() self._excludeGeometryStackObj = self.CLS_mtx__look__geometry_proxy_stack() self._initAbsDatXmlObj() # **************************************************************************************************************** # def nameString(self): """ :return: str """ return self._nameObj.toString() def setNameString(self, nameString): """ :param nameString: str :return: None """ self._nameObj.setRaw(nameString) def addGeometry(self, geometryProxyObj): """ :param geometryProxyObj: object of Geometry :return: """ self._geometryProxyStackObj.addObject(geometryProxyObj) def addGeometries(self, *args): if isinstance(args[0], (list, tuple)): _ = args[0] else: _ = args [self.addGeometry(i) for i in list(_)] def geometries(self): """ :return: list(object or geometry, ...) """ return self._geometryProxyStackObj.objects() def hasGeometries(self): """ :return: bool """ return self._geometryProxyStackObj.hasObjects() def geometryNameStrings(self): """ :return: list(str, ...) """ return [i.bindPathString() for i in self.geometries()] def geometryPathStrings(self): """ :return: list(str, ...) """ return [i.bindPathString() for i in self.geometries()] def excludeGeometrySet(self): return self._excludeGeometryStackObj def addExcludeGeometry(self, geometryProxyObj): self._excludeGeometryStackObj.addObject(geometryProxyObj) def addExcludeGeometries(self, *args): if isinstance(args[0], (list, tuple)): _ = args[0] else: _ = args [self.addExcludeGeometry(i) for i in list(_)] def excludeGeometries(self): return self._excludeGeometryStackObj.objects() def collectionSet(self): return self._collectionStackObj def addCollection(self, collectionObject): """ :param collectionObject: object of Collection :return: None """ self._collectionStackObj.addObject(collectionObject) def hasCollections(self): """ :return: bool """ return self._collectionStackObj.hasObjects() def collections(self): """ :return: list(object of Collection, ...) """ return self._collectionStackObj.objects() def collectionNames(self): """ :return: list(str, ...) """ return [i.nameString() for i in self.collections()] def toString(self): return self.nameString() def _xml_obj__get_attribute_list_(self): return [ self._nameObj, self._geometryProxyStackObj, self.collectionSet(), self.excludeGeometrySet() ] def _xml_obj__get_attribute_attach_value_str_(self): return self.nameString() def _xml_obj__get_attribute_attach_list_(self): return [ (self._xml_obj__get_attribute_attach_key_str_(), self._xml_obj__get_attribute_attach_value_str_()) ] # assign ************************************************************************************************************* # class Abs_MtxAssign( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj ): CLS_mtx__name = None CLS_mtx__look__geometry_proxy_stack = None DEF_geometry_separator = None def _initAbsMtxAssign(self, *args): lookArg, nameArg = args self._lookObj = lookArg self._nameObj = self.CLS_mtx__name(nameArg) self._geometryProxyStackObj = self.CLS_mtx__look__geometry_proxy_stack( self.nameString() ) self._collectionObj = None self._initAbsDatXmlObj() # **************************************************************************************************************** # def name(self): return self._nameObj def nameString(self): """ :return: str """ return self._nameObj.raw() def setNameString(self, nameString): """ :param nameString: str :return: None """ self._nameObj._raw__set_create_by_str_(nameString) # **************************************************************************************************************** # def look(self): return self._lookObj # **************************************************************************************************************** # def _assign__set_geometry_proxy_add_(self, *args): geometryProxyObj = args[0] self._geometryProxyStackObj.addObject(geometryProxyObj) def hasGeometry(self, *args): return self._geometryProxyStackObj._obj_stack__get_obj_exist_(*args) def addGeometry(self, geometryProxyObj): """ :param geometryProxyObj: object of Geometry :return: None """ self._assign__set_geometry_proxy_add_(geometryProxyObj) def addGeometries(self, *args): if isinstance(args[0], (list, tuple)): _ = args[0] else: _ = args [self.addGeometry(i) for i in list(_)] def geometries(self): """ :return: list(object or geometry, ...) """ return self._geometryProxyStackObj.objects() def hasGeometries(self): """ :return: bool """ return self._geometryProxyStackObj.hasObjects() def geometryNameStrings(self): """ :return: list(str, ...) """ return [i.nameString() for i in self.geometries()] def geometryPathStrings(self): """ :return: list(str, ...) """ return [i.bindPathString() for i in self.geometries()] # **************************************************************************************************************** # def setCollection(self, collectionObject): """ :param collectionObject: object of Collection :return: None """ self._collectionObj = collectionObject def collection(self): """ :return: object of Collection """ return self._collectionObj def _xmlElementAttaches_(self): pass class Abs_MtxMaterialAssign(Abs_MtxAssign): def _initAbsMtxMaterialAssign(self, *args): self._initAbsMtxAssign(*args) self._materialProxyObj = None def setMaterial(self, tgtMaterialObj): """ :param tgtMaterialObj: object of MaterialProxy :return: """ self._materialProxyObj = tgtMaterialObj def material(self): """ :return: object of ShaderSet """ return self._materialProxyObj def _xmlElementAttaches_(self): return [ self._materialProxyObj, self._collectionObj ] def _xml_obj__get_attribute_attach_value_str_(self): self.nameString() def _xml_obj__get_attribute_list_(self): return [ self.name(), self.material(), self._geometryProxyStackObj, self.collection() ] class Abs_MtxPropertyAssign(Abs_MtxAssign): def _initAbsMtxPropertyAssign(self, *args): pass class Abs_MtxPropertysetAssign(Abs_MtxAssign): CLS_mtx__propertyset = None def _initAbsMtxPropertysetAssign(self, *args): self._initAbsMtxAssign(*args) self._propertysetObj = None def _setPropertyset_(self, *args): if isinstance(args[0], (str, unicode)): propertysetObject = self.CLS_mtx__propertyset(args[0]) else: propertysetObject = args[0] self._propertysetObj = propertysetObject return self._propertysetObj def setPropertyset(self, *args): """ :param args: 1.str 2.instance of "Propertyset" :return: instance of "Propertyset" """ return self._setPropertyset_(*args) def hasPropertyset(self): return self._propertysetObj is not None def propertyset(self): """ :return: object of Propertyset """ return self._propertysetObj def _xmlElementAttaches_(self): return [ self._propertysetObj, self._collectionObj ] def _xml_obj__get_attribute_list_(self): return [ self.name(), self.propertyset(), self._geometryProxyStackObj, self.collection() ] class Abs_MtxVisibilityAssign(Abs_MtxAssign): CLS_grh__type = None CLS_mtx__value_visibility = None CLS_mtx__geometry_viewer_set = None def _initAbsMtxVisibilityAssign(self, *args): self._initAbsMtxAssign(*args) self._vistypeObj = None self._visibilityValueObj = None self._viewerGeometryStackObj = self.CLS_mtx__geometry_viewer_set() def type(self): return self._vistypeObj def typeString(self): return self._vistypeObj.toString() def visible(self): return self._visibilityValueObj def assignVisibility(self, portObj): visibilityString = portObj.portpathString() self._vistypeObj = self.CLS_grh__type(visibilityString) self._visibilityValueObj = portObj.value() def addViewerGeometry(self, geometryProxyObj): self._viewerGeometryStackObj.addObject(geometryProxyObj) def viewerGeometries(self): return self._viewerGeometryStackObj.objsets() # xml ************************************************************************************************************ # def _xmlElementAttaches_(self): return [ self._collectionObj ] def _xml_obj__get_attribute_list_(self): return [ self.name(), self.type(), self.visible(), self._geometryProxyStackObj, self._viewerGeometryStackObj, self.collection() ] # ******************************************************************************************************************** # class Abs_MtxLook( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj ): CLS_mtx__look__name = None CLS_mtx__look__namespace = None CLS_mtx__look__assign_stack = None CLS_mtx__look__material_assign = None CLS_mtx__look__material_assign_stack = None CLS_mtx__look__propertyset_assign = None CLS_mtx__look__propertyset_assign_stack = None CLS_mtx__look__visibility_assign = None CLS_mtx__look__visibility_assign_stack = None CLS_mtx__look__geometry_proxy_stack = None def _initAbsMtxLook(self, *args): fileArg, nameArg = args self._fileObj = fileArg self._nameObj = self.CLS_mtx__look__name(nameArg) self._visibilityAssignStackObj = self.CLS_mtx__look__visibility_assign_stack(nameArg) self._materialAssignStackObj = self.CLS_mtx__look__material_assign_stack(nameArg) self._propertysetAssignStackObj = self.CLS_mtx__look__propertyset_assign_stack(nameArg) self._geometryProxyStackObj = self.CLS_mtx__look__geometry_proxy_stack(nameArg) self._initAbsDatXmlObj() # **************************************************************************************************************** # def _look__set_assigns_create_(self): for i in self._geometryProxyStackObj.objects(): self._look__set_material_assigns_create_(i) self._look__set_propertyset_assigns_create_(i) self._look__set_visibility_assigns_create_(i) def _look__set_material_assigns_create_(self, geometryProxyObj): def addFnc_(geometryProxyObj_, materialProxyObj_): _materialNodeObj = materialProxyObj_.bindObject() _count = self._materialAssignStackObj.objectsCount() _keyString = _materialNodeObj.pathString() if self._materialAssignStackObj._obj_stack__get_obj_exist_(_keyString): _materialAssignObj = self._materialAssignStackObj._obj_stack__get_obj_(_keyString) else: _materialAssignObj = self.CLS_mtx__look__material_assign( self, u'material_assign_{}'.format(_count) ) _materialAssignObj.setMaterial(materialProxyObj_) self._materialAssignStackObj._obj_stack__set_obj_add_(_keyString, _materialAssignObj) if _materialAssignObj.hasGeometry(geometryProxyObj_) is False: _materialAssignObj.addGeometry(geometryProxyObj_) # # namespaceStr = self.nameString() # materialProxyObj = geometryProxyObj.inputNodeProxy(namespaceStr) # if materialProxyObj is not None: # addFnc_(geometryProxyObj, materialProxyObj) materialProxyObjList = geometryProxyObj.assignmentMaterialProxies() for materialProxyObj in materialProxyObjList: addFnc_(geometryProxyObj, materialProxyObj) def _look__set_propertyset_assigns_create_(self, geometryProxyObj): def addFnc_(geometryProxyObj_, propertysetObj_): _count = self._propertysetAssignStackObj.objectsCount() _keyString = geometryProxyObj_.bindPathString() if self._propertysetAssignStackObj._obj_stack__get_obj_exist_(_keyString): _propertysetAssignObj = self._propertysetAssignStackObj._obj_stack__get_obj_(_keyString) else: _propertysetAssignObj = self.CLS_mtx__look__propertyset_assign( self, propertysetObj_.nameString() ) # _materialAssignObj = self.CLS_mtx__look__material_assign( # self, u'material_assign_{}'.format(_count) # ) self._propertysetAssignStackObj._obj_stack__set_obj_add_(_keyString, _propertysetAssignObj) _propertysetAssignObj.setPropertyset(propertysetObj_) if _propertysetAssignObj.hasGeometry(geometryProxyObj_) is False: _propertysetAssignObj.addGeometry(geometryProxyObj_) bindPortsetNamespaceStr = geometryProxyObj.bindPortsetNamespaceString() propertysetObj = geometryProxyObj._geometry_proxy__set_propertyset_update_(bindPortsetNamespaceStr) if propertysetObj.hasPorts(): addFnc_(geometryProxyObj, propertysetObj) def _look__set_visibility_assigns_create_(self, geometryProxyObj): def addFnc_(geometryProxyObj_, portProxyObj_): _portObject = portProxyObj_.bindObject() _count = self._visibilityAssignStackObj.objectsCount() _keyString = _portObject.portpathString() if self._visibilityAssignStackObj._obj_stack__get_obj_exist_(_keyString): _visibilityObject = self._visibilityAssignStackObj._obj_stack__get_obj_(_keyString) else: _visibilityObject = self.CLS_mtx__look__visibility_assign( self, u'visibility_assign_{}'.format(_count) ) _visibilityObject.assignVisibility(_portObject) self._visibilityAssignStackObj._obj_stack__set_obj_add_(_keyString, _visibilityObject) if _visibilityObject.hasGeometry(geometryProxyObj_) is False: _visibilityObject.addGeometry(geometryProxyObj_) geometryVisibilities = geometryProxyObj.changedVisibilities() if geometryVisibilities: [addFnc_(geometryProxyObj, i) for i in geometryVisibilities] # **************************************************************************************************************** # def _look__get_geometry_namespace_str_(self): return self.nameString() def geometryNamespaceString(self): return self._look__get_geometry_namespace_str_() # **************************************************************************************************************** # def file(self): return self._fileObj # **************************************************************************************************************** # def name(self): return self._nameObj def nameString(self): return self._nameObj.toString() # **************************************************************************************************************** # def geometries(self): return self._geometryProxyStackObj.objects() def hasGeometries(self): return self._geometryProxyStackObj.hasObjects() def _look__set_geometry_proxy_add_(self, *args): geometryProxyObj = args[0] if geometryProxyObj.namespace().isRoot() is True: geometryNamespaceStr = self.geometryNamespaceString() geometryProxyObj.setNamespaceString(geometryNamespaceStr) # add Variant # geometryObj = geometryProxyObj.bindObject() # geometryObj.addVariantObject(self.nameString()) # add geometry self._geometryProxyStackObj.addObject(geometryProxyObj) def addGeometry(self, geometryProxyObj): self._look__set_geometry_proxy_add_(geometryProxyObj) def addGeometries(self, *args): if isinstance(args[0], (tuple, list)): [self.addGeometry(i) for i in list(args[0])] else: [self.addGeometry(i) for i in list(args)] def geometry(self, geometryString): return self._geometryProxyStackObj.object(geometryString) def hasGeometry(self, *args): return self._geometryProxyStackObj._obj_stack__get_obj_exist_(*args) # **************************************************************************************************************** # def materialAssigns(self): return self._materialAssignStackObj.objects() def propertysetAssigns(self): return self._propertysetAssignStackObj.objects() def visibilityAssigns(self): return self._visibilityAssignStackObj.objects() # **************************************************************************************************************** # def hasAssigns(self): return self.assigns() != [] def assigns(self): return self.materialAssigns() + self.propertysetAssigns() + self.visibilityAssigns() def _xmlElementAttaches_(self): lis = [] for assignObject in self.assigns(): for xmlObject in assignObject._xmlElementAttaches_(): if xmlObject is not None: if xmlObject not in lis: lis.append(xmlObject) return lis def _xml_obj__get_attribute_list_(self): return [ self._nameObj ] def _xml_obj__get_child_element_list_(self): self._look__set_assigns_create_() return self.assigns() def _xml_obj__get_sibling_element_list_(self): return self._xmlElementAttaches_() class Abs_MtxFile( Abs_MtxBasic, datObjAbs.Abs_DatXmlObj ): CLS_mtx__file__path = None CLS_mtx__file__version = None CLS_mtx__file__reference_stack = None CLS_mtx__file__reference = None CLS_mtx__file__look_stack = None CLS_mtx__file__look = None VAR_mtx__file__version = None def __init__(self, *args, **kwargs): pass def _initAbsMtxFile(self, *args): self._filepathObj = self.CLS_mtx__file__path(*args) self._versionObj = self.CLS_mtx__file__version(self.VAR_mtx__file__version) self._referenceStackObj = self.CLS_mtx__file__reference_stack() self._lookStackObj = self.CLS_mtx__file__look_stack(self) self._initAbsDatXmlObj() def _file__set_look_add_(self, *args): if args: _ = args[0] if isinstance(_, (str, unicode)): lookStr = _ lookObject = self.CLS_mtx__file__look(self, lookStr) elif isinstance(_, self.CLS_mtx__file__look): lookObject = _ else: raise TypeError else: lookObject = self.CLS_mtx__file__look(self, u'default_look') self._lookStackObj.addObject(lookObject) return lookObject def _file__set_reference_add_(self, *args): if self.CLS_mtx__file__reference is not None: referenceCls = self.CLS_mtx__file__reference else: referenceCls = self.__class__ if isinstance(args[0], (str, unicode)): fileObj = referenceCls(args[0]) elif isinstance(args[0], referenceCls): fileObj = args[0] else: fileObj = referenceCls(u'default') keyString = fileObj.fullpathFilename() self._referenceStackObj._obj_stack__set_obj_add_(keyString, fileObj) def filepath(self): return self._filepathObj def fullpathFilename(self): return self._filepathObj.toString() def version(self): return self._versionObj def versionString(self): return self._versionObj.toString() def addReference(self, fileObject): self._file__set_reference_add_(fileObject) def references(self): return self._referenceStackObj.objects() def reference(self, fileString): return self._referenceStackObj.object(fileString) def hasLook(self, lookStr): return self._lookStackObj._obj_stack__get_obj_exist_(lookStr) def addLook(self, *args): """ :param args: 1.str 2.instance of "Look" :return: """ return self._file__set_look_add_(*args) def looks(self): return self._lookStackObj.objects() def look(self, lookStr): return self._lookStackObj.object(lookStr) def lookIndex(self, *args): return self._lookStackObj._obj_stack__get_obj_index_(*args) def save(self): xmlDoc = self.__str__() bscMethods.OsFile.write( self.fullpathFilename(), xmlDoc ) def _xml_obj__get_attribute_list_(self): return [ self.version() ] def _xml_obj__get_child_element_list_(self): return self.references() + self.looks() class Abs_MtxReference(Abs_MtxFile): def _initAbsMtxReference(self, *args): self._initAbsMtxFile(*args) # xml ************************************************************************************************************ # def _xml_obj__get_attribute_list_(self): return [ self._filepathObj ] # ******************************************************************************************************************** # class Abs_MtxTrsLook(Abs_MtxBasic): CLS_mtx__trs_look__tgt_look = None CLS_mtx__trs_look__trs_geometry_proxy = None def _initAbsMtxTrsLook(self, *args): trsFileArg, tgtLookArg = args self._trsFileObj = trsFileArg tgtFileObj = trsFileArg.tgtFile() self._tgtLookObj = self.CLS_mtx__trs_look__tgt_look(tgtFileObj, tgtLookArg) def trsFile(self): return self._trsFileObj def tgtLook(self): return self._tgtLookObj def addSrcGeometry(self, srcNodepathStr): # geometry namespace = look name namespaceStr = self.tgtLook().nameString() trsGeometryProxyObj = self.CLS_mtx__trs_look__trs_geometry_proxy( srcNodepathStr, namespace=namespaceStr ) # target tgtGeometryProxyObj = trsGeometryProxyObj.tgtNodeProxy() if self.tgtLook().hasGeometry(tgtGeometryProxyObj) is False: self.tgtLook().addGeometry(tgtGeometryProxyObj) else: bscMethods.PyMessage.traceWarning( u'''Geometry "{}" is Exist.'''.format(tgtGeometryProxyObj.pathString()) ) def addSrcGeometries(self, *args): if isinstance(args[0], (list, tuple)): _ = args[0] else: _ = args [self.addSrcGeometry(i) for i in _] def _mtx__trs_look__set_material_assign_add_(self, *args): pass def addAssign(self, *args): self._mtx__trs_look__set_material_assign_add_(*args) def __str__(self): return self._tgtLookObj.__str__() # ******************************************************************************************************************** # class Abs_MtxTrsFile(Abs_MtxBasic): CLS_mtx__trs_file__tgt_file = None CLS_mtx__trs_file__trs_look = None IST_mtx__trs_file__trs_obj_queue = None def _initAbsMtxTrsFile(self, *args): fileString = args[0] self._tgtFileObj = self.CLS_mtx__trs_file__tgt_file(fileString) self._tgtFileObj.addReference( u'materialx/arnold/nodedefs.mtlx' ) def tgtFile(self): return self._tgtFileObj def addLook(self, lookStr): trsLookObj = self.CLS_mtx__trs_file__trs_look(self, lookStr) if self._tgtFileObj.hasLook(lookStr) is False: tgtLookObk = trsLookObj.tgtLook() self._tgtFileObj.addLook(tgtLookObk) else: bscMethods.PyMessage.traceWarning( u'''Look "{}" is Exist.'''.format(lookStr) ) return trsLookObj def tgtLook(self, lookStr): return self._tgtFileObj.look(lookStr) def tgtLooks(self): return self._tgtFileObj.looks() def save(self): for i in self.IST_mtx__trs_file__trs_obj_queue.nodes(): i._grh__trs_node__set_after_expressions_run_() self._tgtFileObj.save() bscMethods.PyMessage.traceResult( u'save file "{}"'.format( self._tgtFileObj.fullpathFilename() ) ) def __str__(self): for i in self.IST_mtx__trs_file__trs_obj_queue.nodes(): i._grh__trs_node__set_after_expressions_run_() return self._tgtFileObj.__str__()
el
0.255187
# coding:utf-8 # ******************************************************************************************************************** # # **************************************************************************************************************** # # property # port # **************************************************************************************************************** # # add parent first # **************************************************************************************************************** # # ******************************************************************************************************************** # # **************************************************************************************************************** # # **************************************************************************************************************** # # **************************************************************************************************************** # # ******************************************************************************************************************** # # raw **************************************************************************************************************** # # xml ************************************************************************************************************ # # xml ************************************************************************************************************ # # xml ************************************************************************************************************ # # xml ************************************************************************************************************ # # **************************************************************************************************************** # # **************************************************************************************************************** # # **************************************************************************************************************** # # **************************************************************************************************************** # # object set ********************************************************************************************************* # # **************************************************************************************************************** # # value ************************************************************************************************************** # # **************************************************************************************************************** # # ******************************************************************************************************************** # # xml ************************************************************************************************************ # # <... nodename="nodepath" member="parent portpath" channel="portname" /> # <... nodename = "nodepath" member = "portpath" /> # xml ************************************************************************************************************ # # port proxy ********************************************************************************************************* # # **************************************************************************************************************** # # xml ************************************************************************************************************ # # update shader's node graph first # node graph # xml ************************************************************************************************************ # # node graph ********************************************************************************************************* # # **************************************************************************************************************** # # xml ************************************************************************************************************ # # portset ************************************************************************************************************ # :return: str :param nameString: str :return: None # geometry collection # **************************************************************************************************************** # :return: str :param nameString: str :return: None :param geometryProxyObj: object of Geometry :return: :return: list(object or geometry, ...) :return: bool :return: list(str, ...) :return: list(str, ...) :param collectionObject: object of Collection :return: None :return: bool :return: list(object of Collection, ...) :return: list(str, ...) # assign ************************************************************************************************************* # # **************************************************************************************************************** # :return: str :param nameString: str :return: None # **************************************************************************************************************** # # **************************************************************************************************************** # :param geometryProxyObj: object of Geometry :return: None :return: list(object or geometry, ...) :return: bool :return: list(str, ...) :return: list(str, ...) # **************************************************************************************************************** # :param collectionObject: object of Collection :return: None :return: object of Collection :param tgtMaterialObj: object of MaterialProxy :return: :return: object of ShaderSet :param args: 1.str 2.instance of "Propertyset" :return: instance of "Propertyset" :return: object of Propertyset # xml ************************************************************************************************************ # # ******************************************************************************************************************** # # **************************************************************************************************************** # # # namespaceStr = self.nameString() # materialProxyObj = geometryProxyObj.inputNodeProxy(namespaceStr) # if materialProxyObj is not None: # addFnc_(geometryProxyObj, materialProxyObj) # _materialAssignObj = self.CLS_mtx__look__material_assign( # self, u'material_assign_{}'.format(_count) # ) # **************************************************************************************************************** # # **************************************************************************************************************** # # **************************************************************************************************************** # # **************************************************************************************************************** # # add Variant # geometryObj = geometryProxyObj.bindObject() # geometryObj.addVariantObject(self.nameString()) # add geometry # **************************************************************************************************************** # # **************************************************************************************************************** # :param args: 1.str 2.instance of "Look" :return: # xml ************************************************************************************************************ # # ******************************************************************************************************************** # # geometry namespace = look name # target Geometry "{}" is Exist. # ******************************************************************************************************************** # Look "{}" is Exist.
2.240978
2
lib/pyreadline/lineeditor/lineobj.py
dorcia592/mcplayeredit
46
6632956
<gh_stars>10-100 # -*- coding: utf-8 -*- #***************************************************************************** # Copyright (C) 2006 <NAME>. <<EMAIL>> # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #***************************************************************************** import re, operator, sys import wordmatcher import pyreadline.clipboard as clipboard from pyreadline.logger import log from pyreadline.unicode_helper import ensure_unicode kill_ring_to_clipboard = False #set to true to copy every addition to kill ring to clipboard class NotAWordError(IndexError): pass def quote_char(c): if ord(c) > 0: return c ############## Line positioner ######################## class LinePositioner(object): def __call__(self, line): NotImplementedError(u"Base class !!!") class NextChar(LinePositioner): def __call__(self, line): if line.point < len(line.line_buffer): return line.point + 1 else: return line.point NextChar = NextChar() class PrevChar(LinePositioner): def __call__(self, line): if line.point > 0: return line.point - 1 else: return line.point PrevChar = PrevChar() class NextWordStart(LinePositioner): def __call__(self, line): return line.next_start_segment(line.line_buffer, line.is_word_token)[line.point] NextWordStart = NextWordStart() class NextWordEnd(LinePositioner): def __call__(self, line): return line.next_end_segment(line.line_buffer, line.is_word_token)[line.point] NextWordEnd = NextWordEnd() class PrevWordStart(LinePositioner): def __call__(self, line): return line.prev_start_segment(line.line_buffer, line.is_word_token)[line.point] PrevWordStart = PrevWordStart() class WordStart(LinePositioner): def __call__(self, line): if line.is_word_token(line.get_line_text()[Point(line):Point(line) + 1]): if Point(line) > 0 and line.is_word_token(line.get_line_text()[Point(line) - 1:Point(line)]): return PrevWordStart(line) else: return line.point else: raise NotAWordError(u"Point is not in a word") WordStart = WordStart() class WordEnd(LinePositioner): def __call__(self, line): if line.is_word_token(line.get_line_text()[Point(line):Point(line) + 1]): if line.is_word_token(line.get_line_text()[Point(line) + 1:Point(line) + 2]): return NextWordEnd(line) else: return line.point else: raise NotAWordError(u"Point is not in a word") WordEnd = WordEnd() class PrevWordEnd(LinePositioner): def __call__(self, line): return line.prev_end_segment(line.line_buffer, line.is_word_token)[line.point] PrevWordEnd = PrevWordEnd() class PrevSpace(LinePositioner): def __call__(self, line): point = line.point if line[point - 1:point].get_line_text() == u" ": while point > 0 and line[point - 1:point].get_line_text() == u" ": point -= 1 while point > 0 and line[point - 1:point].get_line_text() != u" ": point -= 1 return point PrevSpace = PrevSpace() class StartOfLine(LinePositioner): def __call__(self, line): return 0 StartOfLine = StartOfLine() class EndOfLine(LinePositioner): def __call__(self, line): return len(line.line_buffer) EndOfLine = EndOfLine() class Point(LinePositioner): def __call__(self, line): return line.point Point = Point() class Mark(LinePositioner): def __call__(self, line): return line.mark k = Mark() all_positioners = [(value.__class__.__name__, value) for key, value in globals().items() if isinstance(value, LinePositioner)] all_positioners.sort() ############### LineSlice ################# class LineSlice(object): def __call__(self, line): NotImplementedError(u"Base class !!!") class CurrentWord(LineSlice): def __call__(self, line): return slice(WordStart(line), WordEnd(line), None) CurrentWord = CurrentWord() class NextWord(LineSlice): def __call__(self, line): work = TextLine(line) work.point = NextWordStart start = work.point stop = NextWordEnd(work) return slice(start, stop) NextWord = NextWord() class PrevWord(LineSlice): def __call__(self, line): work = TextLine(line) work.point = PrevWordEnd stop = work.point start = PrevWordStart(work) return slice(start, stop) PrevWord = PrevWord() class PointSlice(LineSlice): def __call__(self, line): return slice(Point(line), Point(line) + 1, None) PointSlice = PointSlice() ############### TextLine ###################### class TextLine(object): def __init__(self, txtstr, point = None, mark = None): self.line_buffer = [] self._point = 0 self.mark = -1 self.undo_stack = [] self.overwrite = False if isinstance(txtstr, TextLine): #copy self.line_buffer = txtstr.line_buffer[:] if point is None: self.point = txtstr.point else: self.point = point if mark is None: self.mark = txtstr.mark else: self.mark = mark else: self._insert_text(txtstr) if point is None: self.point = 0 else: self.point = point if mark is None: self.mark = -1 else: self.mark = mark self.is_word_token = wordmatcher.is_word_token self.next_start_segment = wordmatcher.next_start_segment self.next_end_segment = wordmatcher.next_end_segment self.prev_start_segment = wordmatcher.prev_start_segment self.prev_end_segment = wordmatcher.prev_end_segment def push_undo(self): ltext = self.get_line_text() if self.undo_stack and ltext == self.undo_stack[-1].get_line_text(): self.undo_stack[-1].point = self.point else: self.undo_stack.append(self.copy()) def pop_undo(self): if len(self.undo_stack) >= 2: self.undo_stack.pop() self.set_top_undo() self.undo_stack.pop() else: self.reset_line() self.undo_stack = [] def set_top_undo(self): if self.undo_stack: undo = self.undo_stack[-1] self.line_buffer = undo.line_buffer self.point = undo.point self.mark = undo.mark else: pass def __repr__(self): return u'TextLine("%s",point=%s,mark=%s)'%(self.line_buffer, self.point, self.mark) def copy(self): return self.__class__(self) def set_point(self,value): if isinstance(value, LinePositioner): value = value(self) assert (value <= len(self.line_buffer)) if value > len(self.line_buffer): value = len(self.line_buffer) self._point = value def get_point(self): return self._point point = property(get_point, set_point) def visible_line_width(self, position = Point): """Return the visible width of the text in line buffer up to position.""" extra_char_width = len([ None for c in self[:position].line_buffer if 0x2013 <= ord(c) <= 0xFFFD]) return len(self[:position].quoted_text()) + self[:position].line_buffer.count(u"\t")*7 + extra_char_width def quoted_text(self): quoted = [ quote_char(c) for c in self.line_buffer ] self.line_char_width = [ len(c) for c in quoted ] return u''.join(map(ensure_unicode, quoted)) def get_line_text(self): buf = self.line_buffer buf = map(ensure_unicode, buf) return u''.join(buf) def set_line(self, text, cursor = None): self.line_buffer = [ c for c in str(text) ] if cursor is None: self.point = len(self.line_buffer) else: self.point = cursor def reset_line(self): self.line_buffer = [] self.point = 0 def end_of_line(self): self.point = len(self.line_buffer) def _insert_text(self, text, argument=1): text = text * argument if self.overwrite: for c in text: #if self.point: self.line_buffer[self.point] = c self.point += 1 else: for c in text: self.line_buffer.insert(self.point, c) self.point += 1 def __getitem__(self, key): #Check if key is LineSlice, convert to regular slice #and continue processing if isinstance(key, LineSlice): key = key(self) if isinstance(key, slice): if key.step is None: pass else: raise Error if key.start is None: start = StartOfLine(self) elif isinstance(key.start,LinePositioner): start = key.start(self) else: start = key.start if key.stop is None: stop = EndOfLine(self) elif isinstance(key.stop, LinePositioner): stop = key.stop(self) else: stop = key.stop return self.__class__(self.line_buffer[start:stop], point=0) elif isinstance(key, LinePositioner): return self.line_buffer[key(self)] elif isinstance(key, tuple): raise IndexError(u"Cannot use step in line buffer indexing") #Multiple slice not allowed else: # return TextLine(self.line_buffer[key]) return self.line_buffer[key] def __delitem__(self, key): point = self.point if isinstance(key, LineSlice): key = key(self) if isinstance(key, slice): start = key.start stop = key.stop if isinstance(start, LinePositioner): start = start(self) elif start is None: start=0 if isinstance(stop, LinePositioner): stop = stop(self) elif stop is None: stop = EndOfLine(self) elif isinstance(key, LinePositioner): start = key(self) stop = start + 1 else: start = key stop = key + 1 prev = self.line_buffer[:start] rest = self.line_buffer[stop:] self.line_buffer = prev + rest if point > stop: self.point = point - (stop - start) elif point >= start and point <= stop: self.point = start def __setitem__(self, key, value): if isinstance(key, LineSlice): key = key(self) if isinstance(key, slice): start = key.start stop = key.stop elif isinstance(key, LinePositioner): start = key(self) stop = start + 1 else: start = key stop = key + 1 prev = self.line_buffer[:start] value = self.__class__(value).line_buffer rest = self.line_buffer[stop:] out = prev + value + rest if len(out) >= len(self): self.point = len(self) self.line_buffer = out def __len__(self): return len(self.line_buffer) def upper(self): self.line_buffer = [x.upper() for x in self.line_buffer] return self def lower(self): self.line_buffer = [x.lower() for x in self.line_buffer] return self def capitalize(self): self.set_line(self.get_line_text().capitalize(), self.point) return self def startswith(self, txt): return self.get_line_text().startswith(txt) def endswith(self, txt): return self.get_line_text().endswith(txt) def __contains__(self, txt): return txt in self.get_line_text() lines = [TextLine(u"abc"), TextLine(u"abc def"), TextLine(u"abc def ghi"), TextLine(u" abc def "), ] l = lines[2] l.point = 5 class ReadLineTextBuffer(TextLine): def __init__(self,txtstr, point = None, mark = None): super(ReadLineTextBuffer, self).__init__(txtstr, point, mark) self.enable_win32_clipboard = True self.selection_mark = -1 self.enable_selection = True self.kill_ring = [] def __repr__(self): return u'ReadLineTextBuffer'\ u'("%s",point=%s,mark=%s,selection_mark=%s)'%\ (self.line_buffer, self.point, self.mark,self.selection_mark) def insert_text(self, char, argument=1): self.delete_selection() self.selection_mark = -1 self._insert_text(char, argument) def to_clipboard(self): if self.enable_win32_clipboard: clipboard.set_clipboard_text(self.get_line_text()) ######### Movement def beginning_of_line(self): self.selection_mark = -1 self.point = StartOfLine def end_of_line(self): self.selection_mark = -1 self.point = EndOfLine def forward_char(self,argument = 1): if argument < 0: self.backward_char(-argument) self.selection_mark = -1 for x in range(argument): self.point = NextChar def backward_char(self, argument=1): if argument < 0: self.forward_char(-argument) self.selection_mark = -1 for x in range(argument): self.point = PrevChar def forward_word(self,argument=1): if argument<0: self.backward_word(-argument) self.selection_mark=-1 for x in range(argument): self.point = NextWordStart def backward_word(self, argument=1): if argument < 0: self.forward_word(-argument) self.selection_mark = -1 for x in range(argument): self.point = PrevWordStart def forward_word_end(self, argument=1): if argument < 0: self.backward_word_end(-argument) self.selection_mark = -1 for x in range(argument): self.point = NextWordEnd def backward_word_end(self, argument=1): if argument < 0: self.forward_word_end(-argument) self.selection_mark = -1 for x in range(argument): self.point = NextWordEnd ######### Movement select def beginning_of_line_extend_selection(self): if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point self.point = StartOfLine def end_of_line_extend_selection(self): if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point self.point = EndOfLine def forward_char_extend_selection(self,argument=1): if argument < 0: self.backward_char_extend_selection(-argument) if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point for x in range(argument): self.point = NextChar def backward_char_extend_selection(self, argument=1): if argument < 0: self.forward_char_extend_selection(-argument) if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point for x in range(argument): self.point = PrevChar def forward_word_extend_selection(self, argument=1): if argument < 0: self.backward_word_extend_selection(-argument) if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point for x in range(argument): self.point = NextWordStart def backward_word_extend_selection(self, argument=1): if argument < 0: self.forward_word_extend_selection(-argument) if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point for x in range(argument): self.point = PrevWordStart def forward_word_end_extend_selection(self, argument=1): if argument < 0: self.backward_word_end_extend_selection(-argument) if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point for x in range(argument): self.point = NextWordEnd def backward_word_end_extend_selection(self, argument=1): if argument < 0: self.forward_word_end_extend_selection(-argument) if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point for x in range(argument): self.point = PrevWordEnd ######### delete def delete_selection(self): if self.enable_selection and self.selection_mark >= 0: if self.selection_mark < self.point: del self[self.selection_mark:self.point] self.selection_mark = -1 else: del self[self.point:self.selection_mark] self.selection_mark = -1 return True else: self.selection_mark = -1 return False def delete_char(self, argument=1): if argument < 0: self.backward_delete_char(-argument) if self.delete_selection(): argument -= 1 for x in range(argument): del self[Point] def backward_delete_char(self, argument=1): if argument < 0: self.delete_char(-argument) if self.delete_selection(): argument -= 1 for x in range(argument): if self.point > 0: self.backward_char() self.delete_char() def forward_delete_word(self, argument=1): if argument < 0: self.backward_delete_word(-argument) if self.delete_selection(): argument -= 1 for x in range(argument): del self[Point:NextWordStart] def backward_delete_word(self, argument=1): if argument < 0: self.forward_delete_word(-argument) if self.delete_selection(): argument -= 1 for x in range(argument): del self[PrevWordStart:Point] def delete_current_word(self): if not self.delete_selection(): del self[CurrentWord] self.selection_mark =- 1 def delete_horizontal_space(self): if self[Point] in " \t": del self[PrevWordEnd:NextWordStart] self.selection_mark = -1 ######### Case def upcase_word(self): p = self.point try: self[CurrentWord] = self[CurrentWord].upper() self.point = p except NotAWordError: pass def downcase_word(self): p = self.point try: self[CurrentWord] = self[CurrentWord].lower() self.point = p except NotAWordError: pass def capitalize_word(self): p = self.point try: self[CurrentWord] = self[CurrentWord].capitalize() self.point = p except NotAWordError: pass ########### Transpose def transpose_chars(self): p2 = Point(self) if p2 == 0: return elif p2 == len(self): p2 = p2 - 1 p1 = p2 - 1 self[p2], self[p1] = self[p1], self[p2] self.point = p2 + 1 def transpose_words(self): word1 = TextLine(self) word2 = TextLine(self) if self.point == len(self): word2.point = PrevWordStart word1.point = PrevWordStart(word2) else: word1.point = PrevWordStart word2.point = NextWordStart stop1 = NextWordEnd(word1) stop2 = NextWordEnd(word2) start1 = word1.point start2 = word2.point self[start2:stop2] = word1[Point:NextWordEnd] self[start1:stop1] = word2[Point:NextWordEnd] self.point = stop2 ############ Kill def kill_line(self): self.add_to_kill_ring(self[self.point:]) del self.line_buffer[self.point:] def kill_whole_line(self): self.add_to_kill_ring(self[:]) del self[:] def backward_kill_line(self): del self[StartOfLine:Point] def unix_line_discard(self): del self[StartOfLine:Point] pass def kill_word(self): """Kills to next word ending""" del self[Point:NextWordEnd] def backward_kill_word(self): """Kills to next word ending""" if not self.delete_selection(): del self[PrevWordStart:Point] self.selection_mark = -1 def forward_kill_word(self): """Kills to next word ending""" if not self.delete_selection(): del self[Point:NextWordEnd] self.selection_mark = -1 def unix_word_rubout(self): if not self.delete_selection(): del self[PrevSpace:Point] self.selection_mark = -1 def kill_region(self): pass def copy_region_as_kill(self): pass def copy_backward_word(self): pass def copy_forward_word(self): pass def yank(self): self.paste_from_kill_ring() def yank_pop(self): pass ############## Mark def set_mark(self): self.mark = self.point def exchange_point_and_mark(self): pass def copy_region_to_clipboard(self): # () u'''Copy the text in the region to the windows clipboard.''' if self.enable_win32_clipboard: mark = min(self.mark, len(self.line_buffer)) cursor = min(self.point, len(self.line_buffer)) if self.mark == -1: return begin = min(cursor, mark) end = max(cursor, mark) toclipboard = u"".join(self.line_buffer[begin:end]) clipboard.SetClipboardText(toclipboard) def copy_selection_to_clipboard(self): # () u'''Copy the text in the region to the windows clipboard.''' if self.enable_win32_clipboard and self.enable_selection and self.selection_mark >= 0: selection_mark = min(self.selection_mark,len(self.line_buffer)) cursor = min(self.point,len(self.line_buffer)) if self.selection_mark == -1: return begin = min(cursor, selection_mark) end = max(cursor, selection_mark) toclipboard = u"".join(self.line_buffer[begin:end]) clipboard.SetClipboardText(toclipboard) def cut_selection_to_clipboard(self): # () self.copy_selection_to_clipboard() self.delete_selection() ############## Paste ############## Kill ring def add_to_kill_ring(self,txt): self.kill_ring = [txt] if kill_ring_to_clipboard: clipboard.SetClipboardText(txt.get_line_text()) def paste_from_kill_ring(self): if self.kill_ring: self.insert_text(self.kill_ring[0]) ################################################################## q = ReadLineTextBuffer(u"asff asFArw ewrWErhg", point=8) q = TextLine(u"asff asFArw ewrWErhg", point=8) def show_pos(buff, pos, chr = u"."): l = len(buff.line_buffer) def choice(bool): if bool: return chr else: return u" " return u"".join([choice(pos==idx) for idx in range(l + 1)]) def test_positioner(buff, points, positioner): print (u" %s "%positioner.__class__.__name__).center(40, u"-") buffstr = buff.line_buffer print u'"%s"'%(buffstr) for point in points: b = TextLine(buff, point = point) out=[u" "] * (len(buffstr) + 1) pos = positioner(b) if pos == point: out[pos] = u"&" else: out[point] = u"." out[pos] = u"^" print u'"%s"'%(u"".join(out)) if __name__ == "__main__": print u'%-15s "%s"'%(u"Position", q.get_line_text()) print u'%-15s "%s"'%(u"Point", show_pos(q, q.point)) for name, positioner in all_positioners: pos = positioner(q) [] print u'%-15s "%s"'%(name, show_pos(q, pos, u"^")) l = ReadLineTextBuffer(u"kjjk asads asad") l.point = EndOfLine
# -*- coding: utf-8 -*- #***************************************************************************** # Copyright (C) 2006 <NAME>. <<EMAIL>> # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #***************************************************************************** import re, operator, sys import wordmatcher import pyreadline.clipboard as clipboard from pyreadline.logger import log from pyreadline.unicode_helper import ensure_unicode kill_ring_to_clipboard = False #set to true to copy every addition to kill ring to clipboard class NotAWordError(IndexError): pass def quote_char(c): if ord(c) > 0: return c ############## Line positioner ######################## class LinePositioner(object): def __call__(self, line): NotImplementedError(u"Base class !!!") class NextChar(LinePositioner): def __call__(self, line): if line.point < len(line.line_buffer): return line.point + 1 else: return line.point NextChar = NextChar() class PrevChar(LinePositioner): def __call__(self, line): if line.point > 0: return line.point - 1 else: return line.point PrevChar = PrevChar() class NextWordStart(LinePositioner): def __call__(self, line): return line.next_start_segment(line.line_buffer, line.is_word_token)[line.point] NextWordStart = NextWordStart() class NextWordEnd(LinePositioner): def __call__(self, line): return line.next_end_segment(line.line_buffer, line.is_word_token)[line.point] NextWordEnd = NextWordEnd() class PrevWordStart(LinePositioner): def __call__(self, line): return line.prev_start_segment(line.line_buffer, line.is_word_token)[line.point] PrevWordStart = PrevWordStart() class WordStart(LinePositioner): def __call__(self, line): if line.is_word_token(line.get_line_text()[Point(line):Point(line) + 1]): if Point(line) > 0 and line.is_word_token(line.get_line_text()[Point(line) - 1:Point(line)]): return PrevWordStart(line) else: return line.point else: raise NotAWordError(u"Point is not in a word") WordStart = WordStart() class WordEnd(LinePositioner): def __call__(self, line): if line.is_word_token(line.get_line_text()[Point(line):Point(line) + 1]): if line.is_word_token(line.get_line_text()[Point(line) + 1:Point(line) + 2]): return NextWordEnd(line) else: return line.point else: raise NotAWordError(u"Point is not in a word") WordEnd = WordEnd() class PrevWordEnd(LinePositioner): def __call__(self, line): return line.prev_end_segment(line.line_buffer, line.is_word_token)[line.point] PrevWordEnd = PrevWordEnd() class PrevSpace(LinePositioner): def __call__(self, line): point = line.point if line[point - 1:point].get_line_text() == u" ": while point > 0 and line[point - 1:point].get_line_text() == u" ": point -= 1 while point > 0 and line[point - 1:point].get_line_text() != u" ": point -= 1 return point PrevSpace = PrevSpace() class StartOfLine(LinePositioner): def __call__(self, line): return 0 StartOfLine = StartOfLine() class EndOfLine(LinePositioner): def __call__(self, line): return len(line.line_buffer) EndOfLine = EndOfLine() class Point(LinePositioner): def __call__(self, line): return line.point Point = Point() class Mark(LinePositioner): def __call__(self, line): return line.mark k = Mark() all_positioners = [(value.__class__.__name__, value) for key, value in globals().items() if isinstance(value, LinePositioner)] all_positioners.sort() ############### LineSlice ################# class LineSlice(object): def __call__(self, line): NotImplementedError(u"Base class !!!") class CurrentWord(LineSlice): def __call__(self, line): return slice(WordStart(line), WordEnd(line), None) CurrentWord = CurrentWord() class NextWord(LineSlice): def __call__(self, line): work = TextLine(line) work.point = NextWordStart start = work.point stop = NextWordEnd(work) return slice(start, stop) NextWord = NextWord() class PrevWord(LineSlice): def __call__(self, line): work = TextLine(line) work.point = PrevWordEnd stop = work.point start = PrevWordStart(work) return slice(start, stop) PrevWord = PrevWord() class PointSlice(LineSlice): def __call__(self, line): return slice(Point(line), Point(line) + 1, None) PointSlice = PointSlice() ############### TextLine ###################### class TextLine(object): def __init__(self, txtstr, point = None, mark = None): self.line_buffer = [] self._point = 0 self.mark = -1 self.undo_stack = [] self.overwrite = False if isinstance(txtstr, TextLine): #copy self.line_buffer = txtstr.line_buffer[:] if point is None: self.point = txtstr.point else: self.point = point if mark is None: self.mark = txtstr.mark else: self.mark = mark else: self._insert_text(txtstr) if point is None: self.point = 0 else: self.point = point if mark is None: self.mark = -1 else: self.mark = mark self.is_word_token = wordmatcher.is_word_token self.next_start_segment = wordmatcher.next_start_segment self.next_end_segment = wordmatcher.next_end_segment self.prev_start_segment = wordmatcher.prev_start_segment self.prev_end_segment = wordmatcher.prev_end_segment def push_undo(self): ltext = self.get_line_text() if self.undo_stack and ltext == self.undo_stack[-1].get_line_text(): self.undo_stack[-1].point = self.point else: self.undo_stack.append(self.copy()) def pop_undo(self): if len(self.undo_stack) >= 2: self.undo_stack.pop() self.set_top_undo() self.undo_stack.pop() else: self.reset_line() self.undo_stack = [] def set_top_undo(self): if self.undo_stack: undo = self.undo_stack[-1] self.line_buffer = undo.line_buffer self.point = undo.point self.mark = undo.mark else: pass def __repr__(self): return u'TextLine("%s",point=%s,mark=%s)'%(self.line_buffer, self.point, self.mark) def copy(self): return self.__class__(self) def set_point(self,value): if isinstance(value, LinePositioner): value = value(self) assert (value <= len(self.line_buffer)) if value > len(self.line_buffer): value = len(self.line_buffer) self._point = value def get_point(self): return self._point point = property(get_point, set_point) def visible_line_width(self, position = Point): """Return the visible width of the text in line buffer up to position.""" extra_char_width = len([ None for c in self[:position].line_buffer if 0x2013 <= ord(c) <= 0xFFFD]) return len(self[:position].quoted_text()) + self[:position].line_buffer.count(u"\t")*7 + extra_char_width def quoted_text(self): quoted = [ quote_char(c) for c in self.line_buffer ] self.line_char_width = [ len(c) for c in quoted ] return u''.join(map(ensure_unicode, quoted)) def get_line_text(self): buf = self.line_buffer buf = map(ensure_unicode, buf) return u''.join(buf) def set_line(self, text, cursor = None): self.line_buffer = [ c for c in str(text) ] if cursor is None: self.point = len(self.line_buffer) else: self.point = cursor def reset_line(self): self.line_buffer = [] self.point = 0 def end_of_line(self): self.point = len(self.line_buffer) def _insert_text(self, text, argument=1): text = text * argument if self.overwrite: for c in text: #if self.point: self.line_buffer[self.point] = c self.point += 1 else: for c in text: self.line_buffer.insert(self.point, c) self.point += 1 def __getitem__(self, key): #Check if key is LineSlice, convert to regular slice #and continue processing if isinstance(key, LineSlice): key = key(self) if isinstance(key, slice): if key.step is None: pass else: raise Error if key.start is None: start = StartOfLine(self) elif isinstance(key.start,LinePositioner): start = key.start(self) else: start = key.start if key.stop is None: stop = EndOfLine(self) elif isinstance(key.stop, LinePositioner): stop = key.stop(self) else: stop = key.stop return self.__class__(self.line_buffer[start:stop], point=0) elif isinstance(key, LinePositioner): return self.line_buffer[key(self)] elif isinstance(key, tuple): raise IndexError(u"Cannot use step in line buffer indexing") #Multiple slice not allowed else: # return TextLine(self.line_buffer[key]) return self.line_buffer[key] def __delitem__(self, key): point = self.point if isinstance(key, LineSlice): key = key(self) if isinstance(key, slice): start = key.start stop = key.stop if isinstance(start, LinePositioner): start = start(self) elif start is None: start=0 if isinstance(stop, LinePositioner): stop = stop(self) elif stop is None: stop = EndOfLine(self) elif isinstance(key, LinePositioner): start = key(self) stop = start + 1 else: start = key stop = key + 1 prev = self.line_buffer[:start] rest = self.line_buffer[stop:] self.line_buffer = prev + rest if point > stop: self.point = point - (stop - start) elif point >= start and point <= stop: self.point = start def __setitem__(self, key, value): if isinstance(key, LineSlice): key = key(self) if isinstance(key, slice): start = key.start stop = key.stop elif isinstance(key, LinePositioner): start = key(self) stop = start + 1 else: start = key stop = key + 1 prev = self.line_buffer[:start] value = self.__class__(value).line_buffer rest = self.line_buffer[stop:] out = prev + value + rest if len(out) >= len(self): self.point = len(self) self.line_buffer = out def __len__(self): return len(self.line_buffer) def upper(self): self.line_buffer = [x.upper() for x in self.line_buffer] return self def lower(self): self.line_buffer = [x.lower() for x in self.line_buffer] return self def capitalize(self): self.set_line(self.get_line_text().capitalize(), self.point) return self def startswith(self, txt): return self.get_line_text().startswith(txt) def endswith(self, txt): return self.get_line_text().endswith(txt) def __contains__(self, txt): return txt in self.get_line_text() lines = [TextLine(u"abc"), TextLine(u"abc def"), TextLine(u"abc def ghi"), TextLine(u" abc def "), ] l = lines[2] l.point = 5 class ReadLineTextBuffer(TextLine): def __init__(self,txtstr, point = None, mark = None): super(ReadLineTextBuffer, self).__init__(txtstr, point, mark) self.enable_win32_clipboard = True self.selection_mark = -1 self.enable_selection = True self.kill_ring = [] def __repr__(self): return u'ReadLineTextBuffer'\ u'("%s",point=%s,mark=%s,selection_mark=%s)'%\ (self.line_buffer, self.point, self.mark,self.selection_mark) def insert_text(self, char, argument=1): self.delete_selection() self.selection_mark = -1 self._insert_text(char, argument) def to_clipboard(self): if self.enable_win32_clipboard: clipboard.set_clipboard_text(self.get_line_text()) ######### Movement def beginning_of_line(self): self.selection_mark = -1 self.point = StartOfLine def end_of_line(self): self.selection_mark = -1 self.point = EndOfLine def forward_char(self,argument = 1): if argument < 0: self.backward_char(-argument) self.selection_mark = -1 for x in range(argument): self.point = NextChar def backward_char(self, argument=1): if argument < 0: self.forward_char(-argument) self.selection_mark = -1 for x in range(argument): self.point = PrevChar def forward_word(self,argument=1): if argument<0: self.backward_word(-argument) self.selection_mark=-1 for x in range(argument): self.point = NextWordStart def backward_word(self, argument=1): if argument < 0: self.forward_word(-argument) self.selection_mark = -1 for x in range(argument): self.point = PrevWordStart def forward_word_end(self, argument=1): if argument < 0: self.backward_word_end(-argument) self.selection_mark = -1 for x in range(argument): self.point = NextWordEnd def backward_word_end(self, argument=1): if argument < 0: self.forward_word_end(-argument) self.selection_mark = -1 for x in range(argument): self.point = NextWordEnd ######### Movement select def beginning_of_line_extend_selection(self): if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point self.point = StartOfLine def end_of_line_extend_selection(self): if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point self.point = EndOfLine def forward_char_extend_selection(self,argument=1): if argument < 0: self.backward_char_extend_selection(-argument) if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point for x in range(argument): self.point = NextChar def backward_char_extend_selection(self, argument=1): if argument < 0: self.forward_char_extend_selection(-argument) if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point for x in range(argument): self.point = PrevChar def forward_word_extend_selection(self, argument=1): if argument < 0: self.backward_word_extend_selection(-argument) if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point for x in range(argument): self.point = NextWordStart def backward_word_extend_selection(self, argument=1): if argument < 0: self.forward_word_extend_selection(-argument) if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point for x in range(argument): self.point = PrevWordStart def forward_word_end_extend_selection(self, argument=1): if argument < 0: self.backward_word_end_extend_selection(-argument) if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point for x in range(argument): self.point = NextWordEnd def backward_word_end_extend_selection(self, argument=1): if argument < 0: self.forward_word_end_extend_selection(-argument) if self.enable_selection and self.selection_mark < 0: self.selection_mark = self.point for x in range(argument): self.point = PrevWordEnd ######### delete def delete_selection(self): if self.enable_selection and self.selection_mark >= 0: if self.selection_mark < self.point: del self[self.selection_mark:self.point] self.selection_mark = -1 else: del self[self.point:self.selection_mark] self.selection_mark = -1 return True else: self.selection_mark = -1 return False def delete_char(self, argument=1): if argument < 0: self.backward_delete_char(-argument) if self.delete_selection(): argument -= 1 for x in range(argument): del self[Point] def backward_delete_char(self, argument=1): if argument < 0: self.delete_char(-argument) if self.delete_selection(): argument -= 1 for x in range(argument): if self.point > 0: self.backward_char() self.delete_char() def forward_delete_word(self, argument=1): if argument < 0: self.backward_delete_word(-argument) if self.delete_selection(): argument -= 1 for x in range(argument): del self[Point:NextWordStart] def backward_delete_word(self, argument=1): if argument < 0: self.forward_delete_word(-argument) if self.delete_selection(): argument -= 1 for x in range(argument): del self[PrevWordStart:Point] def delete_current_word(self): if not self.delete_selection(): del self[CurrentWord] self.selection_mark =- 1 def delete_horizontal_space(self): if self[Point] in " \t": del self[PrevWordEnd:NextWordStart] self.selection_mark = -1 ######### Case def upcase_word(self): p = self.point try: self[CurrentWord] = self[CurrentWord].upper() self.point = p except NotAWordError: pass def downcase_word(self): p = self.point try: self[CurrentWord] = self[CurrentWord].lower() self.point = p except NotAWordError: pass def capitalize_word(self): p = self.point try: self[CurrentWord] = self[CurrentWord].capitalize() self.point = p except NotAWordError: pass ########### Transpose def transpose_chars(self): p2 = Point(self) if p2 == 0: return elif p2 == len(self): p2 = p2 - 1 p1 = p2 - 1 self[p2], self[p1] = self[p1], self[p2] self.point = p2 + 1 def transpose_words(self): word1 = TextLine(self) word2 = TextLine(self) if self.point == len(self): word2.point = PrevWordStart word1.point = PrevWordStart(word2) else: word1.point = PrevWordStart word2.point = NextWordStart stop1 = NextWordEnd(word1) stop2 = NextWordEnd(word2) start1 = word1.point start2 = word2.point self[start2:stop2] = word1[Point:NextWordEnd] self[start1:stop1] = word2[Point:NextWordEnd] self.point = stop2 ############ Kill def kill_line(self): self.add_to_kill_ring(self[self.point:]) del self.line_buffer[self.point:] def kill_whole_line(self): self.add_to_kill_ring(self[:]) del self[:] def backward_kill_line(self): del self[StartOfLine:Point] def unix_line_discard(self): del self[StartOfLine:Point] pass def kill_word(self): """Kills to next word ending""" del self[Point:NextWordEnd] def backward_kill_word(self): """Kills to next word ending""" if not self.delete_selection(): del self[PrevWordStart:Point] self.selection_mark = -1 def forward_kill_word(self): """Kills to next word ending""" if not self.delete_selection(): del self[Point:NextWordEnd] self.selection_mark = -1 def unix_word_rubout(self): if not self.delete_selection(): del self[PrevSpace:Point] self.selection_mark = -1 def kill_region(self): pass def copy_region_as_kill(self): pass def copy_backward_word(self): pass def copy_forward_word(self): pass def yank(self): self.paste_from_kill_ring() def yank_pop(self): pass ############## Mark def set_mark(self): self.mark = self.point def exchange_point_and_mark(self): pass def copy_region_to_clipboard(self): # () u'''Copy the text in the region to the windows clipboard.''' if self.enable_win32_clipboard: mark = min(self.mark, len(self.line_buffer)) cursor = min(self.point, len(self.line_buffer)) if self.mark == -1: return begin = min(cursor, mark) end = max(cursor, mark) toclipboard = u"".join(self.line_buffer[begin:end]) clipboard.SetClipboardText(toclipboard) def copy_selection_to_clipboard(self): # () u'''Copy the text in the region to the windows clipboard.''' if self.enable_win32_clipboard and self.enable_selection and self.selection_mark >= 0: selection_mark = min(self.selection_mark,len(self.line_buffer)) cursor = min(self.point,len(self.line_buffer)) if self.selection_mark == -1: return begin = min(cursor, selection_mark) end = max(cursor, selection_mark) toclipboard = u"".join(self.line_buffer[begin:end]) clipboard.SetClipboardText(toclipboard) def cut_selection_to_clipboard(self): # () self.copy_selection_to_clipboard() self.delete_selection() ############## Paste ############## Kill ring def add_to_kill_ring(self,txt): self.kill_ring = [txt] if kill_ring_to_clipboard: clipboard.SetClipboardText(txt.get_line_text()) def paste_from_kill_ring(self): if self.kill_ring: self.insert_text(self.kill_ring[0]) ################################################################## q = ReadLineTextBuffer(u"asff asFArw ewrWErhg", point=8) q = TextLine(u"asff asFArw ewrWErhg", point=8) def show_pos(buff, pos, chr = u"."): l = len(buff.line_buffer) def choice(bool): if bool: return chr else: return u" " return u"".join([choice(pos==idx) for idx in range(l + 1)]) def test_positioner(buff, points, positioner): print (u" %s "%positioner.__class__.__name__).center(40, u"-") buffstr = buff.line_buffer print u'"%s"'%(buffstr) for point in points: b = TextLine(buff, point = point) out=[u" "] * (len(buffstr) + 1) pos = positioner(b) if pos == point: out[pos] = u"&" else: out[point] = u"." out[pos] = u"^" print u'"%s"'%(u"".join(out)) if __name__ == "__main__": print u'%-15s "%s"'%(u"Position", q.get_line_text()) print u'%-15s "%s"'%(u"Point", show_pos(q, q.point)) for name, positioner in all_positioners: pos = positioner(q) [] print u'%-15s "%s"'%(name, show_pos(q, pos, u"^")) l = ReadLineTextBuffer(u"kjjk asads asad") l.point = EndOfLine
en
0.354081
# -*- coding: utf-8 -*- #***************************************************************************** # Copyright (C) 2006 <NAME>. <<EMAIL>> # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #***************************************************************************** #set to true to copy every addition to kill ring to clipboard ############## Line positioner ######################## ############### LineSlice ################# ############### TextLine ###################### #copy Return the visible width of the text in line buffer up to position. #if self.point: #Check if key is LineSlice, convert to regular slice #and continue processing #Multiple slice not allowed # return TextLine(self.line_buffer[key]) ######### Movement ######### Movement select ######### delete ######### Case ########### Transpose ############ Kill Kills to next word ending Kills to next word ending Kills to next word ending ############## Mark # () Copy the text in the region to the windows clipboard. # () Copy the text in the region to the windows clipboard. # () ############## Paste ############## Kill ring ##################################################################
2.459875
2
config.py
golnazads/export_service
4
6632957
<reponame>golnazads/export_service # must be here for adsmutils to override it using env vars # but if left empty (resolving to False) it won't be used SERVICE_TOKEN = None # configuration for accessing solr db # these values can be overwritten by local_config values # maximum number of records that can be fetched by bigquery is for now 2000 # this can be overwritten to become smaller but it cannot become larger # cutoff to use query vs bigquery is 100, anything equal and lower calls query, otherwise bigquery is called EXPORT_SOLR_BIGQUERY_URL = "https://api.adsabs.harvard.edu/v1/search/bigquery" EXPORT_SERVICE_MAX_RECORDS_SOLR_BIGQUERY = 2000 EXPORT_SOLR_QUERY_URL = "https://api.adsabs.harvard.edu/v1/search/query" EXPORT_SERVICE_MAX_RECORDS_SOLR_QUERY = 100 # these are used for linkout links EXPORT_SERVICE_FROM_BBB_URL = 'https://ui.adsabs.harvard.edu/abs' EXPORT_SERVICE_RESOLVE_URL = "https://ui.adsabs.harvard.edu/link_gateway" # added to the end of bibTex EXPORT_SERVICE_ADS_NOTES = 'Provided by the SAO/NASA Astrophysics Data System' # sort specified by user when they want the service to keep the same order they have specified # going to be useful when used through the API # not giong to be implemented from the UI EXPORT_SERVICE_NO_SORT_SOLR = 'no sort' # Journal Abbreviations used in the ADS BibTeX entries # From http://adsabs.harvard.edu/abs_doc/aas_macros.html # Journal name TeX macro EXPORT_SERVICE_AASTEX_JOURNAL_MACRO = [ ['AJ', r'\aj'], ['ApJ', r'\apj'], ['AcA', r'\actaa'], ['ARA&A', r'\araa'], ['ApJL', r'\apjl'], ['ApJS', r'\apjs'], ['ApOpt', r'\ao'], ['Ap&SS', r'\apss'], ['A&A', r'\aap'], ['A&ARv', r'\aapr'], ['A&AS', r'\aaps'], ['AZh', r'\azh'], ['BAAS', r'\baas'], ['ChA&A', r'\caa'], ['ChJAA', r'\cjaa'], ['Icar', r'\icarus'], ['JCAP', r'\jcap'], ['JRASC', r'\jrasc'], ['MmRAS', r'\memras'], ['MNRAS', r'\mnras'], ['NewA', r'\na'], ['NewAR', r'\nar'], ['PhRvA', r'\pra'], ['PhRvB', r'\prb'], ['PhRvC', r'\prc'], ['PhRvD', r'\prd'], ['PhRvE', r'\pre'], ['PhRvL', r'\prl'], ['PASA', r'\pasa'], ['PASP', r'\pasp'], ['PASJ', r'\pasj'], ['RMxAA', r'\rmxaa'], ['QJRAS', r'\qjras'], ['S&T', r'\skytel'], ['SoPh', r'\solphys'], ['SvA', r'\sovast'], ['SSRv', r'\ssr'], ['ZA', r'\zap'], ['Natur', r'\nat'], ['IAUC', r'\iaucirc'], ['ApL', r'\aplett'], ['ASPRv', r'\apspr'], ['BAN', r'\bain'], ['FCPh', r'\fcp'], ['GeCoA', r'\gca'], ['GeoRL', r'\grl'], ['JChPh', r'\jcp'], ['JGR', r'\jgr'], ['JQSRT', r'\jqsrt'], ['MmSAI', r'\memsai'], ['NuPhA', r'\nphysa'], ['PhR', r'\physrep'], ['PhyS', r'\physscr'], ['P&SS', r'\planss'], ['SPIE', r'\procspie'], ['JAVSO', r'\jaavso'], ['PSJ', r'\psj'], ['M&PS', r'\maps'], ['AAS', r'\aas'], ['DPS', r'\dps'], ] # For SoPh format: # First element is the journal abbreviation to be output, # second one is the bibstem to which it applies. EXPORT_SERVICE_SOPH_JOURNAL_ABBREVIATION = { 'A&A..': 'Astron. Astroph.', 'ApJ..': 'Astrophys. J.', 'SoPh.': 'Solar Phys.', 'GeoRL': 'Geophys. Res. Lett.', 'JGRA.': 'J.Geophys. Res. A', 'JGRB.': 'J.Geophys. Res. B', 'JGRC.': 'J.Geophys. Res. C', 'JGRD.': 'J.Geophys. Res. D', 'JGRE.': 'J.Geophys. Res. E', } # Testing Bibcode for GET EXPORT_SERVICE_TEST_BIBCODE_GET = 'TEST..BIBCODE..GET.'
# must be here for adsmutils to override it using env vars # but if left empty (resolving to False) it won't be used SERVICE_TOKEN = None # configuration for accessing solr db # these values can be overwritten by local_config values # maximum number of records that can be fetched by bigquery is for now 2000 # this can be overwritten to become smaller but it cannot become larger # cutoff to use query vs bigquery is 100, anything equal and lower calls query, otherwise bigquery is called EXPORT_SOLR_BIGQUERY_URL = "https://api.adsabs.harvard.edu/v1/search/bigquery" EXPORT_SERVICE_MAX_RECORDS_SOLR_BIGQUERY = 2000 EXPORT_SOLR_QUERY_URL = "https://api.adsabs.harvard.edu/v1/search/query" EXPORT_SERVICE_MAX_RECORDS_SOLR_QUERY = 100 # these are used for linkout links EXPORT_SERVICE_FROM_BBB_URL = 'https://ui.adsabs.harvard.edu/abs' EXPORT_SERVICE_RESOLVE_URL = "https://ui.adsabs.harvard.edu/link_gateway" # added to the end of bibTex EXPORT_SERVICE_ADS_NOTES = 'Provided by the SAO/NASA Astrophysics Data System' # sort specified by user when they want the service to keep the same order they have specified # going to be useful when used through the API # not giong to be implemented from the UI EXPORT_SERVICE_NO_SORT_SOLR = 'no sort' # Journal Abbreviations used in the ADS BibTeX entries # From http://adsabs.harvard.edu/abs_doc/aas_macros.html # Journal name TeX macro EXPORT_SERVICE_AASTEX_JOURNAL_MACRO = [ ['AJ', r'\aj'], ['ApJ', r'\apj'], ['AcA', r'\actaa'], ['ARA&A', r'\araa'], ['ApJL', r'\apjl'], ['ApJS', r'\apjs'], ['ApOpt', r'\ao'], ['Ap&SS', r'\apss'], ['A&A', r'\aap'], ['A&ARv', r'\aapr'], ['A&AS', r'\aaps'], ['AZh', r'\azh'], ['BAAS', r'\baas'], ['ChA&A', r'\caa'], ['ChJAA', r'\cjaa'], ['Icar', r'\icarus'], ['JCAP', r'\jcap'], ['JRASC', r'\jrasc'], ['MmRAS', r'\memras'], ['MNRAS', r'\mnras'], ['NewA', r'\na'], ['NewAR', r'\nar'], ['PhRvA', r'\pra'], ['PhRvB', r'\prb'], ['PhRvC', r'\prc'], ['PhRvD', r'\prd'], ['PhRvE', r'\pre'], ['PhRvL', r'\prl'], ['PASA', r'\pasa'], ['PASP', r'\pasp'], ['PASJ', r'\pasj'], ['RMxAA', r'\rmxaa'], ['QJRAS', r'\qjras'], ['S&T', r'\skytel'], ['SoPh', r'\solphys'], ['SvA', r'\sovast'], ['SSRv', r'\ssr'], ['ZA', r'\zap'], ['Natur', r'\nat'], ['IAUC', r'\iaucirc'], ['ApL', r'\aplett'], ['ASPRv', r'\apspr'], ['BAN', r'\bain'], ['FCPh', r'\fcp'], ['GeCoA', r'\gca'], ['GeoRL', r'\grl'], ['JChPh', r'\jcp'], ['JGR', r'\jgr'], ['JQSRT', r'\jqsrt'], ['MmSAI', r'\memsai'], ['NuPhA', r'\nphysa'], ['PhR', r'\physrep'], ['PhyS', r'\physscr'], ['P&SS', r'\planss'], ['SPIE', r'\procspie'], ['JAVSO', r'\jaavso'], ['PSJ', r'\psj'], ['M&PS', r'\maps'], ['AAS', r'\aas'], ['DPS', r'\dps'], ] # For SoPh format: # First element is the journal abbreviation to be output, # second one is the bibstem to which it applies. EXPORT_SERVICE_SOPH_JOURNAL_ABBREVIATION = { 'A&A..': 'Astron. Astroph.', 'ApJ..': 'Astrophys. J.', 'SoPh.': 'Solar Phys.', 'GeoRL': 'Geophys. Res. Lett.', 'JGRA.': 'J.Geophys. Res. A', 'JGRB.': 'J.Geophys. Res. B', 'JGRC.': 'J.Geophys. Res. C', 'JGRD.': 'J.Geophys. Res. D', 'JGRE.': 'J.Geophys. Res. E', } # Testing Bibcode for GET EXPORT_SERVICE_TEST_BIBCODE_GET = 'TEST..BIBCODE..GET.'
en
0.869372
# must be here for adsmutils to override it using env vars # but if left empty (resolving to False) it won't be used # configuration for accessing solr db # these values can be overwritten by local_config values # maximum number of records that can be fetched by bigquery is for now 2000 # this can be overwritten to become smaller but it cannot become larger # cutoff to use query vs bigquery is 100, anything equal and lower calls query, otherwise bigquery is called # these are used for linkout links # added to the end of bibTex # sort specified by user when they want the service to keep the same order they have specified # going to be useful when used through the API # not giong to be implemented from the UI # Journal Abbreviations used in the ADS BibTeX entries # From http://adsabs.harvard.edu/abs_doc/aas_macros.html # Journal name TeX macro # For SoPh format: # First element is the journal abbreviation to be output, # second one is the bibstem to which it applies. # Testing Bibcode for GET
1.784021
2
src/utils.py
anoir2/amazon-braket-community-detection
5
6632958
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import os import shutil from urllib.request import urlopen from zipfile import ZipFile from io import BytesIO def download_graphs(graph_url, data_dir = "./graph_data"): """ Download graph .zip files from web URL :param graph_url: dict, with a format of {'graph_name': 'url'} :param data_dir: str, the directory path to store graph data """ if not os.path.exists(data_dir): os.makedirs(data_dir) print("Created ./graph_data directory in local machine to store graph data.") for graph_name in graph_url.keys(): url = graph_url[graph_name] with urlopen(url) as zr: with ZipFile(BytesIO(zr.read())) as zf: zf.extractall(data_dir) def clean_graph_data(graph_files, data_dir = "./graph_data"): """ Clean graph data by removing header lines :param graph_files: dict, with a format of {'graph_name': {'file': str, 'lines_to_skip': int}} :param data_dir: str, the directory path to graph data """ for graph_name in graph_files.keys(): # create a subfolder for each graph and save its file with header lines removed graph_folder = os.path.join(data_dir, graph_name) if not os.path.exists(graph_folder): os.makedirs(graph_folder) raw_file = os.path.join(data_dir, graph_files[graph_name]['file']) new_file = os.path.join(graph_folder, graph_files[graph_name]['file']) with open(raw_file, 'r') as f_raw: data = f_raw.read().splitlines(True) with open(new_file, 'w') as f_new: f_new.writelines(data[graph_files[graph_name]['lines_to_skip']:])
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 import os import shutil from urllib.request import urlopen from zipfile import ZipFile from io import BytesIO def download_graphs(graph_url, data_dir = "./graph_data"): """ Download graph .zip files from web URL :param graph_url: dict, with a format of {'graph_name': 'url'} :param data_dir: str, the directory path to store graph data """ if not os.path.exists(data_dir): os.makedirs(data_dir) print("Created ./graph_data directory in local machine to store graph data.") for graph_name in graph_url.keys(): url = graph_url[graph_name] with urlopen(url) as zr: with ZipFile(BytesIO(zr.read())) as zf: zf.extractall(data_dir) def clean_graph_data(graph_files, data_dir = "./graph_data"): """ Clean graph data by removing header lines :param graph_files: dict, with a format of {'graph_name': {'file': str, 'lines_to_skip': int}} :param data_dir: str, the directory path to graph data """ for graph_name in graph_files.keys(): # create a subfolder for each graph and save its file with header lines removed graph_folder = os.path.join(data_dir, graph_name) if not os.path.exists(graph_folder): os.makedirs(graph_folder) raw_file = os.path.join(data_dir, graph_files[graph_name]['file']) new_file = os.path.join(graph_folder, graph_files[graph_name]['file']) with open(raw_file, 'r') as f_raw: data = f_raw.read().splitlines(True) with open(new_file, 'w') as f_new: f_new.writelines(data[graph_files[graph_name]['lines_to_skip']:])
en
0.744812
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 Download graph .zip files from web URL :param graph_url: dict, with a format of {'graph_name': 'url'} :param data_dir: str, the directory path to store graph data Clean graph data by removing header lines :param graph_files: dict, with a format of {'graph_name': {'file': str, 'lines_to_skip': int}} :param data_dir: str, the directory path to graph data # create a subfolder for each graph and save its file with header lines removed
3.34155
3
src/leetcodepython/tree/construct_string_binary_tree_606.py
zhangyu345293721/leetcode
90
6632959
<filename>src/leetcodepython/tree/construct_string_binary_tree_606.py ''' /** * This is the solution of No. 606 problem in the book <i>Coding Interviews: Questions, Analysis & Solutions</i>, * the website of the problem is as follow: * https://leetcode-cn.com/problems/construct-string-from-binary-tree * The description of problem is as follow: * ========================================================================================================== * 你需要采用前序遍历的方式,将一个二叉树转换成一个由括号和整数组成的字符串。 * <p> * 空节点则用一对空括号 "()" 表示。而且你需要省略所有不影响字符串与原始二叉树之间的一对一映射关系的空括号对。 * <p> * 示例 1: * <p> * 输入: 二叉树: [1,2,3,4] * 1 * / \ * 2 3 * / * 4 * <p> * 输出: "1(2(4))(3)" * <p> * 解释: 原本将是“1(2(4)())(3())”, * 在你省略所有不必要的空括号对之后, * 它将是“1(2(4))(3)”。 * 示例 2: * <p> * 输入: 二叉树: [1,2,3,null,4] * 1 * / \ * 2 3 * \ * 4 * <p> * 输出: "1(2()(4))(3)" * <p> * 解释: 和第一个示例相似, * 除了我们不能省略第一个对括号来中断输入和输出之间的一对一映射关系。 * <p> * 来源:力扣(LeetCode) * 链接:https://leetcode-cn.com/problems/construct-string-from-binary-tree * 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 * ========================================================================================================== * * @author zhangyu (<EMAIL>) */ ''' from tree.tree_node import TreeNode class Solution: def tree_2_str(self, root: TreeNode) -> str: ''' 将树转成字符串 Args: root: 二叉树 Returns: 字符串str ''' if root == None: return '' left = str(self.tree_2_str(root.left)) right = str(self.tree_2_str(root.right)) left = '' if len(left) < 1 and len(right) < 1 else '(' + str(left) + ')' right = '' if len(right) < 1 else '(' + str(right) + ')' return str(root.val) + left + right if __name__ == '__main__': nums = [1, 2, 3, 4] root = TreeNode.create_binary_tree_array(nums) solution = Solution() result = solution.tree_2_str(root) print(result) assert result == '1(2(4))(3)'
<filename>src/leetcodepython/tree/construct_string_binary_tree_606.py ''' /** * This is the solution of No. 606 problem in the book <i>Coding Interviews: Questions, Analysis & Solutions</i>, * the website of the problem is as follow: * https://leetcode-cn.com/problems/construct-string-from-binary-tree * The description of problem is as follow: * ========================================================================================================== * 你需要采用前序遍历的方式,将一个二叉树转换成一个由括号和整数组成的字符串。 * <p> * 空节点则用一对空括号 "()" 表示。而且你需要省略所有不影响字符串与原始二叉树之间的一对一映射关系的空括号对。 * <p> * 示例 1: * <p> * 输入: 二叉树: [1,2,3,4] * 1 * / \ * 2 3 * / * 4 * <p> * 输出: "1(2(4))(3)" * <p> * 解释: 原本将是“1(2(4)())(3())”, * 在你省略所有不必要的空括号对之后, * 它将是“1(2(4))(3)”。 * 示例 2: * <p> * 输入: 二叉树: [1,2,3,null,4] * 1 * / \ * 2 3 * \ * 4 * <p> * 输出: "1(2()(4))(3)" * <p> * 解释: 和第一个示例相似, * 除了我们不能省略第一个对括号来中断输入和输出之间的一对一映射关系。 * <p> * 来源:力扣(LeetCode) * 链接:https://leetcode-cn.com/problems/construct-string-from-binary-tree * 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 * ========================================================================================================== * * @author zhangyu (<EMAIL>) */ ''' from tree.tree_node import TreeNode class Solution: def tree_2_str(self, root: TreeNode) -> str: ''' 将树转成字符串 Args: root: 二叉树 Returns: 字符串str ''' if root == None: return '' left = str(self.tree_2_str(root.left)) right = str(self.tree_2_str(root.right)) left = '' if len(left) < 1 and len(right) < 1 else '(' + str(left) + ')' right = '' if len(right) < 1 else '(' + str(right) + ')' return str(root.val) + left + right if __name__ == '__main__': nums = [1, 2, 3, 4] root = TreeNode.create_binary_tree_array(nums) solution = Solution() result = solution.tree_2_str(root) print(result) assert result == '1(2(4))(3)'
zh
0.587825
/** * This is the solution of No. 606 problem in the book <i>Coding Interviews: Questions, Analysis & Solutions</i>, * the website of the problem is as follow: * https://leetcode-cn.com/problems/construct-string-from-binary-tree * The description of problem is as follow: * ========================================================================================================== * 你需要采用前序遍历的方式,将一个二叉树转换成一个由括号和整数组成的字符串。 * <p> * 空节点则用一对空括号 "()" 表示。而且你需要省略所有不影响字符串与原始二叉树之间的一对一映射关系的空括号对。 * <p> * 示例 1: * <p> * 输入: 二叉树: [1,2,3,4] * 1 * / \ * 2 3 * / * 4 * <p> * 输出: "1(2(4))(3)" * <p> * 解释: 原本将是“1(2(4)())(3())”, * 在你省略所有不必要的空括号对之后, * 它将是“1(2(4))(3)”。 * 示例 2: * <p> * 输入: 二叉树: [1,2,3,null,4] * 1 * / \ * 2 3 * \ * 4 * <p> * 输出: "1(2()(4))(3)" * <p> * 解释: 和第一个示例相似, * 除了我们不能省略第一个对括号来中断输入和输出之间的一对一映射关系。 * <p> * 来源:力扣(LeetCode) * 链接:https://leetcode-cn.com/problems/construct-string-from-binary-tree * 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 * ========================================================================================================== * * @author zhangyu (<EMAIL>) */ 将树转成字符串 Args: root: 二叉树 Returns: 字符串str
3.252639
3
coffin/contrib/loader.py
kazmiruk/coffin
1
6632960
# -*- coding: utf-8 -*- """ A Django template loader wrapper for Coffin that intercepts requests for "*.jinja" templates, rendering them with Coffin instead of Django templates. Usage: TEMPLATE_LOADERS = ( 'coffin.contrib.loader.AppLoader', 'coffin.contrib.loader.FileSystemLoader', ) """ from os.path import splitext from coffin.common import env from django.conf import settings from django.template.loaders import app_directories, filesystem JINJA2_DEFAULT_TEMPLATE_EXTENSION = getattr(settings, 'JINJA2_DEFAULT_TEMPLATE_EXTENSION', ('.jinja',)) if isinstance(JINJA2_DEFAULT_TEMPLATE_EXTENSION, basestring): JINJA2_DEFAULT_TEMPLATE_EXTENSION = (JINJA2_DEFAULT_TEMPLATE_EXTENSION,) class LoaderMixin(object): is_usable = True def load_template(self, template_name, template_dirs=None): extension = splitext(template_name)[1] if not extension in JINJA2_DEFAULT_TEMPLATE_EXTENSION: return super(LoaderMixin, self).load_template(template_name, template_dirs) template = env.get_template(template_name) return template, template.filename class FileSystemLoader(LoaderMixin, filesystem.Loader): pass class AppLoader(LoaderMixin, app_directories.Loader): pass
# -*- coding: utf-8 -*- """ A Django template loader wrapper for Coffin that intercepts requests for "*.jinja" templates, rendering them with Coffin instead of Django templates. Usage: TEMPLATE_LOADERS = ( 'coffin.contrib.loader.AppLoader', 'coffin.contrib.loader.FileSystemLoader', ) """ from os.path import splitext from coffin.common import env from django.conf import settings from django.template.loaders import app_directories, filesystem JINJA2_DEFAULT_TEMPLATE_EXTENSION = getattr(settings, 'JINJA2_DEFAULT_TEMPLATE_EXTENSION', ('.jinja',)) if isinstance(JINJA2_DEFAULT_TEMPLATE_EXTENSION, basestring): JINJA2_DEFAULT_TEMPLATE_EXTENSION = (JINJA2_DEFAULT_TEMPLATE_EXTENSION,) class LoaderMixin(object): is_usable = True def load_template(self, template_name, template_dirs=None): extension = splitext(template_name)[1] if not extension in JINJA2_DEFAULT_TEMPLATE_EXTENSION: return super(LoaderMixin, self).load_template(template_name, template_dirs) template = env.get_template(template_name) return template, template.filename class FileSystemLoader(LoaderMixin, filesystem.Loader): pass class AppLoader(LoaderMixin, app_directories.Loader): pass
en
0.328094
# -*- coding: utf-8 -*- A Django template loader wrapper for Coffin that intercepts requests for "*.jinja" templates, rendering them with Coffin instead of Django templates. Usage: TEMPLATE_LOADERS = ( 'coffin.contrib.loader.AppLoader', 'coffin.contrib.loader.FileSystemLoader', )
2.483237
2
src/ai.py
linhusp/gomoku-alphabeta
4
6632961
<gh_stars>1-10 import piece import numpy as np from eval_fn import evaluation_state def get_best_move(state, depth, is_max_state): values = state.values best_value = is_max_state and -9999 or 9999 best_move = (-1, -1) pieces = len(values[values != piece.EMPTY]) if pieces == 0: return first_move(state) if pieces == 1: return second_move(state) top_moves = get_top_moves(state, 10, is_max_state) for move_n_value in top_moves: move = move_n_value[0] value = minimax(state.next(move), -10e5, 10e5, depth - 1, not is_max_state) if ((is_max_state and value > best_value) or (not is_max_state and value < best_value)): best_value = value best_move = move # print(best_move, best_value) if best_move[0] == -1 and best_move[1] == -1: return top_moves[0] return best_move, best_value def get_top_moves(state, n, is_max_state): color = state.color top_moves = [] for move in state.legal_moves(): evaluation = evaluation_state(state.next(move), color) top_moves.append((move, evaluation)) return sorted(top_moves, key=lambda x: x[1], reverse=is_max_state)[:n] def minimax(state, alpha, beta, depth, is_max_state): if depth == 0 or state.is_terminal(): return evaluation_state(state, -state.color) if is_max_state: value = -9999 for move in state.legal_moves(): value = max( value, minimax(state.next(move), alpha, beta, depth - 1, False) ) alpha = max(value, alpha) if alpha >= beta: break return value else: value = 9999 for move in state.legal_moves(): value = min( value, minimax(state.next(move), alpha, beta, depth - 1, True) ) beta = min(value, beta) if alpha >= beta: break return value def first_move(state): x = state.size // 2 return np.random.choice((x - 1, x, x + 1), 2), 1 def second_move(state): i, j = state.last_move size = state.size i2 = i <= size // 2 and 1 or -1 j2 = j <= size // 2 and 1 or -1 return (i + i2, j + j2), 2
import piece import numpy as np from eval_fn import evaluation_state def get_best_move(state, depth, is_max_state): values = state.values best_value = is_max_state and -9999 or 9999 best_move = (-1, -1) pieces = len(values[values != piece.EMPTY]) if pieces == 0: return first_move(state) if pieces == 1: return second_move(state) top_moves = get_top_moves(state, 10, is_max_state) for move_n_value in top_moves: move = move_n_value[0] value = minimax(state.next(move), -10e5, 10e5, depth - 1, not is_max_state) if ((is_max_state and value > best_value) or (not is_max_state and value < best_value)): best_value = value best_move = move # print(best_move, best_value) if best_move[0] == -1 and best_move[1] == -1: return top_moves[0] return best_move, best_value def get_top_moves(state, n, is_max_state): color = state.color top_moves = [] for move in state.legal_moves(): evaluation = evaluation_state(state.next(move), color) top_moves.append((move, evaluation)) return sorted(top_moves, key=lambda x: x[1], reverse=is_max_state)[:n] def minimax(state, alpha, beta, depth, is_max_state): if depth == 0 or state.is_terminal(): return evaluation_state(state, -state.color) if is_max_state: value = -9999 for move in state.legal_moves(): value = max( value, minimax(state.next(move), alpha, beta, depth - 1, False) ) alpha = max(value, alpha) if alpha >= beta: break return value else: value = 9999 for move in state.legal_moves(): value = min( value, minimax(state.next(move), alpha, beta, depth - 1, True) ) beta = min(value, beta) if alpha >= beta: break return value def first_move(state): x = state.size // 2 return np.random.choice((x - 1, x, x + 1), 2), 1 def second_move(state): i, j = state.last_move size = state.size i2 = i <= size // 2 and 1 or -1 j2 = j <= size // 2 and 1 or -1 return (i + i2, j + j2), 2
my
0.060438
# print(best_move, best_value)
3.129751
3
spec/behavior_pyspec_localization.py
jyotijaya/pyspec
1
6632962
<reponame>jyotijaya/pyspec # -*- coding: utf-8 -*- import sys, os parent_path = os.path.split(os.path.abspath("."))[0] if parent_path not in sys.path: sys.path.insert(0, parent_path) from pyspec import * from pyspec.mockobject import * import pyspec.framework import pyspec.embedded.setting as setting class Behavior_Setting_for_Localization(object): @context(group=1) def a_default_config(self): self.config = setting.PySpecConfig() @spec(group=1) def should_have_english_locale_as_default(self): About(self.config.language.code).should_equal('en') @spec(group=1) def should_have_supported_language(self): About(self.config.language.support).should_include('en') About(self.config.language.support).should_include('ja') @context(group=2) def a_config_that_was_set_valid_language(self): self.config = setting.PySpecConfig() self.config.language.set_language('ja') @spec(group=2) def can_accept_it(self): About(self.config.language.code).should_equal('ja') @context(group=3) def a_config_that_was_set_invalid_language(self): self.config = setting.PySpecConfig() # pyspec can't accept tlhIngan Hol! self.config.language.set_language('tlh') @spec(group=3) def should_not_change_language(self): About(self.config.language.code).should_equal('en') @context(group=4) def should_equal_fail_message_in_english(self): config = setting.PySpecConfig() self.english_message = config.language.get('should_equal', 'fail', variable_name='age', expected_value='27', actual_value='29') @spec(group=4) def pyspec_can_generete_it(self): About(self.english_message).should_equal('age should equal 27, but was 29.') if __name__ == "__main__": run_test()
# -*- coding: utf-8 -*- import sys, os parent_path = os.path.split(os.path.abspath("."))[0] if parent_path not in sys.path: sys.path.insert(0, parent_path) from pyspec import * from pyspec.mockobject import * import pyspec.framework import pyspec.embedded.setting as setting class Behavior_Setting_for_Localization(object): @context(group=1) def a_default_config(self): self.config = setting.PySpecConfig() @spec(group=1) def should_have_english_locale_as_default(self): About(self.config.language.code).should_equal('en') @spec(group=1) def should_have_supported_language(self): About(self.config.language.support).should_include('en') About(self.config.language.support).should_include('ja') @context(group=2) def a_config_that_was_set_valid_language(self): self.config = setting.PySpecConfig() self.config.language.set_language('ja') @spec(group=2) def can_accept_it(self): About(self.config.language.code).should_equal('ja') @context(group=3) def a_config_that_was_set_invalid_language(self): self.config = setting.PySpecConfig() # pyspec can't accept tlhIngan Hol! self.config.language.set_language('tlh') @spec(group=3) def should_not_change_language(self): About(self.config.language.code).should_equal('en') @context(group=4) def should_equal_fail_message_in_english(self): config = setting.PySpecConfig() self.english_message = config.language.get('should_equal', 'fail', variable_name='age', expected_value='27', actual_value='29') @spec(group=4) def pyspec_can_generete_it(self): About(self.english_message).should_equal('age should equal 27, but was 29.') if __name__ == "__main__": run_test()
en
0.795189
# -*- coding: utf-8 -*- # pyspec can't accept tlhIngan Hol!
2.169847
2
heekscnc/nc/hpgl3d_read.py
JohnyEngine/CNC
0
6632963
<filename>heekscnc/nc/hpgl3d_read.py<gh_stars>0 import num_reader import sys import math class Parser(num_reader.NumReader): def __init__(self, writer): num_reader.NumReader.__init__(self, writer) self.x = 0 self.y = 0 self.z = 10000 self.f = 0 self.units_to_mm = 0.01 def ParseV(self): self.line_index = self.line_index + 1 f = self.get_number() if len(f) > 0: self.f = float(f) self.add_word("prep") def ParseZ(self): self.line_index = self.line_index + 1 x = self.get_number() if len(x) > 0: y = self.get_number() if len(y) > 0: z = self.get_number() if len(z) > 0: if self.f > 40: color = "rapid" else: color = "feed" self.add_word(color) self.writer.begin_path(color) self.writer.add_line(int(x) * self.units_to_mm, int(y) * self.units_to_mm, int(z) * self.units_to_mm) self.writer.end_path() self.x = int(x) self.y = int(y) self.z = int(z) def ParseFromFirstLetter(self, c): if c == 'Z': self.ParseZ() elif c == 'V': self.ParseV()
<filename>heekscnc/nc/hpgl3d_read.py<gh_stars>0 import num_reader import sys import math class Parser(num_reader.NumReader): def __init__(self, writer): num_reader.NumReader.__init__(self, writer) self.x = 0 self.y = 0 self.z = 10000 self.f = 0 self.units_to_mm = 0.01 def ParseV(self): self.line_index = self.line_index + 1 f = self.get_number() if len(f) > 0: self.f = float(f) self.add_word("prep") def ParseZ(self): self.line_index = self.line_index + 1 x = self.get_number() if len(x) > 0: y = self.get_number() if len(y) > 0: z = self.get_number() if len(z) > 0: if self.f > 40: color = "rapid" else: color = "feed" self.add_word(color) self.writer.begin_path(color) self.writer.add_line(int(x) * self.units_to_mm, int(y) * self.units_to_mm, int(z) * self.units_to_mm) self.writer.end_path() self.x = int(x) self.y = int(y) self.z = int(z) def ParseFromFirstLetter(self, c): if c == 'Z': self.ParseZ() elif c == 'V': self.ParseV()
none
1
2.953043
3
mdpo/io.py
dingyifei/mdpo
8
6632964
"""mdpo I/O utilities.""" import glob import hashlib import os import re def filter_paths(filepaths, ignore_paths=[]): """Filters a list of paths removing those defined in other list of paths. The paths to filter can be defined in the list of paths to ignore in several forms: - The same string. - Only the file name. - Only their direct directory name. - Their direct directory full path. Args: filepaths (list): Set of source paths to filter. ignore_paths (list): Paths that must not be included in the response. Returns: list: Non filtered paths ordered alphabetically. """ response = [] for filepath in filepaths: # ignore by filename if os.path.basename(filepath) in ignore_paths: continue # ignore by dirname if os.path.basename(os.path.dirname(filepath)) in ignore_paths: continue # ignore by filepath if filepath in ignore_paths: continue # ignore by dirpath (relative or absolute) if (os.sep).join(filepath.split(os.sep)[:-1]) in ignore_paths: continue response.append(filepath) response.sort() return response def to_file_content_if_is_file(value, encoding='utf-8'): """Check if the value passed is a file path or string content. If is a file, reads its content and returns it, otherwise returns the string passed as is. Args: value (str): Value to check if is a filepath or content. encoding (str): Expected file encoding, if is a file. Returns: str: File content if ``value`` is an existing file or ``value`` as is. """ if os.path.isfile(value): with open(value, encoding=encoding) as f: value = f.read() return value def to_glob_or_content(value): """Check if the value passed is a glob or is string content. Args: value (str): Value to check if is a glob or content. Returns: list: Two values being the first a boolean that indicates if ``value`` is a glob (``True``) or content (``False``) and the second value is the content (parsed as glob is first value is ``True``). """ try: parsed = glob.glob(value) except re.error: # some strings like '[s-m]' will produce # 're.error: bad character range ... at position' return (False, value) if not parsed: # assumes it is content return (False, value) return (True, parsed) def filehash(filepath): """Compute the hash of a file. Args: filepath (str): Path to the file. """ hasher = hashlib.md5() with open(filepath, 'rb') as f: hasher.update(f.read()) return hasher.hexdigest() def save_file_checking_file_changed(filepath, content, encoding='utf-8'): """Save a file checking if the content has changed. Args: pofile (:py:class:`polib.POFile`): POFile to save. po_filepath (str): Path to the new file to save in. Returns: bool: If the PO file content has been changed. """ if not os.path.isfile(filepath): with open(filepath, 'w', encoding=encoding) as f: f.write(content) return True pre_hash = filehash(filepath) with open(filepath, 'w', encoding=encoding) as f: f.write(content) post_hash = filehash(filepath) return pre_hash != post_hash
"""mdpo I/O utilities.""" import glob import hashlib import os import re def filter_paths(filepaths, ignore_paths=[]): """Filters a list of paths removing those defined in other list of paths. The paths to filter can be defined in the list of paths to ignore in several forms: - The same string. - Only the file name. - Only their direct directory name. - Their direct directory full path. Args: filepaths (list): Set of source paths to filter. ignore_paths (list): Paths that must not be included in the response. Returns: list: Non filtered paths ordered alphabetically. """ response = [] for filepath in filepaths: # ignore by filename if os.path.basename(filepath) in ignore_paths: continue # ignore by dirname if os.path.basename(os.path.dirname(filepath)) in ignore_paths: continue # ignore by filepath if filepath in ignore_paths: continue # ignore by dirpath (relative or absolute) if (os.sep).join(filepath.split(os.sep)[:-1]) in ignore_paths: continue response.append(filepath) response.sort() return response def to_file_content_if_is_file(value, encoding='utf-8'): """Check if the value passed is a file path or string content. If is a file, reads its content and returns it, otherwise returns the string passed as is. Args: value (str): Value to check if is a filepath or content. encoding (str): Expected file encoding, if is a file. Returns: str: File content if ``value`` is an existing file or ``value`` as is. """ if os.path.isfile(value): with open(value, encoding=encoding) as f: value = f.read() return value def to_glob_or_content(value): """Check if the value passed is a glob or is string content. Args: value (str): Value to check if is a glob or content. Returns: list: Two values being the first a boolean that indicates if ``value`` is a glob (``True``) or content (``False``) and the second value is the content (parsed as glob is first value is ``True``). """ try: parsed = glob.glob(value) except re.error: # some strings like '[s-m]' will produce # 're.error: bad character range ... at position' return (False, value) if not parsed: # assumes it is content return (False, value) return (True, parsed) def filehash(filepath): """Compute the hash of a file. Args: filepath (str): Path to the file. """ hasher = hashlib.md5() with open(filepath, 'rb') as f: hasher.update(f.read()) return hasher.hexdigest() def save_file_checking_file_changed(filepath, content, encoding='utf-8'): """Save a file checking if the content has changed. Args: pofile (:py:class:`polib.POFile`): POFile to save. po_filepath (str): Path to the new file to save in. Returns: bool: If the PO file content has been changed. """ if not os.path.isfile(filepath): with open(filepath, 'w', encoding=encoding) as f: f.write(content) return True pre_hash = filehash(filepath) with open(filepath, 'w', encoding=encoding) as f: f.write(content) post_hash = filehash(filepath) return pre_hash != post_hash
en
0.814168
mdpo I/O utilities. Filters a list of paths removing those defined in other list of paths. The paths to filter can be defined in the list of paths to ignore in several forms: - The same string. - Only the file name. - Only their direct directory name. - Their direct directory full path. Args: filepaths (list): Set of source paths to filter. ignore_paths (list): Paths that must not be included in the response. Returns: list: Non filtered paths ordered alphabetically. # ignore by filename # ignore by dirname # ignore by filepath # ignore by dirpath (relative or absolute) Check if the value passed is a file path or string content. If is a file, reads its content and returns it, otherwise returns the string passed as is. Args: value (str): Value to check if is a filepath or content. encoding (str): Expected file encoding, if is a file. Returns: str: File content if ``value`` is an existing file or ``value`` as is. Check if the value passed is a glob or is string content. Args: value (str): Value to check if is a glob or content. Returns: list: Two values being the first a boolean that indicates if ``value`` is a glob (``True``) or content (``False``) and the second value is the content (parsed as glob is first value is ``True``). # some strings like '[s-m]' will produce # 're.error: bad character range ... at position' # assumes it is content Compute the hash of a file. Args: filepath (str): Path to the file. Save a file checking if the content has changed. Args: pofile (:py:class:`polib.POFile`): POFile to save. po_filepath (str): Path to the new file to save in. Returns: bool: If the PO file content has been changed.
4.001352
4
pytorch_widedeep/models/tabular/transformers/tab_perceiver.py
TangleSpace/pytorch-widedeep
0
6632965
import torch import einops from torch import nn from pytorch_widedeep.wdtypes import * # noqa: F403 from pytorch_widedeep.models.tabular.mlp._layers import MLP from pytorch_widedeep.models.tabular._base_tabular_model import ( BaseTabularModelWithAttention, ) from pytorch_widedeep.models.tabular.transformers._encoders import ( PerceiverEncoder, ) class TabPerceiver(BaseTabularModelWithAttention): r"""Defines an adaptation of a `Perceiver model <https://arxiv.org/abs/2103.03206>`_ that can be used as the ``deeptabular`` component of a Wide & Deep model or independently by itself. Parameters ---------- column_idx: Dict Dict containing the index of the columns that will be passed through the model. Required to slice the tensors. e.g. {'education': 0, 'relationship': 1, 'workclass': 2, ...} cat_embed_input: List, Optional, default = None List of Tuples with the column name and number of unique values for each categorical component e.g. [(education, 11), ...] cat_embed_dropout: float, default = 0.1 Categorical embeddings dropout use_cat_bias: bool, default = False, Boolean indicating if bias will be used for the categorical embeddings cat_embed_activation: Optional, str, default = None, Activation function for the categorical embeddings, if any. `'tanh'`, `'relu'`, `'leaky_relu'` and `'gelu'` are supported. full_embed_dropout: bool, default = False Boolean indicating if an entire embedding (i.e. the representation of one column) will be dropped in the batch. See: :obj:`pytorch_widedeep.models.transformers._layers.FullEmbeddingDropout`. If ``full_embed_dropout = True``, ``cat_embed_dropout`` is ignored. shared_embed: bool, default = False The idea behind ``shared_embed`` is described in the Appendix A in the `TabTransformer paper <https://arxiv.org/abs/2012.06678>`_: `'The goal of having column embedding is to enable the model to distinguish the classes in one column from those in the other columns'`. In other words, the idea is to let the model learn which column is embedded at the time. add_shared_embed: bool, default = False, The two embedding sharing strategies are: 1) add the shared embeddings to the column embeddings or 2) to replace the first ``frac_shared_embed`` with the shared embeddings. See :obj:`pytorch_widedeep.models.transformers._layers.SharedEmbeddings` frac_shared_embed: float, default = 0.25 The fraction of embeddings that will be shared (if ``add_shared_embed = False``) by all the different categories for one particular column. continuous_cols: List, Optional, default = None List with the name of the numeric (aka continuous) columns cont_norm_layer: str, default = "batchnorm" Type of normalization layer applied to the continuous features. Options are: 'layernorm', 'batchnorm' or None. cont_embed_dropout: float, default = 0.1, Continuous embeddings dropout use_cont_bias: bool, default = True, Boolean indicating if bias will be used for the continuous embeddings cont_embed_activation: str, default = None Activation function to be applied to the continuous embeddings, if any. `'tanh'`, `'relu'`, `'leaky_relu'` and `'gelu'` are supported. input_dim: int, default = 32 The so-called *dimension of the model*. Is the number of embeddings used to encode the categorical and/or continuous columns. n_cross_attns: int, default = 1 Number of times each perceiver block will cross attend to the input data (i.e. number of cross attention components per perceiver block). This should normally be 1. However, in the paper they describe some architectures (normally computer vision-related problems) where the Perceiver attends multiple times to the input array. Therefore, maybe multiple cross attention to the input array is also useful in some cases for tabular data n_cross_attn_heads: int, default = 4 Number of attention heads for the cross attention component n_latents: int, default = 16 Number of latents. This is the *N* parameter in the paper. As indicated in the paper, this number should be significantly lower than *M* (the number of columns in the dataset). Setting *N* closer to *M* defies the main purpose of the Perceiver, which is to overcome the transformer quadratic bottleneck latent_dim: int, default = 128 Latent dimension. n_latent_heads: int, default = 4 Number of attention heads per Latent Transformer n_latent_blocks: int, default = 4 Number of transformer encoder blocks (normalised MHA + normalised FF) per Latent Transformer n_perceiver_blocks: int, default = 4 Number of Perceiver blocks defined as [Cross Attention + Latent Transformer] share_weights: Boolean, default = False Boolean indicating if the weights will be shared between Perceiver blocks attn_dropout: float, default = 0.2 Dropout that will be applied to the Multi-Head Attention layers ff_dropout: float, default = 0.1 Dropout that will be applied to the FeedForward network transformer_activation: str, default = "gelu" Transformer Encoder activation function. `'tanh'`, `'relu'`, `'leaky_relu'`, `'gelu'`, `'geglu'` and `'reglu'` are supported mlp_hidden_dims: List, Optional, default = None MLP hidden dimensions. If not provided it will default to ``[l, 4*l, 2*l]`` where ``l`` is the MLP's input dimension mlp_activation: str, default = "relu" MLP activation function. `'tanh'`, `'relu'`, `'leaky_relu'` and `'gelu'` are supported mlp_dropout: float, default = 0.1 Dropout that will be applied to the final MLP mlp_batchnorm: bool, default = False Boolean indicating whether or not to apply batch normalization to the dense layers mlp_batchnorm_last: bool, default = False Boolean indicating whether or not to apply batch normalization to the last of the dense layers mlp_linear_first: bool, default = False Boolean indicating whether the order of the operations in the dense layer. If ``True: [LIN -> ACT -> BN -> DP]``. If ``False: [BN -> DP -> LIN -> ACT]`` Attributes ---------- cat_and_cont_embed: ``nn.Module`` This is the module that processes the categorical and continuous columns perceiver_blks: ``nn.ModuleDict`` ModuleDict with the Perceiver blocks latents: ``nn.Parameter`` Latents that will be used for prediction perceiver_mlp: ``nn.Module`` MLP component in the model output_dim: int The output dimension of the model. This is a required attribute neccesary to build the ``WideDeep`` class Example -------- >>> import torch >>> from pytorch_widedeep.models import TabPerceiver >>> X_tab = torch.cat((torch.empty(5, 4).random_(4), torch.rand(5, 1)), axis=1) >>> colnames = ['a', 'b', 'c', 'd', 'e'] >>> cat_embed_input = [(u,i) for u,i in zip(colnames[:4], [4]*4)] >>> continuous_cols = ['e'] >>> column_idx = {k:v for v,k in enumerate(colnames)} >>> model = TabPerceiver(column_idx=column_idx, cat_embed_input=cat_embed_input, ... continuous_cols=continuous_cols, n_latents=2, latent_dim=16, ... n_perceiver_blocks=2) >>> out = model(X_tab) """ def __init__( self, column_idx: Dict[str, int], cat_embed_input: Optional[List[Tuple[str, int]]] = None, cat_embed_dropout: float = 0.1, use_cat_bias: bool = False, cat_embed_activation: Optional[str] = None, full_embed_dropout: bool = False, shared_embed: bool = False, add_shared_embed: bool = False, frac_shared_embed: float = 0.25, continuous_cols: Optional[List[str]] = None, cont_norm_layer: str = None, cont_embed_dropout: float = 0.1, use_cont_bias: bool = True, cont_embed_activation: Optional[str] = None, input_dim: int = 32, n_cross_attns: int = 1, n_cross_attn_heads: int = 4, n_latents: int = 16, latent_dim: int = 128, n_latent_heads: int = 4, n_latent_blocks: int = 4, n_perceiver_blocks: int = 4, share_weights: bool = False, attn_dropout: float = 0.1, ff_dropout: float = 0.1, transformer_activation: str = "geglu", mlp_hidden_dims: Optional[List[int]] = None, mlp_activation: str = "relu", mlp_dropout: float = 0.1, mlp_batchnorm: bool = False, mlp_batchnorm_last: bool = False, mlp_linear_first: bool = True, ): super(TabPerceiver, self).__init__( column_idx=column_idx, cat_embed_input=cat_embed_input, cat_embed_dropout=cat_embed_dropout, use_cat_bias=use_cat_bias, cat_embed_activation=cat_embed_activation, full_embed_dropout=full_embed_dropout, shared_embed=shared_embed, add_shared_embed=add_shared_embed, frac_shared_embed=frac_shared_embed, continuous_cols=continuous_cols, cont_norm_layer=cont_norm_layer, embed_continuous=True, cont_embed_dropout=cont_embed_dropout, use_cont_bias=use_cont_bias, cont_embed_activation=cont_embed_activation, input_dim=input_dim, ) self.n_cross_attns = n_cross_attns self.n_cross_attn_heads = n_cross_attn_heads self.n_latents = n_latents self.latent_dim = latent_dim self.n_latent_heads = n_latent_heads self.n_latent_blocks = n_latent_blocks self.n_perceiver_blocks = n_perceiver_blocks self.share_weights = share_weights self.attn_dropout = attn_dropout self.ff_dropout = ff_dropout self.transformer_activation = transformer_activation self.mlp_hidden_dims = mlp_hidden_dims self.mlp_activation = mlp_activation self.mlp_dropout = mlp_dropout self.mlp_batchnorm = mlp_batchnorm self.mlp_batchnorm_last = mlp_batchnorm_last self.mlp_linear_first = mlp_linear_first # Embeddings are instantiated at the base model # Transformer blocks self.latents = nn.init.trunc_normal_( nn.Parameter(torch.empty(n_latents, latent_dim)) ) self.perceiver_blks = nn.ModuleDict() first_perceiver_block = self._build_perceiver_block() self.perceiver_blks["perceiver_block0"] = first_perceiver_block if share_weights: for n in range(1, n_perceiver_blocks): self.perceiver_blks["perceiver_block" + str(n)] = first_perceiver_block else: for n in range(1, n_perceiver_blocks): self.perceiver_blks[ "perceiver_block" + str(n) ] = self._build_perceiver_block() # Mlp if not mlp_hidden_dims: self.mlp_hidden_dims = [latent_dim, latent_dim * 4, latent_dim * 2] else: self.mlp_hidden_dims = [latent_dim] + mlp_hidden_dims self.perceiver_mlp = MLP( self.mlp_hidden_dims, mlp_activation, mlp_dropout, mlp_batchnorm, mlp_batchnorm_last, mlp_linear_first, ) # the output_dim attribute will be used as input_dim when "merging" the models self.output_dim: int = self.mlp_hidden_dims[-1] def forward(self, X: Tensor) -> Tensor: x_emb = self._get_embeddings(X) x = einops.repeat(self.latents, "n d -> b n d", b=X.shape[0]) for n in range(self.n_perceiver_blocks): cross_attns = self.perceiver_blks["perceiver_block" + str(n)]["cross_attns"] latent_transformer = self.perceiver_blks["perceiver_block" + str(n)][ "latent_transformer" ] for cross_attn in cross_attns: x = cross_attn(x, x_emb) x = latent_transformer(x) # average along the latent index axis x = x.mean(dim=1) return self.perceiver_mlp(x) @property def attention_weights(self) -> List: r"""List with the attention weights. If the weights are not shared between perceiver blocks each element of the list will be a list itself containing the Cross Attention and Latent Transformer attention weights respectively The shape of the attention weights is: - Cross Attention: :math:`(N, C, L, F)` - Latent Attention: :math:`(N, T, L, L)` WHere *N* is the batch size, *C* is the number of Cross Attention heads, *L* is the number of Latents, *F* is the number of features/columns in the dataset and *T* is the number of Latent Attention heads """ if self.share_weights: cross_attns = self.perceiver_blks["perceiver_block0"]["cross_attns"] latent_transformer = self.perceiver_blks["perceiver_block0"][ "latent_transformer" ] attention_weights = self._extract_attn_weights( cross_attns, latent_transformer ) else: attention_weights = [] for n in range(self.n_perceiver_blocks): cross_attns = self.perceiver_blks["perceiver_block" + str(n)][ "cross_attns" ] latent_transformer = self.perceiver_blks["perceiver_block" + str(n)][ "latent_transformer" ] attention_weights.append( self._extract_attn_weights(cross_attns, latent_transformer) ) return attention_weights def _build_perceiver_block(self) -> nn.ModuleDict: perceiver_block = nn.ModuleDict() # Cross Attention cross_attns = nn.ModuleList() for _ in range(self.n_cross_attns): cross_attns.append( PerceiverEncoder( self.input_dim, self.n_cross_attn_heads, False, # use_bias self.attn_dropout, self.ff_dropout, self.transformer_activation, self.latent_dim, # q_dim, ), ) perceiver_block["cross_attns"] = cross_attns # Latent Transformer latent_transformer = nn.Sequential() for i in range(self.n_latent_blocks): latent_transformer.add_module( "latent_block" + str(i), PerceiverEncoder( self.latent_dim, # input_dim self.n_latent_heads, False, # use_bias self.attn_dropout, self.ff_dropout, self.transformer_activation, ), ) perceiver_block["latent_transformer"] = latent_transformer return perceiver_block @staticmethod def _extract_attn_weights(cross_attns, latent_transformer) -> List: attention_weights = [] for cross_attn in cross_attns: attention_weights.append(cross_attn.attn.attn_weights) for latent_block in latent_transformer: attention_weights.append(latent_block.attn.attn_weights) return attention_weights
import torch import einops from torch import nn from pytorch_widedeep.wdtypes import * # noqa: F403 from pytorch_widedeep.models.tabular.mlp._layers import MLP from pytorch_widedeep.models.tabular._base_tabular_model import ( BaseTabularModelWithAttention, ) from pytorch_widedeep.models.tabular.transformers._encoders import ( PerceiverEncoder, ) class TabPerceiver(BaseTabularModelWithAttention): r"""Defines an adaptation of a `Perceiver model <https://arxiv.org/abs/2103.03206>`_ that can be used as the ``deeptabular`` component of a Wide & Deep model or independently by itself. Parameters ---------- column_idx: Dict Dict containing the index of the columns that will be passed through the model. Required to slice the tensors. e.g. {'education': 0, 'relationship': 1, 'workclass': 2, ...} cat_embed_input: List, Optional, default = None List of Tuples with the column name and number of unique values for each categorical component e.g. [(education, 11), ...] cat_embed_dropout: float, default = 0.1 Categorical embeddings dropout use_cat_bias: bool, default = False, Boolean indicating if bias will be used for the categorical embeddings cat_embed_activation: Optional, str, default = None, Activation function for the categorical embeddings, if any. `'tanh'`, `'relu'`, `'leaky_relu'` and `'gelu'` are supported. full_embed_dropout: bool, default = False Boolean indicating if an entire embedding (i.e. the representation of one column) will be dropped in the batch. See: :obj:`pytorch_widedeep.models.transformers._layers.FullEmbeddingDropout`. If ``full_embed_dropout = True``, ``cat_embed_dropout`` is ignored. shared_embed: bool, default = False The idea behind ``shared_embed`` is described in the Appendix A in the `TabTransformer paper <https://arxiv.org/abs/2012.06678>`_: `'The goal of having column embedding is to enable the model to distinguish the classes in one column from those in the other columns'`. In other words, the idea is to let the model learn which column is embedded at the time. add_shared_embed: bool, default = False, The two embedding sharing strategies are: 1) add the shared embeddings to the column embeddings or 2) to replace the first ``frac_shared_embed`` with the shared embeddings. See :obj:`pytorch_widedeep.models.transformers._layers.SharedEmbeddings` frac_shared_embed: float, default = 0.25 The fraction of embeddings that will be shared (if ``add_shared_embed = False``) by all the different categories for one particular column. continuous_cols: List, Optional, default = None List with the name of the numeric (aka continuous) columns cont_norm_layer: str, default = "batchnorm" Type of normalization layer applied to the continuous features. Options are: 'layernorm', 'batchnorm' or None. cont_embed_dropout: float, default = 0.1, Continuous embeddings dropout use_cont_bias: bool, default = True, Boolean indicating if bias will be used for the continuous embeddings cont_embed_activation: str, default = None Activation function to be applied to the continuous embeddings, if any. `'tanh'`, `'relu'`, `'leaky_relu'` and `'gelu'` are supported. input_dim: int, default = 32 The so-called *dimension of the model*. Is the number of embeddings used to encode the categorical and/or continuous columns. n_cross_attns: int, default = 1 Number of times each perceiver block will cross attend to the input data (i.e. number of cross attention components per perceiver block). This should normally be 1. However, in the paper they describe some architectures (normally computer vision-related problems) where the Perceiver attends multiple times to the input array. Therefore, maybe multiple cross attention to the input array is also useful in some cases for tabular data n_cross_attn_heads: int, default = 4 Number of attention heads for the cross attention component n_latents: int, default = 16 Number of latents. This is the *N* parameter in the paper. As indicated in the paper, this number should be significantly lower than *M* (the number of columns in the dataset). Setting *N* closer to *M* defies the main purpose of the Perceiver, which is to overcome the transformer quadratic bottleneck latent_dim: int, default = 128 Latent dimension. n_latent_heads: int, default = 4 Number of attention heads per Latent Transformer n_latent_blocks: int, default = 4 Number of transformer encoder blocks (normalised MHA + normalised FF) per Latent Transformer n_perceiver_blocks: int, default = 4 Number of Perceiver blocks defined as [Cross Attention + Latent Transformer] share_weights: Boolean, default = False Boolean indicating if the weights will be shared between Perceiver blocks attn_dropout: float, default = 0.2 Dropout that will be applied to the Multi-Head Attention layers ff_dropout: float, default = 0.1 Dropout that will be applied to the FeedForward network transformer_activation: str, default = "gelu" Transformer Encoder activation function. `'tanh'`, `'relu'`, `'leaky_relu'`, `'gelu'`, `'geglu'` and `'reglu'` are supported mlp_hidden_dims: List, Optional, default = None MLP hidden dimensions. If not provided it will default to ``[l, 4*l, 2*l]`` where ``l`` is the MLP's input dimension mlp_activation: str, default = "relu" MLP activation function. `'tanh'`, `'relu'`, `'leaky_relu'` and `'gelu'` are supported mlp_dropout: float, default = 0.1 Dropout that will be applied to the final MLP mlp_batchnorm: bool, default = False Boolean indicating whether or not to apply batch normalization to the dense layers mlp_batchnorm_last: bool, default = False Boolean indicating whether or not to apply batch normalization to the last of the dense layers mlp_linear_first: bool, default = False Boolean indicating whether the order of the operations in the dense layer. If ``True: [LIN -> ACT -> BN -> DP]``. If ``False: [BN -> DP -> LIN -> ACT]`` Attributes ---------- cat_and_cont_embed: ``nn.Module`` This is the module that processes the categorical and continuous columns perceiver_blks: ``nn.ModuleDict`` ModuleDict with the Perceiver blocks latents: ``nn.Parameter`` Latents that will be used for prediction perceiver_mlp: ``nn.Module`` MLP component in the model output_dim: int The output dimension of the model. This is a required attribute neccesary to build the ``WideDeep`` class Example -------- >>> import torch >>> from pytorch_widedeep.models import TabPerceiver >>> X_tab = torch.cat((torch.empty(5, 4).random_(4), torch.rand(5, 1)), axis=1) >>> colnames = ['a', 'b', 'c', 'd', 'e'] >>> cat_embed_input = [(u,i) for u,i in zip(colnames[:4], [4]*4)] >>> continuous_cols = ['e'] >>> column_idx = {k:v for v,k in enumerate(colnames)} >>> model = TabPerceiver(column_idx=column_idx, cat_embed_input=cat_embed_input, ... continuous_cols=continuous_cols, n_latents=2, latent_dim=16, ... n_perceiver_blocks=2) >>> out = model(X_tab) """ def __init__( self, column_idx: Dict[str, int], cat_embed_input: Optional[List[Tuple[str, int]]] = None, cat_embed_dropout: float = 0.1, use_cat_bias: bool = False, cat_embed_activation: Optional[str] = None, full_embed_dropout: bool = False, shared_embed: bool = False, add_shared_embed: bool = False, frac_shared_embed: float = 0.25, continuous_cols: Optional[List[str]] = None, cont_norm_layer: str = None, cont_embed_dropout: float = 0.1, use_cont_bias: bool = True, cont_embed_activation: Optional[str] = None, input_dim: int = 32, n_cross_attns: int = 1, n_cross_attn_heads: int = 4, n_latents: int = 16, latent_dim: int = 128, n_latent_heads: int = 4, n_latent_blocks: int = 4, n_perceiver_blocks: int = 4, share_weights: bool = False, attn_dropout: float = 0.1, ff_dropout: float = 0.1, transformer_activation: str = "geglu", mlp_hidden_dims: Optional[List[int]] = None, mlp_activation: str = "relu", mlp_dropout: float = 0.1, mlp_batchnorm: bool = False, mlp_batchnorm_last: bool = False, mlp_linear_first: bool = True, ): super(TabPerceiver, self).__init__( column_idx=column_idx, cat_embed_input=cat_embed_input, cat_embed_dropout=cat_embed_dropout, use_cat_bias=use_cat_bias, cat_embed_activation=cat_embed_activation, full_embed_dropout=full_embed_dropout, shared_embed=shared_embed, add_shared_embed=add_shared_embed, frac_shared_embed=frac_shared_embed, continuous_cols=continuous_cols, cont_norm_layer=cont_norm_layer, embed_continuous=True, cont_embed_dropout=cont_embed_dropout, use_cont_bias=use_cont_bias, cont_embed_activation=cont_embed_activation, input_dim=input_dim, ) self.n_cross_attns = n_cross_attns self.n_cross_attn_heads = n_cross_attn_heads self.n_latents = n_latents self.latent_dim = latent_dim self.n_latent_heads = n_latent_heads self.n_latent_blocks = n_latent_blocks self.n_perceiver_blocks = n_perceiver_blocks self.share_weights = share_weights self.attn_dropout = attn_dropout self.ff_dropout = ff_dropout self.transformer_activation = transformer_activation self.mlp_hidden_dims = mlp_hidden_dims self.mlp_activation = mlp_activation self.mlp_dropout = mlp_dropout self.mlp_batchnorm = mlp_batchnorm self.mlp_batchnorm_last = mlp_batchnorm_last self.mlp_linear_first = mlp_linear_first # Embeddings are instantiated at the base model # Transformer blocks self.latents = nn.init.trunc_normal_( nn.Parameter(torch.empty(n_latents, latent_dim)) ) self.perceiver_blks = nn.ModuleDict() first_perceiver_block = self._build_perceiver_block() self.perceiver_blks["perceiver_block0"] = first_perceiver_block if share_weights: for n in range(1, n_perceiver_blocks): self.perceiver_blks["perceiver_block" + str(n)] = first_perceiver_block else: for n in range(1, n_perceiver_blocks): self.perceiver_blks[ "perceiver_block" + str(n) ] = self._build_perceiver_block() # Mlp if not mlp_hidden_dims: self.mlp_hidden_dims = [latent_dim, latent_dim * 4, latent_dim * 2] else: self.mlp_hidden_dims = [latent_dim] + mlp_hidden_dims self.perceiver_mlp = MLP( self.mlp_hidden_dims, mlp_activation, mlp_dropout, mlp_batchnorm, mlp_batchnorm_last, mlp_linear_first, ) # the output_dim attribute will be used as input_dim when "merging" the models self.output_dim: int = self.mlp_hidden_dims[-1] def forward(self, X: Tensor) -> Tensor: x_emb = self._get_embeddings(X) x = einops.repeat(self.latents, "n d -> b n d", b=X.shape[0]) for n in range(self.n_perceiver_blocks): cross_attns = self.perceiver_blks["perceiver_block" + str(n)]["cross_attns"] latent_transformer = self.perceiver_blks["perceiver_block" + str(n)][ "latent_transformer" ] for cross_attn in cross_attns: x = cross_attn(x, x_emb) x = latent_transformer(x) # average along the latent index axis x = x.mean(dim=1) return self.perceiver_mlp(x) @property def attention_weights(self) -> List: r"""List with the attention weights. If the weights are not shared between perceiver blocks each element of the list will be a list itself containing the Cross Attention and Latent Transformer attention weights respectively The shape of the attention weights is: - Cross Attention: :math:`(N, C, L, F)` - Latent Attention: :math:`(N, T, L, L)` WHere *N* is the batch size, *C* is the number of Cross Attention heads, *L* is the number of Latents, *F* is the number of features/columns in the dataset and *T* is the number of Latent Attention heads """ if self.share_weights: cross_attns = self.perceiver_blks["perceiver_block0"]["cross_attns"] latent_transformer = self.perceiver_blks["perceiver_block0"][ "latent_transformer" ] attention_weights = self._extract_attn_weights( cross_attns, latent_transformer ) else: attention_weights = [] for n in range(self.n_perceiver_blocks): cross_attns = self.perceiver_blks["perceiver_block" + str(n)][ "cross_attns" ] latent_transformer = self.perceiver_blks["perceiver_block" + str(n)][ "latent_transformer" ] attention_weights.append( self._extract_attn_weights(cross_attns, latent_transformer) ) return attention_weights def _build_perceiver_block(self) -> nn.ModuleDict: perceiver_block = nn.ModuleDict() # Cross Attention cross_attns = nn.ModuleList() for _ in range(self.n_cross_attns): cross_attns.append( PerceiverEncoder( self.input_dim, self.n_cross_attn_heads, False, # use_bias self.attn_dropout, self.ff_dropout, self.transformer_activation, self.latent_dim, # q_dim, ), ) perceiver_block["cross_attns"] = cross_attns # Latent Transformer latent_transformer = nn.Sequential() for i in range(self.n_latent_blocks): latent_transformer.add_module( "latent_block" + str(i), PerceiverEncoder( self.latent_dim, # input_dim self.n_latent_heads, False, # use_bias self.attn_dropout, self.ff_dropout, self.transformer_activation, ), ) perceiver_block["latent_transformer"] = latent_transformer return perceiver_block @staticmethod def _extract_attn_weights(cross_attns, latent_transformer) -> List: attention_weights = [] for cross_attn in cross_attns: attention_weights.append(cross_attn.attn.attn_weights) for latent_block in latent_transformer: attention_weights.append(latent_block.attn.attn_weights) return attention_weights
en
0.718035
# noqa: F403 Defines an adaptation of a `Perceiver model <https://arxiv.org/abs/2103.03206>`_ that can be used as the ``deeptabular`` component of a Wide & Deep model or independently by itself. Parameters ---------- column_idx: Dict Dict containing the index of the columns that will be passed through the model. Required to slice the tensors. e.g. {'education': 0, 'relationship': 1, 'workclass': 2, ...} cat_embed_input: List, Optional, default = None List of Tuples with the column name and number of unique values for each categorical component e.g. [(education, 11), ...] cat_embed_dropout: float, default = 0.1 Categorical embeddings dropout use_cat_bias: bool, default = False, Boolean indicating if bias will be used for the categorical embeddings cat_embed_activation: Optional, str, default = None, Activation function for the categorical embeddings, if any. `'tanh'`, `'relu'`, `'leaky_relu'` and `'gelu'` are supported. full_embed_dropout: bool, default = False Boolean indicating if an entire embedding (i.e. the representation of one column) will be dropped in the batch. See: :obj:`pytorch_widedeep.models.transformers._layers.FullEmbeddingDropout`. If ``full_embed_dropout = True``, ``cat_embed_dropout`` is ignored. shared_embed: bool, default = False The idea behind ``shared_embed`` is described in the Appendix A in the `TabTransformer paper <https://arxiv.org/abs/2012.06678>`_: `'The goal of having column embedding is to enable the model to distinguish the classes in one column from those in the other columns'`. In other words, the idea is to let the model learn which column is embedded at the time. add_shared_embed: bool, default = False, The two embedding sharing strategies are: 1) add the shared embeddings to the column embeddings or 2) to replace the first ``frac_shared_embed`` with the shared embeddings. See :obj:`pytorch_widedeep.models.transformers._layers.SharedEmbeddings` frac_shared_embed: float, default = 0.25 The fraction of embeddings that will be shared (if ``add_shared_embed = False``) by all the different categories for one particular column. continuous_cols: List, Optional, default = None List with the name of the numeric (aka continuous) columns cont_norm_layer: str, default = "batchnorm" Type of normalization layer applied to the continuous features. Options are: 'layernorm', 'batchnorm' or None. cont_embed_dropout: float, default = 0.1, Continuous embeddings dropout use_cont_bias: bool, default = True, Boolean indicating if bias will be used for the continuous embeddings cont_embed_activation: str, default = None Activation function to be applied to the continuous embeddings, if any. `'tanh'`, `'relu'`, `'leaky_relu'` and `'gelu'` are supported. input_dim: int, default = 32 The so-called *dimension of the model*. Is the number of embeddings used to encode the categorical and/or continuous columns. n_cross_attns: int, default = 1 Number of times each perceiver block will cross attend to the input data (i.e. number of cross attention components per perceiver block). This should normally be 1. However, in the paper they describe some architectures (normally computer vision-related problems) where the Perceiver attends multiple times to the input array. Therefore, maybe multiple cross attention to the input array is also useful in some cases for tabular data n_cross_attn_heads: int, default = 4 Number of attention heads for the cross attention component n_latents: int, default = 16 Number of latents. This is the *N* parameter in the paper. As indicated in the paper, this number should be significantly lower than *M* (the number of columns in the dataset). Setting *N* closer to *M* defies the main purpose of the Perceiver, which is to overcome the transformer quadratic bottleneck latent_dim: int, default = 128 Latent dimension. n_latent_heads: int, default = 4 Number of attention heads per Latent Transformer n_latent_blocks: int, default = 4 Number of transformer encoder blocks (normalised MHA + normalised FF) per Latent Transformer n_perceiver_blocks: int, default = 4 Number of Perceiver blocks defined as [Cross Attention + Latent Transformer] share_weights: Boolean, default = False Boolean indicating if the weights will be shared between Perceiver blocks attn_dropout: float, default = 0.2 Dropout that will be applied to the Multi-Head Attention layers ff_dropout: float, default = 0.1 Dropout that will be applied to the FeedForward network transformer_activation: str, default = "gelu" Transformer Encoder activation function. `'tanh'`, `'relu'`, `'leaky_relu'`, `'gelu'`, `'geglu'` and `'reglu'` are supported mlp_hidden_dims: List, Optional, default = None MLP hidden dimensions. If not provided it will default to ``[l, 4*l, 2*l]`` where ``l`` is the MLP's input dimension mlp_activation: str, default = "relu" MLP activation function. `'tanh'`, `'relu'`, `'leaky_relu'` and `'gelu'` are supported mlp_dropout: float, default = 0.1 Dropout that will be applied to the final MLP mlp_batchnorm: bool, default = False Boolean indicating whether or not to apply batch normalization to the dense layers mlp_batchnorm_last: bool, default = False Boolean indicating whether or not to apply batch normalization to the last of the dense layers mlp_linear_first: bool, default = False Boolean indicating whether the order of the operations in the dense layer. If ``True: [LIN -> ACT -> BN -> DP]``. If ``False: [BN -> DP -> LIN -> ACT]`` Attributes ---------- cat_and_cont_embed: ``nn.Module`` This is the module that processes the categorical and continuous columns perceiver_blks: ``nn.ModuleDict`` ModuleDict with the Perceiver blocks latents: ``nn.Parameter`` Latents that will be used for prediction perceiver_mlp: ``nn.Module`` MLP component in the model output_dim: int The output dimension of the model. This is a required attribute neccesary to build the ``WideDeep`` class Example -------- >>> import torch >>> from pytorch_widedeep.models import TabPerceiver >>> X_tab = torch.cat((torch.empty(5, 4).random_(4), torch.rand(5, 1)), axis=1) >>> colnames = ['a', 'b', 'c', 'd', 'e'] >>> cat_embed_input = [(u,i) for u,i in zip(colnames[:4], [4]*4)] >>> continuous_cols = ['e'] >>> column_idx = {k:v for v,k in enumerate(colnames)} >>> model = TabPerceiver(column_idx=column_idx, cat_embed_input=cat_embed_input, ... continuous_cols=continuous_cols, n_latents=2, latent_dim=16, ... n_perceiver_blocks=2) >>> out = model(X_tab) # Embeddings are instantiated at the base model # Transformer blocks # Mlp # the output_dim attribute will be used as input_dim when "merging" the models # average along the latent index axis List with the attention weights. If the weights are not shared between perceiver blocks each element of the list will be a list itself containing the Cross Attention and Latent Transformer attention weights respectively The shape of the attention weights is: - Cross Attention: :math:`(N, C, L, F)` - Latent Attention: :math:`(N, T, L, L)` WHere *N* is the batch size, *C* is the number of Cross Attention heads, *L* is the number of Latents, *F* is the number of features/columns in the dataset and *T* is the number of Latent Attention heads # Cross Attention # use_bias # q_dim, # Latent Transformer # input_dim # use_bias
2.150007
2
mmdet/models/dense_heads/rpn_test_mixin.py
morkovka1337/mmdetection
58
6632966
# Copyright (C) 2018-2021 OpenMMLab # SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2020-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # import sys from mmdet.core import merge_aug_proposals from mmdet.integration.nncf.utils import no_nncf_trace if sys.version_info >= (3, 7): from mmdet.utils.contextmanagers import completed class RPNTestMixin(object): """Test methods of RPN.""" if sys.version_info >= (3, 7): async def async_simple_test_rpn(self, x, img_metas): sleep_interval = self.test_cfg.pop('async_sleep_interval', 0.025) async with completed( __name__, 'rpn_head_forward', sleep_interval=sleep_interval): rpn_outs = self(x) proposal_list = self.get_bboxes(*rpn_outs, img_metas) return proposal_list def simple_test_rpn(self, x, img_metas): """Test without augmentation. Args: x (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): Meta info of each image. Returns: list[Tensor]: Proposals of each image. """ rpn_outs = self(x) with no_nncf_trace(): proposal_list = self.get_bboxes(*rpn_outs, img_metas) return proposal_list def aug_test_rpn(self, feats, img_metas): samples_per_gpu = len(img_metas[0]) aug_proposals = [[] for _ in range(samples_per_gpu)] for x, img_meta in zip(feats, img_metas): proposal_list = self.simple_test_rpn(x, img_meta) for i, proposals in enumerate(proposal_list): aug_proposals[i].append(proposals) # reorganize the order of 'img_metas' to match the dimensions # of 'aug_proposals' aug_img_metas = [] for i in range(samples_per_gpu): aug_img_meta = [] for j in range(len(img_metas)): aug_img_meta.append(img_metas[j][i]) aug_img_metas.append(aug_img_meta) # after merging, proposals will be rescaled to the original image size merged_proposals = [ merge_aug_proposals(proposals, aug_img_meta, self.test_cfg) for proposals, aug_img_meta in zip(aug_proposals, aug_img_metas) ] return merged_proposals
# Copyright (C) 2018-2021 OpenMMLab # SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2020-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # import sys from mmdet.core import merge_aug_proposals from mmdet.integration.nncf.utils import no_nncf_trace if sys.version_info >= (3, 7): from mmdet.utils.contextmanagers import completed class RPNTestMixin(object): """Test methods of RPN.""" if sys.version_info >= (3, 7): async def async_simple_test_rpn(self, x, img_metas): sleep_interval = self.test_cfg.pop('async_sleep_interval', 0.025) async with completed( __name__, 'rpn_head_forward', sleep_interval=sleep_interval): rpn_outs = self(x) proposal_list = self.get_bboxes(*rpn_outs, img_metas) return proposal_list def simple_test_rpn(self, x, img_metas): """Test without augmentation. Args: x (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): Meta info of each image. Returns: list[Tensor]: Proposals of each image. """ rpn_outs = self(x) with no_nncf_trace(): proposal_list = self.get_bboxes(*rpn_outs, img_metas) return proposal_list def aug_test_rpn(self, feats, img_metas): samples_per_gpu = len(img_metas[0]) aug_proposals = [[] for _ in range(samples_per_gpu)] for x, img_meta in zip(feats, img_metas): proposal_list = self.simple_test_rpn(x, img_meta) for i, proposals in enumerate(proposal_list): aug_proposals[i].append(proposals) # reorganize the order of 'img_metas' to match the dimensions # of 'aug_proposals' aug_img_metas = [] for i in range(samples_per_gpu): aug_img_meta = [] for j in range(len(img_metas)): aug_img_meta.append(img_metas[j][i]) aug_img_metas.append(aug_img_meta) # after merging, proposals will be rescaled to the original image size merged_proposals = [ merge_aug_proposals(proposals, aug_img_meta, self.test_cfg) for proposals, aug_img_meta in zip(aug_proposals, aug_img_metas) ] return merged_proposals
en
0.577913
# Copyright (C) 2018-2021 OpenMMLab # SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2020-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # Test methods of RPN. Test without augmentation. Args: x (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): Meta info of each image. Returns: list[Tensor]: Proposals of each image. # reorganize the order of 'img_metas' to match the dimensions # of 'aug_proposals' # after merging, proposals will be rescaled to the original image size
1.997244
2
instagram/migrations/0001_initial.py
Frankline-Kiplangat/instagram-app
1
6632967
<gh_stars>1-10 # -*- coding: utf-8 -*- # Generated by Django 1.11 on 2020-08-12 23:26 from __future__ import unicode_literals import datetime from django.conf import settings from django.db import migrations, models import django.db.models.deletion import pyuploadcare.dj.models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comment', models.TextField()), ('comment_title', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Image', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('time_created', models.DateTimeField(blank=True, default=datetime.datetime.now)), ('image', pyuploadcare.dj.models.ImageField(blank=True)), ('message', models.CharField(blank=True, max_length=80)), ('name', models.CharField(max_length=80)), ('caption', models.TextField(blank=True)), ('profile', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Likes', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='instagram.Image')), ('likes', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('profile_pic', models.ImageField(upload_to='images/')), ('bio', models.CharField(blank=True, max_length=100)), ('user', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, related_name='profile', to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='comment', name='image', field=models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, related_name='comment', to='instagram.Image'), ), ]
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2020-08-12 23:26 from __future__ import unicode_literals import datetime from django.conf import settings from django.db import migrations, models import django.db.models.deletion import pyuploadcare.dj.models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('comment', models.TextField()), ('comment_title', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Image', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('time_created', models.DateTimeField(blank=True, default=datetime.datetime.now)), ('image', pyuploadcare.dj.models.ImageField(blank=True)), ('message', models.CharField(blank=True, max_length=80)), ('name', models.CharField(max_length=80)), ('caption', models.TextField(blank=True)), ('profile', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Likes', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='instagram.Image')), ('likes', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('profile_pic', models.ImageField(upload_to='images/')), ('bio', models.CharField(blank=True, max_length=100)), ('user', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, related_name='profile', to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='comment', name='image', field=models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, related_name='comment', to='instagram.Image'), ), ]
en
0.78524
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2020-08-12 23:26
1.785692
2
flexneuart/featextr_server/base.py
gitter-badger/FlexNeuART
101
6632968
# # Copyright 2014+ Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Thrift files are generated from # ./src/main/java/edu/cmu/lti/oaqa/flexneuart/letor/external/protocol.thrift # from flexneuart.featextr_server.python_generated.protocol.ExternalScorer import Processor from flexneuart.featextr_server.python_generated.protocol.ttypes import ScoringException from thrift.transport import TSocket from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol from thrift.server import TServer from threading import Lock SAMPLE_HOST = '127.0.0.1' SAMPLE_PORT = 8080 class BaseQueryHandler: def __init__(self, exclusive=True): self.lock_ = Lock() if exclusive else None if self.lock_ is not None: print('Locking the base server for single-threaded processing') else: print('NOT locking the base server for multi-threaded processing') # This function must remain in Camel-case, b/c it's tied to Java code def getScoresFromParsed(self, query, docs): try: if self.lock_ is not None: with self.lock_: return self.compute_scores_from_parsed_override(query, docs) else: return self.compute_scores_from_parsed_override(query, docs) except Exception as e: raise ScoringException(str(e)) # This function must remain in Camel-case, b/c it's tied to Java code def getScoresFromRaw(self, query, docs): try: if self.lock_ is not None: with self.lock_: return self.compute_scores_from_raw_override(query, docs) else: return self.compute_scores_from_raw_override(query, docs) except Exception as e: raise ScoringException(str(e)) def text_entry_to_str(self, te): arr = [] for winfo in te.entries: arr.append('%s %g %d ' % (winfo.word, winfo.IDF, winfo.qty)) return te.id + ' '.join(arr) def concat_text_entry_words(self, te): arr = [winfo.word for winfo in te.entries] return ' '.join(arr) # One or both functions need to be implemented in a child class def compute_scores_from_parsed_override(self, query, docs): raise ScoringException('Parsed fields are not supported by this server!') def compute_scores_from_raw_override(self, query, docs): raise ScoringException('Raw-text fields are not supported by this server!') # This function starts the server and takes over the program control def start_query_server(host, port, multi_threaded, query_handler): processor = Processor(query_handler) transport = TSocket.TServerSocket(host=host, port=port) tfactory = TTransport.TBufferedTransportFactory() pfactory = TBinaryProtocol.TBinaryProtocolFactory() if multi_threaded: print('Starting a multi-threaded server...') server = TServer.TThreadedServer(processor, transport, tfactory, pfactory) else: print('Starting a single-threaded server...') server = TServer.TSimpleServer(processor, transport, tfactory, pfactory) server.serve() print('done.')
# # Copyright 2014+ Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Thrift files are generated from # ./src/main/java/edu/cmu/lti/oaqa/flexneuart/letor/external/protocol.thrift # from flexneuart.featextr_server.python_generated.protocol.ExternalScorer import Processor from flexneuart.featextr_server.python_generated.protocol.ttypes import ScoringException from thrift.transport import TSocket from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol from thrift.server import TServer from threading import Lock SAMPLE_HOST = '127.0.0.1' SAMPLE_PORT = 8080 class BaseQueryHandler: def __init__(self, exclusive=True): self.lock_ = Lock() if exclusive else None if self.lock_ is not None: print('Locking the base server for single-threaded processing') else: print('NOT locking the base server for multi-threaded processing') # This function must remain in Camel-case, b/c it's tied to Java code def getScoresFromParsed(self, query, docs): try: if self.lock_ is not None: with self.lock_: return self.compute_scores_from_parsed_override(query, docs) else: return self.compute_scores_from_parsed_override(query, docs) except Exception as e: raise ScoringException(str(e)) # This function must remain in Camel-case, b/c it's tied to Java code def getScoresFromRaw(self, query, docs): try: if self.lock_ is not None: with self.lock_: return self.compute_scores_from_raw_override(query, docs) else: return self.compute_scores_from_raw_override(query, docs) except Exception as e: raise ScoringException(str(e)) def text_entry_to_str(self, te): arr = [] for winfo in te.entries: arr.append('%s %g %d ' % (winfo.word, winfo.IDF, winfo.qty)) return te.id + ' '.join(arr) def concat_text_entry_words(self, te): arr = [winfo.word for winfo in te.entries] return ' '.join(arr) # One or both functions need to be implemented in a child class def compute_scores_from_parsed_override(self, query, docs): raise ScoringException('Parsed fields are not supported by this server!') def compute_scores_from_raw_override(self, query, docs): raise ScoringException('Raw-text fields are not supported by this server!') # This function starts the server and takes over the program control def start_query_server(host, port, multi_threaded, query_handler): processor = Processor(query_handler) transport = TSocket.TServerSocket(host=host, port=port) tfactory = TTransport.TBufferedTransportFactory() pfactory = TBinaryProtocol.TBinaryProtocolFactory() if multi_threaded: print('Starting a multi-threaded server...') server = TServer.TThreadedServer(processor, transport, tfactory, pfactory) else: print('Starting a single-threaded server...') server = TServer.TSimpleServer(processor, transport, tfactory, pfactory) server.serve() print('done.')
en
0.845401
# # Copyright 2014+ Carnegie Mellon University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Thrift files are generated from # ./src/main/java/edu/cmu/lti/oaqa/flexneuart/letor/external/protocol.thrift # # This function must remain in Camel-case, b/c it's tied to Java code # This function must remain in Camel-case, b/c it's tied to Java code # One or both functions need to be implemented in a child class # This function starts the server and takes over the program control
1.769249
2
app/app4.py
lalopark/1DS_HW2
0
6632969
# app4.py import numpy as np import pandas as pd import altair as alt import plotly.express as px import plotly.graph_objs as go import pickle as pkle import os.path import streamlit as st def app(): st.title('Writeup') st.write('We created several different visualizations of the data set from both a macro and micro lens by\ first illustrated the general statistical distributions of the data scientist candidate population in terms\ of city development index, training hour, experience, latest jobs, and education levels (in Analysis 1 Tab),\ then drilling down to a gender and education level-specific breakdowns to see if there are any noticeable employment\ trends among groups of different gender identities and academic achievements. The City Development Indices of the cities\ that the candidates reside in are extremely left-skewed, with the median at 0.86 with an overwhelming majority of residents\ residing in cities with well-established Infrastructure, Waste Management, Health, Education, and City Product, as defined by\ the United Nations. The specific country/regional information wasn’t provided in the dataset, so the developers would refrain\ from making potentially biased assumptions, but it’s interesting to note that there’s a spike at 0.62 with a moderately large\ group of candidates residing in less developed cities. Our box plot distributions of CDI by Education Level show that Masters,\ Graduates, and PhD’s are highly centered around cities with high CDI’s, while high school and primary school grads are scattered\ towards lower CDI’s with slightly more outliers. We hypothesize that candidates in developing cities may have access to online/open-source\ material that can supplement or replace formal training in DS, hence the supply in the job market.') st.write('60% of the dataset are graduate students, with 60% having Graduate Degrees, 22.8% with Undergraduate, 2.15% with PhDs\ and 10.5% with high school degrees. The developers found this distribution quite jarringly different from the job market situation\ in the U.S., where closely 50-60% of the data scientist job applicants hold Master’s degrees or higher, so we deemed it a factor highly\ dependent on the region/continent, which is unknown. The years of experience by education level is as expected with PhD’s and Master’s\ students having the upper bound of 20> years, followed by Undergraduate degree holders, then High School and Primary Schoolers. Since Data\ Scientists used to be primarily PhD’s or academic scholars, it’s not surprising that those groups have more experiences than others.\ The experience distribution by major was quite contrary to our hypothesis - that STEM degree holders will have more YoE on average - with \ all disciplines having pretty much equivalent distributions.') st.write('We must note that our dataset’s intrinsically imbalanced in terms of the candidates’ experience and gender, with nearly ~40% of the\ candidates having 20+ years of work experience as a Data Scientist. Another limitation that the dataset had was its ambiguity in certain\ columns, including training hours, which the developers assumed as the # of hours formally trained as a data scientist apart from general\ work experience. This information would have been more meaningful if it were the number of hours per week spent on training oneself as a\ better Data Professional, but since it isn’t, the more relevant work experiences as a Data Scientist, the longer the training hours, hence\ the apparent correlation between having relevant work experience and higher training hours.') st.write('Last New Job distribution was quite interesting, with 60% of the candidates only having worked at their current job for less than a year.\ Given that DS’s are predominantly hired in tech companies or at tech functions, it’s not surprising that frequent job switches are common\ and not necessarily frowned upon, compared to more traditional industries.') st.write('We include two gender-related distributions before deep-diving into it in Analysis 2, as the dataset has 1.5x more male than female candidates,\ it was hard to recognize the data points that represent female data scientists in Distribution of Data Scientists by Experience and Last New Job.\ In almost all cases, the number of male data scientists is much higher than the female data scientists, female data scientists points were covered.\ This graph showed that the respondents who have worked for their previous company for 4 years tended to have longer working experience.\ On the other hand, the ones who have shorter working experience have changed their positions or jobs more often.') st.write('To classify the data scientists by their gender and education level, we added two drop-down menus, so the users can easily select\ the data that matches with a certain condition and only use it to create plots. Using these two options, we created three-bar plots\ which show the distribution of data scientists by their enrolled university types, majors, and company types. The majority of the data\ scientists in the given data set are not currently enrolled in university. However, most Ph.D.-level data scientists answered that they\ are currently enrolled in university. Also, the proportion of data scientists who are currently attending university full-time was much\ higher in the female data scientists group than in the male group.') st.write('In the major graph, as was expected, the majority of data scientists studied STEM majors regardless of gender,\ and those who did not attend university are classified as ‘other’ in the major graph. The number of data scientists who studied Arts\ during their undergrad was the lowest in this distribution graph.') st.write('Lastly, to find which type of companies hire data scientists the most, we drew a graph that shows the company type and size\ that the respondents are currently working for. According to their answers, the majority works for small private firms regardless of gender.\ However, when we selected only Ph.D.-level data scientists, the result was different. The proportion of respondents\ who work for the public sector has increased.')
# app4.py import numpy as np import pandas as pd import altair as alt import plotly.express as px import plotly.graph_objs as go import pickle as pkle import os.path import streamlit as st def app(): st.title('Writeup') st.write('We created several different visualizations of the data set from both a macro and micro lens by\ first illustrated the general statistical distributions of the data scientist candidate population in terms\ of city development index, training hour, experience, latest jobs, and education levels (in Analysis 1 Tab),\ then drilling down to a gender and education level-specific breakdowns to see if there are any noticeable employment\ trends among groups of different gender identities and academic achievements. The City Development Indices of the cities\ that the candidates reside in are extremely left-skewed, with the median at 0.86 with an overwhelming majority of residents\ residing in cities with well-established Infrastructure, Waste Management, Health, Education, and City Product, as defined by\ the United Nations. The specific country/regional information wasn’t provided in the dataset, so the developers would refrain\ from making potentially biased assumptions, but it’s interesting to note that there’s a spike at 0.62 with a moderately large\ group of candidates residing in less developed cities. Our box plot distributions of CDI by Education Level show that Masters,\ Graduates, and PhD’s are highly centered around cities with high CDI’s, while high school and primary school grads are scattered\ towards lower CDI’s with slightly more outliers. We hypothesize that candidates in developing cities may have access to online/open-source\ material that can supplement or replace formal training in DS, hence the supply in the job market.') st.write('60% of the dataset are graduate students, with 60% having Graduate Degrees, 22.8% with Undergraduate, 2.15% with PhDs\ and 10.5% with high school degrees. The developers found this distribution quite jarringly different from the job market situation\ in the U.S., where closely 50-60% of the data scientist job applicants hold Master’s degrees or higher, so we deemed it a factor highly\ dependent on the region/continent, which is unknown. The years of experience by education level is as expected with PhD’s and Master’s\ students having the upper bound of 20> years, followed by Undergraduate degree holders, then High School and Primary Schoolers. Since Data\ Scientists used to be primarily PhD’s or academic scholars, it’s not surprising that those groups have more experiences than others.\ The experience distribution by major was quite contrary to our hypothesis - that STEM degree holders will have more YoE on average - with \ all disciplines having pretty much equivalent distributions.') st.write('We must note that our dataset’s intrinsically imbalanced in terms of the candidates’ experience and gender, with nearly ~40% of the\ candidates having 20+ years of work experience as a Data Scientist. Another limitation that the dataset had was its ambiguity in certain\ columns, including training hours, which the developers assumed as the # of hours formally trained as a data scientist apart from general\ work experience. This information would have been more meaningful if it were the number of hours per week spent on training oneself as a\ better Data Professional, but since it isn’t, the more relevant work experiences as a Data Scientist, the longer the training hours, hence\ the apparent correlation between having relevant work experience and higher training hours.') st.write('Last New Job distribution was quite interesting, with 60% of the candidates only having worked at their current job for less than a year.\ Given that DS’s are predominantly hired in tech companies or at tech functions, it’s not surprising that frequent job switches are common\ and not necessarily frowned upon, compared to more traditional industries.') st.write('We include two gender-related distributions before deep-diving into it in Analysis 2, as the dataset has 1.5x more male than female candidates,\ it was hard to recognize the data points that represent female data scientists in Distribution of Data Scientists by Experience and Last New Job.\ In almost all cases, the number of male data scientists is much higher than the female data scientists, female data scientists points were covered.\ This graph showed that the respondents who have worked for their previous company for 4 years tended to have longer working experience.\ On the other hand, the ones who have shorter working experience have changed their positions or jobs more often.') st.write('To classify the data scientists by their gender and education level, we added two drop-down menus, so the users can easily select\ the data that matches with a certain condition and only use it to create plots. Using these two options, we created three-bar plots\ which show the distribution of data scientists by their enrolled university types, majors, and company types. The majority of the data\ scientists in the given data set are not currently enrolled in university. However, most Ph.D.-level data scientists answered that they\ are currently enrolled in university. Also, the proportion of data scientists who are currently attending university full-time was much\ higher in the female data scientists group than in the male group.') st.write('In the major graph, as was expected, the majority of data scientists studied STEM majors regardless of gender,\ and those who did not attend university are classified as ‘other’ in the major graph. The number of data scientists who studied Arts\ during their undergrad was the lowest in this distribution graph.') st.write('Lastly, to find which type of companies hire data scientists the most, we drew a graph that shows the company type and size\ that the respondents are currently working for. According to their answers, the majority works for small private firms regardless of gender.\ However, when we selected only Ph.D.-level data scientists, the result was different. The proportion of respondents\ who work for the public sector has increased.')
en
0.947025
# app4.py # of hours formally trained as a data scientist apart from general\
2.697246
3
robosuite/environments/panda.py
sumaaail/vices
1
6632970
from collections import OrderedDict import numpy as np import robosuite.utils.transform_utils as T from robosuite.environments import MujocoEnv from robosuite.models.grippers import gripper_factory from robosuite.models.robots import Panda from robosuite.controllers.arm_controller import * from collections import deque import hjson class PandaEnv(MujocoEnv): """Initializes a Panda robot environment.""" def __init__( self, controller_config_file, controller, gripper_type=None, gripper_visualization=False, use_indicator_object=False, has_renderer=False, has_offscreen_renderer=True, render_collision_mesh=False, render_visual_mesh=True, control_freq=10, horizon=1000, ignore_done=False, use_camera_obs=False, camera_name="frontview", camera_height=256, camera_width=256, camera_depth=False, impedance_ctrl=True, # TODO initial_policy=None, # TODO - currently not included in the config file (should be a function) **kwargs ): """ Args: controller_config_file (str): filepath to the corresponding controller config file that contains the associated controller parameters controller (str): Can be 'position', 'position_orientation', 'joint_velocity', 'joint_impedance', or 'joint_torque'. Specifies the type of controller to be used for dynamic trajectories gripper_type (str): type of gripper, used to instantiate gripper models from gripper factory. gripper_visualization (bool): True if using gripper visualization. Useful for teleoperation. use_indicator_object (bool): if True, sets up an indicator object that is useful for debugging. has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering. render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. control_freq (float): how many control signals to receive in every second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). use_camera_obs (bool): if True, every observation includes a rendered image. camera_name (str): name of camera to be rendered. Must be set if @use_camera_obs is True. camera_height (int): height of camera frame. camera_width (int): width of camera frame. camera_depth (bool): True if rendering RGB-D, and RGB otherwise. impedance_ctrl (bool) : True if we want to control impedance of the end effector ######### **kwargs includes additional params that may be specified and will override values found in the controller configuration file if the names match """ self.initial_policy = initial_policy self.impedance_ctrl = impedance_ctrl if self.impedance_ctrl: # Load the appropriate controller self._load_controller(controller, controller_config_file, kwargs) if 'residual_policy_multiplier' in kwargs: self.residual_policy_multiplier = kwargs['residual_policy_multiplier'] else: self.residual_policy_multiplier = None self.goal = np.zeros(3) self.goal_orientation = np.zeros(3) self.desired_force = np.zeros(3) self.desired_torque = np.zeros(3) if 'residual_policy_multiplier' in kwargs: self.residual_policy_multiplier = kwargs['residual_policy_multiplier'] else: self.residual_policy_multiplier = None self.initial_policy = initial_policy self.control_freq = control_freq self.timestep = 0 # self.position_limits = [[0,0,0],[0,0,0]] # self.orientation_limits = [[0,0,0],[0,0,0]] self.ee_force = np.zeros(3) self.ee_force_bias = np.zeros(3) self.contact_threshold = 1 # Maximum contact variation allowed without contact [N] self.ee_torque = np.zeros(3) self.ee_torque_bias = np.zeros(3) # self.controller = controller # TODO - check that these are updated properly self.total_kp = np.zeros(6) self.total_damping = np.zeros(6) self.n_avg_ee_acc = 10 self.has_gripper = gripper_type is not None self.gripper_type = gripper_type self.gripper_visualization = gripper_visualization self.use_indicator_object = use_indicator_object super().__init__( has_renderer=has_renderer, has_offscreen_renderer=has_offscreen_renderer, render_collision_mesh=render_collision_mesh, render_visual_mesh=render_visual_mesh, control_freq=control_freq, horizon=horizon, ignore_done=ignore_done, use_camera_obs=use_camera_obs, camera_name=camera_name, camera_height=camera_height, camera_width=camera_height, camera_depth=camera_depth, ) # Current and previous policy step q values, joint torques, ft ee applied and actions self.prev_pstep_ft = np.zeros(6) self.curr_pstep_ft = np.zeros(6) self.prev_pstep_a = np.zeros(self.dof) self.curr_pstep_a = np.zeros(self.dof) self.prev_pstep_q = np.zeros(len(self._ref_joint_vel_indexes)) self.curr_pstep_q = np.zeros(len(self._ref_joint_vel_indexes)) self.prev_pstep_t = np.zeros(len(self._ref_joint_vel_indexes)) self.curr_pstep_t = np.zeros(len(self._ref_joint_vel_indexes)) self.prev_pstep_ee_v = np.zeros(6) self.curr_pstep_ee_v = np.zeros(6) self.buffer_pstep_ee_v = deque(np.zeros(6) for _ in range(self.n_avg_ee_acc)) self.ee_acc = np.zeros(6) self.total_ee_acc = np.zeros(6) # used to compute average self.total_js_energy = np.zeros(len(self._ref_joint_vel_indexes)) self.torque_total = 0 self.joint_torques = 0 self.prev_ee_pos = np.zeros(7) self.ee_pos = np.zeros(7) ## counting joint limits self.joint_limit_count = 0 def _load_controller(self, controller_type, controller_file, kwargs): """ Loads controller to be used for dynamic trajectories Controller_type is a specified controller, and controller_params is a config file containing the appropriate parameters for that controller Kwargs is kwargs passed from init call and represents individual params to override in controller config file """ # Load the controller config file try: with open(controller_file) as f: params = hjson.load(f) except FileNotFoundError: print("Controller config file '{}' not found. Please check filepath and try again.".format( controller_file)) controller_params = params[controller_type] # Load additional arguments from kwargs and override the prior config-file loaded ones for key, value in kwargs.items(): if key in controller_params: controller_params[key] = value if controller_type == ControllerType.POS: self.controller = PositionController(**controller_params) elif controller_type == ControllerType.POS_ORI: self.controller = PositionOrientationController(**controller_params) elif controller_type == ControllerType.JOINT_IMP: self.controller = JointImpedanceController(**controller_params) elif controller_type == ControllerType.JOINT_TORQUE: self.controller = JointTorqueController(**controller_params) else: self.controller = JointVelocityController(**controller_params) def _load_model(self): """ Loads robot and optionally add grippers. """ super()._load_model() # Use xml that has motor torque actuators enabled self.mujoco_robot = Panda(xml_path="robots/panda/robot_torque.xml") if self.has_gripper: self.gripper = gripper_factory(self.gripper_type) if not self.gripper_visualization: self.gripper.hide_visualization() self.mujoco_robot.add_gripper("right_hand", self.gripper) def _reset_internal(self): """ Sets initial pose of arm and grippers. """ super()._reset_internal() self.sim.data.qpos[self._ref_joint_pos_indexes] = self.mujoco_robot.init_qpos if self.has_gripper: self.sim.data.qpos[ self._ref_joint_gripper_actuator_indexes ] = self.gripper.init_qpos self.controller.reset() self.goal = np.zeros(3) self.goal_orientation = np.zeros(3) self.desired_force = np.zeros(3) self.desired_torque = np.zeros(3) self.prev_pstep_q = np.array(self.mujoco_robot.init_qpos) self.curr_pstep_q = np.array(self.mujoco_robot.init_qpos) self.prev_pstep_a = np.zeros(self.dof) self.curr_pstep_a = np.zeros(self.dof) self.prev_pstep_ee_v = np.zeros(6) self.curr_pstep_ee_v = np.zeros(6) self.buffer_pstep_ee_v = deque(np.zeros(6) for _ in range(self.n_avg_ee_acc)) self.ee_acc = np.zeros(6) self.total_ee_acc = np.zeros(6) # used to compute average self.total_kp = np.zeros(6) self.total_damping = np.zeros(6) self.total_js_energy = np.zeros(len(self._ref_joint_vel_indexes)) self.prev_ee_pos = np.zeros(7) self.ee_pos = np.zeros(7) self.total_joint_torque = 0 self.joint_torques = 0 def _get_reference(self): """ Sets up necessary reference for robots, grippers, and objects. """ super()._get_reference() # indices for joints in qpos, qvel self.robot_joints = list(self.mujoco_robot.joints) self._ref_joint_pos_indexes = [ self.sim.model.get_joint_qpos_addr(x) for x in self.robot_joints ] self._ref_joint_vel_indexes = [ self.sim.model.get_joint_qvel_addr(x) for x in self.robot_joints ] if self.use_indicator_object: ind_qpos = self.sim.model.get_joint_qpos_addr("pos_indicator") self._ref_indicator_pos_low, self._ref_indicator_pos_high = ind_qpos ind_qvel = self.sim.model.get_joint_qvel_addr("pos_indicator") self._ref_indicator_vel_low, self._ref_indicator_vel_high = ind_qvel self.indicator_id = self.sim.model.body_name2id("pos_indicator") # indices for grippers in qpos, qvel if self.has_gripper: self.gripper_joints = list(self.gripper.joints) self._ref_gripper_joint_pos_indexes = [ self.sim.model.get_joint_qpos_addr(x) for x in self.gripper_joints ] self._ref_gripper_joint_vel_indexes = [ self.sim.model.get_joint_qvel_addr(x) for x in self.gripper_joints ] # indices for joint pos actuation, joint vel actuation, gripper actuation self._ref_joint_pos_actuator_indexes = [ self.sim.model.actuator_name2id(actuator) for actuator in self.sim.model.actuator_names if actuator.startswith("pos") ] self._ref_joint_vel_actuator_indexes = [ self.sim.model.actuator_name2id(actuator) for actuator in self.sim.model.actuator_names if actuator.startswith("vel") ] if self.has_gripper: self._ref_joint_gripper_actuator_indexes = [ self.sim.model.actuator_name2id(actuator) for actuator in self.sim.model.actuator_names if actuator.startswith("gripper") ] # IDs of sites for gripper visualization self.eef_site_id = self.sim.model.site_name2id("grip_site") self.eef_cylinder_id = self.sim.model.site_name2id("grip_site_cylinder") def move_indicator(self, pos): """ Sets 3d position of indicator object to @pos. """ if self.use_indicator_object: index = self._ref_indicator_pos_low self.sim.data.qpos[index : index + 3] = pos def _pre_action(self, action, policy_step): """ Overrides the superclass method to actuate the robot with the passed joint velocities and gripper control. Args: action (numpy array): The control to apply to the robot. The first @self.mujoco_robot.dof dimensions should be the desired normalized joint velocities and if the robot has a gripper, the next @self.gripper.dof dimensions should be actuation controls for the gripper. """ self.policy_step = policy_step # Make sure action length is correct assert len(action) == self.dof, "environment got invalid action dimension" # i.e.: not using new controller if not self.impedance_ctrl: # clip actions into valid range low, high = self.action_spec action = np.clip(action, low, high) if self.has_gripper: arm_action = action[: self.mujoco_robot.dof] gripper_action_in = action[ self.mujoco_robot.dof: self.mujoco_robot.dof + self.gripper.dof ] gripper_action_actual = self.gripper.format_action(gripper_action_in) action = np.concatenate([arm_action, gripper_action_actual]) # rescale normalized action to control ranges ctrl_range = self.sim.model.actuator_ctrlrange bias = 0.5 * (ctrl_range[:, 1] + ctrl_range[:, 0]) weight = 0.5 * (ctrl_range[:, 1] - ctrl_range[:, 0]) applied_action = bias + weight * action self.sim.data.ctrl[self._ref_joint_vel_indexes] = applied_action # gravity compensation self.sim.data.qfrc_applied[ self._ref_joint_vel_indexes ] = self.sim.data.qfrc_bias[self._ref_joint_vel_indexes] if self.use_indicator_object: self.sim.data.qfrc_applied[ self._ref_indicator_vel_low: self._ref_indicator_vel_high ] = self.sim.data.qfrc_bias[ self._ref_indicator_vel_low: self._ref_indicator_vel_high ] # using new controller else: # Split action into joint control and peripheral (i.e.: gripper) control (as specified by individual gripper) gripper_action = [] if self.has_gripper: gripper_action = action[self.controller.control_dim:] # all indexes past controller dimension indexes action = action[:self.controller.control_dim] # TODO # First, get joint space action # action = action.copy() # ensure that we don't change the action outside of this scope self.controller.update_model(self.sim, id_name='right_hand', joint_index=self._ref_joint_pos_indexes) torques = self.controller.action_to_torques(action, self.policy_step) # this scales and clips the actions correctly if self.initial_policy: initial_policy_torques = self.initial_policy.action_to_torques(self.sim, 'right_hand', self._ref_joint_pos_indexes, self.initial_policy_action, self.policy_step) self.residual_torques = torques self.initial_torques = initial_policy_torques if self.residual_policy_multiplier is not None: torques = self.residual_policy_multiplier * torques + initial_policy_torques else: torques = torques + initial_policy_torques # TODO self.total_joint_torque += np.sum(abs(torques)) self.joint_torques = torques # Get gripper action, if applicable if self.has_gripper: gripper_action_actual = self.gripper.format_action(gripper_action) # rescale normalized gripper action to control ranges ctrl_range = self.sim.model.actuator_ctrlrange[self._ref_gripper_joint_vel_indexes] bias = 0.5 * (ctrl_range[:, 1] + ctrl_range[:, 0]) weight = 0.5 * (ctrl_range[:, 1] - ctrl_range[:, 0]) applied_gripper_action = bias + weight * gripper_action_actual self.sim.data.ctrl[self._ref_gripper_joint_vel_indexes] = applied_gripper_action # Now, control both gripper and joints self.sim.data.ctrl[self._ref_joint_vel_indexes] = self.sim.data.qfrc_bias[ self._ref_joint_vel_indexes] + torques if self.policy_step: self.prev_pstep_q = np.array(self.curr_pstep_q) self.curr_pstep_q = np.array(self.sim.data.qpos[self._ref_joint_vel_indexes]) self.prev_pstep_a = np.array(self.curr_pstep_a) self.curr_pstep_a = np.array(action) # .copy()) # TODO self.prev_pstep_t = np.array(self.curr_pstep_t) self.curr_pstep_t = np.array(self.sim.data.ctrl[self._ref_joint_vel_indexes]) self.prev_pstep_ft = np.array(self.curr_pstep_ft) # Assumes a ft sensor on the wrist force_sensor_id = self.sim.model.sensor_name2id("force_ee") force_ee = self.sim.data.sensordata[force_sensor_id * 3: force_sensor_id * 3 + 3] torque_sensor_id = self.sim.model.sensor_name2id("torque_ee") torque_ee = self.sim.data.sensordata[torque_sensor_id * 3: torque_sensor_id * 3 + 3] self.curr_pstep_ft = np.concatenate([force_ee, torque_ee]) self.prev_pstep_ee_v = self.curr_pstep_ee_v self.curr_pstep_ee_v = np.concatenate( [self.sim.data.body_xvelp[self.sim.model.body_name2id("right_hand")], self.sim.data.body_xvelr[self.sim.model.body_name2id("right_hand")]]) self.buffer_pstep_ee_v.popleft() self.buffer_pstep_ee_v.append(self.curr_pstep_ee_v) # convert to matrix buffer_mat = [] for v in self.buffer_pstep_ee_v: buffer_mat += [v] buffer_mat = np.vstack(buffer_mat) diffs = np.diff(buffer_mat, axis=0) diffs *= self.control_freq diffs = np.vstack([self.ee_acc, diffs]) diffs.reshape((self.n_avg_ee_acc, 6)) self.ee_acc = np.array( [np.convolve(col, np.ones((self.n_avg_ee_acc,)) / self.n_avg_ee_acc, mode='valid')[0] for col in diffs.transpose()]) def _post_action(self, action): """ (Optional) does gripper visualization after actions. """ self.prev_ee_pos = self.ee_pos self.ee_pos = np.array(self.sim.data.body_xpos[self.sim.model.body_name2id('right_hand')]) force_sensor_id = self.sim.model.sensor_name2id("force_ee") self.ee_force = np.array(self.sim.data.sensordata[force_sensor_id * 3: force_sensor_id * 3 + 3]) if np.linalg.norm(self.ee_force_bias) == 0: self.ee_force_bias = self.ee_force torque_sensor_id = self.sim.model.sensor_name2id("torque_ee") self.ee_torque = np.array(self.sim.data.sensordata[torque_sensor_id * 3: torque_sensor_id * 3 + 3]) if np.linalg.norm(self.ee_torque_bias) == 0: self.ee_torque_bias = self.ee_torque ret = super()._post_action(action) self._gripper_visualization() return ret def _get_observation(self): """ Returns an OrderedDict containing observations [(name_string, np.array), ...]. Important keys: robot-state: contains robot-centric information. """ di = super()._get_observation() # camera observations if self.use_camera_obs: camera_obs = self.sim.render(camera_name=self.camera_name, width=self.camera_width, height=self.camera_height, depth=self.camera_depth) if self.camera_depth: di['image'], di['depth'] = camera_obs else: di['image'] = camera_obs # Skip for now, not worth importing cv2 just for this # if self.visualize_offscreen and not self.real_robot: # cv2.imshow('Robot observation', np.flip(camera_obs[..., ::-1], 0)) # cv2.waitKey(10) # proprioceptive features di["joint_pos"] = np.array( [self.sim.data.qpos[x] for x in self._ref_joint_pos_indexes] ) di["joint_vel"] = np.array( [self.sim.data.qvel[x] for x in self._ref_joint_vel_indexes] ) robot_states = [ np.sin(di["joint_pos"]), np.cos(di["joint_pos"]), di["joint_vel"], ] if self.has_gripper: di["gripper_qpos"] = np.array( [self.sim.data.qpos[x] for x in self._ref_gripper_joint_pos_indexes] ) di["gripper_qvel"] = np.array( [self.sim.data.qvel[x] for x in self._ref_gripper_joint_vel_indexes] ) di["eef_pos"] = np.array(self.sim.data.body_xpos[self.sim.model.body_name2id('right_hand')]) di["eef_quat"] = T.convert_quat( self.sim.data.get_body_xquat("right_hand"), to="xyzw" ) di["eef_vlin"] = np.array(self.sim.data.get_body_xvelp('right_hand')) di["eef_vang"] = np.array(self.sim.data.get_body_xvelr('right_hand')) # add in gripper information robot_states.extend([di["gripper_qpos"], di["eef_pos"], di["eef_quat"], di["eef_vlin"], di["eef_vang"]]) di["robot-state"] = np.concatenate(robot_states) di["prev-act"] = self.prev_pstep_a # Adding binary contact observation in_contact = np.linalg.norm(self.ee_force - self.ee_force_bias) > self.contact_threshold di["contact-obs"] = in_contact return di @property def action_spec(self): """ Action lower/upper limits per dimension. """ low = np.ones(self.dof) * -1. high = np.ones(self.dof) * 1. return low, high @property def dof(self): """ Returns the DoF of the robot (with grippers). """ if self.impedance_ctrl: dof = self.controller.action_dim else: dof = self.mujoco_robot.dof if self.has_gripper: dof += self.gripper.dof return dof def pose_in_base_from_name(self, name): """ A helper function that takes in a named data field and returns the pose of that object in the base frame. """ pos_in_world = self.sim.data.get_body_xpos(name) rot_in_world = self.sim.data.get_body_xmat(name).reshape((3, 3)) pose_in_world = T.make_pose(pos_in_world, rot_in_world) base_pos_in_world = self.sim.data.get_body_xpos("base") base_rot_in_world = self.sim.data.get_body_xmat("base").reshape((3, 3)) base_pose_in_world = T.make_pose(base_pos_in_world, base_rot_in_world) world_pose_in_base = T.pose_inv(base_pose_in_world) pose_in_base = T.pose_in_A_to_pose_in_B(pose_in_world, world_pose_in_base) return pose_in_base def set_robot_joint_positions(self, jpos): """ Helper method to force robot joint positions to the passed values. """ self.sim.data.qpos[self._ref_joint_pos_indexes] = jpos self.sim.forward() @property def _right_hand_joint_cartesian_pose(self): """ Returns the cartesian pose of the last robot joint in base frame of robot. """ return self.pose_in_base_from_name("right_l6") @property def _right_hand_pose(self): """ Returns eef pose in base frame of robot. """ return self.pose_in_base_from_name("right_hand") @property def _right_hand_quat(self): """ Returns eef quaternion in base frame of robot. """ return T.mat2quat(self._right_hand_orn) @property def _right_hand_total_velocity(self): """ Returns the total eef velocity (linear + angular) in the base frame as a numpy array of shape (6,) """ # Use jacobian to translate joint velocities to end effector velocities. Jp = self.sim.data.get_body_jacp("right_hand").reshape((3, -1)) Jp_joint = Jp[:, self._ref_joint_vel_indexes] Jr = self.sim.data.get_body_jacr("right_hand").reshape((3, -1)) Jr_joint = Jr[:, self._ref_joint_vel_indexes] eef_lin_vel = Jp_joint.dot(self._joint_velocities) eef_rot_vel = Jr_joint.dot(self._joint_velocities) return np.concatenate([eef_lin_vel, eef_rot_vel]) @property def _right_hand_pos(self): """ Returns position of eef in base frame of robot. """ eef_pose_in_base = self._right_hand_pose return eef_pose_in_base[:3, 3] @property def _right_hand_orn(self): """ Returns orientation of eef in base frame of robot as a rotation matrix. """ eef_pose_in_base = self._right_hand_pose return eef_pose_in_base[:3, :3] @property def _right_hand_vel(self): """ Returns velocity of eef in base frame of robot. """ return self._right_hand_total_velocity[:3] @property def _right_hand_ang_vel(self): """ Returns angular velocity of eef in base frame of robot. """ return self._right_hand_total_velocity[3:] @property def _joint_positions(self): """ Returns a numpy array of joint positions. Panda robots have 7 joints and positions are in rotation angles. """ return self.sim.data.qpos[self._ref_joint_pos_indexes] @property def _joint_velocities(self): """ Returns a numpy array of joint velocities. Panda robots have 7 joints and velocities are angular velocities. """ return self.sim.data.qvel[self._ref_joint_vel_indexes] def _gripper_visualization(self): """ Do any needed visualization here. """ # By default, don't do any coloring. self.sim.model.site_rgba[self.eef_site_id] = [0., 0., 0., 0.] def _check_contact(self): """ Returns True if the gripper is in contact with another object. """ return False def _check_arm_contact(self): """ Returns True if the arm is in contact with another object. """ collision = False for contact in self.sim.data.contact[:self.sim.data.ncon]: if self.sim.model.geom_id2name(contact.geom1) in self.mujoco_robot.contact_geoms or \ self.sim.model.geom_id2name(contact.geom2) in self.mujoco_robot.contact_geoms: collision = True break return collision def _check_q_limits(self): """ Returns True if the arm is in joint limits or very close to. """ joint_limits = False tolerance = 0.1 for (idx, (q, q_limits)) in enumerate( zip(self.sim.data.qpos[self._ref_joint_pos_indexes], self.sim.model.jnt_range)): if not (q > q_limits[0] + tolerance and q < q_limits[1] - tolerance): print("Joint limit reached in joint " + str(idx)) joint_limits = True self.joint_limit_count += 1 return joint_limits def _compute_q_delta(self): """ Returns the change in joint space configuration between previous and current steps """ q_delta = self.prev_pstep_q - self.curr_pstep_q return q_delta def _compute_t_delta(self): """ Returns the change in joint space configuration between previous and current steps """ t_delta = self.prev_pstep_t - self.curr_pstep_t return t_delta def _compute_a_delta(self): """ Returns the change in policy action between previous and current steps """ a_delta = self.prev_pstep_a - self.curr_pstep_a return a_delta def _compute_ft_delta(self): """ Returns the change in policy action between previous and current steps """ ft_delta = self.prev_pstep_ft - self.curr_pstep_ft return ft_delta def _compute_js_energy(self): """ Returns the energy consumed by each joint between previous and current steps """ # Mean torque applied mean_t = self.prev_pstep_t - self.curr_pstep_t # We assume in the motors torque is proportional to current (and voltage is constant) # In that case the amount of power scales proportional to the torque and the energy is the # time integral of that js_energy = np.abs((1.0 / self.control_freq) * mean_t) return js_energy def _compute_ee_ft_integral(self): """ Returns the integral over time of the applied ee force-torque """ mean_ft = self.prev_pstep_ft - self.curr_pstep_ft integral_ft = np.abs((1.0 / self.control_freq) * mean_ft) return integral_ft def render_additional_image(self, camera_name, camera_width, camera_height, camera_depth): img = self.sim.render(camera_name=camera_name, width=camera_width, height=camera_height, depth=camera_depth) return img
from collections import OrderedDict import numpy as np import robosuite.utils.transform_utils as T from robosuite.environments import MujocoEnv from robosuite.models.grippers import gripper_factory from robosuite.models.robots import Panda from robosuite.controllers.arm_controller import * from collections import deque import hjson class PandaEnv(MujocoEnv): """Initializes a Panda robot environment.""" def __init__( self, controller_config_file, controller, gripper_type=None, gripper_visualization=False, use_indicator_object=False, has_renderer=False, has_offscreen_renderer=True, render_collision_mesh=False, render_visual_mesh=True, control_freq=10, horizon=1000, ignore_done=False, use_camera_obs=False, camera_name="frontview", camera_height=256, camera_width=256, camera_depth=False, impedance_ctrl=True, # TODO initial_policy=None, # TODO - currently not included in the config file (should be a function) **kwargs ): """ Args: controller_config_file (str): filepath to the corresponding controller config file that contains the associated controller parameters controller (str): Can be 'position', 'position_orientation', 'joint_velocity', 'joint_impedance', or 'joint_torque'. Specifies the type of controller to be used for dynamic trajectories gripper_type (str): type of gripper, used to instantiate gripper models from gripper factory. gripper_visualization (bool): True if using gripper visualization. Useful for teleoperation. use_indicator_object (bool): if True, sets up an indicator object that is useful for debugging. has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering. render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. control_freq (float): how many control signals to receive in every second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). use_camera_obs (bool): if True, every observation includes a rendered image. camera_name (str): name of camera to be rendered. Must be set if @use_camera_obs is True. camera_height (int): height of camera frame. camera_width (int): width of camera frame. camera_depth (bool): True if rendering RGB-D, and RGB otherwise. impedance_ctrl (bool) : True if we want to control impedance of the end effector ######### **kwargs includes additional params that may be specified and will override values found in the controller configuration file if the names match """ self.initial_policy = initial_policy self.impedance_ctrl = impedance_ctrl if self.impedance_ctrl: # Load the appropriate controller self._load_controller(controller, controller_config_file, kwargs) if 'residual_policy_multiplier' in kwargs: self.residual_policy_multiplier = kwargs['residual_policy_multiplier'] else: self.residual_policy_multiplier = None self.goal = np.zeros(3) self.goal_orientation = np.zeros(3) self.desired_force = np.zeros(3) self.desired_torque = np.zeros(3) if 'residual_policy_multiplier' in kwargs: self.residual_policy_multiplier = kwargs['residual_policy_multiplier'] else: self.residual_policy_multiplier = None self.initial_policy = initial_policy self.control_freq = control_freq self.timestep = 0 # self.position_limits = [[0,0,0],[0,0,0]] # self.orientation_limits = [[0,0,0],[0,0,0]] self.ee_force = np.zeros(3) self.ee_force_bias = np.zeros(3) self.contact_threshold = 1 # Maximum contact variation allowed without contact [N] self.ee_torque = np.zeros(3) self.ee_torque_bias = np.zeros(3) # self.controller = controller # TODO - check that these are updated properly self.total_kp = np.zeros(6) self.total_damping = np.zeros(6) self.n_avg_ee_acc = 10 self.has_gripper = gripper_type is not None self.gripper_type = gripper_type self.gripper_visualization = gripper_visualization self.use_indicator_object = use_indicator_object super().__init__( has_renderer=has_renderer, has_offscreen_renderer=has_offscreen_renderer, render_collision_mesh=render_collision_mesh, render_visual_mesh=render_visual_mesh, control_freq=control_freq, horizon=horizon, ignore_done=ignore_done, use_camera_obs=use_camera_obs, camera_name=camera_name, camera_height=camera_height, camera_width=camera_height, camera_depth=camera_depth, ) # Current and previous policy step q values, joint torques, ft ee applied and actions self.prev_pstep_ft = np.zeros(6) self.curr_pstep_ft = np.zeros(6) self.prev_pstep_a = np.zeros(self.dof) self.curr_pstep_a = np.zeros(self.dof) self.prev_pstep_q = np.zeros(len(self._ref_joint_vel_indexes)) self.curr_pstep_q = np.zeros(len(self._ref_joint_vel_indexes)) self.prev_pstep_t = np.zeros(len(self._ref_joint_vel_indexes)) self.curr_pstep_t = np.zeros(len(self._ref_joint_vel_indexes)) self.prev_pstep_ee_v = np.zeros(6) self.curr_pstep_ee_v = np.zeros(6) self.buffer_pstep_ee_v = deque(np.zeros(6) for _ in range(self.n_avg_ee_acc)) self.ee_acc = np.zeros(6) self.total_ee_acc = np.zeros(6) # used to compute average self.total_js_energy = np.zeros(len(self._ref_joint_vel_indexes)) self.torque_total = 0 self.joint_torques = 0 self.prev_ee_pos = np.zeros(7) self.ee_pos = np.zeros(7) ## counting joint limits self.joint_limit_count = 0 def _load_controller(self, controller_type, controller_file, kwargs): """ Loads controller to be used for dynamic trajectories Controller_type is a specified controller, and controller_params is a config file containing the appropriate parameters for that controller Kwargs is kwargs passed from init call and represents individual params to override in controller config file """ # Load the controller config file try: with open(controller_file) as f: params = hjson.load(f) except FileNotFoundError: print("Controller config file '{}' not found. Please check filepath and try again.".format( controller_file)) controller_params = params[controller_type] # Load additional arguments from kwargs and override the prior config-file loaded ones for key, value in kwargs.items(): if key in controller_params: controller_params[key] = value if controller_type == ControllerType.POS: self.controller = PositionController(**controller_params) elif controller_type == ControllerType.POS_ORI: self.controller = PositionOrientationController(**controller_params) elif controller_type == ControllerType.JOINT_IMP: self.controller = JointImpedanceController(**controller_params) elif controller_type == ControllerType.JOINT_TORQUE: self.controller = JointTorqueController(**controller_params) else: self.controller = JointVelocityController(**controller_params) def _load_model(self): """ Loads robot and optionally add grippers. """ super()._load_model() # Use xml that has motor torque actuators enabled self.mujoco_robot = Panda(xml_path="robots/panda/robot_torque.xml") if self.has_gripper: self.gripper = gripper_factory(self.gripper_type) if not self.gripper_visualization: self.gripper.hide_visualization() self.mujoco_robot.add_gripper("right_hand", self.gripper) def _reset_internal(self): """ Sets initial pose of arm and grippers. """ super()._reset_internal() self.sim.data.qpos[self._ref_joint_pos_indexes] = self.mujoco_robot.init_qpos if self.has_gripper: self.sim.data.qpos[ self._ref_joint_gripper_actuator_indexes ] = self.gripper.init_qpos self.controller.reset() self.goal = np.zeros(3) self.goal_orientation = np.zeros(3) self.desired_force = np.zeros(3) self.desired_torque = np.zeros(3) self.prev_pstep_q = np.array(self.mujoco_robot.init_qpos) self.curr_pstep_q = np.array(self.mujoco_robot.init_qpos) self.prev_pstep_a = np.zeros(self.dof) self.curr_pstep_a = np.zeros(self.dof) self.prev_pstep_ee_v = np.zeros(6) self.curr_pstep_ee_v = np.zeros(6) self.buffer_pstep_ee_v = deque(np.zeros(6) for _ in range(self.n_avg_ee_acc)) self.ee_acc = np.zeros(6) self.total_ee_acc = np.zeros(6) # used to compute average self.total_kp = np.zeros(6) self.total_damping = np.zeros(6) self.total_js_energy = np.zeros(len(self._ref_joint_vel_indexes)) self.prev_ee_pos = np.zeros(7) self.ee_pos = np.zeros(7) self.total_joint_torque = 0 self.joint_torques = 0 def _get_reference(self): """ Sets up necessary reference for robots, grippers, and objects. """ super()._get_reference() # indices for joints in qpos, qvel self.robot_joints = list(self.mujoco_robot.joints) self._ref_joint_pos_indexes = [ self.sim.model.get_joint_qpos_addr(x) for x in self.robot_joints ] self._ref_joint_vel_indexes = [ self.sim.model.get_joint_qvel_addr(x) for x in self.robot_joints ] if self.use_indicator_object: ind_qpos = self.sim.model.get_joint_qpos_addr("pos_indicator") self._ref_indicator_pos_low, self._ref_indicator_pos_high = ind_qpos ind_qvel = self.sim.model.get_joint_qvel_addr("pos_indicator") self._ref_indicator_vel_low, self._ref_indicator_vel_high = ind_qvel self.indicator_id = self.sim.model.body_name2id("pos_indicator") # indices for grippers in qpos, qvel if self.has_gripper: self.gripper_joints = list(self.gripper.joints) self._ref_gripper_joint_pos_indexes = [ self.sim.model.get_joint_qpos_addr(x) for x in self.gripper_joints ] self._ref_gripper_joint_vel_indexes = [ self.sim.model.get_joint_qvel_addr(x) for x in self.gripper_joints ] # indices for joint pos actuation, joint vel actuation, gripper actuation self._ref_joint_pos_actuator_indexes = [ self.sim.model.actuator_name2id(actuator) for actuator in self.sim.model.actuator_names if actuator.startswith("pos") ] self._ref_joint_vel_actuator_indexes = [ self.sim.model.actuator_name2id(actuator) for actuator in self.sim.model.actuator_names if actuator.startswith("vel") ] if self.has_gripper: self._ref_joint_gripper_actuator_indexes = [ self.sim.model.actuator_name2id(actuator) for actuator in self.sim.model.actuator_names if actuator.startswith("gripper") ] # IDs of sites for gripper visualization self.eef_site_id = self.sim.model.site_name2id("grip_site") self.eef_cylinder_id = self.sim.model.site_name2id("grip_site_cylinder") def move_indicator(self, pos): """ Sets 3d position of indicator object to @pos. """ if self.use_indicator_object: index = self._ref_indicator_pos_low self.sim.data.qpos[index : index + 3] = pos def _pre_action(self, action, policy_step): """ Overrides the superclass method to actuate the robot with the passed joint velocities and gripper control. Args: action (numpy array): The control to apply to the robot. The first @self.mujoco_robot.dof dimensions should be the desired normalized joint velocities and if the robot has a gripper, the next @self.gripper.dof dimensions should be actuation controls for the gripper. """ self.policy_step = policy_step # Make sure action length is correct assert len(action) == self.dof, "environment got invalid action dimension" # i.e.: not using new controller if not self.impedance_ctrl: # clip actions into valid range low, high = self.action_spec action = np.clip(action, low, high) if self.has_gripper: arm_action = action[: self.mujoco_robot.dof] gripper_action_in = action[ self.mujoco_robot.dof: self.mujoco_robot.dof + self.gripper.dof ] gripper_action_actual = self.gripper.format_action(gripper_action_in) action = np.concatenate([arm_action, gripper_action_actual]) # rescale normalized action to control ranges ctrl_range = self.sim.model.actuator_ctrlrange bias = 0.5 * (ctrl_range[:, 1] + ctrl_range[:, 0]) weight = 0.5 * (ctrl_range[:, 1] - ctrl_range[:, 0]) applied_action = bias + weight * action self.sim.data.ctrl[self._ref_joint_vel_indexes] = applied_action # gravity compensation self.sim.data.qfrc_applied[ self._ref_joint_vel_indexes ] = self.sim.data.qfrc_bias[self._ref_joint_vel_indexes] if self.use_indicator_object: self.sim.data.qfrc_applied[ self._ref_indicator_vel_low: self._ref_indicator_vel_high ] = self.sim.data.qfrc_bias[ self._ref_indicator_vel_low: self._ref_indicator_vel_high ] # using new controller else: # Split action into joint control and peripheral (i.e.: gripper) control (as specified by individual gripper) gripper_action = [] if self.has_gripper: gripper_action = action[self.controller.control_dim:] # all indexes past controller dimension indexes action = action[:self.controller.control_dim] # TODO # First, get joint space action # action = action.copy() # ensure that we don't change the action outside of this scope self.controller.update_model(self.sim, id_name='right_hand', joint_index=self._ref_joint_pos_indexes) torques = self.controller.action_to_torques(action, self.policy_step) # this scales and clips the actions correctly if self.initial_policy: initial_policy_torques = self.initial_policy.action_to_torques(self.sim, 'right_hand', self._ref_joint_pos_indexes, self.initial_policy_action, self.policy_step) self.residual_torques = torques self.initial_torques = initial_policy_torques if self.residual_policy_multiplier is not None: torques = self.residual_policy_multiplier * torques + initial_policy_torques else: torques = torques + initial_policy_torques # TODO self.total_joint_torque += np.sum(abs(torques)) self.joint_torques = torques # Get gripper action, if applicable if self.has_gripper: gripper_action_actual = self.gripper.format_action(gripper_action) # rescale normalized gripper action to control ranges ctrl_range = self.sim.model.actuator_ctrlrange[self._ref_gripper_joint_vel_indexes] bias = 0.5 * (ctrl_range[:, 1] + ctrl_range[:, 0]) weight = 0.5 * (ctrl_range[:, 1] - ctrl_range[:, 0]) applied_gripper_action = bias + weight * gripper_action_actual self.sim.data.ctrl[self._ref_gripper_joint_vel_indexes] = applied_gripper_action # Now, control both gripper and joints self.sim.data.ctrl[self._ref_joint_vel_indexes] = self.sim.data.qfrc_bias[ self._ref_joint_vel_indexes] + torques if self.policy_step: self.prev_pstep_q = np.array(self.curr_pstep_q) self.curr_pstep_q = np.array(self.sim.data.qpos[self._ref_joint_vel_indexes]) self.prev_pstep_a = np.array(self.curr_pstep_a) self.curr_pstep_a = np.array(action) # .copy()) # TODO self.prev_pstep_t = np.array(self.curr_pstep_t) self.curr_pstep_t = np.array(self.sim.data.ctrl[self._ref_joint_vel_indexes]) self.prev_pstep_ft = np.array(self.curr_pstep_ft) # Assumes a ft sensor on the wrist force_sensor_id = self.sim.model.sensor_name2id("force_ee") force_ee = self.sim.data.sensordata[force_sensor_id * 3: force_sensor_id * 3 + 3] torque_sensor_id = self.sim.model.sensor_name2id("torque_ee") torque_ee = self.sim.data.sensordata[torque_sensor_id * 3: torque_sensor_id * 3 + 3] self.curr_pstep_ft = np.concatenate([force_ee, torque_ee]) self.prev_pstep_ee_v = self.curr_pstep_ee_v self.curr_pstep_ee_v = np.concatenate( [self.sim.data.body_xvelp[self.sim.model.body_name2id("right_hand")], self.sim.data.body_xvelr[self.sim.model.body_name2id("right_hand")]]) self.buffer_pstep_ee_v.popleft() self.buffer_pstep_ee_v.append(self.curr_pstep_ee_v) # convert to matrix buffer_mat = [] for v in self.buffer_pstep_ee_v: buffer_mat += [v] buffer_mat = np.vstack(buffer_mat) diffs = np.diff(buffer_mat, axis=0) diffs *= self.control_freq diffs = np.vstack([self.ee_acc, diffs]) diffs.reshape((self.n_avg_ee_acc, 6)) self.ee_acc = np.array( [np.convolve(col, np.ones((self.n_avg_ee_acc,)) / self.n_avg_ee_acc, mode='valid')[0] for col in diffs.transpose()]) def _post_action(self, action): """ (Optional) does gripper visualization after actions. """ self.prev_ee_pos = self.ee_pos self.ee_pos = np.array(self.sim.data.body_xpos[self.sim.model.body_name2id('right_hand')]) force_sensor_id = self.sim.model.sensor_name2id("force_ee") self.ee_force = np.array(self.sim.data.sensordata[force_sensor_id * 3: force_sensor_id * 3 + 3]) if np.linalg.norm(self.ee_force_bias) == 0: self.ee_force_bias = self.ee_force torque_sensor_id = self.sim.model.sensor_name2id("torque_ee") self.ee_torque = np.array(self.sim.data.sensordata[torque_sensor_id * 3: torque_sensor_id * 3 + 3]) if np.linalg.norm(self.ee_torque_bias) == 0: self.ee_torque_bias = self.ee_torque ret = super()._post_action(action) self._gripper_visualization() return ret def _get_observation(self): """ Returns an OrderedDict containing observations [(name_string, np.array), ...]. Important keys: robot-state: contains robot-centric information. """ di = super()._get_observation() # camera observations if self.use_camera_obs: camera_obs = self.sim.render(camera_name=self.camera_name, width=self.camera_width, height=self.camera_height, depth=self.camera_depth) if self.camera_depth: di['image'], di['depth'] = camera_obs else: di['image'] = camera_obs # Skip for now, not worth importing cv2 just for this # if self.visualize_offscreen and not self.real_robot: # cv2.imshow('Robot observation', np.flip(camera_obs[..., ::-1], 0)) # cv2.waitKey(10) # proprioceptive features di["joint_pos"] = np.array( [self.sim.data.qpos[x] for x in self._ref_joint_pos_indexes] ) di["joint_vel"] = np.array( [self.sim.data.qvel[x] for x in self._ref_joint_vel_indexes] ) robot_states = [ np.sin(di["joint_pos"]), np.cos(di["joint_pos"]), di["joint_vel"], ] if self.has_gripper: di["gripper_qpos"] = np.array( [self.sim.data.qpos[x] for x in self._ref_gripper_joint_pos_indexes] ) di["gripper_qvel"] = np.array( [self.sim.data.qvel[x] for x in self._ref_gripper_joint_vel_indexes] ) di["eef_pos"] = np.array(self.sim.data.body_xpos[self.sim.model.body_name2id('right_hand')]) di["eef_quat"] = T.convert_quat( self.sim.data.get_body_xquat("right_hand"), to="xyzw" ) di["eef_vlin"] = np.array(self.sim.data.get_body_xvelp('right_hand')) di["eef_vang"] = np.array(self.sim.data.get_body_xvelr('right_hand')) # add in gripper information robot_states.extend([di["gripper_qpos"], di["eef_pos"], di["eef_quat"], di["eef_vlin"], di["eef_vang"]]) di["robot-state"] = np.concatenate(robot_states) di["prev-act"] = self.prev_pstep_a # Adding binary contact observation in_contact = np.linalg.norm(self.ee_force - self.ee_force_bias) > self.contact_threshold di["contact-obs"] = in_contact return di @property def action_spec(self): """ Action lower/upper limits per dimension. """ low = np.ones(self.dof) * -1. high = np.ones(self.dof) * 1. return low, high @property def dof(self): """ Returns the DoF of the robot (with grippers). """ if self.impedance_ctrl: dof = self.controller.action_dim else: dof = self.mujoco_robot.dof if self.has_gripper: dof += self.gripper.dof return dof def pose_in_base_from_name(self, name): """ A helper function that takes in a named data field and returns the pose of that object in the base frame. """ pos_in_world = self.sim.data.get_body_xpos(name) rot_in_world = self.sim.data.get_body_xmat(name).reshape((3, 3)) pose_in_world = T.make_pose(pos_in_world, rot_in_world) base_pos_in_world = self.sim.data.get_body_xpos("base") base_rot_in_world = self.sim.data.get_body_xmat("base").reshape((3, 3)) base_pose_in_world = T.make_pose(base_pos_in_world, base_rot_in_world) world_pose_in_base = T.pose_inv(base_pose_in_world) pose_in_base = T.pose_in_A_to_pose_in_B(pose_in_world, world_pose_in_base) return pose_in_base def set_robot_joint_positions(self, jpos): """ Helper method to force robot joint positions to the passed values. """ self.sim.data.qpos[self._ref_joint_pos_indexes] = jpos self.sim.forward() @property def _right_hand_joint_cartesian_pose(self): """ Returns the cartesian pose of the last robot joint in base frame of robot. """ return self.pose_in_base_from_name("right_l6") @property def _right_hand_pose(self): """ Returns eef pose in base frame of robot. """ return self.pose_in_base_from_name("right_hand") @property def _right_hand_quat(self): """ Returns eef quaternion in base frame of robot. """ return T.mat2quat(self._right_hand_orn) @property def _right_hand_total_velocity(self): """ Returns the total eef velocity (linear + angular) in the base frame as a numpy array of shape (6,) """ # Use jacobian to translate joint velocities to end effector velocities. Jp = self.sim.data.get_body_jacp("right_hand").reshape((3, -1)) Jp_joint = Jp[:, self._ref_joint_vel_indexes] Jr = self.sim.data.get_body_jacr("right_hand").reshape((3, -1)) Jr_joint = Jr[:, self._ref_joint_vel_indexes] eef_lin_vel = Jp_joint.dot(self._joint_velocities) eef_rot_vel = Jr_joint.dot(self._joint_velocities) return np.concatenate([eef_lin_vel, eef_rot_vel]) @property def _right_hand_pos(self): """ Returns position of eef in base frame of robot. """ eef_pose_in_base = self._right_hand_pose return eef_pose_in_base[:3, 3] @property def _right_hand_orn(self): """ Returns orientation of eef in base frame of robot as a rotation matrix. """ eef_pose_in_base = self._right_hand_pose return eef_pose_in_base[:3, :3] @property def _right_hand_vel(self): """ Returns velocity of eef in base frame of robot. """ return self._right_hand_total_velocity[:3] @property def _right_hand_ang_vel(self): """ Returns angular velocity of eef in base frame of robot. """ return self._right_hand_total_velocity[3:] @property def _joint_positions(self): """ Returns a numpy array of joint positions. Panda robots have 7 joints and positions are in rotation angles. """ return self.sim.data.qpos[self._ref_joint_pos_indexes] @property def _joint_velocities(self): """ Returns a numpy array of joint velocities. Panda robots have 7 joints and velocities are angular velocities. """ return self.sim.data.qvel[self._ref_joint_vel_indexes] def _gripper_visualization(self): """ Do any needed visualization here. """ # By default, don't do any coloring. self.sim.model.site_rgba[self.eef_site_id] = [0., 0., 0., 0.] def _check_contact(self): """ Returns True if the gripper is in contact with another object. """ return False def _check_arm_contact(self): """ Returns True if the arm is in contact with another object. """ collision = False for contact in self.sim.data.contact[:self.sim.data.ncon]: if self.sim.model.geom_id2name(contact.geom1) in self.mujoco_robot.contact_geoms or \ self.sim.model.geom_id2name(contact.geom2) in self.mujoco_robot.contact_geoms: collision = True break return collision def _check_q_limits(self): """ Returns True if the arm is in joint limits or very close to. """ joint_limits = False tolerance = 0.1 for (idx, (q, q_limits)) in enumerate( zip(self.sim.data.qpos[self._ref_joint_pos_indexes], self.sim.model.jnt_range)): if not (q > q_limits[0] + tolerance and q < q_limits[1] - tolerance): print("Joint limit reached in joint " + str(idx)) joint_limits = True self.joint_limit_count += 1 return joint_limits def _compute_q_delta(self): """ Returns the change in joint space configuration between previous and current steps """ q_delta = self.prev_pstep_q - self.curr_pstep_q return q_delta def _compute_t_delta(self): """ Returns the change in joint space configuration between previous and current steps """ t_delta = self.prev_pstep_t - self.curr_pstep_t return t_delta def _compute_a_delta(self): """ Returns the change in policy action between previous and current steps """ a_delta = self.prev_pstep_a - self.curr_pstep_a return a_delta def _compute_ft_delta(self): """ Returns the change in policy action between previous and current steps """ ft_delta = self.prev_pstep_ft - self.curr_pstep_ft return ft_delta def _compute_js_energy(self): """ Returns the energy consumed by each joint between previous and current steps """ # Mean torque applied mean_t = self.prev_pstep_t - self.curr_pstep_t # We assume in the motors torque is proportional to current (and voltage is constant) # In that case the amount of power scales proportional to the torque and the energy is the # time integral of that js_energy = np.abs((1.0 / self.control_freq) * mean_t) return js_energy def _compute_ee_ft_integral(self): """ Returns the integral over time of the applied ee force-torque """ mean_ft = self.prev_pstep_ft - self.curr_pstep_ft integral_ft = np.abs((1.0 / self.control_freq) * mean_ft) return integral_ft def render_additional_image(self, camera_name, camera_width, camera_height, camera_depth): img = self.sim.render(camera_name=camera_name, width=camera_width, height=camera_height, depth=camera_depth) return img
en
0.753621
Initializes a Panda robot environment. # TODO # TODO - currently not included in the config file (should be a function) Args: controller_config_file (str): filepath to the corresponding controller config file that contains the associated controller parameters controller (str): Can be 'position', 'position_orientation', 'joint_velocity', 'joint_impedance', or 'joint_torque'. Specifies the type of controller to be used for dynamic trajectories gripper_type (str): type of gripper, used to instantiate gripper models from gripper factory. gripper_visualization (bool): True if using gripper visualization. Useful for teleoperation. use_indicator_object (bool): if True, sets up an indicator object that is useful for debugging. has_renderer (bool): If true, render the simulation state in a viewer instead of headless mode. has_offscreen_renderer (bool): True if using off-screen rendering. render_collision_mesh (bool): True if rendering collision meshes in camera. False otherwise. render_visual_mesh (bool): True if rendering visual meshes in camera. False otherwise. control_freq (float): how many control signals to receive in every second. This sets the amount of simulation time that passes between every action input. horizon (int): Every episode lasts for exactly @horizon timesteps. ignore_done (bool): True if never terminating the environment (ignore @horizon). use_camera_obs (bool): if True, every observation includes a rendered image. camera_name (str): name of camera to be rendered. Must be set if @use_camera_obs is True. camera_height (int): height of camera frame. camera_width (int): width of camera frame. camera_depth (bool): True if rendering RGB-D, and RGB otherwise. impedance_ctrl (bool) : True if we want to control impedance of the end effector ######### **kwargs includes additional params that may be specified and will override values found in the controller configuration file if the names match # Load the appropriate controller # self.position_limits = [[0,0,0],[0,0,0]] # self.orientation_limits = [[0,0,0],[0,0,0]] # Maximum contact variation allowed without contact [N] # self.controller = controller # TODO - check that these are updated properly # Current and previous policy step q values, joint torques, ft ee applied and actions # used to compute average ## counting joint limits Loads controller to be used for dynamic trajectories Controller_type is a specified controller, and controller_params is a config file containing the appropriate parameters for that controller Kwargs is kwargs passed from init call and represents individual params to override in controller config file # Load the controller config file # Load additional arguments from kwargs and override the prior config-file loaded ones Loads robot and optionally add grippers. # Use xml that has motor torque actuators enabled Sets initial pose of arm and grippers. # used to compute average Sets up necessary reference for robots, grippers, and objects. # indices for joints in qpos, qvel # indices for grippers in qpos, qvel # indices for joint pos actuation, joint vel actuation, gripper actuation # IDs of sites for gripper visualization Sets 3d position of indicator object to @pos. Overrides the superclass method to actuate the robot with the passed joint velocities and gripper control. Args: action (numpy array): The control to apply to the robot. The first @self.mujoco_robot.dof dimensions should be the desired normalized joint velocities and if the robot has a gripper, the next @self.gripper.dof dimensions should be actuation controls for the gripper. # Make sure action length is correct # i.e.: not using new controller # clip actions into valid range # rescale normalized action to control ranges # gravity compensation # using new controller # Split action into joint control and peripheral (i.e.: gripper) control (as specified by individual gripper) # all indexes past controller dimension indexes # TODO # First, get joint space action # action = action.copy() # ensure that we don't change the action outside of this scope # this scales and clips the actions correctly # TODO # Get gripper action, if applicable # rescale normalized gripper action to control ranges # Now, control both gripper and joints # .copy()) # TODO # Assumes a ft sensor on the wrist # convert to matrix (Optional) does gripper visualization after actions. Returns an OrderedDict containing observations [(name_string, np.array), ...]. Important keys: robot-state: contains robot-centric information. # camera observations # Skip for now, not worth importing cv2 just for this # if self.visualize_offscreen and not self.real_robot: # cv2.imshow('Robot observation', np.flip(camera_obs[..., ::-1], 0)) # cv2.waitKey(10) # proprioceptive features # add in gripper information # Adding binary contact observation Action lower/upper limits per dimension. Returns the DoF of the robot (with grippers). A helper function that takes in a named data field and returns the pose of that object in the base frame. Helper method to force robot joint positions to the passed values. Returns the cartesian pose of the last robot joint in base frame of robot. Returns eef pose in base frame of robot. Returns eef quaternion in base frame of robot. Returns the total eef velocity (linear + angular) in the base frame as a numpy array of shape (6,) # Use jacobian to translate joint velocities to end effector velocities. Returns position of eef in base frame of robot. Returns orientation of eef in base frame of robot as a rotation matrix. Returns velocity of eef in base frame of robot. Returns angular velocity of eef in base frame of robot. Returns a numpy array of joint positions. Panda robots have 7 joints and positions are in rotation angles. Returns a numpy array of joint velocities. Panda robots have 7 joints and velocities are angular velocities. Do any needed visualization here. # By default, don't do any coloring. Returns True if the gripper is in contact with another object. Returns True if the arm is in contact with another object. Returns True if the arm is in joint limits or very close to. Returns the change in joint space configuration between previous and current steps Returns the change in joint space configuration between previous and current steps Returns the change in policy action between previous and current steps Returns the change in policy action between previous and current steps Returns the energy consumed by each joint between previous and current steps # Mean torque applied # We assume in the motors torque is proportional to current (and voltage is constant) # In that case the amount of power scales proportional to the torque and the energy is the # time integral of that Returns the integral over time of the applied ee force-torque
2.336223
2
src/sqlizer/conversionstatus.py
sqlizer-io/sqlizer-client-py
11
6632971
class ConversionStatus: NotCreated = None New = 'New' Uploaded = 'Uploaded' Queued = 'Queued' Analyzing = 'Analyzing' Processing = 'Processing' Complete = 'Complete' Failed = 'Failed' SubscriptionRequired = 'SubscriptionRequired' PaymentRequired = 'PaymentRequired'
class ConversionStatus: NotCreated = None New = 'New' Uploaded = 'Uploaded' Queued = 'Queued' Analyzing = 'Analyzing' Processing = 'Processing' Complete = 'Complete' Failed = 'Failed' SubscriptionRequired = 'SubscriptionRequired' PaymentRequired = 'PaymentRequired'
none
1
1.434139
1
s3/replication/common/src/s3replicationcommon/s3_put_object.py
rajkumarpatel2602/cortx-multisite
1
6632972
<gh_stars>1-10 # # Copyright (c) 2021 Seagate Technology LLC and/or its Affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # For any questions about this software or licensing, # please email <EMAIL> or <EMAIL>. # import aiohttp import sys from s3replicationcommon.aws_v4_signer import AWSV4Signer from s3replicationcommon.log import fmt_reqid_log from s3replicationcommon.s3_common import S3RequestState from s3replicationcommon.timer import Timer class S3AsyncPutObject: def __init__(self, session, request_id, bucket_name, object_name, object_size): """Initialise.""" self._session = session # Request id for better logging. self._request_id = request_id self._logger = session.logger self._bucket_name = bucket_name self._object_name = object_name self._object_size = object_size self.remote_down = False self._http_status = None self._timer = Timer() self._state = S3RequestState.INITIALISED def get_state(self): """Returns current request state.""" return self._state def get_response_header(self, header_key): """Returns response http header value.""" if self._state == S3RequestState.COMPLETED: return self._response_headers[header_key] return None def get_execution_time(self): """Return total time for PUT Object operation.""" return self._timer.elapsed_time_ms() def get_etag(self): """Returns ETag for object.""" return self._response_headers["ETag"].strip("\"") # data_reader is object with fetch method that can yeild data async def send(self, data_reader, transfer_size): self._state = S3RequestState.RUNNING self._data_reader = data_reader request_uri = AWSV4Signer.fmt_s3_request_uri( self._bucket_name, self._object_name) query_params = "" body = "" headers = AWSV4Signer( self._session.endpoint, self._session.service_name, self._session.region, self._session.access_key, self._session.secret_key).prepare_signed_header( 'PUT', request_uri, query_params, body) if (headers['Authorization'] is None): self._logger.error(fmt_reqid_log(self._request_id) + "Failed to generate v4 signature") sys.exit(-1) headers["Content-Length"] = str(self._object_size) self._logger.info(fmt_reqid_log(self._request_id) + "PUT on {}".format( self._session.endpoint + request_uri)) self._logger.debug(fmt_reqid_log(self._request_id) + "PUT with headers {}".format(headers)) self._timer.start() try: async with self._session.get_client_session().put( self._session.endpoint + request_uri, headers=headers, # Read all data from data_reader data=data_reader.fetch(transfer_size)) as resp: self._timer.stop() if data_reader.get_state() != S3RequestState.ABORTED: self._http_status = resp.status self._response_headers = resp.headers self._logger.info( fmt_reqid_log(self._request_id) + 'PUT Object completed with http status: {}'.format( resp.status)) # Validate if upload object etag matches. if self.get_etag() != data_reader.get_etag(): self._state = S3RequestState.FAILED error_msg = "ETag mismatch." self._logger.error( fmt_reqid_log(self._request_id) + 'Error Response: {}'.format(error_msg)) if resp.status == 200: self._state = S3RequestState.COMPLETED else: error_msg = await resp.text() self._logger.error( fmt_reqid_log(self._request_id) + 'Error Response: {}'.format(error_msg)) self._state = S3RequestState.FAILED except aiohttp.client_exceptions.ClientConnectorError as e: self._timer.stop() self.remote_down = True self._state = S3RequestState.FAILED self._logger.error(fmt_reqid_log(self._request_id) + "Failed to connect to S3: " + str(e)) return def pause(self): self._state = S3RequestState.PAUSED # XXX Take real pause action def resume(self): self._state = S3RequestState.PAUSED # XXX Take real resume action def abort(self): self._state = S3RequestState.ABORTED # Abort the reader so that PUT can stop. self._data_reader.abort()
# # Copyright (c) 2021 Seagate Technology LLC and/or its Affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # For any questions about this software or licensing, # please email <EMAIL> or <EMAIL>. # import aiohttp import sys from s3replicationcommon.aws_v4_signer import AWSV4Signer from s3replicationcommon.log import fmt_reqid_log from s3replicationcommon.s3_common import S3RequestState from s3replicationcommon.timer import Timer class S3AsyncPutObject: def __init__(self, session, request_id, bucket_name, object_name, object_size): """Initialise.""" self._session = session # Request id for better logging. self._request_id = request_id self._logger = session.logger self._bucket_name = bucket_name self._object_name = object_name self._object_size = object_size self.remote_down = False self._http_status = None self._timer = Timer() self._state = S3RequestState.INITIALISED def get_state(self): """Returns current request state.""" return self._state def get_response_header(self, header_key): """Returns response http header value.""" if self._state == S3RequestState.COMPLETED: return self._response_headers[header_key] return None def get_execution_time(self): """Return total time for PUT Object operation.""" return self._timer.elapsed_time_ms() def get_etag(self): """Returns ETag for object.""" return self._response_headers["ETag"].strip("\"") # data_reader is object with fetch method that can yeild data async def send(self, data_reader, transfer_size): self._state = S3RequestState.RUNNING self._data_reader = data_reader request_uri = AWSV4Signer.fmt_s3_request_uri( self._bucket_name, self._object_name) query_params = "" body = "" headers = AWSV4Signer( self._session.endpoint, self._session.service_name, self._session.region, self._session.access_key, self._session.secret_key).prepare_signed_header( 'PUT', request_uri, query_params, body) if (headers['Authorization'] is None): self._logger.error(fmt_reqid_log(self._request_id) + "Failed to generate v4 signature") sys.exit(-1) headers["Content-Length"] = str(self._object_size) self._logger.info(fmt_reqid_log(self._request_id) + "PUT on {}".format( self._session.endpoint + request_uri)) self._logger.debug(fmt_reqid_log(self._request_id) + "PUT with headers {}".format(headers)) self._timer.start() try: async with self._session.get_client_session().put( self._session.endpoint + request_uri, headers=headers, # Read all data from data_reader data=data_reader.fetch(transfer_size)) as resp: self._timer.stop() if data_reader.get_state() != S3RequestState.ABORTED: self._http_status = resp.status self._response_headers = resp.headers self._logger.info( fmt_reqid_log(self._request_id) + 'PUT Object completed with http status: {}'.format( resp.status)) # Validate if upload object etag matches. if self.get_etag() != data_reader.get_etag(): self._state = S3RequestState.FAILED error_msg = "ETag mismatch." self._logger.error( fmt_reqid_log(self._request_id) + 'Error Response: {}'.format(error_msg)) if resp.status == 200: self._state = S3RequestState.COMPLETED else: error_msg = await resp.text() self._logger.error( fmt_reqid_log(self._request_id) + 'Error Response: {}'.format(error_msg)) self._state = S3RequestState.FAILED except aiohttp.client_exceptions.ClientConnectorError as e: self._timer.stop() self.remote_down = True self._state = S3RequestState.FAILED self._logger.error(fmt_reqid_log(self._request_id) + "Failed to connect to S3: " + str(e)) return def pause(self): self._state = S3RequestState.PAUSED # XXX Take real pause action def resume(self): self._state = S3RequestState.PAUSED # XXX Take real resume action def abort(self): self._state = S3RequestState.ABORTED # Abort the reader so that PUT can stop. self._data_reader.abort()
en
0.792629
# # Copyright (c) 2021 Seagate Technology LLC and/or its Affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # For any questions about this software or licensing, # please email <EMAIL> or <EMAIL>. # Initialise. # Request id for better logging. Returns current request state. Returns response http header value. Return total time for PUT Object operation. Returns ETag for object. # data_reader is object with fetch method that can yeild data # Read all data from data_reader # Validate if upload object etag matches. # XXX Take real pause action # XXX Take real resume action # Abort the reader so that PUT can stop.
1.645004
2
2DTFIM_2DRNN/run_2dTFIM.py
MatteoMartinelli97/RNNWavefunctions
47
6632973
<reponame>MatteoMartinelli97/RNNWavefunctions from Training2DRNN_2DTFIM import run_2DTFIM #numsteps = number of training iterations #systemsize_x = the size of the x-dimension of the square lattice #systemsize_x = the size of the y-dimension of the square lattice #Bx = transverse magnetic field #numsamples = number of samples used for training #num_units = number of memory units of the hidden state of the RNN #num_layers is not supported yet, stay tuned! RNNEnergy, varRNNEnergy = run_2DTFIM(numsteps = 2*10**4, systemsize_x = 4, systemsize_y = 4, Bx = 3, num_units = 50, numsamples = 500, learningrate = 5e-3, seed = 111) #RNNEnergy is a numpy array of the variational energy of the pRNN wavefunction #varRNNEnergy is a numpy array of the variance of the variational energy of the pRNN wavefunction
from Training2DRNN_2DTFIM import run_2DTFIM #numsteps = number of training iterations #systemsize_x = the size of the x-dimension of the square lattice #systemsize_x = the size of the y-dimension of the square lattice #Bx = transverse magnetic field #numsamples = number of samples used for training #num_units = number of memory units of the hidden state of the RNN #num_layers is not supported yet, stay tuned! RNNEnergy, varRNNEnergy = run_2DTFIM(numsteps = 2*10**4, systemsize_x = 4, systemsize_y = 4, Bx = 3, num_units = 50, numsamples = 500, learningrate = 5e-3, seed = 111) #RNNEnergy is a numpy array of the variational energy of the pRNN wavefunction #varRNNEnergy is a numpy array of the variance of the variational energy of the pRNN wavefunction
en
0.79471
#numsteps = number of training iterations #systemsize_x = the size of the x-dimension of the square lattice #systemsize_x = the size of the y-dimension of the square lattice #Bx = transverse magnetic field #numsamples = number of samples used for training #num_units = number of memory units of the hidden state of the RNN #num_layers is not supported yet, stay tuned! #RNNEnergy is a numpy array of the variational energy of the pRNN wavefunction #varRNNEnergy is a numpy array of the variance of the variational energy of the pRNN wavefunction
2.958517
3
books_scrapy/loaders.py
hdtls/books-scrapy
0
6632974
from books_scrapy.items import ( Manga, Author, MangaArea, MangaCategory, MangaChapter, PHAsset, ) from itemloaders.utils import arg_to_iter from itemloaders.processors import Compose, Identity, MapCompose, TakeFirst from scrapy.loader import ItemLoader def splitting(value): if not value: return [] separator = None if "," in value: separator = "," elif " " in value: separator = " " elif "x" in value: separator = "x" return list(map(lambda e: e.strip(), value.split(separator))) class MangaLoader(ItemLoader): default_input_processor = MapCompose(str.strip) default_output_processor = TakeFirst() default_item_class = Manga authors_in = MapCompose(splitting, str.strip, lambda name: Author(username=name)) authors_out = Identity() area_in = MapCompose(str.strip, lambda name: MangaArea(name=name)) aliases_in = MapCompose(splitting, str.strip) background_image_in = MapCompose(str.strip, lambda url: dict(ref_url=url)) categories_in = MapCompose(str.strip, lambda name: MangaCategory(name=name)) categories_out = Identity() cover_image_in = background_image_in promo_image_in = background_image_in ref_urls_out = Identity() schedule_in = MapCompose(lambda s: 1 if "完结" in s else 0) class ChapterLoader(ItemLoader): default_input_processor = MapCompose(str.strip) default_output_processor = TakeFirst() default_item_class = MangaChapter ref_urls_out = Identity() cover_image_in = MangaLoader.cover_image_in assets_in = Compose( lambda val: [ PHAsset(files=[dict(ref_url=url) for url in arg_to_iter(urls)]) for urls in [arg_to_iter(val)] if urls ] )
from books_scrapy.items import ( Manga, Author, MangaArea, MangaCategory, MangaChapter, PHAsset, ) from itemloaders.utils import arg_to_iter from itemloaders.processors import Compose, Identity, MapCompose, TakeFirst from scrapy.loader import ItemLoader def splitting(value): if not value: return [] separator = None if "," in value: separator = "," elif " " in value: separator = " " elif "x" in value: separator = "x" return list(map(lambda e: e.strip(), value.split(separator))) class MangaLoader(ItemLoader): default_input_processor = MapCompose(str.strip) default_output_processor = TakeFirst() default_item_class = Manga authors_in = MapCompose(splitting, str.strip, lambda name: Author(username=name)) authors_out = Identity() area_in = MapCompose(str.strip, lambda name: MangaArea(name=name)) aliases_in = MapCompose(splitting, str.strip) background_image_in = MapCompose(str.strip, lambda url: dict(ref_url=url)) categories_in = MapCompose(str.strip, lambda name: MangaCategory(name=name)) categories_out = Identity() cover_image_in = background_image_in promo_image_in = background_image_in ref_urls_out = Identity() schedule_in = MapCompose(lambda s: 1 if "完结" in s else 0) class ChapterLoader(ItemLoader): default_input_processor = MapCompose(str.strip) default_output_processor = TakeFirst() default_item_class = MangaChapter ref_urls_out = Identity() cover_image_in = MangaLoader.cover_image_in assets_in = Compose( lambda val: [ PHAsset(files=[dict(ref_url=url) for url in arg_to_iter(urls)]) for urls in [arg_to_iter(val)] if urls ] )
none
1
2.573682
3
Mini Projects/QuadraticSolver/QuadraticSolver.py
Snowystar122/Python-Projects
0
6632975
import math # Generates real and complex solutions for a quadratic polynomial def solution(var_a, var_b, to_root): if to_root > 0: sol_1 = (-1 * var_b + math.sqrt(to_root)) / (2 * var_a) sol_2 = (-1 * var_b - math.sqrt(to_root)) / (2 * var_a) return f"The solutions are:\n{sol_1}\n{sol_2}" elif to_root == 0: sol_1 = (-1 * var_b + math.sqrt(to_root)) / (2 * var_a) return f"The solution to this quadratic equation is:\n{sol_1}" else: real_coefficient = (-1 * var_b) / (2 * var_a) complex_coefficient_1 = math.sqrt(-1 * to_root) / (2 * var_a) complex_coefficient_2 = -(1 * math.sqrt(-1 * to_root)) / (2 * var_a) sol_1 = complex(real_coefficient, complex_coefficient_1) sol_2 = complex(real_coefficient, complex_coefficient_2) return f"The solutions are:\n{sol_1}\n{sol_2}" print("Welcome to this polynomial solver. Please place in the coefficients of your quadratic where appropriate.\n" "This is in the format of ax^2 + bx + c = 0. Enter the coefficients as required below.") # Coefficients of the polynomial a = input("a:") b = input("b:") c = input("c:") check_numeric = all((a.isnumeric(), b.isnumeric(), c.isnumeric())) if check_numeric: a, b, c = float(a), float(b), float(c) root_sol = b ** 2 - 4 * a * c print(solution(a, b, root_sol)) else: print("You can only insert numbers.")
import math # Generates real and complex solutions for a quadratic polynomial def solution(var_a, var_b, to_root): if to_root > 0: sol_1 = (-1 * var_b + math.sqrt(to_root)) / (2 * var_a) sol_2 = (-1 * var_b - math.sqrt(to_root)) / (2 * var_a) return f"The solutions are:\n{sol_1}\n{sol_2}" elif to_root == 0: sol_1 = (-1 * var_b + math.sqrt(to_root)) / (2 * var_a) return f"The solution to this quadratic equation is:\n{sol_1}" else: real_coefficient = (-1 * var_b) / (2 * var_a) complex_coefficient_1 = math.sqrt(-1 * to_root) / (2 * var_a) complex_coefficient_2 = -(1 * math.sqrt(-1 * to_root)) / (2 * var_a) sol_1 = complex(real_coefficient, complex_coefficient_1) sol_2 = complex(real_coefficient, complex_coefficient_2) return f"The solutions are:\n{sol_1}\n{sol_2}" print("Welcome to this polynomial solver. Please place in the coefficients of your quadratic where appropriate.\n" "This is in the format of ax^2 + bx + c = 0. Enter the coefficients as required below.") # Coefficients of the polynomial a = input("a:") b = input("b:") c = input("c:") check_numeric = all((a.isnumeric(), b.isnumeric(), c.isnumeric())) if check_numeric: a, b, c = float(a), float(b), float(c) root_sol = b ** 2 - 4 * a * c print(solution(a, b, root_sol)) else: print("You can only insert numbers.")
en
0.81215
# Generates real and complex solutions for a quadratic polynomial # Coefficients of the polynomial
4.10967
4
arguments/user_init.py
JedBurke/Rename-py
0
6632976
import argparse import os from helpers.user import UserHelpers class InitializeUserConfig(argparse.Action): """docstring for InitializeUserConfig""" def __init__(self, option_strings, dest, nargs=None, **kwargs): if nargs is not None: raise ValueError("nargs not allowed") super(InitializeUserConfig, self).__init__(option_strings, dest, **kwargs) def __call__(self, parser, namespace, values, option_string=None): user_dir = UserHelpers.get_user_directory() if user_dir.exists(): print(f"User directory already exists at:\n { user_dir }")
import argparse import os from helpers.user import UserHelpers class InitializeUserConfig(argparse.Action): """docstring for InitializeUserConfig""" def __init__(self, option_strings, dest, nargs=None, **kwargs): if nargs is not None: raise ValueError("nargs not allowed") super(InitializeUserConfig, self).__init__(option_strings, dest, **kwargs) def __call__(self, parser, namespace, values, option_string=None): user_dir = UserHelpers.get_user_directory() if user_dir.exists(): print(f"User directory already exists at:\n { user_dir }")
en
0.387629
docstring for InitializeUserConfig
2.892826
3
tests/test_datastore.py
pyeventsourcing/eventsourcing-sqlalchemy
13
6632977
<gh_stars>10-100 # -*- coding: utf-8 -*- from unittest import TestCase from sqlalchemy.future import create_engine from sqlalchemy.orm import sessionmaker from eventsourcing_sqlalchemy.datastore import SQLAlchemyDatastore class TestDatastore(TestCase): def test_should_be_created_with_url(self) -> None: datastore = SQLAlchemyDatastore(url="sqlite:///:memory:") self.assertIsInstance(datastore, SQLAlchemyDatastore) def test_should_be_created_with_session_cls(self) -> None: session_cls = sessionmaker(bind=create_engine(url="sqlite:///:memory:")) datastore = SQLAlchemyDatastore(session_cls=session_cls) self.assertIsInstance(datastore, SQLAlchemyDatastore) def test_should_raise_exception_without_url_or_session_cls(self) -> None: with self.assertRaises(EnvironmentError): SQLAlchemyDatastore()
# -*- coding: utf-8 -*- from unittest import TestCase from sqlalchemy.future import create_engine from sqlalchemy.orm import sessionmaker from eventsourcing_sqlalchemy.datastore import SQLAlchemyDatastore class TestDatastore(TestCase): def test_should_be_created_with_url(self) -> None: datastore = SQLAlchemyDatastore(url="sqlite:///:memory:") self.assertIsInstance(datastore, SQLAlchemyDatastore) def test_should_be_created_with_session_cls(self) -> None: session_cls = sessionmaker(bind=create_engine(url="sqlite:///:memory:")) datastore = SQLAlchemyDatastore(session_cls=session_cls) self.assertIsInstance(datastore, SQLAlchemyDatastore) def test_should_raise_exception_without_url_or_session_cls(self) -> None: with self.assertRaises(EnvironmentError): SQLAlchemyDatastore()
en
0.769321
# -*- coding: utf-8 -*-
2.624546
3
tests/test_pedpedspace_interaction.py
Femme-js/PySocialForceJ
42
6632978
<filename>tests/test_pedpedspace_interaction.py import numpy as np import pysocialforce as psf def test_r_aB(): state = np.array([[0.0, 0.0, 0.0, 0.0, 0.0, 1.0], [1.0, 0.0, 0.0, 0.0, 1.0, 1.0],]) obstacles = [np.array([[0.0, 100.0], [0.0, 0.5]])] r_aB = psf.PedSpacePotential(obstacles).r_aB(state) assert r_aB.tolist() == [ [[0.0, -0.5]], [[1.0, -0.5]], ]
<filename>tests/test_pedpedspace_interaction.py import numpy as np import pysocialforce as psf def test_r_aB(): state = np.array([[0.0, 0.0, 0.0, 0.0, 0.0, 1.0], [1.0, 0.0, 0.0, 0.0, 1.0, 1.0],]) obstacles = [np.array([[0.0, 100.0], [0.0, 0.5]])] r_aB = psf.PedSpacePotential(obstacles).r_aB(state) assert r_aB.tolist() == [ [[0.0, -0.5]], [[1.0, -0.5]], ]
none
1
2.397244
2
third_party/spider/baselines/seq2seq_attention_copy/seq2seq/models/attention_seq2seq.py
chenyangh/tensor2struct-public
69
6632979
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Sequence to Sequence model with attention """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from pydoc import locate import tensorflow as tf from seq2seq import decoders from seq2seq.models.basic_seq2seq import BasicSeq2Seq class AttentionSeq2Seq(BasicSeq2Seq): """Sequence2Sequence model with attention mechanism. Args: source_vocab_info: An instance of `VocabInfo` for the source vocabulary target_vocab_info: An instance of `VocabInfo` for the target vocabulary params: A dictionary of hyperparameters """ def __init__(self, params, mode, name="att_seq2seq"): super(AttentionSeq2Seq, self).__init__(params, mode, name) @staticmethod def default_params(): params = BasicSeq2Seq.default_params().copy() params.update({ "attention.class": "AttentionLayerBahdanau", "attention.params": {"num_units": 150}, "bridge.class": "seq2seq.models.bridges.ZeroBridge", "encoder.class": "seq2seq.encoders.BidirectionalRNNEncoder", "encoder.params": {"rnn_cell": {"cell_class": "LSTMCell", "cell_params": {"num_units": 150}, "dropout_input_keep_prob": 0.5, "dropout_output_keep_prob": 0.5, "num_layers": 1}}, "decoder.class": "seq2seq.decoders.AttentionDecoder", "decoder.params": {"max_decode_length": 250, "rnn_cell": {"cell_class": "LSTMCell", "cell_params": {"num_units": 150}, "dropout_input_keep_prob": 0.5, "dropout_output_keep_prob": 0.5, "num_layers": 1}}, "optimizer.name": "Adam", "optimizer.params": {"epsilon": 0.0000008}, "optimizer.learning_rate": 0.0005, "source.max_seq_len": 50, "source.reverse": False, "target.max_seq_len": 250, }) return params def _create_decoder(self, encoder_output, features, _labels): attention_class = locate(self.params["attention.class"]) or \ getattr(decoders.attention, self.params["attention.class"]) attention_layer = attention_class( params=self.params["attention.params"], mode=self.mode) # If the input sequence is reversed we also need to reverse # the attention scores. reverse_scores_lengths = None if self.params["source.reverse"]: reverse_scores_lengths = features["source_len"] if self.use_beam_search: reverse_scores_lengths = tf.tile( input=reverse_scores_lengths, multiples=[self.params["inference.beam_search.beam_width"]]) decoder_mask = features["decoder_mask"] return self.decoder_class( params=self.params["decoder.params"], mode=self.mode, vocab_size=self.target_vocab_info.total_size, attention_values=encoder_output.attention_values, attention_values_length=encoder_output.attention_values_length, attention_keys=encoder_output.outputs, attention_fn=attention_layer, reverse_scores_lengths=reverse_scores_lengths, decoder_mask = decoder_mask)
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Sequence to Sequence model with attention """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from pydoc import locate import tensorflow as tf from seq2seq import decoders from seq2seq.models.basic_seq2seq import BasicSeq2Seq class AttentionSeq2Seq(BasicSeq2Seq): """Sequence2Sequence model with attention mechanism. Args: source_vocab_info: An instance of `VocabInfo` for the source vocabulary target_vocab_info: An instance of `VocabInfo` for the target vocabulary params: A dictionary of hyperparameters """ def __init__(self, params, mode, name="att_seq2seq"): super(AttentionSeq2Seq, self).__init__(params, mode, name) @staticmethod def default_params(): params = BasicSeq2Seq.default_params().copy() params.update({ "attention.class": "AttentionLayerBahdanau", "attention.params": {"num_units": 150}, "bridge.class": "seq2seq.models.bridges.ZeroBridge", "encoder.class": "seq2seq.encoders.BidirectionalRNNEncoder", "encoder.params": {"rnn_cell": {"cell_class": "LSTMCell", "cell_params": {"num_units": 150}, "dropout_input_keep_prob": 0.5, "dropout_output_keep_prob": 0.5, "num_layers": 1}}, "decoder.class": "seq2seq.decoders.AttentionDecoder", "decoder.params": {"max_decode_length": 250, "rnn_cell": {"cell_class": "LSTMCell", "cell_params": {"num_units": 150}, "dropout_input_keep_prob": 0.5, "dropout_output_keep_prob": 0.5, "num_layers": 1}}, "optimizer.name": "Adam", "optimizer.params": {"epsilon": 0.0000008}, "optimizer.learning_rate": 0.0005, "source.max_seq_len": 50, "source.reverse": False, "target.max_seq_len": 250, }) return params def _create_decoder(self, encoder_output, features, _labels): attention_class = locate(self.params["attention.class"]) or \ getattr(decoders.attention, self.params["attention.class"]) attention_layer = attention_class( params=self.params["attention.params"], mode=self.mode) # If the input sequence is reversed we also need to reverse # the attention scores. reverse_scores_lengths = None if self.params["source.reverse"]: reverse_scores_lengths = features["source_len"] if self.use_beam_search: reverse_scores_lengths = tf.tile( input=reverse_scores_lengths, multiples=[self.params["inference.beam_search.beam_width"]]) decoder_mask = features["decoder_mask"] return self.decoder_class( params=self.params["decoder.params"], mode=self.mode, vocab_size=self.target_vocab_info.total_size, attention_values=encoder_output.attention_values, attention_values_length=encoder_output.attention_values_length, attention_keys=encoder_output.outputs, attention_fn=attention_layer, reverse_scores_lengths=reverse_scores_lengths, decoder_mask = decoder_mask)
en
0.812775
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. Sequence to Sequence model with attention Sequence2Sequence model with attention mechanism. Args: source_vocab_info: An instance of `VocabInfo` for the source vocabulary target_vocab_info: An instance of `VocabInfo` for the target vocabulary params: A dictionary of hyperparameters # If the input sequence is reversed we also need to reverse # the attention scores.
2.079861
2
Entities/RBAC.py
srinibasmisra97/OAuth-Authorization-Server
0
6632980
from Utils.DBOperations import Read, Update from Entities.Clients import Clients import json, uuid db_obj = None COL_NAME = 'applications' def db_init(): """ This function checks the mongodb connections object. :return: Mongodb connections object. """ global db_obj if db_obj is None: from main import MONGO_HOST, MONGO_PORT, MONGO_USERNAME, MONGO_PASSWORD, MONGO_DB from Utils.MongoHandler import ConnectDB db_obj = ConnectDB(host=MONGO_HOST, port=MONGO_PORT, username=MONGO_USERNAME, password=<PASSWORD>, db=MONGO_DB).getMongoDbObject() return db_obj class Permission(object): def __init__(self, name="", value=""): """ Init method for a permission. :param name: Name of the permission. :param value: Permission string. Should be unique. """ self.name = name self.value = value def get(self, application, permission=""): """ This function returns a permission document. :param application: Application. :param permission: Value of the permission. :return: Dictionary. """ db_obj = db_init() if permission == "": permission = self.value condition = { "permissions.value": permission } result = Read().find_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition) for app in result: if app['api'] == application.api: for perm in app['permissions']: if permission == perm['value']: return perm return {} def add(self, client, application, name="", value=""): """ This function adds a permission for a specific app. :param client: Client entity object for the application client. :param application: Application. :param name: Name of the permission. :param value: String value of the permission. Should be unique. :return: Added permission. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if name == "": name = self.name if value == "": value = self.value if self.get(application=application, permission=value): return None, "existing permission" condition = { "api": application.api } data = { "$push": { "permissions": { "name": name, "value": value } } } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data) return result, "updated" if result else "fail" def add_many(self, client, application, permissions): """ Add multiple permissions. :param client: Client entity object. :param application: Application. :param permissions: Permissions array. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" existing = application.permissions common = [] for value in existing: for p in permissions: if value['value'] == p['value']: common.append(value) if len(common) != 0: return None, "existing" condition = { "api": application.api } data = { "$push": { "permissions": { "$each": permissions } } } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data) return result, "updated" if result else "fail" def remove(self, client, application, permission=""): """ This function removes a permission for an application. :param client: Client entities object. :param application: Application. :param permission: Permission string to remove. :return: Delete Object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if permission == "": permission = self.value condition = { "api": application.api } data = { "$pull": { "permissions": { "value": permission } } } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, data=data, condition=condition) return result, "removed" if result else "fail" def update_name(self, client, application, name, permission=""): """ This function updates the name of the permission. :param client: Client entities object. :param application: Application. :param name: Name value to update. :param permission: Permission value. :return: Update result object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if permission == "": permission = self.value condition = { "api": application.api, "permissions.value": permission } data = { "$set": { "permissions.$[permission].name": name } } array_filters = [{"permission.value": permission}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, data=data, condition=condition, array_filters=array_filters) return result, "updated" if result else "failed" def update_value(self, client, application, new_value, old_value=""): """ This function updates the value of the permission. :param client: Client entities object. :param application: Application. :param new_value: New value to set. :param old_value: Old value to look for. :return: Result object """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if new_value in application.permissions: return None, "existing" if old_value == "": old_value = self.value condition = { "api": application.api, "permissions.value": old_value } data = { "$set": {"permissions.$[permission].value": new_value} } array_filters = [{"permission.value": old_value}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, data=data, condition=condition, array_filters=array_filters) return result, "updated" if result else "failed" class Role(object): def __init__(self, name="", id="", permissions=[]): """ Init function for role object. :param name: Name of the role. :param id: Unique id of the role. :param permissions: List of permissions. """ self.name = name self.id = id self.permissions = permissions def setattr(self, doc): """ This function is used to set attributes for the Role object. :param doc: Role document from db. """ if "name" in doc: self.name = doc['name'] if "id" in doc: self.id = doc['id'] if "permissions" in doc: self.permissions = doc['permissions'] def get(self, application, client=None, role_id=""): """ Gets the roles for the application. :param client: Client object. :param application: Application object. :param role_id: Role id. :return: List. """ db_obj = db_init() if client is not None: if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if role_id == "": role_id = self.id condition = {'api': application.api, 'roles.id': role_id} result = Read().find_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition) for app in result: if app['api'] == application.api: for role in app['roles']: if role_id == role['id']: self.setattr(doc=role) return role return {} def add(self, client, application, name="", role_id="", permissions=[]): """ Adds a role for the application. :param client: Client object. :param application: Application object. :param name: Role name. :param role_id: Role id. :param permissions: Permissions list. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if name == "": name = self.name if role_id == "": role_id = self.id if permissions: permissions = self.permissions condition = {'api': application.api} data = {"$push": {"roles": {"name": name, "id": role_id, "permissions": permissions}}} result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data) return result, "updated" if result else "failed" def add_many(self, client, application, roles): """ Adds multiple roles for the application. :param client: Client object. :param application: Application object. :param roles: Roles array. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" existing = application.roles common = [] for value in existing: for role in roles: if value['id'] == role['id']: common.append(value) if len(common) != 0: return None, "existing" condition = { "api": application.api } data = { "$push": { "roles": { "$each": roles } } } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data) return result, "updated" if result else "fail" def update_name(self, client, application, name, role_id=""): """ Updates the name of the role. :param client: Client object. :param application: Application Object. :param name: New name. :param role_id: Role id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if role_id == "": role_id = self.id condition = { "api": application.api, "roles.id": role_id } data = { "$set": { "roles.$[role].name": name } } array_filters = [{"role.id": role_id}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, data=data, condition=condition, array_filters=array_filters) return result, "updated" if result else "failed" def update_permissions(self, client, application, permissions, role_id=""): """ This function sets the new set of permissions for a role. :param client: Client object. :param application: Application object. :param permissions: Permissions array. :param role_id: Role id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if role_id == "": role_id = self.id condition = { "api": application.api, "roles.id": role_id } data = {"$set": {"roles.$[role].permissions": permissions}} array_filters = [{"role.id": role_id}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data, array_filters=array_filters) return result, "removed" if result else "failed" def add_permissions(self, client, application, permissions, role_id=""): """ Add permissions for a role. :param client: Client object. :param application: Application object. :param permissions: Permissions list. :param role_id: Role id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if role_id == "": role_id = self.id for p in permissions: if p not in application.permissions: return None, "permission not defined" condition = { "api": application.api, "roles.id": role_id } data = {"$push": {"roles.$[role].permissions": {"$each": permissions}}} array_filters = [{"role.id": role_id}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data, array_filters=array_filters) return result, "updated" if result else "failed" def remove_permissions(self, client, application, permissions, role_id=""): """ Remove permissions for a role. :param client: Client object. :param application: Application object. :param permissions: Permissions to remove. :param role_id: Role id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if role_id == "": role_id = self.id to_remove = [] for p in permissions: if p in application.permissions: to_remove.append(p) condition = { "api": application.api, "roles.id": role_id } data = {"$set": {"roles.$[role].permissions": to_remove}} array_filters = [{"role.id": role_id}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data, array_filters=array_filters) return result, "removed" if result else "failed" def delete(self, client, application, role_id=""): """ This function deletes a role for an application. :param client: Client object. :param application: Application object. :param role_id: Role id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if role_id == "": role_id = self.id condition = { 'api': application.api, 'roles.id': role_id } data = { '$pull': {'roles': {'id': role_id}} } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, data=data, condition=condition) return result, "removed" if result else "failed" class User(object): def __init__(self, id_="", email="", name="", role=""): """ Init function for creating a member object. :param id_: Unique id of the user. :param email: Email id. :param name: Name :param role: Role id. """ self.id_ = id_ self.email = email self.name = name self.role = role def __str__(self): """ Returns a string of the user object. :return: String. """ return json.dumps({'email': self.email, 'name': self.name, 'role': self.role, 'id_': self.id_}) def json(self): """ Returns a json object. :return: JSON. """ return {'email': self.email, 'name': self.name, 'role': self.role, 'id_': self.id_} def setattr(self, doc): """ Set object attributes from document. :param doc: Document. """ if "id_" in doc: self.id_ = doc['id_'] if "email" in doc: self.email = doc['email'] if "name" in doc: self.name = doc['name'] if "role" in doc: self.role = doc['role'] def get_by_id(self, application, client=None, id_=""): """ Get an user by its id. :param application: Application object. :param client: Client object. :param id_: Id to look for. :return: Document """ db_obj = db_init() if client is not None: if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if id_ == "": id_ = self.id_ condition = {'api': application.api, 'users.id_': id_} result = Read().find_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition) for app in result: for user in app['users']: if user['id_'] == id_: self.setattr(user) return user return {} def get_by_email(self, application, client=None, email=""): """ Get an user by its email. :param client: Client object. :param application: Application object. :param email: Email id. :return: Document. """ db_obj = db_init() if client is not None: if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if email == "": email = self.email condition = {'api': application.api, 'users.email': email} result = Read().find_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition) for app in result: for user in app['users']: if user['email'] == email: self.setattr(user) return user return {} def add(self, client, application, email="", role="", name=""): """ Adding a single user for an application. :param client: Client object. :param application: Application object. :param email: Email id. :param role: Role. :param name: Name :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if email == "": email = self.email if role == "": role = self.role if name == "": name = self.name self.id_ = str(uuid.uuid1().hex) condition = {'api': application.api} data = { '$push': { 'users': { 'id_': self.id_, 'email': email, 'name': name, 'role': role } } } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, data=data, condition=condition) return result, "updated" if result else "failed" def add_many(self, client, application, users=[]): """ Add multiple users to an app at once. :param client: Client object. :param application: Application object. :param users: Users array. :return: """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" existing = application.users common = [] for value in existing: for user in users: user['id_'] = str(uuid.uuid1().hex) if value['email'] == user['email']: common.append(value) if len(common) != 0: return None, "existing" condition = { "api": application.api } data = { "$push": { "users": { "$each": users } } } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data) return result, "updated" if result else "fail" def remove(self, client, application, email=""): """ Removes an user from the application. :param client: Client object. :param application: Application object. :param email: Email id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if email == "": email = self.email condition = {'api': application.api, 'users.email': email} data = {'$pull': {'users': {'email': email}}} result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data) return result, "removed" if result else "failed" def update_email(self, client, application, new_email="", old_email=""): """ Updates the email address of an user. :param client: Client object. :param application: Application object. :param new_email: New email id. :param old_email: Old email id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if old_email == "": old_email = self.email existing = application.users if new_email in existing: return None, "existing" condition = {'api': application.api, 'users.email': old_email} data = {'$set': {'users.$[user].email': new_email}} array_filters = [{'user.email': old_email}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data, array_filters=array_filters) return result, "update" if result else "failed" def update_name(self, client, application, name, email=""): """ Update name of user. :param client: Client object. :param application: Application object. :param name: Name. :param email: Email id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if email == "": email = self.email condition = {'api': application.api, 'users.email': email} data = {'$set': {'users.$[user].name': name}} array_filters = [{'user.email': email}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data, array_filters=array_filters) return result, "update" if result else "failed" def update_role(self, client, application, role, email=""): """ Updates the email address of an user. :param client: Client object. :param application: Application object. :param role: New role. :param email: Email id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if email == "": email = self.email existing = application.roles found = False for er in existing: if role == er['id']: found = True if not found: return None, "role not defined" condition = {'api': application.api, 'users.email': email} data = {'$set': {'users.$[user].role': role}} array_filters = [{'user.email': email}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data, array_filters=array_filters) return result, "update" if result else "failed"
from Utils.DBOperations import Read, Update from Entities.Clients import Clients import json, uuid db_obj = None COL_NAME = 'applications' def db_init(): """ This function checks the mongodb connections object. :return: Mongodb connections object. """ global db_obj if db_obj is None: from main import MONGO_HOST, MONGO_PORT, MONGO_USERNAME, MONGO_PASSWORD, MONGO_DB from Utils.MongoHandler import ConnectDB db_obj = ConnectDB(host=MONGO_HOST, port=MONGO_PORT, username=MONGO_USERNAME, password=<PASSWORD>, db=MONGO_DB).getMongoDbObject() return db_obj class Permission(object): def __init__(self, name="", value=""): """ Init method for a permission. :param name: Name of the permission. :param value: Permission string. Should be unique. """ self.name = name self.value = value def get(self, application, permission=""): """ This function returns a permission document. :param application: Application. :param permission: Value of the permission. :return: Dictionary. """ db_obj = db_init() if permission == "": permission = self.value condition = { "permissions.value": permission } result = Read().find_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition) for app in result: if app['api'] == application.api: for perm in app['permissions']: if permission == perm['value']: return perm return {} def add(self, client, application, name="", value=""): """ This function adds a permission for a specific app. :param client: Client entity object for the application client. :param application: Application. :param name: Name of the permission. :param value: String value of the permission. Should be unique. :return: Added permission. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if name == "": name = self.name if value == "": value = self.value if self.get(application=application, permission=value): return None, "existing permission" condition = { "api": application.api } data = { "$push": { "permissions": { "name": name, "value": value } } } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data) return result, "updated" if result else "fail" def add_many(self, client, application, permissions): """ Add multiple permissions. :param client: Client entity object. :param application: Application. :param permissions: Permissions array. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" existing = application.permissions common = [] for value in existing: for p in permissions: if value['value'] == p['value']: common.append(value) if len(common) != 0: return None, "existing" condition = { "api": application.api } data = { "$push": { "permissions": { "$each": permissions } } } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data) return result, "updated" if result else "fail" def remove(self, client, application, permission=""): """ This function removes a permission for an application. :param client: Client entities object. :param application: Application. :param permission: Permission string to remove. :return: Delete Object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if permission == "": permission = self.value condition = { "api": application.api } data = { "$pull": { "permissions": { "value": permission } } } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, data=data, condition=condition) return result, "removed" if result else "fail" def update_name(self, client, application, name, permission=""): """ This function updates the name of the permission. :param client: Client entities object. :param application: Application. :param name: Name value to update. :param permission: Permission value. :return: Update result object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if permission == "": permission = self.value condition = { "api": application.api, "permissions.value": permission } data = { "$set": { "permissions.$[permission].name": name } } array_filters = [{"permission.value": permission}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, data=data, condition=condition, array_filters=array_filters) return result, "updated" if result else "failed" def update_value(self, client, application, new_value, old_value=""): """ This function updates the value of the permission. :param client: Client entities object. :param application: Application. :param new_value: New value to set. :param old_value: Old value to look for. :return: Result object """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if new_value in application.permissions: return None, "existing" if old_value == "": old_value = self.value condition = { "api": application.api, "permissions.value": old_value } data = { "$set": {"permissions.$[permission].value": new_value} } array_filters = [{"permission.value": old_value}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, data=data, condition=condition, array_filters=array_filters) return result, "updated" if result else "failed" class Role(object): def __init__(self, name="", id="", permissions=[]): """ Init function for role object. :param name: Name of the role. :param id: Unique id of the role. :param permissions: List of permissions. """ self.name = name self.id = id self.permissions = permissions def setattr(self, doc): """ This function is used to set attributes for the Role object. :param doc: Role document from db. """ if "name" in doc: self.name = doc['name'] if "id" in doc: self.id = doc['id'] if "permissions" in doc: self.permissions = doc['permissions'] def get(self, application, client=None, role_id=""): """ Gets the roles for the application. :param client: Client object. :param application: Application object. :param role_id: Role id. :return: List. """ db_obj = db_init() if client is not None: if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if role_id == "": role_id = self.id condition = {'api': application.api, 'roles.id': role_id} result = Read().find_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition) for app in result: if app['api'] == application.api: for role in app['roles']: if role_id == role['id']: self.setattr(doc=role) return role return {} def add(self, client, application, name="", role_id="", permissions=[]): """ Adds a role for the application. :param client: Client object. :param application: Application object. :param name: Role name. :param role_id: Role id. :param permissions: Permissions list. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if name == "": name = self.name if role_id == "": role_id = self.id if permissions: permissions = self.permissions condition = {'api': application.api} data = {"$push": {"roles": {"name": name, "id": role_id, "permissions": permissions}}} result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data) return result, "updated" if result else "failed" def add_many(self, client, application, roles): """ Adds multiple roles for the application. :param client: Client object. :param application: Application object. :param roles: Roles array. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" existing = application.roles common = [] for value in existing: for role in roles: if value['id'] == role['id']: common.append(value) if len(common) != 0: return None, "existing" condition = { "api": application.api } data = { "$push": { "roles": { "$each": roles } } } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data) return result, "updated" if result else "fail" def update_name(self, client, application, name, role_id=""): """ Updates the name of the role. :param client: Client object. :param application: Application Object. :param name: New name. :param role_id: Role id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if role_id == "": role_id = self.id condition = { "api": application.api, "roles.id": role_id } data = { "$set": { "roles.$[role].name": name } } array_filters = [{"role.id": role_id}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, data=data, condition=condition, array_filters=array_filters) return result, "updated" if result else "failed" def update_permissions(self, client, application, permissions, role_id=""): """ This function sets the new set of permissions for a role. :param client: Client object. :param application: Application object. :param permissions: Permissions array. :param role_id: Role id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if role_id == "": role_id = self.id condition = { "api": application.api, "roles.id": role_id } data = {"$set": {"roles.$[role].permissions": permissions}} array_filters = [{"role.id": role_id}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data, array_filters=array_filters) return result, "removed" if result else "failed" def add_permissions(self, client, application, permissions, role_id=""): """ Add permissions for a role. :param client: Client object. :param application: Application object. :param permissions: Permissions list. :param role_id: Role id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if role_id == "": role_id = self.id for p in permissions: if p not in application.permissions: return None, "permission not defined" condition = { "api": application.api, "roles.id": role_id } data = {"$push": {"roles.$[role].permissions": {"$each": permissions}}} array_filters = [{"role.id": role_id}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data, array_filters=array_filters) return result, "updated" if result else "failed" def remove_permissions(self, client, application, permissions, role_id=""): """ Remove permissions for a role. :param client: Client object. :param application: Application object. :param permissions: Permissions to remove. :param role_id: Role id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if role_id == "": role_id = self.id to_remove = [] for p in permissions: if p in application.permissions: to_remove.append(p) condition = { "api": application.api, "roles.id": role_id } data = {"$set": {"roles.$[role].permissions": to_remove}} array_filters = [{"role.id": role_id}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data, array_filters=array_filters) return result, "removed" if result else "failed" def delete(self, client, application, role_id=""): """ This function deletes a role for an application. :param client: Client object. :param application: Application object. :param role_id: Role id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if role_id == "": role_id = self.id condition = { 'api': application.api, 'roles.id': role_id } data = { '$pull': {'roles': {'id': role_id}} } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, data=data, condition=condition) return result, "removed" if result else "failed" class User(object): def __init__(self, id_="", email="", name="", role=""): """ Init function for creating a member object. :param id_: Unique id of the user. :param email: Email id. :param name: Name :param role: Role id. """ self.id_ = id_ self.email = email self.name = name self.role = role def __str__(self): """ Returns a string of the user object. :return: String. """ return json.dumps({'email': self.email, 'name': self.name, 'role': self.role, 'id_': self.id_}) def json(self): """ Returns a json object. :return: JSON. """ return {'email': self.email, 'name': self.name, 'role': self.role, 'id_': self.id_} def setattr(self, doc): """ Set object attributes from document. :param doc: Document. """ if "id_" in doc: self.id_ = doc['id_'] if "email" in doc: self.email = doc['email'] if "name" in doc: self.name = doc['name'] if "role" in doc: self.role = doc['role'] def get_by_id(self, application, client=None, id_=""): """ Get an user by its id. :param application: Application object. :param client: Client object. :param id_: Id to look for. :return: Document """ db_obj = db_init() if client is not None: if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if id_ == "": id_ = self.id_ condition = {'api': application.api, 'users.id_': id_} result = Read().find_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition) for app in result: for user in app['users']: if user['id_'] == id_: self.setattr(user) return user return {} def get_by_email(self, application, client=None, email=""): """ Get an user by its email. :param client: Client object. :param application: Application object. :param email: Email id. :return: Document. """ db_obj = db_init() if client is not None: if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if email == "": email = self.email condition = {'api': application.api, 'users.email': email} result = Read().find_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition) for app in result: for user in app['users']: if user['email'] == email: self.setattr(user) return user return {} def add(self, client, application, email="", role="", name=""): """ Adding a single user for an application. :param client: Client object. :param application: Application object. :param email: Email id. :param role: Role. :param name: Name :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if email == "": email = self.email if role == "": role = self.role if name == "": name = self.name self.id_ = str(uuid.uuid1().hex) condition = {'api': application.api} data = { '$push': { 'users': { 'id_': self.id_, 'email': email, 'name': name, 'role': role } } } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, data=data, condition=condition) return result, "updated" if result else "failed" def add_many(self, client, application, users=[]): """ Add multiple users to an app at once. :param client: Client object. :param application: Application object. :param users: Users array. :return: """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" existing = application.users common = [] for value in existing: for user in users: user['id_'] = str(uuid.uuid1().hex) if value['email'] == user['email']: common.append(value) if len(common) != 0: return None, "existing" condition = { "api": application.api } data = { "$push": { "users": { "$each": users } } } result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data) return result, "updated" if result else "fail" def remove(self, client, application, email=""): """ Removes an user from the application. :param client: Client object. :param application: Application object. :param email: Email id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if email == "": email = self.email condition = {'api': application.api, 'users.email': email} data = {'$pull': {'users': {'email': email}}} result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data) return result, "removed" if result else "failed" def update_email(self, client, application, new_email="", old_email=""): """ Updates the email address of an user. :param client: Client object. :param application: Application object. :param new_email: New email id. :param old_email: Old email id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if old_email == "": old_email = self.email existing = application.users if new_email in existing: return None, "existing" condition = {'api': application.api, 'users.email': old_email} data = {'$set': {'users.$[user].email': new_email}} array_filters = [{'user.email': old_email}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data, array_filters=array_filters) return result, "update" if result else "failed" def update_name(self, client, application, name, email=""): """ Update name of user. :param client: Client object. :param application: Application object. :param name: Name. :param email: Email id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if email == "": email = self.email condition = {'api': application.api, 'users.email': email} data = {'$set': {'users.$[user].name': name}} array_filters = [{'user.email': email}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data, array_filters=array_filters) return result, "update" if result else "failed" def update_role(self, client, application, role, email=""): """ Updates the email address of an user. :param client: Client object. :param application: Application object. :param role: New role. :param email: Email id. :return: Update object. """ db_obj = db_init() if client.email != Clients().get_by_id(oid=application.owner)['email']: return None, "not allowed" if email == "": email = self.email existing = application.roles found = False for er in existing: if role == er['id']: found = True if not found: return None, "role not defined" condition = {'api': application.api, 'users.email': email} data = {'$set': {'users.$[user].role': role}} array_filters = [{'user.email': email}] result = Update().update_one_by_condition(db_obj=db_obj, collection=COL_NAME, condition=condition, data=data, array_filters=array_filters) return result, "update" if result else "failed"
en
0.729402
This function checks the mongodb connections object. :return: Mongodb connections object. Init method for a permission. :param name: Name of the permission. :param value: Permission string. Should be unique. This function returns a permission document. :param application: Application. :param permission: Value of the permission. :return: Dictionary. This function adds a permission for a specific app. :param client: Client entity object for the application client. :param application: Application. :param name: Name of the permission. :param value: String value of the permission. Should be unique. :return: Added permission. Add multiple permissions. :param client: Client entity object. :param application: Application. :param permissions: Permissions array. :return: Update object. This function removes a permission for an application. :param client: Client entities object. :param application: Application. :param permission: Permission string to remove. :return: Delete Object. This function updates the name of the permission. :param client: Client entities object. :param application: Application. :param name: Name value to update. :param permission: Permission value. :return: Update result object. This function updates the value of the permission. :param client: Client entities object. :param application: Application. :param new_value: New value to set. :param old_value: Old value to look for. :return: Result object Init function for role object. :param name: Name of the role. :param id: Unique id of the role. :param permissions: List of permissions. This function is used to set attributes for the Role object. :param doc: Role document from db. Gets the roles for the application. :param client: Client object. :param application: Application object. :param role_id: Role id. :return: List. Adds a role for the application. :param client: Client object. :param application: Application object. :param name: Role name. :param role_id: Role id. :param permissions: Permissions list. :return: Update object. Adds multiple roles for the application. :param client: Client object. :param application: Application object. :param roles: Roles array. :return: Update object. Updates the name of the role. :param client: Client object. :param application: Application Object. :param name: New name. :param role_id: Role id. :return: Update object. This function sets the new set of permissions for a role. :param client: Client object. :param application: Application object. :param permissions: Permissions array. :param role_id: Role id. :return: Update object. Add permissions for a role. :param client: Client object. :param application: Application object. :param permissions: Permissions list. :param role_id: Role id. :return: Update object. Remove permissions for a role. :param client: Client object. :param application: Application object. :param permissions: Permissions to remove. :param role_id: Role id. :return: Update object. This function deletes a role for an application. :param client: Client object. :param application: Application object. :param role_id: Role id. :return: Update object. Init function for creating a member object. :param id_: Unique id of the user. :param email: Email id. :param name: Name :param role: Role id. Returns a string of the user object. :return: String. Returns a json object. :return: JSON. Set object attributes from document. :param doc: Document. Get an user by its id. :param application: Application object. :param client: Client object. :param id_: Id to look for. :return: Document Get an user by its email. :param client: Client object. :param application: Application object. :param email: Email id. :return: Document. Adding a single user for an application. :param client: Client object. :param application: Application object. :param email: Email id. :param role: Role. :param name: Name :return: Update object. Add multiple users to an app at once. :param client: Client object. :param application: Application object. :param users: Users array. :return: Removes an user from the application. :param client: Client object. :param application: Application object. :param email: Email id. :return: Update object. Updates the email address of an user. :param client: Client object. :param application: Application object. :param new_email: New email id. :param old_email: Old email id. :return: Update object. Update name of user. :param client: Client object. :param application: Application object. :param name: Name. :param email: Email id. :return: Update object. Updates the email address of an user. :param client: Client object. :param application: Application object. :param role: New role. :param email: Email id. :return: Update object.
2.942219
3
mmdet/models/backbones/gate.py
vinnibuh/mmdetection
0
6632981
<reponame>vinnibuh/mmdetection import torch import torch.nn as nn from .gumbel import GumbleSoftmax class GateModule(nn.Module): def __init__(self, in_ch, act='relu', kernel_size=None, doubleGate=False, dwLA=False): super(GateModule, self).__init__() self.doubleGate, self.dwLA = doubleGate, dwLA self.inp_gs = GumbleSoftmax() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.in_ch = in_ch if act == 'relu': relu = nn.ReLU elif act == 'relu6': relu = nn.ReLU6 else: raise NotImplementedError if dwLA: if doubleGate: self.inp_att = nn.Sequential( nn.Conv2d(in_ch, in_ch, kernel_size=kernel_size, stride=1, padding=0, groups=in_ch, bias=True), nn.BatchNorm2d(in_ch), relu(inplace=True), nn.Conv2d(in_ch, in_ch, kernel_size=1, stride=1, padding=0, bias=True), nn.Sigmoid() ) self.inp_gate = nn.Sequential( nn.Conv2d(in_ch, in_ch, kernel_size=kernel_size, stride=1, padding=0, groups=in_ch, bias=True), nn.BatchNorm2d(in_ch), relu(inplace=True), nn.Conv2d(in_ch, in_ch, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(in_ch), ) self.inp_gate_l = nn.Conv2d(in_ch, in_ch * 2, kernel_size=1, stride=1, padding=0, groups=in_ch, bias=True) else: if doubleGate: reduction = 4 self.inp_att = nn.Sequential( nn.Conv2d(in_ch, in_ch // reduction, kernel_size=1, stride=1, padding=0, bias=True), relu(inplace=True), nn.Conv2d(in_ch // reduction, in_ch, kernel_size=1, stride=1, padding=0, bias=True), nn.Sigmoid() ) self.inp_gate = nn.Sequential( nn.Conv2d(in_ch, in_ch, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(in_ch), relu(inplace=True), ) self.inp_gate_l = nn.Conv2d(in_ch, in_ch * 2, kernel_size=1, stride=1, padding=0, groups=in_ch, bias=True) def forward(self, y, cb, cr, temperature=1.): hatten_y, hatten_cb, hatten_cr = self.avg_pool(y), self.avg_pool(cb), self.avg_pool(cr) hatten_d2 = torch.cat((hatten_y, hatten_cb, hatten_cr), dim=1) hatten_d2 = self.inp_gate(hatten_d2) hatten_d2 = self.inp_gate_l(hatten_d2) hatten_d2 = hatten_d2.reshape(hatten_d2.size(0), self.in_ch, 2, 1) hatten_d2 = self.inp_gs(hatten_d2, temp=temperature, force_hard=True) y = y * hatten_d2[:, :64, 1].unsqueeze(2) cb = cb * hatten_d2[:, 64:128, 1].unsqueeze(2) cr = cr * hatten_d2[:, 128:, 1].unsqueeze(2) return y, cb, cr, hatten_d2[:, :, 1] class GateModule192(nn.Module): def __init__(self, act='relu'): super(GateModule192, self).__init__() self.inp_gs = GumbleSoftmax() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.in_ch = in_ch = 192 if act == 'relu': relu = nn.ReLU elif act == 'relu6': relu = nn.ReLU6 else: raise NotImplementedError self.inp_gate = nn.Sequential( nn.Conv2d(in_ch, in_ch, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(in_ch), relu(inplace=True), ) self.inp_gate_l = nn.Conv2d(in_ch, in_ch * 2, kernel_size=1, stride=1, padding=0, groups=in_ch, bias=True) def forward(self, x, temperature=1.): hatten = self.avg_pool(x) hatten_d = self.inp_gate(hatten) hatten_d = self.inp_gate_l(hatten_d) hatten_d = hatten_d.reshape(hatten_d.size(0), self.in_ch, 2, 1) hatten_d = self.inp_gs(hatten_d, temp=temperature, force_hard=True) x = x * hatten_d[:, :, 1].unsqueeze(2) return x, hatten_d[:, :, 1]
import torch import torch.nn as nn from .gumbel import GumbleSoftmax class GateModule(nn.Module): def __init__(self, in_ch, act='relu', kernel_size=None, doubleGate=False, dwLA=False): super(GateModule, self).__init__() self.doubleGate, self.dwLA = doubleGate, dwLA self.inp_gs = GumbleSoftmax() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.in_ch = in_ch if act == 'relu': relu = nn.ReLU elif act == 'relu6': relu = nn.ReLU6 else: raise NotImplementedError if dwLA: if doubleGate: self.inp_att = nn.Sequential( nn.Conv2d(in_ch, in_ch, kernel_size=kernel_size, stride=1, padding=0, groups=in_ch, bias=True), nn.BatchNorm2d(in_ch), relu(inplace=True), nn.Conv2d(in_ch, in_ch, kernel_size=1, stride=1, padding=0, bias=True), nn.Sigmoid() ) self.inp_gate = nn.Sequential( nn.Conv2d(in_ch, in_ch, kernel_size=kernel_size, stride=1, padding=0, groups=in_ch, bias=True), nn.BatchNorm2d(in_ch), relu(inplace=True), nn.Conv2d(in_ch, in_ch, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(in_ch), ) self.inp_gate_l = nn.Conv2d(in_ch, in_ch * 2, kernel_size=1, stride=1, padding=0, groups=in_ch, bias=True) else: if doubleGate: reduction = 4 self.inp_att = nn.Sequential( nn.Conv2d(in_ch, in_ch // reduction, kernel_size=1, stride=1, padding=0, bias=True), relu(inplace=True), nn.Conv2d(in_ch // reduction, in_ch, kernel_size=1, stride=1, padding=0, bias=True), nn.Sigmoid() ) self.inp_gate = nn.Sequential( nn.Conv2d(in_ch, in_ch, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(in_ch), relu(inplace=True), ) self.inp_gate_l = nn.Conv2d(in_ch, in_ch * 2, kernel_size=1, stride=1, padding=0, groups=in_ch, bias=True) def forward(self, y, cb, cr, temperature=1.): hatten_y, hatten_cb, hatten_cr = self.avg_pool(y), self.avg_pool(cb), self.avg_pool(cr) hatten_d2 = torch.cat((hatten_y, hatten_cb, hatten_cr), dim=1) hatten_d2 = self.inp_gate(hatten_d2) hatten_d2 = self.inp_gate_l(hatten_d2) hatten_d2 = hatten_d2.reshape(hatten_d2.size(0), self.in_ch, 2, 1) hatten_d2 = self.inp_gs(hatten_d2, temp=temperature, force_hard=True) y = y * hatten_d2[:, :64, 1].unsqueeze(2) cb = cb * hatten_d2[:, 64:128, 1].unsqueeze(2) cr = cr * hatten_d2[:, 128:, 1].unsqueeze(2) return y, cb, cr, hatten_d2[:, :, 1] class GateModule192(nn.Module): def __init__(self, act='relu'): super(GateModule192, self).__init__() self.inp_gs = GumbleSoftmax() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.in_ch = in_ch = 192 if act == 'relu': relu = nn.ReLU elif act == 'relu6': relu = nn.ReLU6 else: raise NotImplementedError self.inp_gate = nn.Sequential( nn.Conv2d(in_ch, in_ch, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(in_ch), relu(inplace=True), ) self.inp_gate_l = nn.Conv2d(in_ch, in_ch * 2, kernel_size=1, stride=1, padding=0, groups=in_ch, bias=True) def forward(self, x, temperature=1.): hatten = self.avg_pool(x) hatten_d = self.inp_gate(hatten) hatten_d = self.inp_gate_l(hatten_d) hatten_d = hatten_d.reshape(hatten_d.size(0), self.in_ch, 2, 1) hatten_d = self.inp_gs(hatten_d, temp=temperature, force_hard=True) x = x * hatten_d[:, :, 1].unsqueeze(2) return x, hatten_d[:, :, 1]
none
1
2.552623
3
gssClients/gssPythonClients/delete_gss.py
SemWES/client_libs
0
6632982
<reponame>SemWES/client_libs #!/bin/env python # Copyright STIFTELSEN SINTEF 2016 import suds import urllib2 import sys if len(sys.argv) < 3: print ("Usage:") print ("\t %s gss-url token" % sys.argv[0]) exit() # get url: url = sys.argv[1] sessionToken = sys.argv[2] wsdl_url = "https://api.caxman.eu/sintef/infrastructure/gss-0.1/FileUtilities?wsdl" client = suds.client.Client(wsdl_url) resourceInformation = client.service.getResourceInformation(url, sessionToken) deleteDescription = resourceInformation.deleteDescription if deleteDescription.supported: headers = {} headers[deleteDescription.sessionTokenField] = sessionToken if hasattr(deleteDescription, "headers"): for headerField in deleteDescription.headers: headers[headerField.key] = headerField.value request = urllib2.Request(url = deleteDescription.url, headers=headers) request.get_method = lambda: deleteDescription.httpMethod result = urllib2.urlopen(request) else: print "Delete is not supported for the given gss_url"
#!/bin/env python # Copyright STIFTELSEN SINTEF 2016 import suds import urllib2 import sys if len(sys.argv) < 3: print ("Usage:") print ("\t %s gss-url token" % sys.argv[0]) exit() # get url: url = sys.argv[1] sessionToken = sys.argv[2] wsdl_url = "https://api.caxman.eu/sintef/infrastructure/gss-0.1/FileUtilities?wsdl" client = suds.client.Client(wsdl_url) resourceInformation = client.service.getResourceInformation(url, sessionToken) deleteDescription = resourceInformation.deleteDescription if deleteDescription.supported: headers = {} headers[deleteDescription.sessionTokenField] = sessionToken if hasattr(deleteDescription, "headers"): for headerField in deleteDescription.headers: headers[headerField.key] = headerField.value request = urllib2.Request(url = deleteDescription.url, headers=headers) request.get_method = lambda: deleteDescription.httpMethod result = urllib2.urlopen(request) else: print "Delete is not supported for the given gss_url"
en
0.426234
#!/bin/env python # Copyright STIFTELSEN SINTEF 2016 # get url:
2.507796
3
html_tag_count.py
daoudclarke/tinysearch-spark
207
6632983
<reponame>daoudclarke/tinysearch-spark import re from collections import Counter from sparkcc import CCSparkJob class TagCountJob(CCSparkJob): """ Count HTML tag names in Common Crawl WARC files""" name = "TagCount" # match HTML tags (element names) on binary HTML data html_tag_pattern = re.compile(b'<([a-z0-9]+)') def process_record(self, record): if record.rec_type != 'response': # skip over WARC request or metadata records return if not self.is_html(record): # skip non-HTML or unknown content types return data = record.content_stream().read() counts = Counter(TagCountJob.html_tag_pattern.findall(data)) for tag, count in counts.items(): yield tag.decode('ascii').lower(), count if __name__ == '__main__': job = TagCountJob() job.run()
import re from collections import Counter from sparkcc import CCSparkJob class TagCountJob(CCSparkJob): """ Count HTML tag names in Common Crawl WARC files""" name = "TagCount" # match HTML tags (element names) on binary HTML data html_tag_pattern = re.compile(b'<([a-z0-9]+)') def process_record(self, record): if record.rec_type != 'response': # skip over WARC request or metadata records return if not self.is_html(record): # skip non-HTML or unknown content types return data = record.content_stream().read() counts = Counter(TagCountJob.html_tag_pattern.findall(data)) for tag, count in counts.items(): yield tag.decode('ascii').lower(), count if __name__ == '__main__': job = TagCountJob() job.run()
en
0.423981
Count HTML tag names in Common Crawl WARC files # match HTML tags (element names) on binary HTML data # skip over WARC request or metadata records # skip non-HTML or unknown content types
2.868656
3
lib/python2.7/site-packages/scipy/misc/tests/test_common.py
wfehrnstrom/harmonize
18
6632984
from __future__ import division, print_function, absolute_import from numpy.testing import assert_equal, assert_ from scipy.misc import pade, logsumexp, face, ascent from scipy.special import logsumexp as sc_logsumexp from scipy.interpolate import pade as i_pade def test_logsumexp(): # make sure logsumexp can be imported from either scipy.misc or # scipy.special assert_(logsumexp is sc_logsumexp) def test_pade(): assert_(pade is i_pade) def test_face(): assert_equal(face().shape, (768, 1024, 3)) def test_ascent(): assert_equal(ascent().shape, (512, 512))
from __future__ import division, print_function, absolute_import from numpy.testing import assert_equal, assert_ from scipy.misc import pade, logsumexp, face, ascent from scipy.special import logsumexp as sc_logsumexp from scipy.interpolate import pade as i_pade def test_logsumexp(): # make sure logsumexp can be imported from either scipy.misc or # scipy.special assert_(logsumexp is sc_logsumexp) def test_pade(): assert_(pade is i_pade) def test_face(): assert_equal(face().shape, (768, 1024, 3)) def test_ascent(): assert_equal(ascent().shape, (512, 512))
en
0.641693
# make sure logsumexp can be imported from either scipy.misc or # scipy.special
2.258261
2
demo/gesture_inference.py
jiangtaoo2333/StaticGestureRecognition
0
6632985
<gh_stars>0 import argparse import os import os.path as osp import sys import time import mmcv import numpy as np import torch from mmcv import Config import torch.nn as nn import cv2 dirpath = osp.dirname(osp.dirname(osp.abspath(__file__))).replace('\\','/') sys.path.append(dirpath) import timm def get_args(): parser = argparse.ArgumentParser("MultiTaskOnFace build by Jiangtao") parser.add_argument('--config', default='{}/configs/gesture/dms_easyNet_crossentroy_cosineannealing_augmix.py'.format(dirpath),help='train config file path') args = parser.parse_args() return args args = get_args() cfg = Config.fromfile(args.config) class StaticGesture(): def __init__(self, cfg=cfg, checkpoint='easyNet_DMS_gender_best_0.967529296875.pkl'): self.cfg = cfg self.model = timm.create_model(self.cfg.modelName, pretrained=False, num_classes=self.cfg.numClasses, in_chans=self.cfg.channels).cuda() filename = self.cfg.filename basefilename = osp.basename(filename) basefilename = osp.splitext(basefilename)[0] self.modelPath = osp.join('{}/work_dirs/'.format(dirpath),basefilename) self.modelPath = osp.join(self.modelPath,checkpoint) print('self.modelPath:',self.modelPath) self.model.load_state_dict(torch.load(self.modelPath),strict=False) self.model.cuda().eval() def classify(self,image,box): ''' image is numpy h w box is [x,y,x,y] ''' scale = 0.10 xmin,ymin,xmax,ymax = box roiw = xmax - xmin roih = ymax - ymin xmin -= roiw * scale xmax += roiw * scale ymin -= roih * scale ymax += roih * scale xmin = np.clip(xmin,0,image.shape[1]-1) xmax = np.clip(xmax,0,image.shape[1]-1) ymin = np.clip(ymin,0,image.shape[0]-1) ymax = np.clip(ymax,0,image.shape[0]-1) x1 = int(xmin) x2 = int(xmax) y1 = int(ymin) y2 = int(ymax) img = image[y1:y2,x1:x2] # 输入图片预处理 img = cv2.resize(img, (self.cfg.imgSize,self.cfg.imgSize), interpolation = cv2.INTER_CUBIC)*0.0039216 img = img[np.newaxis] # 1 128 128 img_ = torch.from_numpy(img) # 1 128 128 img_ = img_.unsqueeze_(0) # 1 1 128 128 img_ = img_.cuda() pre_ = self.model(img_.float()) m = nn.Softmax(dim=1) pre_ = m(pre_) pre_ = pre_.cpu().detach().numpy().reshape((1,-1)) res = np.argmax(pre_,axis=-1) if res[0] == 0: label = 'palm' if res[0] == 1: label = 'singleFinger' if res[0] == 2: label = 'doubleFinger' score = pre_[0][res[0]] return label,score if __name__ == '__main__': SataticGestureCls = StaticGesture() img = cv2.imread('./demo/images/1.jpg',0) box = [1057,504,1207,706] x1,y1,x2,y2 = box label,score = SataticGestureCls.classify(img,box) print(label) print(score) cv2.rectangle(img, (int(x1),int(y1)), (int(x2),int(y2)), (0,255,0), 2) cv2.imshow('img',img) key = cv2.waitKey(0) if key == ord('q'): cv2.destroyAllWindows()
import argparse import os import os.path as osp import sys import time import mmcv import numpy as np import torch from mmcv import Config import torch.nn as nn import cv2 dirpath = osp.dirname(osp.dirname(osp.abspath(__file__))).replace('\\','/') sys.path.append(dirpath) import timm def get_args(): parser = argparse.ArgumentParser("MultiTaskOnFace build by Jiangtao") parser.add_argument('--config', default='{}/configs/gesture/dms_easyNet_crossentroy_cosineannealing_augmix.py'.format(dirpath),help='train config file path') args = parser.parse_args() return args args = get_args() cfg = Config.fromfile(args.config) class StaticGesture(): def __init__(self, cfg=cfg, checkpoint='easyNet_DMS_gender_best_0.967529296875.pkl'): self.cfg = cfg self.model = timm.create_model(self.cfg.modelName, pretrained=False, num_classes=self.cfg.numClasses, in_chans=self.cfg.channels).cuda() filename = self.cfg.filename basefilename = osp.basename(filename) basefilename = osp.splitext(basefilename)[0] self.modelPath = osp.join('{}/work_dirs/'.format(dirpath),basefilename) self.modelPath = osp.join(self.modelPath,checkpoint) print('self.modelPath:',self.modelPath) self.model.load_state_dict(torch.load(self.modelPath),strict=False) self.model.cuda().eval() def classify(self,image,box): ''' image is numpy h w box is [x,y,x,y] ''' scale = 0.10 xmin,ymin,xmax,ymax = box roiw = xmax - xmin roih = ymax - ymin xmin -= roiw * scale xmax += roiw * scale ymin -= roih * scale ymax += roih * scale xmin = np.clip(xmin,0,image.shape[1]-1) xmax = np.clip(xmax,0,image.shape[1]-1) ymin = np.clip(ymin,0,image.shape[0]-1) ymax = np.clip(ymax,0,image.shape[0]-1) x1 = int(xmin) x2 = int(xmax) y1 = int(ymin) y2 = int(ymax) img = image[y1:y2,x1:x2] # 输入图片预处理 img = cv2.resize(img, (self.cfg.imgSize,self.cfg.imgSize), interpolation = cv2.INTER_CUBIC)*0.0039216 img = img[np.newaxis] # 1 128 128 img_ = torch.from_numpy(img) # 1 128 128 img_ = img_.unsqueeze_(0) # 1 1 128 128 img_ = img_.cuda() pre_ = self.model(img_.float()) m = nn.Softmax(dim=1) pre_ = m(pre_) pre_ = pre_.cpu().detach().numpy().reshape((1,-1)) res = np.argmax(pre_,axis=-1) if res[0] == 0: label = 'palm' if res[0] == 1: label = 'singleFinger' if res[0] == 2: label = 'doubleFinger' score = pre_[0][res[0]] return label,score if __name__ == '__main__': SataticGestureCls = StaticGesture() img = cv2.imread('./demo/images/1.jpg',0) box = [1057,504,1207,706] x1,y1,x2,y2 = box label,score = SataticGestureCls.classify(img,box) print(label) print(score) cv2.rectangle(img, (int(x1),int(y1)), (int(x2),int(y2)), (0,255,0), 2) cv2.imshow('img',img) key = cv2.waitKey(0) if key == ord('q'): cv2.destroyAllWindows()
en
0.292993
image is numpy h w box is [x,y,x,y] # 输入图片预处理 # 1 128 128 # 1 128 128 # 1 1 128 128
2.095242
2
Exercicios/ex059.py
jlsmirandela/Curso_Python
0
6632986
pv = int(input('Insira o primeiro valor - ')) sv = int(input('Insira o segundo valor - ')) op = 0 while op != 5: print('''[ 1 ] Somar [ 2 ] Multiplicar [ 3 ] Maior [ 4 ] Novos números [ 5 ] Sair''') op = int(input('>>>>>>>> Qual a sua opção? - ')) while op not in range(0, 6): op = int(input('Opção inválida, escolha uma opção? - ')) if op == 1: print('A soma entre {} e {} é {}.\n'.format(pv, sv, pv + sv)) elif op == 2: print('A multiplicação entre {} e {} é {}\n'.format(pv, sv, pv * sv)) elif op == 3: if pv > sv: print('O primeiro valor ({}) é MAIOR que o segundo valor ({})\n'.format(pv, sv)) elif pv < sv: print('O segundo valor ({}) é MAIOR que o primeiro valor ({}\n)'.format(sv, pv)) else: print('Os valores são IGUAIS.\n') elif op == 4: pv = int(input('Insira o primeiro valor - ')) sv = int(input('Insira o segundo valor - ')) print('Fim do programa')
pv = int(input('Insira o primeiro valor - ')) sv = int(input('Insira o segundo valor - ')) op = 0 while op != 5: print('''[ 1 ] Somar [ 2 ] Multiplicar [ 3 ] Maior [ 4 ] Novos números [ 5 ] Sair''') op = int(input('>>>>>>>> Qual a sua opção? - ')) while op not in range(0, 6): op = int(input('Opção inválida, escolha uma opção? - ')) if op == 1: print('A soma entre {} e {} é {}.\n'.format(pv, sv, pv + sv)) elif op == 2: print('A multiplicação entre {} e {} é {}\n'.format(pv, sv, pv * sv)) elif op == 3: if pv > sv: print('O primeiro valor ({}) é MAIOR que o segundo valor ({})\n'.format(pv, sv)) elif pv < sv: print('O segundo valor ({}) é MAIOR que o primeiro valor ({}\n)'.format(sv, pv)) else: print('Os valores são IGUAIS.\n') elif op == 4: pv = int(input('Insira o primeiro valor - ')) sv = int(input('Insira o segundo valor - ')) print('Fim do programa')
pt
0.27341
[ 1 ] Somar [ 2 ] Multiplicar [ 3 ] Maior [ 4 ] Novos números [ 5 ] Sair
3.909227
4
torchsso/__init__.py
fmahdisoltani/multimodal_madam
0
6632987
from torchsso import optim # NOQA from torchsso import autograd # NOQA from torchsso import utils # NOQA from torchsso.curv.curvature import Curvature, DiagCurvature, KronCurvature # NOQA from torchsso.curv.cov.linear import CovLinear, DiagCovLinear, KronCovLinear, DiagGMMLinear # NOQA from torchsso.curv.cov.conv import CovConv2d, DiagCovConv2d, KronCovConv2d # NOQA from torchsso.curv.cov.batchnorm import CovBatchNorm1d, DiagCovBatchNorm1d, CovBatchNorm2d, DiagCovBatchNorm2d # NOQA from torchsso.curv.hessian import KronHessian # NOQA from torchsso.curv.hessian.linear import KronHessianLinear # NOQA from torchsso.curv.hessian.conv import KronHessianConv2d # NOQA from torchsso.curv.fisher import get_closure_for_fisher # NOQA from torchsso.curv.fisher import Fisher # NOQA from torchsso.curv.fisher.linear import DiagFisherLinear, KronFisherLinear # NOQA from torchsso.curv.fisher.conv import DiagFisherConv2d, KronFisherConv2d # NOQA from torchsso.curv.fisher.batchnorm import DiagFisherBatchNorm2d # NOQA
from torchsso import optim # NOQA from torchsso import autograd # NOQA from torchsso import utils # NOQA from torchsso.curv.curvature import Curvature, DiagCurvature, KronCurvature # NOQA from torchsso.curv.cov.linear import CovLinear, DiagCovLinear, KronCovLinear, DiagGMMLinear # NOQA from torchsso.curv.cov.conv import CovConv2d, DiagCovConv2d, KronCovConv2d # NOQA from torchsso.curv.cov.batchnorm import CovBatchNorm1d, DiagCovBatchNorm1d, CovBatchNorm2d, DiagCovBatchNorm2d # NOQA from torchsso.curv.hessian import KronHessian # NOQA from torchsso.curv.hessian.linear import KronHessianLinear # NOQA from torchsso.curv.hessian.conv import KronHessianConv2d # NOQA from torchsso.curv.fisher import get_closure_for_fisher # NOQA from torchsso.curv.fisher import Fisher # NOQA from torchsso.curv.fisher.linear import DiagFisherLinear, KronFisherLinear # NOQA from torchsso.curv.fisher.conv import DiagFisherConv2d, KronFisherConv2d # NOQA from torchsso.curv.fisher.batchnorm import DiagFisherBatchNorm2d # NOQA
ur
0.237172
# NOQA # NOQA # NOQA # NOQA # NOQA # NOQA # NOQA # NOQA # NOQA # NOQA # NOQA # NOQA # NOQA # NOQA # NOQA
1.515229
2
mintamazontagger/category.py
glassdimly/mint-amazon-tagger
0
6632988
# The default Mint category. DEFAULT_MINT_CATEGORY = 'Shopping' # The default return category. DEFAULT_MINT_RETURN_CATEGORY = 'Returned Purchase' # A category mapping of Amazon Order History "Categories" into Mint # "Categories". AMAZON_TO_MINT_CATEGORY = { 'Accessory': DEFAULT_MINT_CATEGORY, 'Apparel': 'Clothing', 'Audio CD': 'Music', 'Automotive': 'Auto & Transport', 'Baby Product': 'Baby Supplies', 'Blu-ray': 'Movies & DVDs', 'CD-ROM': 'Music', 'Camera': 'Electronics & Software', 'Electronics': 'Electronics & Software', 'Eyewear': 'Eyecare', 'Grocery': 'Groceries', 'Hardcover': 'Books', 'Health and Beauty': 'Personal Care', 'Home': 'Home', 'Kitchen': DEFAULT_MINT_CATEGORY, 'Lawn & Patio': 'Lawn & Garden', 'Luggage': DEFAULT_MINT_CATEGORY, 'Mass Market Paperback': 'Books', 'Misc.': DEFAULT_MINT_CATEGORY, 'Office Product': 'Office Supplies', 'Paperback': 'Books', 'Personal Computers': 'Electronics & Software', 'Print on Demand': DEFAULT_MINT_CATEGORY, 'Shoes': 'Clothing', 'Software Download': 'Electronics & Software', 'Sports': 'Sporting Goods', 'Sports Apparel': 'Sporting Goods', 'T-shirt': 'Clothing', 'Tools & Hardware': 'Home', 'Tools & Home Improvement': 'Home Improvement', 'Toy': 'Toys', 'Video Game': 'Electronics & Software', 'Watch': DEFAULT_MINT_CATEGORY, 'Wine': 'Alcohol & Bars', 'Wireless Phone Accessory': 'Electronics & Software', } # Pulled early 2018. DEFAULT_MINT_CATEGORIES_TO_IDS = { 'ATM Fee': 1605, 'Advertising': 1701, 'Air Travel': 1501, 'Alcohol & Bars': 708, 'Allowance': 610, 'Amusement': 102, 'Arts': 101, 'Auto & Transport': 14, 'Auto Insurance': 1405, 'Auto Payment': 1404, 'Baby Supplies': 611, 'Babysitter & Daycare': 602, 'Bank Fee': 1606, 'Bills & Utilities': 13, 'Bonus': 3004, 'Books': 202, 'Books & Supplies': 1003, 'Business Services': 17, 'Buy': 5004, 'Cash & ATM': 2001, 'Charity': 802, 'Check': 2002, 'Child Support': 603, 'Clothing': 201, 'Coffee Shops': 704, 'Credit Card Payment': 2101, 'Dentist': 501, 'Deposit': 5001, 'Dividend & Cap Gains': 5003, 'Doctor': 502, 'Education': 10, 'Electronics & Software': 204, 'Entertainment': 1, 'Eyecare': 503, 'Fast Food': 706, 'Federal Tax': 1901, 'Fees & Charges': 16, 'Finance Charge': 1604, 'Financial': 11, 'Financial Advisor': 1105, 'Food & Dining': 7, 'Furnishings': 1201, 'Gas & Fuel': 1401, 'Gift': 801, 'Gifts & Donations': 8, 'Groceries': 701, 'Gym': 507, 'Hair': 403, 'Health & Fitness': 5, 'Health Insurance': 506, 'Hide from Budgets & Trends': 40, 'Hobbies': 206, 'Home': 12, 'Home Improvement': 1203, 'Home Insurance': 1206, 'Home Phone': 1302, 'Home Services': 1204, 'Home Supplies': 1208, 'Hotel': 1502, 'Income': 30, 'Interest Income': 3005, 'Internet': 1303, 'Investments': 50, 'Kids': 6, 'Kids Activities': 609, 'Kitchen': 1562103, 'Late Fee': 1602, 'Laundry': 406, 'Lawn & Garden': 1202, 'Legal': 1705, 'Life Insurance': 1102, 'Loan Fees and Charges': 6005, 'Loan Insurance': 6002, 'Loan Interest': 6004, 'Loan Payment': 6001, 'Loan Principal': 6003, 'Loans': 60, 'Local Tax': 1903, 'Misc Expenses': 70, 'Mobile Phone': 1304, 'Mortgage & Rent': 1207, 'Movies & DVDs': 104, 'Music': 103, 'Newspapers & Magazines': 105, 'Office Supplies': 1702, 'Orthodontics': 1671958, 'Parking': 1402, 'Paycheck': 3001, 'Personal Care': 4, 'Pet Food & Supplies': 901, 'Pet Grooming': 902, 'Pets': 9, 'Pharmacy': 505, 'Printing': 1703, 'Property Tax': 1905, 'Public Transportation': 1406, 'Rail': 1562093, 'Reimbursement': 3006, 'Rental Car & Taxi': 1503, 'Rental Income': 3007, 'Restaurants': 707, 'Returned Purchase': 3003, 'Sales Tax': 1904, 'Sell': 5005, 'Service & Parts': 1403, 'Service Fee': 1601, 'Shipping': 1704, 'Shopping': 2, 'Spa & Massage': 404, 'Sporting Goods': 207, 'Sports': 508, 'State Tax': 1902, 'Student Loan': 1002, 'Taxes': 19, 'Television': 1301, 'Toys': 606, 'Trade Commissions': 1607, 'Transfer': 21, 'Transfer for Cash Spending': 2102, 'Travel': 15, 'Tuition': 1001, 'Uncategorized': 20, 'Utilities': 1306, 'Vacation': 1504, 'Veterinary': 903, 'Withdrawal': 5002, }
# The default Mint category. DEFAULT_MINT_CATEGORY = 'Shopping' # The default return category. DEFAULT_MINT_RETURN_CATEGORY = 'Returned Purchase' # A category mapping of Amazon Order History "Categories" into Mint # "Categories". AMAZON_TO_MINT_CATEGORY = { 'Accessory': DEFAULT_MINT_CATEGORY, 'Apparel': 'Clothing', 'Audio CD': 'Music', 'Automotive': 'Auto & Transport', 'Baby Product': 'Baby Supplies', 'Blu-ray': 'Movies & DVDs', 'CD-ROM': 'Music', 'Camera': 'Electronics & Software', 'Electronics': 'Electronics & Software', 'Eyewear': 'Eyecare', 'Grocery': 'Groceries', 'Hardcover': 'Books', 'Health and Beauty': 'Personal Care', 'Home': 'Home', 'Kitchen': DEFAULT_MINT_CATEGORY, 'Lawn & Patio': 'Lawn & Garden', 'Luggage': DEFAULT_MINT_CATEGORY, 'Mass Market Paperback': 'Books', 'Misc.': DEFAULT_MINT_CATEGORY, 'Office Product': 'Office Supplies', 'Paperback': 'Books', 'Personal Computers': 'Electronics & Software', 'Print on Demand': DEFAULT_MINT_CATEGORY, 'Shoes': 'Clothing', 'Software Download': 'Electronics & Software', 'Sports': 'Sporting Goods', 'Sports Apparel': 'Sporting Goods', 'T-shirt': 'Clothing', 'Tools & Hardware': 'Home', 'Tools & Home Improvement': 'Home Improvement', 'Toy': 'Toys', 'Video Game': 'Electronics & Software', 'Watch': DEFAULT_MINT_CATEGORY, 'Wine': 'Alcohol & Bars', 'Wireless Phone Accessory': 'Electronics & Software', } # Pulled early 2018. DEFAULT_MINT_CATEGORIES_TO_IDS = { 'ATM Fee': 1605, 'Advertising': 1701, 'Air Travel': 1501, 'Alcohol & Bars': 708, 'Allowance': 610, 'Amusement': 102, 'Arts': 101, 'Auto & Transport': 14, 'Auto Insurance': 1405, 'Auto Payment': 1404, 'Baby Supplies': 611, 'Babysitter & Daycare': 602, 'Bank Fee': 1606, 'Bills & Utilities': 13, 'Bonus': 3004, 'Books': 202, 'Books & Supplies': 1003, 'Business Services': 17, 'Buy': 5004, 'Cash & ATM': 2001, 'Charity': 802, 'Check': 2002, 'Child Support': 603, 'Clothing': 201, 'Coffee Shops': 704, 'Credit Card Payment': 2101, 'Dentist': 501, 'Deposit': 5001, 'Dividend & Cap Gains': 5003, 'Doctor': 502, 'Education': 10, 'Electronics & Software': 204, 'Entertainment': 1, 'Eyecare': 503, 'Fast Food': 706, 'Federal Tax': 1901, 'Fees & Charges': 16, 'Finance Charge': 1604, 'Financial': 11, 'Financial Advisor': 1105, 'Food & Dining': 7, 'Furnishings': 1201, 'Gas & Fuel': 1401, 'Gift': 801, 'Gifts & Donations': 8, 'Groceries': 701, 'Gym': 507, 'Hair': 403, 'Health & Fitness': 5, 'Health Insurance': 506, 'Hide from Budgets & Trends': 40, 'Hobbies': 206, 'Home': 12, 'Home Improvement': 1203, 'Home Insurance': 1206, 'Home Phone': 1302, 'Home Services': 1204, 'Home Supplies': 1208, 'Hotel': 1502, 'Income': 30, 'Interest Income': 3005, 'Internet': 1303, 'Investments': 50, 'Kids': 6, 'Kids Activities': 609, 'Kitchen': 1562103, 'Late Fee': 1602, 'Laundry': 406, 'Lawn & Garden': 1202, 'Legal': 1705, 'Life Insurance': 1102, 'Loan Fees and Charges': 6005, 'Loan Insurance': 6002, 'Loan Interest': 6004, 'Loan Payment': 6001, 'Loan Principal': 6003, 'Loans': 60, 'Local Tax': 1903, 'Misc Expenses': 70, 'Mobile Phone': 1304, 'Mortgage & Rent': 1207, 'Movies & DVDs': 104, 'Music': 103, 'Newspapers & Magazines': 105, 'Office Supplies': 1702, 'Orthodontics': 1671958, 'Parking': 1402, 'Paycheck': 3001, 'Personal Care': 4, 'Pet Food & Supplies': 901, 'Pet Grooming': 902, 'Pets': 9, 'Pharmacy': 505, 'Printing': 1703, 'Property Tax': 1905, 'Public Transportation': 1406, 'Rail': 1562093, 'Reimbursement': 3006, 'Rental Car & Taxi': 1503, 'Rental Income': 3007, 'Restaurants': 707, 'Returned Purchase': 3003, 'Sales Tax': 1904, 'Sell': 5005, 'Service & Parts': 1403, 'Service Fee': 1601, 'Shipping': 1704, 'Shopping': 2, 'Spa & Massage': 404, 'Sporting Goods': 207, 'Sports': 508, 'State Tax': 1902, 'Student Loan': 1002, 'Taxes': 19, 'Television': 1301, 'Toys': 606, 'Trade Commissions': 1607, 'Transfer': 21, 'Transfer for Cash Spending': 2102, 'Travel': 15, 'Tuition': 1001, 'Uncategorized': 20, 'Utilities': 1306, 'Vacation': 1504, 'Veterinary': 903, 'Withdrawal': 5002, }
en
0.491832
# The default Mint category. # The default return category. # A category mapping of Amazon Order History "Categories" into Mint # "Categories". # Pulled early 2018.
2.003522
2
ceph_deploy/tests/test_install.py
weisongf/ceph-deploy
353
6632989
<gh_stars>100-1000 from mock import Mock from ceph_deploy import install class TestSanitizeArgs(object): def setup(self): self.args = Mock() # set the default behavior we set in cli.py self.args.default_release = False self.args.stable = None def test_args_release_not_specified(self): self.args.release = None result = install.sanitize_args(self.args) # XXX # we should get `args.release` to be the latest release # but we don't want to be updating this test every single # time there is a new default value, and we can't programatically # change that. Future improvement: make the default release a # variable in `ceph_deploy/__init__.py` assert result.default_release is True def test_args_release_is_specified(self): self.args.release = 'dumpling' result = install.sanitize_args(self.args) assert result.default_release is False def test_args_release_stable_is_used(self): self.args.stable = 'dumpling' result = install.sanitize_args(self.args) assert result.release == 'dumpling' def test_args_stable_is_not_used(self): self.args.release = 'dumpling' result = install.sanitize_args(self.args) assert result.stable is None class TestDetectComponents(object): def setup(self): self.args = Mock() # default values for install_* flags self.args.install_all = False self.args.install_mds = False self.args.install_mgr = False self.args.install_mon = False self.args.install_osd = False self.args.install_rgw = False self.args.install_tests = False self.args.install_common = False self.args.repo = False self.distro = Mock() def test_install_with_repo_option_returns_no_packages(self): self.args.repo = True result = install.detect_components(self.args, self.distro) assert result == [] def test_install_all_returns_all_packages_deb(self): self.args.install_all = True self.distro.is_rpm = False self.distro.is_deb = True self.distro.is_pkgtarxz = False result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph-osd', 'ceph-mds', 'ceph', 'ceph-mon', 'radosgw' ]) def test_install_all_with_other_options_returns_all_packages_deb(self): self.distro.is_rpm = False self.distro.is_deb = True self.distro.is_pkgtarxz = False self.args.install_all = True self.args.install_mds = True self.args.install_mgr = True self.args.install_mon = True self.args.install_osd = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph-osd', 'ceph-mds', 'ceph', 'ceph-mon', 'radosgw' ]) def test_install_all_returns_all_packages_rpm(self): self.args.install_all = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph-osd', 'ceph-mds', 'ceph', 'ceph-mon', 'ceph-radosgw' ]) def test_install_all_with_other_options_returns_all_packages_rpm(self): self.args.install_all = True self.args.install_mds = True self.args.install_mon = True self.args.install_mgr = True self.args.install_osd = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph-osd', 'ceph-mds', 'ceph', 'ceph-mon', 'ceph-radosgw' ]) def test_install_all_returns_all_packages_pkgtarxz(self): self.args.install_all = True self.distro.is_rpm = False self.distro.is_deb = False self.distro.is_pkgtarxz = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph', ]) def test_install_all_with_other_options_returns_all_packages_pkgtarxz(self): self.distro.is_rpm = False self.distro.is_deb = False self.distro.is_pkgtarxz = True self.args.install_all = True self.args.install_mds = True self.args.install_mgr = True self.args.install_mon = True self.args.install_osd = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph', ]) def test_install_only_one_component(self): self.args.install_osd = True result = install.detect_components(self.args, self.distro) assert result == ['ceph-osd'] def test_install_a_couple_of_components(self): self.args.install_osd = True self.args.install_mds = True self.args.install_mgr = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted(['ceph-osd', 'ceph-mds', 'ceph-mgr']) def test_install_tests(self): self.args.install_tests = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted(['ceph-test']) def test_install_all_should_be_default_when_no_options_passed(self): result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph-osd', 'ceph-mds', 'ceph', 'ceph-mon', 'ceph-radosgw' ])
from mock import Mock from ceph_deploy import install class TestSanitizeArgs(object): def setup(self): self.args = Mock() # set the default behavior we set in cli.py self.args.default_release = False self.args.stable = None def test_args_release_not_specified(self): self.args.release = None result = install.sanitize_args(self.args) # XXX # we should get `args.release` to be the latest release # but we don't want to be updating this test every single # time there is a new default value, and we can't programatically # change that. Future improvement: make the default release a # variable in `ceph_deploy/__init__.py` assert result.default_release is True def test_args_release_is_specified(self): self.args.release = 'dumpling' result = install.sanitize_args(self.args) assert result.default_release is False def test_args_release_stable_is_used(self): self.args.stable = 'dumpling' result = install.sanitize_args(self.args) assert result.release == 'dumpling' def test_args_stable_is_not_used(self): self.args.release = 'dumpling' result = install.sanitize_args(self.args) assert result.stable is None class TestDetectComponents(object): def setup(self): self.args = Mock() # default values for install_* flags self.args.install_all = False self.args.install_mds = False self.args.install_mgr = False self.args.install_mon = False self.args.install_osd = False self.args.install_rgw = False self.args.install_tests = False self.args.install_common = False self.args.repo = False self.distro = Mock() def test_install_with_repo_option_returns_no_packages(self): self.args.repo = True result = install.detect_components(self.args, self.distro) assert result == [] def test_install_all_returns_all_packages_deb(self): self.args.install_all = True self.distro.is_rpm = False self.distro.is_deb = True self.distro.is_pkgtarxz = False result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph-osd', 'ceph-mds', 'ceph', 'ceph-mon', 'radosgw' ]) def test_install_all_with_other_options_returns_all_packages_deb(self): self.distro.is_rpm = False self.distro.is_deb = True self.distro.is_pkgtarxz = False self.args.install_all = True self.args.install_mds = True self.args.install_mgr = True self.args.install_mon = True self.args.install_osd = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph-osd', 'ceph-mds', 'ceph', 'ceph-mon', 'radosgw' ]) def test_install_all_returns_all_packages_rpm(self): self.args.install_all = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph-osd', 'ceph-mds', 'ceph', 'ceph-mon', 'ceph-radosgw' ]) def test_install_all_with_other_options_returns_all_packages_rpm(self): self.args.install_all = True self.args.install_mds = True self.args.install_mon = True self.args.install_mgr = True self.args.install_osd = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph-osd', 'ceph-mds', 'ceph', 'ceph-mon', 'ceph-radosgw' ]) def test_install_all_returns_all_packages_pkgtarxz(self): self.args.install_all = True self.distro.is_rpm = False self.distro.is_deb = False self.distro.is_pkgtarxz = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph', ]) def test_install_all_with_other_options_returns_all_packages_pkgtarxz(self): self.distro.is_rpm = False self.distro.is_deb = False self.distro.is_pkgtarxz = True self.args.install_all = True self.args.install_mds = True self.args.install_mgr = True self.args.install_mon = True self.args.install_osd = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph', ]) def test_install_only_one_component(self): self.args.install_osd = True result = install.detect_components(self.args, self.distro) assert result == ['ceph-osd'] def test_install_a_couple_of_components(self): self.args.install_osd = True self.args.install_mds = True self.args.install_mgr = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted(['ceph-osd', 'ceph-mds', 'ceph-mgr']) def test_install_tests(self): self.args.install_tests = True result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted(['ceph-test']) def test_install_all_should_be_default_when_no_options_passed(self): result = sorted(install.detect_components(self.args, self.distro)) assert result == sorted([ 'ceph-osd', 'ceph-mds', 'ceph', 'ceph-mon', 'ceph-radosgw' ])
en
0.778931
# set the default behavior we set in cli.py # XXX # we should get `args.release` to be the latest release # but we don't want to be updating this test every single # time there is a new default value, and we can't programatically # change that. Future improvement: make the default release a # variable in `ceph_deploy/__init__.py` # default values for install_* flags
2.378711
2
hawc_hal/healpix_handling/flat_sky_to_healpix.py
igherzog/hawc_hal
7
6632990
<reponame>igherzog/hawc_hal<filename>hawc_hal/healpix_handling/flat_sky_to_healpix.py<gh_stars>1-10 from builtins import object import healpy as hp import numpy as np import six from scipy.ndimage import map_coordinates from astropy.coordinates import Galactic, ICRS from astropy import units as u from astropy.coordinates import UnitSphericalRepresentation from astropy.wcs.utils import wcs_to_celestial_frame from ..special_values import UNSEEN from ..interpolation import FastBilinearInterpolation ORDER = {} ORDER['nearest-neighbor'] = 0 ORDER['bilinear'] = 1 ORDER['biquadratic'] = 2 ORDER['bicubic'] = 3 COORDSYS = { 'g': Galactic(), 'c': ICRS(), 'icrs': ICRS(), } def _parse_coord_system(system): try: return COORDSYS[system.lower()] except KeyError: # pragma: no cover raise ValueError("Coordinate system %s is not known" % system) def _convert_world_coordinates(lon_in, lat_in, wcs_in, wcs_out): frame_in, lon_in_unit, lat_in_unit = wcs_in wcs_out = wcs_out.celestial frame_out = wcs_to_celestial_frame(wcs_out) lon_out_unit = u.Unit(wcs_out.wcs.cunit[0]) lat_out_unit = u.Unit(wcs_out.wcs.cunit[1]) data = UnitSphericalRepresentation(lon_in * lon_in_unit, lat_in * lat_in_unit) coords_in = frame_in.realize_frame(data) coords_out = coords_in.transform_to(frame_out) lon_out = coords_out.represent_as('unitspherical').lon.to(lon_out_unit).value lat_out = coords_out.represent_as('unitspherical').lat.to(lat_out_unit).value return lon_out, lat_out class FlatSkyToHealpixTransform(object): """ A class to perform transformation from a flat sky projection to Healpix optimized to be used for the same transformation over and over again. The constructor will pre-compute all needed quantities for the transformation, and the __call__ method just applies the transformation. This avoids to re-compute the same quantities over and over again. """ def __init__(self, wcs_in, coord_system_out, nside, pixels_id, input_shape, order='bilinear', nested=False): # Look up lon, lat of pixels in output system and convert colatitude theta # and longitude phi to longitude and latitude. theta, phi = hp.pix2ang(nside, pixels_id, nested) lon_out = np.degrees(phi) lat_out = 90. - np.degrees(theta) # Convert between celestial coordinates coord_system_out = _parse_coord_system(coord_system_out) with np.errstate(invalid='ignore'): lon_in, lat_in = _convert_world_coordinates(lon_out, lat_out, (coord_system_out, u.deg, u.deg), wcs_in) # Look up pixels in input system yinds, xinds = wcs_in.wcs_world2pix(lon_in, lat_in, 0) self._coords = [xinds, yinds] # Interpolate if isinstance(order, six.string_types): order = ORDER[order] self._order = order self._interpolator = FastBilinearInterpolation(input_shape, self._coords) def __call__(self, data, fill_value=UNSEEN): # healpix_data = map_coordinates(data, self._coords, # order=self._order, # mode='constant', cval=fill_value) healpix_data = self._interpolator(data) return healpix_data
from builtins import object import healpy as hp import numpy as np import six from scipy.ndimage import map_coordinates from astropy.coordinates import Galactic, ICRS from astropy import units as u from astropy.coordinates import UnitSphericalRepresentation from astropy.wcs.utils import wcs_to_celestial_frame from ..special_values import UNSEEN from ..interpolation import FastBilinearInterpolation ORDER = {} ORDER['nearest-neighbor'] = 0 ORDER['bilinear'] = 1 ORDER['biquadratic'] = 2 ORDER['bicubic'] = 3 COORDSYS = { 'g': Galactic(), 'c': ICRS(), 'icrs': ICRS(), } def _parse_coord_system(system): try: return COORDSYS[system.lower()] except KeyError: # pragma: no cover raise ValueError("Coordinate system %s is not known" % system) def _convert_world_coordinates(lon_in, lat_in, wcs_in, wcs_out): frame_in, lon_in_unit, lat_in_unit = wcs_in wcs_out = wcs_out.celestial frame_out = wcs_to_celestial_frame(wcs_out) lon_out_unit = u.Unit(wcs_out.wcs.cunit[0]) lat_out_unit = u.Unit(wcs_out.wcs.cunit[1]) data = UnitSphericalRepresentation(lon_in * lon_in_unit, lat_in * lat_in_unit) coords_in = frame_in.realize_frame(data) coords_out = coords_in.transform_to(frame_out) lon_out = coords_out.represent_as('unitspherical').lon.to(lon_out_unit).value lat_out = coords_out.represent_as('unitspherical').lat.to(lat_out_unit).value return lon_out, lat_out class FlatSkyToHealpixTransform(object): """ A class to perform transformation from a flat sky projection to Healpix optimized to be used for the same transformation over and over again. The constructor will pre-compute all needed quantities for the transformation, and the __call__ method just applies the transformation. This avoids to re-compute the same quantities over and over again. """ def __init__(self, wcs_in, coord_system_out, nside, pixels_id, input_shape, order='bilinear', nested=False): # Look up lon, lat of pixels in output system and convert colatitude theta # and longitude phi to longitude and latitude. theta, phi = hp.pix2ang(nside, pixels_id, nested) lon_out = np.degrees(phi) lat_out = 90. - np.degrees(theta) # Convert between celestial coordinates coord_system_out = _parse_coord_system(coord_system_out) with np.errstate(invalid='ignore'): lon_in, lat_in = _convert_world_coordinates(lon_out, lat_out, (coord_system_out, u.deg, u.deg), wcs_in) # Look up pixels in input system yinds, xinds = wcs_in.wcs_world2pix(lon_in, lat_in, 0) self._coords = [xinds, yinds] # Interpolate if isinstance(order, six.string_types): order = ORDER[order] self._order = order self._interpolator = FastBilinearInterpolation(input_shape, self._coords) def __call__(self, data, fill_value=UNSEEN): # healpix_data = map_coordinates(data, self._coords, # order=self._order, # mode='constant', cval=fill_value) healpix_data = self._interpolator(data) return healpix_data
en
0.710189
# pragma: no cover A class to perform transformation from a flat sky projection to Healpix optimized to be used for the same transformation over and over again. The constructor will pre-compute all needed quantities for the transformation, and the __call__ method just applies the transformation. This avoids to re-compute the same quantities over and over again. # Look up lon, lat of pixels in output system and convert colatitude theta # and longitude phi to longitude and latitude. # Convert between celestial coordinates # Look up pixels in input system # Interpolate # healpix_data = map_coordinates(data, self._coords, # order=self._order, # mode='constant', cval=fill_value)
2.301408
2
app/dnt_main.py
fatihy101/detect-and-track
0
6632991
<filename>app/dnt_main.py from pyimagesearch.centroidtracker import CentroidTracker from pyimagesearch.trackableobject import TrackableObject from imutils.video import FPS import numpy as np import imutils import dlib import tensorflow.compat.v1 as tf from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util import cv2 import sys from PyQt5.QtCore import QThread, pyqtSignal, Qt, pyqtSlot, QObject, QRunnable, QThreadPool from PyQt5.QtGui import QImage, QPixmap from datetime import datetime from sign_in.db_connection import * class Signals(QObject): changePixmap = pyqtSignal(QImage) changeTextBox = pyqtSignal(str) changeButton = pyqtSignal(str) changeTitleBox = pyqtSignal(str) class Detection(QRunnable): def __init__(self): super(Detection, self).__init__() self.signals = Signals() self.stopped = False self.video_source = None self.total_elapsed_time = 0 self.totalLeft = 0 self.totalRight = 0 self.enter_position = 'right' self.model_path = 'model_dir/ssdnet_86k/frozen_inference_graph.pb' self.label_path = 'model_dir/ssdnet_86k/cow_label_map.pbtxt' self.num_classes = 1 @pyqtSlot() def run(self): self.signals.changeTitleBox.emit(" Sol Toplam\n" "Sağ Toplam\n" " Durum") self.vs = cv2.VideoCapture(self.video_source) detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.model_path, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(self.label_path) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=self.num_classes, use_display_name=True) category_index = label_map_util.create_category_index(categories) W = None H = None ct = CentroidTracker(maxDisappeared=40, maxDistance=50) trackers = [] trackableObjects = {} totalFrames = 0 skip_frame = 10 fps = FPS().start() # Operation with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: while True: ret, self.frame = self.vs.read() if self.frame is None or self.stopped: print("Video stream ended.") break self.frame = imutils.resize(self.frame, width=1000) # Less data we have, faster we are. rgb = cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGB) self.frame = rgb if W is None or H is None: (H, W, ch) = self.frame.shape self.status = "Bekliyor" rects = [] if totalFrames % skip_frame == 0: self.status = "Saptanıyor" trackers = [] frame_expanded = np.expand_dims(self.frame, axis=0) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') boxes = detection_graph.get_tensor_by_name('detection_boxes:0') scores = detection_graph.get_tensor_by_name('detection_scores:0') classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: frame_expanded}) ymin = int((boxes[0][0][0] * H)) xmin = int((boxes[0][0][1] * W)) ymax = int((boxes[0][0][2] * H)) xmax = int((boxes[0][0][3] * W)) box_area = (xmax - xmin) * (ymax - ymin) total_area = W * H # For eliminating the false positives. if box_area > total_area * 0.5: ymin, xmin, xmax, ymax = (None, None, None, None) if ymin is not None: tracker = dlib.correlation_tracker() rect = dlib.rectangle(xmin, ymin, xmax, ymax) tracker.start_track(rgb, rect) trackers.append(tracker) else: for tracker in trackers: self.status = "Takip Ediliyor" tracker.update(rgb) pos = tracker.get_position() xmin = int(pos.left()) ymin = int(pos.top()) xmax = int(pos.right()) ymax = int(pos.bottom()) rects.append((xmin, ymin, xmax, ymax)) # cv2.line(self.frame, (W // 2, 0), (W // 2, H), (0, 255, 255), 2) objects = ct.update(rects) for (objectID, centroid) in objects.items(): trackable_obj = trackableObjects.get(objectID, None) if trackable_obj is None: trackable_obj = TrackableObject(objectID, centroid) else: x = [c[0] for c in trackable_obj.centroids] direction = centroid[0] - np.mean(x) trackable_obj.centroids.append(centroid) if not trackable_obj.counted: # if the direction is negative (indicating the object # is moving up) AND the centroid is above the center # line, count the object if direction < 0 and centroid[0] < int(W * 0.25): self.totalLeft += 1 trackable_obj.counted = True elif direction > 0 and centroid[0] > int(W * 0.75): self.totalRight += 1 trackable_obj.counted = True trackableObjects[objectID] = trackable_obj text = "ID {}".format(objectID) cv2.putText(self.frame, text, (centroid[0] - 10, centroid[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.circle(self.frame, (centroid[0], centroid[1]), 4, (0, 255, 0), -1) self.signals.changeTextBox.emit(f"{self.totalLeft}\n{self.totalRight}\n{self.status}") # End of the loop bytesPerLine = ch * W convertToQtFormat = QImage(rgb.data, W, H, bytesPerLine, QImage.Format_RGB888) p = convertToQtFormat.scaled(800, 600, Qt.KeepAspectRatio) self.signals.changePixmap.emit(p) totalFrames += 1 fps.update() # self.signals.changeTitleBox.emit("Durum: ") # Clear output self.signals.changeTextBox.emit("Rapor kaydedildi.") # Alter button to Start. self.signals.changeButton.emit("start_button") # Stop FPS count. fps.stop() # Get total elapsed time. self.total_elapsed_time = fps.elapsed() # Create report to database. self.create_report(self.totalLeft, self.totalRight, fps.elapsed()) # Finally, set placeholder. self.signals.changePixmap.emit(QImage('./Resources/placeholder2.png')) # Format the elapsed time like: 10h 20m 55s def create_report(self, total_left, total_right, elapsed_time): db_report = Database() t = datetime.now() current_time = t.strftime("%d/%m/%y %H:%M:%S.%f")[:-4] db_report.insert_report(current_time, self.convert_hour_format(elapsed_time), total_left, total_right, self.get_id_local(), self.enter_position) print("create_report: done!") db_report.cursor.close() db_report.connection.close() def get_id_local(self): platform_name = platform.system() # For Windows if platform_name == "Windows": save_dir = os.getenv('APPDATA') file_path = save_dir + '\\Provactus\\usr.md' elif platform_name == "Linux": file_path = '/var/Provactus/usr.md' try: with open(file_path, 'r') as file: read_file = file.readlines() uid = read_file[0] return uid except FileExistsError: self.signals.changeTextBox.emit("Raporu kaydederken bir hata oluştu.") def convert_hour_format(self, second): minute = int(second / 60) left_second = second % 60 hour = int(minute / 60) left_minute = minute % 60 out = f"{hour}:{left_minute}:{int(left_second)}" return out
<filename>app/dnt_main.py from pyimagesearch.centroidtracker import CentroidTracker from pyimagesearch.trackableobject import TrackableObject from imutils.video import FPS import numpy as np import imutils import dlib import tensorflow.compat.v1 as tf from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util import cv2 import sys from PyQt5.QtCore import QThread, pyqtSignal, Qt, pyqtSlot, QObject, QRunnable, QThreadPool from PyQt5.QtGui import QImage, QPixmap from datetime import datetime from sign_in.db_connection import * class Signals(QObject): changePixmap = pyqtSignal(QImage) changeTextBox = pyqtSignal(str) changeButton = pyqtSignal(str) changeTitleBox = pyqtSignal(str) class Detection(QRunnable): def __init__(self): super(Detection, self).__init__() self.signals = Signals() self.stopped = False self.video_source = None self.total_elapsed_time = 0 self.totalLeft = 0 self.totalRight = 0 self.enter_position = 'right' self.model_path = 'model_dir/ssdnet_86k/frozen_inference_graph.pb' self.label_path = 'model_dir/ssdnet_86k/cow_label_map.pbtxt' self.num_classes = 1 @pyqtSlot() def run(self): self.signals.changeTitleBox.emit(" Sol Toplam\n" "Sağ Toplam\n" " Durum") self.vs = cv2.VideoCapture(self.video_source) detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.model_path, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') label_map = label_map_util.load_labelmap(self.label_path) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=self.num_classes, use_display_name=True) category_index = label_map_util.create_category_index(categories) W = None H = None ct = CentroidTracker(maxDisappeared=40, maxDistance=50) trackers = [] trackableObjects = {} totalFrames = 0 skip_frame = 10 fps = FPS().start() # Operation with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: while True: ret, self.frame = self.vs.read() if self.frame is None or self.stopped: print("Video stream ended.") break self.frame = imutils.resize(self.frame, width=1000) # Less data we have, faster we are. rgb = cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGB) self.frame = rgb if W is None or H is None: (H, W, ch) = self.frame.shape self.status = "Bekliyor" rects = [] if totalFrames % skip_frame == 0: self.status = "Saptanıyor" trackers = [] frame_expanded = np.expand_dims(self.frame, axis=0) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') boxes = detection_graph.get_tensor_by_name('detection_boxes:0') scores = detection_graph.get_tensor_by_name('detection_scores:0') classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: frame_expanded}) ymin = int((boxes[0][0][0] * H)) xmin = int((boxes[0][0][1] * W)) ymax = int((boxes[0][0][2] * H)) xmax = int((boxes[0][0][3] * W)) box_area = (xmax - xmin) * (ymax - ymin) total_area = W * H # For eliminating the false positives. if box_area > total_area * 0.5: ymin, xmin, xmax, ymax = (None, None, None, None) if ymin is not None: tracker = dlib.correlation_tracker() rect = dlib.rectangle(xmin, ymin, xmax, ymax) tracker.start_track(rgb, rect) trackers.append(tracker) else: for tracker in trackers: self.status = "Takip Ediliyor" tracker.update(rgb) pos = tracker.get_position() xmin = int(pos.left()) ymin = int(pos.top()) xmax = int(pos.right()) ymax = int(pos.bottom()) rects.append((xmin, ymin, xmax, ymax)) # cv2.line(self.frame, (W // 2, 0), (W // 2, H), (0, 255, 255), 2) objects = ct.update(rects) for (objectID, centroid) in objects.items(): trackable_obj = trackableObjects.get(objectID, None) if trackable_obj is None: trackable_obj = TrackableObject(objectID, centroid) else: x = [c[0] for c in trackable_obj.centroids] direction = centroid[0] - np.mean(x) trackable_obj.centroids.append(centroid) if not trackable_obj.counted: # if the direction is negative (indicating the object # is moving up) AND the centroid is above the center # line, count the object if direction < 0 and centroid[0] < int(W * 0.25): self.totalLeft += 1 trackable_obj.counted = True elif direction > 0 and centroid[0] > int(W * 0.75): self.totalRight += 1 trackable_obj.counted = True trackableObjects[objectID] = trackable_obj text = "ID {}".format(objectID) cv2.putText(self.frame, text, (centroid[0] - 10, centroid[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) cv2.circle(self.frame, (centroid[0], centroid[1]), 4, (0, 255, 0), -1) self.signals.changeTextBox.emit(f"{self.totalLeft}\n{self.totalRight}\n{self.status}") # End of the loop bytesPerLine = ch * W convertToQtFormat = QImage(rgb.data, W, H, bytesPerLine, QImage.Format_RGB888) p = convertToQtFormat.scaled(800, 600, Qt.KeepAspectRatio) self.signals.changePixmap.emit(p) totalFrames += 1 fps.update() # self.signals.changeTitleBox.emit("Durum: ") # Clear output self.signals.changeTextBox.emit("Rapor kaydedildi.") # Alter button to Start. self.signals.changeButton.emit("start_button") # Stop FPS count. fps.stop() # Get total elapsed time. self.total_elapsed_time = fps.elapsed() # Create report to database. self.create_report(self.totalLeft, self.totalRight, fps.elapsed()) # Finally, set placeholder. self.signals.changePixmap.emit(QImage('./Resources/placeholder2.png')) # Format the elapsed time like: 10h 20m 55s def create_report(self, total_left, total_right, elapsed_time): db_report = Database() t = datetime.now() current_time = t.strftime("%d/%m/%y %H:%M:%S.%f")[:-4] db_report.insert_report(current_time, self.convert_hour_format(elapsed_time), total_left, total_right, self.get_id_local(), self.enter_position) print("create_report: done!") db_report.cursor.close() db_report.connection.close() def get_id_local(self): platform_name = platform.system() # For Windows if platform_name == "Windows": save_dir = os.getenv('APPDATA') file_path = save_dir + '\\Provactus\\usr.md' elif platform_name == "Linux": file_path = '/var/Provactus/usr.md' try: with open(file_path, 'r') as file: read_file = file.readlines() uid = read_file[0] return uid except FileExistsError: self.signals.changeTextBox.emit("Raporu kaydederken bir hata oluştu.") def convert_hour_format(self, second): minute = int(second / 60) left_second = second % 60 hour = int(minute / 60) left_minute = minute % 60 out = f"{hour}:{left_minute}:{int(left_second)}" return out
en
0.660435
# Operation # Less data we have, faster we are. # For eliminating the false positives. # cv2.line(self.frame, (W // 2, 0), (W // 2, H), (0, 255, 255), 2) # if the direction is negative (indicating the object # is moving up) AND the centroid is above the center # line, count the object # End of the loop # # Clear output # Alter button to Start. # Stop FPS count. # Get total elapsed time. # Create report to database. # Finally, set placeholder. # Format the elapsed time like: 10h 20m 55s # For Windows
2.043574
2
core/thirdparty/ovf/python/test/simple.py
ddkn/spirit
92
6632992
import os import sys ovf_py_dir = os.path.abspath(os.path.join(os.path.dirname( __file__ ), "..")) sys.path.insert(0, ovf_py_dir) from ovf import ovf import numpy as np import unittest ########## class TestState(unittest.TestCase): def test_nonexistent(self): print("----- ovf test nonexistent") with ovf.ovf_file("nonexistent.ovf") as ovf_file: print("found: ", ovf_file.found) print("is_ovf: ", ovf_file.is_ovf) print("version: ", ovf_file.version) print("n_segments: ", ovf_file.n_segments) self.assertTrue( ovf_file.found == False ) self.assertTrue( ovf_file.is_ovf == False ) self.assertTrue( ovf_file.version == 0 ) self.assertTrue( ovf_file.n_segments == 0 ) segment = ovf.ovf_segment() success = ovf_file.read_segment_header(0, segment) if success != ovf.OK: print("read_segment_header failed: ", ovf_file.get_latest_message()) self.assertFalse( success == ovf.OK ) print("----- ovf test nonexistent done") def test_write(self): print("----- ovf test writing") with ovf.ovf_file("testfile_py.ovf") as ovf_file: data = np.zeros((2, 2, 1, 3), dtype='d') data[0,1,0,:] = [3.0, 2.0, 1.0] segment = ovf.ovf_segment( title="python write test", comment="more details in this comment...", valuedim=3, n_cells=[2,2,1]) success = ovf_file.write_segment(segment, data) if success != ovf.OK: print("write_segment failed: ", ovf_file.get_latest_message()) self.assertTrue( success == ovf.OK ) data[0,1,0,:] = [4.0, 5.0, 6.0] segment.title = "python append test".encode('utf-8') success = ovf_file.append_segment(segment, data) if success != ovf.OK: print("append_segment failed: ", ovf_file.get_latest_message()) self.assertTrue( success == ovf.OK ) print("----- ovf test writing done") print("----- ovf test reading") with ovf.ovf_file("testfile_py.ovf") as ovf_file: print("found: ", ovf_file.found) print("is_ovf: ", ovf_file.is_ovf) print("version: ", ovf_file.version) print("n_segments: ", ovf_file.n_segments) self.assertTrue( ovf_file.found == True ) self.assertTrue( ovf_file.is_ovf == True ) self.assertTrue( ovf_file.version == 2 ) self.assertTrue( ovf_file.n_segments == 2 ) segment = ovf.ovf_segment() success = ovf_file.read_segment_header(0, segment) if success != ovf.OK: print("read_segment_header failed: ", ovf_file.get_latest_message()) self.assertTrue( success == ovf.OK ) data_shape = (segment.n_cells[0], segment.n_cells[1], segment.n_cells[2], 3) data = np.zeros(data_shape, dtype='f') print("data shape: ", data_shape) success = ovf_file.read_segment_data(0, segment, data) if success != ovf.OK: print("read_segment_data failed: ", ovf_file.get_latest_message()) print("first segment: ", data[0,1,0,:]) self.assertTrue( success == ovf.OK ) success = ovf_file.read_segment_header(1, segment) if success != ovf.OK: print("read_segment_header failed: ", ovf_file.get_latest_message()) self.assertTrue( success == ovf.OK ) data_shape = (segment.n_cells[0], segment.n_cells[1], segment.n_cells[2], 3) data = np.zeros(data_shape, dtype='d') success = ovf_file.read_segment_data(1, segment, data) if success != ovf.OK: print("read_segment_data failed: ", ovf_file.get_latest_message()) print("second segment: ", data[0,1,0,:]) self.assertTrue( success == ovf.OK ) print("----- ovf test reading done") ######### if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestState) success = unittest.TextTestRunner().run(suite).wasSuccessful() sys.exit(not success)
import os import sys ovf_py_dir = os.path.abspath(os.path.join(os.path.dirname( __file__ ), "..")) sys.path.insert(0, ovf_py_dir) from ovf import ovf import numpy as np import unittest ########## class TestState(unittest.TestCase): def test_nonexistent(self): print("----- ovf test nonexistent") with ovf.ovf_file("nonexistent.ovf") as ovf_file: print("found: ", ovf_file.found) print("is_ovf: ", ovf_file.is_ovf) print("version: ", ovf_file.version) print("n_segments: ", ovf_file.n_segments) self.assertTrue( ovf_file.found == False ) self.assertTrue( ovf_file.is_ovf == False ) self.assertTrue( ovf_file.version == 0 ) self.assertTrue( ovf_file.n_segments == 0 ) segment = ovf.ovf_segment() success = ovf_file.read_segment_header(0, segment) if success != ovf.OK: print("read_segment_header failed: ", ovf_file.get_latest_message()) self.assertFalse( success == ovf.OK ) print("----- ovf test nonexistent done") def test_write(self): print("----- ovf test writing") with ovf.ovf_file("testfile_py.ovf") as ovf_file: data = np.zeros((2, 2, 1, 3), dtype='d') data[0,1,0,:] = [3.0, 2.0, 1.0] segment = ovf.ovf_segment( title="python write test", comment="more details in this comment...", valuedim=3, n_cells=[2,2,1]) success = ovf_file.write_segment(segment, data) if success != ovf.OK: print("write_segment failed: ", ovf_file.get_latest_message()) self.assertTrue( success == ovf.OK ) data[0,1,0,:] = [4.0, 5.0, 6.0] segment.title = "python append test".encode('utf-8') success = ovf_file.append_segment(segment, data) if success != ovf.OK: print("append_segment failed: ", ovf_file.get_latest_message()) self.assertTrue( success == ovf.OK ) print("----- ovf test writing done") print("----- ovf test reading") with ovf.ovf_file("testfile_py.ovf") as ovf_file: print("found: ", ovf_file.found) print("is_ovf: ", ovf_file.is_ovf) print("version: ", ovf_file.version) print("n_segments: ", ovf_file.n_segments) self.assertTrue( ovf_file.found == True ) self.assertTrue( ovf_file.is_ovf == True ) self.assertTrue( ovf_file.version == 2 ) self.assertTrue( ovf_file.n_segments == 2 ) segment = ovf.ovf_segment() success = ovf_file.read_segment_header(0, segment) if success != ovf.OK: print("read_segment_header failed: ", ovf_file.get_latest_message()) self.assertTrue( success == ovf.OK ) data_shape = (segment.n_cells[0], segment.n_cells[1], segment.n_cells[2], 3) data = np.zeros(data_shape, dtype='f') print("data shape: ", data_shape) success = ovf_file.read_segment_data(0, segment, data) if success != ovf.OK: print("read_segment_data failed: ", ovf_file.get_latest_message()) print("first segment: ", data[0,1,0,:]) self.assertTrue( success == ovf.OK ) success = ovf_file.read_segment_header(1, segment) if success != ovf.OK: print("read_segment_header failed: ", ovf_file.get_latest_message()) self.assertTrue( success == ovf.OK ) data_shape = (segment.n_cells[0], segment.n_cells[1], segment.n_cells[2], 3) data = np.zeros(data_shape, dtype='d') success = ovf_file.read_segment_data(1, segment, data) if success != ovf.OK: print("read_segment_data failed: ", ovf_file.get_latest_message()) print("second segment: ", data[0,1,0,:]) self.assertTrue( success == ovf.OK ) print("----- ovf test reading done") ######### if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestState) success = unittest.TextTestRunner().run(suite).wasSuccessful() sys.exit(not success)
de
0.934246
########## #########
2.630263
3
test/IECoreHoudini/ToHoudiniPolygonsConverter.py
bradleyhenke/cortex
2
6632993
########################################################################## # # Copyright (c) 2010-2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import hou import imath import IECore import IECoreScene import IECoreHoudini import unittest import os class TestToHoudiniPolygonsConverter( IECoreHoudini.TestCase ) : __testScene = "test/converterTest.hip" if hou.applicationVersion()[0] >= 16: PointPositionAttribs = ['P'] else: PointPositionAttribs = ['P', 'Pw'] def mesh( self ) : vertsPerFace = IECore.IntVectorData( [ 4, 4, 4, 4, 4, 4 ] ) vertexIds = IECore.IntVectorData( [ 1, 5, 4, 0, 2, 6, 5, 1, 3, 7, 6, 2, 0, 4, 7, 3, 2, 1, 0, 3, 5, 6, 7, 4 ] ) mesh = IECoreScene.MeshPrimitive( vertsPerFace, vertexIds ) floatData = IECore.FloatData( 1.5 ) v2fData = IECore.V2fData( imath.V2f( 1.5, 2.5 ), IECore.GeometricData.Interpretation.Vector ) v3fData = IECore.V3fData( imath.V3f( 1.5, 2.5, 3.5 ) ) color3fData = IECore.Color3fData( imath.Color3f( 1.5, 2.5, 3.5 ) ) intData = IECore.IntData( 1 ) v2iData = IECore.V2iData( imath.V2i( 1, 2 ) ) v3iData = IECore.V3iData( imath.V3i( 1, 2, 3 ) ) stringData = IECore.StringData( "this is a string" ) intRange = range( 1, 25 ) floatVectorData = IECore.FloatVectorData( [ x+0.5 for x in intRange ] ) v2fVectorData = IECore.V2fVectorData( [ imath.V2f( x, x+0.5 ) for x in intRange ] ) v3fVectorData = IECore.V3fVectorData( [ imath.V3f( x, x+0.5, x+0.75 ) for x in intRange ], IECore.GeometricData.Interpretation.Normal ) color3fVectorData = IECore.Color3fVectorData( [ imath.Color3f( x, x+0.5, x+0.75 ) for x in intRange ] ) intVectorData = IECore.IntVectorData( intRange ) v2iVectorData = IECore.V2iVectorData( [ imath.V2i( x, -x ) for x in intRange ] ) v3iVectorData = IECore.V3iVectorData( [ imath.V3i( x, -x, x*2 ) for x in intRange ] ) stringVectorData = IECore.StringVectorData( [ "string number %06d!" % x for x in intRange ] ) detailInterpolation = IECoreScene.PrimitiveVariable.Interpolation.Constant pointInterpolation = IECoreScene.PrimitiveVariable.Interpolation.Vertex primitiveInterpolation = IECoreScene.PrimitiveVariable.Interpolation.Uniform vertexInterpolation = IECoreScene.PrimitiveVariable.Interpolation.FaceVarying # add all valid detail attrib types mesh["floatDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, floatData ) mesh["v2fDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, v2fData ) mesh["v3fDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, v3fData ) mesh["color3fDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, color3fData ) mesh["intDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, intData ) mesh["v2iDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, v2iData ) mesh["v3iDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, v3iData ) mesh["stringDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, stringData ) # add all valid point attrib types pData = IECore.V3fVectorData( [ imath.V3f( 0, 1, 2 ), imath.V3f( 1 ), imath.V3f( 2 ), imath.V3f( 3 ), imath.V3f( 4 ), imath.V3f( 5 ), imath.V3f( 6 ), imath.V3f( 7 ), ], IECore.GeometricData.Interpretation.Point ) mesh["P"] = IECoreScene.PrimitiveVariable( pointInterpolation, pData ) mesh["floatPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, floatVectorData[:8] ) mesh["v2fPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, v2fVectorData[:8] ) mesh["v3fPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, v3fVectorData[:8] ) mesh["color3fPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, color3fVectorData[:8] ) mesh["intPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, intVectorData[:8] ) mesh["v2iPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, v2iVectorData[:8] ) mesh["v3iPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, v3iVectorData[:8] ) mesh["stringPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, stringVectorData[:8], IECore.IntVectorData( range( 0, 8 ) ) ) # add all valid primitive attrib types mesh["floatPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, floatVectorData[:6] ) mesh["v2fPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, v2fVectorData[:6] ) mesh["v3fPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, v3fVectorData[:6] ) mesh["color3fPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, color3fVectorData[:6] ) mesh["intPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, intVectorData[:6] ) mesh["v2iPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, v2iVectorData[:6] ) mesh["v3iPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, v3iVectorData[:6] ) mesh["stringPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, stringVectorData[:6], IECore.IntVectorData( range( 0, 6 ) ) ) # add all valid vertex attrib types mesh["floatVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, floatVectorData ) mesh["v2fVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, v2fVectorData ) mesh["v3fVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, v3fVectorData ) mesh["color3fVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, color3fVectorData ) mesh["intVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, intVectorData ) mesh["v2iVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, v2iVectorData ) mesh["v3iVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, v3iVectorData ) mesh["stringVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, stringVectorData, IECore.IntVectorData( range( 0, 24 ) ) ) return mesh def emptySop( self ) : obj = hou.node( "/obj" ) geo = obj.createNode( "geo", run_init_scripts=False ) null = geo.createNode( "null" ) return null def meshSop( self ) : obj = hou.node( "/obj" ) geo = obj.createNode( "geo", run_init_scripts=False ) box = geo.createNode( "box" ) facet = box.createOutputNode( "facet" ) facet.parm( "postnml" ).set(True) return facet def comparePrimAndSop( self, prim, sop ) : geo = sop.geometry() for key in [ "floatDetail", "intDetail", "stringDetail" ] : self.assertEqual( prim[key].data.value, geo.attribValue( key ) ) for key in [ "v2fDetail", "v3fDetail", "color3fDetail", "v2iDetail", "v3iDetail" ] : self.assertEqual( tuple(prim[key].data.value), geo.attribValue( key ) ) sopPoints = geo.points() for key in [ "floatPoint", "intPoint" ] : data = prim[key].data for i in range( 0, data.size() ) : self.assertEqual( data[i], sopPoints[i].attribValue( key ) ) for key in [ "P", "v2fPoint", "v3fPoint", "color3fPoint", "v2iPoint", "v3iPoint" ] : data = prim[key].data for i in range( 0, data.size() ) : self.assertEqual( tuple(data[i]), sopPoints[i].attribValue( key ) ) data = prim["stringPoint"].data dataIndices = prim["stringPoint"].indices for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopPoints[i].attribValue( "stringPoint" ) ) sopPrims = geo.prims() self.assertEqual( len(sopPrims), prim.numFaces() ) for key in [ "floatPrim", "intPrim" ] : data = prim[key].data for i in range( 0, data.size() ) : self.assertEqual( data[i], sopPrims[i].attribValue( key ) ) for key in [ "v2fPrim", "v3fPrim", "color3fPrim", "v2iPrim", "v3iPrim" ] : data = prim[key].data for i in range( 0, data.size() ) : self.assertEqual( tuple(data[i]), sopPrims[i].attribValue( key ) ) data = prim["stringPrim"].data dataIndices = prim["stringPrim"].indices for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopPrims[i].attribValue( "stringPrim" ) ) sopVerts = [] for i in range( 0, len(sopPrims) ) : verts = list(sopPrims[i].vertices()) self.assertEqual( len(verts), prim.verticesPerFace[i] ) verts.reverse() sopVerts.extend( verts ) self.assertEqual( len(sopVerts), prim.vertexIds.size() ) for i in range( 0, len(sopVerts) ) : self.assertEqual( sopVerts[i].point().number(), prim.vertexIds[i] ) for key in [ "floatVert", "intVert" ] : data = prim[key].data for i in range( 0, data.size() ) : self.assertEqual( data[i], sopVerts[i].attribValue( key ) ) for key in [ "v2fVert", "v3fVert", "color3fVert", "v2iVert", "v3iVert" ] : data = prim[key].data for i in range( 0, data.size() ) : self.assertEqual( tuple(data[i]), sopVerts[i].attribValue( key ) ) data = prim["stringVert"].data dataIndices = prim["stringVert"].indices for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopVerts[i].attribValue( "stringVert" ) ) self.assertTrue( geo.findGlobalAttrib( "v2fDetail" ).isTransformedAsVector() ) self.assertTrue( geo.findPointAttrib( "v3fPoint" ).isTransformedAsNormal() ) self.assertTrue( geo.findPrimAttrib( "v3fPrim" ).isTransformedAsNormal() ) self.assertTrue( geo.findVertexAttrib( "v3fVert" ).isTransformedAsNormal() ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() self.assertEqual( result.verticesPerFace, prim.verticesPerFace ) self.assertEqual( result.vertexIds, prim.vertexIds ) self.assertEqual( result.keys(), prim.keys() ) for key in prim.keys() : self.assertEqual( result[key], prim[key] ) self.assertEqual( result, prim ) self.assertTrue( result["P"].data.getInterpretation(), IECore.GeometricData.Interpretation.Point ) self.assertTrue( result["v2fDetail"].data.getInterpretation(), IECore.GeometricData.Interpretation.Vector ) self.assertTrue( result["v3fPoint"].data.getInterpretation(), IECore.GeometricData.Interpretation.Normal ) self.assertTrue( result["v3fPrim"].data.getInterpretation(), IECore.GeometricData.Interpretation.Normal ) self.assertTrue( result["v3fVert"].data.getInterpretation(), IECore.GeometricData.Interpretation.Normal ) def comparePrimAndAppendedSop( self, prim, sop, origSopPrim, multipleConversions=False ) : geo = sop.geometry() for key in [ "floatDetail", "intDetail", "stringDetail", "stringDetail" ] : self.assertEqual( prim[key].data.value, geo.attribValue( key ) ) for key in [ "v2fDetail", "v3fDetail", "color3fDetail", "v2iDetail", "v3iDetail" ] : self.assertEqual( tuple(prim[key].data.value), geo.attribValue( key ) ) sopPoints = geo.points() numPoints = prim.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) origNumPoints = origSopPrim.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( len(sopPoints), origNumPoints + numPoints ) for key in [ "floatPoint", "intPoint" ] : data = prim[key].data if multipleConversions : defaultValue = origSopPrim[key].data else : defaultValue = [ 0 ] * origNumPoints for i in range( 0, origNumPoints ) : self.assertEqual( defaultValue[i], sopPoints[ i ].attribValue( key ) ) for i in range( 0, data.size() ) : self.assertEqual( data[i], sopPoints[ origNumPoints + i ].attribValue( key ) ) for key in [ "P", "v2fPoint", "v3fPoint", "color3fPoint", "v2iPoint", "v3iPoint" ] : data = prim[key].data if multipleConversions or key is "P" : defaultValue = origSopPrim[key].data else : defaultValue = [ [ 0 ] * data[0].dimensions() ] * origNumPoints for i in range( 0, origNumPoints ) : self.assertEqual( tuple(defaultValue[i]), sopPoints[ i ].attribValue( key ) ) for i in range( 0, data.size() ) : self.assertEqual( tuple(data[i]), sopPoints[ origNumPoints + i ].attribValue( key ) ) data = prim["stringPoint"].data dataIndices = prim["stringPoint"].indices if multipleConversions : defaultData = origSopPrim["stringPoint"].data defaultIndices = origSopPrim["stringPoint"].indices for i in range( 0, origNumPoints ) : val = "" if ( defaultIndices[i] >= defaultData.size() ) else defaultData[ defaultIndices[i] ] self.assertEqual( val, sopPoints[ i ].attribValue( "stringPoint" ) ) else : defaultValues = [ "" ] * origNumPoints for i in range( 0, origNumPoints ) : self.assertEqual( defaultValues[i], sopPoints[ i ].attribValue( "stringPoint" ) ) for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopPoints[ origNumPoints + i ].attribValue( "stringPoint" ) ) sopPrims = geo.prims() origNumPrims = origSopPrim.numFaces() self.assertEqual( len(sopPrims), origNumPrims + prim.numFaces() ) for key in [ "floatPrim", "intPrim" ] : data = prim[key].data if multipleConversions : defaultValue = origSopPrim[key].data else : defaultValue = [ 0 ] * origNumPrims for i in range( 0, origNumPrims ) : self.assertEqual( defaultValue[i], sopPrims[ i ].attribValue( key ) ) for i in range( 0, data.size() ) : self.assertEqual( data[i], sopPrims[ origNumPrims + i ].attribValue( key ) ) for key in [ "v2fPrim", "v3fPrim", "color3fPrim", "v2iPrim", "v3iPrim" ] : data = prim[key].data if multipleConversions : defaultValue = origSopPrim[key].data else : defaultValue = [ [ 0 ] * data[0].dimensions() ] * origNumPrims for i in range( 0, origNumPrims ) : self.assertEqual( tuple(defaultValue[i]), sopPrims[ i ].attribValue( key ) ) for i in range( 0, data.size() ) : self.assertEqual( tuple(data[i]), sopPrims[ origNumPrims + i ].attribValue( key ) ) data = prim["stringPrim"].data dataIndices = prim["stringPrim"].indices if multipleConversions : defaultData = origSopPrim["stringPrim"].data defaultIndices = origSopPrim["stringPrim"].indices for i in range( 0, origNumPrims ) : val = "" if ( defaultIndices[i] >= defaultData.size() ) else defaultData[ defaultIndices[i] ] self.assertEqual( val, sopPrims[ i ].attribValue( "stringPrim" ) ) else : defaultValues = [ "" ] * origNumPrims for i in range( 0, origNumPrims ) : self.assertEqual( defaultValues[i], sopPrims[ i ].attribValue( "stringPrim" ) ) for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopPrims[ origNumPrims + i ].attribValue( "stringPrim" ) ) sopVerts = [] for i in range( 0, len(sopPrims) ) : verts = list(sopPrims[i].vertices()) verts.reverse() sopVerts.extend( verts ) if i > origNumPrims : self.assertEqual( len(verts), prim.verticesPerFace[i-origNumPrims] ) origNumVerts = origSopPrim.vertexIds.size() self.assertEqual( len(sopVerts), origNumVerts + prim.vertexIds.size() ) for i in range( 0, len(prim.vertexIds) ) : self.assertEqual( sopVerts[origNumVerts+i].point().number() - origNumPoints, prim.vertexIds[i] ) for key in [ "floatVert", "intVert" ] : data = prim[key].data if multipleConversions : defaultValue = origSopPrim[key].data else : defaultValue = [ 0 ] * origNumVerts for i in range( 0, origNumVerts ) : self.assertEqual( defaultValue[i], sopVerts[ i ].attribValue( key ) ) for i in range( 0, data.size() ) : self.assertEqual( data[i], sopVerts[ origNumVerts + i ].attribValue( key ) ) for key in [ "v2fVert", "v3fVert", "color3fVert", "v2iVert", "v3iVert" ] : data = prim[key].data if multipleConversions : defaultValue = origSopPrim[key].data else : defaultValue = [ [ 0 ] * data[0].dimensions() ] * origNumVerts for i in range( 0, origNumVerts ) : self.assertEqual( tuple(defaultValue[i]), sopVerts[ i ].attribValue( key ) ) for i in range( 0, data.size() ) : self.assertEqual( tuple(data[i]), sopVerts[ origNumVerts + i ].attribValue( key ) ) data = prim["stringVert"].data dataIndices = prim["stringVert"].indices if multipleConversions : defaultData = origSopPrim["stringVert"].data defaultIndices = origSopPrim["stringVert"].indices for i in range( 0, origNumVerts ) : val = "" if ( defaultIndices[i] >= defaultData.size() ) else defaultData[ defaultIndices[i] ] self.assertEqual( val, sopVerts[ i ].attribValue( "stringVert" ) ) else : defaultValues = [ "" ] * origNumVerts for i in range( 0, origNumVerts ) : self.assertEqual( defaultValues[i], sopVerts[ i ].attribValue( "stringVert" ) ) for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopVerts[ origNumVerts + i ].attribValue( "stringVert" ) ) self.assertTrue( geo.findGlobalAttrib( "v2fDetail" ).isTransformedAsVector() ) self.assertTrue( geo.findPointAttrib( "v3fPoint" ).isTransformedAsNormal() ) self.assertTrue( geo.findPrimAttrib( "v3fPrim" ).isTransformedAsNormal() ) self.assertTrue( geo.findVertexAttrib( "v3fVert" ).isTransformedAsNormal() ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() self.assertEqual( result.verticesPerFace[origNumPrims:], prim.verticesPerFace ) for i in range( 0, len(prim.vertexIds) ) : self.assertEqual( result.vertexIds[origNumVerts + i], prim.vertexIds[i] + origNumPoints ) for key in prim.keys() : self.assertTrue( key in result.keys() ) self.assertTrue( result["P"].data.getInterpretation(), IECore.GeometricData.Interpretation.Point ) self.assertTrue( result["v2fDetail"].data.getInterpretation(), IECore.GeometricData.Interpretation.Vector ) self.assertTrue( result["v3fPoint"].data.getInterpretation(), IECore.GeometricData.Interpretation.Normal ) self.assertTrue( result["v3fPrim"].data.getInterpretation(), IECore.GeometricData.Interpretation.Normal ) self.assertTrue( result["v3fVert"].data.getInterpretation(), IECore.GeometricData.Interpretation.Normal ) def testCreateConverter( self ) : converter = IECoreHoudini.ToHoudiniPolygonsConverter( self.mesh() ) self.assertTrue( converter.isInstanceOf( IECore.TypeId( IECoreHoudini.TypeId.ToHoudiniPolygonsConverter ) ) ) def testFactory( self ) : converter = IECoreHoudini.ToHoudiniGeometryConverter.create( self.mesh() ) self.assertTrue( converter.isInstanceOf( IECore.TypeId( IECoreHoudini.TypeId.ToHoudiniPolygonsConverter ) ) ) self.assertTrue( IECoreScene.TypeId.MeshPrimitive in IECoreHoudini.ToHoudiniGeometryConverter.supportedTypes() ) def testConversionIntoEmptySop( self ) : mesh = self.mesh() sop = self.emptySop() self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) self.comparePrimAndSop( mesh, sop ) def testConversionIntoExistingSop( self ) : mesh = self.mesh() sop = self.meshSop() orig = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() self.assertNotEqual( orig, mesh ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, False ) ) self.comparePrimAndSop( mesh, sop ) def testAppendingIntoExistingSop( self ) : mesh = self.mesh() meshNumPoints = mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) sop = self.meshSop() orig = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() origNumPoints = orig.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertNotEqual( orig, mesh ) self.assertTrue( not sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) sop.setHardLocked( False ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints ) self.assertTrue( "floatDetail" not in result.keys() ) self.assertTrue( "floatPoint" not in result.keys() ) def testAppendingIntoLockedSop( self ) : mesh = self.mesh() meshNumPoints = mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) sop = self.meshSop() orig = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() origNumPoints = orig.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertNotEqual( orig, mesh ) sop.setHardLocked( True ) self.assertTrue( sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) sop.setHardLocked( False ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints ) self.assertTrue( "floatDetail" not in result.keys() ) self.assertTrue( "floatPoint" not in result.keys() ) def testSaveLoad( self ) : hou.hipFile.clear( suppress_save_prompt=True ) mesh = self.mesh() meshNumPoints = mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) sop = self.meshSop() sopPath = sop.path() orig = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() origNumPoints = orig.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertNotEqual( orig, mesh ) self.assertTrue( not sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) hou.hipFile.save( TestToHoudiniPolygonsConverter.__testScene ) hou.hipFile.clear( suppress_save_prompt=True ) hou.hipFile.load( TestToHoudiniPolygonsConverter.__testScene ) newSop = hou.node( sopPath ) self.assertTrue( newSop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, newSop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( newSop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) def testSaveLoadWithLockedSop( self ) : hou.hipFile.clear( suppress_save_prompt=True ) mesh = self.mesh() meshNumPoints = mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) sop = self.meshSop() sopPath = sop.path() orig = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() origNumPoints = orig.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertNotEqual( orig, mesh ) sop.setHardLocked( True ) self.assertTrue( sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) hou.hipFile.save( TestToHoudiniPolygonsConverter.__testScene ) hou.hipFile.clear( suppress_save_prompt=True ) hou.hipFile.load( TestToHoudiniPolygonsConverter.__testScene ) newSop = hou.node( sopPath ) self.assertTrue( newSop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, newSop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( newSop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) def testMultipleConversions( self ) : mesh = self.mesh() meshNumPoints = mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) sop = self.meshSop() orig = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() origNumPoints = orig.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertNotEqual( orig, mesh ) self.assertTrue( not sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) self.assertTrue( sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, result, multipleConversions=True ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + 2*meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) self.assertEqual( result["P"].data[ origNumPoints + meshNumPoints + i ], mesh["P"].data[i] ) self.assertTrue( sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, result, multipleConversions=True ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + 3*meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) self.assertEqual( result["P"].data[ origNumPoints + meshNumPoints + i ], mesh["P"].data[i] ) self.assertEqual( result["P"].data[ origNumPoints + 2*meshNumPoints + i ], mesh["P"].data[i] ) def testObjectWasDeleted( self ) : mesh = self.mesh() sop = self.meshSop() converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) self.assertTrue( converter.convert( sop, False ) ) self.comparePrimAndSop( mesh, sop ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() del mesh sop.setHardLocked( False ) self.assertNotEqual( IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert(), result ) self.assertTrue( converter.convert( sop, False ) ) self.assertEqual( IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert(), result ) def testWithUnacceptablePrimVars( self ) : mesh = self.mesh() mesh["badDetail"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Constant, IECore.TransformationMatrixfData() ) mesh["badPoint"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.DoubleVectorData( [ 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5 ] ) ) mesh["badPrim"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Uniform, IECore.DoubleVectorData( [ 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5 ] ) ) mesh["badVert"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.FaceVarying, IECore.DoubleVectorData( [ 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5 ] ) ) sop = self.emptySop() self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) self.assertTrue( "badDetail" not in [ x.name() for x in sop.geometry().globalAttribs() ] ) self.assertTrue( "badPoint" not in [ x.name() for x in sop.geometry().pointAttribs() ] ) self.assertTrue( "badPrim" not in [ x.name() for x in sop.geometry().primAttribs() ] ) self.assertTrue( "badVert" not in [ x.name() for x in sop.geometry().vertexAttribs() ] ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() self.assertNotEqual( result, mesh ) self.assertTrue( "badDetail" not in result ) self.assertTrue( "badPoint" not in result ) self.assertTrue( "badPrim" not in result ) self.assertTrue( "badVert" not in result ) del mesh["badDetail"] del mesh["badPoint"] del mesh["badPrim"] del mesh["badVert"] self.comparePrimAndSop( mesh, sop ) def testConvertingOverExistingAttribs( self ) : mesh = self.mesh() sop = self.emptySop() detailAttr = sop.createOutputNode( "attribcreate", exact_type_name=True ) detailAttr.parm( "name" ).set( "floatDetail" ) detailAttr.parm( "class" ).set( 0 ) # detail detailAttr.parm( "type" ).set( 0 ) # float detailAttr.parm( "size" ).set( 1 ) # 1 element detailAttr.parm( "value1" ).set( 123.456 ) pointAttr = detailAttr.createOutputNode( "attribcreate", exact_type_name=True ) pointAttr.parm( "name" ).set( "floatPoint" ) pointAttr.parm( "class" ).set( 2 ) # point pointAttr.parm( "type" ).set( 0 ) # float pointAttr.parm( "size" ).set( 1 ) # 1 element pointAttr.parm( "value1" ).set( 123.456 ) primAttr = pointAttr.createOutputNode( "attribcreate", exact_type_name=True ) primAttr.parm( "name" ).set( "floatPrim" ) primAttr.parm( "class" ).set( 1 ) # prim primAttr.parm( "type" ).set( 0 ) # float primAttr.parm( "size" ).set( 1 ) # 1 element primAttr.parm( "value1" ).set( 123.456 ) vertexAttr = primAttr.createOutputNode( "attribcreate", exact_type_name=True ) vertexAttr.parm( "name" ).set( "floatVert" ) vertexAttr.parm( "class" ).set( 3 ) # vertex vertexAttr.parm( "type" ).set( 0 ) # float vertexAttr.parm( "size" ).set( 1 ) # 1 element vertexAttr.parm( "value1" ).set( 123.456 ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( vertexAttr ) ) self.comparePrimAndSop( mesh, vertexAttr ) def testConvertingOverExistingAttribsWithDifferentTypes( self ) : mesh = self.mesh() sop = self.emptySop() detailAttr = sop.createOutputNode( "attribcreate", exact_type_name=True ) detailAttr.parm( "name" ).set( "floatDetail" ) detailAttr.parm( "class" ).set( 0 ) # detail detailAttr.parm( "type" ).set( 1 ) # int detailAttr.parm( "size" ).set( 3 ) # 3 elements detailAttr.parm( "value1" ).set( 10 ) detailAttr.parm( "value2" ).set( 11 ) detailAttr.parm( "value3" ).set( 12 ) pointAttr = detailAttr.createOutputNode( "attribcreate", exact_type_name=True ) pointAttr.parm( "name" ).set( "floatPoint" ) pointAttr.parm( "class" ).set( 2 ) # point pointAttr.parm( "type" ).set( 1 ) # int pointAttr.parm( "size" ).set( 3 ) # 3 elements pointAttr.parm( "value1" ).set( 10 ) pointAttr.parm( "value2" ).set( 11 ) pointAttr.parm( "value3" ).set( 12 ) primAttr = pointAttr.createOutputNode( "attribcreate", exact_type_name=True ) primAttr.parm( "name" ).set( "floatPrim" ) primAttr.parm( "class" ).set( 1 ) # prim primAttr.parm( "type" ).set( 1 ) # int primAttr.parm( "size" ).set( 3 ) # 3 elements primAttr.parm( "value1" ).set( 10 ) primAttr.parm( "value2" ).set( 11 ) primAttr.parm( "value3" ).set( 12 ) vertexAttr = primAttr.createOutputNode( "attribcreate", exact_type_name=True ) vertexAttr.parm( "name" ).set( "floatVert" ) vertexAttr.parm( "class" ).set( 3 ) # vert vertexAttr.parm( "type" ).set( 1 ) # int vertexAttr.parm( "size" ).set( 3 ) # 3 elements vertexAttr.parm( "value1" ).set( 10 ) vertexAttr.parm( "value2" ).set( 11 ) vertexAttr.parm( "value3" ).set( 12 ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( vertexAttr ) ) self.comparePrimAndSop( mesh, vertexAttr ) def testEmptyString( self ) : mesh = self.mesh() sop = self.emptySop() mesh['stringPoint'].data[0] = "" self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) geo = sop.geometry() sopPoints = geo.points() data = mesh["stringPoint"].data dataIndices = mesh["stringPoint"].indices for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopPoints[i].attribValue( "stringPoint" ) ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() self.assertEqual( result.verticesPerFace, mesh.verticesPerFace ) self.assertEqual( result.vertexIds, mesh.vertexIds ) self.assertEqual( result.keys(), mesh.keys() ) self.assertEqual( result["stringPoint"], mesh["stringPoint"] ) def testName( self ) : sop = self.emptySop() mesh = self.mesh() converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) # unnamed unless we set the parameter self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() self.assertEqual( sop.geometry().findPrimAttrib( "name" ), None ) converter["name"].setTypedValue( "testMesh" ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() nameAttr = sop.geometry().findPrimAttrib( "name" ) self.assertEqual( nameAttr.strings(), tuple( [ "testMesh" ] ) ) self.assertEqual( len([ x for x in geo.prims() if x.attribValue( "name" ) == "testMesh" ]), mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Uniform ) ) # blindData still works for backwards compatibility mesh.blindData()["name"] = IECore.StringData( "blindMesh" ) converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() nameAttr = sop.geometry().findPrimAttrib( "name" ) self.assertEqual( nameAttr.strings(), tuple( [ "blindMesh" ] ) ) self.assertEqual( len([ x for x in geo.prims() if x.attribValue( "name" ) == "blindMesh" ]), mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Uniform ) ) # name parameter takes preference over blindData converter["name"].setTypedValue( "testMesh" ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() nameAttr = sop.geometry().findPrimAttrib( "name" ) self.assertEqual( nameAttr.strings(), tuple( [ "testMesh" ] ) ) self.assertEqual( len([ x for x in geo.prims() if x.attribValue( "name" ) == "testMesh" ]), mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Uniform ) ) def testAttributeFilter( self ) : mesh = self.mesh() sop = self.emptySop() converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) self.assertTrue( converter.convert( sop ) ) self.assertItemsEqual( sorted([ x.name() for x in sop.geometry().pointAttribs() ]), TestToHoudiniPolygonsConverter.PointPositionAttribs + ['color3fPoint', 'floatPoint', 'intPoint', 'stringPoint', 'v2fPoint', 'v2iPoint', 'v3fPoint', 'v3iPoint'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().primAttribs() ]), ['color3fPrim', 'floatPrim', 'ieMeshInterpolation', 'intPrim', 'stringPrim', 'v2fPrim', 'v2iPrim', 'v3fPrim', 'v3iPrim'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().vertexAttribs() ]), ['color3fVert', 'floatVert', 'intVert', 'stringVert', 'v2fVert', 'v2iVert', 'v3fVert', 'v3iVert'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().globalAttribs() ]), ['color3fDetail', 'floatDetail', 'intDetail', 'stringDetail', 'v2fDetail', 'v2iDetail', 'v3fDetail', 'v3iDetail'] ) converter.parameters()["attributeFilter"].setTypedValue( "P *3f*" ) self.assertTrue( converter.convert( sop ) ) self.assertItemsEqual( [ x.name() for x in sop.geometry().pointAttribs() ], TestToHoudiniPolygonsConverter.PointPositionAttribs + ['color3fPoint', 'v3fPoint'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().primAttribs() ]), ['color3fPrim', 'ieMeshInterpolation', 'v3fPrim'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().vertexAttribs() ]), ['color3fVert', 'v3fVert'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().globalAttribs() ]), ['color3fDetail', 'v3fDetail'] ) converter.parameters()["attributeFilter"].setTypedValue( "* ^*Detail ^int*" ) self.assertTrue( converter.convert( sop ) ) self.assertItemsEqual( sorted([ x.name() for x in sop.geometry().pointAttribs() ]), TestToHoudiniPolygonsConverter.PointPositionAttribs + ['color3fPoint', 'floatPoint', 'stringPoint', 'v2fPoint', 'v2iPoint', 'v3fPoint', 'v3iPoint'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().primAttribs() ]), ['color3fPrim', 'floatPrim', 'ieMeshInterpolation', 'stringPrim', 'v2fPrim', 'v2iPrim', 'v3fPrim', 'v3iPrim'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().vertexAttribs() ]), ['color3fVert', 'floatVert', 'stringVert', 'v2fVert', 'v2iVert', 'v3fVert', 'v3iVert'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().globalAttribs() ]), [] ) # verify we can filter uvs mesh = IECoreScene.MeshPrimitive.createPlane( imath.Box2f( imath.V2f( 0 ), imath.V2f( 1 ) ) ) mesh = IECoreScene.MeshAlgo.triangulate( mesh ) IECoreScene.MeshNormalsOp()( input=mesh, copyInput=False ) mesh["Cs"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.FaceVarying, IECore.V3fVectorData( [ imath.V3f( 1, 0, 0 ) ] * 6, IECore.GeometricData.Interpretation.Color ) ) mesh["width"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.FloatVectorData( [ 1 ] * 4 ) ) mesh["Pref"] = mesh["P"] converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) converter.parameters()["attributeFilter"].setTypedValue( "*" ) self.assertTrue( converter.convert( sop ) ) self.assertItemsEqual( [ x.name() for x in sop.geometry().pointAttribs() ], TestToHoudiniPolygonsConverter.PointPositionAttribs + ['N', 'pscale', 'rest'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().primAttribs() ]), ['ieMeshInterpolation', ] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().vertexAttribs() ]), ['Cd', 'uv'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().globalAttribs() ]), [] ) # have to filter the source attrs converter.parameters()["attributeFilter"].setTypedValue( "* ^uv ^pscale ^rest" ) self.assertTrue( converter.convert( sop ) ) self.assertItemsEqual( [ x.name() for x in sop.geometry().pointAttribs() ], TestToHoudiniPolygonsConverter.PointPositionAttribs + ['N', 'pscale', 'rest'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().primAttribs() ]), ['ieMeshInterpolation', ] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().vertexAttribs() ]), ['Cd'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().globalAttribs() ]), [] ) converter.parameters()["attributeFilter"].setTypedValue( "* ^width ^Pref" ) self.assertTrue( converter.convert( sop ) ) self.assertItemsEqual( [ x.name() for x in sop.geometry().pointAttribs() ], TestToHoudiniPolygonsConverter.PointPositionAttribs + ['N'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().primAttribs() ]), ['ieMeshInterpolation', ] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().vertexAttribs() ]), ['Cd', 'uv'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().globalAttribs() ]), [] ) def testStandardAttributeConversion( self ) : sop = self.emptySop() mesh = IECoreScene.MeshPrimitive.createPlane( imath.Box2f( imath.V2f( 0 ), imath.V2f( 1 ) ) ) mesh = IECoreScene.MeshAlgo.triangulate( mesh ) IECoreScene.MeshNormalsOp()( input=mesh, copyInput=False ) mesh["Cs"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.FaceVarying, IECore.V3fVectorData( [ imath.V3f( 1, 0, 0 ) ] * 6, IECore.GeometricData.Interpretation.Color ) ) mesh["width"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.FloatVectorData( [ 1 ] * 4 ) ) mesh["Pref"] = mesh["P"] self.assertTrue( mesh.arePrimitiveVariablesValid() ) converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() self.assertItemsEqual( [ x.name() for x in geo.pointAttribs() ], TestToHoudiniPolygonsConverter.PointPositionAttribs + ['N', 'pscale', 'rest'] ) self.assertEqual( sorted([ x.name() for x in geo.primAttribs() ]), ['ieMeshInterpolation'] ) self.assertEqual( sorted([ x.name() for x in geo.vertexAttribs() ]), ['Cd', 'uv'] ) self.assertEqual( sorted([ x.name() for x in geo.globalAttribs() ]), [] ) uvData = mesh["uv"].data indices = mesh["uv"].indices uvs = geo.findVertexAttrib( "uv" ) i = 0 for prim in geo.prims() : verts = list(prim.vertices()) verts.reverse() for vert in verts : uvValues = vert.attribValue( uvs ) self.assertAlmostEqual( uvValues[0], uvData[indices[i]][0] ) self.assertAlmostEqual( uvValues[1], uvData[indices[i]][1] ) i += 1 converter["convertStandardAttributes"].setTypedValue( False ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() self.assertItemsEqual( [ x.name() for x in geo.pointAttribs() ], TestToHoudiniPolygonsConverter.PointPositionAttribs + ['N', 'Pref', 'width'] ) self.assertEqual( sorted([ x.name() for x in geo.primAttribs() ]), ['ieMeshInterpolation', ] ) self.assertEqual( sorted([ x.name() for x in geo.vertexAttribs() ]), ['Cs', 'uv'] ) self.assertEqual( sorted([ x.name() for x in geo.globalAttribs() ]), [] ) uvs = geo.findVertexAttrib( "uv" ) i = 0 for prim in geo.prims() : verts = list(prim.vertices()) verts.reverse() for vert in verts : uvValues = vert.attribValue( uvs ) self.assertAlmostEqual( uvValues[0], uvData[indices[i]][0] ) self.assertAlmostEqual( uvValues[1], uvData[indices[i]][1] ) i += 1 def testCannotTransformRest( self ) : sop = self.emptySop() mergeGeo = hou.node( "/obj" ).createNode( "geo", run_init_scripts=False ) mergeGeo.parm( "tx" ).set( 10 ) merge = mergeGeo.createNode( "object_merge" ) merge.parm( "xformtype" ).set( 1 ) merge.parm( "objpath1" ).set( sop.path() ) mesh = IECoreScene.MeshPrimitive.createPlane( imath.Box2f( imath.V2f( 0 ), imath.V2f( 1 ) ) ) mesh = IECoreScene.MeshAlgo.triangulate( mesh ) IECoreScene.MeshNormalsOp()( input=mesh, copyInput=False ) mesh["Pref"] = mesh["P"] prefData = mesh["Pref"].data self.assertTrue( mesh.arePrimitiveVariablesValid() ) converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() geo2 = merge.geometry() i = 0 for point in geo.points() : restValue = point.attribValue( "rest" ) self.assertAlmostEqual( imath.V3f( restValue[0], restValue[1], restValue[2] ), prefData[i] ) self.assertTrue( point.position().isAlmostEqual( hou.Vector3(restValue) ) ) i += 1 i = 0 for point in geo2.points() : restValue = point.attribValue( "rest" ) self.assertAlmostEqual( imath.V3f( restValue[0], restValue[1], restValue[2] ), prefData[i] ) self.assertFalse( point.position().isAlmostEqual( hou.Vector3(restValue) ) ) i += 1 # Pref shouldn't transform either converter["convertStandardAttributes"].setTypedValue( False ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() geo2 = merge.geometry() i = 0 for point in geo.points() : restValue = point.attribValue( "Pref" ) self.assertAlmostEqual( imath.V3f( restValue[0], restValue[1], restValue[2] ), prefData[i] ) self.assertTrue( point.position().isAlmostEqual( hou.Vector3(restValue) ) ) i += 1 i = 0 for point in geo2.points() : restValue = point.attribValue( "Pref" ) self.assertAlmostEqual( imath.V3f( restValue[0], restValue[1], restValue[2] ), prefData[i] ) self.assertFalse( point.position().isAlmostEqual( hou.Vector3(restValue) ) ) i += 1 def testInterpolation( self ) : mesh = self.mesh() sop = self.emptySop() self.assertEqual( mesh.interpolation, "linear" ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) self.assertTrue( "ieMeshInterpolation" in [ x.name() for x in sop.geometry().primAttribs() ] ) attrib = sop.geometry().findPrimAttrib( "ieMeshInterpolation" ) for prim in sop.geometry().prims() : self.assertEqual( prim.attribValue( attrib ), "poly" ) mesh.interpolation = "catmullClark" self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) self.assertTrue( "ieMeshInterpolation" in [ x.name() for x in sop.geometry().primAttribs() ] ) attrib = sop.geometry().findPrimAttrib( "ieMeshInterpolation" ) for prim in sop.geometry().prims() : self.assertEqual( prim.attribValue( attrib ), "subdiv" ) def testExpandedUVRoundTrip( self ) : mesh = IECore.Reader.create( "test/IECore/data/cobFiles/twoTrianglesWithSharedUVs.cob" ).read() mesh["uv"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.FaceVarying, mesh["uv"].expandedData(), None ) mesh["uv"].indices = None uvData = mesh["uv"].data sop = self.emptySop() self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) geo = sop.geometry() self.assertTrue( "uv" in [ x.name() for x in geo.vertexAttribs() ] ) uvs = geo.findVertexAttrib( "uv" ) i = 0 for prim in geo.prims() : verts = list(prim.vertices()) verts.reverse() for vert in verts : uvValues = vert.attribValue( uvs ) self.assertAlmostEqual( uvValues[0], uvData[i][0] ) self.assertAlmostEqual( uvValues[1], uvData[i][1] ) i += 1 converter = IECoreHoudini.FromHoudiniPolygonsConverter( sop ) result = converter.convert() self.assertEqual( result["uv"].data.getInterpretation(), IECore.GeometricData.Interpretation.UV ) # we cannot guarantee to generate the same data when extracting from Houdini # because we always generate indices, but we can generate correctly indexed data self.assertEqual( result["uv"].data.size(), 4 ) self.assertEqual( result["uv"].indices.size(), 6 ) for i in range( 0, mesh.variableSize( mesh["uv"].interpolation ) ) : self.assertEqual( mesh["uv"].data[i], result["uv"].data[ result["uv"].indices[i] ] ) def testIndexedUVRoundTrip( self ) : mesh = IECore.Reader.create( "test/IECore/data/cobFiles/twoTrianglesWithSharedUVs.cob" ).read() uvData = mesh["uv"].data uvIndices = mesh["uv"].indices sop = self.emptySop() self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) geo = sop.geometry() self.assertTrue( "uv" in [ x.name() for x in geo.vertexAttribs() ] ) uvs = geo.findVertexAttrib( "uv" ) i = 0 for prim in geo.prims() : verts = list(prim.vertices()) verts.reverse() for vert in verts : uvValues = vert.attribValue( uvs ) self.assertAlmostEqual( uvValues[0], uvData[uvIndices[i]][0] ) self.assertAlmostEqual( uvValues[1], uvData[uvIndices[i]][1] ) i += 1 converter = IECoreHoudini.FromHoudiniPolygonsConverter( sop ) result = converter.convert() self.assertEqual( result["uv"].data.getInterpretation(), IECore.GeometricData.Interpretation.UV ) # we cannot guarantee to generate the same indices when extracting from Houdini # nor the same data, but we can generate correctly indexed data self.assertEqual( result["uv"].data.size(), 4 ) self.assertEqual( result["uv"].indices.size(), 6 ) for i in range( 0, mesh.variableSize( mesh["uv"].interpolation ) ) : self.assertEqual( mesh["uv"].data[ mesh["uv"].indices[i] ], result["uv"].data[ result["uv"].indices[i] ] ) def testCornersAndCreases( self ) : mesh = IECoreScene.MeshPrimitive.createBox( imath.Box3f( imath.V3f( -1 ), imath.V3f( 1 ) ) ) # normals and UVs complicate the testing, and we don't need them to verify corners and creases del mesh["N"] del mesh["uv"] cornerIds = [ 5 ] cornerSharpnesses = [ 10.0 ] mesh.setCorners( IECore.IntVectorData( cornerIds ), IECore.FloatVectorData( cornerSharpnesses ) ) creaseLengths = [ 3, 2 ] creaseIds = [ 1, 2, 3, 4, 5 ] # note that these are vertex ids creaseSharpnesses = [ 1, 5 ] mesh.setCreases( IECore.IntVectorData( creaseLengths ), IECore.IntVectorData( creaseIds ), IECore.FloatVectorData( creaseSharpnesses ) ) sop = self.emptySop() self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) geo = sop.geometry() self.assertTrue( "cornerweight" in [ x.name() for x in geo.pointAttribs() ] ) self.assertTrue( "creaseweight" in [ x.name() for x in geo.vertexAttribs() ] ) # test corners cornerWeight = geo.findPointAttrib( "cornerweight" ) for point in geo.points() : sharpness = 0.0 if point.number() in cornerIds : sharpness = cornerSharpnesses[ cornerIds.index( point.number() ) ] self.assertEqual( point.attribValue( cornerWeight ), sharpness ) # test creases expectedSharpnesses = [ 0 ] * 24 # edge 1-2 expectedSharpnesses[1] = 1 expectedSharpnesses[2] = 1 # edge 2-3 expectedSharpnesses[6] = 1 expectedSharpnesses[18] = 1 # edge 4-5 expectedSharpnesses[4] = 5 expectedSharpnesses[10] = 5 self.assertEqual( list(geo.vertexFloatAttribValues( "creaseweight" )), expectedSharpnesses ) # make sure it round trips well enough result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() self.assertEqual( result.cornerIds(), mesh.cornerIds() ) self.assertEqual( result.cornerSharpnesses(), mesh.cornerSharpnesses() ) self.assertEqual( result.creaseLengths(), IECore.IntVectorData( [ 2, 2, 2 ] ) ) self.assertEqual( result.creaseIds(), IECore.IntVectorData( [ 2, 3, 1, 2, 4, 5 ] ) ) self.assertEqual( result.creaseSharpnesses(), IECore.FloatVectorData( [ 1, 1, 5 ] ) ) # if we re-align result creases, everything else is an exact match mesh.setCreases( result.creaseLengths(), result.creaseIds(), result.creaseSharpnesses() ) self.assertEqual( result, mesh ) def tearDown( self ) : if os.path.isfile( TestToHoudiniPolygonsConverter.__testScene ) : os.remove( TestToHoudiniPolygonsConverter.__testScene ) if __name__ == "__main__": unittest.main()
########################################################################## # # Copyright (c) 2010-2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import hou import imath import IECore import IECoreScene import IECoreHoudini import unittest import os class TestToHoudiniPolygonsConverter( IECoreHoudini.TestCase ) : __testScene = "test/converterTest.hip" if hou.applicationVersion()[0] >= 16: PointPositionAttribs = ['P'] else: PointPositionAttribs = ['P', 'Pw'] def mesh( self ) : vertsPerFace = IECore.IntVectorData( [ 4, 4, 4, 4, 4, 4 ] ) vertexIds = IECore.IntVectorData( [ 1, 5, 4, 0, 2, 6, 5, 1, 3, 7, 6, 2, 0, 4, 7, 3, 2, 1, 0, 3, 5, 6, 7, 4 ] ) mesh = IECoreScene.MeshPrimitive( vertsPerFace, vertexIds ) floatData = IECore.FloatData( 1.5 ) v2fData = IECore.V2fData( imath.V2f( 1.5, 2.5 ), IECore.GeometricData.Interpretation.Vector ) v3fData = IECore.V3fData( imath.V3f( 1.5, 2.5, 3.5 ) ) color3fData = IECore.Color3fData( imath.Color3f( 1.5, 2.5, 3.5 ) ) intData = IECore.IntData( 1 ) v2iData = IECore.V2iData( imath.V2i( 1, 2 ) ) v3iData = IECore.V3iData( imath.V3i( 1, 2, 3 ) ) stringData = IECore.StringData( "this is a string" ) intRange = range( 1, 25 ) floatVectorData = IECore.FloatVectorData( [ x+0.5 for x in intRange ] ) v2fVectorData = IECore.V2fVectorData( [ imath.V2f( x, x+0.5 ) for x in intRange ] ) v3fVectorData = IECore.V3fVectorData( [ imath.V3f( x, x+0.5, x+0.75 ) for x in intRange ], IECore.GeometricData.Interpretation.Normal ) color3fVectorData = IECore.Color3fVectorData( [ imath.Color3f( x, x+0.5, x+0.75 ) for x in intRange ] ) intVectorData = IECore.IntVectorData( intRange ) v2iVectorData = IECore.V2iVectorData( [ imath.V2i( x, -x ) for x in intRange ] ) v3iVectorData = IECore.V3iVectorData( [ imath.V3i( x, -x, x*2 ) for x in intRange ] ) stringVectorData = IECore.StringVectorData( [ "string number %06d!" % x for x in intRange ] ) detailInterpolation = IECoreScene.PrimitiveVariable.Interpolation.Constant pointInterpolation = IECoreScene.PrimitiveVariable.Interpolation.Vertex primitiveInterpolation = IECoreScene.PrimitiveVariable.Interpolation.Uniform vertexInterpolation = IECoreScene.PrimitiveVariable.Interpolation.FaceVarying # add all valid detail attrib types mesh["floatDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, floatData ) mesh["v2fDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, v2fData ) mesh["v3fDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, v3fData ) mesh["color3fDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, color3fData ) mesh["intDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, intData ) mesh["v2iDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, v2iData ) mesh["v3iDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, v3iData ) mesh["stringDetail"] = IECoreScene.PrimitiveVariable( detailInterpolation, stringData ) # add all valid point attrib types pData = IECore.V3fVectorData( [ imath.V3f( 0, 1, 2 ), imath.V3f( 1 ), imath.V3f( 2 ), imath.V3f( 3 ), imath.V3f( 4 ), imath.V3f( 5 ), imath.V3f( 6 ), imath.V3f( 7 ), ], IECore.GeometricData.Interpretation.Point ) mesh["P"] = IECoreScene.PrimitiveVariable( pointInterpolation, pData ) mesh["floatPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, floatVectorData[:8] ) mesh["v2fPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, v2fVectorData[:8] ) mesh["v3fPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, v3fVectorData[:8] ) mesh["color3fPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, color3fVectorData[:8] ) mesh["intPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, intVectorData[:8] ) mesh["v2iPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, v2iVectorData[:8] ) mesh["v3iPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, v3iVectorData[:8] ) mesh["stringPoint"] = IECoreScene.PrimitiveVariable( pointInterpolation, stringVectorData[:8], IECore.IntVectorData( range( 0, 8 ) ) ) # add all valid primitive attrib types mesh["floatPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, floatVectorData[:6] ) mesh["v2fPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, v2fVectorData[:6] ) mesh["v3fPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, v3fVectorData[:6] ) mesh["color3fPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, color3fVectorData[:6] ) mesh["intPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, intVectorData[:6] ) mesh["v2iPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, v2iVectorData[:6] ) mesh["v3iPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, v3iVectorData[:6] ) mesh["stringPrim"] = IECoreScene.PrimitiveVariable( primitiveInterpolation, stringVectorData[:6], IECore.IntVectorData( range( 0, 6 ) ) ) # add all valid vertex attrib types mesh["floatVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, floatVectorData ) mesh["v2fVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, v2fVectorData ) mesh["v3fVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, v3fVectorData ) mesh["color3fVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, color3fVectorData ) mesh["intVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, intVectorData ) mesh["v2iVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, v2iVectorData ) mesh["v3iVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, v3iVectorData ) mesh["stringVert"] = IECoreScene.PrimitiveVariable( vertexInterpolation, stringVectorData, IECore.IntVectorData( range( 0, 24 ) ) ) return mesh def emptySop( self ) : obj = hou.node( "/obj" ) geo = obj.createNode( "geo", run_init_scripts=False ) null = geo.createNode( "null" ) return null def meshSop( self ) : obj = hou.node( "/obj" ) geo = obj.createNode( "geo", run_init_scripts=False ) box = geo.createNode( "box" ) facet = box.createOutputNode( "facet" ) facet.parm( "postnml" ).set(True) return facet def comparePrimAndSop( self, prim, sop ) : geo = sop.geometry() for key in [ "floatDetail", "intDetail", "stringDetail" ] : self.assertEqual( prim[key].data.value, geo.attribValue( key ) ) for key in [ "v2fDetail", "v3fDetail", "color3fDetail", "v2iDetail", "v3iDetail" ] : self.assertEqual( tuple(prim[key].data.value), geo.attribValue( key ) ) sopPoints = geo.points() for key in [ "floatPoint", "intPoint" ] : data = prim[key].data for i in range( 0, data.size() ) : self.assertEqual( data[i], sopPoints[i].attribValue( key ) ) for key in [ "P", "v2fPoint", "v3fPoint", "color3fPoint", "v2iPoint", "v3iPoint" ] : data = prim[key].data for i in range( 0, data.size() ) : self.assertEqual( tuple(data[i]), sopPoints[i].attribValue( key ) ) data = prim["stringPoint"].data dataIndices = prim["stringPoint"].indices for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopPoints[i].attribValue( "stringPoint" ) ) sopPrims = geo.prims() self.assertEqual( len(sopPrims), prim.numFaces() ) for key in [ "floatPrim", "intPrim" ] : data = prim[key].data for i in range( 0, data.size() ) : self.assertEqual( data[i], sopPrims[i].attribValue( key ) ) for key in [ "v2fPrim", "v3fPrim", "color3fPrim", "v2iPrim", "v3iPrim" ] : data = prim[key].data for i in range( 0, data.size() ) : self.assertEqual( tuple(data[i]), sopPrims[i].attribValue( key ) ) data = prim["stringPrim"].data dataIndices = prim["stringPrim"].indices for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopPrims[i].attribValue( "stringPrim" ) ) sopVerts = [] for i in range( 0, len(sopPrims) ) : verts = list(sopPrims[i].vertices()) self.assertEqual( len(verts), prim.verticesPerFace[i] ) verts.reverse() sopVerts.extend( verts ) self.assertEqual( len(sopVerts), prim.vertexIds.size() ) for i in range( 0, len(sopVerts) ) : self.assertEqual( sopVerts[i].point().number(), prim.vertexIds[i] ) for key in [ "floatVert", "intVert" ] : data = prim[key].data for i in range( 0, data.size() ) : self.assertEqual( data[i], sopVerts[i].attribValue( key ) ) for key in [ "v2fVert", "v3fVert", "color3fVert", "v2iVert", "v3iVert" ] : data = prim[key].data for i in range( 0, data.size() ) : self.assertEqual( tuple(data[i]), sopVerts[i].attribValue( key ) ) data = prim["stringVert"].data dataIndices = prim["stringVert"].indices for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopVerts[i].attribValue( "stringVert" ) ) self.assertTrue( geo.findGlobalAttrib( "v2fDetail" ).isTransformedAsVector() ) self.assertTrue( geo.findPointAttrib( "v3fPoint" ).isTransformedAsNormal() ) self.assertTrue( geo.findPrimAttrib( "v3fPrim" ).isTransformedAsNormal() ) self.assertTrue( geo.findVertexAttrib( "v3fVert" ).isTransformedAsNormal() ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() self.assertEqual( result.verticesPerFace, prim.verticesPerFace ) self.assertEqual( result.vertexIds, prim.vertexIds ) self.assertEqual( result.keys(), prim.keys() ) for key in prim.keys() : self.assertEqual( result[key], prim[key] ) self.assertEqual( result, prim ) self.assertTrue( result["P"].data.getInterpretation(), IECore.GeometricData.Interpretation.Point ) self.assertTrue( result["v2fDetail"].data.getInterpretation(), IECore.GeometricData.Interpretation.Vector ) self.assertTrue( result["v3fPoint"].data.getInterpretation(), IECore.GeometricData.Interpretation.Normal ) self.assertTrue( result["v3fPrim"].data.getInterpretation(), IECore.GeometricData.Interpretation.Normal ) self.assertTrue( result["v3fVert"].data.getInterpretation(), IECore.GeometricData.Interpretation.Normal ) def comparePrimAndAppendedSop( self, prim, sop, origSopPrim, multipleConversions=False ) : geo = sop.geometry() for key in [ "floatDetail", "intDetail", "stringDetail", "stringDetail" ] : self.assertEqual( prim[key].data.value, geo.attribValue( key ) ) for key in [ "v2fDetail", "v3fDetail", "color3fDetail", "v2iDetail", "v3iDetail" ] : self.assertEqual( tuple(prim[key].data.value), geo.attribValue( key ) ) sopPoints = geo.points() numPoints = prim.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) origNumPoints = origSopPrim.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( len(sopPoints), origNumPoints + numPoints ) for key in [ "floatPoint", "intPoint" ] : data = prim[key].data if multipleConversions : defaultValue = origSopPrim[key].data else : defaultValue = [ 0 ] * origNumPoints for i in range( 0, origNumPoints ) : self.assertEqual( defaultValue[i], sopPoints[ i ].attribValue( key ) ) for i in range( 0, data.size() ) : self.assertEqual( data[i], sopPoints[ origNumPoints + i ].attribValue( key ) ) for key in [ "P", "v2fPoint", "v3fPoint", "color3fPoint", "v2iPoint", "v3iPoint" ] : data = prim[key].data if multipleConversions or key is "P" : defaultValue = origSopPrim[key].data else : defaultValue = [ [ 0 ] * data[0].dimensions() ] * origNumPoints for i in range( 0, origNumPoints ) : self.assertEqual( tuple(defaultValue[i]), sopPoints[ i ].attribValue( key ) ) for i in range( 0, data.size() ) : self.assertEqual( tuple(data[i]), sopPoints[ origNumPoints + i ].attribValue( key ) ) data = prim["stringPoint"].data dataIndices = prim["stringPoint"].indices if multipleConversions : defaultData = origSopPrim["stringPoint"].data defaultIndices = origSopPrim["stringPoint"].indices for i in range( 0, origNumPoints ) : val = "" if ( defaultIndices[i] >= defaultData.size() ) else defaultData[ defaultIndices[i] ] self.assertEqual( val, sopPoints[ i ].attribValue( "stringPoint" ) ) else : defaultValues = [ "" ] * origNumPoints for i in range( 0, origNumPoints ) : self.assertEqual( defaultValues[i], sopPoints[ i ].attribValue( "stringPoint" ) ) for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopPoints[ origNumPoints + i ].attribValue( "stringPoint" ) ) sopPrims = geo.prims() origNumPrims = origSopPrim.numFaces() self.assertEqual( len(sopPrims), origNumPrims + prim.numFaces() ) for key in [ "floatPrim", "intPrim" ] : data = prim[key].data if multipleConversions : defaultValue = origSopPrim[key].data else : defaultValue = [ 0 ] * origNumPrims for i in range( 0, origNumPrims ) : self.assertEqual( defaultValue[i], sopPrims[ i ].attribValue( key ) ) for i in range( 0, data.size() ) : self.assertEqual( data[i], sopPrims[ origNumPrims + i ].attribValue( key ) ) for key in [ "v2fPrim", "v3fPrim", "color3fPrim", "v2iPrim", "v3iPrim" ] : data = prim[key].data if multipleConversions : defaultValue = origSopPrim[key].data else : defaultValue = [ [ 0 ] * data[0].dimensions() ] * origNumPrims for i in range( 0, origNumPrims ) : self.assertEqual( tuple(defaultValue[i]), sopPrims[ i ].attribValue( key ) ) for i in range( 0, data.size() ) : self.assertEqual( tuple(data[i]), sopPrims[ origNumPrims + i ].attribValue( key ) ) data = prim["stringPrim"].data dataIndices = prim["stringPrim"].indices if multipleConversions : defaultData = origSopPrim["stringPrim"].data defaultIndices = origSopPrim["stringPrim"].indices for i in range( 0, origNumPrims ) : val = "" if ( defaultIndices[i] >= defaultData.size() ) else defaultData[ defaultIndices[i] ] self.assertEqual( val, sopPrims[ i ].attribValue( "stringPrim" ) ) else : defaultValues = [ "" ] * origNumPrims for i in range( 0, origNumPrims ) : self.assertEqual( defaultValues[i], sopPrims[ i ].attribValue( "stringPrim" ) ) for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopPrims[ origNumPrims + i ].attribValue( "stringPrim" ) ) sopVerts = [] for i in range( 0, len(sopPrims) ) : verts = list(sopPrims[i].vertices()) verts.reverse() sopVerts.extend( verts ) if i > origNumPrims : self.assertEqual( len(verts), prim.verticesPerFace[i-origNumPrims] ) origNumVerts = origSopPrim.vertexIds.size() self.assertEqual( len(sopVerts), origNumVerts + prim.vertexIds.size() ) for i in range( 0, len(prim.vertexIds) ) : self.assertEqual( sopVerts[origNumVerts+i].point().number() - origNumPoints, prim.vertexIds[i] ) for key in [ "floatVert", "intVert" ] : data = prim[key].data if multipleConversions : defaultValue = origSopPrim[key].data else : defaultValue = [ 0 ] * origNumVerts for i in range( 0, origNumVerts ) : self.assertEqual( defaultValue[i], sopVerts[ i ].attribValue( key ) ) for i in range( 0, data.size() ) : self.assertEqual( data[i], sopVerts[ origNumVerts + i ].attribValue( key ) ) for key in [ "v2fVert", "v3fVert", "color3fVert", "v2iVert", "v3iVert" ] : data = prim[key].data if multipleConversions : defaultValue = origSopPrim[key].data else : defaultValue = [ [ 0 ] * data[0].dimensions() ] * origNumVerts for i in range( 0, origNumVerts ) : self.assertEqual( tuple(defaultValue[i]), sopVerts[ i ].attribValue( key ) ) for i in range( 0, data.size() ) : self.assertEqual( tuple(data[i]), sopVerts[ origNumVerts + i ].attribValue( key ) ) data = prim["stringVert"].data dataIndices = prim["stringVert"].indices if multipleConversions : defaultData = origSopPrim["stringVert"].data defaultIndices = origSopPrim["stringVert"].indices for i in range( 0, origNumVerts ) : val = "" if ( defaultIndices[i] >= defaultData.size() ) else defaultData[ defaultIndices[i] ] self.assertEqual( val, sopVerts[ i ].attribValue( "stringVert" ) ) else : defaultValues = [ "" ] * origNumVerts for i in range( 0, origNumVerts ) : self.assertEqual( defaultValues[i], sopVerts[ i ].attribValue( "stringVert" ) ) for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopVerts[ origNumVerts + i ].attribValue( "stringVert" ) ) self.assertTrue( geo.findGlobalAttrib( "v2fDetail" ).isTransformedAsVector() ) self.assertTrue( geo.findPointAttrib( "v3fPoint" ).isTransformedAsNormal() ) self.assertTrue( geo.findPrimAttrib( "v3fPrim" ).isTransformedAsNormal() ) self.assertTrue( geo.findVertexAttrib( "v3fVert" ).isTransformedAsNormal() ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() self.assertEqual( result.verticesPerFace[origNumPrims:], prim.verticesPerFace ) for i in range( 0, len(prim.vertexIds) ) : self.assertEqual( result.vertexIds[origNumVerts + i], prim.vertexIds[i] + origNumPoints ) for key in prim.keys() : self.assertTrue( key in result.keys() ) self.assertTrue( result["P"].data.getInterpretation(), IECore.GeometricData.Interpretation.Point ) self.assertTrue( result["v2fDetail"].data.getInterpretation(), IECore.GeometricData.Interpretation.Vector ) self.assertTrue( result["v3fPoint"].data.getInterpretation(), IECore.GeometricData.Interpretation.Normal ) self.assertTrue( result["v3fPrim"].data.getInterpretation(), IECore.GeometricData.Interpretation.Normal ) self.assertTrue( result["v3fVert"].data.getInterpretation(), IECore.GeometricData.Interpretation.Normal ) def testCreateConverter( self ) : converter = IECoreHoudini.ToHoudiniPolygonsConverter( self.mesh() ) self.assertTrue( converter.isInstanceOf( IECore.TypeId( IECoreHoudini.TypeId.ToHoudiniPolygonsConverter ) ) ) def testFactory( self ) : converter = IECoreHoudini.ToHoudiniGeometryConverter.create( self.mesh() ) self.assertTrue( converter.isInstanceOf( IECore.TypeId( IECoreHoudini.TypeId.ToHoudiniPolygonsConverter ) ) ) self.assertTrue( IECoreScene.TypeId.MeshPrimitive in IECoreHoudini.ToHoudiniGeometryConverter.supportedTypes() ) def testConversionIntoEmptySop( self ) : mesh = self.mesh() sop = self.emptySop() self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) self.comparePrimAndSop( mesh, sop ) def testConversionIntoExistingSop( self ) : mesh = self.mesh() sop = self.meshSop() orig = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() self.assertNotEqual( orig, mesh ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, False ) ) self.comparePrimAndSop( mesh, sop ) def testAppendingIntoExistingSop( self ) : mesh = self.mesh() meshNumPoints = mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) sop = self.meshSop() orig = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() origNumPoints = orig.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertNotEqual( orig, mesh ) self.assertTrue( not sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) sop.setHardLocked( False ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints ) self.assertTrue( "floatDetail" not in result.keys() ) self.assertTrue( "floatPoint" not in result.keys() ) def testAppendingIntoLockedSop( self ) : mesh = self.mesh() meshNumPoints = mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) sop = self.meshSop() orig = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() origNumPoints = orig.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertNotEqual( orig, mesh ) sop.setHardLocked( True ) self.assertTrue( sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) sop.setHardLocked( False ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints ) self.assertTrue( "floatDetail" not in result.keys() ) self.assertTrue( "floatPoint" not in result.keys() ) def testSaveLoad( self ) : hou.hipFile.clear( suppress_save_prompt=True ) mesh = self.mesh() meshNumPoints = mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) sop = self.meshSop() sopPath = sop.path() orig = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() origNumPoints = orig.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertNotEqual( orig, mesh ) self.assertTrue( not sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) hou.hipFile.save( TestToHoudiniPolygonsConverter.__testScene ) hou.hipFile.clear( suppress_save_prompt=True ) hou.hipFile.load( TestToHoudiniPolygonsConverter.__testScene ) newSop = hou.node( sopPath ) self.assertTrue( newSop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, newSop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( newSop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) def testSaveLoadWithLockedSop( self ) : hou.hipFile.clear( suppress_save_prompt=True ) mesh = self.mesh() meshNumPoints = mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) sop = self.meshSop() sopPath = sop.path() orig = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() origNumPoints = orig.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertNotEqual( orig, mesh ) sop.setHardLocked( True ) self.assertTrue( sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) hou.hipFile.save( TestToHoudiniPolygonsConverter.__testScene ) hou.hipFile.clear( suppress_save_prompt=True ) hou.hipFile.load( TestToHoudiniPolygonsConverter.__testScene ) newSop = hou.node( sopPath ) self.assertTrue( newSop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, newSop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( newSop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) def testMultipleConversions( self ) : mesh = self.mesh() meshNumPoints = mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) sop = self.meshSop() orig = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() origNumPoints = orig.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertNotEqual( orig, mesh ) self.assertTrue( not sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, orig ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) self.assertTrue( sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, result, multipleConversions=True ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + 2*meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) self.assertEqual( result["P"].data[ origNumPoints + meshNumPoints + i ], mesh["P"].data[i] ) self.assertTrue( sop.isHardLocked() ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop, True ) ) self.assertTrue( sop.isHardLocked() ) self.comparePrimAndAppendedSop( mesh, sop, result, multipleConversions=True ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() resultNumPoints = result.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Vertex ) self.assertEqual( resultNumPoints, origNumPoints + 3*meshNumPoints ) for i in range( 0, mesh["P"].data.size() ) : self.assertEqual( result["P"].data[ origNumPoints + i ], mesh["P"].data[i] ) self.assertEqual( result["P"].data[ origNumPoints + meshNumPoints + i ], mesh["P"].data[i] ) self.assertEqual( result["P"].data[ origNumPoints + 2*meshNumPoints + i ], mesh["P"].data[i] ) def testObjectWasDeleted( self ) : mesh = self.mesh() sop = self.meshSop() converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) self.assertTrue( converter.convert( sop, False ) ) self.comparePrimAndSop( mesh, sop ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() del mesh sop.setHardLocked( False ) self.assertNotEqual( IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert(), result ) self.assertTrue( converter.convert( sop, False ) ) self.assertEqual( IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert(), result ) def testWithUnacceptablePrimVars( self ) : mesh = self.mesh() mesh["badDetail"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Constant, IECore.TransformationMatrixfData() ) mesh["badPoint"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.DoubleVectorData( [ 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5 ] ) ) mesh["badPrim"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Uniform, IECore.DoubleVectorData( [ 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5 ] ) ) mesh["badVert"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.FaceVarying, IECore.DoubleVectorData( [ 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5 ] ) ) sop = self.emptySop() self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) self.assertTrue( "badDetail" not in [ x.name() for x in sop.geometry().globalAttribs() ] ) self.assertTrue( "badPoint" not in [ x.name() for x in sop.geometry().pointAttribs() ] ) self.assertTrue( "badPrim" not in [ x.name() for x in sop.geometry().primAttribs() ] ) self.assertTrue( "badVert" not in [ x.name() for x in sop.geometry().vertexAttribs() ] ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() self.assertNotEqual( result, mesh ) self.assertTrue( "badDetail" not in result ) self.assertTrue( "badPoint" not in result ) self.assertTrue( "badPrim" not in result ) self.assertTrue( "badVert" not in result ) del mesh["badDetail"] del mesh["badPoint"] del mesh["badPrim"] del mesh["badVert"] self.comparePrimAndSop( mesh, sop ) def testConvertingOverExistingAttribs( self ) : mesh = self.mesh() sop = self.emptySop() detailAttr = sop.createOutputNode( "attribcreate", exact_type_name=True ) detailAttr.parm( "name" ).set( "floatDetail" ) detailAttr.parm( "class" ).set( 0 ) # detail detailAttr.parm( "type" ).set( 0 ) # float detailAttr.parm( "size" ).set( 1 ) # 1 element detailAttr.parm( "value1" ).set( 123.456 ) pointAttr = detailAttr.createOutputNode( "attribcreate", exact_type_name=True ) pointAttr.parm( "name" ).set( "floatPoint" ) pointAttr.parm( "class" ).set( 2 ) # point pointAttr.parm( "type" ).set( 0 ) # float pointAttr.parm( "size" ).set( 1 ) # 1 element pointAttr.parm( "value1" ).set( 123.456 ) primAttr = pointAttr.createOutputNode( "attribcreate", exact_type_name=True ) primAttr.parm( "name" ).set( "floatPrim" ) primAttr.parm( "class" ).set( 1 ) # prim primAttr.parm( "type" ).set( 0 ) # float primAttr.parm( "size" ).set( 1 ) # 1 element primAttr.parm( "value1" ).set( 123.456 ) vertexAttr = primAttr.createOutputNode( "attribcreate", exact_type_name=True ) vertexAttr.parm( "name" ).set( "floatVert" ) vertexAttr.parm( "class" ).set( 3 ) # vertex vertexAttr.parm( "type" ).set( 0 ) # float vertexAttr.parm( "size" ).set( 1 ) # 1 element vertexAttr.parm( "value1" ).set( 123.456 ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( vertexAttr ) ) self.comparePrimAndSop( mesh, vertexAttr ) def testConvertingOverExistingAttribsWithDifferentTypes( self ) : mesh = self.mesh() sop = self.emptySop() detailAttr = sop.createOutputNode( "attribcreate", exact_type_name=True ) detailAttr.parm( "name" ).set( "floatDetail" ) detailAttr.parm( "class" ).set( 0 ) # detail detailAttr.parm( "type" ).set( 1 ) # int detailAttr.parm( "size" ).set( 3 ) # 3 elements detailAttr.parm( "value1" ).set( 10 ) detailAttr.parm( "value2" ).set( 11 ) detailAttr.parm( "value3" ).set( 12 ) pointAttr = detailAttr.createOutputNode( "attribcreate", exact_type_name=True ) pointAttr.parm( "name" ).set( "floatPoint" ) pointAttr.parm( "class" ).set( 2 ) # point pointAttr.parm( "type" ).set( 1 ) # int pointAttr.parm( "size" ).set( 3 ) # 3 elements pointAttr.parm( "value1" ).set( 10 ) pointAttr.parm( "value2" ).set( 11 ) pointAttr.parm( "value3" ).set( 12 ) primAttr = pointAttr.createOutputNode( "attribcreate", exact_type_name=True ) primAttr.parm( "name" ).set( "floatPrim" ) primAttr.parm( "class" ).set( 1 ) # prim primAttr.parm( "type" ).set( 1 ) # int primAttr.parm( "size" ).set( 3 ) # 3 elements primAttr.parm( "value1" ).set( 10 ) primAttr.parm( "value2" ).set( 11 ) primAttr.parm( "value3" ).set( 12 ) vertexAttr = primAttr.createOutputNode( "attribcreate", exact_type_name=True ) vertexAttr.parm( "name" ).set( "floatVert" ) vertexAttr.parm( "class" ).set( 3 ) # vert vertexAttr.parm( "type" ).set( 1 ) # int vertexAttr.parm( "size" ).set( 3 ) # 3 elements vertexAttr.parm( "value1" ).set( 10 ) vertexAttr.parm( "value2" ).set( 11 ) vertexAttr.parm( "value3" ).set( 12 ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( vertexAttr ) ) self.comparePrimAndSop( mesh, vertexAttr ) def testEmptyString( self ) : mesh = self.mesh() sop = self.emptySop() mesh['stringPoint'].data[0] = "" self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) geo = sop.geometry() sopPoints = geo.points() data = mesh["stringPoint"].data dataIndices = mesh["stringPoint"].indices for i in range( 0, data.size() ) : self.assertEqual( data[ dataIndices[i] ], sopPoints[i].attribValue( "stringPoint" ) ) result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() self.assertEqual( result.verticesPerFace, mesh.verticesPerFace ) self.assertEqual( result.vertexIds, mesh.vertexIds ) self.assertEqual( result.keys(), mesh.keys() ) self.assertEqual( result["stringPoint"], mesh["stringPoint"] ) def testName( self ) : sop = self.emptySop() mesh = self.mesh() converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) # unnamed unless we set the parameter self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() self.assertEqual( sop.geometry().findPrimAttrib( "name" ), None ) converter["name"].setTypedValue( "testMesh" ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() nameAttr = sop.geometry().findPrimAttrib( "name" ) self.assertEqual( nameAttr.strings(), tuple( [ "testMesh" ] ) ) self.assertEqual( len([ x for x in geo.prims() if x.attribValue( "name" ) == "testMesh" ]), mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Uniform ) ) # blindData still works for backwards compatibility mesh.blindData()["name"] = IECore.StringData( "blindMesh" ) converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() nameAttr = sop.geometry().findPrimAttrib( "name" ) self.assertEqual( nameAttr.strings(), tuple( [ "blindMesh" ] ) ) self.assertEqual( len([ x for x in geo.prims() if x.attribValue( "name" ) == "blindMesh" ]), mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Uniform ) ) # name parameter takes preference over blindData converter["name"].setTypedValue( "testMesh" ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() nameAttr = sop.geometry().findPrimAttrib( "name" ) self.assertEqual( nameAttr.strings(), tuple( [ "testMesh" ] ) ) self.assertEqual( len([ x for x in geo.prims() if x.attribValue( "name" ) == "testMesh" ]), mesh.variableSize( IECoreScene.PrimitiveVariable.Interpolation.Uniform ) ) def testAttributeFilter( self ) : mesh = self.mesh() sop = self.emptySop() converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) self.assertTrue( converter.convert( sop ) ) self.assertItemsEqual( sorted([ x.name() for x in sop.geometry().pointAttribs() ]), TestToHoudiniPolygonsConverter.PointPositionAttribs + ['color3fPoint', 'floatPoint', 'intPoint', 'stringPoint', 'v2fPoint', 'v2iPoint', 'v3fPoint', 'v3iPoint'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().primAttribs() ]), ['color3fPrim', 'floatPrim', 'ieMeshInterpolation', 'intPrim', 'stringPrim', 'v2fPrim', 'v2iPrim', 'v3fPrim', 'v3iPrim'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().vertexAttribs() ]), ['color3fVert', 'floatVert', 'intVert', 'stringVert', 'v2fVert', 'v2iVert', 'v3fVert', 'v3iVert'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().globalAttribs() ]), ['color3fDetail', 'floatDetail', 'intDetail', 'stringDetail', 'v2fDetail', 'v2iDetail', 'v3fDetail', 'v3iDetail'] ) converter.parameters()["attributeFilter"].setTypedValue( "P *3f*" ) self.assertTrue( converter.convert( sop ) ) self.assertItemsEqual( [ x.name() for x in sop.geometry().pointAttribs() ], TestToHoudiniPolygonsConverter.PointPositionAttribs + ['color3fPoint', 'v3fPoint'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().primAttribs() ]), ['color3fPrim', 'ieMeshInterpolation', 'v3fPrim'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().vertexAttribs() ]), ['color3fVert', 'v3fVert'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().globalAttribs() ]), ['color3fDetail', 'v3fDetail'] ) converter.parameters()["attributeFilter"].setTypedValue( "* ^*Detail ^int*" ) self.assertTrue( converter.convert( sop ) ) self.assertItemsEqual( sorted([ x.name() for x in sop.geometry().pointAttribs() ]), TestToHoudiniPolygonsConverter.PointPositionAttribs + ['color3fPoint', 'floatPoint', 'stringPoint', 'v2fPoint', 'v2iPoint', 'v3fPoint', 'v3iPoint'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().primAttribs() ]), ['color3fPrim', 'floatPrim', 'ieMeshInterpolation', 'stringPrim', 'v2fPrim', 'v2iPrim', 'v3fPrim', 'v3iPrim'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().vertexAttribs() ]), ['color3fVert', 'floatVert', 'stringVert', 'v2fVert', 'v2iVert', 'v3fVert', 'v3iVert'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().globalAttribs() ]), [] ) # verify we can filter uvs mesh = IECoreScene.MeshPrimitive.createPlane( imath.Box2f( imath.V2f( 0 ), imath.V2f( 1 ) ) ) mesh = IECoreScene.MeshAlgo.triangulate( mesh ) IECoreScene.MeshNormalsOp()( input=mesh, copyInput=False ) mesh["Cs"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.FaceVarying, IECore.V3fVectorData( [ imath.V3f( 1, 0, 0 ) ] * 6, IECore.GeometricData.Interpretation.Color ) ) mesh["width"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.FloatVectorData( [ 1 ] * 4 ) ) mesh["Pref"] = mesh["P"] converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) converter.parameters()["attributeFilter"].setTypedValue( "*" ) self.assertTrue( converter.convert( sop ) ) self.assertItemsEqual( [ x.name() for x in sop.geometry().pointAttribs() ], TestToHoudiniPolygonsConverter.PointPositionAttribs + ['N', 'pscale', 'rest'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().primAttribs() ]), ['ieMeshInterpolation', ] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().vertexAttribs() ]), ['Cd', 'uv'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().globalAttribs() ]), [] ) # have to filter the source attrs converter.parameters()["attributeFilter"].setTypedValue( "* ^uv ^pscale ^rest" ) self.assertTrue( converter.convert( sop ) ) self.assertItemsEqual( [ x.name() for x in sop.geometry().pointAttribs() ], TestToHoudiniPolygonsConverter.PointPositionAttribs + ['N', 'pscale', 'rest'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().primAttribs() ]), ['ieMeshInterpolation', ] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().vertexAttribs() ]), ['Cd'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().globalAttribs() ]), [] ) converter.parameters()["attributeFilter"].setTypedValue( "* ^width ^Pref" ) self.assertTrue( converter.convert( sop ) ) self.assertItemsEqual( [ x.name() for x in sop.geometry().pointAttribs() ], TestToHoudiniPolygonsConverter.PointPositionAttribs + ['N'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().primAttribs() ]), ['ieMeshInterpolation', ] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().vertexAttribs() ]), ['Cd', 'uv'] ) self.assertEqual( sorted([ x.name() for x in sop.geometry().globalAttribs() ]), [] ) def testStandardAttributeConversion( self ) : sop = self.emptySop() mesh = IECoreScene.MeshPrimitive.createPlane( imath.Box2f( imath.V2f( 0 ), imath.V2f( 1 ) ) ) mesh = IECoreScene.MeshAlgo.triangulate( mesh ) IECoreScene.MeshNormalsOp()( input=mesh, copyInput=False ) mesh["Cs"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.FaceVarying, IECore.V3fVectorData( [ imath.V3f( 1, 0, 0 ) ] * 6, IECore.GeometricData.Interpretation.Color ) ) mesh["width"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.FloatVectorData( [ 1 ] * 4 ) ) mesh["Pref"] = mesh["P"] self.assertTrue( mesh.arePrimitiveVariablesValid() ) converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() self.assertItemsEqual( [ x.name() for x in geo.pointAttribs() ], TestToHoudiniPolygonsConverter.PointPositionAttribs + ['N', 'pscale', 'rest'] ) self.assertEqual( sorted([ x.name() for x in geo.primAttribs() ]), ['ieMeshInterpolation'] ) self.assertEqual( sorted([ x.name() for x in geo.vertexAttribs() ]), ['Cd', 'uv'] ) self.assertEqual( sorted([ x.name() for x in geo.globalAttribs() ]), [] ) uvData = mesh["uv"].data indices = mesh["uv"].indices uvs = geo.findVertexAttrib( "uv" ) i = 0 for prim in geo.prims() : verts = list(prim.vertices()) verts.reverse() for vert in verts : uvValues = vert.attribValue( uvs ) self.assertAlmostEqual( uvValues[0], uvData[indices[i]][0] ) self.assertAlmostEqual( uvValues[1], uvData[indices[i]][1] ) i += 1 converter["convertStandardAttributes"].setTypedValue( False ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() self.assertItemsEqual( [ x.name() for x in geo.pointAttribs() ], TestToHoudiniPolygonsConverter.PointPositionAttribs + ['N', 'Pref', 'width'] ) self.assertEqual( sorted([ x.name() for x in geo.primAttribs() ]), ['ieMeshInterpolation', ] ) self.assertEqual( sorted([ x.name() for x in geo.vertexAttribs() ]), ['Cs', 'uv'] ) self.assertEqual( sorted([ x.name() for x in geo.globalAttribs() ]), [] ) uvs = geo.findVertexAttrib( "uv" ) i = 0 for prim in geo.prims() : verts = list(prim.vertices()) verts.reverse() for vert in verts : uvValues = vert.attribValue( uvs ) self.assertAlmostEqual( uvValues[0], uvData[indices[i]][0] ) self.assertAlmostEqual( uvValues[1], uvData[indices[i]][1] ) i += 1 def testCannotTransformRest( self ) : sop = self.emptySop() mergeGeo = hou.node( "/obj" ).createNode( "geo", run_init_scripts=False ) mergeGeo.parm( "tx" ).set( 10 ) merge = mergeGeo.createNode( "object_merge" ) merge.parm( "xformtype" ).set( 1 ) merge.parm( "objpath1" ).set( sop.path() ) mesh = IECoreScene.MeshPrimitive.createPlane( imath.Box2f( imath.V2f( 0 ), imath.V2f( 1 ) ) ) mesh = IECoreScene.MeshAlgo.triangulate( mesh ) IECoreScene.MeshNormalsOp()( input=mesh, copyInput=False ) mesh["Pref"] = mesh["P"] prefData = mesh["Pref"].data self.assertTrue( mesh.arePrimitiveVariablesValid() ) converter = IECoreHoudini.ToHoudiniPolygonsConverter( mesh ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() geo2 = merge.geometry() i = 0 for point in geo.points() : restValue = point.attribValue( "rest" ) self.assertAlmostEqual( imath.V3f( restValue[0], restValue[1], restValue[2] ), prefData[i] ) self.assertTrue( point.position().isAlmostEqual( hou.Vector3(restValue) ) ) i += 1 i = 0 for point in geo2.points() : restValue = point.attribValue( "rest" ) self.assertAlmostEqual( imath.V3f( restValue[0], restValue[1], restValue[2] ), prefData[i] ) self.assertFalse( point.position().isAlmostEqual( hou.Vector3(restValue) ) ) i += 1 # Pref shouldn't transform either converter["convertStandardAttributes"].setTypedValue( False ) self.assertTrue( converter.convert( sop ) ) geo = sop.geometry() geo2 = merge.geometry() i = 0 for point in geo.points() : restValue = point.attribValue( "Pref" ) self.assertAlmostEqual( imath.V3f( restValue[0], restValue[1], restValue[2] ), prefData[i] ) self.assertTrue( point.position().isAlmostEqual( hou.Vector3(restValue) ) ) i += 1 i = 0 for point in geo2.points() : restValue = point.attribValue( "Pref" ) self.assertAlmostEqual( imath.V3f( restValue[0], restValue[1], restValue[2] ), prefData[i] ) self.assertFalse( point.position().isAlmostEqual( hou.Vector3(restValue) ) ) i += 1 def testInterpolation( self ) : mesh = self.mesh() sop = self.emptySop() self.assertEqual( mesh.interpolation, "linear" ) self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) self.assertTrue( "ieMeshInterpolation" in [ x.name() for x in sop.geometry().primAttribs() ] ) attrib = sop.geometry().findPrimAttrib( "ieMeshInterpolation" ) for prim in sop.geometry().prims() : self.assertEqual( prim.attribValue( attrib ), "poly" ) mesh.interpolation = "catmullClark" self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) self.assertTrue( "ieMeshInterpolation" in [ x.name() for x in sop.geometry().primAttribs() ] ) attrib = sop.geometry().findPrimAttrib( "ieMeshInterpolation" ) for prim in sop.geometry().prims() : self.assertEqual( prim.attribValue( attrib ), "subdiv" ) def testExpandedUVRoundTrip( self ) : mesh = IECore.Reader.create( "test/IECore/data/cobFiles/twoTrianglesWithSharedUVs.cob" ).read() mesh["uv"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.FaceVarying, mesh["uv"].expandedData(), None ) mesh["uv"].indices = None uvData = mesh["uv"].data sop = self.emptySop() self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) geo = sop.geometry() self.assertTrue( "uv" in [ x.name() for x in geo.vertexAttribs() ] ) uvs = geo.findVertexAttrib( "uv" ) i = 0 for prim in geo.prims() : verts = list(prim.vertices()) verts.reverse() for vert in verts : uvValues = vert.attribValue( uvs ) self.assertAlmostEqual( uvValues[0], uvData[i][0] ) self.assertAlmostEqual( uvValues[1], uvData[i][1] ) i += 1 converter = IECoreHoudini.FromHoudiniPolygonsConverter( sop ) result = converter.convert() self.assertEqual( result["uv"].data.getInterpretation(), IECore.GeometricData.Interpretation.UV ) # we cannot guarantee to generate the same data when extracting from Houdini # because we always generate indices, but we can generate correctly indexed data self.assertEqual( result["uv"].data.size(), 4 ) self.assertEqual( result["uv"].indices.size(), 6 ) for i in range( 0, mesh.variableSize( mesh["uv"].interpolation ) ) : self.assertEqual( mesh["uv"].data[i], result["uv"].data[ result["uv"].indices[i] ] ) def testIndexedUVRoundTrip( self ) : mesh = IECore.Reader.create( "test/IECore/data/cobFiles/twoTrianglesWithSharedUVs.cob" ).read() uvData = mesh["uv"].data uvIndices = mesh["uv"].indices sop = self.emptySop() self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) geo = sop.geometry() self.assertTrue( "uv" in [ x.name() for x in geo.vertexAttribs() ] ) uvs = geo.findVertexAttrib( "uv" ) i = 0 for prim in geo.prims() : verts = list(prim.vertices()) verts.reverse() for vert in verts : uvValues = vert.attribValue( uvs ) self.assertAlmostEqual( uvValues[0], uvData[uvIndices[i]][0] ) self.assertAlmostEqual( uvValues[1], uvData[uvIndices[i]][1] ) i += 1 converter = IECoreHoudini.FromHoudiniPolygonsConverter( sop ) result = converter.convert() self.assertEqual( result["uv"].data.getInterpretation(), IECore.GeometricData.Interpretation.UV ) # we cannot guarantee to generate the same indices when extracting from Houdini # nor the same data, but we can generate correctly indexed data self.assertEqual( result["uv"].data.size(), 4 ) self.assertEqual( result["uv"].indices.size(), 6 ) for i in range( 0, mesh.variableSize( mesh["uv"].interpolation ) ) : self.assertEqual( mesh["uv"].data[ mesh["uv"].indices[i] ], result["uv"].data[ result["uv"].indices[i] ] ) def testCornersAndCreases( self ) : mesh = IECoreScene.MeshPrimitive.createBox( imath.Box3f( imath.V3f( -1 ), imath.V3f( 1 ) ) ) # normals and UVs complicate the testing, and we don't need them to verify corners and creases del mesh["N"] del mesh["uv"] cornerIds = [ 5 ] cornerSharpnesses = [ 10.0 ] mesh.setCorners( IECore.IntVectorData( cornerIds ), IECore.FloatVectorData( cornerSharpnesses ) ) creaseLengths = [ 3, 2 ] creaseIds = [ 1, 2, 3, 4, 5 ] # note that these are vertex ids creaseSharpnesses = [ 1, 5 ] mesh.setCreases( IECore.IntVectorData( creaseLengths ), IECore.IntVectorData( creaseIds ), IECore.FloatVectorData( creaseSharpnesses ) ) sop = self.emptySop() self.assertTrue( IECoreHoudini.ToHoudiniPolygonsConverter( mesh ).convert( sop ) ) geo = sop.geometry() self.assertTrue( "cornerweight" in [ x.name() for x in geo.pointAttribs() ] ) self.assertTrue( "creaseweight" in [ x.name() for x in geo.vertexAttribs() ] ) # test corners cornerWeight = geo.findPointAttrib( "cornerweight" ) for point in geo.points() : sharpness = 0.0 if point.number() in cornerIds : sharpness = cornerSharpnesses[ cornerIds.index( point.number() ) ] self.assertEqual( point.attribValue( cornerWeight ), sharpness ) # test creases expectedSharpnesses = [ 0 ] * 24 # edge 1-2 expectedSharpnesses[1] = 1 expectedSharpnesses[2] = 1 # edge 2-3 expectedSharpnesses[6] = 1 expectedSharpnesses[18] = 1 # edge 4-5 expectedSharpnesses[4] = 5 expectedSharpnesses[10] = 5 self.assertEqual( list(geo.vertexFloatAttribValues( "creaseweight" )), expectedSharpnesses ) # make sure it round trips well enough result = IECoreHoudini.FromHoudiniPolygonsConverter( sop ).convert() self.assertEqual( result.cornerIds(), mesh.cornerIds() ) self.assertEqual( result.cornerSharpnesses(), mesh.cornerSharpnesses() ) self.assertEqual( result.creaseLengths(), IECore.IntVectorData( [ 2, 2, 2 ] ) ) self.assertEqual( result.creaseIds(), IECore.IntVectorData( [ 2, 3, 1, 2, 4, 5 ] ) ) self.assertEqual( result.creaseSharpnesses(), IECore.FloatVectorData( [ 1, 1, 5 ] ) ) # if we re-align result creases, everything else is an exact match mesh.setCreases( result.creaseLengths(), result.creaseIds(), result.creaseSharpnesses() ) self.assertEqual( result, mesh ) def tearDown( self ) : if os.path.isfile( TestToHoudiniPolygonsConverter.__testScene ) : os.remove( TestToHoudiniPolygonsConverter.__testScene ) if __name__ == "__main__": unittest.main()
en
0.645139
########################################################################## # # Copyright (c) 2010-2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of Image Engine Design nor the names of any # other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## # add all valid detail attrib types # add all valid point attrib types # add all valid primitive attrib types # add all valid vertex attrib types # detail # float # 1 element # point # float # 1 element # prim # float # 1 element # vertex # float # 1 element # detail # int # 3 elements # point # int # 3 elements # prim # int # 3 elements # vert # int # 3 elements # unnamed unless we set the parameter # blindData still works for backwards compatibility # name parameter takes preference over blindData # verify we can filter uvs # have to filter the source attrs # Pref shouldn't transform either # we cannot guarantee to generate the same data when extracting from Houdini # because we always generate indices, but we can generate correctly indexed data # we cannot guarantee to generate the same indices when extracting from Houdini # nor the same data, but we can generate correctly indexed data # normals and UVs complicate the testing, and we don't need them to verify corners and creases # note that these are vertex ids # test corners # test creases # edge 1-2 # edge 2-3 # edge 4-5 # make sure it round trips well enough # if we re-align result creases, everything else is an exact match
0.774036
1
examples/bar_chart_examples.py
ahlusar1989/vincent
1,052
6632994
# -*- coding: utf-8 -*- """ Vincent Bar Chart Example """ #Build a Bar Chart from scratch from vincent import * import pandas as pd farm_1 = {'apples': 10, 'berries': 32, 'squash': 21, 'melons': 13, 'corn': 18} farm_2 = {'apples': 15, 'berries': 43, 'squash': 17, 'melons': 10, 'corn': 22} farm_3 = {'apples': 6, 'berries': 24, 'squash': 22, 'melons': 16, 'corn': 30} farm_4 = {'apples': 12, 'berries': 30, 'squash': 15, 'melons': 9, 'corn': 15} data = [farm_1, farm_2, farm_3, farm_4] index = ['Farm 1', 'Farm 2', 'Farm 3', 'Farm 4'] df = pd.DataFrame(data, index=index) vis = Visualization(width=500, height=300) vis.scales['x'] = Scale(name='x', type='ordinal', range='width', domain=DataRef(data='table', field="data.idx")) vis.scales['y'] = Scale(name='y', range='height', nice=True, domain=DataRef(data='table', field="data.val")) vis.axes.extend([Axis(type='x', scale='x'), Axis(type='y', scale='y')]) #Marks enter_props = PropertySet(x=ValueRef(scale='x', field="data.idx"), y=ValueRef(scale='y', field="data.val"), width=ValueRef(scale='x', band=True, offset=-1), y2=ValueRef(scale='y', value=0)) update_props = PropertySet(fill=ValueRef(value='steelblue')) mark = Mark(type='rect', from_=MarkRef(data='table'), properties=MarkProperties(enter=enter_props, update=update_props)) vis.marks.append(mark) data = Data.from_pandas(df['apples']) #Using a Vincent KeyedList here vis.data['table'] = data vis.axis_titles(x='Farms', y='Data') vis.to_json('vega.json') #Convenience methods vis = Bar(df['apples']) #Fruit trans = df.T vis = Bar(trans['Farm 1']) #From dict vis = Bar(farm_1) #From dict of iterables vis = Bar({'x': ['apples', 'berries', 'squash', 'melons', 'corn'], 'y': [10, 32, 21, 13, 18]}, iter_idx='x') #Finally, a boring bar chart from a list vis = Bar([10, 20, 30, 15, 35, 10, 20])
# -*- coding: utf-8 -*- """ Vincent Bar Chart Example """ #Build a Bar Chart from scratch from vincent import * import pandas as pd farm_1 = {'apples': 10, 'berries': 32, 'squash': 21, 'melons': 13, 'corn': 18} farm_2 = {'apples': 15, 'berries': 43, 'squash': 17, 'melons': 10, 'corn': 22} farm_3 = {'apples': 6, 'berries': 24, 'squash': 22, 'melons': 16, 'corn': 30} farm_4 = {'apples': 12, 'berries': 30, 'squash': 15, 'melons': 9, 'corn': 15} data = [farm_1, farm_2, farm_3, farm_4] index = ['Farm 1', 'Farm 2', 'Farm 3', 'Farm 4'] df = pd.DataFrame(data, index=index) vis = Visualization(width=500, height=300) vis.scales['x'] = Scale(name='x', type='ordinal', range='width', domain=DataRef(data='table', field="data.idx")) vis.scales['y'] = Scale(name='y', range='height', nice=True, domain=DataRef(data='table', field="data.val")) vis.axes.extend([Axis(type='x', scale='x'), Axis(type='y', scale='y')]) #Marks enter_props = PropertySet(x=ValueRef(scale='x', field="data.idx"), y=ValueRef(scale='y', field="data.val"), width=ValueRef(scale='x', band=True, offset=-1), y2=ValueRef(scale='y', value=0)) update_props = PropertySet(fill=ValueRef(value='steelblue')) mark = Mark(type='rect', from_=MarkRef(data='table'), properties=MarkProperties(enter=enter_props, update=update_props)) vis.marks.append(mark) data = Data.from_pandas(df['apples']) #Using a Vincent KeyedList here vis.data['table'] = data vis.axis_titles(x='Farms', y='Data') vis.to_json('vega.json') #Convenience methods vis = Bar(df['apples']) #Fruit trans = df.T vis = Bar(trans['Farm 1']) #From dict vis = Bar(farm_1) #From dict of iterables vis = Bar({'x': ['apples', 'berries', 'squash', 'melons', 'corn'], 'y': [10, 32, 21, 13, 18]}, iter_idx='x') #Finally, a boring bar chart from a list vis = Bar([10, 20, 30, 15, 35, 10, 20])
en
0.728599
# -*- coding: utf-8 -*- Vincent Bar Chart Example #Build a Bar Chart from scratch #Marks #Using a Vincent KeyedList here #Convenience methods #Fruit #From dict #From dict of iterables #Finally, a boring bar chart from a list
3.407511
3
src/charma/persons/actors/handler.py
mononobi/charma-server
1
6632995
# -*- coding: utf-8 -*- """ actors handler module. """ import charma.persons.actors.services as actor_services from charma.persons.decorators import person_handler from charma.persons.enumerations import PersonTypeEnum from charma.persons.handler import AbstractPersonHandler @person_handler() class ActorHandler(AbstractPersonHandler): """ actor handler class. """ name = PersonTypeEnum.ACTOR def create(self, id, **options): """ creates an actor with given inputs. :param uuid.UUID id: person id. """ actor_services.create(id, **options)
# -*- coding: utf-8 -*- """ actors handler module. """ import charma.persons.actors.services as actor_services from charma.persons.decorators import person_handler from charma.persons.enumerations import PersonTypeEnum from charma.persons.handler import AbstractPersonHandler @person_handler() class ActorHandler(AbstractPersonHandler): """ actor handler class. """ name = PersonTypeEnum.ACTOR def create(self, id, **options): """ creates an actor with given inputs. :param uuid.UUID id: person id. """ actor_services.create(id, **options)
en
0.656762
# -*- coding: utf-8 -*- actors handler module. actor handler class. creates an actor with given inputs. :param uuid.UUID id: person id.
2.757755
3
holecmm.py
joelmeyerson/hole-cmm
0
6632996
#------------------------------------------------- holecmm.py -------------------------------------------- # # Python script to convert the output of HOLE to a CMM file that can be visualized in Chimera or ChimeraX. # # Usage: # python holecmm.py # # Show inputs: # python holecmm.py -h # # Parameters: # -i <input file> (required) # -o <output file name> (optional, defaults to input file base name with cmm file extension) # -r <value for sphere radius> (optional, defaults to 0.2) # -c1 <Hex color value for pore radius < 1.15 Ang> (optional, defaults to red FF0000) # -c2 <Hex color value for 1.15 Ang > pore radius < 2.30 Ang> (optional, defaults to green 00FF00) # -c3 <Hex color value for pore radius > 2.30 Ang> (optional, defaults to blue 0000FF) # # Examples: # python holecmm.py -i dotsurface-kcsa.vmd_plot # python holecmm.py -i dotsurface-kcsa.vmd_plot -o kcsa.cmm -r 0.2 -c1 FF6347 -c2 90EE90 -c3 6495ED # python holecmm.py -i hole-surface-dots.dat # #--------------------------------------------------------------------------------------------------------- import sys, os, re, argparse # create argument parser parser = argparse.ArgumentParser(description='Convert HOLE output to a CMM file.') parser.add_argument('-i', metavar='input', type=str, help='Input file.', required=True) parser.add_argument('-o', metavar='output', type=str, default='NA', help='Output file.') parser.add_argument('-r', metavar='radius', type=float, default='0.2', help='Radius for markers.') parser.add_argument('-c1', metavar='color', type=str, default='NA', help='Hex color for pore radius less than 1.15 Ang.') parser.add_argument('-c2', metavar='color', type=str, default='NA', help='Hex color for pore radius between 1.15 Ang and 2.30 Ang.') parser.add_argument('-c3', metavar='color', type=str, default='NA', help='Hex color for pore radius greater than 2.30 Ang.') # parse args args = parser.parse_args() # parse input ipath = args.i # input and path iname = os.path.basename(args.i) # input file name ibasename = os.path.splitext(iname)[0] # input base name iext = os.path.splitext(iname)[-1] # input extension # check input file exists if os.path.isfile(ipath): pass else: print("Input file not found.") exit() # parse output if args.o == 'NA': oname = 'hole.cmm' else: oname = args.o; # parse colors if args.c1 == 'NA': c1 = 'FF0000' else: c1 = args.c1 if args.c2 == 'NA': c2 = '00FF00' else: c2 = args.c2 if args.c3 == 'NA': c3 = '0000FF' else: c3 = args.c3 if len(c1) == 6 and len(c2) == 6 and len(c3) == 6: if c1[1:].isalnum() and c2[1:].isalnum() and c3[1:].isalnum(): pass else: print("Colors must be in hex format.") exit() else: print("Colors must be in hex format.") exit() # convert from HEX to RGB c1R, c1G, c1B = int(c1[0:2], 16)/255.0, int(c1[2:4], 16)/255.0, int(c1[4:6], 16)/255.0 c2R, c2G, c2B = int(c2[0:2], 16)/255.0, int(c2[2:4], 16)/255.0, int(c2[4:6], 16)/255.0 c3R, c3G, c3B = int(c3[0:2], 16)/255.0, int(c3[2:4], 16)/255.0, int(c3[4:6], 16)/255.0 # read input file ifile = open(ipath, 'r') # create output file and add header ofile = open(oname, 'w+') ofile.write('<marker_set name="marker set 1">\n') # marker ID counter id = 0 if iext == '.vmd_plot': # process .vmd_plot file from HOLE for line in ifile.readlines(): # iterate ID counter id += 1 if line.startswith('draw point'): # extract x, y, z coordinates from lines in .vmd_plot file [x, y, z] = re.findall('\d+\.\d+', line) x = float(x) y = float(y) z = float(z) # write line to CMM file ofile.write("<marker id=\"%d\" x=\"%5.2f\" y=\"%5.2f\" z=\"%5.2f\" %s radius=\"%2.1f\"/>\n" % (id, x, y, z, color, args.r)) elif line.startswith('draw color yellow'): pass elif line.startswith('draw color red'): color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (c1R, c1G, c1B) elif line.startswith('draw color green'): color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (c2R, c2G, c2B) elif line.startswith('draw color blue'): color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (c3R, c3G, c3B) else: pass elif iext == '.dat': # process .dat file from HOLE in COOT # true if any colors specified customcolor = args.c1 != 'NA' or args.c2 != 'NA' or args.c3 != 'NA' if customcolor == False: for line in ifile.readlines(): # iterate ID counter id += 1 # extract x, y, z coordinates from lines in .dat file x = float(line.split()[0]) y = float(line.split()[1]) z = float(line.split()[2]) r = float(line.split()[3]) g = float(line.split()[4]) b = float(line.split()[5]) # set color color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (r, g, b) # write line to CMM file ofile.write("<marker id=\"%d\" x=\"%5.2f\" y=\"%5.2f\" z=\"%5.2f\" %s radius=\"%2.1f\"/>\n" % (id, x, y, z, color, args.r)) else: # use custom colors for line in ifile.readlines(): # iterate ID counter id += 1 # extract x, y, z coordinates from lines in .dat file x = float(line.split()[0]) y = float(line.split()[1]) z = float(line.split()[2]) r = float(line.split()[3]) g = float(line.split()[4]) b = float(line.split()[5]) if r >= g and r >= b: color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (c1R, c1G, c1B) elif g >= r and g >= b: color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (c2R, c2G, c2B) else: color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (c3R, c3G, c3B) # write line to CMM file ofile.write("<marker id=\"%d\" x=\"%5.2f\" y=\"%5.2f\" z=\"%5.2f\" %s radius=\"%2.1f\"/>\n" % (id, x, y, z, color, args.r)) else: print("Input file %s does not have .vmd_plot or .dat file extension." % iname) exit() # close input file ifile.close() # write footer and close output file ofile.write('</marker_set>') ofile.close()
#------------------------------------------------- holecmm.py -------------------------------------------- # # Python script to convert the output of HOLE to a CMM file that can be visualized in Chimera or ChimeraX. # # Usage: # python holecmm.py # # Show inputs: # python holecmm.py -h # # Parameters: # -i <input file> (required) # -o <output file name> (optional, defaults to input file base name with cmm file extension) # -r <value for sphere radius> (optional, defaults to 0.2) # -c1 <Hex color value for pore radius < 1.15 Ang> (optional, defaults to red FF0000) # -c2 <Hex color value for 1.15 Ang > pore radius < 2.30 Ang> (optional, defaults to green 00FF00) # -c3 <Hex color value for pore radius > 2.30 Ang> (optional, defaults to blue 0000FF) # # Examples: # python holecmm.py -i dotsurface-kcsa.vmd_plot # python holecmm.py -i dotsurface-kcsa.vmd_plot -o kcsa.cmm -r 0.2 -c1 FF6347 -c2 90EE90 -c3 6495ED # python holecmm.py -i hole-surface-dots.dat # #--------------------------------------------------------------------------------------------------------- import sys, os, re, argparse # create argument parser parser = argparse.ArgumentParser(description='Convert HOLE output to a CMM file.') parser.add_argument('-i', metavar='input', type=str, help='Input file.', required=True) parser.add_argument('-o', metavar='output', type=str, default='NA', help='Output file.') parser.add_argument('-r', metavar='radius', type=float, default='0.2', help='Radius for markers.') parser.add_argument('-c1', metavar='color', type=str, default='NA', help='Hex color for pore radius less than 1.15 Ang.') parser.add_argument('-c2', metavar='color', type=str, default='NA', help='Hex color for pore radius between 1.15 Ang and 2.30 Ang.') parser.add_argument('-c3', metavar='color', type=str, default='NA', help='Hex color for pore radius greater than 2.30 Ang.') # parse args args = parser.parse_args() # parse input ipath = args.i # input and path iname = os.path.basename(args.i) # input file name ibasename = os.path.splitext(iname)[0] # input base name iext = os.path.splitext(iname)[-1] # input extension # check input file exists if os.path.isfile(ipath): pass else: print("Input file not found.") exit() # parse output if args.o == 'NA': oname = 'hole.cmm' else: oname = args.o; # parse colors if args.c1 == 'NA': c1 = 'FF0000' else: c1 = args.c1 if args.c2 == 'NA': c2 = '00FF00' else: c2 = args.c2 if args.c3 == 'NA': c3 = '0000FF' else: c3 = args.c3 if len(c1) == 6 and len(c2) == 6 and len(c3) == 6: if c1[1:].isalnum() and c2[1:].isalnum() and c3[1:].isalnum(): pass else: print("Colors must be in hex format.") exit() else: print("Colors must be in hex format.") exit() # convert from HEX to RGB c1R, c1G, c1B = int(c1[0:2], 16)/255.0, int(c1[2:4], 16)/255.0, int(c1[4:6], 16)/255.0 c2R, c2G, c2B = int(c2[0:2], 16)/255.0, int(c2[2:4], 16)/255.0, int(c2[4:6], 16)/255.0 c3R, c3G, c3B = int(c3[0:2], 16)/255.0, int(c3[2:4], 16)/255.0, int(c3[4:6], 16)/255.0 # read input file ifile = open(ipath, 'r') # create output file and add header ofile = open(oname, 'w+') ofile.write('<marker_set name="marker set 1">\n') # marker ID counter id = 0 if iext == '.vmd_plot': # process .vmd_plot file from HOLE for line in ifile.readlines(): # iterate ID counter id += 1 if line.startswith('draw point'): # extract x, y, z coordinates from lines in .vmd_plot file [x, y, z] = re.findall('\d+\.\d+', line) x = float(x) y = float(y) z = float(z) # write line to CMM file ofile.write("<marker id=\"%d\" x=\"%5.2f\" y=\"%5.2f\" z=\"%5.2f\" %s radius=\"%2.1f\"/>\n" % (id, x, y, z, color, args.r)) elif line.startswith('draw color yellow'): pass elif line.startswith('draw color red'): color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (c1R, c1G, c1B) elif line.startswith('draw color green'): color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (c2R, c2G, c2B) elif line.startswith('draw color blue'): color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (c3R, c3G, c3B) else: pass elif iext == '.dat': # process .dat file from HOLE in COOT # true if any colors specified customcolor = args.c1 != 'NA' or args.c2 != 'NA' or args.c3 != 'NA' if customcolor == False: for line in ifile.readlines(): # iterate ID counter id += 1 # extract x, y, z coordinates from lines in .dat file x = float(line.split()[0]) y = float(line.split()[1]) z = float(line.split()[2]) r = float(line.split()[3]) g = float(line.split()[4]) b = float(line.split()[5]) # set color color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (r, g, b) # write line to CMM file ofile.write("<marker id=\"%d\" x=\"%5.2f\" y=\"%5.2f\" z=\"%5.2f\" %s radius=\"%2.1f\"/>\n" % (id, x, y, z, color, args.r)) else: # use custom colors for line in ifile.readlines(): # iterate ID counter id += 1 # extract x, y, z coordinates from lines in .dat file x = float(line.split()[0]) y = float(line.split()[1]) z = float(line.split()[2]) r = float(line.split()[3]) g = float(line.split()[4]) b = float(line.split()[5]) if r >= g and r >= b: color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (c1R, c1G, c1B) elif g >= r and g >= b: color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (c2R, c2G, c2B) else: color = "r=\"%3.2f\" g=\"%3.2f\" b=\"%3.2f\"" % (c3R, c3G, c3B) # write line to CMM file ofile.write("<marker id=\"%d\" x=\"%5.2f\" y=\"%5.2f\" z=\"%5.2f\" %s radius=\"%2.1f\"/>\n" % (id, x, y, z, color, args.r)) else: print("Input file %s does not have .vmd_plot or .dat file extension." % iname) exit() # close input file ifile.close() # write footer and close output file ofile.write('</marker_set>') ofile.close()
en
0.42817
#------------------------------------------------- holecmm.py -------------------------------------------- # # Python script to convert the output of HOLE to a CMM file that can be visualized in Chimera or ChimeraX. # # Usage: # python holecmm.py # # Show inputs: # python holecmm.py -h # # Parameters: # -i <input file> (required) # -o <output file name> (optional, defaults to input file base name with cmm file extension) # -r <value for sphere radius> (optional, defaults to 0.2) # -c1 <Hex color value for pore radius < 1.15 Ang> (optional, defaults to red FF0000) # -c2 <Hex color value for 1.15 Ang > pore radius < 2.30 Ang> (optional, defaults to green 00FF00) # -c3 <Hex color value for pore radius > 2.30 Ang> (optional, defaults to blue 0000FF) # # Examples: # python holecmm.py -i dotsurface-kcsa.vmd_plot # python holecmm.py -i dotsurface-kcsa.vmd_plot -o kcsa.cmm -r 0.2 -c1 FF6347 -c2 90EE90 -c3 6495ED # python holecmm.py -i hole-surface-dots.dat # #--------------------------------------------------------------------------------------------------------- # create argument parser # parse args # parse input # input and path # input file name # input base name # input extension # check input file exists # parse output # parse colors # convert from HEX to RGB # read input file # create output file and add header # marker ID counter # process .vmd_plot file from HOLE # iterate ID counter # extract x, y, z coordinates from lines in .vmd_plot file # write line to CMM file # process .dat file from HOLE in COOT # true if any colors specified # iterate ID counter # extract x, y, z coordinates from lines in .dat file # set color # write line to CMM file # use custom colors # iterate ID counter # extract x, y, z coordinates from lines in .dat file # write line to CMM file # close input file # write footer and close output file
2.459626
2
SBS.py
hduliufan/work
0
6632997
#序列反向选择算法sbs from sklearn.base import clone #itertools迭代器产生 from itertools import combinations from sklearn.metrics import accuracy_score import numpy as np from sklearn.cross_validation import train_test_split class SBS(object): ''' estimator 是采用的方法分类后的模型 ''' def __init__(self,estimator, k_feature, scoring=accuracy_score, test_size= None ,random_state=None): self.estimator= clone(estimator) self.k_feature= k_feature self.scoring= scoring self.random_state = random_state self.test_size= test_size def fit(self,x,y): x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=self.test_size, random_state=self.random_state) dim=x_train.shape[1] #indices 目录 元组不能改变 #类内全局变量 self.indices_= tuple(range(dim)) #子集subset self.subsets_=[self.indices_] score= self._calc_score(x_train,y_train,x_test,y_test,self.indices_) #数组的一个元素 self.scores_= [score] while dim > self.k_feature: scores=[] subsets= [] for p in combinations(self.indices_, r=dim-1): score= self._calc_score(x_train,y_train,x_test,y_test,p) scores.append(score) #子集存储 subsets.append(p) #argmax返回值是最大值的indices best= np.argmax(score) #返回的是最优的子集即score最大的子集目录即列向量标号 self.indices_= subsets[best] self.subsets_.append(self.indices_) dim -=1 #存储的是score最大的子集 self.scores_.append(scores[best]) #返回的是满足阈值的最佳score self.k_scores_=self.scores_[-1] return self #返回最佳的特征列 def transform(self,x): return x[:,self.indices_] def _calc_score(self,x_train,y_train,x_test,y_test,indices): self.estimator.fit(x_train[:,indices],y_train) y_predict= self.estimator.predict(x_test[:,indices]) #实际是调用accuracy_score 进行正确率 score= self.scoring(y_test,y_predict) return score def bestchoice(self): best= np.argmax(self.scores_) return self.subsets_[best]
#序列反向选择算法sbs from sklearn.base import clone #itertools迭代器产生 from itertools import combinations from sklearn.metrics import accuracy_score import numpy as np from sklearn.cross_validation import train_test_split class SBS(object): ''' estimator 是采用的方法分类后的模型 ''' def __init__(self,estimator, k_feature, scoring=accuracy_score, test_size= None ,random_state=None): self.estimator= clone(estimator) self.k_feature= k_feature self.scoring= scoring self.random_state = random_state self.test_size= test_size def fit(self,x,y): x_train,x_test,y_train,y_test= train_test_split(x,y,test_size=self.test_size, random_state=self.random_state) dim=x_train.shape[1] #indices 目录 元组不能改变 #类内全局变量 self.indices_= tuple(range(dim)) #子集subset self.subsets_=[self.indices_] score= self._calc_score(x_train,y_train,x_test,y_test,self.indices_) #数组的一个元素 self.scores_= [score] while dim > self.k_feature: scores=[] subsets= [] for p in combinations(self.indices_, r=dim-1): score= self._calc_score(x_train,y_train,x_test,y_test,p) scores.append(score) #子集存储 subsets.append(p) #argmax返回值是最大值的indices best= np.argmax(score) #返回的是最优的子集即score最大的子集目录即列向量标号 self.indices_= subsets[best] self.subsets_.append(self.indices_) dim -=1 #存储的是score最大的子集 self.scores_.append(scores[best]) #返回的是满足阈值的最佳score self.k_scores_=self.scores_[-1] return self #返回最佳的特征列 def transform(self,x): return x[:,self.indices_] def _calc_score(self,x_train,y_train,x_test,y_test,indices): self.estimator.fit(x_train[:,indices],y_train) y_predict= self.estimator.predict(x_test[:,indices]) #实际是调用accuracy_score 进行正确率 score= self.scoring(y_test,y_predict) return score def bestchoice(self): best= np.argmax(self.scores_) return self.subsets_[best]
zh
0.971369
#序列反向选择算法sbs #itertools迭代器产生 estimator 是采用的方法分类后的模型 #indices 目录 元组不能改变 #类内全局变量 #子集subset #数组的一个元素 #子集存储 #argmax返回值是最大值的indices #返回的是最优的子集即score最大的子集目录即列向量标号 #存储的是score最大的子集 #返回的是满足阈值的最佳score #返回最佳的特征列 #实际是调用accuracy_score 进行正确率
2.654305
3
rama/config.py
tadfisher/rama
2
6632998
import layout import view defaults = { 'layouts': [layout.TileLayout()], 'views': ['main'] }
import layout import view defaults = { 'layouts': [layout.TileLayout()], 'views': ['main'] }
none
1
1.324789
1
scrapeops_python_logger/utils/error_handling.py
ScrapeOps/scrapeops-python-logger
0
6632999
<filename>scrapeops_python_logger/utils/error_handling.py import functools from scrapeops_python_logger.exceptions import ScrapeOpsAPIResponseError def exception_handler(func): @functools.wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except ScrapeOpsAPIResponseError as e: pass except Exception as e: pass return wrapper
<filename>scrapeops_python_logger/utils/error_handling.py import functools from scrapeops_python_logger.exceptions import ScrapeOpsAPIResponseError def exception_handler(func): @functools.wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except ScrapeOpsAPIResponseError as e: pass except Exception as e: pass return wrapper
none
1
2.59916
3
gdsfactory/components/pack_doe.py
thomasdorch/gdsfactory
0
6633000
import itertools as it from typing import Any, Dict, List import gdsfactory as gf from gdsfactory.cell import cell from gdsfactory.component import Component from gdsfactory.grid import grid, grid_with_text from gdsfactory.pack import pack from gdsfactory.types import CellSpec, ComponentSpec, Optional @cell def pack_doe( doe: ComponentSpec, settings: Dict[str, List[Any]], do_permutations: bool = False, function: Optional[CellSpec] = None, **kwargs, ) -> Component: """Packs a component DOE (Design of Experiment) using pack. Args: doe: function to return Components. settings: component settings. do_permutations: for each setting. function: for the component (add padding, grating couplers ...) keyword Args: spacing: Minimum distance between adjacent shapes aspect_ratio: (width, height) ratio of the rectangular bin max_size: Limits the size into which the shapes will be packed sort_by_area: Pre-sorts the shapes by area density: Values closer to 1 pack tighter but require more computation precision: Desired precision for rounding vertex coordinates. text: Optional function to add text labels. text_prefix: for labels. For example. 'A' will produce 'A1', 'A2', ... text_offsets: relative to component size info anchor. Defaults to center. text_anchors: relative to component (ce cw nc ne nw sc se sw center cc). name_prefix: for each packed component (avoids the Unnamed cells warning). Note that the suffix contains a uuid so the name will not be deterministic rotation: for each component in degrees h_mirror: horizontal mirror in y axis (x, 1) (1, 0). This is the most common. v_mirror: vertical mirror using x axis (1, y) (0, y) """ if do_permutations: settings_list = [dict(zip(settings, t)) for t in it.product(*settings.values())] else: settings_list = [dict(zip(settings, t)) for t in zip(*settings.values())] if function: function = gf.get_cell(function) if not callable(function): raise ValueError(f"Error {function!r} needs to be callable.") component_list = [ function(gf.get_component(doe, **settings)) for settings in settings_list ] else: component_list = [ gf.get_component(doe, **settings) for settings in settings_list ] c = pack(component_list=component_list, **kwargs) if len(c) > 1: raise ValueError( f"failed to pack in one Component, it created {len(c)} Components" ) else: c = c[0] c.doe_names = [component.name for component in component_list] c.doe_settings = settings_list return c def pack_doe_grid( doe: ComponentSpec, settings: Dict[str, List[Any]], do_permutations: bool = False, function: Optional[CellSpec] = None, with_text: bool = False, **kwargs, ) -> Component: """Packs a component DOE (Design of Experiment) using grid. Args: component: function to return Components. settings: component settings. do_permutations: for each setting. function: for the component (add padding, grating couplers ...) with_text: includes text label. keyword Args: spacing: between adjacent elements on the grid, can be a tuple for different distances in height and width. separation: If True, guarantees elements are speparated with fixed spacing if False, elements are spaced evenly along a grid. shape: x, y shape of the grid (see np.reshape). If no shape and the list is 1D, if np.reshape were run with (1, -1). align_x: {'x', 'xmin', 'xmax'} for x (column) alignment along align_y: {'y', 'ymin', 'ymax'} for y (row) alignment along edge_x: {'x', 'xmin', 'xmax'} for x (column) (ignored if separation = True) edge_y: {'y', 'ymin', 'ymax'} for y (row) (ignored if separation = True) rotation: for each component in degrees. h_mirror: horizontal mirror y axis (x, 1) (1, 0). most common mirror. v_mirror: vertical mirror using x axis (1, y) (0, y). """ if do_permutations: settings_list = [dict(zip(settings, t)) for t in it.product(*settings.values())] else: settings_list = [dict(zip(settings, t)) for t in zip(*settings.values())] if function: function = gf.get_cell(function) if not callable(function): raise ValueError(f"Error {function!r} needs to be callable.") component_list = [ function(gf.get_component(doe, **settings)) for settings in settings_list ] else: component_list = [ gf.get_component(doe, **settings) for settings in settings_list ] if with_text: c = grid_with_text(component_list, **kwargs) else: c = grid(component_list, **kwargs) c.doe_names = [component.name for component in component_list] c.doe_settings = settings_list return c if __name__ == "__main__": c = pack_doe_grid( # doe=gf.c.mmi1x2, doe="mmi1x2", # doe=dict(component='mmi1x2', settings=dict(length_taper=50)), settings=dict(length_mmi=[2.5, 100], width_mmi=[4, 10], hash_settings=[False]), with_text=True, spacing=(100, 100), shape=(2, 2), # settings=dict(length_mmi=[2, 100], width_mmi=[4, 10]), do_permutations=True, ) print(c.doe_names) c.show() # c = pack_doe(doe="mmi1x2", settings=dict(length_mmi=[2, 100], width_mmi=[4, 10]))
import itertools as it from typing import Any, Dict, List import gdsfactory as gf from gdsfactory.cell import cell from gdsfactory.component import Component from gdsfactory.grid import grid, grid_with_text from gdsfactory.pack import pack from gdsfactory.types import CellSpec, ComponentSpec, Optional @cell def pack_doe( doe: ComponentSpec, settings: Dict[str, List[Any]], do_permutations: bool = False, function: Optional[CellSpec] = None, **kwargs, ) -> Component: """Packs a component DOE (Design of Experiment) using pack. Args: doe: function to return Components. settings: component settings. do_permutations: for each setting. function: for the component (add padding, grating couplers ...) keyword Args: spacing: Minimum distance between adjacent shapes aspect_ratio: (width, height) ratio of the rectangular bin max_size: Limits the size into which the shapes will be packed sort_by_area: Pre-sorts the shapes by area density: Values closer to 1 pack tighter but require more computation precision: Desired precision for rounding vertex coordinates. text: Optional function to add text labels. text_prefix: for labels. For example. 'A' will produce 'A1', 'A2', ... text_offsets: relative to component size info anchor. Defaults to center. text_anchors: relative to component (ce cw nc ne nw sc se sw center cc). name_prefix: for each packed component (avoids the Unnamed cells warning). Note that the suffix contains a uuid so the name will not be deterministic rotation: for each component in degrees h_mirror: horizontal mirror in y axis (x, 1) (1, 0). This is the most common. v_mirror: vertical mirror using x axis (1, y) (0, y) """ if do_permutations: settings_list = [dict(zip(settings, t)) for t in it.product(*settings.values())] else: settings_list = [dict(zip(settings, t)) for t in zip(*settings.values())] if function: function = gf.get_cell(function) if not callable(function): raise ValueError(f"Error {function!r} needs to be callable.") component_list = [ function(gf.get_component(doe, **settings)) for settings in settings_list ] else: component_list = [ gf.get_component(doe, **settings) for settings in settings_list ] c = pack(component_list=component_list, **kwargs) if len(c) > 1: raise ValueError( f"failed to pack in one Component, it created {len(c)} Components" ) else: c = c[0] c.doe_names = [component.name for component in component_list] c.doe_settings = settings_list return c def pack_doe_grid( doe: ComponentSpec, settings: Dict[str, List[Any]], do_permutations: bool = False, function: Optional[CellSpec] = None, with_text: bool = False, **kwargs, ) -> Component: """Packs a component DOE (Design of Experiment) using grid. Args: component: function to return Components. settings: component settings. do_permutations: for each setting. function: for the component (add padding, grating couplers ...) with_text: includes text label. keyword Args: spacing: between adjacent elements on the grid, can be a tuple for different distances in height and width. separation: If True, guarantees elements are speparated with fixed spacing if False, elements are spaced evenly along a grid. shape: x, y shape of the grid (see np.reshape). If no shape and the list is 1D, if np.reshape were run with (1, -1). align_x: {'x', 'xmin', 'xmax'} for x (column) alignment along align_y: {'y', 'ymin', 'ymax'} for y (row) alignment along edge_x: {'x', 'xmin', 'xmax'} for x (column) (ignored if separation = True) edge_y: {'y', 'ymin', 'ymax'} for y (row) (ignored if separation = True) rotation: for each component in degrees. h_mirror: horizontal mirror y axis (x, 1) (1, 0). most common mirror. v_mirror: vertical mirror using x axis (1, y) (0, y). """ if do_permutations: settings_list = [dict(zip(settings, t)) for t in it.product(*settings.values())] else: settings_list = [dict(zip(settings, t)) for t in zip(*settings.values())] if function: function = gf.get_cell(function) if not callable(function): raise ValueError(f"Error {function!r} needs to be callable.") component_list = [ function(gf.get_component(doe, **settings)) for settings in settings_list ] else: component_list = [ gf.get_component(doe, **settings) for settings in settings_list ] if with_text: c = grid_with_text(component_list, **kwargs) else: c = grid(component_list, **kwargs) c.doe_names = [component.name for component in component_list] c.doe_settings = settings_list return c if __name__ == "__main__": c = pack_doe_grid( # doe=gf.c.mmi1x2, doe="mmi1x2", # doe=dict(component='mmi1x2', settings=dict(length_taper=50)), settings=dict(length_mmi=[2.5, 100], width_mmi=[4, 10], hash_settings=[False]), with_text=True, spacing=(100, 100), shape=(2, 2), # settings=dict(length_mmi=[2, 100], width_mmi=[4, 10]), do_permutations=True, ) print(c.doe_names) c.show() # c = pack_doe(doe="mmi1x2", settings=dict(length_mmi=[2, 100], width_mmi=[4, 10]))
en
0.700334
Packs a component DOE (Design of Experiment) using pack. Args: doe: function to return Components. settings: component settings. do_permutations: for each setting. function: for the component (add padding, grating couplers ...) keyword Args: spacing: Minimum distance between adjacent shapes aspect_ratio: (width, height) ratio of the rectangular bin max_size: Limits the size into which the shapes will be packed sort_by_area: Pre-sorts the shapes by area density: Values closer to 1 pack tighter but require more computation precision: Desired precision for rounding vertex coordinates. text: Optional function to add text labels. text_prefix: for labels. For example. 'A' will produce 'A1', 'A2', ... text_offsets: relative to component size info anchor. Defaults to center. text_anchors: relative to component (ce cw nc ne nw sc se sw center cc). name_prefix: for each packed component (avoids the Unnamed cells warning). Note that the suffix contains a uuid so the name will not be deterministic rotation: for each component in degrees h_mirror: horizontal mirror in y axis (x, 1) (1, 0). This is the most common. v_mirror: vertical mirror using x axis (1, y) (0, y) Packs a component DOE (Design of Experiment) using grid. Args: component: function to return Components. settings: component settings. do_permutations: for each setting. function: for the component (add padding, grating couplers ...) with_text: includes text label. keyword Args: spacing: between adjacent elements on the grid, can be a tuple for different distances in height and width. separation: If True, guarantees elements are speparated with fixed spacing if False, elements are spaced evenly along a grid. shape: x, y shape of the grid (see np.reshape). If no shape and the list is 1D, if np.reshape were run with (1, -1). align_x: {'x', 'xmin', 'xmax'} for x (column) alignment along align_y: {'y', 'ymin', 'ymax'} for y (row) alignment along edge_x: {'x', 'xmin', 'xmax'} for x (column) (ignored if separation = True) edge_y: {'y', 'ymin', 'ymax'} for y (row) (ignored if separation = True) rotation: for each component in degrees. h_mirror: horizontal mirror y axis (x, 1) (1, 0). most common mirror. v_mirror: vertical mirror using x axis (1, y) (0, y). # doe=gf.c.mmi1x2, # doe=dict(component='mmi1x2', settings=dict(length_taper=50)), # settings=dict(length_mmi=[2, 100], width_mmi=[4, 10]), # c = pack_doe(doe="mmi1x2", settings=dict(length_mmi=[2, 100], width_mmi=[4, 10]))
2.23235
2
scripts/usefullFunctions.py
pete-usds/opal
16
6633001
<reponame>pete-usds/opal<gh_stars>10-100 from opal.settings import BASE_DIR import logging from rest_framework.renderers import JSONRenderer import json import os def startLogging(): logging.basicConfig( # filename=logFile, filemode='w', format='%(name)s - %(levelname)s - %(message)s', level=logging.DEBUG ) def addControlsToGroup(group_name,controls): """ :param group_name: The name of a new group of controls. Cold be a new baseline or a common set of controls such as those addressed by a particular component :param controls: a list object contining one or more system_control objects """ from ssp.models import element_property, system_control p = element_property.objects.get_or_create(ns='control_group', name=group_name, value='true') for item in controls: item.properties.add(p[0]) item.save() # These are some useful functions for cleaning up data after an import def changeRoll(old_role,new_role): from ssp.models import system_control, user_role controls = system_control.objects.filter(responsibleRoles=user_role.objects.filter(title=old_role)[0].pk) for item in controls: item.responsibleRoles.add(user_role.objects.filter(title=new_role)[0].pk) item.responsibleRoles.remove(user_role.objects.filter(title=old_role)[0].pk) user_role.objects.filter(title=old_role)[0].delete() def delUnusedRoles(): from ssp.models import user_role r = user_role.objects.all() for item in r: if item.system_control_set.count() == 0: print('deleting ' + item.title) item.delete() def listRolesWithControlCount(): from ssp.models import user_role r = user_role.objects.all() role_dictionary = {} for role in r: role_dictionary[role.title] = role.control_statement_set.count() sort_roles = sorted(role_dictionary.items(), key=lambda x: x[1], reverse=True) for i in sort_roles: print(i[0], i[1]) def linkSystemControltoNISTControl(catalog): from ssp.models.controls import system_control, nist_control logging.debug("Stsrting...") for item, key in system_control.objects.all().values_list('nist_control', 'pk'): control = system_control.objects.get(pk=key) logging.debug('Opened control ' + control.title) nist_control_id = control.short_name logging.debug('Looking up ' + nist_control_id) try: control.nist_control = nist_control.objects.get(sort_id=nist_control_id,catalog=catalog) control.save() logging.debug('Found nist control, link established') except nist_control.DoesNotExist: logging.debug(nist_control_id + ' not found') def createFixtures(): import os from django.apps import apps fixture_dir = os.path.join(BASE_DIR, 'ssp/fixtures/') app_models = apps.get_app_config('ssp').get_models() for model in app_models: if len(model.objects.all()) > 0: cmd = 'python manage.py dumpdata ssp.' + model.__name__ + ' --natural-foreign --natural-primary -o ' + fixture_dir + model.__name__ + '.json' os.system(cmd) def serializerJSON(data, SSP=False): json_data = JSONRenderer().render(data) json_object = json.loads(json_data) json_str = json.dumps(json_object, indent=2) return aliasOSCAL(json_str, SSP) def aliasOSCAL(json_str, SSP=False): json_str = json_str.replace('"short_name":', '"short-name":') json_str = json_str.replace('"telephone_numbers:"', '"telephone-numbers":') json_str = json_str.replace('"email_addresses":', '"email-addresses":') json_str = json_str.replace('"lastModified":', '"last-modified":') json_str = json_str.replace('"oscalVersion":', '"oscal-version":') json_str = json_str.replace('"desc":', '"description":') json_str = json_str.replace('Impact":', '-impact":') json_str = json_str.replace('"system-status":', '"status":') json_str = json_str.replace('"authorization_boundary_diagram":', '"authorization-boundary":') json_str = json_str.replace('"network_architecture_diagram":', '"network-architecture":') json_str = json_str.replace('"data_flow_diagram":', '"data-flow":') json_str = json_str.replace('"leveraged_authorization":', '"leveraged-authorizations":') json_str = json_str.replace('"system_users":', '"users":') json_str = json_str.replace('"system_components":', '"components":') json_str = json_str.replace('"system_inventory_items":', '"inventory-items":') json_str = json_str.replace('"system_characteristics":', '"system-characteristics":') json_str = json_str.replace('"date_authorized":', '"date-authorized":') json_str = json_str.replace('"security_sensitivity_level":', '"security-sensitivity-level":') json_str = json_str.replace('"system_information":', '"system-information":') json_str = json_str.replace('"information_types":', '"information-types":') json_str = json_str.replace('"security_impact_level":', '"security-impact-level":') json_str = json_str.replace('"security_objective_confidentiality":', '"security-objective-confidentiality":') json_str = json_str.replace('"security_objective_integrity":', '"security-objective-integrity":') json_str = json_str.replace('"security_objective_availability":', '"security-objective-availability":') json_str = json_str.replace('"system_status":', '"system-status":') json_str = json_str.replace('"system_implementation":', '"system-implementation":') json_str = json_str.replace('"component_type":', '"component-type":') json_str = json_str.replace('"component_title":', '"component-title":') json_str = json_str.replace('"component_description":', '"component-description":') json_str = json_str.replace('"component_information_types":', '"component-information-types":') json_str = json_str.replace('"component_status":', '"component-status":') json_str = json_str.replace('"component_responsible_roles":', '"component-responsible-roles":') json_str = json_str.replace('"control_implementation":', '"control-implementation":') json_str = json_str.replace('"control_parameters":', '"parameter-settings":') json_str = json_str.replace('"control_statements":', '"statements":') json_str = json_str.replace('"system_name":', '"system-name":') if SSP: json_str = json_str.replace('"controls": [', '"implemented-requirements": [') json_str = json_str.replace('"properties":', '"props":') return json_str def validate_file_extension(filename, extension): ext = os.path.splitext(filename)[1] # [0] returns path+filename #valid_extensions = ['.pdf', '.doc', '.docx', '.jpg', '.png', '.xlsx', '.xls'] if ext.lower() != extension: return False else: return True
from opal.settings import BASE_DIR import logging from rest_framework.renderers import JSONRenderer import json import os def startLogging(): logging.basicConfig( # filename=logFile, filemode='w', format='%(name)s - %(levelname)s - %(message)s', level=logging.DEBUG ) def addControlsToGroup(group_name,controls): """ :param group_name: The name of a new group of controls. Cold be a new baseline or a common set of controls such as those addressed by a particular component :param controls: a list object contining one or more system_control objects """ from ssp.models import element_property, system_control p = element_property.objects.get_or_create(ns='control_group', name=group_name, value='true') for item in controls: item.properties.add(p[0]) item.save() # These are some useful functions for cleaning up data after an import def changeRoll(old_role,new_role): from ssp.models import system_control, user_role controls = system_control.objects.filter(responsibleRoles=user_role.objects.filter(title=old_role)[0].pk) for item in controls: item.responsibleRoles.add(user_role.objects.filter(title=new_role)[0].pk) item.responsibleRoles.remove(user_role.objects.filter(title=old_role)[0].pk) user_role.objects.filter(title=old_role)[0].delete() def delUnusedRoles(): from ssp.models import user_role r = user_role.objects.all() for item in r: if item.system_control_set.count() == 0: print('deleting ' + item.title) item.delete() def listRolesWithControlCount(): from ssp.models import user_role r = user_role.objects.all() role_dictionary = {} for role in r: role_dictionary[role.title] = role.control_statement_set.count() sort_roles = sorted(role_dictionary.items(), key=lambda x: x[1], reverse=True) for i in sort_roles: print(i[0], i[1]) def linkSystemControltoNISTControl(catalog): from ssp.models.controls import system_control, nist_control logging.debug("Stsrting...") for item, key in system_control.objects.all().values_list('nist_control', 'pk'): control = system_control.objects.get(pk=key) logging.debug('Opened control ' + control.title) nist_control_id = control.short_name logging.debug('Looking up ' + nist_control_id) try: control.nist_control = nist_control.objects.get(sort_id=nist_control_id,catalog=catalog) control.save() logging.debug('Found nist control, link established') except nist_control.DoesNotExist: logging.debug(nist_control_id + ' not found') def createFixtures(): import os from django.apps import apps fixture_dir = os.path.join(BASE_DIR, 'ssp/fixtures/') app_models = apps.get_app_config('ssp').get_models() for model in app_models: if len(model.objects.all()) > 0: cmd = 'python manage.py dumpdata ssp.' + model.__name__ + ' --natural-foreign --natural-primary -o ' + fixture_dir + model.__name__ + '.json' os.system(cmd) def serializerJSON(data, SSP=False): json_data = JSONRenderer().render(data) json_object = json.loads(json_data) json_str = json.dumps(json_object, indent=2) return aliasOSCAL(json_str, SSP) def aliasOSCAL(json_str, SSP=False): json_str = json_str.replace('"short_name":', '"short-name":') json_str = json_str.replace('"telephone_numbers:"', '"telephone-numbers":') json_str = json_str.replace('"email_addresses":', '"email-addresses":') json_str = json_str.replace('"lastModified":', '"last-modified":') json_str = json_str.replace('"oscalVersion":', '"oscal-version":') json_str = json_str.replace('"desc":', '"description":') json_str = json_str.replace('Impact":', '-impact":') json_str = json_str.replace('"system-status":', '"status":') json_str = json_str.replace('"authorization_boundary_diagram":', '"authorization-boundary":') json_str = json_str.replace('"network_architecture_diagram":', '"network-architecture":') json_str = json_str.replace('"data_flow_diagram":', '"data-flow":') json_str = json_str.replace('"leveraged_authorization":', '"leveraged-authorizations":') json_str = json_str.replace('"system_users":', '"users":') json_str = json_str.replace('"system_components":', '"components":') json_str = json_str.replace('"system_inventory_items":', '"inventory-items":') json_str = json_str.replace('"system_characteristics":', '"system-characteristics":') json_str = json_str.replace('"date_authorized":', '"date-authorized":') json_str = json_str.replace('"security_sensitivity_level":', '"security-sensitivity-level":') json_str = json_str.replace('"system_information":', '"system-information":') json_str = json_str.replace('"information_types":', '"information-types":') json_str = json_str.replace('"security_impact_level":', '"security-impact-level":') json_str = json_str.replace('"security_objective_confidentiality":', '"security-objective-confidentiality":') json_str = json_str.replace('"security_objective_integrity":', '"security-objective-integrity":') json_str = json_str.replace('"security_objective_availability":', '"security-objective-availability":') json_str = json_str.replace('"system_status":', '"system-status":') json_str = json_str.replace('"system_implementation":', '"system-implementation":') json_str = json_str.replace('"component_type":', '"component-type":') json_str = json_str.replace('"component_title":', '"component-title":') json_str = json_str.replace('"component_description":', '"component-description":') json_str = json_str.replace('"component_information_types":', '"component-information-types":') json_str = json_str.replace('"component_status":', '"component-status":') json_str = json_str.replace('"component_responsible_roles":', '"component-responsible-roles":') json_str = json_str.replace('"control_implementation":', '"control-implementation":') json_str = json_str.replace('"control_parameters":', '"parameter-settings":') json_str = json_str.replace('"control_statements":', '"statements":') json_str = json_str.replace('"system_name":', '"system-name":') if SSP: json_str = json_str.replace('"controls": [', '"implemented-requirements": [') json_str = json_str.replace('"properties":', '"props":') return json_str def validate_file_extension(filename, extension): ext = os.path.splitext(filename)[1] # [0] returns path+filename #valid_extensions = ['.pdf', '.doc', '.docx', '.jpg', '.png', '.xlsx', '.xls'] if ext.lower() != extension: return False else: return True
en
0.73372
# filename=logFile, :param group_name: The name of a new group of controls. Cold be a new baseline or a common set of controls such as those addressed by a particular component :param controls: a list object contining one or more system_control objects # These are some useful functions for cleaning up data after an import # [0] returns path+filename #valid_extensions = ['.pdf', '.doc', '.docx', '.jpg', '.png', '.xlsx', '.xls']
2.336493
2
config.example.py
Cyanoxygen/arcaea-mp
3
6633002
<filename>config.example.py threshold = 200 # in second
<filename>config.example.py threshold = 200 # in second
en
0.976727
# in second
1.160527
1
amass/commands/remove/source/__init__.py
sayan-rc/amass
0
6633003
import amass class Command(amass.commands.Command): is_command = False def __init__(self): amass.commands.Command.__init__(self) self.file = __file__
import amass class Command(amass.commands.Command): is_command = False def __init__(self): amass.commands.Command.__init__(self) self.file = __file__
none
1
2.213302
2
fintech/fda/views.py
fpark7/cs3240-s17-team31
0
6633004
<gh_stars>0 from django.shortcuts import render from django.shortcuts import render from django.shortcuts import render from django.contrib.auth.models import User from django.contrib.auth import login, authenticate, logout from django.db import models from django.contrib.auth.models import Group, Permission from django.contrib.auth.decorators import login_required from django.contrib.auth.decorators import user_passes_test from django.views.decorators.csrf import csrf_exempt from .models import * from django.http import HttpResponseRedirect, HttpResponse, JsonResponse from django.db import IntegrityError from newsletter.models import * import os import json @csrf_exempt def fdaLogin(request): username = request.POST.get('username') password = request.POST.get('password') user = authenticate(request=request, username=username, password=password) if user is not None: login(request, user) # actually does nothing return JsonResponse({'verification': True}) else: return JsonResponse({'verification': False}) @csrf_exempt def getReportsList(request): username = request.POST.get('username') user = User.objects.get(username=username) reports = Report.objects.all() viewable_reports = [] group_names = [] for g in user.groups.all(): group_names.append(g.name) if user.is_superuser: for report in reports: viewable_reports.append(report) else: for report in reports: if report.is_private == 'N' or report.group in group_names or report.owner == user.username: viewable_reports.append(report) data = {} reports_list = [] for report in viewable_reports: # ADD INDUSTRY ONCE WE UPDATE THE MODEL AND FORMS # I am also passing report.id to be smart # content will be downloaded upon request in the client fda later content_list = [] for file_obj in report.content.all(): content_list.append({'file_name': file_obj.file.name, 'file_status': file_obj.encrypted}) r_dict = {'owner': report.owner, 'group': report.group, 'timestamp': report.timestamp, 'is_private': report.is_private, 'company_name': report.company_name, 'company_phone': report.company_Phone, 'company_location': report.company_location, 'company_country': report.company_country, 'sector': report.sector, 'projects': report.projects, 'ceo_name': report.ceo_name, 'id': report.id, 'industry': report.industry, 'company_email': report.company_email, 'content': content_list} reports_list.append(r_dict) data['reports_list'] = reports_list return JsonResponse({'reports_list': reports_list}) @csrf_exempt def getFile(request): pass
from django.shortcuts import render from django.shortcuts import render from django.shortcuts import render from django.contrib.auth.models import User from django.contrib.auth import login, authenticate, logout from django.db import models from django.contrib.auth.models import Group, Permission from django.contrib.auth.decorators import login_required from django.contrib.auth.decorators import user_passes_test from django.views.decorators.csrf import csrf_exempt from .models import * from django.http import HttpResponseRedirect, HttpResponse, JsonResponse from django.db import IntegrityError from newsletter.models import * import os import json @csrf_exempt def fdaLogin(request): username = request.POST.get('username') password = request.POST.get('password') user = authenticate(request=request, username=username, password=password) if user is not None: login(request, user) # actually does nothing return JsonResponse({'verification': True}) else: return JsonResponse({'verification': False}) @csrf_exempt def getReportsList(request): username = request.POST.get('username') user = User.objects.get(username=username) reports = Report.objects.all() viewable_reports = [] group_names = [] for g in user.groups.all(): group_names.append(g.name) if user.is_superuser: for report in reports: viewable_reports.append(report) else: for report in reports: if report.is_private == 'N' or report.group in group_names or report.owner == user.username: viewable_reports.append(report) data = {} reports_list = [] for report in viewable_reports: # ADD INDUSTRY ONCE WE UPDATE THE MODEL AND FORMS # I am also passing report.id to be smart # content will be downloaded upon request in the client fda later content_list = [] for file_obj in report.content.all(): content_list.append({'file_name': file_obj.file.name, 'file_status': file_obj.encrypted}) r_dict = {'owner': report.owner, 'group': report.group, 'timestamp': report.timestamp, 'is_private': report.is_private, 'company_name': report.company_name, 'company_phone': report.company_Phone, 'company_location': report.company_location, 'company_country': report.company_country, 'sector': report.sector, 'projects': report.projects, 'ceo_name': report.ceo_name, 'id': report.id, 'industry': report.industry, 'company_email': report.company_email, 'content': content_list} reports_list.append(r_dict) data['reports_list'] = reports_list return JsonResponse({'reports_list': reports_list}) @csrf_exempt def getFile(request): pass
en
0.877782
# actually does nothing # ADD INDUSTRY ONCE WE UPDATE THE MODEL AND FORMS # I am also passing report.id to be smart # content will be downloaded upon request in the client fda later
2.104918
2
NoiseAdder.py
neu-spiral/GraphMatching
0
6633005
<filename>NoiseAdder.py<gh_stars>0 import numpy as np import pickle import random import argparse if __name__=="__main__": parser = argparse.ArgumentParser(description = 'Graph Preprocessor .',formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('graph',help = 'File containing the graph') parser.add_argument('out',help = 'File to store the permutated graph') parser.add_argument('size',type=int,help='Graph size') parser.add_argument('--scale',type=float, default=0.001,help='The standard deviation of noise..') snap_group = parser.add_mutually_exclusive_group(required=False) snap_group.add_argument('--fromsnap', dest='fromsnap', action='store_true',help="Inputfiles are from SNAP") snap_group.add_argument('--notfromsnap', dest='fromsnap', action='store_false',help="Inputfiles are pre-formatted") parser.set_defaults(fromsnap=True) parser.add_argument('--noise', choices=['normal', 'laplace', 'both'], help="Noise type") parser.add_argument('--mix_noise_weight', type=float, default=0.5, help="The coeff. of normal distributed weights, only relevant if noise is set to 'both'.") args = parser.parse_args() weights = {} #generate weights for i in range(args.size): for j in range(args.size): if (j,i) in weights or (i,j) in weights: continue if args.noise == 'normal': weights[(i,j)] = np.random.normal(loc=0.0,scale=args.scale) elif args.noise == 'laplace': weights[(i,j)] = np.random.laplace(loc=0.0,scale=args.scale) elif args.noise == 'both': weights[(i,j)] = args.mix_noise_weight * np.random.normal(loc=0.0,scale=args.scale) + (1-args.mix_noise_weight) * np.random.laplace(loc=0.0,scale=args.scale) weights[(j,i)] = weights[(i,j)] print (weights[(22, 55)], weights[(55, 22)]) out_file_name = args.out + '_weights_' + args.noise + str(args.scale) if args.noise == 'both': out_file_name += '_mixcoeff' + str(args.mix_noise_weight) with open(out_file_name, 'wb') as fW: pickle.dump(weights, fW)
<filename>NoiseAdder.py<gh_stars>0 import numpy as np import pickle import random import argparse if __name__=="__main__": parser = argparse.ArgumentParser(description = 'Graph Preprocessor .',formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('graph',help = 'File containing the graph') parser.add_argument('out',help = 'File to store the permutated graph') parser.add_argument('size',type=int,help='Graph size') parser.add_argument('--scale',type=float, default=0.001,help='The standard deviation of noise..') snap_group = parser.add_mutually_exclusive_group(required=False) snap_group.add_argument('--fromsnap', dest='fromsnap', action='store_true',help="Inputfiles are from SNAP") snap_group.add_argument('--notfromsnap', dest='fromsnap', action='store_false',help="Inputfiles are pre-formatted") parser.set_defaults(fromsnap=True) parser.add_argument('--noise', choices=['normal', 'laplace', 'both'], help="Noise type") parser.add_argument('--mix_noise_weight', type=float, default=0.5, help="The coeff. of normal distributed weights, only relevant if noise is set to 'both'.") args = parser.parse_args() weights = {} #generate weights for i in range(args.size): for j in range(args.size): if (j,i) in weights or (i,j) in weights: continue if args.noise == 'normal': weights[(i,j)] = np.random.normal(loc=0.0,scale=args.scale) elif args.noise == 'laplace': weights[(i,j)] = np.random.laplace(loc=0.0,scale=args.scale) elif args.noise == 'both': weights[(i,j)] = args.mix_noise_weight * np.random.normal(loc=0.0,scale=args.scale) + (1-args.mix_noise_weight) * np.random.laplace(loc=0.0,scale=args.scale) weights[(j,i)] = weights[(i,j)] print (weights[(22, 55)], weights[(55, 22)]) out_file_name = args.out + '_weights_' + args.noise + str(args.scale) if args.noise == 'both': out_file_name += '_mixcoeff' + str(args.mix_noise_weight) with open(out_file_name, 'wb') as fW: pickle.dump(weights, fW)
en
0.798045
#generate weights
2.726728
3
pypy/module/imp/importing.py
olliemath/pypy
0
6633006
""" Implementation of the interpreter-level default import logic. """ import sys, os, stat, re, platform from pypy.interpreter.module import Module, init_extra_module_attrs from pypy.interpreter.gateway import interp2app, unwrap_spec from pypy.interpreter.typedef import TypeDef, generic_new_descr from pypy.interpreter.error import OperationError, oefmt, wrap_oserror from pypy.interpreter.baseobjspace import W_Root, CannotHaveLock from pypy.interpreter.eval import Code from pypy.interpreter.pycode import PyCode from rpython.rlib import streamio, jit from rpython.rlib.streamio import StreamErrors from rpython.rlib.objectmodel import we_are_translated, specialize from rpython.rlib.signature import signature from rpython.rlib import rposix_stat, types from pypy.module.sys.version import PYPY_VERSION, CPYTHON_VERSION from pypy.module.__pypy__.interp_os import _multiarch _WIN32 = sys.platform == 'win32' SO = '.pyd' if _WIN32 else '.so' PYC_TAG = 'pypy%d%d' % CPYTHON_VERSION[:2] DEFAULT_SOABI_BASE = '%s-pp%d%d' % ((PYC_TAG,) + PYPY_VERSION[:2]) # see also pypy_incremental_magic in interpreter/pycode.py for the magic # version number stored inside pyc files. @specialize.memo() def get_so_extension(space): if space.config.objspace.soabi is not None: soabi = space.config.objspace.soabi else: soabi = DEFAULT_SOABI_BASE if not soabi: return SO if not space.config.translating: soabi += 'i' platform_name = sys.platform if platform_name.startswith('linux'): platform_name = _multiarch elif platform_name == 'win32' and sys.maxsize > 2**32: platform_name = 'win_amd64' else: # darwin? pass soabi += '-' + platform_name result = '.' + soabi + SO assert result == result.lower() # this is an implicit requirement of importlib on Windows! return result def has_so_extension(space): return (space.config.objspace.usemodules.cpyext or space.config.objspace.usemodules._cffi_backend) def check_sys_modules(space, w_modulename): return space.finditem(space.sys.get('modules'), w_modulename) def check_sys_modules_w(space, modulename): return space.finditem_str(space.sys.get('modules'), modulename) lib_pypy = os.path.join(os.path.dirname(__file__), '..', '..', '..', 'lib_pypy') def _readall(space, filename): try: fd = os.open(filename, os.O_RDONLY, 0400) try: result = [] while True: data = os.read(fd, 8192) if not data: break result.append(data) finally: os.close(fd) except OSError as e: raise wrap_oserror(space, e, filename) return ''.join(result) @unwrap_spec(modulename='fsencode', level=int) def importhook(space, modulename, w_globals=None, w_locals=None, w_fromlist=None, level=0): # A minimal version, that can only import builtin and lib_pypy modules! # The actual __import__ is # pypy.module._frozenimportlib.interp_import.import_with_frames_removed assert w_locals is w_globals assert level == 0 w_mod = check_sys_modules_w(space, modulename) if w_mod: return w_mod lock = getimportlock(space) try: lock.acquire_lock() if modulename in space.builtin_modules: return space.getbuiltinmodule(modulename) ec = space.getexecutioncontext() source = _readall(space, os.path.join(lib_pypy, modulename + '.py')) pathname = "<frozen %s>" % modulename code_w = ec.compiler.compile(source, pathname, 'exec', 0) w_mod = add_module(space, space.newtext(modulename)) assert isinstance(w_mod, Module) # XXX why is that necessary? space.setitem(space.sys.get('modules'), w_mod.w_name, w_mod) space.setitem(w_mod.w_dict, space.newtext('__name__'), w_mod.w_name) code_w.exec_code(space, w_mod.w_dict, w_mod.w_dict) assert check_sys_modules_w(space, modulename) finally: lock.release_lock(silent_after_fork=True) return w_mod class _WIN32Path(object): def __init__(self, path): self.path = path def as_unicode(self): return self.path def _prepare_module(space, w_mod, filename, pkgdir): space.sys.setmodule(w_mod) space.setattr(w_mod, space.newtext('__file__'), space.newfilename(filename)) space.setattr(w_mod, space.newtext('__doc__'), space.w_None) if pkgdir is not None: space.setattr(w_mod, space.newtext('__path__'), space.newlist([space.newtext(pkgdir)])) init_extra_module_attrs(space, w_mod) def add_module(space, w_name): w_mod = check_sys_modules(space, w_name) if w_mod is None: w_mod = Module(space, w_name) init_extra_module_attrs(space, w_mod) space.sys.setmodule(w_mod) return w_mod # __________________________________________________________________ # # import lock, to prevent two threads from running module-level code in # parallel. This behavior is more or less part of the language specs, # as an attempt to avoid failure of 'from x import y' if module x is # still being executed in another thread. # This logic is tested in pypy.module.thread.test.test_import_lock. class ImportRLock: def __init__(self, space): self.space = space self.lock = None self.lockowner = None self.lockcounter = 0 def lock_held_by_someone_else(self): me = self.space.getexecutioncontext() # used as thread ident return self.lockowner is not None and self.lockowner is not me def lock_held_by_anyone(self): return self.lockowner is not None def acquire_lock(self): # this function runs with the GIL acquired so there is no race # condition in the creation of the lock if self.lock is None: try: self.lock = self.space.allocate_lock() except CannotHaveLock: return me = self.space.getexecutioncontext() # used as thread ident if self.lockowner is me: pass # already acquired by the current thread else: self.lock.acquire(True) assert self.lockowner is None assert self.lockcounter == 0 self.lockowner = me self.lockcounter += 1 def release_lock(self, silent_after_fork): me = self.space.getexecutioncontext() # used as thread ident if self.lockowner is not me: if self.lockowner is None and silent_after_fork: # Too bad. This situation can occur if a fork() occurred # with the import lock held, and we're the child. return if self.lock is None: # CannotHaveLock occurred return space = self.space raise oefmt(space.w_RuntimeError, "not holding the import lock") assert self.lockcounter > 0 self.lockcounter -= 1 if self.lockcounter == 0: self.lockowner = None self.lock.release() def reinit_lock(self): # Called after fork() to ensure that newly created child # processes do not share locks with the parent # (Note that this runs after interp_imp.acquire_lock() # done in the "before" fork hook, so that's why we decrease # the lockcounter here) if self.lockcounter > 1: # Forked as a side effect of import self.lock = self.space.allocate_lock() me = self.space.getexecutioncontext() self.lock.acquire(True) # XXX: can the previous line fail? self.lockowner = me self.lockcounter -= 1 else: self.lock = None self.lockowner = None self.lockcounter = 0 def getimportlock(space): return space.fromcache(ImportRLock) # __________________________________________________________________ # # .pyc file support """ Magic word to reject .pyc files generated by other Python versions. It should change for each incompatible change to the bytecode. The value of CR and LF is incorporated so if you ever read or write a .pyc file in text mode the magic number will be wrong; also, the Apple MPW compiler swaps their values, botching string constants. CPython 2 uses values between 20121 - 62xxx CPython 3 uses values greater than 3000 PyPy uses values under 3000 """ # Depending on which opcodes are enabled, eg. CALL_METHOD we bump the version # number by some constant # # CPython + 0 -- used by CPython without the -U option # CPython + 1 -- used by CPython with the -U option # CPython + 7 = default_magic -- used by PyPy (incompatible!) # from pypy.interpreter.pycode import default_magic MARSHAL_VERSION_FOR_PYC = 4 def get_pyc_magic(space): return default_magic def parse_source_module(space, pathname, source): """ Parse a source file and return the corresponding code object """ ec = space.getexecutioncontext() pycode = ec.compiler.compile(source, pathname, 'exec', 0) return pycode def exec_code_module(space, w_mod, code_w, pathname, cpathname, write_paths=True): w_dict = space.getattr(w_mod, space.newtext('__dict__')) space.call_method(w_dict, 'setdefault', space.newtext('__builtins__'), space.builtin) if write_paths: if pathname is not None: w_pathname = get_sourcefile(space, pathname) else: w_pathname = code_w.w_filename if cpathname is not None: w_cpathname = space.newfilename(cpathname) else: w_cpathname = space.w_None space.setitem(w_dict, space.newtext("__file__"), w_pathname) space.setitem(w_dict, space.newtext("__cached__"), w_cpathname) # # like PyImport_ExecCodeModuleObject(), we invoke # _bootstrap_external._fix_up_module() here, which should try to # fix a few more attributes (also __file__ and __cached__, but # let's keep the logic that also sets them explicitly above, just # in case) space.appexec([w_dict, w_pathname, w_cpathname], """(d, pathname, cpathname): from importlib._bootstrap_external import _fix_up_module name = d.get('__name__') if name is not None: _fix_up_module(d, name, pathname, cpathname) """) # code_w.exec_code(space, w_dict, w_dict) def rightmost_sep(filename): "Like filename.rfind('/'), but also search for \\." index = filename.rfind(os.sep) if os.altsep is not None: index2 = filename.rfind(os.altsep) index = max(index, index2) return index @signature(types.str0(), returns=types.str0()) def make_compiled_pathname(pathname): "Given the path to a .py file, return the path to its .pyc file." # foo.py -> __pycache__/foo.<tag>.pyc lastpos = rightmost_sep(pathname) + 1 assert lastpos >= 0 # zero when slash, takes the full name fname = pathname[lastpos:] if lastpos > 0: # Windows: re-use the last separator character (/ or \\) when # appending the __pycache__ path. lastsep = pathname[lastpos-1] else: lastsep = os.sep ext = fname for i in range(len(fname)): if fname[i] == '.': ext = fname[:i + 1] result = (pathname[:lastpos] + "__pycache__" + lastsep + ext + PYC_TAG + '.pyc') return result @signature(types.str0(), returns=types.any()) def make_source_pathname(pathname): "Given the path to a .pyc file, return the path to its .py file." # (...)/__pycache__/foo.<tag>.pyc -> (...)/foo.py right = rightmost_sep(pathname) if right < 0: return None left = rightmost_sep(pathname[:right]) + 1 assert left >= 0 if pathname[left:right] != '__pycache__': return None # Now verify that the path component to the right of the last # slash has two dots in it. rightpart = pathname[right + 1:] dot0 = rightpart.find('.') + 1 if dot0 <= 0: return None dot1 = rightpart[dot0:].find('.') + 1 if dot1 <= 0: return None # Too many dots? if rightpart[dot0 + dot1:].find('.') >= 0: return None result = pathname[:left] + rightpart[:dot0] + 'py' return result def get_sourcefile(space, filename): start = len(filename) - 4 stop = len(filename) - 1 if not 0 <= start <= stop or filename[start:stop].lower() != ".py": return space.newfilename(filename) py = make_source_pathname(filename) if py is None: py = filename[:-1] try: st = os.stat(py) except OSError: pass else: if stat.S_ISREG(st.st_mode): return space.newfilename(py) return space.newfilename(filename) def update_code_filenames(space, code_w, pathname, oldname=None): assert isinstance(code_w, PyCode) if oldname is None: oldname = code_w.co_filename elif code_w.co_filename != oldname: return code_w.co_filename = pathname code_w.w_filename = space.newfilename(pathname) constants = code_w.co_consts_w for const in constants: if const is not None and isinstance(const, PyCode): update_code_filenames(space, const, pathname, oldname) def _get_long(s): a = ord(s[0]) b = ord(s[1]) c = ord(s[2]) d = ord(s[3]) if d >= 0x80: d -= 0x100 return a | (b<<8) | (c<<16) | (d<<24) def read_compiled_module(space, cpathname, strbuf): """ Read a code object from a file and check it for validity """ w_marshal = space.getbuiltinmodule('marshal') w_code = space.call_method(w_marshal, 'loads', space.newbytes(strbuf)) if not isinstance(w_code, Code): raise oefmt(space.w_ImportError, "Non-code object in %s", cpathname) return w_code @jit.dont_look_inside def load_compiled_module(space, w_modulename, w_mod, cpathname, magic, source, write_paths=True): """ Load a module from a compiled file, execute it, and return its module object. """ if magic != get_pyc_magic(space): raise oefmt(space.w_ImportError, "Bad magic number in %s", cpathname) #print "loading pyc file:", cpathname code_w = read_compiled_module(space, cpathname, source) optimize = space.sys.get_optimize() if optimize >= 2: code_w.remove_docstrings(space) exec_code_module(space, w_mod, code_w, cpathname, cpathname, write_paths) return w_mod class FastPathGiveUp(Exception): pass def _gcd_import(space, name): # check sys.modules, if the module is already there and initialized, we can # use it, otherwise fall back to importlib.__import__ # NB: we don't get the importing lock here, but CPython has the same fast # path w_modules = space.sys.get('modules') w_module = space.finditem_str(w_modules, name) if w_module is None: raise FastPathGiveUp # to check whether a module is initialized, we can ask for # module.__spec__._initializing, which should be False try: w_spec = space.getattr(w_module, space.newtext("__spec__")) except OperationError as e: if not e.match(space, space.w_AttributeError): raise raise FastPathGiveUp try: w_initializing = space.getattr(w_spec, space.newtext("_initializing")) except OperationError as e: if not e.match(space, space.w_AttributeError): raise # we have no mod.__spec__._initializing, so it's probably a builtin # module which we can assume is initialized else: if space.is_true(w_initializing): raise FastPathGiveUp return w_module def import_name_fast_path(space, w_modulename, w_globals, w_locals, w_fromlist, w_level): level = space.int_w(w_level) if level == 0: # fast path only for absolute imports without a "from" list, for now # fromlist can be supported if we are importing from a module, not a # package. to check that, look for the existence of __path__ attribute # in w_mod try: name = space.text_w(w_modulename) w_mod = _gcd_import(space, name) have_fromlist = space.is_true(w_fromlist) if not have_fromlist: dotindex = name.find(".") if dotindex < 0: return w_mod return _gcd_import(space, name[:dotindex]) except FastPathGiveUp: pass else: assert have_fromlist w_path = space.findattr(w_mod, space.newtext("__path__")) if w_path is not None: # hard case, a package! Call back into importlib w_importlib = space.getbuiltinmodule('_frozen_importlib') return space.call_method(w_importlib, "_handle_fromlist", w_mod, w_fromlist, space.w_default_importlib_import) else: return w_mod return space.call_function(space.w_default_importlib_import, w_modulename, w_globals, w_locals, w_fromlist, w_level) def get_spec(space, w_module): try: return space.getattr(w_module, space.newtext('__spec__')) except OperationError as e: if not e.match(space, space.w_AttributeError): raise return space.w_None def is_spec_initializing(space, w_spec): if space.is_none(w_spec): return False try: w_initializing = space.getattr(w_spec, space.newtext("_initializing")) except OperationError as e: if not e.match(space, space.w_AttributeError): raise return False else: return space.is_true(w_initializing) def get_path(space, w_module): default = space.newtext("unknown location") try: w_ret = space.getattr(w_module, space.newtext('__file__')) except OperationError as e: if not e.match(space, space.w_AttributeError): raise return default if w_ret is space.w_None: return default return w_ret
""" Implementation of the interpreter-level default import logic. """ import sys, os, stat, re, platform from pypy.interpreter.module import Module, init_extra_module_attrs from pypy.interpreter.gateway import interp2app, unwrap_spec from pypy.interpreter.typedef import TypeDef, generic_new_descr from pypy.interpreter.error import OperationError, oefmt, wrap_oserror from pypy.interpreter.baseobjspace import W_Root, CannotHaveLock from pypy.interpreter.eval import Code from pypy.interpreter.pycode import PyCode from rpython.rlib import streamio, jit from rpython.rlib.streamio import StreamErrors from rpython.rlib.objectmodel import we_are_translated, specialize from rpython.rlib.signature import signature from rpython.rlib import rposix_stat, types from pypy.module.sys.version import PYPY_VERSION, CPYTHON_VERSION from pypy.module.__pypy__.interp_os import _multiarch _WIN32 = sys.platform == 'win32' SO = '.pyd' if _WIN32 else '.so' PYC_TAG = 'pypy%d%d' % CPYTHON_VERSION[:2] DEFAULT_SOABI_BASE = '%s-pp%d%d' % ((PYC_TAG,) + PYPY_VERSION[:2]) # see also pypy_incremental_magic in interpreter/pycode.py for the magic # version number stored inside pyc files. @specialize.memo() def get_so_extension(space): if space.config.objspace.soabi is not None: soabi = space.config.objspace.soabi else: soabi = DEFAULT_SOABI_BASE if not soabi: return SO if not space.config.translating: soabi += 'i' platform_name = sys.platform if platform_name.startswith('linux'): platform_name = _multiarch elif platform_name == 'win32' and sys.maxsize > 2**32: platform_name = 'win_amd64' else: # darwin? pass soabi += '-' + platform_name result = '.' + soabi + SO assert result == result.lower() # this is an implicit requirement of importlib on Windows! return result def has_so_extension(space): return (space.config.objspace.usemodules.cpyext or space.config.objspace.usemodules._cffi_backend) def check_sys_modules(space, w_modulename): return space.finditem(space.sys.get('modules'), w_modulename) def check_sys_modules_w(space, modulename): return space.finditem_str(space.sys.get('modules'), modulename) lib_pypy = os.path.join(os.path.dirname(__file__), '..', '..', '..', 'lib_pypy') def _readall(space, filename): try: fd = os.open(filename, os.O_RDONLY, 0400) try: result = [] while True: data = os.read(fd, 8192) if not data: break result.append(data) finally: os.close(fd) except OSError as e: raise wrap_oserror(space, e, filename) return ''.join(result) @unwrap_spec(modulename='fsencode', level=int) def importhook(space, modulename, w_globals=None, w_locals=None, w_fromlist=None, level=0): # A minimal version, that can only import builtin and lib_pypy modules! # The actual __import__ is # pypy.module._frozenimportlib.interp_import.import_with_frames_removed assert w_locals is w_globals assert level == 0 w_mod = check_sys_modules_w(space, modulename) if w_mod: return w_mod lock = getimportlock(space) try: lock.acquire_lock() if modulename in space.builtin_modules: return space.getbuiltinmodule(modulename) ec = space.getexecutioncontext() source = _readall(space, os.path.join(lib_pypy, modulename + '.py')) pathname = "<frozen %s>" % modulename code_w = ec.compiler.compile(source, pathname, 'exec', 0) w_mod = add_module(space, space.newtext(modulename)) assert isinstance(w_mod, Module) # XXX why is that necessary? space.setitem(space.sys.get('modules'), w_mod.w_name, w_mod) space.setitem(w_mod.w_dict, space.newtext('__name__'), w_mod.w_name) code_w.exec_code(space, w_mod.w_dict, w_mod.w_dict) assert check_sys_modules_w(space, modulename) finally: lock.release_lock(silent_after_fork=True) return w_mod class _WIN32Path(object): def __init__(self, path): self.path = path def as_unicode(self): return self.path def _prepare_module(space, w_mod, filename, pkgdir): space.sys.setmodule(w_mod) space.setattr(w_mod, space.newtext('__file__'), space.newfilename(filename)) space.setattr(w_mod, space.newtext('__doc__'), space.w_None) if pkgdir is not None: space.setattr(w_mod, space.newtext('__path__'), space.newlist([space.newtext(pkgdir)])) init_extra_module_attrs(space, w_mod) def add_module(space, w_name): w_mod = check_sys_modules(space, w_name) if w_mod is None: w_mod = Module(space, w_name) init_extra_module_attrs(space, w_mod) space.sys.setmodule(w_mod) return w_mod # __________________________________________________________________ # # import lock, to prevent two threads from running module-level code in # parallel. This behavior is more or less part of the language specs, # as an attempt to avoid failure of 'from x import y' if module x is # still being executed in another thread. # This logic is tested in pypy.module.thread.test.test_import_lock. class ImportRLock: def __init__(self, space): self.space = space self.lock = None self.lockowner = None self.lockcounter = 0 def lock_held_by_someone_else(self): me = self.space.getexecutioncontext() # used as thread ident return self.lockowner is not None and self.lockowner is not me def lock_held_by_anyone(self): return self.lockowner is not None def acquire_lock(self): # this function runs with the GIL acquired so there is no race # condition in the creation of the lock if self.lock is None: try: self.lock = self.space.allocate_lock() except CannotHaveLock: return me = self.space.getexecutioncontext() # used as thread ident if self.lockowner is me: pass # already acquired by the current thread else: self.lock.acquire(True) assert self.lockowner is None assert self.lockcounter == 0 self.lockowner = me self.lockcounter += 1 def release_lock(self, silent_after_fork): me = self.space.getexecutioncontext() # used as thread ident if self.lockowner is not me: if self.lockowner is None and silent_after_fork: # Too bad. This situation can occur if a fork() occurred # with the import lock held, and we're the child. return if self.lock is None: # CannotHaveLock occurred return space = self.space raise oefmt(space.w_RuntimeError, "not holding the import lock") assert self.lockcounter > 0 self.lockcounter -= 1 if self.lockcounter == 0: self.lockowner = None self.lock.release() def reinit_lock(self): # Called after fork() to ensure that newly created child # processes do not share locks with the parent # (Note that this runs after interp_imp.acquire_lock() # done in the "before" fork hook, so that's why we decrease # the lockcounter here) if self.lockcounter > 1: # Forked as a side effect of import self.lock = self.space.allocate_lock() me = self.space.getexecutioncontext() self.lock.acquire(True) # XXX: can the previous line fail? self.lockowner = me self.lockcounter -= 1 else: self.lock = None self.lockowner = None self.lockcounter = 0 def getimportlock(space): return space.fromcache(ImportRLock) # __________________________________________________________________ # # .pyc file support """ Magic word to reject .pyc files generated by other Python versions. It should change for each incompatible change to the bytecode. The value of CR and LF is incorporated so if you ever read or write a .pyc file in text mode the magic number will be wrong; also, the Apple MPW compiler swaps their values, botching string constants. CPython 2 uses values between 20121 - 62xxx CPython 3 uses values greater than 3000 PyPy uses values under 3000 """ # Depending on which opcodes are enabled, eg. CALL_METHOD we bump the version # number by some constant # # CPython + 0 -- used by CPython without the -U option # CPython + 1 -- used by CPython with the -U option # CPython + 7 = default_magic -- used by PyPy (incompatible!) # from pypy.interpreter.pycode import default_magic MARSHAL_VERSION_FOR_PYC = 4 def get_pyc_magic(space): return default_magic def parse_source_module(space, pathname, source): """ Parse a source file and return the corresponding code object """ ec = space.getexecutioncontext() pycode = ec.compiler.compile(source, pathname, 'exec', 0) return pycode def exec_code_module(space, w_mod, code_w, pathname, cpathname, write_paths=True): w_dict = space.getattr(w_mod, space.newtext('__dict__')) space.call_method(w_dict, 'setdefault', space.newtext('__builtins__'), space.builtin) if write_paths: if pathname is not None: w_pathname = get_sourcefile(space, pathname) else: w_pathname = code_w.w_filename if cpathname is not None: w_cpathname = space.newfilename(cpathname) else: w_cpathname = space.w_None space.setitem(w_dict, space.newtext("__file__"), w_pathname) space.setitem(w_dict, space.newtext("__cached__"), w_cpathname) # # like PyImport_ExecCodeModuleObject(), we invoke # _bootstrap_external._fix_up_module() here, which should try to # fix a few more attributes (also __file__ and __cached__, but # let's keep the logic that also sets them explicitly above, just # in case) space.appexec([w_dict, w_pathname, w_cpathname], """(d, pathname, cpathname): from importlib._bootstrap_external import _fix_up_module name = d.get('__name__') if name is not None: _fix_up_module(d, name, pathname, cpathname) """) # code_w.exec_code(space, w_dict, w_dict) def rightmost_sep(filename): "Like filename.rfind('/'), but also search for \\." index = filename.rfind(os.sep) if os.altsep is not None: index2 = filename.rfind(os.altsep) index = max(index, index2) return index @signature(types.str0(), returns=types.str0()) def make_compiled_pathname(pathname): "Given the path to a .py file, return the path to its .pyc file." # foo.py -> __pycache__/foo.<tag>.pyc lastpos = rightmost_sep(pathname) + 1 assert lastpos >= 0 # zero when slash, takes the full name fname = pathname[lastpos:] if lastpos > 0: # Windows: re-use the last separator character (/ or \\) when # appending the __pycache__ path. lastsep = pathname[lastpos-1] else: lastsep = os.sep ext = fname for i in range(len(fname)): if fname[i] == '.': ext = fname[:i + 1] result = (pathname[:lastpos] + "__pycache__" + lastsep + ext + PYC_TAG + '.pyc') return result @signature(types.str0(), returns=types.any()) def make_source_pathname(pathname): "Given the path to a .pyc file, return the path to its .py file." # (...)/__pycache__/foo.<tag>.pyc -> (...)/foo.py right = rightmost_sep(pathname) if right < 0: return None left = rightmost_sep(pathname[:right]) + 1 assert left >= 0 if pathname[left:right] != '__pycache__': return None # Now verify that the path component to the right of the last # slash has two dots in it. rightpart = pathname[right + 1:] dot0 = rightpart.find('.') + 1 if dot0 <= 0: return None dot1 = rightpart[dot0:].find('.') + 1 if dot1 <= 0: return None # Too many dots? if rightpart[dot0 + dot1:].find('.') >= 0: return None result = pathname[:left] + rightpart[:dot0] + 'py' return result def get_sourcefile(space, filename): start = len(filename) - 4 stop = len(filename) - 1 if not 0 <= start <= stop or filename[start:stop].lower() != ".py": return space.newfilename(filename) py = make_source_pathname(filename) if py is None: py = filename[:-1] try: st = os.stat(py) except OSError: pass else: if stat.S_ISREG(st.st_mode): return space.newfilename(py) return space.newfilename(filename) def update_code_filenames(space, code_w, pathname, oldname=None): assert isinstance(code_w, PyCode) if oldname is None: oldname = code_w.co_filename elif code_w.co_filename != oldname: return code_w.co_filename = pathname code_w.w_filename = space.newfilename(pathname) constants = code_w.co_consts_w for const in constants: if const is not None and isinstance(const, PyCode): update_code_filenames(space, const, pathname, oldname) def _get_long(s): a = ord(s[0]) b = ord(s[1]) c = ord(s[2]) d = ord(s[3]) if d >= 0x80: d -= 0x100 return a | (b<<8) | (c<<16) | (d<<24) def read_compiled_module(space, cpathname, strbuf): """ Read a code object from a file and check it for validity """ w_marshal = space.getbuiltinmodule('marshal') w_code = space.call_method(w_marshal, 'loads', space.newbytes(strbuf)) if not isinstance(w_code, Code): raise oefmt(space.w_ImportError, "Non-code object in %s", cpathname) return w_code @jit.dont_look_inside def load_compiled_module(space, w_modulename, w_mod, cpathname, magic, source, write_paths=True): """ Load a module from a compiled file, execute it, and return its module object. """ if magic != get_pyc_magic(space): raise oefmt(space.w_ImportError, "Bad magic number in %s", cpathname) #print "loading pyc file:", cpathname code_w = read_compiled_module(space, cpathname, source) optimize = space.sys.get_optimize() if optimize >= 2: code_w.remove_docstrings(space) exec_code_module(space, w_mod, code_w, cpathname, cpathname, write_paths) return w_mod class FastPathGiveUp(Exception): pass def _gcd_import(space, name): # check sys.modules, if the module is already there and initialized, we can # use it, otherwise fall back to importlib.__import__ # NB: we don't get the importing lock here, but CPython has the same fast # path w_modules = space.sys.get('modules') w_module = space.finditem_str(w_modules, name) if w_module is None: raise FastPathGiveUp # to check whether a module is initialized, we can ask for # module.__spec__._initializing, which should be False try: w_spec = space.getattr(w_module, space.newtext("__spec__")) except OperationError as e: if not e.match(space, space.w_AttributeError): raise raise FastPathGiveUp try: w_initializing = space.getattr(w_spec, space.newtext("_initializing")) except OperationError as e: if not e.match(space, space.w_AttributeError): raise # we have no mod.__spec__._initializing, so it's probably a builtin # module which we can assume is initialized else: if space.is_true(w_initializing): raise FastPathGiveUp return w_module def import_name_fast_path(space, w_modulename, w_globals, w_locals, w_fromlist, w_level): level = space.int_w(w_level) if level == 0: # fast path only for absolute imports without a "from" list, for now # fromlist can be supported if we are importing from a module, not a # package. to check that, look for the existence of __path__ attribute # in w_mod try: name = space.text_w(w_modulename) w_mod = _gcd_import(space, name) have_fromlist = space.is_true(w_fromlist) if not have_fromlist: dotindex = name.find(".") if dotindex < 0: return w_mod return _gcd_import(space, name[:dotindex]) except FastPathGiveUp: pass else: assert have_fromlist w_path = space.findattr(w_mod, space.newtext("__path__")) if w_path is not None: # hard case, a package! Call back into importlib w_importlib = space.getbuiltinmodule('_frozen_importlib') return space.call_method(w_importlib, "_handle_fromlist", w_mod, w_fromlist, space.w_default_importlib_import) else: return w_mod return space.call_function(space.w_default_importlib_import, w_modulename, w_globals, w_locals, w_fromlist, w_level) def get_spec(space, w_module): try: return space.getattr(w_module, space.newtext('__spec__')) except OperationError as e: if not e.match(space, space.w_AttributeError): raise return space.w_None def is_spec_initializing(space, w_spec): if space.is_none(w_spec): return False try: w_initializing = space.getattr(w_spec, space.newtext("_initializing")) except OperationError as e: if not e.match(space, space.w_AttributeError): raise return False else: return space.is_true(w_initializing) def get_path(space, w_module): default = space.newtext("unknown location") try: w_ret = space.getattr(w_module, space.newtext('__file__')) except OperationError as e: if not e.match(space, space.w_AttributeError): raise return default if w_ret is space.w_None: return default return w_ret
en
0.810904
Implementation of the interpreter-level default import logic. # see also pypy_incremental_magic in interpreter/pycode.py for the magic # version number stored inside pyc files. # darwin? # this is an implicit requirement of importlib on Windows! # A minimal version, that can only import builtin and lib_pypy modules! # The actual __import__ is # pypy.module._frozenimportlib.interp_import.import_with_frames_removed # XXX why is that necessary? # __________________________________________________________________ # # import lock, to prevent two threads from running module-level code in # parallel. This behavior is more or less part of the language specs, # as an attempt to avoid failure of 'from x import y' if module x is # still being executed in another thread. # This logic is tested in pypy.module.thread.test.test_import_lock. # used as thread ident # this function runs with the GIL acquired so there is no race # condition in the creation of the lock # used as thread ident # already acquired by the current thread # used as thread ident # Too bad. This situation can occur if a fork() occurred # with the import lock held, and we're the child. # CannotHaveLock occurred # Called after fork() to ensure that newly created child # processes do not share locks with the parent # (Note that this runs after interp_imp.acquire_lock() # done in the "before" fork hook, so that's why we decrease # the lockcounter here) # Forked as a side effect of import # XXX: can the previous line fail? # __________________________________________________________________ # # .pyc file support Magic word to reject .pyc files generated by other Python versions. It should change for each incompatible change to the bytecode. The value of CR and LF is incorporated so if you ever read or write a .pyc file in text mode the magic number will be wrong; also, the Apple MPW compiler swaps their values, botching string constants. CPython 2 uses values between 20121 - 62xxx CPython 3 uses values greater than 3000 PyPy uses values under 3000 # Depending on which opcodes are enabled, eg. CALL_METHOD we bump the version # number by some constant # # CPython + 0 -- used by CPython without the -U option # CPython + 1 -- used by CPython with the -U option # CPython + 7 = default_magic -- used by PyPy (incompatible!) # Parse a source file and return the corresponding code object # # like PyImport_ExecCodeModuleObject(), we invoke # _bootstrap_external._fix_up_module() here, which should try to # fix a few more attributes (also __file__ and __cached__, but # let's keep the logic that also sets them explicitly above, just # in case) (d, pathname, cpathname): from importlib._bootstrap_external import _fix_up_module name = d.get('__name__') if name is not None: _fix_up_module(d, name, pathname, cpathname) # # foo.py -> __pycache__/foo.<tag>.pyc # zero when slash, takes the full name # Windows: re-use the last separator character (/ or \\) when # appending the __pycache__ path. # (...)/__pycache__/foo.<tag>.pyc -> (...)/foo.py # Now verify that the path component to the right of the last # slash has two dots in it. # Too many dots? Read a code object from a file and check it for validity Load a module from a compiled file, execute it, and return its module object. #print "loading pyc file:", cpathname # check sys.modules, if the module is already there and initialized, we can # use it, otherwise fall back to importlib.__import__ # NB: we don't get the importing lock here, but CPython has the same fast # path # to check whether a module is initialized, we can ask for # module.__spec__._initializing, which should be False # we have no mod.__spec__._initializing, so it's probably a builtin # module which we can assume is initialized # fast path only for absolute imports without a "from" list, for now # fromlist can be supported if we are importing from a module, not a # package. to check that, look for the existence of __path__ attribute # in w_mod # hard case, a package! Call back into importlib
2.060578
2
data-hub-api/apps/migrator/tests/queries/test_all.py
uktrade/data-hub-api-old
0
6633007
import datetime from django.utils import timezone from reversion import revisions as reversion from reversion.models import Revision, Version from migrator.tests.models import SimpleObj from migrator.tests.base import BaseMockedCDMSRestApiTestCase from cdms_api.tests.rest.utils import mocked_cdms_list class AllTestCase(BaseMockedCDMSRestApiTestCase): def test_all_with_some_local_objs(self): """ Klass.objects.all() will: - hit cdms to get the objs - create or update local objs if necessary - return local objs In this case: - cdms-pk1 does not exist in local => - local obj should get created - revisions created - cdms-pk2 is in sync with local obj => - local obj should not change - no revisions should get created - cdms-pk3 is more up-to-date than local => - local obj should get updated - revisions created """ obj2 = SimpleObj.objects.skip_cdms().create( cdms_pk='cdms-pk2', name='name2', int_field=10 ) obj3 = SimpleObj.objects.skip_cdms().create( cdms_pk='cdms-pk3', name='name3', int_field=20 ) self.reset_revisions() mocked_list = [ { 'SimpleId': 'cdms-pk1', 'Name': 'name1', 'CreatedOn': (timezone.now() - datetime.timedelta(days=2)).replace(microsecond=0), 'ModifiedOn': (timezone.now() - datetime.timedelta(days=1)).replace(microsecond=0), 'DateTimeField': None, 'IntField': None, 'FKField': None }, { 'SimpleId': 'cdms-pk2', 'Name': 'name2', 'ModifiedOn': obj2.modified, 'DateTimeField': None, 'IntField': 20, 'FKField': None }, { 'SimpleId': 'cdms-pk3', 'Name': 'name3', 'ModifiedOn': obj3.modified + datetime.timedelta(days=1), 'DateTimeField': None, 'IntField': 20, 'FKField': None }, ] self.mocked_cdms_api.list.side_effect = mocked_cdms_list( list_data=mocked_list ) objs = SimpleObj.objects.all() self.assertEqual(len(objs), 3) objs_dict = {obj.cdms_pk: obj for obj in objs} # cdms-pk1 obj1 = objs_dict['cdms-pk1'] self.assertEqual(obj1.modified, mocked_list[0]['ModifiedOn']) self.assertEqual(obj1.created, mocked_list[0]['CreatedOn']) obj1 = SimpleObj.objects.skip_cdms().get(pk=obj1.pk) # reload and double check self.assertEqual(obj1.modified, mocked_list[0]['ModifiedOn']) self.assertEqual(obj1.created, mocked_list[0]['CreatedOn']) # cdms-pk2 obj2 = objs_dict['cdms-pk2'] self.assertEqual(obj2.modified, mocked_list[1]['ModifiedOn']) self.assertEqual(obj2.int_field, 10) # not 20 as records in sync obj2 = SimpleObj.objects.skip_cdms().get(pk=obj2.pk) # reload and double check self.assertEqual(obj2.modified, mocked_list[1]['ModifiedOn']) self.assertEqual(obj2.int_field, 10) # not 20 as records in sync # cdms-pk3 obj3 = objs_dict['cdms-pk3'] self.assertEqual(obj3.modified, mocked_list[2]['ModifiedOn']) self.assertEqual(obj3.int_field, 20) # not 10 as record updated from cdms obj3 = SimpleObj.objects.skip_cdms().get(pk=obj3.pk) # reload and double check self.assertEqual(obj3.modified, mocked_list[2]['ModifiedOn']) self.assertEqual(obj3.int_field, 20) # not 10 as record updated from cdms self.assertAPINotCalled(['get', 'create', 'delete', 'update']) # check versions self.assertEqual(Version.objects.count(), 2) self.assertEqual(Revision.objects.count(), 2) # obj1 version_list_obj1 = reversion.get_for_object(obj1) self.assertEqual(len(version_list_obj1), 1) version = version_list_obj1[0] version_data = version.field_dict self.assertIsCDMSRefreshRevision(version.revision) self.assertEqual(version_data['cdms_pk'], obj1.cdms_pk) self.assertEqual(version_data['modified'], obj1.modified) self.assertEqual(version_data['created'], obj1.created) # obj3 version_list_obj3 = reversion.get_for_object(obj3) self.assertEqual(len(version_list_obj3), 1) version = version_list_obj3[0] version_data = version.field_dict self.assertIsCDMSRefreshRevision(version.revision) self.assertEqual(version_data['cdms_pk'], obj3.cdms_pk) self.assertEqual(version_data['modified'], obj3.modified) self.assertEqual(version_data['created'], obj3.created) def test_filter_all(self): """ Klass.objects.filter() should work as Klass.objects.all(). """ self.mocked_cdms_api.list.return_value = [] results = list(SimpleObj.objects.filter()) self.assertEqual(results, []) def test_exception(self): """ In case of exceptions during cdms calls, the exception gets propagated. No changes or revisions happen. """ self.mocked_cdms_api.list.side_effect = Exception self.assertRaises( Exception, list, SimpleObj.objects.all() ) self.assertAPINotCalled(['get', 'create', 'delete', 'update']) self.assertNoRevisions() def test_all_skip_cdms(self): """ Klass.objects.skip_cdms().all() should not hit cdms and should not create any extra revisions. """ list(SimpleObj.objects.skip_cdms().all()) self.assertNoAPICalled() self.assertNoRevisions()
import datetime from django.utils import timezone from reversion import revisions as reversion from reversion.models import Revision, Version from migrator.tests.models import SimpleObj from migrator.tests.base import BaseMockedCDMSRestApiTestCase from cdms_api.tests.rest.utils import mocked_cdms_list class AllTestCase(BaseMockedCDMSRestApiTestCase): def test_all_with_some_local_objs(self): """ Klass.objects.all() will: - hit cdms to get the objs - create or update local objs if necessary - return local objs In this case: - cdms-pk1 does not exist in local => - local obj should get created - revisions created - cdms-pk2 is in sync with local obj => - local obj should not change - no revisions should get created - cdms-pk3 is more up-to-date than local => - local obj should get updated - revisions created """ obj2 = SimpleObj.objects.skip_cdms().create( cdms_pk='cdms-pk2', name='name2', int_field=10 ) obj3 = SimpleObj.objects.skip_cdms().create( cdms_pk='cdms-pk3', name='name3', int_field=20 ) self.reset_revisions() mocked_list = [ { 'SimpleId': 'cdms-pk1', 'Name': 'name1', 'CreatedOn': (timezone.now() - datetime.timedelta(days=2)).replace(microsecond=0), 'ModifiedOn': (timezone.now() - datetime.timedelta(days=1)).replace(microsecond=0), 'DateTimeField': None, 'IntField': None, 'FKField': None }, { 'SimpleId': 'cdms-pk2', 'Name': 'name2', 'ModifiedOn': obj2.modified, 'DateTimeField': None, 'IntField': 20, 'FKField': None }, { 'SimpleId': 'cdms-pk3', 'Name': 'name3', 'ModifiedOn': obj3.modified + datetime.timedelta(days=1), 'DateTimeField': None, 'IntField': 20, 'FKField': None }, ] self.mocked_cdms_api.list.side_effect = mocked_cdms_list( list_data=mocked_list ) objs = SimpleObj.objects.all() self.assertEqual(len(objs), 3) objs_dict = {obj.cdms_pk: obj for obj in objs} # cdms-pk1 obj1 = objs_dict['cdms-pk1'] self.assertEqual(obj1.modified, mocked_list[0]['ModifiedOn']) self.assertEqual(obj1.created, mocked_list[0]['CreatedOn']) obj1 = SimpleObj.objects.skip_cdms().get(pk=obj1.pk) # reload and double check self.assertEqual(obj1.modified, mocked_list[0]['ModifiedOn']) self.assertEqual(obj1.created, mocked_list[0]['CreatedOn']) # cdms-pk2 obj2 = objs_dict['cdms-pk2'] self.assertEqual(obj2.modified, mocked_list[1]['ModifiedOn']) self.assertEqual(obj2.int_field, 10) # not 20 as records in sync obj2 = SimpleObj.objects.skip_cdms().get(pk=obj2.pk) # reload and double check self.assertEqual(obj2.modified, mocked_list[1]['ModifiedOn']) self.assertEqual(obj2.int_field, 10) # not 20 as records in sync # cdms-pk3 obj3 = objs_dict['cdms-pk3'] self.assertEqual(obj3.modified, mocked_list[2]['ModifiedOn']) self.assertEqual(obj3.int_field, 20) # not 10 as record updated from cdms obj3 = SimpleObj.objects.skip_cdms().get(pk=obj3.pk) # reload and double check self.assertEqual(obj3.modified, mocked_list[2]['ModifiedOn']) self.assertEqual(obj3.int_field, 20) # not 10 as record updated from cdms self.assertAPINotCalled(['get', 'create', 'delete', 'update']) # check versions self.assertEqual(Version.objects.count(), 2) self.assertEqual(Revision.objects.count(), 2) # obj1 version_list_obj1 = reversion.get_for_object(obj1) self.assertEqual(len(version_list_obj1), 1) version = version_list_obj1[0] version_data = version.field_dict self.assertIsCDMSRefreshRevision(version.revision) self.assertEqual(version_data['cdms_pk'], obj1.cdms_pk) self.assertEqual(version_data['modified'], obj1.modified) self.assertEqual(version_data['created'], obj1.created) # obj3 version_list_obj3 = reversion.get_for_object(obj3) self.assertEqual(len(version_list_obj3), 1) version = version_list_obj3[0] version_data = version.field_dict self.assertIsCDMSRefreshRevision(version.revision) self.assertEqual(version_data['cdms_pk'], obj3.cdms_pk) self.assertEqual(version_data['modified'], obj3.modified) self.assertEqual(version_data['created'], obj3.created) def test_filter_all(self): """ Klass.objects.filter() should work as Klass.objects.all(). """ self.mocked_cdms_api.list.return_value = [] results = list(SimpleObj.objects.filter()) self.assertEqual(results, []) def test_exception(self): """ In case of exceptions during cdms calls, the exception gets propagated. No changes or revisions happen. """ self.mocked_cdms_api.list.side_effect = Exception self.assertRaises( Exception, list, SimpleObj.objects.all() ) self.assertAPINotCalled(['get', 'create', 'delete', 'update']) self.assertNoRevisions() def test_all_skip_cdms(self): """ Klass.objects.skip_cdms().all() should not hit cdms and should not create any extra revisions. """ list(SimpleObj.objects.skip_cdms().all()) self.assertNoAPICalled() self.assertNoRevisions()
en
0.738834
Klass.objects.all() will: - hit cdms to get the objs - create or update local objs if necessary - return local objs In this case: - cdms-pk1 does not exist in local => - local obj should get created - revisions created - cdms-pk2 is in sync with local obj => - local obj should not change - no revisions should get created - cdms-pk3 is more up-to-date than local => - local obj should get updated - revisions created # cdms-pk1 # reload and double check # cdms-pk2 # not 20 as records in sync # reload and double check # not 20 as records in sync # cdms-pk3 # not 10 as record updated from cdms # reload and double check # not 10 as record updated from cdms # check versions # obj1 # obj3 Klass.objects.filter() should work as Klass.objects.all(). In case of exceptions during cdms calls, the exception gets propagated. No changes or revisions happen. Klass.objects.skip_cdms().all() should not hit cdms and should not create any extra revisions.
2.043074
2
main.py
FajarTheGGman/RoseKiller
1
6633008
import os from bs4 import BeautifulSoup as bs import urllib3 as url from content.xss import * from content.dork import * from content.sc import * class Main: def banner(): print(" ';.") print(" .---., \ [!] Report Error To My Social Media :)") print(" []-.__,>=======;==================") print(" `----' ,/ [Rose Killer]") print(" .;' [By]") print(" [<NAME>]") def Run(): def help(): print("[Help Commands]") print("- help (See all commands)") print("- xss (exploit websites using xss method)") print("- dork (dork website)") print("- script (take script deface in website)") user = str(input("\n\n[RoseKiller] >_ ")) if user == "xss": xss = Xss.main() elif user == "dork": dork = Dork.main() elif user == "script": sc = Sc.main() elif user == "help": help() else: print("[!] Wrong Commands") help() banner = Main.banner() r = Main.Run()
import os from bs4 import BeautifulSoup as bs import urllib3 as url from content.xss import * from content.dork import * from content.sc import * class Main: def banner(): print(" ';.") print(" .---., \ [!] Report Error To My Social Media :)") print(" []-.__,>=======;==================") print(" `----' ,/ [Rose Killer]") print(" .;' [By]") print(" [<NAME>]") def Run(): def help(): print("[Help Commands]") print("- help (See all commands)") print("- xss (exploit websites using xss method)") print("- dork (dork website)") print("- script (take script deface in website)") user = str(input("\n\n[RoseKiller] >_ ")) if user == "xss": xss = Xss.main() elif user == "dork": dork = Dork.main() elif user == "script": sc = Sc.main() elif user == "help": help() else: print("[!] Wrong Commands") help() banner = Main.banner() r = Main.Run()
none
1
2.95346
3
Converter/OpenVINO/Tests/ModulesTest.py
EmilPi/PuzzleLib
52
6633009
import numpy as np from PuzzleLib import Config Config.backend = Config.Backend.intel Config.globalEvalMode = True from PuzzleLib.Backend import gpuarray from PuzzleLib.Containers.Sequential import Sequential from PuzzleLib.Containers.Parallel import Parallel from PuzzleLib.Modules.BatchNorm import BatchNorm from PuzzleLib.Modules.Concat import Concat from PuzzleLib.Modules.MulAddConst import MulAddConst from PuzzleLib.Modules.Split import Split from PuzzleLib.Modules.SoftMax import SoftMax from PuzzleLib.Modules.Upsample2D import Upsample2D from PuzzleLib.Converter.OpenVINO.BuildVINOEngine import buildVINOEngine def batchNormTest(): batchsize, size = 16, 10 mod = BatchNorm(size, name="bn") mod.evalMode() data = gpuarray.to_gpu(np.random.randn(batchsize, size).astype(np.float32)) engine = buildVINOEngine(mod, data.shape, savepath="../TestData") outdata = mod(data) enginedata = engine(data) assert np.allclose(outdata.get(), enginedata.get()) def concatTest(): batchsize, height, width = 4, 5, 8 maps1, maps2 = 3, 2 mod = Concat(axis=1, name="concat") data = [ gpuarray.to_gpu(np.random.randn(batchsize, maps, height, width).astype(np.float32)) for maps in [maps1, maps2] ] engine = buildVINOEngine(mod, [subdata.shape for subdata in data], savepath="../TestData") outdata = mod(data) enginedata = engine(data) assert np.allclose(outdata.get(), enginedata.get()) def mulAddConstTest(): batchsize, maps, height, width = 4, 3, 5, 8 mod = MulAddConst(a=1.5, b=-2.0, name="muladd") data = gpuarray.to_gpu(np.random.randn(batchsize, maps, height, width).astype(np.float32)) engine = buildVINOEngine(mod, data.shape, savepath="../TestData") outdata = mod(data) enginedata = engine(data) assert np.allclose(outdata.get(), enginedata.get()) def splitTest(): batchsize, maps, height, width = 2, 6, 4, 5 net = Sequential(name="split") net.append(Split(axis=1, sections=(2, 4))) net.append(Parallel().append(SoftMax()).append(SoftMax())) data = gpuarray.to_gpu(np.random.randn(batchsize, maps, height, width).astype(np.float32)) engine = buildVINOEngine(net, data.shape, savepath="../TestData") outdata = net(data) enginedata = engine(data) assert all(np.allclose(outdat.get(), enginedat.get()) for outdat, enginedat in zip(outdata, enginedata)) def upsample2dTest(): batchsize, maps, height, width = 4, 3, 5, 8 mod = Upsample2D(scale=2, name="upsample") data = gpuarray.to_gpu(np.random.randn(batchsize, maps, height, width).astype(np.float32)) engine = buildVINOEngine(mod, data.shape, savepath="../TestData") outdata = mod(data) enginedata = engine(data) assert np.allclose(outdata.get(), enginedata.get()) def main(): batchNormTest() concatTest() mulAddConstTest() splitTest() upsample2dTest() if __name__ == "__main__": main()
import numpy as np from PuzzleLib import Config Config.backend = Config.Backend.intel Config.globalEvalMode = True from PuzzleLib.Backend import gpuarray from PuzzleLib.Containers.Sequential import Sequential from PuzzleLib.Containers.Parallel import Parallel from PuzzleLib.Modules.BatchNorm import BatchNorm from PuzzleLib.Modules.Concat import Concat from PuzzleLib.Modules.MulAddConst import MulAddConst from PuzzleLib.Modules.Split import Split from PuzzleLib.Modules.SoftMax import SoftMax from PuzzleLib.Modules.Upsample2D import Upsample2D from PuzzleLib.Converter.OpenVINO.BuildVINOEngine import buildVINOEngine def batchNormTest(): batchsize, size = 16, 10 mod = BatchNorm(size, name="bn") mod.evalMode() data = gpuarray.to_gpu(np.random.randn(batchsize, size).astype(np.float32)) engine = buildVINOEngine(mod, data.shape, savepath="../TestData") outdata = mod(data) enginedata = engine(data) assert np.allclose(outdata.get(), enginedata.get()) def concatTest(): batchsize, height, width = 4, 5, 8 maps1, maps2 = 3, 2 mod = Concat(axis=1, name="concat") data = [ gpuarray.to_gpu(np.random.randn(batchsize, maps, height, width).astype(np.float32)) for maps in [maps1, maps2] ] engine = buildVINOEngine(mod, [subdata.shape for subdata in data], savepath="../TestData") outdata = mod(data) enginedata = engine(data) assert np.allclose(outdata.get(), enginedata.get()) def mulAddConstTest(): batchsize, maps, height, width = 4, 3, 5, 8 mod = MulAddConst(a=1.5, b=-2.0, name="muladd") data = gpuarray.to_gpu(np.random.randn(batchsize, maps, height, width).astype(np.float32)) engine = buildVINOEngine(mod, data.shape, savepath="../TestData") outdata = mod(data) enginedata = engine(data) assert np.allclose(outdata.get(), enginedata.get()) def splitTest(): batchsize, maps, height, width = 2, 6, 4, 5 net = Sequential(name="split") net.append(Split(axis=1, sections=(2, 4))) net.append(Parallel().append(SoftMax()).append(SoftMax())) data = gpuarray.to_gpu(np.random.randn(batchsize, maps, height, width).astype(np.float32)) engine = buildVINOEngine(net, data.shape, savepath="../TestData") outdata = net(data) enginedata = engine(data) assert all(np.allclose(outdat.get(), enginedat.get()) for outdat, enginedat in zip(outdata, enginedata)) def upsample2dTest(): batchsize, maps, height, width = 4, 3, 5, 8 mod = Upsample2D(scale=2, name="upsample") data = gpuarray.to_gpu(np.random.randn(batchsize, maps, height, width).astype(np.float32)) engine = buildVINOEngine(mod, data.shape, savepath="../TestData") outdata = mod(data) enginedata = engine(data) assert np.allclose(outdata.get(), enginedata.get()) def main(): batchNormTest() concatTest() mulAddConstTest() splitTest() upsample2dTest() if __name__ == "__main__": main()
none
1
2.018336
2
build/update-olm.py
davidvossel/node-maintenance-operator
0
6633010
#!/usr/bin/env python3 import logging import sys import yaml _ANNOTATIONS = { 'categories': 'OpenShift Optional', 'containerImage': 'quay.io/kubevirt/node-maintenance-operator', 'repository': 'https://github.com/kubevirt/node-maintenance-operator', 'description': \ 'Node-maintenance-operator maintains nodes in cluster', } _DESCRIPTION = "Node maintenance operator" _NAMESPACE = 'node-maintenance-operator' _SPEC = { 'description': _DESCRIPTION, 'provider': { 'name': 'KubeVirt project' }, 'maintainers': [{ 'name': 'KubeVirt project', 'email': '<EMAIL>', }], 'keywords': [ 'KubeVirt', 'Virtualization', 'Node-maintenance' ], 'links': [{ 'name': 'KubeVirt', 'url': 'https://kubevirt.io', }, { 'name': 'Source Code', 'url': 'https://github.com/kubevirt/node-maintenance-operator' }], 'labels': { 'alm-owner-kubevirt': 'nodemaintenanceoperator', 'operated-by': 'nodemaintenanceoperator', }, 'selector': { 'matchLabels': { 'alm-owner-kubevirt': 'nodemaintenanceoperator', 'operated-by': 'nodemaintenanceoperator', }, }, } _CRD_INFOS = { 'nodemaintenances.kubevirt.io': { 'displayName': 'KubeVirt node maintenance', 'description': \ 'Represents a deployment of node maintenance crd', 'specDescriptors': [{ 'description': \ 'The version of the node maintenance to deploy', 'displayName': 'Version', 'path': 'version', 'x-descriptors': [ 'urn:alm:descriptor:io.kubernetes.node-maintenance:version', ], }], } } def process(path): with open(path, 'rt') as fh: manifest = yaml.safe_load(fh) manifest['metadata']['namespace'] = _NAMESPACE manifest['metadata']['annotations'].update(_ANNOTATIONS) manifest['spec'].update(_SPEC) for crd in manifest['spec']['customresourcedefinitions']['owned']: crd.update(_CRD_INFOS.get(crd['name'], {})) yaml.safe_dump(manifest, sys.stdout) if __name__ == '__main__': for arg in sys.argv[1:]: try: process(arg) except Exception as ex: logging.error('error processing %r: %s', arg, ex) # keep going!
#!/usr/bin/env python3 import logging import sys import yaml _ANNOTATIONS = { 'categories': 'OpenShift Optional', 'containerImage': 'quay.io/kubevirt/node-maintenance-operator', 'repository': 'https://github.com/kubevirt/node-maintenance-operator', 'description': \ 'Node-maintenance-operator maintains nodes in cluster', } _DESCRIPTION = "Node maintenance operator" _NAMESPACE = 'node-maintenance-operator' _SPEC = { 'description': _DESCRIPTION, 'provider': { 'name': 'KubeVirt project' }, 'maintainers': [{ 'name': 'KubeVirt project', 'email': '<EMAIL>', }], 'keywords': [ 'KubeVirt', 'Virtualization', 'Node-maintenance' ], 'links': [{ 'name': 'KubeVirt', 'url': 'https://kubevirt.io', }, { 'name': 'Source Code', 'url': 'https://github.com/kubevirt/node-maintenance-operator' }], 'labels': { 'alm-owner-kubevirt': 'nodemaintenanceoperator', 'operated-by': 'nodemaintenanceoperator', }, 'selector': { 'matchLabels': { 'alm-owner-kubevirt': 'nodemaintenanceoperator', 'operated-by': 'nodemaintenanceoperator', }, }, } _CRD_INFOS = { 'nodemaintenances.kubevirt.io': { 'displayName': 'KubeVirt node maintenance', 'description': \ 'Represents a deployment of node maintenance crd', 'specDescriptors': [{ 'description': \ 'The version of the node maintenance to deploy', 'displayName': 'Version', 'path': 'version', 'x-descriptors': [ 'urn:alm:descriptor:io.kubernetes.node-maintenance:version', ], }], } } def process(path): with open(path, 'rt') as fh: manifest = yaml.safe_load(fh) manifest['metadata']['namespace'] = _NAMESPACE manifest['metadata']['annotations'].update(_ANNOTATIONS) manifest['spec'].update(_SPEC) for crd in manifest['spec']['customresourcedefinitions']['owned']: crd.update(_CRD_INFOS.get(crd['name'], {})) yaml.safe_dump(manifest, sys.stdout) if __name__ == '__main__': for arg in sys.argv[1:]: try: process(arg) except Exception as ex: logging.error('error processing %r: %s', arg, ex) # keep going!
en
0.467461
#!/usr/bin/env python3 # keep going!
1.777788
2
test_proj/media_library/tests/test_managers.py
Querschlag/django-video-encoding
116
6633011
<reponame>Querschlag/django-video-encoding import pytest from django.contrib.contenttypes.models import ContentType from ..models import Format @pytest.fixture def video_format(local_video): return Format.objects.create( object_id=local_video.pk, content_type=ContentType.objects.get_for_model(local_video), field_name='file', format='mp4_hd', progress=100, ) @pytest.mark.django_db def test_related_manager(local_video): assert hasattr(local_video.format_set, 'complete') assert hasattr(local_video.format_set, 'in_progress') @pytest.mark.django_db def test_in_progress(video_format): video_format.progress = 30 video_format.save() assert Format.objects.complete().count() == 0 assert Format.objects.in_progress().count() == 1 assert Format.objects.in_progress()[0].progress < 100 @pytest.mark.django_db def test_complete(video_format): assert Format.objects.in_progress().count() == 0 assert Format.objects.complete().count() == 1 assert Format.objects.complete()[0].progress == 100
import pytest from django.contrib.contenttypes.models import ContentType from ..models import Format @pytest.fixture def video_format(local_video): return Format.objects.create( object_id=local_video.pk, content_type=ContentType.objects.get_for_model(local_video), field_name='file', format='mp4_hd', progress=100, ) @pytest.mark.django_db def test_related_manager(local_video): assert hasattr(local_video.format_set, 'complete') assert hasattr(local_video.format_set, 'in_progress') @pytest.mark.django_db def test_in_progress(video_format): video_format.progress = 30 video_format.save() assert Format.objects.complete().count() == 0 assert Format.objects.in_progress().count() == 1 assert Format.objects.in_progress()[0].progress < 100 @pytest.mark.django_db def test_complete(video_format): assert Format.objects.in_progress().count() == 0 assert Format.objects.complete().count() == 1 assert Format.objects.complete()[0].progress == 100
none
1
2.233856
2
dashlib/mnb_maketx.py
chaeplin/dash-mnb
18
6633012
<reponame>chaeplin/dash-mnb import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '.')) from decimal import Decimal from config import * from mnb_misc import * from mnb_rpc import * from mnb_mnconf import * from mnb_hwwallet import * def print_balance(mn_config, have_unconfirmed_tx): need_wallet_rescan = False print('\n[masternodes balance]') print('alias\tcnt\tspn\tbalance\t\taddress to send MN earnings') total_balance = 0 for m in mn_config: alias = m.get('alias') unspent = m.get('collateral_dashd_balance') sumofunspent = sum(unspent) cnt = len(unspent) total_balance = total_balance + sumofunspent spn = 0 txs_spn = m.get('txs') for sp in txs_spn: spn = spn + len(sp) if cnt == 0: need_wallet_rescan = True if 'rpcusessl' in globals() and rpcusessl and rpcbindip == "test.stats.dash.org": need_wallet_rescan = False if MOVE_1K_COLLATERAL: need_wallet_rescan = False print( alias + '\t' + '{:2d}\t{:2d}\t{:13.8f}'.format( cnt, spn, sumofunspent) + '\t' + str(m.get('receiving_address', '----'))) print('\n\t\t Total : ', total_balance) print('\n* cnt - count : number of payouts(un + mature) + 1(collateral)') print('* spn - spendable : number of spendable payouts(mature, over 100 confirmation)') if have_unconfirmed_tx: print('* can be inaccurate after a transaction(transfer/xfer), need 1 confirmation') return need_wallet_rescan def check_mtime_of_tx(unspent_cache_abs_path): if os.path.exists(unspent_cache_abs_path): mtime_of_unspent_cache = int(os.path.getmtime(unspent_cache_abs_path)) cache_unspent_statinfo = os.stat(unspent_cache_abs_path) else: return True if cache_unspent_statinfo.st_size == 0: return True if time.time() > (mtime_of_unspent_cache + (txs_cache_refresh_interval_hour * 60 * 60)): return True return False def get_unspent_txs(mnconfig, blockcount, access, SEND_TO_BIP32, bip32_unused): collateral_address = mnconfig.get('collateral_address') collateral_txidtxidn = mnconfig.get('collateral_txidtxidn') receiving_address = mnconfig.get('receiving_address') unspent_cache_abs_path = os.path.join( os.path.dirname( os.path.abspath(__file__)), '../cache/' + ( 'MAINNET' if MAINNET else 'TESTNET') + '-' + collateral_txidtxidn + '-unspent.dat') bgetListUnspentAgain = check_mtime_of_tx(unspent_cache_abs_path) if bgetListUnspentAgain: #listunspent = get_listunspent(6, 999999999, collateral_address, access) listunspent = getaddressutxos(collateral_address, access) with open(unspent_cache_abs_path, 'w') as outfile: json.dump(listunspent, outfile) else: with open(unspent_cache_abs_path) as data_file: listunspent = json.load(data_file, parse_float=Decimal) unspent_mine = [] balance_mine = [] for m in listunspent: unspent_txidtxidn = get_txidtxidn(m['txid'], m['outputIndex']) #unspent_amount = m['amount'] unspent_amount = round(Decimal(float(m['satoshis'] / 1e8)), 8) balance_mine.append(unspent_amount) if MOVE_1K_COLLATERAL: unspent_mine.append(m) elif MOVE_1K_COLLATERAL == False: if (unspent_txidtxidn != collateral_txidtxidn) and ( unspent_amount < max_amounts): unspent_mine.append(m) txs = [] bip32sendto_all = [] mature_confirmation = 101 # for testing #mature_confirmation = 10 desc_displayed = False for x in unspent_mine: if (x.get('address') == collateral_address) and ((blockcount - mature_confirmation) > x.get('height')): if SEND_TO_BIP32 and bip32_unused != None and receiving_address == 'BIP32_PATH': if not desc_displayed: print("\t---> getting unused addresses of bip32 path") desc_displayed = True bip32sendto_unused = bip32_unused.__next__() tx = { "amount": round(Decimal(float(x.get('satoshis') / 1e8)), 8), "txid": x.get('txid'), "vout": x.get('outputIndex'), "bip32sendto": bip32sendto_unused } bip32sendto_all.append(bip32sendto_unused) else: tx = { "amount": round(Decimal(float(x.get('satoshis') / 1e8)), 8), "txid": x.get('txid'), "vout": x.get('outputIndex') } txs.append(tx) if SEND_TO_BIP32 and bip32_unused != None and receiving_address == 'BIP32_PATH': sublist = [txs[i:i + 1] for i in range(0, len(txs), 1)] else: sublist = [txs[i:i + max_unspent] for i in range(0, len(txs), max_unspent)] return sublist, balance_mine, bip32sendto_all def make_inputs_for_hw_wallet( tx, receiving_address, collateral_spath, client, mpath, SEND_TO_BIP32): # trezor and keepkey import binascii from decimal import Decimal if TYPE_HW_WALLET.lower().startswith("keepkey"): import keepkeylib.messages_pb2 as proto import keepkeylib.types_pb2 as proto_types from keepkeylib import tx_api from keepkeylib.tx_api import TXAPIDashrpc elif TYPE_HW_WALLET.lower().startswith("trezor"): import trezorlib.messages_pb2 as proto import trezorlib.types_pb2 as proto_types from trezorlib import tx_api from trezorlib.tx_api import TXAPIDashrpc tx_api.rpcuser = rpcuser tx_api.rpcpassword = <PASSWORD> tx_api.rpcbindip = rpcbindip tx_api.rpcport = (rpcport if USE_SSH_TUNNEL is False else SSH_LOCAL_PORT) if 'rpcusessl' in globals() and rpcusessl: tx_api.rpcusessl = rpcusessl client.set_tx_api(TXAPIDashrpc()) inputs = [] outputs = [] amount_total = 0 purpose, coin_type, account, change = chain_path(mpath) if collateral_spath is None or receiving_address is None: err_msg = 'make_inputs_for_hw_wallet receiving_address / collateral_spath : Should not None' print_err_exit( get_caller_name(), get_function_name(), err_msg) # make input for x in tx: amount = x.get('amount', None) txid = x.get('txid', None) vout = x.get('vout', None) if amount is None or txid is None or vout is None: err_msg = 'make_inputs_for_hw_wallet amount / txid / vout : Should not None' print_err_exit( get_caller_name(), get_function_name(), err_msg) amount_total += amount inputs.append( proto_types.TxInputType( address_n=[ purpose | 0x80000000, coin_type | 0x80000000, account | 0x80000000, change, int(collateral_spath)], prev_hash=binascii.unhexlify(txid), prev_index=vout)) # after dip001 # todo : use estimatesmartfee txsizefee = 50 + (150 * len(inputs)) # old #txsizefee = round((len(inputs) * 148 + 33 - 10) / 1000) * min_fee # minimal fee if input length is < 4, or fee == 0 # if len(inputs) < 4: #if txsizefee == 0: # txsizefee = min_fee # bip32 1 input tx if SEND_TO_BIP32 and receiving_address == 'BIP32_PATH': txsizefee = 250 # txsizefee = 2500 # make output based on inputs if SEND_TO_BIP32 and receiving_address == 'BIP32_PATH': if len(tx) == 1: bip32sendto = tx[0].get('bip32sendto', None) if bip32sendto != None and receiving_address == 'BIP32_PATH': outputs.append( proto_types.TxOutputType( address=bip32sendto, amount=int( amount_total * 100000000) - txsizefee, script_type=proto_types.PAYTOADDRESS, )) else: err_msg = 'bip32_send_to_address is None' print_err_exit( get_caller_name(), get_function_name(), err_msg) else: err_msg = 'more than 1 tx when making input for bip32_path' print_err_exit( get_caller_name(), get_function_name(), err_msg) else: outputs.append( proto_types.TxOutputType( address=receiving_address, amount=int( amount_total * 100000000) - txsizefee, script_type=proto_types.PAYTOADDRESS, )) feetohuman = round(Decimal(txsizefee / 1e8), 6) if SEND_TO_BIP32 and receiving_address == 'BIP32_PATH': print('\n\tsend %s\n\t%s txs to %s\n\twith fee of %s\n\ttotal amount : %s\n' % ( amount_total - feetohuman, len(tx), bip32sendto, feetohuman, amount_total)) else: print('\n\tsend %s\n\t%s txs to %s\n\twith fee of %s\n\ttotal amount : %s\n' % ( amount_total - feetohuman, len(tx), receiving_address, feetohuman, amount_total)) print_hw_wallet_check() try: (signatures, serialized_tx) = client.sign_tx(coin_name, inputs, outputs) # check tx size if len(serialized_tx.hex()) > 90000: print_err_exit( get_caller_name(), get_function_name(), err_msg) return serialized_tx.hex() except Exception as e: err_msg = str(e.args) print_err_exit( get_caller_name(), get_function_name(), err_msg) except KeyboardInterrupt: print_err_exit( get_caller_name(), get_function_name(), 'KeyboardInterrupt') def make_txs_for_hwwallet(mnconfig, client, mpath, SEND_TO_BIP32): txs = mnconfig.get('txs', None) collateral_spath = mnconfig.get('collateral_spath', None) receiving_address = mnconfig.get('receiving_address', None) if collateral_spath is None or receiving_address is None: err_msg = 'make_inputs_for_hw_wallet receiving_address / collateral_spath : Should not be None' print_err_exit( get_caller_name(), get_function_name(), err_msg) serialized_txs = [] if txs is not None: for tx in txs: if (len(tx)) >= min_unspent or MOVE_1K_COLLATERAL: serialized_tx = make_inputs_for_hw_wallet(tx, receiving_address, collateral_spath, client, mpath, SEND_TO_BIP32) serialized_txs.append(serialized_tx) else: print('---> count of txs less than min_unspent : %s' % min_unspent) return None else: return None return serialized_txs # end
import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '.')) from decimal import Decimal from config import * from mnb_misc import * from mnb_rpc import * from mnb_mnconf import * from mnb_hwwallet import * def print_balance(mn_config, have_unconfirmed_tx): need_wallet_rescan = False print('\n[masternodes balance]') print('alias\tcnt\tspn\tbalance\t\taddress to send MN earnings') total_balance = 0 for m in mn_config: alias = m.get('alias') unspent = m.get('collateral_dashd_balance') sumofunspent = sum(unspent) cnt = len(unspent) total_balance = total_balance + sumofunspent spn = 0 txs_spn = m.get('txs') for sp in txs_spn: spn = spn + len(sp) if cnt == 0: need_wallet_rescan = True if 'rpcusessl' in globals() and rpcusessl and rpcbindip == "test.stats.dash.org": need_wallet_rescan = False if MOVE_1K_COLLATERAL: need_wallet_rescan = False print( alias + '\t' + '{:2d}\t{:2d}\t{:13.8f}'.format( cnt, spn, sumofunspent) + '\t' + str(m.get('receiving_address', '----'))) print('\n\t\t Total : ', total_balance) print('\n* cnt - count : number of payouts(un + mature) + 1(collateral)') print('* spn - spendable : number of spendable payouts(mature, over 100 confirmation)') if have_unconfirmed_tx: print('* can be inaccurate after a transaction(transfer/xfer), need 1 confirmation') return need_wallet_rescan def check_mtime_of_tx(unspent_cache_abs_path): if os.path.exists(unspent_cache_abs_path): mtime_of_unspent_cache = int(os.path.getmtime(unspent_cache_abs_path)) cache_unspent_statinfo = os.stat(unspent_cache_abs_path) else: return True if cache_unspent_statinfo.st_size == 0: return True if time.time() > (mtime_of_unspent_cache + (txs_cache_refresh_interval_hour * 60 * 60)): return True return False def get_unspent_txs(mnconfig, blockcount, access, SEND_TO_BIP32, bip32_unused): collateral_address = mnconfig.get('collateral_address') collateral_txidtxidn = mnconfig.get('collateral_txidtxidn') receiving_address = mnconfig.get('receiving_address') unspent_cache_abs_path = os.path.join( os.path.dirname( os.path.abspath(__file__)), '../cache/' + ( 'MAINNET' if MAINNET else 'TESTNET') + '-' + collateral_txidtxidn + '-unspent.dat') bgetListUnspentAgain = check_mtime_of_tx(unspent_cache_abs_path) if bgetListUnspentAgain: #listunspent = get_listunspent(6, 999999999, collateral_address, access) listunspent = getaddressutxos(collateral_address, access) with open(unspent_cache_abs_path, 'w') as outfile: json.dump(listunspent, outfile) else: with open(unspent_cache_abs_path) as data_file: listunspent = json.load(data_file, parse_float=Decimal) unspent_mine = [] balance_mine = [] for m in listunspent: unspent_txidtxidn = get_txidtxidn(m['txid'], m['outputIndex']) #unspent_amount = m['amount'] unspent_amount = round(Decimal(float(m['satoshis'] / 1e8)), 8) balance_mine.append(unspent_amount) if MOVE_1K_COLLATERAL: unspent_mine.append(m) elif MOVE_1K_COLLATERAL == False: if (unspent_txidtxidn != collateral_txidtxidn) and ( unspent_amount < max_amounts): unspent_mine.append(m) txs = [] bip32sendto_all = [] mature_confirmation = 101 # for testing #mature_confirmation = 10 desc_displayed = False for x in unspent_mine: if (x.get('address') == collateral_address) and ((blockcount - mature_confirmation) > x.get('height')): if SEND_TO_BIP32 and bip32_unused != None and receiving_address == 'BIP32_PATH': if not desc_displayed: print("\t---> getting unused addresses of bip32 path") desc_displayed = True bip32sendto_unused = bip32_unused.__next__() tx = { "amount": round(Decimal(float(x.get('satoshis') / 1e8)), 8), "txid": x.get('txid'), "vout": x.get('outputIndex'), "bip32sendto": bip32sendto_unused } bip32sendto_all.append(bip32sendto_unused) else: tx = { "amount": round(Decimal(float(x.get('satoshis') / 1e8)), 8), "txid": x.get('txid'), "vout": x.get('outputIndex') } txs.append(tx) if SEND_TO_BIP32 and bip32_unused != None and receiving_address == 'BIP32_PATH': sublist = [txs[i:i + 1] for i in range(0, len(txs), 1)] else: sublist = [txs[i:i + max_unspent] for i in range(0, len(txs), max_unspent)] return sublist, balance_mine, bip32sendto_all def make_inputs_for_hw_wallet( tx, receiving_address, collateral_spath, client, mpath, SEND_TO_BIP32): # trezor and keepkey import binascii from decimal import Decimal if TYPE_HW_WALLET.lower().startswith("keepkey"): import keepkeylib.messages_pb2 as proto import keepkeylib.types_pb2 as proto_types from keepkeylib import tx_api from keepkeylib.tx_api import TXAPIDashrpc elif TYPE_HW_WALLET.lower().startswith("trezor"): import trezorlib.messages_pb2 as proto import trezorlib.types_pb2 as proto_types from trezorlib import tx_api from trezorlib.tx_api import TXAPIDashrpc tx_api.rpcuser = rpcuser tx_api.rpcpassword = <PASSWORD> tx_api.rpcbindip = rpcbindip tx_api.rpcport = (rpcport if USE_SSH_TUNNEL is False else SSH_LOCAL_PORT) if 'rpcusessl' in globals() and rpcusessl: tx_api.rpcusessl = rpcusessl client.set_tx_api(TXAPIDashrpc()) inputs = [] outputs = [] amount_total = 0 purpose, coin_type, account, change = chain_path(mpath) if collateral_spath is None or receiving_address is None: err_msg = 'make_inputs_for_hw_wallet receiving_address / collateral_spath : Should not None' print_err_exit( get_caller_name(), get_function_name(), err_msg) # make input for x in tx: amount = x.get('amount', None) txid = x.get('txid', None) vout = x.get('vout', None) if amount is None or txid is None or vout is None: err_msg = 'make_inputs_for_hw_wallet amount / txid / vout : Should not None' print_err_exit( get_caller_name(), get_function_name(), err_msg) amount_total += amount inputs.append( proto_types.TxInputType( address_n=[ purpose | 0x80000000, coin_type | 0x80000000, account | 0x80000000, change, int(collateral_spath)], prev_hash=binascii.unhexlify(txid), prev_index=vout)) # after dip001 # todo : use estimatesmartfee txsizefee = 50 + (150 * len(inputs)) # old #txsizefee = round((len(inputs) * 148 + 33 - 10) / 1000) * min_fee # minimal fee if input length is < 4, or fee == 0 # if len(inputs) < 4: #if txsizefee == 0: # txsizefee = min_fee # bip32 1 input tx if SEND_TO_BIP32 and receiving_address == 'BIP32_PATH': txsizefee = 250 # txsizefee = 2500 # make output based on inputs if SEND_TO_BIP32 and receiving_address == 'BIP32_PATH': if len(tx) == 1: bip32sendto = tx[0].get('bip32sendto', None) if bip32sendto != None and receiving_address == 'BIP32_PATH': outputs.append( proto_types.TxOutputType( address=bip32sendto, amount=int( amount_total * 100000000) - txsizefee, script_type=proto_types.PAYTOADDRESS, )) else: err_msg = 'bip32_send_to_address is None' print_err_exit( get_caller_name(), get_function_name(), err_msg) else: err_msg = 'more than 1 tx when making input for bip32_path' print_err_exit( get_caller_name(), get_function_name(), err_msg) else: outputs.append( proto_types.TxOutputType( address=receiving_address, amount=int( amount_total * 100000000) - txsizefee, script_type=proto_types.PAYTOADDRESS, )) feetohuman = round(Decimal(txsizefee / 1e8), 6) if SEND_TO_BIP32 and receiving_address == 'BIP32_PATH': print('\n\tsend %s\n\t%s txs to %s\n\twith fee of %s\n\ttotal amount : %s\n' % ( amount_total - feetohuman, len(tx), bip32sendto, feetohuman, amount_total)) else: print('\n\tsend %s\n\t%s txs to %s\n\twith fee of %s\n\ttotal amount : %s\n' % ( amount_total - feetohuman, len(tx), receiving_address, feetohuman, amount_total)) print_hw_wallet_check() try: (signatures, serialized_tx) = client.sign_tx(coin_name, inputs, outputs) # check tx size if len(serialized_tx.hex()) > 90000: print_err_exit( get_caller_name(), get_function_name(), err_msg) return serialized_tx.hex() except Exception as e: err_msg = str(e.args) print_err_exit( get_caller_name(), get_function_name(), err_msg) except KeyboardInterrupt: print_err_exit( get_caller_name(), get_function_name(), 'KeyboardInterrupt') def make_txs_for_hwwallet(mnconfig, client, mpath, SEND_TO_BIP32): txs = mnconfig.get('txs', None) collateral_spath = mnconfig.get('collateral_spath', None) receiving_address = mnconfig.get('receiving_address', None) if collateral_spath is None or receiving_address is None: err_msg = 'make_inputs_for_hw_wallet receiving_address / collateral_spath : Should not be None' print_err_exit( get_caller_name(), get_function_name(), err_msg) serialized_txs = [] if txs is not None: for tx in txs: if (len(tx)) >= min_unspent or MOVE_1K_COLLATERAL: serialized_tx = make_inputs_for_hw_wallet(tx, receiving_address, collateral_spath, client, mpath, SEND_TO_BIP32) serialized_txs.append(serialized_tx) else: print('---> count of txs less than min_unspent : %s' % min_unspent) return None else: return None return serialized_txs # end
en
0.583712
#listunspent = get_listunspent(6, 999999999, collateral_address, access) #unspent_amount = m['amount'] # for testing #mature_confirmation = 10 # trezor and keepkey # make input # after dip001 # todo : use estimatesmartfee # old #txsizefee = round((len(inputs) * 148 + 33 - 10) / 1000) * min_fee # minimal fee if input length is < 4, or fee == 0 # if len(inputs) < 4: #if txsizefee == 0: # txsizefee = min_fee # bip32 1 input tx # txsizefee = 2500 # make output based on inputs # check tx size # end
2.239682
2
python/venv/lib/python2.7/site-packages/keystoneauth1/tests/unit/loading/test_conf.py
sjsucohort6/openstack
0
6633013
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid import mock from oslo_config import cfg from oslo_config import fixture as config import stevedore from keystoneauth1 import exceptions from keystoneauth1 import loading from keystoneauth1.loading._plugins.identity import v2 from keystoneauth1.loading._plugins.identity import v3 from keystoneauth1.tests.unit.loading import utils def to_oslo_opts(opts): return [o._to_oslo_opt() for o in opts] class ConfTests(utils.TestCase): def setUp(self): super(ConfTests, self).setUp() self.conf_fixture = self.useFixture(config.Config()) # NOTE(jamielennox): we register the basic config options first because # we need them in place before we can stub them. We will need to run # the register again after we stub the auth section and auth plugin so # it can load the plugin specific options. loading.register_auth_conf_options(self.conf_fixture.conf, group=self.GROUP) def test_loading_v2(self): section = uuid.uuid4().hex auth_url = uuid.uuid4().hex username = uuid.uuid4().hex password = uuid.uuid4().hex trust_id = uuid.uuid4().hex tenant_id = uuid.uuid4().hex self.conf_fixture.config(auth_section=section, group=self.GROUP) loading.register_auth_conf_options(self.conf_fixture.conf, group=self.GROUP) self.conf_fixture.register_opts( to_oslo_opts(v2.Password().get_options()), group=section) self.conf_fixture.config(auth_type=self.V2PASS, auth_url=auth_url, username=username, password=password, trust_id=trust_id, tenant_id=tenant_id, group=section) a = loading.load_auth_from_conf_options(self.conf_fixture.conf, self.GROUP) self.assertEqual(auth_url, a.auth_url) self.assertEqual(username, a.username) self.assertEqual(password, <PASSWORD>) self.assertEqual(trust_id, a.trust_id) self.assertEqual(tenant_id, a.tenant_id) def test_loading_v3(self): section = uuid.uuid4().hex auth_url = uuid.uuid4().hex, token = uuid.uuid4().hex trust_id = uuid.uuid4().hex project_id = uuid.uuid4().hex project_domain_name = uuid.uuid4().hex self.conf_fixture.config(auth_section=section, group=self.GROUP) loading.register_auth_conf_options(self.conf_fixture.conf, group=self.GROUP) self.conf_fixture.register_opts(to_oslo_opts(v3.Token().get_options()), group=section) self.conf_fixture.config(auth_type=self.V3TOKEN, auth_url=auth_url, token=token, trust_id=trust_id, project_id=project_id, project_domain_name=project_domain_name, group=section) a = loading.load_auth_from_conf_options(self.conf_fixture.conf, self.GROUP) self.assertEqual(token, a.auth_methods[0].token) self.assertEqual(trust_id, a.trust_id) self.assertEqual(project_id, a.project_id) self.assertEqual(project_domain_name, a.project_domain_name) def test_loading_invalid_plugin(self): auth_type = uuid.uuid4().hex self.conf_fixture.config(auth_type=auth_type, group=self.GROUP) e = self.assertRaises(exceptions.NoMatchingPlugin, loading.load_auth_from_conf_options, self.conf_fixture.conf, self.GROUP) self.assertEqual(auth_type, e.name) def test_loading_with_no_data(self): l = loading.load_auth_from_conf_options(self.conf_fixture.conf, self.GROUP) self.assertIsNone(l) @mock.patch('stevedore.DriverManager') def test_other_params(self, m): m.return_value = utils.MockManager(utils.MockLoader()) driver_name = uuid.uuid4().hex self.conf_fixture.register_opts( to_oslo_opts(utils.MockLoader().get_options()), group=self.GROUP) self.conf_fixture.config(auth_type=driver_name, group=self.GROUP, **self.TEST_VALS) a = loading.load_auth_from_conf_options(self.conf_fixture.conf, self.GROUP) self.assertTestVals(a) m.assert_called_once_with(namespace=loading.PLUGIN_NAMESPACE, name=driver_name, invoke_on_load=True) @utils.mock_plugin() def test_same_section(self, m): self.conf_fixture.register_opts( to_oslo_opts(utils.MockLoader().get_options()), group=self.GROUP) loading.register_auth_conf_options(self.conf_fixture.conf, group=self.GROUP) self.conf_fixture.config(auth_type=uuid.uuid4().hex, group=self.GROUP, **self.TEST_VALS) a = loading.load_auth_from_conf_options(self.conf_fixture.conf, self.GROUP) self.assertTestVals(a) @utils.mock_plugin() def test_diff_section(self, m): section = uuid.uuid4().hex self.conf_fixture.config(auth_section=section, group=self.GROUP) loading.register_auth_conf_options(self.conf_fixture.conf, group=self.GROUP) self.conf_fixture.register_opts(to_oslo_opts( utils.MockLoader().get_options()), group=section) self.conf_fixture.config(group=section, auth_type=uuid.uuid4().hex, **self.TEST_VALS) a = loading.load_auth_from_conf_options(self.conf_fixture.conf, self.GROUP) self.assertTestVals(a) def test_plugins_are_all_opts(self): manager = stevedore.ExtensionManager(loading.PLUGIN_NAMESPACE, propagate_map_exceptions=True) def inner(driver): for p in driver.plugin().get_options(): self.assertIsInstance(p, loading.Opt) manager.map(inner) def test_get_common(self): opts = loading.get_auth_common_conf_options() for opt in opts: self.assertIsInstance(opt, cfg.Opt) self.assertEqual(2, len(opts)) def test_get_named(self): loaded_opts = loading.get_plugin_options('v2password') plugin_opts = v2.Password().get_options() loaded_names = set([o.name for o in loaded_opts]) plugin_names = set([o.name for o in plugin_opts]) self.assertEqual(plugin_names, loaded_names)
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid import mock from oslo_config import cfg from oslo_config import fixture as config import stevedore from keystoneauth1 import exceptions from keystoneauth1 import loading from keystoneauth1.loading._plugins.identity import v2 from keystoneauth1.loading._plugins.identity import v3 from keystoneauth1.tests.unit.loading import utils def to_oslo_opts(opts): return [o._to_oslo_opt() for o in opts] class ConfTests(utils.TestCase): def setUp(self): super(ConfTests, self).setUp() self.conf_fixture = self.useFixture(config.Config()) # NOTE(jamielennox): we register the basic config options first because # we need them in place before we can stub them. We will need to run # the register again after we stub the auth section and auth plugin so # it can load the plugin specific options. loading.register_auth_conf_options(self.conf_fixture.conf, group=self.GROUP) def test_loading_v2(self): section = uuid.uuid4().hex auth_url = uuid.uuid4().hex username = uuid.uuid4().hex password = uuid.uuid4().hex trust_id = uuid.uuid4().hex tenant_id = uuid.uuid4().hex self.conf_fixture.config(auth_section=section, group=self.GROUP) loading.register_auth_conf_options(self.conf_fixture.conf, group=self.GROUP) self.conf_fixture.register_opts( to_oslo_opts(v2.Password().get_options()), group=section) self.conf_fixture.config(auth_type=self.V2PASS, auth_url=auth_url, username=username, password=password, trust_id=trust_id, tenant_id=tenant_id, group=section) a = loading.load_auth_from_conf_options(self.conf_fixture.conf, self.GROUP) self.assertEqual(auth_url, a.auth_url) self.assertEqual(username, a.username) self.assertEqual(password, <PASSWORD>) self.assertEqual(trust_id, a.trust_id) self.assertEqual(tenant_id, a.tenant_id) def test_loading_v3(self): section = uuid.uuid4().hex auth_url = uuid.uuid4().hex, token = uuid.uuid4().hex trust_id = uuid.uuid4().hex project_id = uuid.uuid4().hex project_domain_name = uuid.uuid4().hex self.conf_fixture.config(auth_section=section, group=self.GROUP) loading.register_auth_conf_options(self.conf_fixture.conf, group=self.GROUP) self.conf_fixture.register_opts(to_oslo_opts(v3.Token().get_options()), group=section) self.conf_fixture.config(auth_type=self.V3TOKEN, auth_url=auth_url, token=token, trust_id=trust_id, project_id=project_id, project_domain_name=project_domain_name, group=section) a = loading.load_auth_from_conf_options(self.conf_fixture.conf, self.GROUP) self.assertEqual(token, a.auth_methods[0].token) self.assertEqual(trust_id, a.trust_id) self.assertEqual(project_id, a.project_id) self.assertEqual(project_domain_name, a.project_domain_name) def test_loading_invalid_plugin(self): auth_type = uuid.uuid4().hex self.conf_fixture.config(auth_type=auth_type, group=self.GROUP) e = self.assertRaises(exceptions.NoMatchingPlugin, loading.load_auth_from_conf_options, self.conf_fixture.conf, self.GROUP) self.assertEqual(auth_type, e.name) def test_loading_with_no_data(self): l = loading.load_auth_from_conf_options(self.conf_fixture.conf, self.GROUP) self.assertIsNone(l) @mock.patch('stevedore.DriverManager') def test_other_params(self, m): m.return_value = utils.MockManager(utils.MockLoader()) driver_name = uuid.uuid4().hex self.conf_fixture.register_opts( to_oslo_opts(utils.MockLoader().get_options()), group=self.GROUP) self.conf_fixture.config(auth_type=driver_name, group=self.GROUP, **self.TEST_VALS) a = loading.load_auth_from_conf_options(self.conf_fixture.conf, self.GROUP) self.assertTestVals(a) m.assert_called_once_with(namespace=loading.PLUGIN_NAMESPACE, name=driver_name, invoke_on_load=True) @utils.mock_plugin() def test_same_section(self, m): self.conf_fixture.register_opts( to_oslo_opts(utils.MockLoader().get_options()), group=self.GROUP) loading.register_auth_conf_options(self.conf_fixture.conf, group=self.GROUP) self.conf_fixture.config(auth_type=uuid.uuid4().hex, group=self.GROUP, **self.TEST_VALS) a = loading.load_auth_from_conf_options(self.conf_fixture.conf, self.GROUP) self.assertTestVals(a) @utils.mock_plugin() def test_diff_section(self, m): section = uuid.uuid4().hex self.conf_fixture.config(auth_section=section, group=self.GROUP) loading.register_auth_conf_options(self.conf_fixture.conf, group=self.GROUP) self.conf_fixture.register_opts(to_oslo_opts( utils.MockLoader().get_options()), group=section) self.conf_fixture.config(group=section, auth_type=uuid.uuid4().hex, **self.TEST_VALS) a = loading.load_auth_from_conf_options(self.conf_fixture.conf, self.GROUP) self.assertTestVals(a) def test_plugins_are_all_opts(self): manager = stevedore.ExtensionManager(loading.PLUGIN_NAMESPACE, propagate_map_exceptions=True) def inner(driver): for p in driver.plugin().get_options(): self.assertIsInstance(p, loading.Opt) manager.map(inner) def test_get_common(self): opts = loading.get_auth_common_conf_options() for opt in opts: self.assertIsInstance(opt, cfg.Opt) self.assertEqual(2, len(opts)) def test_get_named(self): loaded_opts = loading.get_plugin_options('v2password') plugin_opts = v2.Password().get_options() loaded_names = set([o.name for o in loaded_opts]) plugin_names = set([o.name for o in plugin_opts]) self.assertEqual(plugin_names, loaded_names)
en
0.853583
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # NOTE(jamielennox): we register the basic config options first because # we need them in place before we can stub them. We will need to run # the register again after we stub the auth section and auth plugin so # it can load the plugin specific options.
1.873384
2
iblvideo/tests/test_choiceworld.py
int-brain-lab/iblvideo
4
6633014
import shutil import numpy as np import pandas as pd from one.api import ONE from iblvideo.choiceworld import dlc from iblvideo.weights import download_weights from iblvideo.tests import _download_dlc_test_data from iblvideo import __version__ def test_dlc(version=__version__): one = ONE() test_data = _download_dlc_test_data(one=one) path_dlc = download_weights(version=version, one=one) for cam in ['body', 'left', 'right']: file_mp4 = test_data.joinpath('input', f'_iblrig_{cam}Camera.raw.mp4') tmp_dir = test_data.joinpath('input', f'dlc_tmp_iblrig_{cam}Camera.raw') out_file, _ = dlc(file_mp4, path_dlc) assert out_file assert (tmp_dir.is_dir() is False) out_pqt = pd.read_parquet(out_file) ctrl_pqt = pd.read_parquet( test_data.joinpath('output', f'_ibl_{cam}Camera.dlc.pqt')) assert np.all(out_pqt.columns == ctrl_pqt.columns) # only compare entries with likelihood over 0.9 targets = np.unique(['_'.join(col.split('_')[:-1]) for col in ctrl_pqt.columns]) for t in targets: idx_ctrl = ctrl_pqt.loc[ctrl_pqt[f'{t}_likelihood'] < 0.9].index idx_out = out_pqt.loc[out_pqt[f'{t}_likelihood'] < 0.9].index for idx in [idx_ctrl, idx_out]: ctrl_pqt.loc[idx, [f'{t}_x', f'{t}_y', f'{t}_likelihood']] = np.nan out_pqt.loc[idx, [f'{t}_x', f'{t}_y', f'{t}_likelihood']] = np.nan try: assert np.allclose(np.array(out_pqt), np.array(ctrl_pqt), rtol=10e-2, equal_nan=True) except AssertionError: diff = np.abs(np.array(out_pqt) - np.array(ctrl_pqt)) out_pqt.to_parquet(test_data.joinpath(f'_ibl_{cam}Camera.dlc.failed.pqt')) print(np.nanmax(diff, axis=0), np.nanmean(diff, axis=0)) assert np.allclose(np.array(out_pqt), np.array(ctrl_pqt), rtol=10e-2, equal_nan=True) alf_path = test_data.joinpath('alf') shutil.rmtree(alf_path)
import shutil import numpy as np import pandas as pd from one.api import ONE from iblvideo.choiceworld import dlc from iblvideo.weights import download_weights from iblvideo.tests import _download_dlc_test_data from iblvideo import __version__ def test_dlc(version=__version__): one = ONE() test_data = _download_dlc_test_data(one=one) path_dlc = download_weights(version=version, one=one) for cam in ['body', 'left', 'right']: file_mp4 = test_data.joinpath('input', f'_iblrig_{cam}Camera.raw.mp4') tmp_dir = test_data.joinpath('input', f'dlc_tmp_iblrig_{cam}Camera.raw') out_file, _ = dlc(file_mp4, path_dlc) assert out_file assert (tmp_dir.is_dir() is False) out_pqt = pd.read_parquet(out_file) ctrl_pqt = pd.read_parquet( test_data.joinpath('output', f'_ibl_{cam}Camera.dlc.pqt')) assert np.all(out_pqt.columns == ctrl_pqt.columns) # only compare entries with likelihood over 0.9 targets = np.unique(['_'.join(col.split('_')[:-1]) for col in ctrl_pqt.columns]) for t in targets: idx_ctrl = ctrl_pqt.loc[ctrl_pqt[f'{t}_likelihood'] < 0.9].index idx_out = out_pqt.loc[out_pqt[f'{t}_likelihood'] < 0.9].index for idx in [idx_ctrl, idx_out]: ctrl_pqt.loc[idx, [f'{t}_x', f'{t}_y', f'{t}_likelihood']] = np.nan out_pqt.loc[idx, [f'{t}_x', f'{t}_y', f'{t}_likelihood']] = np.nan try: assert np.allclose(np.array(out_pqt), np.array(ctrl_pqt), rtol=10e-2, equal_nan=True) except AssertionError: diff = np.abs(np.array(out_pqt) - np.array(ctrl_pqt)) out_pqt.to_parquet(test_data.joinpath(f'_ibl_{cam}Camera.dlc.failed.pqt')) print(np.nanmax(diff, axis=0), np.nanmean(diff, axis=0)) assert np.allclose(np.array(out_pqt), np.array(ctrl_pqt), rtol=10e-2, equal_nan=True) alf_path = test_data.joinpath('alf') shutil.rmtree(alf_path)
en
0.901501
# only compare entries with likelihood over 0.9
2.445482
2
training/tokenisation.py
dice-group/NETL-Automatic-Topic-Labelling-
176
6633015
<reponame>dice-group/NETL-Automatic-Topic-Labelling-<gh_stars>100-1000 """ Author: <NAME> Date: October 2016 File: tokenisation.py It takes in processed xml dump extraced by WikiExtractor and tokenises it using standford-parser for tokenization. You can use any of the below URL to download it and unzip it if want to run on your own. http://nlp.stanford.edu/software/stanford-parser-full-2014-08-27.zip The arguments for this file are given in main_train.py. """ import os import argparse import sys # Get the arguments passed in main_train.py parser = argparse.ArgumentParser() parser.add_argument("parser_loc") # location of stanford parser giben in main_train.py parser.add_argument("input_dir") # Input diretory which is output of wiki-extractor processed xml dump parser.add_argument("output_dir")# Output directory for tokenised file args = parser.parse_args() # Checks if the output directory specified already exists. If it does removes it. if os.path.isdir(args.output_dir): del_query = "rm -r "+args.output_dir os.system(del_query) # Gets all the sub directories from the location list_files = os.listdir(args.input_dir) # Gets the classpath to run stanford tokenizer classpath = args.parser_loc +"/stanford-parser.jar" query1 = "mkdir "+args.output_dir os.system(query1) for item in list_files: if os.path.isdir(args.input_dir+"/"+item): inp_subdir =args.input_dir +"/"+ item # Getting the full path for subdirectories which needs to be tokenized. subfiles = os.listdir(inp_subdir) # listing the files in subdirectory out_subdir = args.output_dir +"/"+ item query = "mkdir " +out_subdir # making new sub directories in output location, so that the directory structure of tokenised file is same as input directory os.system(query) for elem in subfiles: input_file = inp_subdir + "/"+elem # Working on files in subdirectory. We need to tokenize them output_file = out_subdir + "/"+elem query2 = "java -cp "+ classpath +" edu.stanford.nlp.process.PTBTokenizer -preserveLines --lowerCase <"+input_file+"> "+output_file # Java commanf to stanford tokenizer print "Executing query" print query2 os.system(query2)
""" Author: <NAME> Date: October 2016 File: tokenisation.py It takes in processed xml dump extraced by WikiExtractor and tokenises it using standford-parser for tokenization. You can use any of the below URL to download it and unzip it if want to run on your own. http://nlp.stanford.edu/software/stanford-parser-full-2014-08-27.zip The arguments for this file are given in main_train.py. """ import os import argparse import sys # Get the arguments passed in main_train.py parser = argparse.ArgumentParser() parser.add_argument("parser_loc") # location of stanford parser giben in main_train.py parser.add_argument("input_dir") # Input diretory which is output of wiki-extractor processed xml dump parser.add_argument("output_dir")# Output directory for tokenised file args = parser.parse_args() # Checks if the output directory specified already exists. If it does removes it. if os.path.isdir(args.output_dir): del_query = "rm -r "+args.output_dir os.system(del_query) # Gets all the sub directories from the location list_files = os.listdir(args.input_dir) # Gets the classpath to run stanford tokenizer classpath = args.parser_loc +"/stanford-parser.jar" query1 = "mkdir "+args.output_dir os.system(query1) for item in list_files: if os.path.isdir(args.input_dir+"/"+item): inp_subdir =args.input_dir +"/"+ item # Getting the full path for subdirectories which needs to be tokenized. subfiles = os.listdir(inp_subdir) # listing the files in subdirectory out_subdir = args.output_dir +"/"+ item query = "mkdir " +out_subdir # making new sub directories in output location, so that the directory structure of tokenised file is same as input directory os.system(query) for elem in subfiles: input_file = inp_subdir + "/"+elem # Working on files in subdirectory. We need to tokenize them output_file = out_subdir + "/"+elem query2 = "java -cp "+ classpath +" edu.stanford.nlp.process.PTBTokenizer -preserveLines --lowerCase <"+input_file+"> "+output_file # Java commanf to stanford tokenizer print "Executing query" print query2 os.system(query2)
en
0.827296
Author: <NAME> Date: October 2016 File: tokenisation.py It takes in processed xml dump extraced by WikiExtractor and tokenises it using standford-parser for tokenization. You can use any of the below URL to download it and unzip it if want to run on your own. http://nlp.stanford.edu/software/stanford-parser-full-2014-08-27.zip The arguments for this file are given in main_train.py. # Get the arguments passed in main_train.py # location of stanford parser giben in main_train.py # Input diretory which is output of wiki-extractor processed xml dump # Output directory for tokenised file # Checks if the output directory specified already exists. If it does removes it. # Gets all the sub directories from the location # Gets the classpath to run stanford tokenizer # Getting the full path for subdirectories which needs to be tokenized. # listing the files in subdirectory # making new sub directories in output location, so that the directory structure of tokenised file is same as input directory # Working on files in subdirectory. We need to tokenize them # Java commanf to stanford tokenizer
2.935252
3
Skill_Development_Center/Individual_Assignments/Prethvi_Raj/Task_3.py
Pirouz-Nourian/earthy_18
1
6633016
<reponame>Pirouz-Nourian/earthy_18 import Rhino.Geometry as rg import math as math import rhinoscriptsyntax as rs Bbox =S.GetBoundingBox(True) W = Bbox.Diagonal.X L = Bbox.Diagonal.Y H = Bbox.Diagonal.Z #print(W) XC = int(math.ceil(W/xS)) YC = int(math.ceil(L/yS)) ZC = int(math.ceil(H/zS)) points = [] distList = [] print(Bbox) bPoint = Bbox.Min print(bPoint) bXV = rg.Vector3d.XAxis bYV = rg.Vector3d.YAxis xShift = xS/2 yShift = yS/2 zShift = zS/2 bplane=rg.Plane(bPoint, bXV, bYV) for i in range(0,XC): for j in range(0,YC): for k in range(0,ZC): point = bplane.PointAt(i*xS+xShift,j*yS+yShift,k*zS+zShift) points.append(point) cPoint = S.ClosestPoint(point) distance = point.DistanceTo(cPoint) if(S.IsPointInside(point, 0.1, True)): distance = -distance else: distance = distance distList.append(distance) #print(distList) b = points c = distList
import Rhino.Geometry as rg import math as math import rhinoscriptsyntax as rs Bbox =S.GetBoundingBox(True) W = Bbox.Diagonal.X L = Bbox.Diagonal.Y H = Bbox.Diagonal.Z #print(W) XC = int(math.ceil(W/xS)) YC = int(math.ceil(L/yS)) ZC = int(math.ceil(H/zS)) points = [] distList = [] print(Bbox) bPoint = Bbox.Min print(bPoint) bXV = rg.Vector3d.XAxis bYV = rg.Vector3d.YAxis xShift = xS/2 yShift = yS/2 zShift = zS/2 bplane=rg.Plane(bPoint, bXV, bYV) for i in range(0,XC): for j in range(0,YC): for k in range(0,ZC): point = bplane.PointAt(i*xS+xShift,j*yS+yShift,k*zS+zShift) points.append(point) cPoint = S.ClosestPoint(point) distance = point.DistanceTo(cPoint) if(S.IsPointInside(point, 0.1, True)): distance = -distance else: distance = distance distList.append(distance) #print(distList) b = points c = distList
ru
0.191288
#print(W) #print(distList)
2.279289
2
tracker/app/models/ddr.py
skielred/FairyJokeAPI
3
6633017
<reponame>skielred/FairyJokeAPI import enum import sqlalchemy as sa from sqlalchemy import orm from app import db from app.utils.badges import FCBadges from app.utils.enumerable import Enumerable class DDRLocalChart(db.IdMixin, db.Base): title = sa.Column(sa.String) artist = sa.Column(sa.String) step_artist = sa.Column(sa.String) difficulty = sa.Column(sa.String) level = sa.Column(sa.Integer) class DDRScore(db.ExScoreMixin, db.Base): class Mods(Enumerable): TURN = {'MIRROR', 'LEFT', 'RIGHT', 'SHUFFLE'} STEP_ZONE = {'OFF'} SPEED = set(map( lambda x: x / 100, [*range(25, 400, 25), *range(400, 800, 50)] )) ARROW_MOVE = {'BOOST', 'BRAKE', 'WAVE'} SCROLL = {'REVERSE'} CUT = { 'ON1', # Only shows 1/4s 'ON2', # Only shows 1/8s } FREEZE_ARROW = {'OFF'} JUMP = {'OFF'} LIFE_GAUGE = {'LIFE4', 'RISKY'} SCREEN_FILTER = {'DARK', 'DARKER', 'DARKEST'} GUIDELINE = {'BORDER', 'CENTER'} class Clears(enum.Enum): fail = 'FAIL' play = 'PLAYED' clear = 'CLEARED' fc = 'FULLCOMBO' gfc = 'GREAT FULLCOMBO' pfc = 'PERFECT FULLCOMBO' mfc = 'MARVELOUS FULLCOMBO' api_chart_id = sa.Column(sa.Integer) local_chart_id = sa.Column(sa.ForeignKey('ddr_local_charts.id')) clear_type = sa.Column(sa.Enum(Clears)) mods = orm.relationship('DDRScoreMod') chart = orm.relationship('DDRLocalChart', backref='scores') class Badges(FCBadges): MFC = 'MARVELOUS FULLCOMBO' PFC = 'PERFECT FULLCOMBO' GFC = 'GREAT FULLCOMBO' @classmethod def from_score(cls, score): judges = score.judges_obj if not judges.good + judges.miss == 0: return super().from_score(score) if judges.great + judges.perfect == 0: return [cls.MFC] if judges.great == 0: return [cls.PFC] return [cls.GFC] @property def badges(self): return self.Badges.from_score(self) class DDRScoreMod(db.IdMixin, db.Base): score_id = sa.Column(sa.ForeignKey('ddr_scores.id'), nullable=False) name = sa.Column(sa.Enum(*DDRScore.Mods.keys()), nullable=False) value = sa.Column(sa.String) score = orm.relationship('DDRScore', back_populates='mods')
import enum import sqlalchemy as sa from sqlalchemy import orm from app import db from app.utils.badges import FCBadges from app.utils.enumerable import Enumerable class DDRLocalChart(db.IdMixin, db.Base): title = sa.Column(sa.String) artist = sa.Column(sa.String) step_artist = sa.Column(sa.String) difficulty = sa.Column(sa.String) level = sa.Column(sa.Integer) class DDRScore(db.ExScoreMixin, db.Base): class Mods(Enumerable): TURN = {'MIRROR', 'LEFT', 'RIGHT', 'SHUFFLE'} STEP_ZONE = {'OFF'} SPEED = set(map( lambda x: x / 100, [*range(25, 400, 25), *range(400, 800, 50)] )) ARROW_MOVE = {'BOOST', 'BRAKE', 'WAVE'} SCROLL = {'REVERSE'} CUT = { 'ON1', # Only shows 1/4s 'ON2', # Only shows 1/8s } FREEZE_ARROW = {'OFF'} JUMP = {'OFF'} LIFE_GAUGE = {'LIFE4', 'RISKY'} SCREEN_FILTER = {'DARK', 'DARKER', 'DARKEST'} GUIDELINE = {'BORDER', 'CENTER'} class Clears(enum.Enum): fail = 'FAIL' play = 'PLAYED' clear = 'CLEARED' fc = 'FULLCOMBO' gfc = 'GREAT FULLCOMBO' pfc = 'PERFECT FULLCOMBO' mfc = 'MARVELOUS FULLCOMBO' api_chart_id = sa.Column(sa.Integer) local_chart_id = sa.Column(sa.ForeignKey('ddr_local_charts.id')) clear_type = sa.Column(sa.Enum(Clears)) mods = orm.relationship('DDRScoreMod') chart = orm.relationship('DDRLocalChart', backref='scores') class Badges(FCBadges): MFC = 'MARVELOUS FULLCOMBO' PFC = 'PERFECT FULLCOMBO' GFC = 'GREAT FULLCOMBO' @classmethod def from_score(cls, score): judges = score.judges_obj if not judges.good + judges.miss == 0: return super().from_score(score) if judges.great + judges.perfect == 0: return [cls.MFC] if judges.great == 0: return [cls.PFC] return [cls.GFC] @property def badges(self): return self.Badges.from_score(self) class DDRScoreMod(db.IdMixin, db.Base): score_id = sa.Column(sa.ForeignKey('ddr_scores.id'), nullable=False) name = sa.Column(sa.Enum(*DDRScore.Mods.keys()), nullable=False) value = sa.Column(sa.String) score = orm.relationship('DDRScore', back_populates='mods')
en
0.788646
# Only shows 1/4s # Only shows 1/8s
2.217332
2
src/setup.py
akiyoko/django-simple-serializer
180
6633018
<filename>src/setup.py import codecs import os import sys try: from setuptools import setup except ImportError: from distutils.core import setup def read(fname): return codecs.open(os.path.join(os.path.dirname(__file__), fname)).read() NAME = "django-simple-serializer" PACKAGES = ["dss", ] DESCRIPTION = "Django Simple Serializer is a serializer to help user serialize django data or python list into json,xml,dict data in a simple way." LONG_DESCRIPTION = read("README.rst") KEYWORDS = "django serializer" AUTHOR = "RaPoSpectre" AUTHOR_EMAIL = "<EMAIL>" URL = "https://github.com/bluedazzle/django-simple-serializer" VERSION = "2.0.7" LICENSE = "MIT" setup( name=NAME, version=VERSION, description=DESCRIPTION, long_description=LONG_DESCRIPTION, classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Intended Audience :: Developers', 'Operating System :: OS Independent', ], install_requires=[ 'future' ], keywords=KEYWORDS, author=AUTHOR, author_email=AUTHOR_EMAIL, url=URL, license=LICENSE, packages=PACKAGES, include_package_data=True, zip_safe=True, )
<filename>src/setup.py import codecs import os import sys try: from setuptools import setup except ImportError: from distutils.core import setup def read(fname): return codecs.open(os.path.join(os.path.dirname(__file__), fname)).read() NAME = "django-simple-serializer" PACKAGES = ["dss", ] DESCRIPTION = "Django Simple Serializer is a serializer to help user serialize django data or python list into json,xml,dict data in a simple way." LONG_DESCRIPTION = read("README.rst") KEYWORDS = "django serializer" AUTHOR = "RaPoSpectre" AUTHOR_EMAIL = "<EMAIL>" URL = "https://github.com/bluedazzle/django-simple-serializer" VERSION = "2.0.7" LICENSE = "MIT" setup( name=NAME, version=VERSION, description=DESCRIPTION, long_description=LONG_DESCRIPTION, classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Intended Audience :: Developers', 'Operating System :: OS Independent', ], install_requires=[ 'future' ], keywords=KEYWORDS, author=AUTHOR, author_email=AUTHOR_EMAIL, url=URL, license=LICENSE, packages=PACKAGES, include_package_data=True, zip_safe=True, )
none
1
1.654601
2
Scripts/simulation/story_progression/story_progression_action_career.py
velocist/TS4CheatsInfo
0
6633019
# uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\story_progression\story_progression_action_career.py # Compiled at: 2015-05-01 22:45:36 # Size of source mod 2**32: 5363 bytes import random from sims4.repr_utils import standard_repr from sims4.tuning.tunable import AutoFactoryInit, HasTunableSingletonFactory, TunableVariant from story_progression.story_progression_action_base import StoryProgressionAction from story_progression.story_progression_agents import StoryProgressionAgentSimInfo import services, sims4.resources class _CareerSubaction: def __init__(self, sim_info): self._sim_info = sim_info self._sim_info_agent = StoryProgressionAgentSimInfo(sim_info) def __repr__(self): return standard_repr(self) def save(self, data): raise NotImplementedError def execute_subaction(self): raise NotImplementedError class _CareerSubactionFactory(HasTunableSingletonFactory, AutoFactoryInit): def load(self, data): raise NotImplementedError def get_potenial_subactions_gen(self, sim_info): raise NotImplementedError class _CareerSubactionJoin(_CareerSubaction): def __init__(self, *args, career, **kwargs): (super().__init__)(*args, **kwargs) self._career = career def __repr__(self): return standard_repr(self, career=(self._career.__name__)) def save(self, data): data.custom_guid = self._career.guid64 def execute_subaction(self): user_level = random.randint(1, self._career.get_max_user_level()) self._sim_info.career_tracker.add_career((self._career(self._sim_info)), user_level_override=user_level, give_skipped_rewards=False) def update_demographics(self, demographics): sim_info_agent = self._sim_info_agent.get_agent_clone(career=(self._career)) for demographic in demographics: demographic.remove_sim_info_agent(self._sim_info_agent) demographic.add_sim_info_agent(sim_info_agent) class _CareerSubactionFactoryJoin(_CareerSubactionFactory): def load(self, sim_info, data): career_manager = services.get_instance_manager(sims4.resources.Types.CAREER) career = career_manager.get(data.custom_guid) if career is None: raise TypeError return _CareerSubactionJoin(sim_info, career=career) def get_potenial_subactions_gen(self, sim_info): career_service = services.get_career_service() for career in career_service.get_career_list(): if career.career_story_progression.joining is not None: yield _CareerSubactionJoin(sim_info, career=career) class _CareerSubactionFactoryQuit(_CareerSubactionFactory): pass class _CareerSubactionFactoryFired(_CareerSubactionFactory): pass class _CareerSubactionFactoryRetire(_CareerSubactionFactory): pass class _CareerSubactionFactoryPromoted(_CareerSubactionFactory): pass class _CareerSubactionFactoryDemoted(_CareerSubactionFactory): pass class StoryProgressionActionCareer(StoryProgressionAction): INSTANCE_TUNABLES = {'career_subaction': TunableVariant(description='\n The career operation to apply for this action.\n ', join=(_CareerSubactionFactoryJoin.TunableFactory()), quit=(_CareerSubactionFactoryQuit.TunableFactory()), fired=(_CareerSubactionFactoryFired.TunableFactory()), retire=(_CareerSubactionFactoryRetire.TunableFactory()), promoted=(_CareerSubactionFactoryPromoted.TunableFactory()), demoted=(_CareerSubactionFactoryDemoted.TunableFactory()), default='join')} def __init__(self, *args, career_subaction=None, **kwargs): (super().__init__)(*args, **kwargs) self._career_subaction = career_subaction def __repr__(self): return standard_repr(self, subaction=(self._career_subaction)) def load(self, data): super().load(data) self._career_subaction = self.career_subaction.load(self._sim_info, data) def save(self, data): super().save(data) self._career_subaction.save(data) @classmethod def get_potential_actions_gen(cls, sim_info): for career_subaction in cls.career_subaction.get_potenial_subactions_gen(sim_info): yield cls(sim_info, career_subaction=career_subaction) def execute_action(self): return self._career_subaction.execute_subaction() def update_demographics(self, demographics): self._career_subaction.update_demographics(demographics)
# uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\story_progression\story_progression_action_career.py # Compiled at: 2015-05-01 22:45:36 # Size of source mod 2**32: 5363 bytes import random from sims4.repr_utils import standard_repr from sims4.tuning.tunable import AutoFactoryInit, HasTunableSingletonFactory, TunableVariant from story_progression.story_progression_action_base import StoryProgressionAction from story_progression.story_progression_agents import StoryProgressionAgentSimInfo import services, sims4.resources class _CareerSubaction: def __init__(self, sim_info): self._sim_info = sim_info self._sim_info_agent = StoryProgressionAgentSimInfo(sim_info) def __repr__(self): return standard_repr(self) def save(self, data): raise NotImplementedError def execute_subaction(self): raise NotImplementedError class _CareerSubactionFactory(HasTunableSingletonFactory, AutoFactoryInit): def load(self, data): raise NotImplementedError def get_potenial_subactions_gen(self, sim_info): raise NotImplementedError class _CareerSubactionJoin(_CareerSubaction): def __init__(self, *args, career, **kwargs): (super().__init__)(*args, **kwargs) self._career = career def __repr__(self): return standard_repr(self, career=(self._career.__name__)) def save(self, data): data.custom_guid = self._career.guid64 def execute_subaction(self): user_level = random.randint(1, self._career.get_max_user_level()) self._sim_info.career_tracker.add_career((self._career(self._sim_info)), user_level_override=user_level, give_skipped_rewards=False) def update_demographics(self, demographics): sim_info_agent = self._sim_info_agent.get_agent_clone(career=(self._career)) for demographic in demographics: demographic.remove_sim_info_agent(self._sim_info_agent) demographic.add_sim_info_agent(sim_info_agent) class _CareerSubactionFactoryJoin(_CareerSubactionFactory): def load(self, sim_info, data): career_manager = services.get_instance_manager(sims4.resources.Types.CAREER) career = career_manager.get(data.custom_guid) if career is None: raise TypeError return _CareerSubactionJoin(sim_info, career=career) def get_potenial_subactions_gen(self, sim_info): career_service = services.get_career_service() for career in career_service.get_career_list(): if career.career_story_progression.joining is not None: yield _CareerSubactionJoin(sim_info, career=career) class _CareerSubactionFactoryQuit(_CareerSubactionFactory): pass class _CareerSubactionFactoryFired(_CareerSubactionFactory): pass class _CareerSubactionFactoryRetire(_CareerSubactionFactory): pass class _CareerSubactionFactoryPromoted(_CareerSubactionFactory): pass class _CareerSubactionFactoryDemoted(_CareerSubactionFactory): pass class StoryProgressionActionCareer(StoryProgressionAction): INSTANCE_TUNABLES = {'career_subaction': TunableVariant(description='\n The career operation to apply for this action.\n ', join=(_CareerSubactionFactoryJoin.TunableFactory()), quit=(_CareerSubactionFactoryQuit.TunableFactory()), fired=(_CareerSubactionFactoryFired.TunableFactory()), retire=(_CareerSubactionFactoryRetire.TunableFactory()), promoted=(_CareerSubactionFactoryPromoted.TunableFactory()), demoted=(_CareerSubactionFactoryDemoted.TunableFactory()), default='join')} def __init__(self, *args, career_subaction=None, **kwargs): (super().__init__)(*args, **kwargs) self._career_subaction = career_subaction def __repr__(self): return standard_repr(self, subaction=(self._career_subaction)) def load(self, data): super().load(data) self._career_subaction = self.career_subaction.load(self._sim_info, data) def save(self, data): super().save(data) self._career_subaction.save(data) @classmethod def get_potential_actions_gen(cls, sim_info): for career_subaction in cls.career_subaction.get_potenial_subactions_gen(sim_info): yield cls(sim_info, career_subaction=career_subaction) def execute_action(self): return self._career_subaction.execute_subaction() def update_demographics(self, demographics): self._career_subaction.update_demographics(demographics)
en
0.510533
# uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\story_progression\story_progression_action_career.py # Compiled at: 2015-05-01 22:45:36 # Size of source mod 2**32: 5363 bytes
1.854488
2
get_top_hits.py
beepscore/websearcher
0
6633020
<reponame>beepscore/websearcher #!/usr/bin/env python3 from websearcher import top_hits """ Search words in input file. Use command line arguments. """ top_hits = top_hits.TopHits("@./data/input/top_hit_args.txt") # top_hits_from_file_to_file writes to file, doesn't return anything top_hits.top_hits_from_file_to_file()
#!/usr/bin/env python3 from websearcher import top_hits """ Search words in input file. Use command line arguments. """ top_hits = top_hits.TopHits("@./data/input/top_hit_args.txt") # top_hits_from_file_to_file writes to file, doesn't return anything top_hits.top_hits_from_file_to_file()
en
0.750986
#!/usr/bin/env python3 Search words in input file. Use command line arguments. # top_hits_from_file_to_file writes to file, doesn't return anything
2.90273
3
pydynamo_brain/pydynamo_brain/test/uiPunctaTest.py
ubcbraincircuits/pyDynamo
4
6633021
import os import time from PyQt5 import QtCore, QtWidgets from PyQt5.QtCore import Qt, QPoint from pydynamo_brain.ui import DynamoWindow import pydynamo_brain.util as util from pydynamo_brain.util.testableFilePicker import setNextTestPaths from pydynamo_brain.files import fullStateToString, stringToFullState def _near(a, b): return abs(a - b) < 1e-6 def _checkPointXYZR(p, x, y, z, r): assert _near(x, p.location[0]) \ and _near(y, p.location[1]) \ and _near(z, p.location[2]) \ and _near(r, p.radius) def _init(qtbot): dynamoWindow = DynamoWindow(None, []) dynamoWindow.show() qtbot.addWidget(dynamoWindow) return dynamoWindow def run(qtbot): dW = _init(qtbot) scan1Path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "files", "scan1.tif") # Click to open new stack: setNextTestPaths([scan1Path]) qtbot.mouseClick(dW.initialMenu.buttonN, Qt.LeftButton) qtbot.waitUntil(lambda: len(dW.stackWindows) == 1) sW = dW.stackWindows[0] view = sW.dendrites.imgView.viewport() # Wait til window is ready: qtbot.mouseClick(view, Qt.LeftButton, pos=QPoint(0, 0)) sW.raise_() sW.activateWindow() sW.setFocus(True) qtbot.waitUntil(lambda: sW.hasFocus(), timeout=10000) # Empty tree, no puncta assert len(dW.fullState.trees) == 1 assert len(dW.fullState.puncta) == 0 # Enter puncta mode qtbot.keyClick(sW, 'p') assert dW.fullState.inPunctaMode() pDraw = QPoint(100, 100) pMove = QPoint(100, 150) pSize = QPoint(103, 154) x1 = 55.2423679 y1 = 44.1938943 r1 = 3.0000000 y2 = 71.8150782 r2 = 2.7621184 # Draw the point qtbot.mouseClick(view, Qt.LeftButton, pos=pDraw) assert len(dW.fullState.puncta) == 1 assert len(dW.fullState.puncta[0]) == 1 point = dW.fullState.puncta[0][0] _checkPointXYZR(point, x1, y1, 0, r1) # Move the point qtbot.mouseClick(view, Qt.LeftButton, pos=pMove, modifier=Qt.ShiftModifier) assert len(dW.fullState.puncta) == 1 assert len(dW.fullState.puncta[0]) == 1 point = dW.fullState.puncta[0][0] _checkPointXYZR(point, x1, y2, 0, r1) # Resize the point qtbot.mouseClick(view, Qt.RightButton, pos=pSize) assert len(dW.fullState.puncta) == 1 assert len(dW.fullState.puncta[0]) == 1 point = dW.fullState.puncta[0][0] _checkPointXYZR(point, x1, y2, 0, r2) # Draw a second point: qtbot.mouseClick(view, Qt.LeftButton, pos=pDraw) assert len(dW.fullState.puncta) == 1 assert len(dW.fullState.puncta[0]) == 2 point = dW.fullState.puncta[0][1] _checkPointXYZR(point, x1, y1, 0, r1) # Delete the first point by clicking on its boundary: qtbot.mouseClick(view, Qt.LeftButton, pos=pSize, modifier=Qt.ControlModifier) assert len(dW.fullState.puncta) == 1 assert len(dW.fullState.puncta[0]) == 1 # ... only the second point left point = dW.fullState.puncta[0][0] _checkPointXYZR(point, x1, y1, 0, r1) # Save and load to verify toString = fullStateToString(dW.fullState) toFullState = stringToFullState(toString, "") assert len(toFullState.puncta) == 1 assert len(toFullState.puncta[0]) == 1 point = toFullState.puncta[0][0] _checkPointXYZR(point, x1, y1, 0, r1) return True
import os import time from PyQt5 import QtCore, QtWidgets from PyQt5.QtCore import Qt, QPoint from pydynamo_brain.ui import DynamoWindow import pydynamo_brain.util as util from pydynamo_brain.util.testableFilePicker import setNextTestPaths from pydynamo_brain.files import fullStateToString, stringToFullState def _near(a, b): return abs(a - b) < 1e-6 def _checkPointXYZR(p, x, y, z, r): assert _near(x, p.location[0]) \ and _near(y, p.location[1]) \ and _near(z, p.location[2]) \ and _near(r, p.radius) def _init(qtbot): dynamoWindow = DynamoWindow(None, []) dynamoWindow.show() qtbot.addWidget(dynamoWindow) return dynamoWindow def run(qtbot): dW = _init(qtbot) scan1Path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "files", "scan1.tif") # Click to open new stack: setNextTestPaths([scan1Path]) qtbot.mouseClick(dW.initialMenu.buttonN, Qt.LeftButton) qtbot.waitUntil(lambda: len(dW.stackWindows) == 1) sW = dW.stackWindows[0] view = sW.dendrites.imgView.viewport() # Wait til window is ready: qtbot.mouseClick(view, Qt.LeftButton, pos=QPoint(0, 0)) sW.raise_() sW.activateWindow() sW.setFocus(True) qtbot.waitUntil(lambda: sW.hasFocus(), timeout=10000) # Empty tree, no puncta assert len(dW.fullState.trees) == 1 assert len(dW.fullState.puncta) == 0 # Enter puncta mode qtbot.keyClick(sW, 'p') assert dW.fullState.inPunctaMode() pDraw = QPoint(100, 100) pMove = QPoint(100, 150) pSize = QPoint(103, 154) x1 = 55.2423679 y1 = 44.1938943 r1 = 3.0000000 y2 = 71.8150782 r2 = 2.7621184 # Draw the point qtbot.mouseClick(view, Qt.LeftButton, pos=pDraw) assert len(dW.fullState.puncta) == 1 assert len(dW.fullState.puncta[0]) == 1 point = dW.fullState.puncta[0][0] _checkPointXYZR(point, x1, y1, 0, r1) # Move the point qtbot.mouseClick(view, Qt.LeftButton, pos=pMove, modifier=Qt.ShiftModifier) assert len(dW.fullState.puncta) == 1 assert len(dW.fullState.puncta[0]) == 1 point = dW.fullState.puncta[0][0] _checkPointXYZR(point, x1, y2, 0, r1) # Resize the point qtbot.mouseClick(view, Qt.RightButton, pos=pSize) assert len(dW.fullState.puncta) == 1 assert len(dW.fullState.puncta[0]) == 1 point = dW.fullState.puncta[0][0] _checkPointXYZR(point, x1, y2, 0, r2) # Draw a second point: qtbot.mouseClick(view, Qt.LeftButton, pos=pDraw) assert len(dW.fullState.puncta) == 1 assert len(dW.fullState.puncta[0]) == 2 point = dW.fullState.puncta[0][1] _checkPointXYZR(point, x1, y1, 0, r1) # Delete the first point by clicking on its boundary: qtbot.mouseClick(view, Qt.LeftButton, pos=pSize, modifier=Qt.ControlModifier) assert len(dW.fullState.puncta) == 1 assert len(dW.fullState.puncta[0]) == 1 # ... only the second point left point = dW.fullState.puncta[0][0] _checkPointXYZR(point, x1, y1, 0, r1) # Save and load to verify toString = fullStateToString(dW.fullState) toFullState = stringToFullState(toString, "") assert len(toFullState.puncta) == 1 assert len(toFullState.puncta[0]) == 1 point = toFullState.puncta[0][0] _checkPointXYZR(point, x1, y1, 0, r1) return True
en
0.815078
# Click to open new stack: # Wait til window is ready: # Empty tree, no puncta # Enter puncta mode # Draw the point # Move the point # Resize the point # Draw a second point: # Delete the first point by clicking on its boundary: # ... only the second point left # Save and load to verify
2.267273
2
go/bootstrap.py
allaparthi/monorail
0
6633022
#!/usr/bin/env vpython # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Prepares a local hermetic Go installation. - Downloads and unpacks the Go toolset in ../../golang. - Downloads and installs Glide (used by deps.py). - Fetches code dependencies via deps.py. """ import argparse import collections import contextlib import json import logging import os import shutil import stat import subprocess import sys import tempfile LOGGER = logging.getLogger(__name__) # /path/to/infra ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Directory with .gclient file. GCLIENT_ROOT = os.path.dirname(ROOT) # The current overarching Infra version. If this changes, everything will be # updated regardless of its version. INFRA_VERSION = 1 # Where to install Go toolset to. GOROOT would be <TOOLSET_ROOT>/go. TOOLSET_ROOT = os.path.join(os.path.dirname(ROOT), 'golang') # Default workspace with infra go code. WORKSPACE = os.path.join(ROOT, 'go') # Platform depended suffix for executable files. EXE_SFX = '.exe' if sys.platform == 'win32' else '' # On Windows we use git from depot_tools. GIT_EXE = 'git.bat' if sys.platform == 'win32' else 'git' # Version of Go CIPD package (infra/3pp/tools/go/${platform}) to install. TOOLSET_VERSION = '1.14.2' # Describes how to fetch 'glide'. GLIDE_SOURCE = { 'src/github.com/Masterminds/glide': { 'url': ( 'https://chromium.googlesource.com/external/github.com/' 'Masterminds/glide.git'), 'rev': 'refs/tags/v0.13.3', 'patches': [ '0001-Fix-edge-case-related-to-git-submodules-on-Windows.patch', ], }, } # Layout is the layout of the bootstrap installation. _Layout = collections.namedtuple('Layout', ( # The path where the Go toolset is checked out at. 'toolset_root', # The workspace path. 'workspace', # The list of vendor directories. Each will have a Glide "deps.yaml" in it. 'vendor_paths', # List of paths to append to GOPATH (in additional to `workspace`). 'go_paths', # The list of DEPS'd in paths that contain Go sources. This is used to # determine when our vendored tools need to be re-installed. 'go_deps_paths', # Go package paths of tools to install into the bootstrap environment. 'go_install_tools', )) class Layout(_Layout): @property def go_repo_versions_path(self): """The path where the latest installed Go repository versions are recorded. """ return os.path.join(self.workspace, '.deps_repo_versions.json') # A base empty Layout. _EMPTY_LAYOUT = Layout( toolset_root=None, workspace=None, vendor_paths=None, go_paths=None, go_deps_paths=None, go_install_tools=None) # Infra standard layout. LAYOUT = Layout( toolset_root=TOOLSET_ROOT, workspace=WORKSPACE, vendor_paths=[WORKSPACE], go_paths=[], go_deps_paths=[os.path.join(WORKSPACE, _p) for _p in ( 'src/go.chromium.org/gae', 'src/go.chromium.org/luci', )], go_install_tools=[ # Note: please add only tools that really should be in PATH in default # dev environment. 'github.com/golang/mock/mockgen', 'go.chromium.org/gae/tools/proto-gae', 'go.chromium.org/luci/grpc/cmd/...', 'go.chromium.org/luci/luci_notify/cmd/...', 'go.chromium.org/luci/tools/cmd/...', 'infra/cmd/bqexport', 'infra/cmd/cloudsqlhelper', ], ) # Describes a modification of os.environ, see get_go_environ_diff(...). EnvironDiff = collections.namedtuple('EnvironDiff', [ 'env', # {k:v} with vars to set or delete (if v == None) 'env_prefixes', # {k: [path]} with entries to prepend ]) class Failure(Exception): """Bootstrap failed.""" def read_file(path): """Returns contents of a given file or None if not readable.""" assert isinstance(path, (list, tuple)) try: with open(os.path.join(*path), 'r') as f: return f.read() except IOError: return None def write_file(path, data): """Writes |data| to a file.""" assert isinstance(path, (list, tuple)) with open(os.path.join(*path), 'w') as f: f.write(data) def remove_directory(path): """Recursively removes a directory.""" assert isinstance(path, (list, tuple)) p = os.path.join(*path) if not os.path.exists(p): return # Crutch to remove read-only file (.git/* in particular) on Windows. def onerror(func, path, _exc_info): if not os.access(path, os.W_OK): os.chmod(path, stat.S_IWUSR) func(path) else: raise shutil.rmtree(p, onerror=onerror if sys.platform == 'win32' else None) def install_toolset(toolset_root, version): """Downloads and installs Go toolset from CIPD. GOROOT would be <toolset_root>/go/. """ cmd = subprocess.Popen( [ 'cipd.bat' if sys.platform == 'win32' else 'cipd', 'ensure', '-ensure-file', '-', '-root', toolset_root, ], stdin=subprocess.PIPE) cmd.communicate( '@Subdir go\n' 'infra/3pp/tools/go/${platform} version:%s\n' % version ) if cmd.returncode: raise Failure('CIPD call failed, exit code %d' % cmd.returncode) LOGGER.info('Validating...') check_hello_world(toolset_root) @contextlib.contextmanager def temp_dir(path): """Creates a temporary directory, then deletes it.""" tmp = tempfile.mkdtemp(dir=path) try: yield tmp finally: remove_directory([tmp]) def check_hello_world(toolset_root): """Compiles and runs 'hello world' program to verify that toolset works.""" with temp_dir(toolset_root) as tmp: path = os.path.join(tmp, 'hello.go') write_file([path], r""" package main import "fmt" func main() { fmt.Println("hello, world") } """) out = call_bare_go(toolset_root, tmp, ['run', path]) if out != 'hello, world': raise Failure('Unexpected output from the sample program:\n%s' % out) def call_bare_go(toolset_root, workspace, args): """Calls 'go <args>' in the given workspace scrubbing all other Go env vars. Args: toolset_root: where Go is installed at. workspace: value for GOPATH, all other Go-specific env vars are scrubbed. args: command line arguments for 'go' tool. Returns: Captured stripped stdout+stderr. Raises: Failure if the call failed. All details are logged in this case. """ cmd = [get_go_exe(toolset_root)] + args env = get_go_environ(_EMPTY_LAYOUT._replace( toolset_root=toolset_root, workspace=workspace)) proc = subprocess.Popen( cmd, env=env, cwd=workspace, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) out, _ = proc.communicate() if proc.returncode: LOGGER.error('Failed to run %s: exit code %d', cmd, proc.returncode) LOGGER.error('Environment:') for k, v in sorted(env.items()): LOGGER.error(' %s = %s', k, v) LOGGER.error('Output:\n\n%s', out) raise Failure('Go invocation failed, see the log') return out.strip() def infra_version_outdated(root): infra = read_file([root, 'INFRA_VERSION']) if not infra: return True return int(infra.strip()) < INFRA_VERSION def write_infra_version(root): write_file([root, 'INFRA_VERSION'], str(INFRA_VERSION)) def ensure_toolset_installed(toolset_root, version): """Installs or updates Go toolset if necessary. Returns True if new toolset was installed. """ installed = read_file([toolset_root, 'INSTALLED_TOOLSET']) if infra_version_outdated(toolset_root): LOGGER.info('Infra version is out of date.') elif installed == version: LOGGER.debug('Go toolset is up-to-date: %s', installed) return False LOGGER.info('Installing Go toolset.') LOGGER.info(' Old toolset is %s', installed) LOGGER.info(' New toolset is %s', version) remove_directory([toolset_root]) install_toolset(toolset_root, version) LOGGER.info('Go toolset installed: %s', version) write_file([toolset_root, 'INSTALLED_TOOLSET'], version) write_infra_version(toolset_root) return True def ensure_glide_installed(toolset_root): """Installs or updates 'glide' tool.""" installed_tools = read_file([toolset_root, 'INSTALLED_TOOLS']) available_tools = json.dumps(GLIDE_SOURCE, sort_keys=True) if installed_tools == available_tools: LOGGER.debug('Glide is up-to-date') return def install(workspace, pkg): call_bare_go(toolset_root, workspace, ['install', pkg]) # Windows os.rename doesn't support overwrites. name = pkg[pkg.rfind('/')+1:] dest = os.path.join(toolset_root, 'go', 'bin', name + EXE_SFX) if os.path.exists(dest): os.remove(dest) os.rename(os.path.join(workspace, 'bin', name + EXE_SFX), dest) LOGGER.info('Installed %s', dest) LOGGER.info('Installing Glide...') with temp_dir(toolset_root) as tmp: fetch_glide_code(tmp, GLIDE_SOURCE) install(tmp, 'github.com/Masterminds/glide') LOGGER.info('Glide is installed') write_file([toolset_root, 'INSTALLED_TOOLS'], available_tools) def fetch_glide_code(workspace, spec): """Fetches glide source code.""" def git(cmd, cwd): subprocess.check_call([GIT_EXE] + cmd, cwd=cwd, stdout=sys.stderr) for path, repo in sorted(spec.iteritems()): path = os.path.join(workspace, path.replace('/', os.sep)) os.makedirs(path) git(['clone', repo['url'], '.'], cwd=path) git(['checkout', repo['rev']], cwd=path) for patch in repo.get('patches', []): LOGGER.info('Applying %s', patch) git(['apply', os.path.join(WORKSPACE, 'patches', patch)], cwd=path) def get_git_repository_head(path): head = subprocess.check_output([GIT_EXE, '-C', path, 'rev-parse', 'HEAD']) return head.strip() def get_deps_repo_versions(layout): """Loads the repository version object stored at GO_REPO_VERSIONS. If no version object exists, an empty dictionary will be returned. """ if not os.path.isfile(layout.go_repo_versions_path): return {} with open(layout.go_repo_versions_path, 'r') as fd: return json.load(fd) def save_deps_repo_versions(layout, v): """Records the repository version object, "v", as JSON at GO_REPO_VERSIONS.""" with open(layout.go_repo_versions_path, 'w') as fd: json.dump(v, fd, indent=2, sort_keys=True) def install_deps_tools(layout, force): if not layout.go_install_tools: return False # Load the current HEAD for our Go dependency paths. current_versions = {} for path in (layout.go_deps_paths or ()): current_versions[path] = get_git_repository_head(path) # Only install the tools if our checkout versions have changed. if not force and get_deps_repo_versions(layout) == current_versions: return False # (Re)install all of our Go packages. LOGGER.info('Installing Go tools: %s', layout.go_install_tools) env = get_go_environ(layout) subprocess.check_call([get_go_exe(layout.toolset_root), 'install'] + list(layout.go_install_tools), stdout=sys.stderr, stderr=sys.stderr, env=env) save_deps_repo_versions(layout, current_versions) return True def update_vendor_packages(workspace, toolset_root, force=False): """Runs deps.py to fetch and install pinned packages. Returns (bool): True if the dependencies were actually updated, False if they were already at the correct version. """ if not os.path.isfile(os.path.join(workspace, 'deps.lock')): return False # We will pass "deps.py" the "--update-out" argument, which will create a # file at a temporary path if the deps were actually updated. We use this to # derive our return value. with temp_dir(workspace) as tdir: update_out_path = os.path.join(tdir, 'deps_updated.json') cmd = [ sys.executable, '-u', os.path.join(ROOT, 'go', 'deps.py'), '--workspace', workspace, '--goroot', os.path.join(toolset_root, 'go'), 'install', '--update-out', update_out_path, ] if force: cmd.append('--force') env = os.environ.copy() env['PATH'] = os.pathsep.join([ os.path.join(ROOT, 'cipd'), env.get('PATH', '') ]) subprocess.check_call(cmd, stdout=sys.stderr, env=env) return os.path.isfile(update_out_path) def get_go_environ_diff(layout): """Returns what modifications must be applied to the environ to enable Go. Pure function of 'layout', doesn't depend on current os.environ or state on disk. Args: layout: The Layout to derive the environment from. Returns: EnvironDiff. """ # Paths to search Go code for. Order is important. vendor_paths = layout.vendor_paths or () all_go_paths = [] all_go_paths.extend(os.path.join(p, '.vendor') for p in vendor_paths) if layout.go_paths: all_go_paths.extend(layout.go_paths) all_go_paths.append(layout.workspace) # New PATH entries. Order is important. paths_to_add = [ os.path.join(layout.toolset_root, 'go', 'bin'), os.path.join(ROOT, 'cipd'), os.path.join(ROOT, 'cipd', 'bin'), os.path.join(ROOT, 'luci', 'appengine', 'components', 'tools'), ] paths_to_add.extend(os.path.join(p, '.vendor', 'bin') for p in vendor_paths) paths_to_add.append(os.path.join(layout.workspace, 'bin')) return EnvironDiff( env={ 'GOROOT': os.path.join(layout.toolset_root, 'go'), 'GOBIN': os.path.join(layout.workspace, 'bin'), 'GOPATH': os.pathsep.join(all_go_paths), # Don't use default cache in '~'. 'GOCACHE': os.path.join(layout.workspace, '.cache'), # Infra Go workspace is not ready for modules yet, attempting to use # them will cause pain. 'GOPROXY': 'off', 'GO111MODULE': 'off', }, env_prefixes={'PATH': paths_to_add}, ) def get_go_environ(layout): """Returns a copy of os.environ with mutated GO* environment variables. This function primarily targets environ on workstations. It assumes the developer may be constantly switching between infra and infra_internal go environments and it has some protection against related edge cases. Args: layout: The Layout to derive the environment from. """ diff = get_go_environ_diff(layout) env = os.environ.copy() for k, v in diff.env.items(): if v is not None: env[k] = v else: env.pop(k, None) path = env['PATH'].split(os.pathsep) paths_to_add = diff.env_prefixes['PATH'] # Remove preexisting bin/ paths (including .vendor/bin) pointing to infra # or infra_internal Go workspaces. It's important when switching from # infra_internal to infra environments: infra_internal bin paths should # be removed. def should_keep(p): if p in paths_to_add: return False # we'll move this entry to the front below # TODO(vadimsh): This code knows about gclient checkout layout. for d in ['infra', 'infra_internal']: if p.startswith(os.path.join(GCLIENT_ROOT, d, 'go')): return False return True path = filter(should_keep, path) # Prepend paths_to_add to PATH. env['PATH'] = os.pathsep.join(paths_to_add + path) # Add a tag to the prompt infra_prompt_tag = env.get('INFRA_PROMPT_TAG') if infra_prompt_tag is None: infra_prompt_tag = '[cr go] ' if infra_prompt_tag: prompt = env.get('PS1') if prompt and infra_prompt_tag not in prompt: env['PS1'] = infra_prompt_tag + prompt return env def get_go_exe(toolset_root): """Returns path to go executable.""" return os.path.join(toolset_root, 'go', 'bin', 'go' + EXE_SFX) def bootstrap(layout, logging_level, args=None): """Installs all dependencies in default locations. Supposed to be called at the beginning of some script (it modifies logger). Args: layout: instance of Layout describing what to install and where. logging_level: logging level of bootstrap process. args: positional arguments of bootstrap.py (if any). Raises: Failure if bootstrap fails. """ logging.basicConfig() LOGGER.setLevel(logging_level) # One optional positional argument is a path to write JSON with env diff to. # This is used by recipes which use it in `with api.context(env=...): ...`. json_output = None if args is not None: parser = argparse.ArgumentParser() parser.add_argument( 'json_output', nargs='?', metavar='PATH', help='Where to write JSON with necessary environ adjustments') json_output = parser.parse_args(args=args).json_output # We need to build and run some Go binaries during bootstrap (e.g. glide), so # make sure cross-compilation mode is disabled during bootstrap. Restore it # back once bootstrap is finished. prev_environ = {} for k in ('GOOS', 'GOARCH', 'GOARM'): prev_environ[k] = os.environ.pop(k, None) try: toolset_updated = ensure_toolset_installed( layout.toolset_root, TOOLSET_VERSION) ensure_glide_installed(layout.toolset_root) vendor_updated = toolset_updated for p in layout.vendor_paths: vendor_updated |= update_vendor_packages( p, layout.toolset_root, force=toolset_updated) if toolset_updated: # GOPATH/pkg may have binaries generated with previous version of toolset, # they may not be compatible and "go build" isn't smart enough to rebuild # them. for p in layout.vendor_paths: remove_directory([p, 'pkg']) install_deps_tools(layout, vendor_updated) finally: # Restore os.environ back. Have to do it key-by-key to actually modify the # process environment (replacing os.environ object as a whole does nothing). for k, v in prev_environ.iteritems(): if v is not None: os.environ[k] = v output = get_go_environ_diff(layout)._asdict() output['go_version'] = TOOLSET_VERSION json_blob = json.dumps( output, sort_keys=True, indent=2, separators=(',', ': ')) if json_output == '-': print json_blob elif json_output: with open(json_output, 'w') as f: f.write(json_blob) def prepare_go_environ(): """Returns dict with environment variables to set to use Go toolset. Installs or updates the toolset and vendored dependencies if necessary. """ bootstrap(LAYOUT, logging.INFO) return get_go_environ(LAYOUT) def find_executable(name, workspaces): """Returns full path to an executable in some bin/ (in GOROOT or GOBIN).""" basename = name if EXE_SFX and basename.endswith(EXE_SFX): basename = basename[:-len(EXE_SFX)] roots = [os.path.join(LAYOUT.toolset_root, 'go', 'bin')] for path in workspaces: roots.extend([ os.path.join(path, '.vendor', 'bin'), os.path.join(path, 'bin'), ]) for root in roots: full_path = os.path.join(root, basename + EXE_SFX) if os.path.exists(full_path): return full_path return name def main(args): bootstrap(LAYOUT, logging.DEBUG, args) return 0 if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
#!/usr/bin/env vpython # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Prepares a local hermetic Go installation. - Downloads and unpacks the Go toolset in ../../golang. - Downloads and installs Glide (used by deps.py). - Fetches code dependencies via deps.py. """ import argparse import collections import contextlib import json import logging import os import shutil import stat import subprocess import sys import tempfile LOGGER = logging.getLogger(__name__) # /path/to/infra ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Directory with .gclient file. GCLIENT_ROOT = os.path.dirname(ROOT) # The current overarching Infra version. If this changes, everything will be # updated regardless of its version. INFRA_VERSION = 1 # Where to install Go toolset to. GOROOT would be <TOOLSET_ROOT>/go. TOOLSET_ROOT = os.path.join(os.path.dirname(ROOT), 'golang') # Default workspace with infra go code. WORKSPACE = os.path.join(ROOT, 'go') # Platform depended suffix for executable files. EXE_SFX = '.exe' if sys.platform == 'win32' else '' # On Windows we use git from depot_tools. GIT_EXE = 'git.bat' if sys.platform == 'win32' else 'git' # Version of Go CIPD package (infra/3pp/tools/go/${platform}) to install. TOOLSET_VERSION = '1.14.2' # Describes how to fetch 'glide'. GLIDE_SOURCE = { 'src/github.com/Masterminds/glide': { 'url': ( 'https://chromium.googlesource.com/external/github.com/' 'Masterminds/glide.git'), 'rev': 'refs/tags/v0.13.3', 'patches': [ '0001-Fix-edge-case-related-to-git-submodules-on-Windows.patch', ], }, } # Layout is the layout of the bootstrap installation. _Layout = collections.namedtuple('Layout', ( # The path where the Go toolset is checked out at. 'toolset_root', # The workspace path. 'workspace', # The list of vendor directories. Each will have a Glide "deps.yaml" in it. 'vendor_paths', # List of paths to append to GOPATH (in additional to `workspace`). 'go_paths', # The list of DEPS'd in paths that contain Go sources. This is used to # determine when our vendored tools need to be re-installed. 'go_deps_paths', # Go package paths of tools to install into the bootstrap environment. 'go_install_tools', )) class Layout(_Layout): @property def go_repo_versions_path(self): """The path where the latest installed Go repository versions are recorded. """ return os.path.join(self.workspace, '.deps_repo_versions.json') # A base empty Layout. _EMPTY_LAYOUT = Layout( toolset_root=None, workspace=None, vendor_paths=None, go_paths=None, go_deps_paths=None, go_install_tools=None) # Infra standard layout. LAYOUT = Layout( toolset_root=TOOLSET_ROOT, workspace=WORKSPACE, vendor_paths=[WORKSPACE], go_paths=[], go_deps_paths=[os.path.join(WORKSPACE, _p) for _p in ( 'src/go.chromium.org/gae', 'src/go.chromium.org/luci', )], go_install_tools=[ # Note: please add only tools that really should be in PATH in default # dev environment. 'github.com/golang/mock/mockgen', 'go.chromium.org/gae/tools/proto-gae', 'go.chromium.org/luci/grpc/cmd/...', 'go.chromium.org/luci/luci_notify/cmd/...', 'go.chromium.org/luci/tools/cmd/...', 'infra/cmd/bqexport', 'infra/cmd/cloudsqlhelper', ], ) # Describes a modification of os.environ, see get_go_environ_diff(...). EnvironDiff = collections.namedtuple('EnvironDiff', [ 'env', # {k:v} with vars to set or delete (if v == None) 'env_prefixes', # {k: [path]} with entries to prepend ]) class Failure(Exception): """Bootstrap failed.""" def read_file(path): """Returns contents of a given file or None if not readable.""" assert isinstance(path, (list, tuple)) try: with open(os.path.join(*path), 'r') as f: return f.read() except IOError: return None def write_file(path, data): """Writes |data| to a file.""" assert isinstance(path, (list, tuple)) with open(os.path.join(*path), 'w') as f: f.write(data) def remove_directory(path): """Recursively removes a directory.""" assert isinstance(path, (list, tuple)) p = os.path.join(*path) if not os.path.exists(p): return # Crutch to remove read-only file (.git/* in particular) on Windows. def onerror(func, path, _exc_info): if not os.access(path, os.W_OK): os.chmod(path, stat.S_IWUSR) func(path) else: raise shutil.rmtree(p, onerror=onerror if sys.platform == 'win32' else None) def install_toolset(toolset_root, version): """Downloads and installs Go toolset from CIPD. GOROOT would be <toolset_root>/go/. """ cmd = subprocess.Popen( [ 'cipd.bat' if sys.platform == 'win32' else 'cipd', 'ensure', '-ensure-file', '-', '-root', toolset_root, ], stdin=subprocess.PIPE) cmd.communicate( '@Subdir go\n' 'infra/3pp/tools/go/${platform} version:%s\n' % version ) if cmd.returncode: raise Failure('CIPD call failed, exit code %d' % cmd.returncode) LOGGER.info('Validating...') check_hello_world(toolset_root) @contextlib.contextmanager def temp_dir(path): """Creates a temporary directory, then deletes it.""" tmp = tempfile.mkdtemp(dir=path) try: yield tmp finally: remove_directory([tmp]) def check_hello_world(toolset_root): """Compiles and runs 'hello world' program to verify that toolset works.""" with temp_dir(toolset_root) as tmp: path = os.path.join(tmp, 'hello.go') write_file([path], r""" package main import "fmt" func main() { fmt.Println("hello, world") } """) out = call_bare_go(toolset_root, tmp, ['run', path]) if out != 'hello, world': raise Failure('Unexpected output from the sample program:\n%s' % out) def call_bare_go(toolset_root, workspace, args): """Calls 'go <args>' in the given workspace scrubbing all other Go env vars. Args: toolset_root: where Go is installed at. workspace: value for GOPATH, all other Go-specific env vars are scrubbed. args: command line arguments for 'go' tool. Returns: Captured stripped stdout+stderr. Raises: Failure if the call failed. All details are logged in this case. """ cmd = [get_go_exe(toolset_root)] + args env = get_go_environ(_EMPTY_LAYOUT._replace( toolset_root=toolset_root, workspace=workspace)) proc = subprocess.Popen( cmd, env=env, cwd=workspace, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) out, _ = proc.communicate() if proc.returncode: LOGGER.error('Failed to run %s: exit code %d', cmd, proc.returncode) LOGGER.error('Environment:') for k, v in sorted(env.items()): LOGGER.error(' %s = %s', k, v) LOGGER.error('Output:\n\n%s', out) raise Failure('Go invocation failed, see the log') return out.strip() def infra_version_outdated(root): infra = read_file([root, 'INFRA_VERSION']) if not infra: return True return int(infra.strip()) < INFRA_VERSION def write_infra_version(root): write_file([root, 'INFRA_VERSION'], str(INFRA_VERSION)) def ensure_toolset_installed(toolset_root, version): """Installs or updates Go toolset if necessary. Returns True if new toolset was installed. """ installed = read_file([toolset_root, 'INSTALLED_TOOLSET']) if infra_version_outdated(toolset_root): LOGGER.info('Infra version is out of date.') elif installed == version: LOGGER.debug('Go toolset is up-to-date: %s', installed) return False LOGGER.info('Installing Go toolset.') LOGGER.info(' Old toolset is %s', installed) LOGGER.info(' New toolset is %s', version) remove_directory([toolset_root]) install_toolset(toolset_root, version) LOGGER.info('Go toolset installed: %s', version) write_file([toolset_root, 'INSTALLED_TOOLSET'], version) write_infra_version(toolset_root) return True def ensure_glide_installed(toolset_root): """Installs or updates 'glide' tool.""" installed_tools = read_file([toolset_root, 'INSTALLED_TOOLS']) available_tools = json.dumps(GLIDE_SOURCE, sort_keys=True) if installed_tools == available_tools: LOGGER.debug('Glide is up-to-date') return def install(workspace, pkg): call_bare_go(toolset_root, workspace, ['install', pkg]) # Windows os.rename doesn't support overwrites. name = pkg[pkg.rfind('/')+1:] dest = os.path.join(toolset_root, 'go', 'bin', name + EXE_SFX) if os.path.exists(dest): os.remove(dest) os.rename(os.path.join(workspace, 'bin', name + EXE_SFX), dest) LOGGER.info('Installed %s', dest) LOGGER.info('Installing Glide...') with temp_dir(toolset_root) as tmp: fetch_glide_code(tmp, GLIDE_SOURCE) install(tmp, 'github.com/Masterminds/glide') LOGGER.info('Glide is installed') write_file([toolset_root, 'INSTALLED_TOOLS'], available_tools) def fetch_glide_code(workspace, spec): """Fetches glide source code.""" def git(cmd, cwd): subprocess.check_call([GIT_EXE] + cmd, cwd=cwd, stdout=sys.stderr) for path, repo in sorted(spec.iteritems()): path = os.path.join(workspace, path.replace('/', os.sep)) os.makedirs(path) git(['clone', repo['url'], '.'], cwd=path) git(['checkout', repo['rev']], cwd=path) for patch in repo.get('patches', []): LOGGER.info('Applying %s', patch) git(['apply', os.path.join(WORKSPACE, 'patches', patch)], cwd=path) def get_git_repository_head(path): head = subprocess.check_output([GIT_EXE, '-C', path, 'rev-parse', 'HEAD']) return head.strip() def get_deps_repo_versions(layout): """Loads the repository version object stored at GO_REPO_VERSIONS. If no version object exists, an empty dictionary will be returned. """ if not os.path.isfile(layout.go_repo_versions_path): return {} with open(layout.go_repo_versions_path, 'r') as fd: return json.load(fd) def save_deps_repo_versions(layout, v): """Records the repository version object, "v", as JSON at GO_REPO_VERSIONS.""" with open(layout.go_repo_versions_path, 'w') as fd: json.dump(v, fd, indent=2, sort_keys=True) def install_deps_tools(layout, force): if not layout.go_install_tools: return False # Load the current HEAD for our Go dependency paths. current_versions = {} for path in (layout.go_deps_paths or ()): current_versions[path] = get_git_repository_head(path) # Only install the tools if our checkout versions have changed. if not force and get_deps_repo_versions(layout) == current_versions: return False # (Re)install all of our Go packages. LOGGER.info('Installing Go tools: %s', layout.go_install_tools) env = get_go_environ(layout) subprocess.check_call([get_go_exe(layout.toolset_root), 'install'] + list(layout.go_install_tools), stdout=sys.stderr, stderr=sys.stderr, env=env) save_deps_repo_versions(layout, current_versions) return True def update_vendor_packages(workspace, toolset_root, force=False): """Runs deps.py to fetch and install pinned packages. Returns (bool): True if the dependencies were actually updated, False if they were already at the correct version. """ if not os.path.isfile(os.path.join(workspace, 'deps.lock')): return False # We will pass "deps.py" the "--update-out" argument, which will create a # file at a temporary path if the deps were actually updated. We use this to # derive our return value. with temp_dir(workspace) as tdir: update_out_path = os.path.join(tdir, 'deps_updated.json') cmd = [ sys.executable, '-u', os.path.join(ROOT, 'go', 'deps.py'), '--workspace', workspace, '--goroot', os.path.join(toolset_root, 'go'), 'install', '--update-out', update_out_path, ] if force: cmd.append('--force') env = os.environ.copy() env['PATH'] = os.pathsep.join([ os.path.join(ROOT, 'cipd'), env.get('PATH', '') ]) subprocess.check_call(cmd, stdout=sys.stderr, env=env) return os.path.isfile(update_out_path) def get_go_environ_diff(layout): """Returns what modifications must be applied to the environ to enable Go. Pure function of 'layout', doesn't depend on current os.environ or state on disk. Args: layout: The Layout to derive the environment from. Returns: EnvironDiff. """ # Paths to search Go code for. Order is important. vendor_paths = layout.vendor_paths or () all_go_paths = [] all_go_paths.extend(os.path.join(p, '.vendor') for p in vendor_paths) if layout.go_paths: all_go_paths.extend(layout.go_paths) all_go_paths.append(layout.workspace) # New PATH entries. Order is important. paths_to_add = [ os.path.join(layout.toolset_root, 'go', 'bin'), os.path.join(ROOT, 'cipd'), os.path.join(ROOT, 'cipd', 'bin'), os.path.join(ROOT, 'luci', 'appengine', 'components', 'tools'), ] paths_to_add.extend(os.path.join(p, '.vendor', 'bin') for p in vendor_paths) paths_to_add.append(os.path.join(layout.workspace, 'bin')) return EnvironDiff( env={ 'GOROOT': os.path.join(layout.toolset_root, 'go'), 'GOBIN': os.path.join(layout.workspace, 'bin'), 'GOPATH': os.pathsep.join(all_go_paths), # Don't use default cache in '~'. 'GOCACHE': os.path.join(layout.workspace, '.cache'), # Infra Go workspace is not ready for modules yet, attempting to use # them will cause pain. 'GOPROXY': 'off', 'GO111MODULE': 'off', }, env_prefixes={'PATH': paths_to_add}, ) def get_go_environ(layout): """Returns a copy of os.environ with mutated GO* environment variables. This function primarily targets environ on workstations. It assumes the developer may be constantly switching between infra and infra_internal go environments and it has some protection against related edge cases. Args: layout: The Layout to derive the environment from. """ diff = get_go_environ_diff(layout) env = os.environ.copy() for k, v in diff.env.items(): if v is not None: env[k] = v else: env.pop(k, None) path = env['PATH'].split(os.pathsep) paths_to_add = diff.env_prefixes['PATH'] # Remove preexisting bin/ paths (including .vendor/bin) pointing to infra # or infra_internal Go workspaces. It's important when switching from # infra_internal to infra environments: infra_internal bin paths should # be removed. def should_keep(p): if p in paths_to_add: return False # we'll move this entry to the front below # TODO(vadimsh): This code knows about gclient checkout layout. for d in ['infra', 'infra_internal']: if p.startswith(os.path.join(GCLIENT_ROOT, d, 'go')): return False return True path = filter(should_keep, path) # Prepend paths_to_add to PATH. env['PATH'] = os.pathsep.join(paths_to_add + path) # Add a tag to the prompt infra_prompt_tag = env.get('INFRA_PROMPT_TAG') if infra_prompt_tag is None: infra_prompt_tag = '[cr go] ' if infra_prompt_tag: prompt = env.get('PS1') if prompt and infra_prompt_tag not in prompt: env['PS1'] = infra_prompt_tag + prompt return env def get_go_exe(toolset_root): """Returns path to go executable.""" return os.path.join(toolset_root, 'go', 'bin', 'go' + EXE_SFX) def bootstrap(layout, logging_level, args=None): """Installs all dependencies in default locations. Supposed to be called at the beginning of some script (it modifies logger). Args: layout: instance of Layout describing what to install and where. logging_level: logging level of bootstrap process. args: positional arguments of bootstrap.py (if any). Raises: Failure if bootstrap fails. """ logging.basicConfig() LOGGER.setLevel(logging_level) # One optional positional argument is a path to write JSON with env diff to. # This is used by recipes which use it in `with api.context(env=...): ...`. json_output = None if args is not None: parser = argparse.ArgumentParser() parser.add_argument( 'json_output', nargs='?', metavar='PATH', help='Where to write JSON with necessary environ adjustments') json_output = parser.parse_args(args=args).json_output # We need to build and run some Go binaries during bootstrap (e.g. glide), so # make sure cross-compilation mode is disabled during bootstrap. Restore it # back once bootstrap is finished. prev_environ = {} for k in ('GOOS', 'GOARCH', 'GOARM'): prev_environ[k] = os.environ.pop(k, None) try: toolset_updated = ensure_toolset_installed( layout.toolset_root, TOOLSET_VERSION) ensure_glide_installed(layout.toolset_root) vendor_updated = toolset_updated for p in layout.vendor_paths: vendor_updated |= update_vendor_packages( p, layout.toolset_root, force=toolset_updated) if toolset_updated: # GOPATH/pkg may have binaries generated with previous version of toolset, # they may not be compatible and "go build" isn't smart enough to rebuild # them. for p in layout.vendor_paths: remove_directory([p, 'pkg']) install_deps_tools(layout, vendor_updated) finally: # Restore os.environ back. Have to do it key-by-key to actually modify the # process environment (replacing os.environ object as a whole does nothing). for k, v in prev_environ.iteritems(): if v is not None: os.environ[k] = v output = get_go_environ_diff(layout)._asdict() output['go_version'] = TOOLSET_VERSION json_blob = json.dumps( output, sort_keys=True, indent=2, separators=(',', ': ')) if json_output == '-': print json_blob elif json_output: with open(json_output, 'w') as f: f.write(json_blob) def prepare_go_environ(): """Returns dict with environment variables to set to use Go toolset. Installs or updates the toolset and vendored dependencies if necessary. """ bootstrap(LAYOUT, logging.INFO) return get_go_environ(LAYOUT) def find_executable(name, workspaces): """Returns full path to an executable in some bin/ (in GOROOT or GOBIN).""" basename = name if EXE_SFX and basename.endswith(EXE_SFX): basename = basename[:-len(EXE_SFX)] roots = [os.path.join(LAYOUT.toolset_root, 'go', 'bin')] for path in workspaces: roots.extend([ os.path.join(path, '.vendor', 'bin'), os.path.join(path, 'bin'), ]) for root in roots: full_path = os.path.join(root, basename + EXE_SFX) if os.path.exists(full_path): return full_path return name def main(args): bootstrap(LAYOUT, logging.DEBUG, args) return 0 if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
en
0.828993
#!/usr/bin/env vpython # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. Prepares a local hermetic Go installation. - Downloads and unpacks the Go toolset in ../../golang. - Downloads and installs Glide (used by deps.py). - Fetches code dependencies via deps.py. # /path/to/infra # Directory with .gclient file. # The current overarching Infra version. If this changes, everything will be # updated regardless of its version. # Where to install Go toolset to. GOROOT would be <TOOLSET_ROOT>/go. # Default workspace with infra go code. # Platform depended suffix for executable files. # On Windows we use git from depot_tools. # Version of Go CIPD package (infra/3pp/tools/go/${platform}) to install. # Describes how to fetch 'glide'. # Layout is the layout of the bootstrap installation. # The path where the Go toolset is checked out at. # The workspace path. # The list of vendor directories. Each will have a Glide "deps.yaml" in it. # List of paths to append to GOPATH (in additional to `workspace`). # The list of DEPS'd in paths that contain Go sources. This is used to # determine when our vendored tools need to be re-installed. # Go package paths of tools to install into the bootstrap environment. The path where the latest installed Go repository versions are recorded. # A base empty Layout. # Infra standard layout. # Note: please add only tools that really should be in PATH in default # dev environment. # Describes a modification of os.environ, see get_go_environ_diff(...). # {k:v} with vars to set or delete (if v == None) # {k: [path]} with entries to prepend Bootstrap failed. Returns contents of a given file or None if not readable. Writes |data| to a file. Recursively removes a directory. # Crutch to remove read-only file (.git/* in particular) on Windows. Downloads and installs Go toolset from CIPD. GOROOT would be <toolset_root>/go/. Creates a temporary directory, then deletes it. Compiles and runs 'hello world' program to verify that toolset works. package main import "fmt" func main() { fmt.Println("hello, world") } Calls 'go <args>' in the given workspace scrubbing all other Go env vars. Args: toolset_root: where Go is installed at. workspace: value for GOPATH, all other Go-specific env vars are scrubbed. args: command line arguments for 'go' tool. Returns: Captured stripped stdout+stderr. Raises: Failure if the call failed. All details are logged in this case. Installs or updates Go toolset if necessary. Returns True if new toolset was installed. Installs or updates 'glide' tool. # Windows os.rename doesn't support overwrites. Fetches glide source code. Loads the repository version object stored at GO_REPO_VERSIONS. If no version object exists, an empty dictionary will be returned. Records the repository version object, "v", as JSON at GO_REPO_VERSIONS. # Load the current HEAD for our Go dependency paths. # Only install the tools if our checkout versions have changed. # (Re)install all of our Go packages. Runs deps.py to fetch and install pinned packages. Returns (bool): True if the dependencies were actually updated, False if they were already at the correct version. # We will pass "deps.py" the "--update-out" argument, which will create a # file at a temporary path if the deps were actually updated. We use this to # derive our return value. Returns what modifications must be applied to the environ to enable Go. Pure function of 'layout', doesn't depend on current os.environ or state on disk. Args: layout: The Layout to derive the environment from. Returns: EnvironDiff. # Paths to search Go code for. Order is important. # New PATH entries. Order is important. # Don't use default cache in '~'. # Infra Go workspace is not ready for modules yet, attempting to use # them will cause pain. Returns a copy of os.environ with mutated GO* environment variables. This function primarily targets environ on workstations. It assumes the developer may be constantly switching between infra and infra_internal go environments and it has some protection against related edge cases. Args: layout: The Layout to derive the environment from. # Remove preexisting bin/ paths (including .vendor/bin) pointing to infra # or infra_internal Go workspaces. It's important when switching from # infra_internal to infra environments: infra_internal bin paths should # be removed. # we'll move this entry to the front below # TODO(vadimsh): This code knows about gclient checkout layout. # Prepend paths_to_add to PATH. # Add a tag to the prompt Returns path to go executable. Installs all dependencies in default locations. Supposed to be called at the beginning of some script (it modifies logger). Args: layout: instance of Layout describing what to install and where. logging_level: logging level of bootstrap process. args: positional arguments of bootstrap.py (if any). Raises: Failure if bootstrap fails. # One optional positional argument is a path to write JSON with env diff to. # This is used by recipes which use it in `with api.context(env=...): ...`. # We need to build and run some Go binaries during bootstrap (e.g. glide), so # make sure cross-compilation mode is disabled during bootstrap. Restore it # back once bootstrap is finished. # GOPATH/pkg may have binaries generated with previous version of toolset, # they may not be compatible and "go build" isn't smart enough to rebuild # them. # Restore os.environ back. Have to do it key-by-key to actually modify the # process environment (replacing os.environ object as a whole does nothing). Returns dict with environment variables to set to use Go toolset. Installs or updates the toolset and vendored dependencies if necessary. Returns full path to an executable in some bin/ (in GOROOT or GOBIN).
1.79898
2
Python/Buch_ATBS/Teil_2/Kapitel_13_Arbeiten_mit_Word_und_PDF_Dokumenten/10_kapitel_13_repetitionsfragen.py
Apop85/Scripts
0
6633023
# 10_kapitel_13_repetitionsfragen.py import re max_text_length=70 max_text_delta=20 def output(title, string): print('╔'+''.center(max_text_length+8, '═')+'╗') print('║ '+title.center(max_text_length+7).upper()+'║') print('╠'+''.center(max_text_length+8, '═')+'╣') string=string+' '*max_text_length search_pattern=re.compile(r'\w+.{'+str(max_text_length-max_text_delta-7)+r','+str(max_text_length-7)+r'}[ |.|,|\n|>|\W]', re.DOTALL) results=search_pattern.findall(string) for line in results: print('║ '+line.strip()+'║'.rjust(max_text_length+8-len(line.strip()))) print('╚'+''.center(max_text_length+8, '═')+'╝') input() output('Frage 01', 'Der Funktion PyPDF2.PdfFileReader() übergeben sie nicht den Stringwert mit dem Namen der PDF-Datei. Was übergeben sie statdessen?') output('Antwort', 'Man übergibt die Variabel welche die geöffnete Datei im binary Modus beinhaltet. Bsp: pdf_file_content = PyPDF2.PdfFileReader(open(pdf_file.pdf, "rb"))') output('Frage 02', 'In welchen Modi müssen File-Objekte für PdfFileReader() und PdfFileWriter() geöffnet sein?') output('Antwort', 'Read Binary bzw "rb" Beispiel: open(pdf_file.pdf, "rb") oder im Modus Write-Binary für .PdfFileWriter()') output('Frage 03', 'Wie rufen sie dsa Page-Objekt für die Seite 5 von einem PdfFileReader-Objekt ab?') output('Antwort', 'Man nutzt page_5=pdf_file_content.getPage(4) wobei ein PDF-Dokument immer mit der Seitenzahl 0 beginnt und daher getPage(4) für die 5. Seite verwendet werden muss.') output('Frage 04', 'In welcher PdfFileReader-Variable ist die Anzahl der Seiten in einem PDF-Dokument gespeichert?') output('Antwort', 'pdf_file_content.numPages liest die Anzahl Seiten des PDF\'s aus') output('Frage 05', 'Was müssen sie tun, bevor sie die Page-Objekte von einem PdfFileReader-Objekt abrufen können, dessen PDF mit dem Passwort "<PASSWORD>" geschützt ist?') output('Antwort', 'Mit pdf_file_content.decrypt("swordfish") lässt sich die Datei entschlüsseln. Mit .encrypt(passwort) wieder verschlüsseln') output('Frage 06', 'Welche Methoden verwenden sie, um eine Seite zu drehen?') output('Antwort', 'Die Seite lässt sich mit page_5.rotateClockwise(90) drehen.') output('Frage 07', 'Welche Methode gibt ein Document-Objekt für die Datei demo.docx zurück?') output('Antwort', 'Mit doc_file=docx.Document("demo.docx") lässt sich demo.docx auslesen und in einer Variabel speichern.') output('Frage 08', 'Was ist der Unterschied zwischen einem Paragraphen- und einem Run-Objekt?') output('Antwort', 'Die Paragraphen beinhalten den Kompletten Text bis zum nächsten Zeilenumbruch und ist selber wiederum in Runs unterteilt welche das Aussehen der Textabschnitte bestimmt. Jedes mal wen sich die Formatierung ändert entsteht ein neuer Run.') output('Frage 09', 'Wie rufen sie die Liste der Paragraphen-Objekte für ein Dokument ab das in der Variabel "doc" gespeichert ist?') output('Antwort', 'Die Funktion doc.paragraphs gibt alle Paragraphen-Objekte als Liste aus') output('Frage 10', 'Was für Objekte verfügen über die Variablen bold, underline, italic, strike und outline?') output('Antwort', 'Diese Variablen gehören zum Run-Objekt und definieren ob der Text fett, unterstrichen, schräg, durchgestrichen oder outlined ist. Beispiel: run_objekt.italic=True') output('Frage 11', 'Was ist der Unterschied zwischen den Werten True, False und None für die Variable bold?') output('Antwort', 'bold=True heisst dass der Text fett geschrieben wird, bold=False heisst er wird nicht Fett dargestellt und bold=None verwendet die Standardwerte des Run-Objekts') output('Frage 12', 'Wie erstellen sie ein Document-Objekt für ein neues Word_Dokument?') output('Antwort', 'Ein neues Dokument kann man mit docx.Document() erstellen') output('Frage 13', 'Wie fügen sie einem Document-Objekt in der Variablen doc einen Absatz mit dem Text "Hello there" hinzu?') output('Antwort', 'Mit doc.add_paragraph("Hello there") lässt sich ein neuer Abschnitt mit dem entsprechenden Textinhalt erstellen.') output('Frage 14', 'Welche Integerwerte können sie verwenden, um in einem Word-Dokument Überschriften-Ebenen anzugeben?') output('Antwort', 'Mit doc_file.add_heading("Header Text", 0-4) lassen sich Header einfügen.')
# 10_kapitel_13_repetitionsfragen.py import re max_text_length=70 max_text_delta=20 def output(title, string): print('╔'+''.center(max_text_length+8, '═')+'╗') print('║ '+title.center(max_text_length+7).upper()+'║') print('╠'+''.center(max_text_length+8, '═')+'╣') string=string+' '*max_text_length search_pattern=re.compile(r'\w+.{'+str(max_text_length-max_text_delta-7)+r','+str(max_text_length-7)+r'}[ |.|,|\n|>|\W]', re.DOTALL) results=search_pattern.findall(string) for line in results: print('║ '+line.strip()+'║'.rjust(max_text_length+8-len(line.strip()))) print('╚'+''.center(max_text_length+8, '═')+'╝') input() output('Frage 01', 'Der Funktion PyPDF2.PdfFileReader() übergeben sie nicht den Stringwert mit dem Namen der PDF-Datei. Was übergeben sie statdessen?') output('Antwort', 'Man übergibt die Variabel welche die geöffnete Datei im binary Modus beinhaltet. Bsp: pdf_file_content = PyPDF2.PdfFileReader(open(pdf_file.pdf, "rb"))') output('Frage 02', 'In welchen Modi müssen File-Objekte für PdfFileReader() und PdfFileWriter() geöffnet sein?') output('Antwort', 'Read Binary bzw "rb" Beispiel: open(pdf_file.pdf, "rb") oder im Modus Write-Binary für .PdfFileWriter()') output('Frage 03', 'Wie rufen sie dsa Page-Objekt für die Seite 5 von einem PdfFileReader-Objekt ab?') output('Antwort', 'Man nutzt page_5=pdf_file_content.getPage(4) wobei ein PDF-Dokument immer mit der Seitenzahl 0 beginnt und daher getPage(4) für die 5. Seite verwendet werden muss.') output('Frage 04', 'In welcher PdfFileReader-Variable ist die Anzahl der Seiten in einem PDF-Dokument gespeichert?') output('Antwort', 'pdf_file_content.numPages liest die Anzahl Seiten des PDF\'s aus') output('Frage 05', 'Was müssen sie tun, bevor sie die Page-Objekte von einem PdfFileReader-Objekt abrufen können, dessen PDF mit dem Passwort "<PASSWORD>" geschützt ist?') output('Antwort', 'Mit pdf_file_content.decrypt("swordfish") lässt sich die Datei entschlüsseln. Mit .encrypt(passwort) wieder verschlüsseln') output('Frage 06', 'Welche Methoden verwenden sie, um eine Seite zu drehen?') output('Antwort', 'Die Seite lässt sich mit page_5.rotateClockwise(90) drehen.') output('Frage 07', 'Welche Methode gibt ein Document-Objekt für die Datei demo.docx zurück?') output('Antwort', 'Mit doc_file=docx.Document("demo.docx") lässt sich demo.docx auslesen und in einer Variabel speichern.') output('Frage 08', 'Was ist der Unterschied zwischen einem Paragraphen- und einem Run-Objekt?') output('Antwort', 'Die Paragraphen beinhalten den Kompletten Text bis zum nächsten Zeilenumbruch und ist selber wiederum in Runs unterteilt welche das Aussehen der Textabschnitte bestimmt. Jedes mal wen sich die Formatierung ändert entsteht ein neuer Run.') output('Frage 09', 'Wie rufen sie die Liste der Paragraphen-Objekte für ein Dokument ab das in der Variabel "doc" gespeichert ist?') output('Antwort', 'Die Funktion doc.paragraphs gibt alle Paragraphen-Objekte als Liste aus') output('Frage 10', 'Was für Objekte verfügen über die Variablen bold, underline, italic, strike und outline?') output('Antwort', 'Diese Variablen gehören zum Run-Objekt und definieren ob der Text fett, unterstrichen, schräg, durchgestrichen oder outlined ist. Beispiel: run_objekt.italic=True') output('Frage 11', 'Was ist der Unterschied zwischen den Werten True, False und None für die Variable bold?') output('Antwort', 'bold=True heisst dass der Text fett geschrieben wird, bold=False heisst er wird nicht Fett dargestellt und bold=None verwendet die Standardwerte des Run-Objekts') output('Frage 12', 'Wie erstellen sie ein Document-Objekt für ein neues Word_Dokument?') output('Antwort', 'Ein neues Dokument kann man mit docx.Document() erstellen') output('Frage 13', 'Wie fügen sie einem Document-Objekt in der Variablen doc einen Absatz mit dem Text "Hello there" hinzu?') output('Antwort', 'Mit doc.add_paragraph("Hello there") lässt sich ein neuer Abschnitt mit dem entsprechenden Textinhalt erstellen.') output('Frage 14', 'Welche Integerwerte können sie verwenden, um in einem Word-Dokument Überschriften-Ebenen anzugeben?') output('Antwort', 'Mit doc_file.add_heading("Header Text", 0-4) lassen sich Header einfügen.')
de
0.283335
# 10_kapitel_13_repetitionsfragen.py
3.096758
3
aps/tokenizer/__init__.py
ishine/aps
117
6633024
from .base import Tokenizer from .subword import SubwordTokenizer from .word import WordTokenizer, CharTokenizer
from .base import Tokenizer from .subword import SubwordTokenizer from .word import WordTokenizer, CharTokenizer
none
1
1.222238
1
registration/admin.py
AVS18/Hospital-Management-System
0
6633025
<reponame>AVS18/Hospital-Management-System<gh_stars>0 from django.contrib import admin from .models import User from .models import Profile from .models import Appointments from .models import Prescription from .models import Invoice class Customize_userreges(admin.ModelAdmin): list_display=['first_name','last_name','username','email','profession'] list_filter=(['profession']) class Customize_Profile(admin.ModelAdmin): list_display=['username','gender','age','aptname','stname','cityname','phone','profession','MedicalHistory'] list_filter=(['profession','insurance']) class Customize_Appointments(admin.ModelAdmin): list_display=['duser','date','puser','time','status','disease'] list_filter=(['duser','puser','disease']) class Customize_Prescription(admin.ModelAdmin): list_display=['duser','disease','puser','date','care','medicine'] list_filter=(['disease','medicine']) class Customize_Invoice(admin.ModelAdmin): list_display=['puser','duser','amount','disease','payment'] list_filter=(['puser','duser','disease','payment']) admin.site.register(User,Customize_userreges) admin.site.register(Profile,Customize_Profile) admin.site.register(Appointments,Customize_Appointments) admin.site.register(Prescription,Customize_Prescription) admin.site.register(Invoice,Customize_Invoice)
from django.contrib import admin from .models import User from .models import Profile from .models import Appointments from .models import Prescription from .models import Invoice class Customize_userreges(admin.ModelAdmin): list_display=['first_name','last_name','username','email','profession'] list_filter=(['profession']) class Customize_Profile(admin.ModelAdmin): list_display=['username','gender','age','aptname','stname','cityname','phone','profession','MedicalHistory'] list_filter=(['profession','insurance']) class Customize_Appointments(admin.ModelAdmin): list_display=['duser','date','puser','time','status','disease'] list_filter=(['duser','puser','disease']) class Customize_Prescription(admin.ModelAdmin): list_display=['duser','disease','puser','date','care','medicine'] list_filter=(['disease','medicine']) class Customize_Invoice(admin.ModelAdmin): list_display=['puser','duser','amount','disease','payment'] list_filter=(['puser','duser','disease','payment']) admin.site.register(User,Customize_userreges) admin.site.register(Profile,Customize_Profile) admin.site.register(Appointments,Customize_Appointments) admin.site.register(Prescription,Customize_Prescription) admin.site.register(Invoice,Customize_Invoice)
none
1
1.87858
2
polybar/.config/polybar/taskwarrior/rofi.py
stanham33/dotfiles
0
6633026
<reponame>stanham33/dotfiles # # python-rofi # # The MIT License # # Copyright (c) 2016 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import atexit from decimal import Decimal, InvalidOperation import re import signal import subprocess class Rofi(object): """Class to facilitate making simple GUIs with Rofi. Rofi is a popup window system with minimal dependencies (xlib and pango). It was designed as a window switcher. Its basic operation is to display a list of options and let the user pick one. This class provides a set of methods to make simple GUIs with Rofi. It does this by using the subprocess module to call Rofi externally. Many of the methods are blocking. Some strings can contain Pango markup for additional formatting (those that can are noted as such in the docstrings). Any text in these strings *must* be escaped before calling Rofi. The class method Rofi.escape() performs this escaping for you. Make sure you call this on the text prior to adding Pango markup, otherwise the markup will be escaped and displayed to the user. See https://developer.gnome.org/pango/stable/PangoMarkupFormat.html for available markup. """ def __init__(self, lines=None, fixed_lines=None, width=None, fullscreen=None, location=None, exit_hotkeys=('Alt+F4', 'Control+q')): """ Parameters ---------- exit_hotkeys: tuple of strings Hotkeys to use to exit the application. These will be automatically set and handled in any method which takes hotkey arguments. If one of these hotkeys is pressed, a SystemExit will be raised to perform the exit. The following parameters set default values for various layout options, and can be overwritten in any display method. A value of None means use the system default, which may be set by a configuration file or fall back to the compile-time default. See the Rofi documentation for full details on what the values mean. lines: positive integer The maximum number of lines to show before scrolling. fixed_lines: positive integer Keep a fixed number of lines visible. width: real If positive but not more than 100, this is the percentage of the screen's width the window takes up. If greater than 100, it is the width in pixels. If negative, it estimates the width required for the corresponding number of characters, i.e., -30 would set the width so ~30 characters per row would show. fullscreen: boolean If True, use the full height and width of the screen. location: integer The position of the window on the screen. """ # The Popen class returned for any non-blocking windows. self._process = None # Save parameters. self.lines = lines self.fixed_lines = fixed_lines self.width = width self.fullscreen = fullscreen self.location = location self.exit_hotkeys = exit_hotkeys # Don't want a window left on the screen if we exit unexpectedly # (e.g., an unhandled exception). atexit.register(self.close) @classmethod def escape(self, string): """Escape a string for Pango markup. Parameters ---------- string: A piece of text to escape. Returns ------- The text, safe for use in with Pango markup. """ # Escape ampersands first, then other entities. Since argument is a # dictionary, we can't guarantee order of translations and so doing it # in one go would risk the ampersands in other translations being # escaped again. return string.translate( {38: '&amp;'} ).translate({ 34: '&quot;', 39: '&apos;', 60: '&lt;', 62: '&gt;' }) def close(self): """Close any open window. Note that this only works with non-blocking methods. """ if self._process: # Be nice first. self._process.send_signal(signal.SIGINT) # If it doesn't close itself promptly, be brutal. try: self._process.wait(timeout=1) except subprocess.TimeoutExpired: self._process.send_signal(signal.SIGKILL) # Clean up. self._process = None def _common_args(self, allow_fullscreen=True, **kwargs): args = [] # Number of lines. lines = kwargs.get('lines', self.lines) if lines: args.extend(['-lines', str(lines)]) fixed_lines = kwargs.get('fixed_lines', self.fixed_lines) if fixed_lines: args.extend(['-fixed-num-lines', str(fixed_lines)]) # Width. width = kwargs.get('width', self.width) if width is not None: args.extend(['-width', str(width)]) # Fullscreen mode? fullscreen = kwargs.get('fullscreen', self.fullscreen) if allow_fullscreen and fullscreen: args.append('-fullscreen') # Location on screen. location = kwargs.get('location', self.location) if location is not None: args.extend(['-location', str(location)]) # Done. return args def error(self, message, **kwargs): """Show an error window. This method blocks until the user presses a key. Fullscreen mode is not supported for error windows, and if specified will be ignored. Parameters ---------- message: string Error message to show. """ # Generate arguments list. args = ['rofi', '-e', message] args.extend(self._common_args(allow_fullscreen=False, **kwargs)) # Close any existing window and show the error. self.close() subprocess.run(args) def status(self, message, **kwargs): """Show a status message. This method is non-blocking, and intended to give a status update to the user while something is happening in the background. To close the window, either call the close() method or use any of the display methods to replace it with a different window. Fullscreen mode is not supported for status messages and if specified will be ignored. Parameters ---------- message: string Progress message to show. """ # Generate arguments list. args = ['rofi', '-e', message] args.extend(self._common_args(allow_fullscreen=False, **kwargs)) # Close any existing window, show the error, and return immediately. self.close() self._process = subprocess.Popen(args) def select(self, prompt, options, message="", select=None, **kwargs): """Show a list of options and return user selection. This method blocks until the user makes their choice. Parameters ---------- prompt: string The prompt telling the user what they are selecting. options: list of strings The options they can choose from. Any newline characters are replaced with spaces. message: string, optional Message to show between the prompt and the options. This can contain Pango markup, and any text content should be escaped. select: integer, optional Set which option is initially selected. keyN: tuple (string, string); optional Custom key bindings where N is one or greater. The first entry in the tuple should be a string defining the key, e.g., "Alt+x" or "Delete". Note that letter keys should be lowercase ie.e., Alt+a not Alt+A. The second entry should be a short string stating the action the key will take. This is displayed to the user at the top of the dialog. If None or an empty string, it is not displayed (but the binding is still set). By default, key1 through key9 are set to ("Alt+1", None) through ("Alt+9", None) respectively. Returns ------- tuple (index, key) The index of the option the user selected, or -1 if they cancelled the dialog. Key indicates which key was pressed, with 0 being 'OK' (generally Enter), -1 being 'Cancel' (generally escape), and N being custom key N. """ # Replace newlines and turn the options into a single string. optionstr = '\n'.join(option.replace('\n', ' ') for option in options) # Set up arguments. args = ['rofi', '-dmenu', '-p', prompt, '-format', 'i'] if select is not None: args.extend(['-selected-row', str(select)]) # Key bindings to display. display_bindings = [] # Configure the key bindings. user_keys = set() for k, v in kwargs.items(): match = re.fullmatch(r'key(\d+)', k) if match: key, action = v user_keys.add(int(match.group(1))) args.extend(['-kb-custom-{0:s}'.format(match.group(1)), key]) if action: display_bindings.append("<b>{0:s}</b>: {1:s}".format(key, action)) # And the global exit bindings. exit_keys = set() next_key = 10 for key in self.exit_hotkeys: while next_key in user_keys: next_key += 1 exit_keys.add(next_key) args.extend(['-kb-custom-{0:d}'.format(next_key), key]) next_key += 1 # Add any displayed key bindings to the message. message = message or "" if display_bindings: message += "\n" + " ".join(display_bindings) message = message.strip() # If we have a message, add it to the arguments. if message: args.extend(['-mesg', message]) # Add in common arguments. args.extend(self._common_args(**kwargs)) # Run the dialog. self.close() results = subprocess.run(args, input=optionstr, stdout=subprocess.PIPE, universal_newlines=True) # Figure out which option was selected. stdout = results.stdout.strip() index = int(stdout) if stdout else -1 # And map the return code to a key. if results.returncode == 0: key = 0 elif results.returncode == 1: key = -1 elif results.returncode > 9: key = results.returncode - 9 if key in exit_keys: raise SystemExit() else: self.exit_with_error("Unexpected rofi returncode {0:d}.".format(results.returncode)) # And return. return index, key def _generic_entry(self, prompt, validator, message=None, **kwargs): """Internal helper method for entry methods. Parameters ---------- prompt: string Text prompt for the entry. validator: function Function which takes the string the user entered and returns a tuple (value, error). Value is the entered value converted to the appropriate Python type ready for returning, and error is either a string if the entered text was invalid, or None if it was valid. message: string Optional message to display under the entry. Returns ------- The value returned by the validator, or None if the dialog was cancelled. """ error = "" # Keep going until we get something valid. while True: args = ['rofi', '-dmenu', '-p', prompt, '-format', 's'] # Add any error to the given message. msg = message or "" if error: msg = '<span color="#FF0000" font_weight="bold">{0:s}</span>\n{1:s}'.format(error, msg) msg = msg.rstrip('\n') # If there is actually a message to show. if msg: args.extend(['-mesg', msg]) # Add in common arguments. args.extend(self._common_args(**kwargs)) # Run it. self.close() results = subprocess.run(args, input="", stdout=subprocess.PIPE, universal_newlines=True) # Was the dialog cancelled? if results.returncode == 1: return None # Get rid of the trailing newline and check its validity. value, error = validator(results.stdout.rstrip('\n')) if not error: return value def text_entry(self, prompt, message=None, allow_blank=False, strip=True): """Prompt the user to enter a piece of text. Parameters ---------- prompt: string Prompt to display to the user. message: string, optional Message to display under the entry line. allow_blank: Boolean Whether to allow blank entries. strip: Boolean Whether to strip leading and trailing whitespace from the entered value. Returns ------- string, or None if the dialog was cancelled. """ def text_validator(text): if strip: text = text.strip() if not allow_blank: if not text: return None, "A value is required." return text, None return self._generic_entry(prompt, text_validator, message) def integer_entry(self, prompt, message=None, min=None, max=None): """Prompt the user to enter an integer. Parameters ---------- prompt: string Prompt to display to the user. message: string, optional Message to display under the entry line. min, max: integer, optional Minimum and maximum values to allow. If None, no limit is imposed. Returns ------- integer, or None if the dialog is cancelled. """ # Sanity check. if (min is not None) and (max is not None) and not (max > min): raise ValueError("Maximum limit has to be more than the minimum limit.") def integer_validator(text): error = None # Attempt to convert to integer. try: value = int(text) except ValueError: return None, "Please enter an integer value." # Check its within limits. if (min is not None) and (value < min): return None, "The minimum allowable value is {0:d}.".format(min) if (max is not None) and (value > max): return None, "The maximum allowable value is {0:d}.".format(max) return value, None return self._generic_entry(prompt, integer_validator, message) def float_entry(self, prompt, message=None, min=None, max=None): """Prompt the user to enter a floating point number. Parameters ---------- prompt: string Prompt to display to the user. message: string, optional Message to display under the entry line. min, max: float, optional Minimum and maximum values to allow. If None, no limit is imposed. Returns ------- float, or None if the dialog is cancelled. """ # Sanity check. if (min is not None) and (max is not None) and not (max > min): raise ValueError("Maximum limit has to be more than the minimum limit.") def float_validator(text): error = None # Attempt to convert to float. try: value = float(text) except ValueError: return None, "Please enter a floating point value." # Check its within limits. if (min is not None) and (value < min): return None, "The minimum allowable value is {0}.".format(min) if (max is not None) and (value > max): return None, "The maximum allowable value is {0}.".format(max) return value, None return self._generic_entry(prompt, float_validator, message) def decimal_entry(self, prompt, message=None, min=None, max=None): """Prompt the user to enter a decimal number. Parameters ---------- prompt: string Prompt to display to the user. message: string, optional Message to display under the entry line. min, max: Decimal, optional Minimum and maximum values to allow. If None, no limit is imposed. Returns ------- Decimal, or None if the dialog is cancelled. """ # Sanity check. if (min is not None) and (max is not None) and not (max > min): raise ValueError("Maximum limit has to be more than the minimum limit.") def decimal_validator(text): error = None # Attempt to convert to decimal. try: value = Decimal(text) except InvalidOperation: return None, "Please enter a decimal value." # Check its within limits. if (min is not None) and (value < min): return None, "The minimum allowable value is {0}.".format(min) if (max is not None) and (value > max): return None, "The maximum allowable value is {0}.".format(max) return value, None return self._generic_entry(prompt, decimal_validator, message) def exit_with_error(self, error): """Report an error and exit. This raises a SystemExit exception to ask the interpreter to quit. Parameters ---------- error: string The error to report before quitting. """ self.error(error) raise SystemExit(error)
# # python-rofi # # The MIT License # # Copyright (c) 2016 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import atexit from decimal import Decimal, InvalidOperation import re import signal import subprocess class Rofi(object): """Class to facilitate making simple GUIs with Rofi. Rofi is a popup window system with minimal dependencies (xlib and pango). It was designed as a window switcher. Its basic operation is to display a list of options and let the user pick one. This class provides a set of methods to make simple GUIs with Rofi. It does this by using the subprocess module to call Rofi externally. Many of the methods are blocking. Some strings can contain Pango markup for additional formatting (those that can are noted as such in the docstrings). Any text in these strings *must* be escaped before calling Rofi. The class method Rofi.escape() performs this escaping for you. Make sure you call this on the text prior to adding Pango markup, otherwise the markup will be escaped and displayed to the user. See https://developer.gnome.org/pango/stable/PangoMarkupFormat.html for available markup. """ def __init__(self, lines=None, fixed_lines=None, width=None, fullscreen=None, location=None, exit_hotkeys=('Alt+F4', 'Control+q')): """ Parameters ---------- exit_hotkeys: tuple of strings Hotkeys to use to exit the application. These will be automatically set and handled in any method which takes hotkey arguments. If one of these hotkeys is pressed, a SystemExit will be raised to perform the exit. The following parameters set default values for various layout options, and can be overwritten in any display method. A value of None means use the system default, which may be set by a configuration file or fall back to the compile-time default. See the Rofi documentation for full details on what the values mean. lines: positive integer The maximum number of lines to show before scrolling. fixed_lines: positive integer Keep a fixed number of lines visible. width: real If positive but not more than 100, this is the percentage of the screen's width the window takes up. If greater than 100, it is the width in pixels. If negative, it estimates the width required for the corresponding number of characters, i.e., -30 would set the width so ~30 characters per row would show. fullscreen: boolean If True, use the full height and width of the screen. location: integer The position of the window on the screen. """ # The Popen class returned for any non-blocking windows. self._process = None # Save parameters. self.lines = lines self.fixed_lines = fixed_lines self.width = width self.fullscreen = fullscreen self.location = location self.exit_hotkeys = exit_hotkeys # Don't want a window left on the screen if we exit unexpectedly # (e.g., an unhandled exception). atexit.register(self.close) @classmethod def escape(self, string): """Escape a string for Pango markup. Parameters ---------- string: A piece of text to escape. Returns ------- The text, safe for use in with Pango markup. """ # Escape ampersands first, then other entities. Since argument is a # dictionary, we can't guarantee order of translations and so doing it # in one go would risk the ampersands in other translations being # escaped again. return string.translate( {38: '&amp;'} ).translate({ 34: '&quot;', 39: '&apos;', 60: '&lt;', 62: '&gt;' }) def close(self): """Close any open window. Note that this only works with non-blocking methods. """ if self._process: # Be nice first. self._process.send_signal(signal.SIGINT) # If it doesn't close itself promptly, be brutal. try: self._process.wait(timeout=1) except subprocess.TimeoutExpired: self._process.send_signal(signal.SIGKILL) # Clean up. self._process = None def _common_args(self, allow_fullscreen=True, **kwargs): args = [] # Number of lines. lines = kwargs.get('lines', self.lines) if lines: args.extend(['-lines', str(lines)]) fixed_lines = kwargs.get('fixed_lines', self.fixed_lines) if fixed_lines: args.extend(['-fixed-num-lines', str(fixed_lines)]) # Width. width = kwargs.get('width', self.width) if width is not None: args.extend(['-width', str(width)]) # Fullscreen mode? fullscreen = kwargs.get('fullscreen', self.fullscreen) if allow_fullscreen and fullscreen: args.append('-fullscreen') # Location on screen. location = kwargs.get('location', self.location) if location is not None: args.extend(['-location', str(location)]) # Done. return args def error(self, message, **kwargs): """Show an error window. This method blocks until the user presses a key. Fullscreen mode is not supported for error windows, and if specified will be ignored. Parameters ---------- message: string Error message to show. """ # Generate arguments list. args = ['rofi', '-e', message] args.extend(self._common_args(allow_fullscreen=False, **kwargs)) # Close any existing window and show the error. self.close() subprocess.run(args) def status(self, message, **kwargs): """Show a status message. This method is non-blocking, and intended to give a status update to the user while something is happening in the background. To close the window, either call the close() method or use any of the display methods to replace it with a different window. Fullscreen mode is not supported for status messages and if specified will be ignored. Parameters ---------- message: string Progress message to show. """ # Generate arguments list. args = ['rofi', '-e', message] args.extend(self._common_args(allow_fullscreen=False, **kwargs)) # Close any existing window, show the error, and return immediately. self.close() self._process = subprocess.Popen(args) def select(self, prompt, options, message="", select=None, **kwargs): """Show a list of options and return user selection. This method blocks until the user makes their choice. Parameters ---------- prompt: string The prompt telling the user what they are selecting. options: list of strings The options they can choose from. Any newline characters are replaced with spaces. message: string, optional Message to show between the prompt and the options. This can contain Pango markup, and any text content should be escaped. select: integer, optional Set which option is initially selected. keyN: tuple (string, string); optional Custom key bindings where N is one or greater. The first entry in the tuple should be a string defining the key, e.g., "Alt+x" or "Delete". Note that letter keys should be lowercase ie.e., Alt+a not Alt+A. The second entry should be a short string stating the action the key will take. This is displayed to the user at the top of the dialog. If None or an empty string, it is not displayed (but the binding is still set). By default, key1 through key9 are set to ("Alt+1", None) through ("Alt+9", None) respectively. Returns ------- tuple (index, key) The index of the option the user selected, or -1 if they cancelled the dialog. Key indicates which key was pressed, with 0 being 'OK' (generally Enter), -1 being 'Cancel' (generally escape), and N being custom key N. """ # Replace newlines and turn the options into a single string. optionstr = '\n'.join(option.replace('\n', ' ') for option in options) # Set up arguments. args = ['rofi', '-dmenu', '-p', prompt, '-format', 'i'] if select is not None: args.extend(['-selected-row', str(select)]) # Key bindings to display. display_bindings = [] # Configure the key bindings. user_keys = set() for k, v in kwargs.items(): match = re.fullmatch(r'key(\d+)', k) if match: key, action = v user_keys.add(int(match.group(1))) args.extend(['-kb-custom-{0:s}'.format(match.group(1)), key]) if action: display_bindings.append("<b>{0:s}</b>: {1:s}".format(key, action)) # And the global exit bindings. exit_keys = set() next_key = 10 for key in self.exit_hotkeys: while next_key in user_keys: next_key += 1 exit_keys.add(next_key) args.extend(['-kb-custom-{0:d}'.format(next_key), key]) next_key += 1 # Add any displayed key bindings to the message. message = message or "" if display_bindings: message += "\n" + " ".join(display_bindings) message = message.strip() # If we have a message, add it to the arguments. if message: args.extend(['-mesg', message]) # Add in common arguments. args.extend(self._common_args(**kwargs)) # Run the dialog. self.close() results = subprocess.run(args, input=optionstr, stdout=subprocess.PIPE, universal_newlines=True) # Figure out which option was selected. stdout = results.stdout.strip() index = int(stdout) if stdout else -1 # And map the return code to a key. if results.returncode == 0: key = 0 elif results.returncode == 1: key = -1 elif results.returncode > 9: key = results.returncode - 9 if key in exit_keys: raise SystemExit() else: self.exit_with_error("Unexpected rofi returncode {0:d}.".format(results.returncode)) # And return. return index, key def _generic_entry(self, prompt, validator, message=None, **kwargs): """Internal helper method for entry methods. Parameters ---------- prompt: string Text prompt for the entry. validator: function Function which takes the string the user entered and returns a tuple (value, error). Value is the entered value converted to the appropriate Python type ready for returning, and error is either a string if the entered text was invalid, or None if it was valid. message: string Optional message to display under the entry. Returns ------- The value returned by the validator, or None if the dialog was cancelled. """ error = "" # Keep going until we get something valid. while True: args = ['rofi', '-dmenu', '-p', prompt, '-format', 's'] # Add any error to the given message. msg = message or "" if error: msg = '<span color="#FF0000" font_weight="bold">{0:s}</span>\n{1:s}'.format(error, msg) msg = msg.rstrip('\n') # If there is actually a message to show. if msg: args.extend(['-mesg', msg]) # Add in common arguments. args.extend(self._common_args(**kwargs)) # Run it. self.close() results = subprocess.run(args, input="", stdout=subprocess.PIPE, universal_newlines=True) # Was the dialog cancelled? if results.returncode == 1: return None # Get rid of the trailing newline and check its validity. value, error = validator(results.stdout.rstrip('\n')) if not error: return value def text_entry(self, prompt, message=None, allow_blank=False, strip=True): """Prompt the user to enter a piece of text. Parameters ---------- prompt: string Prompt to display to the user. message: string, optional Message to display under the entry line. allow_blank: Boolean Whether to allow blank entries. strip: Boolean Whether to strip leading and trailing whitespace from the entered value. Returns ------- string, or None if the dialog was cancelled. """ def text_validator(text): if strip: text = text.strip() if not allow_blank: if not text: return None, "A value is required." return text, None return self._generic_entry(prompt, text_validator, message) def integer_entry(self, prompt, message=None, min=None, max=None): """Prompt the user to enter an integer. Parameters ---------- prompt: string Prompt to display to the user. message: string, optional Message to display under the entry line. min, max: integer, optional Minimum and maximum values to allow. If None, no limit is imposed. Returns ------- integer, or None if the dialog is cancelled. """ # Sanity check. if (min is not None) and (max is not None) and not (max > min): raise ValueError("Maximum limit has to be more than the minimum limit.") def integer_validator(text): error = None # Attempt to convert to integer. try: value = int(text) except ValueError: return None, "Please enter an integer value." # Check its within limits. if (min is not None) and (value < min): return None, "The minimum allowable value is {0:d}.".format(min) if (max is not None) and (value > max): return None, "The maximum allowable value is {0:d}.".format(max) return value, None return self._generic_entry(prompt, integer_validator, message) def float_entry(self, prompt, message=None, min=None, max=None): """Prompt the user to enter a floating point number. Parameters ---------- prompt: string Prompt to display to the user. message: string, optional Message to display under the entry line. min, max: float, optional Minimum and maximum values to allow. If None, no limit is imposed. Returns ------- float, or None if the dialog is cancelled. """ # Sanity check. if (min is not None) and (max is not None) and not (max > min): raise ValueError("Maximum limit has to be more than the minimum limit.") def float_validator(text): error = None # Attempt to convert to float. try: value = float(text) except ValueError: return None, "Please enter a floating point value." # Check its within limits. if (min is not None) and (value < min): return None, "The minimum allowable value is {0}.".format(min) if (max is not None) and (value > max): return None, "The maximum allowable value is {0}.".format(max) return value, None return self._generic_entry(prompt, float_validator, message) def decimal_entry(self, prompt, message=None, min=None, max=None): """Prompt the user to enter a decimal number. Parameters ---------- prompt: string Prompt to display to the user. message: string, optional Message to display under the entry line. min, max: Decimal, optional Minimum and maximum values to allow. If None, no limit is imposed. Returns ------- Decimal, or None if the dialog is cancelled. """ # Sanity check. if (min is not None) and (max is not None) and not (max > min): raise ValueError("Maximum limit has to be more than the minimum limit.") def decimal_validator(text): error = None # Attempt to convert to decimal. try: value = Decimal(text) except InvalidOperation: return None, "Please enter a decimal value." # Check its within limits. if (min is not None) and (value < min): return None, "The minimum allowable value is {0}.".format(min) if (max is not None) and (value > max): return None, "The maximum allowable value is {0}.".format(max) return value, None return self._generic_entry(prompt, decimal_validator, message) def exit_with_error(self, error): """Report an error and exit. This raises a SystemExit exception to ask the interpreter to quit. Parameters ---------- error: string The error to report before quitting. """ self.error(error) raise SystemExit(error)
en
0.781453
# # python-rofi # # The MIT License # # Copyright (c) 2016 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Class to facilitate making simple GUIs with Rofi. Rofi is a popup window system with minimal dependencies (xlib and pango). It was designed as a window switcher. Its basic operation is to display a list of options and let the user pick one. This class provides a set of methods to make simple GUIs with Rofi. It does this by using the subprocess module to call Rofi externally. Many of the methods are blocking. Some strings can contain Pango markup for additional formatting (those that can are noted as such in the docstrings). Any text in these strings *must* be escaped before calling Rofi. The class method Rofi.escape() performs this escaping for you. Make sure you call this on the text prior to adding Pango markup, otherwise the markup will be escaped and displayed to the user. See https://developer.gnome.org/pango/stable/PangoMarkupFormat.html for available markup. Parameters ---------- exit_hotkeys: tuple of strings Hotkeys to use to exit the application. These will be automatically set and handled in any method which takes hotkey arguments. If one of these hotkeys is pressed, a SystemExit will be raised to perform the exit. The following parameters set default values for various layout options, and can be overwritten in any display method. A value of None means use the system default, which may be set by a configuration file or fall back to the compile-time default. See the Rofi documentation for full details on what the values mean. lines: positive integer The maximum number of lines to show before scrolling. fixed_lines: positive integer Keep a fixed number of lines visible. width: real If positive but not more than 100, this is the percentage of the screen's width the window takes up. If greater than 100, it is the width in pixels. If negative, it estimates the width required for the corresponding number of characters, i.e., -30 would set the width so ~30 characters per row would show. fullscreen: boolean If True, use the full height and width of the screen. location: integer The position of the window on the screen. # The Popen class returned for any non-blocking windows. # Save parameters. # Don't want a window left on the screen if we exit unexpectedly # (e.g., an unhandled exception). Escape a string for Pango markup. Parameters ---------- string: A piece of text to escape. Returns ------- The text, safe for use in with Pango markup. # Escape ampersands first, then other entities. Since argument is a # dictionary, we can't guarantee order of translations and so doing it # in one go would risk the ampersands in other translations being # escaped again. Close any open window. Note that this only works with non-blocking methods. # Be nice first. # If it doesn't close itself promptly, be brutal. # Clean up. # Number of lines. # Width. # Fullscreen mode? # Location on screen. # Done. Show an error window. This method blocks until the user presses a key. Fullscreen mode is not supported for error windows, and if specified will be ignored. Parameters ---------- message: string Error message to show. # Generate arguments list. # Close any existing window and show the error. Show a status message. This method is non-blocking, and intended to give a status update to the user while something is happening in the background. To close the window, either call the close() method or use any of the display methods to replace it with a different window. Fullscreen mode is not supported for status messages and if specified will be ignored. Parameters ---------- message: string Progress message to show. # Generate arguments list. # Close any existing window, show the error, and return immediately. Show a list of options and return user selection. This method blocks until the user makes their choice. Parameters ---------- prompt: string The prompt telling the user what they are selecting. options: list of strings The options they can choose from. Any newline characters are replaced with spaces. message: string, optional Message to show between the prompt and the options. This can contain Pango markup, and any text content should be escaped. select: integer, optional Set which option is initially selected. keyN: tuple (string, string); optional Custom key bindings where N is one or greater. The first entry in the tuple should be a string defining the key, e.g., "Alt+x" or "Delete". Note that letter keys should be lowercase ie.e., Alt+a not Alt+A. The second entry should be a short string stating the action the key will take. This is displayed to the user at the top of the dialog. If None or an empty string, it is not displayed (but the binding is still set). By default, key1 through key9 are set to ("Alt+1", None) through ("Alt+9", None) respectively. Returns ------- tuple (index, key) The index of the option the user selected, or -1 if they cancelled the dialog. Key indicates which key was pressed, with 0 being 'OK' (generally Enter), -1 being 'Cancel' (generally escape), and N being custom key N. # Replace newlines and turn the options into a single string. # Set up arguments. # Key bindings to display. # Configure the key bindings. # And the global exit bindings. # Add any displayed key bindings to the message. # If we have a message, add it to the arguments. # Add in common arguments. # Run the dialog. # Figure out which option was selected. # And map the return code to a key. # And return. Internal helper method for entry methods. Parameters ---------- prompt: string Text prompt for the entry. validator: function Function which takes the string the user entered and returns a tuple (value, error). Value is the entered value converted to the appropriate Python type ready for returning, and error is either a string if the entered text was invalid, or None if it was valid. message: string Optional message to display under the entry. Returns ------- The value returned by the validator, or None if the dialog was cancelled. # Keep going until we get something valid. # Add any error to the given message. # If there is actually a message to show. # Add in common arguments. # Run it. # Was the dialog cancelled? # Get rid of the trailing newline and check its validity. Prompt the user to enter a piece of text. Parameters ---------- prompt: string Prompt to display to the user. message: string, optional Message to display under the entry line. allow_blank: Boolean Whether to allow blank entries. strip: Boolean Whether to strip leading and trailing whitespace from the entered value. Returns ------- string, or None if the dialog was cancelled. Prompt the user to enter an integer. Parameters ---------- prompt: string Prompt to display to the user. message: string, optional Message to display under the entry line. min, max: integer, optional Minimum and maximum values to allow. If None, no limit is imposed. Returns ------- integer, or None if the dialog is cancelled. # Sanity check. # Attempt to convert to integer. # Check its within limits. Prompt the user to enter a floating point number. Parameters ---------- prompt: string Prompt to display to the user. message: string, optional Message to display under the entry line. min, max: float, optional Minimum and maximum values to allow. If None, no limit is imposed. Returns ------- float, or None if the dialog is cancelled. # Sanity check. # Attempt to convert to float. # Check its within limits. Prompt the user to enter a decimal number. Parameters ---------- prompt: string Prompt to display to the user. message: string, optional Message to display under the entry line. min, max: Decimal, optional Minimum and maximum values to allow. If None, no limit is imposed. Returns ------- Decimal, or None if the dialog is cancelled. # Sanity check. # Attempt to convert to decimal. # Check its within limits. Report an error and exit. This raises a SystemExit exception to ask the interpreter to quit. Parameters ---------- error: string The error to report before quitting.
2.336635
2
decompile_all_EO3_ai.py
LumenTheFairy/Etrian-Odyssey-Data-Interpreter
4
6633027
<gh_stars>1-10 #!/usr/bin/python # coding: utf-8 # Decompiles all AI files, naming, to the extent possible, skills # and the entities that use each AI file (if any) # assumes directory structure: # ./EO3/ # AI/ # BtlBSTScrFileTable.tbl # BtlNPCScrFileTable.tbl # BtlScrFileTable.tbl # *.bf # Skills/ # enemyskillnametable.tbl # playerskillnametable.tbl # ... # Enemy/ # enemynametable.tbl # ... # ... # out_EO3/ # AI/ # decompiled/ # enemy/ # ally/ # summon/ # ... # ... # written by TheOnlyOne (@modest_ralts) import argparse from sys import stderr import os import unpack_EO_name_table import unpack_ai_proc_list import unpack_ai import decompile_ai def parseArguments(): # Create argument parser parser = argparse.ArgumentParser(description="Decompiles all Etrian Odyssey 3 AI files, naming skills and entities to the extent possible.") parser.add_argument("--fully_optimize", action="store_true", help="all optimization passes will be performed on the code; specific optimization flags will be ignored") parser.add_argument("--flatten_conditionals", action="store_true", help="(if . else if . else .) will be converted to (if . elif . else.) when permissable to reduce the nesting depth and resulting indentation of code") parser.add_argument("--flatten_elses", action="store_true", help="(if t return else f ) will be converted to (if t return f) when permissable to reduce the nesting depth and resulting indentation of code") parser.add_argument("--constant_folding", action="store_true", help="any arithmetic containing only constants will be replaced with the value of that expression") parser.add_argument("--simplify_conditions", action="store_true", help="boolean conditions will be simplified when it is permissable; see docs/ai_notes.txt for some warnings about this flag") # Print version parser.add_argument("--version", action="version", version='%(prog)s - Version 1.0') # Parse arguments args = parser.parse_args() return args if __name__ == '__main__': # Parse the arguments args = parseArguments() # Build the enemy name table scr_names = unpack_EO_name_table.EO_name_table() scr_names.build_from_file("EO3/Enemy/enemynametable.tbl", 2, False) # Build the enemy skill name table scr_skill_names = unpack_EO_name_table.EO_name_table() scr_skill_names.build_from_file("EO3/Skill/enemyskillnametable.tbl", 2, False) # Build the player skill name table scrn_skill_names = unpack_EO_name_table.EO_name_table() scrn_skill_names.build_from_file("EO3/Skill/playerskillnametable.tbl", 2, False) # Build the procedure name list for enemies scr_proc_list = unpack_ai_proc_list.get_procedure_names("EO3/AI/BtlScrFileTable.tbl", scr_names.size) # holds all info in, and determined about a single AI file class AI_Info(): # return a string with the full output destiation, including path and filename def get_full_output_name(self): # common directory output = "out_EO3/AI/decompiled/" # subdirectory based on type if self.type == "scr": output += "enemy/" elif self.type == "scrn": output += "ally/" elif self.type == "scrb": output += "summon/" # name used is just the first in the possible name list, or the original filename if there is none if self.possible_names: output += self.possible_names[0].replace(' ', '_') else: output += self.filename[:-3] # add a version number if necessary if self.version > 0: output += "_" + str(self.version) # extension output += ".txt" return output # computes everything about the ai from its file def __init__(self, subdir, filename): # name analysis self.filename = filename name_info = file[:-3].split('_', 2) # 'AI_scr?_name.bf' self.type = name_info[1] listed_proc_name = '_'.join(name_info[1:]) self.possible_names = [] for idx, proc_name in enumerate(scr_proc_list): if proc_name == listed_proc_name: self.possible_names.append( scr_names.names[idx] ) #if self.type == "scr" and not self.possible_names: # print "No possible name found: " + self.filename # TODO: this loop for sea allies and summons once a name list is found # when there are multiple enemies with the same name, use a non-zero version to distinguish them self.version = 0 self.flow = unpack_ai.Flow_File(os.path.join(subdir, filename)) self.basic_blocks, self.proc_info, self.special_labels = decompile_ai.abstract_flow(self.flow) self.abst = decompile_ai.ABST(self.basic_blocks, self.proc_info, self.special_labels, False) if args.fully_optimize: self.abst.optimize_abst() else: self.abst.optimize_abst(args.flatten_conditionals, args.flatten_elses, args.constant_folding, args.simplify_conditions) decompile_ai.set_game_specific_values("EO3") ai_info = [] for subdir, dirs, files in os.walk('EO3/AI/'): for file in files: if file.endswith('.bf'): # create the raw disassembly flow ai_info.append( AI_Info(subdir, file) ) # adds versions to AIs with the same first possible name # note that this is not particularly efficient for out_idx, out_info in enumerate(ai_info): matches = [out_info] for in_idx, in_info in enumerate(ai_info): if out_idx != in_idx and out_info.possible_names and in_info.possible_names: if out_info.possible_names[0] == in_info.possible_names[0]: matches.append(in_info) if len(matches) > 1: matches.sort(key=lambda i : i.filename) for in_idx, in_info in enumerate(matches): in_info.version = in_idx + 1 for info in ai_info: # header info output = [] if info.possible_names: output += ["Name: " + info.possible_names[0] ] if info.version > 0: output[0] += " (version " + str(info.version) + ")" output += ["Original filename: " + info.filename] output += [""] if info.type == "scr": func_display = decompile_ai.get_enemy_function_formater(info.abst, scr_names.names, scr_skill_names.names) output += [info.abst.display_decompilation(func_display)] else: output += [info.abst.display_decompilation()] # Write decompilation to a file with open(info.get_full_output_name(), "w") as f: f.write( "\n".join(output) )
#!/usr/bin/python # coding: utf-8 # Decompiles all AI files, naming, to the extent possible, skills # and the entities that use each AI file (if any) # assumes directory structure: # ./EO3/ # AI/ # BtlBSTScrFileTable.tbl # BtlNPCScrFileTable.tbl # BtlScrFileTable.tbl # *.bf # Skills/ # enemyskillnametable.tbl # playerskillnametable.tbl # ... # Enemy/ # enemynametable.tbl # ... # ... # out_EO3/ # AI/ # decompiled/ # enemy/ # ally/ # summon/ # ... # ... # written by TheOnlyOne (@modest_ralts) import argparse from sys import stderr import os import unpack_EO_name_table import unpack_ai_proc_list import unpack_ai import decompile_ai def parseArguments(): # Create argument parser parser = argparse.ArgumentParser(description="Decompiles all Etrian Odyssey 3 AI files, naming skills and entities to the extent possible.") parser.add_argument("--fully_optimize", action="store_true", help="all optimization passes will be performed on the code; specific optimization flags will be ignored") parser.add_argument("--flatten_conditionals", action="store_true", help="(if . else if . else .) will be converted to (if . elif . else.) when permissable to reduce the nesting depth and resulting indentation of code") parser.add_argument("--flatten_elses", action="store_true", help="(if t return else f ) will be converted to (if t return f) when permissable to reduce the nesting depth and resulting indentation of code") parser.add_argument("--constant_folding", action="store_true", help="any arithmetic containing only constants will be replaced with the value of that expression") parser.add_argument("--simplify_conditions", action="store_true", help="boolean conditions will be simplified when it is permissable; see docs/ai_notes.txt for some warnings about this flag") # Print version parser.add_argument("--version", action="version", version='%(prog)s - Version 1.0') # Parse arguments args = parser.parse_args() return args if __name__ == '__main__': # Parse the arguments args = parseArguments() # Build the enemy name table scr_names = unpack_EO_name_table.EO_name_table() scr_names.build_from_file("EO3/Enemy/enemynametable.tbl", 2, False) # Build the enemy skill name table scr_skill_names = unpack_EO_name_table.EO_name_table() scr_skill_names.build_from_file("EO3/Skill/enemyskillnametable.tbl", 2, False) # Build the player skill name table scrn_skill_names = unpack_EO_name_table.EO_name_table() scrn_skill_names.build_from_file("EO3/Skill/playerskillnametable.tbl", 2, False) # Build the procedure name list for enemies scr_proc_list = unpack_ai_proc_list.get_procedure_names("EO3/AI/BtlScrFileTable.tbl", scr_names.size) # holds all info in, and determined about a single AI file class AI_Info(): # return a string with the full output destiation, including path and filename def get_full_output_name(self): # common directory output = "out_EO3/AI/decompiled/" # subdirectory based on type if self.type == "scr": output += "enemy/" elif self.type == "scrn": output += "ally/" elif self.type == "scrb": output += "summon/" # name used is just the first in the possible name list, or the original filename if there is none if self.possible_names: output += self.possible_names[0].replace(' ', '_') else: output += self.filename[:-3] # add a version number if necessary if self.version > 0: output += "_" + str(self.version) # extension output += ".txt" return output # computes everything about the ai from its file def __init__(self, subdir, filename): # name analysis self.filename = filename name_info = file[:-3].split('_', 2) # 'AI_scr?_name.bf' self.type = name_info[1] listed_proc_name = '_'.join(name_info[1:]) self.possible_names = [] for idx, proc_name in enumerate(scr_proc_list): if proc_name == listed_proc_name: self.possible_names.append( scr_names.names[idx] ) #if self.type == "scr" and not self.possible_names: # print "No possible name found: " + self.filename # TODO: this loop for sea allies and summons once a name list is found # when there are multiple enemies with the same name, use a non-zero version to distinguish them self.version = 0 self.flow = unpack_ai.Flow_File(os.path.join(subdir, filename)) self.basic_blocks, self.proc_info, self.special_labels = decompile_ai.abstract_flow(self.flow) self.abst = decompile_ai.ABST(self.basic_blocks, self.proc_info, self.special_labels, False) if args.fully_optimize: self.abst.optimize_abst() else: self.abst.optimize_abst(args.flatten_conditionals, args.flatten_elses, args.constant_folding, args.simplify_conditions) decompile_ai.set_game_specific_values("EO3") ai_info = [] for subdir, dirs, files in os.walk('EO3/AI/'): for file in files: if file.endswith('.bf'): # create the raw disassembly flow ai_info.append( AI_Info(subdir, file) ) # adds versions to AIs with the same first possible name # note that this is not particularly efficient for out_idx, out_info in enumerate(ai_info): matches = [out_info] for in_idx, in_info in enumerate(ai_info): if out_idx != in_idx and out_info.possible_names and in_info.possible_names: if out_info.possible_names[0] == in_info.possible_names[0]: matches.append(in_info) if len(matches) > 1: matches.sort(key=lambda i : i.filename) for in_idx, in_info in enumerate(matches): in_info.version = in_idx + 1 for info in ai_info: # header info output = [] if info.possible_names: output += ["Name: " + info.possible_names[0] ] if info.version > 0: output[0] += " (version " + str(info.version) + ")" output += ["Original filename: " + info.filename] output += [""] if info.type == "scr": func_display = decompile_ai.get_enemy_function_formater(info.abst, scr_names.names, scr_skill_names.names) output += [info.abst.display_decompilation(func_display)] else: output += [info.abst.display_decompilation()] # Write decompilation to a file with open(info.get_full_output_name(), "w") as f: f.write( "\n".join(output) )
en
0.672329
#!/usr/bin/python # coding: utf-8 # Decompiles all AI files, naming, to the extent possible, skills # and the entities that use each AI file (if any) # assumes directory structure: # ./EO3/ # AI/ # BtlBSTScrFileTable.tbl # BtlNPCScrFileTable.tbl # BtlScrFileTable.tbl # *.bf # Skills/ # enemyskillnametable.tbl # playerskillnametable.tbl # ... # Enemy/ # enemynametable.tbl # ... # ... # out_EO3/ # AI/ # decompiled/ # enemy/ # ally/ # summon/ # ... # ... # written by TheOnlyOne (@modest_ralts) # Create argument parser # Print version # Parse arguments # Parse the arguments # Build the enemy name table # Build the enemy skill name table # Build the player skill name table # Build the procedure name list for enemies # holds all info in, and determined about a single AI file # return a string with the full output destiation, including path and filename # common directory # subdirectory based on type # name used is just the first in the possible name list, or the original filename if there is none # add a version number if necessary # extension # computes everything about the ai from its file # name analysis # 'AI_scr?_name.bf' #if self.type == "scr" and not self.possible_names: # print "No possible name found: " + self.filename # TODO: this loop for sea allies and summons once a name list is found # when there are multiple enemies with the same name, use a non-zero version to distinguish them # create the raw disassembly flow # adds versions to AIs with the same first possible name # note that this is not particularly efficient # header info # Write decompilation to a file
2.282127
2
pre-processing/prepare_data.py
ocastx/deepspeech-german
0
6633028
<reponame>ocastx/deepspeech-german #! /usr/bin/env python """ 1. Load all corpora where a path is given. 2. Clean transcriptions. 3. Merge all corpora 4. Create Train/Dev/Test splits 5. Export for DeepSpeech """ import os import sys sys.path.append(os.path.abspath(os.path.join(__file__, os.path.pardir))) import argparse import audiomate from audiomate.corpus import io from audiomate.corpus import subset import text_cleaning def clean_transcriptions(corpus): for utterance in corpus.utterances.values(): ll = utterance.label_lists[audiomate.corpus.LL_WORD_TRANSCRIPT] for label in ll: label.value = text_cleaning.clean_sentence(label.value) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Prepare data for training.') parser.add_argument('target_path', type=str) parser.add_argument('--tuda', type=str) parser.add_argument('--voxforge', type=str) parser.add_argument('--swc', type=str) parser.add_argument('--mailabs', type=str) parser.add_argument('--cv', type=str) args = parser.parse_args() tuda_path = args.tuda voxforge_path = args.voxforge swc_path = args.swc mailabs_path = args.mailabs cv_path = args.cv corpora = [] if tuda_path is not None: tuda_corpus = audiomate.Corpus.load(tuda_path, reader='tuda') corpora.append(tuda_corpus) if voxforge_path is not None: voxforge_corpus = audiomate.Corpus.load( voxforge_path, reader='voxforge') corpora.append(voxforge_corpus) if swc_path is not None: swc_corpus = audiomate.Corpus.load(swc_path, reader='kaldi') corpora.append(swc_corpus) if mailabs_path is not None: mailabs_corpus = audiomate.Corpus.load(mailabs_path, reader='mailabs') corpora.append(mailabs_corpus) if cv_path is not None: cv_corpus = audiomate.Corpus.load(cv_path, reader='common-voice') corpora.append(cv_corpus) if len(corpora) <= 0: raise ValueError('No Corpus given!') merged_corpus = audiomate.Corpus.merge_corpora(corpora) clean_transcriptions(merged_corpus) splitter = subset.Splitter(merged_corpus, random_seed=38) splits = splitter.split_by_length_of_utterances( {'train': 0.7, 'dev': 0.15, 'test': 0.15}, separate_issuers=True) merged_corpus.import_subview('train', splits['train']) merged_corpus.import_subview('dev', splits['dev']) merged_corpus.import_subview('test', splits['test']) deepspeech_writer = io.MozillaDeepSpeechWriter() deepspeech_writer.save(merged_corpus, args.target_path)
#! /usr/bin/env python """ 1. Load all corpora where a path is given. 2. Clean transcriptions. 3. Merge all corpora 4. Create Train/Dev/Test splits 5. Export for DeepSpeech """ import os import sys sys.path.append(os.path.abspath(os.path.join(__file__, os.path.pardir))) import argparse import audiomate from audiomate.corpus import io from audiomate.corpus import subset import text_cleaning def clean_transcriptions(corpus): for utterance in corpus.utterances.values(): ll = utterance.label_lists[audiomate.corpus.LL_WORD_TRANSCRIPT] for label in ll: label.value = text_cleaning.clean_sentence(label.value) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Prepare data for training.') parser.add_argument('target_path', type=str) parser.add_argument('--tuda', type=str) parser.add_argument('--voxforge', type=str) parser.add_argument('--swc', type=str) parser.add_argument('--mailabs', type=str) parser.add_argument('--cv', type=str) args = parser.parse_args() tuda_path = args.tuda voxforge_path = args.voxforge swc_path = args.swc mailabs_path = args.mailabs cv_path = args.cv corpora = [] if tuda_path is not None: tuda_corpus = audiomate.Corpus.load(tuda_path, reader='tuda') corpora.append(tuda_corpus) if voxforge_path is not None: voxforge_corpus = audiomate.Corpus.load( voxforge_path, reader='voxforge') corpora.append(voxforge_corpus) if swc_path is not None: swc_corpus = audiomate.Corpus.load(swc_path, reader='kaldi') corpora.append(swc_corpus) if mailabs_path is not None: mailabs_corpus = audiomate.Corpus.load(mailabs_path, reader='mailabs') corpora.append(mailabs_corpus) if cv_path is not None: cv_corpus = audiomate.Corpus.load(cv_path, reader='common-voice') corpora.append(cv_corpus) if len(corpora) <= 0: raise ValueError('No Corpus given!') merged_corpus = audiomate.Corpus.merge_corpora(corpora) clean_transcriptions(merged_corpus) splitter = subset.Splitter(merged_corpus, random_seed=38) splits = splitter.split_by_length_of_utterances( {'train': 0.7, 'dev': 0.15, 'test': 0.15}, separate_issuers=True) merged_corpus.import_subview('train', splits['train']) merged_corpus.import_subview('dev', splits['dev']) merged_corpus.import_subview('test', splits['test']) deepspeech_writer = io.MozillaDeepSpeechWriter() deepspeech_writer.save(merged_corpus, args.target_path)
en
0.518926
#! /usr/bin/env python 1. Load all corpora where a path is given. 2. Clean transcriptions. 3. Merge all corpora 4. Create Train/Dev/Test splits 5. Export for DeepSpeech
2.453347
2
api/urls.py
prakash3720/django-rest
0
6633029
<filename>api/urls.py from django.urls import path,include from rest_framework.routers import DefaultRouter from api import views router=DefaultRouter() router.register('profile',views.UserProfileViewSet) router.register('todo',views.UserProfileTodoViewSet) urlpatterns=[ path('login/',views.UserLoginApiView.as_view()), path('',include(router.urls)) ]
<filename>api/urls.py from django.urls import path,include from rest_framework.routers import DefaultRouter from api import views router=DefaultRouter() router.register('profile',views.UserProfileViewSet) router.register('todo',views.UserProfileTodoViewSet) urlpatterns=[ path('login/',views.UserLoginApiView.as_view()), path('',include(router.urls)) ]
none
1
2.121861
2
agregator/mainpage/models.py
tarasen1/Django-Agregator-Site
0
6633030
<filename>agregator/mainpage/models.py from django.db import models from django.core.validators import MaxValueValidator, MinValueValidator from django.contrib.auth.models import User class Room(models.Model): class Meta(): db_table = 'rooms' def __str__(self): return self.room_name room_user = models.ForeignKey(User) room_name = models.CharField(max_length=300) room_descpription = models.TextField() room_photo = models.ImageField(upload_to='mainImages') room_city = models.CharField(max_length=40) room_adress = models.CharField(max_length=100) square = models.IntegerField(validators=[MinValueValidator(0)]) room_equipment = models.TextField(max_length=1000) room_accesability = models.BooleanField() room_light = models.IntegerField(validators=[MaxValueValidator(100), MinValueValidator(1)]) class Comment(models.Model): class Meta(): db_table = 'comments' comment_text = models.TextField() comment_like = models.IntegerField(default = 0) comment_article = models.ForeignKey(Room) comment_user = models.ForeignKey(User)
<filename>agregator/mainpage/models.py from django.db import models from django.core.validators import MaxValueValidator, MinValueValidator from django.contrib.auth.models import User class Room(models.Model): class Meta(): db_table = 'rooms' def __str__(self): return self.room_name room_user = models.ForeignKey(User) room_name = models.CharField(max_length=300) room_descpription = models.TextField() room_photo = models.ImageField(upload_to='mainImages') room_city = models.CharField(max_length=40) room_adress = models.CharField(max_length=100) square = models.IntegerField(validators=[MinValueValidator(0)]) room_equipment = models.TextField(max_length=1000) room_accesability = models.BooleanField() room_light = models.IntegerField(validators=[MaxValueValidator(100), MinValueValidator(1)]) class Comment(models.Model): class Meta(): db_table = 'comments' comment_text = models.TextField() comment_like = models.IntegerField(default = 0) comment_article = models.ForeignKey(Room) comment_user = models.ForeignKey(User)
none
1
2.184784
2
src/tratamientos/migrations/0003_auto_20160515_2028.py
mava-ar/sgk
0
6633031
<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-05-15 23:28 from __future__ import unicode_literals import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('tratamientos', '0002_auto_20160510_0022'), ] operations = [ migrations.AddField( model_name='sesion', name='comienzo_el', field=models.DateTimeField(auto_now_add=True, default=datetime.datetime(2016, 5, 15, 23, 28, 35, 95147, tzinfo=utc), verbose_name='fecha y hora de comienzo de sesión'), preserve_default=False, ), migrations.AddField( model_name='sesion', name='fin_el', field=models.DateTimeField(null=True, verbose_name='fecha y hora de fin de sesión'), ), ]
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-05-15 23:28 from __future__ import unicode_literals import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('tratamientos', '0002_auto_20160510_0022'), ] operations = [ migrations.AddField( model_name='sesion', name='comienzo_el', field=models.DateTimeField(auto_now_add=True, default=datetime.datetime(2016, 5, 15, 23, 28, 35, 95147, tzinfo=utc), verbose_name='fecha y hora de comienzo de sesión'), preserve_default=False, ), migrations.AddField( model_name='sesion', name='fin_el', field=models.DateTimeField(null=True, verbose_name='fecha y hora de fin de sesión'), ), ]
en
0.837737
# -*- coding: utf-8 -*- # Generated by Django 1.9.6 on 2016-05-15 23:28
1.721824
2
pcp_sdn_source/pcp_sdn/dphelper.py
kamilburda/pcp-sdn
2
6633032
""" This module contains datapath-related functions for easier management. """ from collections import OrderedDict #=============================================================================== def get_mac_addr_from_datapath(datapath): """ Return the MAC address from the datapath ID. According to OpenFlow switch specification, the lower 48 bits of the datapath ID contains the MAC address. """ mac_addr_int = datapath.id & 0x0000ffffffffffff mac_addr = format(mac_addr_int, '02x') return ':'.join(mac_addr[i:i+2] for i in range(0, 12, 2)) #=============================================================================== def add_flow_entry(datapath, match, actions, instructions=None, **kwargs): """ Add a flow table entry. Use `**kwargs` to specify additional keyword arguments. Use the same keyword arguments as in `OFPFlowMod`. If `instructions` is None, install instruction that applies `actions` immediately. If `instructions` is not None, `actions` is ignored. """ ofproto = datapath.ofproto parser = datapath.ofproto_parser if instructions is None: instructions = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] message = parser.OFPFlowMod(datapath, command=ofproto.OFPFC_ADD, match=match, instructions=instructions, **kwargs) datapath.send_msg(message) def remove_flow_entry(datapath, match, **kwargs): """ Remove a flow entry. """ ofproto = datapath.ofproto parser = datapath.ofproto_parser message = parser.OFPFlowMod(datapath, command=ofproto.OFPFC_DELETE, out_port=ofproto.OFPP_ANY, out_group=ofproto.OFPG_ANY, match=match, **kwargs) datapath.send_msg(message) def add_instruction_goto_next_table(datapath, table_id, next_table_id, match=None, **kwargs): """ Add an instruction in a flow table to go to another table. If `match` is None, match all packets. If 'priority' is not specified in `**kwargs`, it defaults to 0 (i.e. the lowest priority). """ ofproto = datapath.ofproto parser = datapath.ofproto_parser if match is None: # Match all match = parser.OFPMatch() if 'priority' not in kwargs: kwargs['priority'] = 0 instructions = [parser.OFPInstructionGotoTable(next_table_id)] message = parser.OFPFlowMod(datapath, table_id=table_id, command=ofproto.OFPFC_ADD, match=match, instructions=instructions, **kwargs) datapath.send_msg(message) #=============================================================================== def send_packet(forwarder, packet_, out_port=None): """ Send the packet out the port on the specified forwarder. If `out_port` is None, process the packet in the flow tables of the forwarder (i.e. the `OFPP_TABLE` port is used). """ ofproto = forwarder.ofproto parser = forwarder.ofproto_parser if out_port is None: out_port = ofproto.OFPP_TABLE packet_.serialize() actions = [parser.OFPActionOutput(out_port)] packet_to_send = parser.OFPPacketOut(forwarder, buffer_id=ofproto.OFP_NO_BUFFER, in_port=ofproto.OFPP_CONTROLLER, actions=actions, data=packet_.data) forwarder.send_msg(packet_to_send) #=============================================================================== def clear_datapath(datapath): ofproto = datapath.ofproto request = datapath.ofproto_parser.OFPFlowMod( datapath=datapath, command=ofproto.OFPFC_DELETE, out_port=ofproto.OFPP_ANY, out_group=ofproto.OFPG_ANY) datapath.send_msg(request) #=============================================================================== class FlowTableHelper(object): """ This class stores flow tables by their names and automatically assigns table IDs to them sequentially. """ def __init__(self, flow_table_names, starting_index=0): """ Parameters: * `flow_table_names` - A list of flow table names. """ self._flow_tables = OrderedDict( (key, index + starting_index) for index, key in enumerate(flow_table_names) ) self._flow_table_ids = self._flow_tables.values() self._flow_table_ids_and_indexes = { table_id: index for index, table_id in enumerate(self._flow_table_ids) } def __getitem__(self, table_name): """ Return the ID of the flow table specified by its name. """ return self._flow_tables[table_name] def __setitem__(self, table_name, table_id): """ If the `table_name` is not defined, create a new flow table with the table ID. If `table_id` is already used, `table_name` is an alias to the table ID. """ #FIXME: Need to update `self._flow_table_ids` and `self._flow_table_ids_and_indexes` # so that `next_table_id` still works properly. self._flow_tables[table_name] = table_id def next_table_id(self, table_name_or_id): """ Return the next table ID from the table specified by its name or its ID. """ try: # If no exception is raised, table name was passed table_id = self._flow_tables[table_name_or_id] except KeyError: # Table ID was passed table_id = table_name_or_id if table_id not in self._flow_table_ids_and_indexes: raise ValueError("invalid table ID") if table_id >= self._flow_table_ids[-1]: raise ValueError("no next table exists") index = self._flow_table_ids_and_indexes[table_id] return self._flow_table_ids[index + 1]
""" This module contains datapath-related functions for easier management. """ from collections import OrderedDict #=============================================================================== def get_mac_addr_from_datapath(datapath): """ Return the MAC address from the datapath ID. According to OpenFlow switch specification, the lower 48 bits of the datapath ID contains the MAC address. """ mac_addr_int = datapath.id & 0x0000ffffffffffff mac_addr = format(mac_addr_int, '02x') return ':'.join(mac_addr[i:i+2] for i in range(0, 12, 2)) #=============================================================================== def add_flow_entry(datapath, match, actions, instructions=None, **kwargs): """ Add a flow table entry. Use `**kwargs` to specify additional keyword arguments. Use the same keyword arguments as in `OFPFlowMod`. If `instructions` is None, install instruction that applies `actions` immediately. If `instructions` is not None, `actions` is ignored. """ ofproto = datapath.ofproto parser = datapath.ofproto_parser if instructions is None: instructions = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] message = parser.OFPFlowMod(datapath, command=ofproto.OFPFC_ADD, match=match, instructions=instructions, **kwargs) datapath.send_msg(message) def remove_flow_entry(datapath, match, **kwargs): """ Remove a flow entry. """ ofproto = datapath.ofproto parser = datapath.ofproto_parser message = parser.OFPFlowMod(datapath, command=ofproto.OFPFC_DELETE, out_port=ofproto.OFPP_ANY, out_group=ofproto.OFPG_ANY, match=match, **kwargs) datapath.send_msg(message) def add_instruction_goto_next_table(datapath, table_id, next_table_id, match=None, **kwargs): """ Add an instruction in a flow table to go to another table. If `match` is None, match all packets. If 'priority' is not specified in `**kwargs`, it defaults to 0 (i.e. the lowest priority). """ ofproto = datapath.ofproto parser = datapath.ofproto_parser if match is None: # Match all match = parser.OFPMatch() if 'priority' not in kwargs: kwargs['priority'] = 0 instructions = [parser.OFPInstructionGotoTable(next_table_id)] message = parser.OFPFlowMod(datapath, table_id=table_id, command=ofproto.OFPFC_ADD, match=match, instructions=instructions, **kwargs) datapath.send_msg(message) #=============================================================================== def send_packet(forwarder, packet_, out_port=None): """ Send the packet out the port on the specified forwarder. If `out_port` is None, process the packet in the flow tables of the forwarder (i.e. the `OFPP_TABLE` port is used). """ ofproto = forwarder.ofproto parser = forwarder.ofproto_parser if out_port is None: out_port = ofproto.OFPP_TABLE packet_.serialize() actions = [parser.OFPActionOutput(out_port)] packet_to_send = parser.OFPPacketOut(forwarder, buffer_id=ofproto.OFP_NO_BUFFER, in_port=ofproto.OFPP_CONTROLLER, actions=actions, data=packet_.data) forwarder.send_msg(packet_to_send) #=============================================================================== def clear_datapath(datapath): ofproto = datapath.ofproto request = datapath.ofproto_parser.OFPFlowMod( datapath=datapath, command=ofproto.OFPFC_DELETE, out_port=ofproto.OFPP_ANY, out_group=ofproto.OFPG_ANY) datapath.send_msg(request) #=============================================================================== class FlowTableHelper(object): """ This class stores flow tables by their names and automatically assigns table IDs to them sequentially. """ def __init__(self, flow_table_names, starting_index=0): """ Parameters: * `flow_table_names` - A list of flow table names. """ self._flow_tables = OrderedDict( (key, index + starting_index) for index, key in enumerate(flow_table_names) ) self._flow_table_ids = self._flow_tables.values() self._flow_table_ids_and_indexes = { table_id: index for index, table_id in enumerate(self._flow_table_ids) } def __getitem__(self, table_name): """ Return the ID of the flow table specified by its name. """ return self._flow_tables[table_name] def __setitem__(self, table_name, table_id): """ If the `table_name` is not defined, create a new flow table with the table ID. If `table_id` is already used, `table_name` is an alias to the table ID. """ #FIXME: Need to update `self._flow_table_ids` and `self._flow_table_ids_and_indexes` # so that `next_table_id` still works properly. self._flow_tables[table_name] = table_id def next_table_id(self, table_name_or_id): """ Return the next table ID from the table specified by its name or its ID. """ try: # If no exception is raised, table name was passed table_id = self._flow_tables[table_name_or_id] except KeyError: # Table ID was passed table_id = table_name_or_id if table_id not in self._flow_table_ids_and_indexes: raise ValueError("invalid table ID") if table_id >= self._flow_table_ids[-1]: raise ValueError("no next table exists") index = self._flow_table_ids_and_indexes[table_id] return self._flow_table_ids[index + 1]
en
0.687146
This module contains datapath-related functions for easier management. #=============================================================================== Return the MAC address from the datapath ID. According to OpenFlow switch specification, the lower 48 bits of the datapath ID contains the MAC address. #=============================================================================== Add a flow table entry. Use `**kwargs` to specify additional keyword arguments. Use the same keyword arguments as in `OFPFlowMod`. If `instructions` is None, install instruction that applies `actions` immediately. If `instructions` is not None, `actions` is ignored. Remove a flow entry. Add an instruction in a flow table to go to another table. If `match` is None, match all packets. If 'priority' is not specified in `**kwargs`, it defaults to 0 (i.e. the lowest priority). # Match all #=============================================================================== Send the packet out the port on the specified forwarder. If `out_port` is None, process the packet in the flow tables of the forwarder (i.e. the `OFPP_TABLE` port is used). #=============================================================================== #=============================================================================== This class stores flow tables by their names and automatically assigns table IDs to them sequentially. Parameters: * `flow_table_names` - A list of flow table names. Return the ID of the flow table specified by its name. If the `table_name` is not defined, create a new flow table with the table ID. If `table_id` is already used, `table_name` is an alias to the table ID. #FIXME: Need to update `self._flow_table_ids` and `self._flow_table_ids_and_indexes` # so that `next_table_id` still works properly. Return the next table ID from the table specified by its name or its ID. # If no exception is raised, table name was passed # Table ID was passed
2.593593
3
ndispers/media/crystals/_betaBBO_Tamosauskas2018.py
akihiko-shimura/ndispers
4
6633033
<reponame>akihiko-shimura/ndispers<gh_stars>1-10 import sympy from ndispers._baseclass import Medium, wl, phi, theta, T, pi from ndispers.helper import vars2 class BetaBBO(Medium): """ beta-BBO (beta-Ba B_2 O_4) crystal - Point group : 3m - Crystal system : Trigonal - Dielectic principal axis, z // c-axis (x, y-axes are arbitrary) - Negative uniaxial, with optic axis parallel to z-axis - Tranparency range : 0.19 to 2.6 um Dispersion formula for refractive index --------------------------------------- n(wl_um) = sqrt(1 + B1_i*wl**2/(wl**2 - C1_i) + B2_i*wl**2/(wl**2 - C2_i) + B3_i*wl**2/(wl**2 - C3_i)) for i = o, e Validity range -------------- 0.188 - 5.2 um Ref --- Tamošauskas, Gintaras, et al. "Transmittance and phase matching of BBO crystal in the 3-5 μm range and its application for the characterization of mid-infrared laser pulses." Optical Materials Express 8.6 (2018): 1410-1418. dn/dT from Nikogosyan, <NAME>. "Beta barium borate (BBO)." Applied Physics A 52.6 (1991): 359-368. Example ------- >>> bbo = ndispers.media.crystals.BetaBBO_Tamosauskas2018() >>> bbo.n(0.6, 0, 40, pol='o') # args: (wl_um, theta_rad, T_degC, pol) >>> bbo.n(0.6, 0.5*pi, 40, pol='e') # along z-axis, it is pure e-ray. >>> bbo.n(0.6, 0*pi, 40, pol='e') # for theta = 0 rad, it corresponds to o-ray. >>> bbo.GVD(0.6, 0.3*pi, 40, pol='e') >>> bbo.pmAngles_sfg(1.064, 1.064, 40, deg=True) {'ooe': {'theta': [22.895], 'phi': None}, 'eeo': {'theta': [], 'phi': None}, 'oee': {'theta': [32.575], 'phi': None}, 'eoe': {'theta': [32.575], 'phi': None}, 'eoo': {'theta': [], 'phi': None}, 'oeo': {'theta': [], 'phi': None}} """ __slots__ = ["_BetaBBO__plane", "_BetaBBO__theta_rad", "_BetaBBO__phi_rad", "_B1_o", "_C1_o", "_B2_o", "_C2_o", "_B3_o", "_C3_o", "_B1_e", "_C1_e", "_B2_e", "_C2_e", "_B3_e", "_C3_e", "_dndT_o", "_dndT_e"] def __init__(self): super().__init__() self._BetaBBO__plane = 'arb' self._BetaBBO__theta_rad = 'var' self._BetaBBO__phi_rad = 'arb' """ Constants of dispersion formula """ # For ordinary ray self._B1_o = 0.90291 self._C1_o = 0.003926 self._B2_o = 0.83155 self._C2_o = 0.018786 self._B3_o = 0.76536 self._C3_o = 60.01 # For extraordinary ray self._B1_e = 1.151075 self._C1_e = 0.007142 self._B2_e = 0.21803 self._C2_e = 0.02259 self._B3_e = 0.656 self._C3_e = 263 # dn/dT self._dndT_o = -16.6e-6 #/degC self._dndT_e = -9.3e-6 #/degC @property def plane(self): return self._BetaBBO__plane @property def theta_rad(self): return self._BetaBBO__theta_rad @property def phi_rad(self): return self._BetaBBO__phi_rad @property def constants(self): print(vars2(self)) @property def symbols(self): return [wl, theta, phi, T] @property def constants(self): msg = ["B1_o = %g" % self._B1_o] msg += ["C1_o = %g" % self._C1_o] msg += ["B2_o = %g" % self._B2_o] msg += ["C2_o = %g" % self._C2_o] msg += ["B3_o = %g" % self._B3_o] msg += ["C3_o = %g" % self._C3_o] msg += ["B1_e = %g" % self._B1_e] msg += ["C1_e = %g" % self._C1_e] msg += ["B2_e = %g" % self._B2_e] msg += ["C2_e = %g" % self._C2_e] msg += ["B3_e = %g" % self._B3_e] msg += ["C3_e = %g" % self._C3_e] msg += ["dn_o/dT = %g" % self._dndT_o] msg += ["dn_e/dT = %g" % self._dndT_e] print("\n".join(msg)) def n_o_expr(self): """ Sympy expression, dispersion formula for o-ray """ return sympy.sqrt(1.0 + self._B1_o * wl**2/ (wl**2 - self._C1_o) + self._B2_o * wl**2/ (wl**2 - self._C2_o) + self._B3_o * wl**2/ (wl**2 - self._C3_o)) + self._dndT_o * (T - 20) def n_e_expr(self): """ Sympy expression, dispersion formula for theta=90 deg e-ray """ return sympy.sqrt(1.0 + self._B1_e * wl**2/ (wl**2 - self._C1_e) + self._B2_e * wl**2/ (wl**2 - self._C2_e) + self._B3_e * wl**2/ (wl**2 - self._C3_e)) + self._dndT_e * (T - 20) def n_expr(self, pol): """" Sympy expression, dispersion formula of a general ray with an angle theta to optic axis. If theta = 0, this expression reduces to 'no_expre'. n(theta) = n_e / sqrt( sin(theta)**2 + (n_e/n_o)**2 * cos(theta)**2 ) """ if pol == 'o': return self.n_o_expr() elif pol == 'e': return self.n_e_expr() / sympy.sqrt( sympy.sin(theta)**2 + (self.n_e_expr()/self.n_o_expr())**2 * sympy.cos(theta)**2 ) else: raise ValueError("pol = '%s' must be 'o' or 'e'" % pol) def n(self, wl_um, theta_rad, T_degC, pol='o'): """ Refractive index as a function of wavelength, theta and phi angles for each eigen polarization of light. input ------ wl_um : float or array_like, wavelength in um theta_rad : float or array_like, 0 to pi radians T_degC : float or array_like, temperature of crystal in degree C. pol : {'o', 'e'}, optional, polarization of light return ------- Refractive index, float or array_like """ return super().n(wl_um, theta_rad, 0, T_degC, pol=pol) def dn_wl(self, wl_um, theta_rad, T_degC, pol='o'): return super().dn_wl(wl_um, theta_rad, 0, T_degC, pol=pol) def d2n_wl(self, wl_um, theta_rad, T_degC, pol='o'): return super().d2n_wl(wl_um, theta_rad, 0, T_degC, pol=pol) def d3n_wl(self, wl_um, theta_rad, T_degC, pol='o'): return super().d3n_wl(wl_um, theta_rad, 0, T_degC, pol=pol) def GD(self, wl_um, theta_rad, T_degC, pol='o'): """Group Delay [fs/mm]""" return super().GD(wl_um, theta_rad, 0, T_degC, pol=pol) def GV(self, wl_um, theta_rad, T_degC, pol='o'): """Group Velocity [um/fs]""" return super().GV(wl_um, theta_rad, 0, T_degC, pol=pol) def ng(self, wl_um, theta_rad, T_degC, pol='o'): """Group index, c/Group velocity""" return super().ng(wl_um, theta_rad, 0, T_degC, pol=pol) def GVD(self, wl_um, theta_rad, T_degC, pol='o'): """Group Delay Dispersion [fs^2/mm]""" return super().GVD(wl_um, theta_rad, 0, T_degC, pol=pol) def TOD(self, wl_um, theta_rad, T_degC, pol='o'): """Third Order Dispersion [fs^3/mm]""" return super().TOD(wl_um, theta_rad, 0, T_degC, pol=pol) def dndT(self, wl_um, theta_rad, T_degC, pol='o'): return super().dndT(wl_um, theta_rad, 0, T_degC, pol=pol)
import sympy from ndispers._baseclass import Medium, wl, phi, theta, T, pi from ndispers.helper import vars2 class BetaBBO(Medium): """ beta-BBO (beta-Ba B_2 O_4) crystal - Point group : 3m - Crystal system : Trigonal - Dielectic principal axis, z // c-axis (x, y-axes are arbitrary) - Negative uniaxial, with optic axis parallel to z-axis - Tranparency range : 0.19 to 2.6 um Dispersion formula for refractive index --------------------------------------- n(wl_um) = sqrt(1 + B1_i*wl**2/(wl**2 - C1_i) + B2_i*wl**2/(wl**2 - C2_i) + B3_i*wl**2/(wl**2 - C3_i)) for i = o, e Validity range -------------- 0.188 - 5.2 um Ref --- Tamošauskas, Gintaras, et al. "Transmittance and phase matching of BBO crystal in the 3-5 μm range and its application for the characterization of mid-infrared laser pulses." Optical Materials Express 8.6 (2018): 1410-1418. dn/dT from Nikogosyan, <NAME>. "Beta barium borate (BBO)." Applied Physics A 52.6 (1991): 359-368. Example ------- >>> bbo = ndispers.media.crystals.BetaBBO_Tamosauskas2018() >>> bbo.n(0.6, 0, 40, pol='o') # args: (wl_um, theta_rad, T_degC, pol) >>> bbo.n(0.6, 0.5*pi, 40, pol='e') # along z-axis, it is pure e-ray. >>> bbo.n(0.6, 0*pi, 40, pol='e') # for theta = 0 rad, it corresponds to o-ray. >>> bbo.GVD(0.6, 0.3*pi, 40, pol='e') >>> bbo.pmAngles_sfg(1.064, 1.064, 40, deg=True) {'ooe': {'theta': [22.895], 'phi': None}, 'eeo': {'theta': [], 'phi': None}, 'oee': {'theta': [32.575], 'phi': None}, 'eoe': {'theta': [32.575], 'phi': None}, 'eoo': {'theta': [], 'phi': None}, 'oeo': {'theta': [], 'phi': None}} """ __slots__ = ["_BetaBBO__plane", "_BetaBBO__theta_rad", "_BetaBBO__phi_rad", "_B1_o", "_C1_o", "_B2_o", "_C2_o", "_B3_o", "_C3_o", "_B1_e", "_C1_e", "_B2_e", "_C2_e", "_B3_e", "_C3_e", "_dndT_o", "_dndT_e"] def __init__(self): super().__init__() self._BetaBBO__plane = 'arb' self._BetaBBO__theta_rad = 'var' self._BetaBBO__phi_rad = 'arb' """ Constants of dispersion formula """ # For ordinary ray self._B1_o = 0.90291 self._C1_o = 0.003926 self._B2_o = 0.83155 self._C2_o = 0.018786 self._B3_o = 0.76536 self._C3_o = 60.01 # For extraordinary ray self._B1_e = 1.151075 self._C1_e = 0.007142 self._B2_e = 0.21803 self._C2_e = 0.02259 self._B3_e = 0.656 self._C3_e = 263 # dn/dT self._dndT_o = -16.6e-6 #/degC self._dndT_e = -9.3e-6 #/degC @property def plane(self): return self._BetaBBO__plane @property def theta_rad(self): return self._BetaBBO__theta_rad @property def phi_rad(self): return self._BetaBBO__phi_rad @property def constants(self): print(vars2(self)) @property def symbols(self): return [wl, theta, phi, T] @property def constants(self): msg = ["B1_o = %g" % self._B1_o] msg += ["C1_o = %g" % self._C1_o] msg += ["B2_o = %g" % self._B2_o] msg += ["C2_o = %g" % self._C2_o] msg += ["B3_o = %g" % self._B3_o] msg += ["C3_o = %g" % self._C3_o] msg += ["B1_e = %g" % self._B1_e] msg += ["C1_e = %g" % self._C1_e] msg += ["B2_e = %g" % self._B2_e] msg += ["C2_e = %g" % self._C2_e] msg += ["B3_e = %g" % self._B3_e] msg += ["C3_e = %g" % self._C3_e] msg += ["dn_o/dT = %g" % self._dndT_o] msg += ["dn_e/dT = %g" % self._dndT_e] print("\n".join(msg)) def n_o_expr(self): """ Sympy expression, dispersion formula for o-ray """ return sympy.sqrt(1.0 + self._B1_o * wl**2/ (wl**2 - self._C1_o) + self._B2_o * wl**2/ (wl**2 - self._C2_o) + self._B3_o * wl**2/ (wl**2 - self._C3_o)) + self._dndT_o * (T - 20) def n_e_expr(self): """ Sympy expression, dispersion formula for theta=90 deg e-ray """ return sympy.sqrt(1.0 + self._B1_e * wl**2/ (wl**2 - self._C1_e) + self._B2_e * wl**2/ (wl**2 - self._C2_e) + self._B3_e * wl**2/ (wl**2 - self._C3_e)) + self._dndT_e * (T - 20) def n_expr(self, pol): """" Sympy expression, dispersion formula of a general ray with an angle theta to optic axis. If theta = 0, this expression reduces to 'no_expre'. n(theta) = n_e / sqrt( sin(theta)**2 + (n_e/n_o)**2 * cos(theta)**2 ) """ if pol == 'o': return self.n_o_expr() elif pol == 'e': return self.n_e_expr() / sympy.sqrt( sympy.sin(theta)**2 + (self.n_e_expr()/self.n_o_expr())**2 * sympy.cos(theta)**2 ) else: raise ValueError("pol = '%s' must be 'o' or 'e'" % pol) def n(self, wl_um, theta_rad, T_degC, pol='o'): """ Refractive index as a function of wavelength, theta and phi angles for each eigen polarization of light. input ------ wl_um : float or array_like, wavelength in um theta_rad : float or array_like, 0 to pi radians T_degC : float or array_like, temperature of crystal in degree C. pol : {'o', 'e'}, optional, polarization of light return ------- Refractive index, float or array_like """ return super().n(wl_um, theta_rad, 0, T_degC, pol=pol) def dn_wl(self, wl_um, theta_rad, T_degC, pol='o'): return super().dn_wl(wl_um, theta_rad, 0, T_degC, pol=pol) def d2n_wl(self, wl_um, theta_rad, T_degC, pol='o'): return super().d2n_wl(wl_um, theta_rad, 0, T_degC, pol=pol) def d3n_wl(self, wl_um, theta_rad, T_degC, pol='o'): return super().d3n_wl(wl_um, theta_rad, 0, T_degC, pol=pol) def GD(self, wl_um, theta_rad, T_degC, pol='o'): """Group Delay [fs/mm]""" return super().GD(wl_um, theta_rad, 0, T_degC, pol=pol) def GV(self, wl_um, theta_rad, T_degC, pol='o'): """Group Velocity [um/fs]""" return super().GV(wl_um, theta_rad, 0, T_degC, pol=pol) def ng(self, wl_um, theta_rad, T_degC, pol='o'): """Group index, c/Group velocity""" return super().ng(wl_um, theta_rad, 0, T_degC, pol=pol) def GVD(self, wl_um, theta_rad, T_degC, pol='o'): """Group Delay Dispersion [fs^2/mm]""" return super().GVD(wl_um, theta_rad, 0, T_degC, pol=pol) def TOD(self, wl_um, theta_rad, T_degC, pol='o'): """Third Order Dispersion [fs^3/mm]""" return super().TOD(wl_um, theta_rad, 0, T_degC, pol=pol) def dndT(self, wl_um, theta_rad, T_degC, pol='o'): return super().dndT(wl_um, theta_rad, 0, T_degC, pol=pol)
en
0.56011
beta-BBO (beta-Ba B_2 O_4) crystal - Point group : 3m - Crystal system : Trigonal - Dielectic principal axis, z // c-axis (x, y-axes are arbitrary) - Negative uniaxial, with optic axis parallel to z-axis - Tranparency range : 0.19 to 2.6 um Dispersion formula for refractive index --------------------------------------- n(wl_um) = sqrt(1 + B1_i*wl**2/(wl**2 - C1_i) + B2_i*wl**2/(wl**2 - C2_i) + B3_i*wl**2/(wl**2 - C3_i)) for i = o, e Validity range -------------- 0.188 - 5.2 um Ref --- Tamošauskas, Gintaras, et al. "Transmittance and phase matching of BBO crystal in the 3-5 μm range and its application for the characterization of mid-infrared laser pulses." Optical Materials Express 8.6 (2018): 1410-1418. dn/dT from Nikogosyan, <NAME>. "Beta barium borate (BBO)." Applied Physics A 52.6 (1991): 359-368. Example ------- >>> bbo = ndispers.media.crystals.BetaBBO_Tamosauskas2018() >>> bbo.n(0.6, 0, 40, pol='o') # args: (wl_um, theta_rad, T_degC, pol) >>> bbo.n(0.6, 0.5*pi, 40, pol='e') # along z-axis, it is pure e-ray. >>> bbo.n(0.6, 0*pi, 40, pol='e') # for theta = 0 rad, it corresponds to o-ray. >>> bbo.GVD(0.6, 0.3*pi, 40, pol='e') >>> bbo.pmAngles_sfg(1.064, 1.064, 40, deg=True) {'ooe': {'theta': [22.895], 'phi': None}, 'eeo': {'theta': [], 'phi': None}, 'oee': {'theta': [32.575], 'phi': None}, 'eoe': {'theta': [32.575], 'phi': None}, 'eoo': {'theta': [], 'phi': None}, 'oeo': {'theta': [], 'phi': None}} Constants of dispersion formula # For ordinary ray # For extraordinary ray # dn/dT #/degC #/degC Sympy expression, dispersion formula for o-ray Sympy expression, dispersion formula for theta=90 deg e-ray " Sympy expression, dispersion formula of a general ray with an angle theta to optic axis. If theta = 0, this expression reduces to 'no_expre'. n(theta) = n_e / sqrt( sin(theta)**2 + (n_e/n_o)**2 * cos(theta)**2 ) Refractive index as a function of wavelength, theta and phi angles for each eigen polarization of light. input ------ wl_um : float or array_like, wavelength in um theta_rad : float or array_like, 0 to pi radians T_degC : float or array_like, temperature of crystal in degree C. pol : {'o', 'e'}, optional, polarization of light return ------- Refractive index, float or array_like Group Delay [fs/mm] Group Velocity [um/fs] Group index, c/Group velocity Group Delay Dispersion [fs^2/mm] Third Order Dispersion [fs^3/mm]
2.508003
3
eslib.py
sweverett/CluStR
6
6633034
<reponame>sweverett/CluStR<gh_stars>1-10 import linmix # Kelly algorithm package ported to Python import numpy as np import numpy.random as npr from scipy import stats import scipy.optimize as sop from inputParameters import beta1, beta2 npr.seed(800) def scatter_cal(x,y,slope,intercept,dof): sig2 = sum((np.array(y) - (slope*np.array(x)+intercept))**2) / dof return np.sqrt(sig2) def invScalingRelation(tInt,tSlope,tSig): xs = 1.0 / (1.0 + beta2*(tSig**2)/(tSlope**2)) invInt = xs * ( - tInt / tSlope + beta1*(tSig**2)/(tSlope**2) ) invSlope = xs / tSlope invSig = np.sqrt(xs * (tSig**2) / (tSlope**2) ) return invInt, invSlope, invSig def ninvScalingRelation(tInt,tSlope,tSig): invInt = ( - tInt / tSlope ) invSlope = 1.0 / tSlope invSig = np.sqrt( (tSig**2) / (tSlope**2) ) return invInt, invSlope, invSig def obsScalingRelation(tInt1,tSlope1,tSig1,tInt2,tSlope2,tSig2,r): # First order approximation invInt1 = ( - tInt1 / tSlope1 + beta1*(tSig1**2)/(tSlope1**2) ) invSlope1 = 1.0 / tSlope1 invSig1 = np.sqrt( (tSig1**2) / (tSlope1**2) ) invSig2 = np.sqrt( (tSig2**2) / (tSlope2**2) ) x1 = 1.0 / (1.0 + beta2*invSig1**2) inter = tInt2 + x1*tSlope2*( invInt1 \ - (r * invSig1 * invSig2) \ * ( beta1 + beta2 * tInt1 / tSlope1) ) slope = x1 * tSlope2 * ( invSlope1 \ + beta2 * r * invSig1 * invSig2 / tSlope1 ) sig = tSlope2 * np.sqrt(x1) *\ np.sqrt( invSig2**2 + invSig1**2 - 2*r*invSig1*invSig2\ + beta2*invSig1**2*invSig2**2*(1.-r**2) ) return inter, slope, sig def nobsScalingRelation(tInt1,tSlope1,tSig1,tInt2,tSlope2,tSig2,r): # First order approximation invInt1 = ( - tInt1 / tSlope1 ) invSlope1 = 1.0 / tSlope1 invSig1 = np.sqrt( (tSig1**2) / (tSlope1**2) ) invSig2 = np.sqrt( (tSig2**2) / (tSlope2**2) ) inter = tInt2 + tSlope2*( invInt1 ) slope = tSlope2 * ( invSlope1 ) sig = tSlope2 * np.sqrt( invSig2**2 + invSig1**2 - 2*r*invSig1*invSig2 ) return inter, slope, sig def findY(Y,invSig): xs = 1.0 / (1.0 + beta2*Y**2) f = invSig - np.sqrt(xs * Y**2 ) return f def solveForZ_old(Z,Y,sigZY,slopeZY,ySlope,r): xsy = 1.0 / (1.0 + beta2*Y**2) slopeZ = slopeZY * ySlope / xsy / (1.0 + r*beta2*Y*Z) f = sigZY**2 - slopeZ**2 * xsy * \ ( Y**2 + Z**2 - 2.*r*Y*Z + beta2*(Y**2)*(Z**2)*(1.-r**2) ) return f def solveForZ(Y,sigZY,slopeZY,ySlope,r): p0 = slopeZY**2*ySlope**2*(1.0 + beta2*Y**2*(1.-r**2)) p1 = -slopeZY**2*ySlope**2*2.*r*Y - sigZY**2*beta2*r*Y p2 = slopeZY**2*ySlope**2*Y**2 - sigZY**2 Z1,Z2 = np.roots([p0,p1,p2]) if np.iscomplex(Z1): return 0.,0. return Z1,Z2 # calculate the true intercept, slope, and scatter of inverse of scaling # relation assuming beta1 and beta2 is known (E14 notation) def inferScalingRelationThroughInverse(infInt,infSlope,infSig): Y = sop.fsolve(findY,infInt/infSlope,args=infSig)[0] #sig / slope xs = 1.0 / (1.0 + beta2*Y**2) Slope = xs / infSlope Scatter = Y * Slope Intercept = - Slope * (infInt / xs - beta1 * Y**2) return Intercept, Slope, Scatter #OK def inferScalingRelationThroughHidenVaribale(\ infInt, infSlope, infSig, yInt, ySlope, ySig, r, gInt, gSlope, gSig,\ Zg=0.0): Y = ySig / ySlope #sig / slope xsy = 1.0 / (1.0 + beta2*Y**2) #Z = gSig / gSlope #initial guess #Z = sop.fsolve(solveForZ,Z,args=(Y,infSig,infSlope,ySlope,r))[0] Z1,Z2 = solveForZ(Y,infSig,infSlope,ySlope,r) if (Z1 > Z2 ): Z = Z1 else: Z = Z2 #if (Zg <= 0.0): Z = Z1 #else: Z = Z2 #if (Z1 <= 0.0): # if (Z2 <= 0.0): Z = 0. # else: Z = Z2 #else: # if (Z2 <= 0.0): Z = Z1 # else: # if (Z1 > Z2): Z = Z1 # else: Z = Z2 Slope = infSlope * ySlope / xsy / (1.0 + r*beta2*Y*Z) Scatter = Z * Slope invyInt = ( - yInt/ySlope + beta1*(ySig**2)/(ySlope**2) ) Intercept = infInt - Slope*xsy*(invyInt - r*Y*Z*(beta1 + beta2*yInt/ySlope)) return Intercept, Slope, Scatter, Z #OK #Y = ySig / ySlope #sig / slope #xsy = 1.0 / (1.0 + beta2*Y**2) #Z = sop.fsolve(solveForZ,-10.0,args=(Y,infSig,infSlope,ySlope,r))[0] #Slope1 = infSlope * ySlope / xsy / (1.0 + r*beta2*Y*Z) #Scatter1 = Z * Slope #Z = sop.fsolve(solveForZ,5.,args=(Y,infSig,infSlope,ySlope,r))[0] #Slope = infSlope * ySlope / xsy / (1.0 + r*beta2*Y*Z) #Scatter = Z * Slope #invyInt = ( - yInt/ySlope + beta1*(ySig**2)/(ySlope**2) ) #Intercept = infInt - Slope*xsy*(invyInt - r*Y*Z*(beta1 + beta2*yInt/ySlope)) #return Intercept, Slope, Scatter #OK #def makeLinearRegression(xObs,yObs,xerr,yerr): # print len(xObs), len(yObs), len(xerr), len(yerr) # delta = np.ones(len(xerr)); xycov = np.zeros(len(xerr)) # model = linmix.LinMix(xObs,yObs,xerr,yerr,xycov,delta,2,2) """ Args: x(array_like): The observed independent variable. y(array_like): The observed dependent variable. xsig(array_like): 1-sigma measurement errors in x. ysig(array_like): 1-sigma measurement errors in y. xycov(array_like): Covariance between the measurement errors in x and y. delta(array_like): Array indicating whether a data point is censored (i.e., not detected), or not. If delta[i] == 1, then the ith source is detected. If delta[i] == 0, then the ith source is not detected and y[i] will be interpreted as an upper limit. Note that if there are censored data points, then the maximum-likelihood estimate (alpha, beta, sigsqr) is not valid. By default, all data points are assumed to be detected. K(int): The number of Gaussians to use in the mixture model for the distribution of xi. nchains(int): The number of Monte Carlo Markov Chains to instantiate. """ def makeLinearRegression(xObs,yObs,xerr,yerr): print len(xObs), len(yObs), len(xerr), len(yerr) delta = np.ones(len(xerr)); xycov = np.zeros(len(xerr)) model = linmix.LinMix(xObs,yObs,xerr,yerr,xycov,delta,2,2) model.run_mcmc(5000, 10000, silent=False) # return intercept, slope, scatter return model.chain['alpha'], model.chain['beta'],\ np.sqrt(model.chain['sigsqr']) def makeOLR(x,y): slope, intercept, r_value, p_value, _ = stats.linregress(x,y) sig = scatter_cal(x,y,slope,intercept,len(x)-2) return intercept, slope, sig
import linmix # Kelly algorithm package ported to Python import numpy as np import numpy.random as npr from scipy import stats import scipy.optimize as sop from inputParameters import beta1, beta2 npr.seed(800) def scatter_cal(x,y,slope,intercept,dof): sig2 = sum((np.array(y) - (slope*np.array(x)+intercept))**2) / dof return np.sqrt(sig2) def invScalingRelation(tInt,tSlope,tSig): xs = 1.0 / (1.0 + beta2*(tSig**2)/(tSlope**2)) invInt = xs * ( - tInt / tSlope + beta1*(tSig**2)/(tSlope**2) ) invSlope = xs / tSlope invSig = np.sqrt(xs * (tSig**2) / (tSlope**2) ) return invInt, invSlope, invSig def ninvScalingRelation(tInt,tSlope,tSig): invInt = ( - tInt / tSlope ) invSlope = 1.0 / tSlope invSig = np.sqrt( (tSig**2) / (tSlope**2) ) return invInt, invSlope, invSig def obsScalingRelation(tInt1,tSlope1,tSig1,tInt2,tSlope2,tSig2,r): # First order approximation invInt1 = ( - tInt1 / tSlope1 + beta1*(tSig1**2)/(tSlope1**2) ) invSlope1 = 1.0 / tSlope1 invSig1 = np.sqrt( (tSig1**2) / (tSlope1**2) ) invSig2 = np.sqrt( (tSig2**2) / (tSlope2**2) ) x1 = 1.0 / (1.0 + beta2*invSig1**2) inter = tInt2 + x1*tSlope2*( invInt1 \ - (r * invSig1 * invSig2) \ * ( beta1 + beta2 * tInt1 / tSlope1) ) slope = x1 * tSlope2 * ( invSlope1 \ + beta2 * r * invSig1 * invSig2 / tSlope1 ) sig = tSlope2 * np.sqrt(x1) *\ np.sqrt( invSig2**2 + invSig1**2 - 2*r*invSig1*invSig2\ + beta2*invSig1**2*invSig2**2*(1.-r**2) ) return inter, slope, sig def nobsScalingRelation(tInt1,tSlope1,tSig1,tInt2,tSlope2,tSig2,r): # First order approximation invInt1 = ( - tInt1 / tSlope1 ) invSlope1 = 1.0 / tSlope1 invSig1 = np.sqrt( (tSig1**2) / (tSlope1**2) ) invSig2 = np.sqrt( (tSig2**2) / (tSlope2**2) ) inter = tInt2 + tSlope2*( invInt1 ) slope = tSlope2 * ( invSlope1 ) sig = tSlope2 * np.sqrt( invSig2**2 + invSig1**2 - 2*r*invSig1*invSig2 ) return inter, slope, sig def findY(Y,invSig): xs = 1.0 / (1.0 + beta2*Y**2) f = invSig - np.sqrt(xs * Y**2 ) return f def solveForZ_old(Z,Y,sigZY,slopeZY,ySlope,r): xsy = 1.0 / (1.0 + beta2*Y**2) slopeZ = slopeZY * ySlope / xsy / (1.0 + r*beta2*Y*Z) f = sigZY**2 - slopeZ**2 * xsy * \ ( Y**2 + Z**2 - 2.*r*Y*Z + beta2*(Y**2)*(Z**2)*(1.-r**2) ) return f def solveForZ(Y,sigZY,slopeZY,ySlope,r): p0 = slopeZY**2*ySlope**2*(1.0 + beta2*Y**2*(1.-r**2)) p1 = -slopeZY**2*ySlope**2*2.*r*Y - sigZY**2*beta2*r*Y p2 = slopeZY**2*ySlope**2*Y**2 - sigZY**2 Z1,Z2 = np.roots([p0,p1,p2]) if np.iscomplex(Z1): return 0.,0. return Z1,Z2 # calculate the true intercept, slope, and scatter of inverse of scaling # relation assuming beta1 and beta2 is known (E14 notation) def inferScalingRelationThroughInverse(infInt,infSlope,infSig): Y = sop.fsolve(findY,infInt/infSlope,args=infSig)[0] #sig / slope xs = 1.0 / (1.0 + beta2*Y**2) Slope = xs / infSlope Scatter = Y * Slope Intercept = - Slope * (infInt / xs - beta1 * Y**2) return Intercept, Slope, Scatter #OK def inferScalingRelationThroughHidenVaribale(\ infInt, infSlope, infSig, yInt, ySlope, ySig, r, gInt, gSlope, gSig,\ Zg=0.0): Y = ySig / ySlope #sig / slope xsy = 1.0 / (1.0 + beta2*Y**2) #Z = gSig / gSlope #initial guess #Z = sop.fsolve(solveForZ,Z,args=(Y,infSig,infSlope,ySlope,r))[0] Z1,Z2 = solveForZ(Y,infSig,infSlope,ySlope,r) if (Z1 > Z2 ): Z = Z1 else: Z = Z2 #if (Zg <= 0.0): Z = Z1 #else: Z = Z2 #if (Z1 <= 0.0): # if (Z2 <= 0.0): Z = 0. # else: Z = Z2 #else: # if (Z2 <= 0.0): Z = Z1 # else: # if (Z1 > Z2): Z = Z1 # else: Z = Z2 Slope = infSlope * ySlope / xsy / (1.0 + r*beta2*Y*Z) Scatter = Z * Slope invyInt = ( - yInt/ySlope + beta1*(ySig**2)/(ySlope**2) ) Intercept = infInt - Slope*xsy*(invyInt - r*Y*Z*(beta1 + beta2*yInt/ySlope)) return Intercept, Slope, Scatter, Z #OK #Y = ySig / ySlope #sig / slope #xsy = 1.0 / (1.0 + beta2*Y**2) #Z = sop.fsolve(solveForZ,-10.0,args=(Y,infSig,infSlope,ySlope,r))[0] #Slope1 = infSlope * ySlope / xsy / (1.0 + r*beta2*Y*Z) #Scatter1 = Z * Slope #Z = sop.fsolve(solveForZ,5.,args=(Y,infSig,infSlope,ySlope,r))[0] #Slope = infSlope * ySlope / xsy / (1.0 + r*beta2*Y*Z) #Scatter = Z * Slope #invyInt = ( - yInt/ySlope + beta1*(ySig**2)/(ySlope**2) ) #Intercept = infInt - Slope*xsy*(invyInt - r*Y*Z*(beta1 + beta2*yInt/ySlope)) #return Intercept, Slope, Scatter #OK #def makeLinearRegression(xObs,yObs,xerr,yerr): # print len(xObs), len(yObs), len(xerr), len(yerr) # delta = np.ones(len(xerr)); xycov = np.zeros(len(xerr)) # model = linmix.LinMix(xObs,yObs,xerr,yerr,xycov,delta,2,2) """ Args: x(array_like): The observed independent variable. y(array_like): The observed dependent variable. xsig(array_like): 1-sigma measurement errors in x. ysig(array_like): 1-sigma measurement errors in y. xycov(array_like): Covariance between the measurement errors in x and y. delta(array_like): Array indicating whether a data point is censored (i.e., not detected), or not. If delta[i] == 1, then the ith source is detected. If delta[i] == 0, then the ith source is not detected and y[i] will be interpreted as an upper limit. Note that if there are censored data points, then the maximum-likelihood estimate (alpha, beta, sigsqr) is not valid. By default, all data points are assumed to be detected. K(int): The number of Gaussians to use in the mixture model for the distribution of xi. nchains(int): The number of Monte Carlo Markov Chains to instantiate. """ def makeLinearRegression(xObs,yObs,xerr,yerr): print len(xObs), len(yObs), len(xerr), len(yerr) delta = np.ones(len(xerr)); xycov = np.zeros(len(xerr)) model = linmix.LinMix(xObs,yObs,xerr,yerr,xycov,delta,2,2) model.run_mcmc(5000, 10000, silent=False) # return intercept, slope, scatter return model.chain['alpha'], model.chain['beta'],\ np.sqrt(model.chain['sigsqr']) def makeOLR(x,y): slope, intercept, r_value, p_value, _ = stats.linregress(x,y) sig = scatter_cal(x,y,slope,intercept,len(x)-2) return intercept, slope, sig
en
0.632181
# Kelly algorithm package ported to Python # First order approximation # First order approximation # calculate the true intercept, slope, and scatter of inverse of scaling # relation assuming beta1 and beta2 is known (E14 notation) #sig / slope #OK #sig / slope #Z = gSig / gSlope #initial guess #Z = sop.fsolve(solveForZ,Z,args=(Y,infSig,infSlope,ySlope,r))[0] #if (Zg <= 0.0): Z = Z1 #else: Z = Z2 #if (Z1 <= 0.0): # if (Z2 <= 0.0): Z = 0. # else: Z = Z2 #else: # if (Z2 <= 0.0): Z = Z1 # else: # if (Z1 > Z2): Z = Z1 # else: Z = Z2 #OK #Y = ySig / ySlope #sig / slope #xsy = 1.0 / (1.0 + beta2*Y**2) #Z = sop.fsolve(solveForZ,-10.0,args=(Y,infSig,infSlope,ySlope,r))[0] #Slope1 = infSlope * ySlope / xsy / (1.0 + r*beta2*Y*Z) #Scatter1 = Z * Slope #Z = sop.fsolve(solveForZ,5.,args=(Y,infSig,infSlope,ySlope,r))[0] #Slope = infSlope * ySlope / xsy / (1.0 + r*beta2*Y*Z) #Scatter = Z * Slope #invyInt = ( - yInt/ySlope + beta1*(ySig**2)/(ySlope**2) ) #Intercept = infInt - Slope*xsy*(invyInt - r*Y*Z*(beta1 + beta2*yInt/ySlope)) #return Intercept, Slope, Scatter #OK #def makeLinearRegression(xObs,yObs,xerr,yerr): # print len(xObs), len(yObs), len(xerr), len(yerr) # delta = np.ones(len(xerr)); xycov = np.zeros(len(xerr)) # model = linmix.LinMix(xObs,yObs,xerr,yerr,xycov,delta,2,2) Args: x(array_like): The observed independent variable. y(array_like): The observed dependent variable. xsig(array_like): 1-sigma measurement errors in x. ysig(array_like): 1-sigma measurement errors in y. xycov(array_like): Covariance between the measurement errors in x and y. delta(array_like): Array indicating whether a data point is censored (i.e., not detected), or not. If delta[i] == 1, then the ith source is detected. If delta[i] == 0, then the ith source is not detected and y[i] will be interpreted as an upper limit. Note that if there are censored data points, then the maximum-likelihood estimate (alpha, beta, sigsqr) is not valid. By default, all data points are assumed to be detected. K(int): The number of Gaussians to use in the mixture model for the distribution of xi. nchains(int): The number of Monte Carlo Markov Chains to instantiate. # return intercept, slope, scatter
2.540895
3
graphene/types/field.py
sebdiem/graphene
1
6633035
<gh_stars>1-10 import inspect from collections import Mapping, OrderedDict from functools import partial from .argument import Argument, to_arguments from .mountedtype import MountedType from .structures import NonNull from .unmountedtype import UnmountedType from .utils import get_type base_type = type def source_resolver(source, root, info, **args): resolved = getattr(root, source, None) if inspect.isfunction(resolved) or inspect.ismethod(resolved): return resolved() return resolved class Field(MountedType): def __init__(self, type, args=None, resolver=None, source=None, deprecation_reason=None, name=None, description=None, required=False, _creation_counter=None, default_value=None, **extra_args): super(Field, self).__init__(_creation_counter=_creation_counter) assert not args or isinstance(args, Mapping), ( 'Arguments in a field have to be a mapping, received "{}".' ).format(args) assert not (source and resolver), ( 'A Field cannot have a source and a resolver in at the same time.' ) assert not callable(default_value), ( 'The default value can not be a function but received "{}".' ).format(base_type(default_value)) if required: type = NonNull(type) # Check if name is actually an argument of the field if isinstance(name, (Argument, UnmountedType)): extra_args['name'] = name name = None # Check if source is actually an argument of the field if isinstance(source, (Argument, UnmountedType)): extra_args['source'] = source source = None self.name = name self._type = type self.args = to_arguments(args or OrderedDict(), extra_args) if source: resolver = partial(source_resolver, source) self.resolver = resolver self.deprecation_reason = deprecation_reason self.description = description self.default_value = default_value @property def type(self): return get_type(self._type) def get_resolver(self, parent_resolver): return self.resolver or parent_resolver
import inspect from collections import Mapping, OrderedDict from functools import partial from .argument import Argument, to_arguments from .mountedtype import MountedType from .structures import NonNull from .unmountedtype import UnmountedType from .utils import get_type base_type = type def source_resolver(source, root, info, **args): resolved = getattr(root, source, None) if inspect.isfunction(resolved) or inspect.ismethod(resolved): return resolved() return resolved class Field(MountedType): def __init__(self, type, args=None, resolver=None, source=None, deprecation_reason=None, name=None, description=None, required=False, _creation_counter=None, default_value=None, **extra_args): super(Field, self).__init__(_creation_counter=_creation_counter) assert not args or isinstance(args, Mapping), ( 'Arguments in a field have to be a mapping, received "{}".' ).format(args) assert not (source and resolver), ( 'A Field cannot have a source and a resolver in at the same time.' ) assert not callable(default_value), ( 'The default value can not be a function but received "{}".' ).format(base_type(default_value)) if required: type = NonNull(type) # Check if name is actually an argument of the field if isinstance(name, (Argument, UnmountedType)): extra_args['name'] = name name = None # Check if source is actually an argument of the field if isinstance(source, (Argument, UnmountedType)): extra_args['source'] = source source = None self.name = name self._type = type self.args = to_arguments(args or OrderedDict(), extra_args) if source: resolver = partial(source_resolver, source) self.resolver = resolver self.deprecation_reason = deprecation_reason self.description = description self.default_value = default_value @property def type(self): return get_type(self._type) def get_resolver(self, parent_resolver): return self.resolver or parent_resolver
en
0.759891
# Check if name is actually an argument of the field # Check if source is actually an argument of the field
2.447335
2
wfdb/readwrite/records.py
Chirayu-sopho/Sleep_Disorder_Classification
0
6633036
<reponame>Chirayu-sopho/Sleep_Disorder_Classification<gh_stars>0 # For wrheader(), all fields must be already filled in and cohesive with one another other. The signals field will not be used. # For wrsamp(), the field to use will be d_signals (which is allowed to be empty for 0 channel records). # set_p_features and set_d_features use characteristics of the p_signals or d_signals field to fill in other header fields. # These are separate from another method 'setdefaults' which the user may call to set default header fields # The checkfieldcohesion() function will be called in wrheader which checks all the header fields. # The checksignalcohesion() function will be called in wrsamp in wrdat to check the d_signal against the header fields. import numpy as np import re import os import posixpath from collections import OrderedDict from calendar import monthrange import requests import multiprocessing from . import _headers from . import _signals from . import downloads # The base WFDB class to extend to create Record and MultiRecord. Contains shared helper functions and fields. class BaseRecord(object): # Constructor def __init__(self, recordname=None, nsig=None, fs=None, counterfreq=None, basecounter = None, siglen = None, basetime = None, basedate = None, comments = None, signame=None): self.recordname = recordname self.nsig = nsig self.fs = fs self.counterfreq = counterfreq self.basecounter = basecounter self.siglen = siglen self.basetime = basetime self.basedate = basedate self.comments = comments self.signame = signame # Check whether a single field is valid in its basic form. Does not check compatibility with other fields. # ch is only used for signal specification fields, specifying the channels to check. Other channels # can be None. # Be aware that this function is not just called from wrheader. def checkfield(self, field, channels=None): # Check that the field is present if getattr(self, field) is None: raise Exception("Missing field required: "+field) # Check the type of the field (and of its elements if it should be a list) self.checkfieldtype(field, channels) # Expand to make sure all channels must have present field if channels == 'all': channels = [1]*len(getattr(self, field)) # Individual specific field checks: if field == 'd_signals': # Check shape if self.d_signals.ndim != 2: raise TypeError("d_signals must be a 2d numpy array") # Check dtype if self.d_signals.dtype not in [np.dtype('int64'), np.dtype('int32'), np.dtype('int16'), np.dtype('int8')]: raise TypeError('d_signals must be a 2d numpy array with dtype == int64, int32, int16, or int8.') elif field =='p_signals': # Check shape if self.p_signals.ndim != 2: raise TypeError("p_signals must be a 2d numpy array") elif field == 'e_d_signals': # Check shape for ch in range(len(channels)): if self.e_d_signals[ch].ndim != 1: raise TypeError("e_d_signals must be a list of 1d numpy arrays") # Check dtype if self.e_d_signals[ch].dtype not in [np.dtype('int64'), np.dtype('int32'), np.dtype('int16'), np.dtype('int8')]: raise TypeError('e_d_d_signals must be a list of 1d numpy arrays with dtype == int64, int32, int16, or int8.') elif field =='e_p_signals': # Check shape for ch in range(0, len(channels)): if self.e_p_signals.ndim != 1: raise TypeError("e_p_signals must be a list of 1d numpy arrays") #elif field == 'segments': # Nothing to check here. # Record specification fields elif field == 'recordname': # Allow letters, digits, hyphens, and underscores. acceptedstring = re.match('[-\w]+', self.recordname) if not acceptedstring or acceptedstring.string != self.recordname: raise ValueError('recordname must only comprise of letters, digits, hyphens, and underscores.') elif field == 'nseg': if self.nseg <=0: raise ValueError('nseg must be a positive integer') elif field == 'nsig': if self.nsig <=0: raise ValueError('nsig must be a positive integer') elif field == 'fs': if self.fs<=0: raise ValueError('fs must be a positive number') elif field == 'counterfreq': if self.counterfreq <=0: raise ValueError('counterfreq must be a positive number') elif field == 'basecounter': if self.basecounter <=0: raise ValueError('basecounter must be a positive number') elif field == 'siglen': if self.siglen <0: raise ValueError('siglen must be a non-negative integer') elif field == 'basetime': _ = parsetimestring(self.basetime) elif field == 'basedate': _ = parsedatestring(self.basedate) # Signal specification fields. Lists of elements to check. elif field in _headers.sigfieldspecs: for ch in range(0, len(channels)): f = getattr(self, field)[ch] # The channel element is allowed to be None if not channels[ch]: if f is None: continue if field == 'filename': # Check for filename characters acceptedstring = re.match('[-\w]+\.?[\w]+',f) if not acceptedstring or acceptedstring.string != f: raise ValueError('File names should only contain alphanumerics, hyphens, and an extension. eg. record_100.dat') # Check that dat files are grouped together if orderedsetlist(self.filename)[0] != orderednoconseclist(self.filename): raise ValueError('filename error: all entries for signals that share a given file must be consecutive') elif field == 'fmt': if f not in _signals.datformats: raise ValueError('File formats must be valid WFDB dat formats: '+' , '.join(_signals.datformats)) elif field == 'sampsperframe': if f < 1: raise ValueError('sampsperframe values must be positive integers') elif field == 'skew': if f < 0: raise ValueError('skew values must be non-negative integers') elif field == 'byteoffset': if f < 0: raise ValueError('byteoffset values must be non-negative integers') elif field == 'adcgain': if f <= 0: raise ValueError('adcgain values must be positive numbers') elif field == 'baseline': # Currently original WFDB library only has 4 bytes for baseline. if f < -2147483648 or f> 2147483648: raise ValueError('baseline values must be between -2147483648 (-2^31) and 2147483647 (2^31 -1)') elif field == 'units': if re.search('\s', f): raise ValueError('units strings may not contain whitespaces.') elif field == 'adcres': if f < 0: raise ValueError('adcres values must be non-negative integers') # elif field == 'adczero': nothing to check here # elif field == 'initvalue': nothing to check here # elif field == 'checksum': nothing to check here elif field == 'blocksize': if f < 0: raise ValueError('blocksize values must be non-negative integers') elif field == 'signame': if re.search('\s', f): raise ValueError('signame strings may not contain whitespaces.') if len(set(self.signame)) != len(self.signame): raise ValueError('signame strings must be unique.') # Segment specification fields elif field == 'segname': # Segment names must be alphanumerics or just a single '~' for f in self.segname: if f == '~': continue acceptedstring = re.match('[-\w]+',f) if not acceptedstring or acceptedstring.string != f: raise ValueError("Non-null segment names may only contain alphanumerics and dashes. Null segment names must be set to '~'") elif field == 'seglen': # For records with more than 1 segment, the first segment may be # the layout specification segment with a length of 0 if len(self.seglen)>1: if self.seglen[0] < 0: raise ValueError('seglen values must be positive integers. Only seglen[0] may be 0 to indicate a layout segment') sl = self.seglen[1:] else: sl = self.seglen for f in sl: if f < 1: raise ValueError('seglen values must be positive integers. Only seglen[0] may be 0 to indicate a layout segment') # Comment field elif field == 'comments': for f in self.comments: if f=='': # Allow empty string comment lines continue if f[0] == '#': print("Note: comment strings do not need to begin with '#'. This library adds them automatically.") if re.search('[\t\n\r\f\v]', f): raise ValueError('comments may not contain tabs or newlines (they may contain spaces and underscores).') # Check the data type of the specified field. # ch is used for signal spec fields # Some fields are lists. This must be checked, along with their elements. def checkfieldtype(self, field, ch=None): item = getattr(self, field) # Record specification field. Nonlist. if field in _headers.recfieldspecs: checkitemtype(item, field, _headers.recfieldspecs[field].allowedtypes) # Signal specification field. List. elif field in _headers.sigfieldspecs: checkitemtype(item, field, _headers.sigfieldspecs[field].allowedtypes, ch) # Segment specification field. List. All elements cannot be None elif field in _headers.segfieldspecs: checkitemtype(item, field, _headers.segfieldspecs[field].allowedtypes, 'all') # Comments field. List. Elements cannot be None elif field == 'comments': checkitemtype(item, field, (str), 'all') # Signals field. elif field in ['p_signals','d_signals']: checkitemtype(item, field, (np.ndarray)) elif field in ['e_p_signals', 'e_d_signals']: checkitemtype(item, field, (np.ndarray), 'all') # Segments field. List. Elements may be None. elif field == 'segments': checkitemtype(item, field, (Record), 'none') # Ensure that input read parameters are valid for the record def checkreadinputs(self, sampfrom, sampto, channels, physical, m2s, smoothframes, returnres): # Data Type Check if not hasattr(sampfrom, '__index__'): raise TypeError('sampfrom must be an integer') if not hasattr(sampto, '__index__'): raise TypeError('sampto must be an integer') if not isinstance(channels, list): raise TypeError('channels must be a list of integers') # Duration Ranges if sampfrom<0: raise ValueError('sampfrom must be a non-negative integer') if sampfrom>self.siglen: raise ValueError('sampfrom must be shorter than the signal length') if sampto<0: raise ValueError('sampto must be a non-negative integer') if sampto>self.siglen: raise ValueError('sampto must be shorter than the signal length') if sampto<=sampfrom: raise ValueError('sampto must be greater than sampfrom') # Channel Ranges for c in channels: if c<0: raise ValueError('Input channels must all be non-negative integers') if c>self.nsig-1: raise ValueError('Input channels must all be lower than the total number of channels') if returnres not in [64, 32, 16, 8]: raise ValueError("returnres must be one of the following: 64, 32, 16, 8") if physical is True and returnres == 8: raise ValueError("returnres must be one of the following when physical is True: 64, 32, 16") # Cannot expand multiple samples/frame for multi-segment records if isinstance(self, MultiRecord): # If m2s == True, Physical must be true. There is no # meaningful representation of digital signals transferred # from individual segments. if m2s is True and physical is not True: raise Exception('If m2s is True, physical must also be True.') if smoothframes is False: raise ValueError('This package version cannot expand all samples when reading multi-segment records. Must enable frame smoothing.') # Check the item type. Vary the print message regarding whether the item can be None. # Helper to checkfieldtype # channels is a list of booleans indicating whether the field's channel must be present (1) or may be None (0) # and is not just for signal specification fields def checkitemtype(item, field, allowedtypes, channels=None): # Checking the list if channels is not None: # First make sure the item is a list if not isinstance(item, list): raise TypeError("Field: '"+field+"' must be a list") # Expand to make sure all channels must have present field if channels == 'all': channels = [1]*len(item) # Expand to allow any channel to be None if channels == 'none': channels = [0]*len(item) for ch in range(0, len(channels)): mustexist=channels[ch] # The field must exist for the channel if mustexist: if not isinstance(item[ch], allowedtypes): raise TypeError("Channel "+str(ch)+" of field: '"+field+"' must be one of the following types:", allowedtypes) # The field may be None for the channel else: if not isinstance(item[ch], allowedtypes) and item[ch] is not None: raise TypeError("Channel "+str(ch)+" of field: '"+field+"' must be a 'None', or one of the following types:", allowedtypes) # Single scalar to check else: if not isinstance(item, allowedtypes): raise TypeError("Field: '"+field+"' must be one of the following types:", allowedtypes) class Record(BaseRecord, _headers.HeadersMixin, _signals.SignalsMixin): """ The class representing WFDB headers, and single segment WFDB records. Record objects can be created using the constructor, by reading a WFDB header with 'rdheader', or a WFDB record (header and associated dat files) with rdsamp' or 'srdsamp'. The attributes of the Record object give information about the record as specified by https://www.physionet.org/physiotools/wag/header-5.htm In addition, the d_signals and p_signals attributes store the digital and physical signals of WFDB records with at least one channel. Contructor function: def __init__(self, p_signals=None, d_signals=None, recordname=None, nsig=None, fs=None, counterfreq=None, basecounter=None, siglen=None, basetime=None, basedate=None, filename=None, fmt=None, sampsperframe=None, skew=None, byteoffset=None, adcgain=None, baseline=None, units=None, adcres=None, adczero=None, initvalue=None, checksum=None, blocksize=None, signame=None, comments=None) Example Usage: import wfdb record = wfdb.Record(recordname='r1', fs=250, nsig=2, siglen=1000, filename=['r1.dat','r1.dat']) """ # Constructor def __init__(self, p_signals=None, d_signals=None, e_p_signals=None, e_d_signals=None, recordname=None, nsig=None, fs=None, counterfreq=None, basecounter=None, siglen=None, basetime=None, basedate=None, filename=None, fmt=None, sampsperframe=None, skew=None, byteoffset=None, adcgain=None, baseline=None, units=None, adcres=None, adczero=None, initvalue=None, checksum=None, blocksize=None, signame=None, comments=None): # Note the lack of 'nseg' field. Single segment records cannot have this field. Even nseg = 1 makes # the header a multi-segment header. super(Record, self).__init__(recordname, nsig, fs, counterfreq, basecounter, siglen, basetime, basedate, comments, signame) self.p_signals = p_signals self.d_signals = d_signals self.e_p_signals = e_p_signals self.e_d_signals = e_d_signals self.filename=filename self.fmt=fmt self.sampsperframe=sampsperframe self.skew=skew self.byteoffset=byteoffset self.adcgain=adcgain self.baseline=baseline self.units=units self.adcres=adcres self.adczero=adczero self.initvalue=initvalue self.checksum=checksum self.blocksize=blocksize # Equal comparison operator for objects of this type def __eq__(self, other): att1 = self.__dict__ att2 = other.__dict__ if set(att1.keys()) != set(att2.keys()): return False for k in att1.keys(): v1 = att1[k] v2 = att2[k] if type(v1) != type(v2): return False if type(v1) == np.ndarray: if not np.array_equal(v1, v2): return False else: if v1 != v2: return False return True # Write a wfdb header file and associated dat files if any. # Uses d_signals (expanded=False) or e_d_signals to write the samples def wrsamp(self, expanded=False): # Perform field validity and cohesion checks, and write the header file. self.wrheader() if self.nsig>0: # Perform signal validity and cohesion checks, and write the associated dat files. self.wrdats(expanded) # Arrange/edit object fields to reflect user channel and/or signal range input # Account for case when signals are expanded def arrangefields(self, channels, expanded=False): # Rearrange signal specification fields for field in _headers.sigfieldspecs: item = getattr(self, field) setattr(self, field, [item[c] for c in channels]) # Expanded signals - multiple samples per frame. if expanded: # Checksum and initvalue to be updated if present # unless the whole signal length was input if self.siglen != int(len(self.e_d_signals[0])/self.sampsperframe[0]): self.checksum = self.calc_checksum(expanded) self.initvalue = [s[0] for s in self.e_d_signals] self.nsig = len(channels) self.siglen = int(len(self.e_d_signals[0])/self.sampsperframe[0]) # MxN numpy array d_signals else: # Checksum and initvalue to be updated if present # unless the whole signal length was input if self.siglen != self.d_signals.shape[0]: if self.checksum is not None: self.checksum = self.calc_checksum() if self.initvalue is not None: ival = list(self.d_signals[0, :]) self.initvalue = [int(i) for i in ival] # Update record specification parameters # Important that these get updated after^^ self.nsig = len(channels) self.siglen = self.d_signals.shape[0] # Class for multi segment WFDB records. class MultiRecord(BaseRecord, _headers.MultiHeadersMixin): """ The class representing multi-segment WFDB records. MultiRecord objects can be created using the constructor, or by reading a multi-segment WFDB record using 'rdsamp' with the 'm2s' (multi to single) input parameter set to False. The attributes of the MultiRecord object give information about the entire record as specified by https://www.physionet.org/physiotools/wag/header-5.htm In addition, the 'segments' parameter is a list of Record objects representing each individual segment, or 'None' representing empty segments, of the entire multi-segment record. Noteably, this class has no attribute representing the signals as a whole. The 'multi_to_single' instance method can be called on MultiRecord objects to return a single segment representation of the record as a Record object. The resulting Record object will have its 'p_signals' field set. Contructor function: def __init__(self, segments=None, layout=None, recordname=None, nsig=None, fs=None, counterfreq=None, basecounter=None, siglen=None, basetime=None, basedate=None, segname=None, seglen=None, comments=None, signame=None, sigsegments=None) Example Usage: import wfdb recordM = wfdb.MultiRecord(recordname='rm', fs=50, nsig=8, siglen=9999, segname=['rm_1', '~', rm_2'], seglen=[800, 200, 900]) recordL = wfdb.rdsamp('s00001-2896-10-10-00-31', m2s = False) recordL = recordL.multi_to_single() """ # Constructor def __init__(self, segments=None, layout=None, recordname=None, nsig=None, fs=None, counterfreq=None, basecounter=None, siglen=None, basetime=None, basedate=None, segname=None, seglen=None, comments=None, signame=None, sigsegments=None): super(MultiRecord, self).__init__(recordname, nsig, fs, counterfreq, basecounter, siglen, basetime, basedate, comments, signame) self.layout = layout self.segments = segments self.segname = segname self.seglen = seglen self.sigsegments=sigsegments # Write a multi-segment header, along with headers and dat files for all segments def wrsamp(self): # Perform field validity and cohesion checks, and write the header file. self.wrheader() # Perform record validity and cohesion checks, and write the associated segments. for seg in self.segments: seg.wrsamp() # Check the cohesion of the segments field with other fields used to write the record def checksegmentcohesion(self): # Check that nseg is equal to the length of the segments field if self.nseg != len(self.segments): raise ValueError("Length of segments must match the 'nseg' field") for i in range(0, nseg): s = self.segments[i] # If segment 0 is a layout specification record, check that its file names are all == '~'' if i==0 and self.seglen[0] == 0: for filename in s.filename: if filename != '~': raise ValueError("Layout specification records must have all filenames named '~'") # Check that sampling frequencies all match the one in the master header if s.fs != self.fs: raise ValueError("The 'fs' in each segment must match the overall record's 'fs'") # Check the signal length of the segment against the corresponding seglen field if s.siglen != self.seglen[i]: raise ValueError('The signal length of segment '+str(i)+' does not match the corresponding segment length') totalsiglen = totalsiglen + getattr(s, 'siglen') # No need to check the sum of siglens from each segment object against siglen # Already effectively done it when checking sum(seglen) against siglen # Determine the segments and the samples # within each segment that have to be read in a # multi-segment record. Called during rdsamp. def requiredsegments(self, sampfrom, sampto, channels): # The starting segment with actual samples if self.layout == 'Fixed': startseg = 0 else: startseg = 1 # Cumulative sum of segment lengths (ignoring layout segment) cumsumlengths = list(np.cumsum(self.seglen[startseg:])) # Get first segment readsegs = [[sampfrom < cs for cs in cumsumlengths].index(True)] # Get final segment if sampto == cumsumlengths[len(cumsumlengths) - 1]: readsegs.append(len(cumsumlengths) - 1) else: readsegs.append([sampto <= cs for cs in cumsumlengths].index(True)) # Add 1 for variable layout records readsegs = list(np.add(readsegs,startseg)) # Obtain the sampfrom and sampto to read for each segment if readsegs[1] == readsegs[0]: # Only one segment to read readsegs = [readsegs[0]] # The segment's first sample number relative to the entire record segstartsamp = sum(self.seglen[0:readsegs[0]]) readsamps = [[sampfrom-segstartsamp, sampto-segstartsamp]] else: # More than one segment to read readsegs = list(range(readsegs[0], readsegs[1]+1)) readsamps = [[0, self.seglen[s]] for s in readsegs] # Starting sample for first segment. readsamps[0][0] = sampfrom - ([0] + cumsumlengths)[readsegs[0]-startseg] # End sample for last segment readsamps[-1][1] = sampto - ([0] + cumsumlengths)[readsegs[-1]-startseg] return (readsegs, readsamps) # Get the channel numbers to be read from each segment def requiredsignals(self, readsegs, channels, dirname, pbdir): # Fixed layout. All channels are the same. if self.layout == 'Fixed': # Should we bother here with skipping empty segments? # They won't be read anyway. readsigs = [channels]*len(readsegs) # Variable layout: figure out channels by matching record names else: readsigs = [] # The overall layout signal names l_signames = self.segments[0].signame # The wanted signals w_signames = [l_signames[c] for c in channels] # For each segment ... for i in range(0, len(readsegs)): # Skip empty segments if self.segname[readsegs[i]] == '~': readsigs.append(None) else: # Get the signal names of the current segment s_signames = rdheader(os.path.join(dirname, self.segname[readsegs[i]]), pbdir = pbdir).signame readsigs.append(wanted_siginds(w_signames, s_signames)) return readsigs # Arrange/edit object fields to reflect user channel and/or signal range input def arrangefields(self, readsegs, segranges, channels): # Update seglen values for relevant segments for i in range(0, len(readsegs)): self.seglen[readsegs[i]] = segranges[i][1] - segranges[i][0] # Update record specification parameters self.nsig = len(channels) self.siglen = sum([sr[1]-sr[0] for sr in segranges]) # Get rid of the segments and segment line parameters # outside the desired segment range if self.layout == 'Fixed': self.segments = self.segments[readsegs[0]:readsegs[-1]+1] self.segname = self.segname[readsegs[0]:readsegs[-1]+1] self.seglen = self.seglen[readsegs[0]:readsegs[-1]+1] else: # Keep the layout specifier segment self.segments = [self.segments[0]] + self.segments[readsegs[0]:readsegs[-1]+1] self.segname = [self.segname[0]] + self.segname[readsegs[0]:readsegs[-1]+1] self.seglen = [self.seglen[0]] + self.seglen[readsegs[0]:readsegs[-1]+1] # Update number of segments self.nseg = len(self.segments) # Convert a MultiRecord object to a Record object def multi_to_single(self, returnres): # The fields to transfer to the new object fields = self.__dict__.copy() # Remove multirecord fields del(fields['segments']) del(fields['segname']) del(fields['seglen']) del(fields['nseg']) # The output physical signals if returnres == 64: floatdtype = 'float64' elif returnres == 32: floatdtype = 'float32' else: floatdtype = 'float16' p_signals = np.zeros([self.siglen, self.nsig], dtype=floatdtype) # Get the physical samples from each segment # Start and end samples in the overall array # to place the segment samples into startsamps = [0] + list(np.cumsum(self.seglen)[0:-1]) endsamps = list(np.cumsum(self.seglen)) if self.layout == 'Fixed': # Get the signal names and units from the first segment fields['signame'] = self.segments[0].signame fields['units'] = self.segments[0].units for i in range(self.nseg): p_signals[startsamps[i]:endsamps[i],:] = self.segments[i].p_signals # For variable layout, have to get channels by name else: # Get the signal names from the layout segment fields['signame'] = self.segments[0].signame fields['units'] = self.segments[0].units for i in range(1, self.nseg): seg = self.segments[i] # Empty segment if seg is None: p_signals[startsamps[i]:endsamps[i],:] = np.nan # Non-empty segment else: # Figure out if there are any channels wanted and # the output channels they are to be stored in inchannels = [] outchannels = [] for s in fields['signame']: if s in seg.signame: inchannels.append(seg.signame.index(s)) outchannels.append(fields['signame'].index(s)) # Segment contains no wanted channels. Fill with nans. if inchannels == []: p_signals[startsamps[i]:endsamps[i],:] = np.nan # Segment contains wanted channel(s). Transfer samples. else: # This statement is necessary in case this function is not called # directly from rdsamp with m2s=True. if not hasattr(seg, 'p_signals'): seg.p_signals = seg.dac(returnres=returnres) for ch in range(0, fields['nsig']): if ch not in outchannels: p_signals[startsamps[i]:endsamps[i],ch] = np.nan else: p_signals[startsamps[i]:endsamps[i],ch] = seg.p_signals[:, inchannels[outchannels.index(ch)]] # Create the single segment Record object and set attributes record = Record() for field in fields: setattr(record, field, fields[field]) record.p_signals = p_signals return record #------------------- Reading Records -------------------# # Read a WFDB single or multi segment record. Return a Record or MultiRecord object def rdsamp(recordname, sampfrom=0, sampto=None, channels = None, physical = True, pbdir = None, m2s = True, smoothframes = True, ignoreskew=False, returnres=64): """Read a WFDB record and return the signal and record descriptors as attributes in a Record or MultiRecord object. Usage: record = rdsamp(recordname, sampfrom=0, sampto=None, channels=None, physical=True, pbdir = None, m2s=True, smoothframes = True, ignoreskew=False) Input arguments: - recordname (required): The name of the WFDB record to be read (without any file extensions). If the argument contains any path delimiter characters, the argument will be interpreted as PATH/baserecord and the data files will be searched for in the local path. - sampfrom (default=0): The starting sample number to read for each channel. - sampto (default=None): The sample number at which to stop reading for each channel. - channels (default=all): Indices specifying the channel to be returned. - physical (default=True): Flag that specifies whether to return signals in physical units in the p_signals field (True), or digital units in the d_signals field (False). - pbdir (default=None): Option used to stream data from Physiobank. The Physiobank database directory from which to find the required record files. eg. For record '100' in 'http://physionet.org/physiobank/database/mitdb', pbdir = 'mitdb'. - m2s (default=True): Flag used when reading multi-segment records. Specifies whether to directly return a wfdb MultiRecord object (False), or to convert it into and return a wfdb Record object (True). - smoothframes (default=True): Flag used when reading records with signals having multiple samples per frame. Specifies whether to smooth the samples in signals with more than one sample per frame and return an mxn uniform numpy array as the d_signals or p_signals field (True), or to return a list of 1d numpy arrays containing every expanded sample as the e_d_signals or e_p_signals field (False). - ignoreskew (default=False): Flag used when reading records with at least one skewed signal. Specifies whether to apply the skew to align the signals in the output variable (False), or to ignore the skew field and load in all values contained in the dat files unaligned (True). - returnres (default=64): The numpy array dtype of the returned signals. Options are: 64, 32, 16, and 8, where the value represents the numpy int or float dtype. Note that the value cannot be 8 when physical is True since there is no float8 format. Output argument: - record: The wfdb Record or MultiRecord object representing the contents of the record read. Note: If a signal range or channel selection is specified when calling this function, the the resulting attributes of the returned object will be set to reflect the section of the record that is actually read, rather than necessarily what is in the header file. For example, if channels = [0, 1, 2] is specified when reading a 12 channel record, the 'nsig' attribute will be 3, not 12. Note: The 'srdsamp' function exists as a simple alternative to 'rdsamp' for the most common purpose of extracting the physical signals and a few important descriptor fields. 'srdsamp' returns two arguments: the physical signals array, and a dictionary of a few select fields, a subset of the original wfdb Record attributes. Example Usage: import wfdb ecgrecord = wfdb.rdsamp('sampledata/test01_00s', sampfrom=800, channels = [1,3]) """ dirname, baserecordname = os.path.split(recordname) # Read the header fields into the appropriate record object record = rdheader(recordname, pbdir = pbdir, rdsegments = False) # Set defaults for sampto and channels input variables if sampto is None: sampto = record.siglen if channels is None: channels = list(range(record.nsig)) # Ensure that input fields are valid for the record record.checkreadinputs(sampfrom, sampto, channels, physical, m2s, smoothframes, returnres) # A single segment record if isinstance(record, Record): # Only 1 sample/frame, or frames are smoothed. Return uniform numpy array if smoothframes or max([record.sampsperframe[c] for c in channels])==1: # Read signals from the associated dat files that contain wanted channels record.d_signals = _signals.rdsegment(record.filename, dirname, pbdir, record.nsig, record.fmt, record.siglen, record.byteoffset, record.sampsperframe, record.skew, sampfrom, sampto, channels, smoothframes, ignoreskew) # Arrange/edit the object fields to reflect user channel and/or signal range input record.arrangefields(channels, expanded=False) if physical is True: # Perform inplace dac to get physical signal record.dac(expanded=False, returnres=returnres, inplace=True) # Return each sample of the signals with multiple samples per frame else: record.e_d_signals = _signals.rdsegment(record.filename, dirname, pbdir, record.nsig, record.fmt, record.siglen, record.byteoffset, record.sampsperframe, record.skew, sampfrom, sampto, channels, smoothframes, ignoreskew) # Arrange/edit the object fields to reflect user channel and/or signal range input record.arrangefields(channels, expanded=True) if physical is True: # Perform dac to get physical signal record.dac(expanded=True, returnres=returnres, inplace=True) # A multi segment record # We can make another rdsamp function (called rdsamp_segment) to call # for individual segments to deal with the skews. else: # Strategy: # 1. Read the required segments and store them in # Record objects. # 2. Update the parameters of the objects to reflect # the state of the sections read. # 3. Update the parameters of the overall MultiRecord # object to reflect the state of the individual segments. # 4. If specified, convert the MultiRecord object # into a single Record object. # Segments field is a list of Record objects # Empty segments store None. record.segments = [None]*record.nseg # Variable layout if record.seglen[0] == 0: record.layout = 'Variable' # Read the layout specification header record.segments[0] = rdheader(os.path.join(dirname, record.segname[0]), pbdir=pbdir) # Fixed layout else: record.layout = 'Fixed' # The segment numbers and samples within each segment to read. readsegs, segranges = record.requiredsegments(sampfrom, sampto, channels) # The signals within each segment to read segsigs = record.requiredsignals(readsegs, channels, dirname, pbdir) # Read the desired samples in the relevant segments for i in range(len(readsegs)): segnum = readsegs[i] # Empty segment or segment with no relevant channels if record.segname[segnum] == '~' or segsigs[i] is None: record.segments[segnum] = None else: record.segments[segnum] = rdsamp(os.path.join(dirname, record.segname[segnum]), sampfrom = segranges[i][0], sampto = segranges[i][1], channels = segsigs[i], physical = True, pbdir=pbdir) # Arrange the fields of the overall object to reflect user input record.arrangefields(readsegs, segranges, channels) # Convert object into a single segment Record object if m2s: record = record.multi_to_single(returnres=returnres) # Perform dtype conversion if necessary if isinstance(record, Record) and record.nsig>0: record.convert_dtype(physical, returnres, smoothframes) return record # Read a WFDB header. Return a Record object or MultiRecord object def rdheader(recordname, pbdir = None, rdsegments = False): """Read a WFDB header file and return the record descriptors as attributes in a Record object Usage: record = rdheader(recordname, pbdir = None, rdsegments = False) Input arguments: - recordname (required): The name of the WFDB record to be read (without any file extensions). If the argument contains any path delimiter characters, the argument will be interpreted as PATH/baserecord and the header file will be searched for in the local path. - pbdir (default=None): Option used to stream data from Physiobank. The Physiobank database directory from which to find the required record files. eg. For record '100' in 'http://physionet.org/physiobank/database/mitdb', pbdir = 'mitdb'. - rdsegments (default=False): Boolean flag used when reading multi-segment headers. If True, segment headers will also be read (into the record object's 'segments' field). Output argument: - record: The wfdb Record or MultiRecord object representing the contents of the header read. Example Usage: import wfdb ecgrecord = wfdb.rdheader('sampledata/test01_00s', sampfrom=800, channels = [1,3]) """ # Read the header file. Separate comment and non-comment lines headerlines, commentlines = _headers.getheaderlines(recordname, pbdir) # Get fields from record line d_rec = _headers.read_rec_line(headerlines[0]) # Processing according to whether the header is single or multi segment # Single segment header - Process signal specification lines if d_rec['nseg'] is None: # Create a single-segment WFDB record object record = Record() # There is at least one channel if len(headerlines)>1: # Read the fields from the signal lines d_sig = _headers.read_sig_lines(headerlines[1:]) # Set the object's signal line fields for field in _headers.sigfieldspecs: setattr(record, field, d_sig[field]) # Set the object's record line fields for field in _headers.recfieldspecs: if field == 'nseg': continue setattr(record, field, d_rec[field]) # Multi segment header - Process segment specification lines else: # Create a multi-segment WFDB record object record = MultiRecord() # Read the fields from the segment lines d_seg = _headers.read_seg_lines(headerlines[1:]) # Set the object's segment line fields for field in _headers.segfieldspecs: setattr(record, field, d_seg[field]) # Set the objects' record line fields for field in _headers.recfieldspecs: setattr(record, field, d_rec[field]) # Determine whether the record is fixed or variable if record.seglen[0] == 0: record.layout = 'Variable' else: record.layout = 'Fixed' # If specified, read the segment headers if rdsegments: record.segments = [] # Get the base record name (could be empty) dirname = os.path.split(recordname)[0] for s in record.segname: if s == '~': record.segments.append(None) else: record.segments.append(rdheader(os.path.join(dirname,s), pbdir)) # Fill in the signame attribute record.signame = record.getsignames() # Fill in the sigsegments attribute record.sigsegments = record.getsigsegments() # Set the comments field record.comments = [] for line in commentlines: record.comments.append(line.strip(' \t#')) return record # Given some wanted signal names, and the signal names contained # in a record, return the indices of the record channels that intersect. # Remember that the wanted signal names are already in order specified in user input channels. So it's good! def wanted_siginds(wanted_signames, record_signames): contained_signals = [s for s in wanted_signames if s in record_signames] if contained_signals == []: return None else: return [record_signames.index(s) for s in contained_signals] # A simple version of rdsamp for ease of use # Return the physical signals and a few essential fields def srdsamp(recordname, sampfrom=0, sampto=None, channels = None, pbdir = None): """Read a WFDB record and return the physical signal and a few important descriptor fields Usage: signals, fields = srdsamp(recordname, sampfrom=0, sampto=None, channels=None, pbdir=None) Input arguments: - recordname (required): The name of the WFDB record to be read (without any file extensions). If the argument contains any path delimiter characters, the argument will be interpreted as PATH/baserecord and the data files will be searched for in the local path. - sampfrom (default=0): The starting sample number to read for each channel. - sampto (default=None): The sample number at which to stop reading for each channel. - channels (default=all): Indices specifying the channel to be returned. Output arguments: - signals: A 2d numpy array storing the physical signals from the record. - fields: A dictionary specifying several key attributes of the read record: - fs: The sampling frequency of the record - units: The units for each channel - signame: The signal name for each channel - comments: Any comments written in the header Note: If a signal range or channel selection is specified when calling this function, the the resulting attributes of the returned object will be set to reflect the section of the record that is actually read, rather than necessarily what is in the header file. For example, if channels = [0, 1, 2] is specified when reading a 12 channel record, the 'nsig' attribute will be 3, not 12. Note: The 'rdsamp' function is the base function upon which this one is built. It returns all attributes present, along with the signals, as attributes in a wfdb.Record object. The function, along with the returned data type, have more options than 'srdsamp' for users who wish to more directly manipulate WFDB files. Example Usage: import wfdb sig, fields = wfdb.srdsamp('sampledata/test01_00s', sampfrom=800, channels = [1,3]) """ record = rdsamp(recordname, sampfrom, sampto, channels, True, pbdir, True) signals = record.p_signals fields = {} for field in ['fs','units','signame', 'comments']: fields[field] = getattr(record, field) return signals, fields #------------------- /Reading Records -------------------# # Function for writing single segment records def wrsamp(recordname, fs, units, signames, p_signals=None, d_signals=None, fmt=None, gain=None, baseline=None, comments=None, basetime=None, basedate=None): """Write a single segment WFDB record, creating a WFDB header file and any associated dat files. Usage: wrsamp(recordname, fs, units, signames, p_signals = None, d_signals=None, fmt = None, gain = None, baseline = None, comments = None) Input arguments: - recordname (required): The string name of the WFDB record to be written (without any file extensions). - fs (required): The numerical sampling frequency of the record. - units (required): A list of strings giving the units of each signal channel. - signames (required): A list of strings giving the signal name of each signal channel. - p_signals (default=None): An MxN 2d numpy array, where M is the signal length. Gives the physical signal values intended to be written. Either p_signals or d_signals must be set, but not both. If p_signals is set, this method will use it to perform analogue-digital conversion, writing the resultant digital values to the dat file(s). If fmt is set, gain and baseline must be set or unset together. If fmt is unset, gain and baseline must both be unset. - d_signals (default=None): An MxN 2d numpy array, where M is the signal length. Gives the digital signal values intended to be directly written to the dat file(s). The dtype must be an integer type. Either p_signals or d_signals must be set, but not both. In addition, if d_signals is set, fmt, gain and baseline must also all be set. - fmt (default=None): A list of strings giving the WFDB format of each file used to store each channel. Accepted formats are: "80","212","16","24", and "32". There are other WFDB formats but this library will not write (though it will read) those file types. - gain (default=None): A list of integers specifying the ADC gain. - baseline (default=None): A list of integers specifying the digital baseline. - comments (default=None): A list of string comments to be written to the header file. - basetime (default=None): A string of the record's start time in 24h HH:MM:SS(.ms) format. - basedate (default=None): A string of the record's start date in DD/MM/YYYY format. Note: This gateway function was written to enable a simple way to write WFDB record files using the most frequently used parameters. Therefore not all WFDB fields can be set via this function. For more control over attributes, create a wfdb.Record object, manually set its attributes, and call its wrsamp() instance method. If you choose this more advanced method, see also the setdefaults, set_d_features, and set_p_features instance methods to help populate attributes. Example Usage (with the most common scenario of input parameters): import wfdb # Read part of a record from Physiobank sig, fields = wfdb.srdsamp('a103l', sampfrom = 50000, channels = [0,1], pbdir = 'challenge/2015/training') # Write a local WFDB record (manually inserting fields) wfdb.wrsamp('ecgrecord', fs = 250, units = ['mV', 'mV'], signames = ['I', 'II'], p_signals = sig, fmt = ['16', '16']) """ # Check input field combinations if p_signals is not None and d_signals is not None: raise Exception('Must only give one of the inputs: p_signals or d_signals') if d_signals is not None: if fmt is None or gain is None or baseline is None: raise Exception("When using d_signals, must also specify 'fmt', 'gain', and 'baseline' fields.") # Depending on whether d_signals or p_signals was used, set other required features. if p_signals is not None: # Create the Record object record = Record(recordname=recordname, p_signals=p_signals, fs=fs, fmt=fmt, units=units, signame=signames, adcgain = gain, baseline=baseline, comments=comments, basetime=basetime, basedate=basedate) # Compute optimal fields to store the digital signal, carry out adc, and set the fields. record.set_d_features(do_adc = 1) else: # Create the Record object record = Record(recordname=recordname, d_signals=d_signals, fs=fs, fmt=fmt, units=units, signame = signames, adcgain = gain, baseline=baseline, comments=comments, basetime=basetime, basedate=basedate) # Use d_signals to set the fields directly record.set_d_features() # Set default values of any missing field dependencies record.setdefaults() # Write the record files - header and associated dat record.wrsamp() # Time string parser for WFDB header - H(H):M(M):S(S(.sss)) format. def parsetimestring(timestring): times = re.findall("(?P<hours>\d{1,2}):(?P<minutes>\d{1,2}):(?P<seconds>\d{1,2}[.\d+]*)", timestring) if not times: raise ValueError("Invalid time string: "+timestring+". Acceptable format is: 'Hours:Minutes:Seconds'") else: hours, minutes, seconds = times[0] if not hours or not minutes or not seconds: raise ValueError("Invalid time string: "+timestring+". Acceptable format is: 'Hours:Minutes:Seconds'") hours = int(hours) minutes = int(minutes) seconds = float(seconds) if int(hours) >23: raise ValueError('hours must be < 24') elif hours<0: raise ValueError('hours must be positive') if minutes>59: raise ValueError('minutes must be < 60') elif minutes<0: raise ValueError('minutes must be positive') if seconds>59: raise ValueError('seconds must be < 60') elif seconds<0: raise ValueError('seconds must be positive') return (hours, minutes, seconds) # Date string parser for WFDB header - DD/MM/YYYY def parsedatestring(datestring): dates = re.findall(r"(?P<day>\d{2})/(?P<month>\d{2})/(?P<year>\d{4})", datestring) if not dates: raise ValueError("Invalid date string. Acceptable format is: 'DD/MM/YYYY'") else: day, month, year = dates[0] day = int(day) month = int(month) year = int(year) if year<1: raise ValueError('year must be positive') if month<1 or month>12: raise ValueError('month must be between 1 and 12') if day not in range(1, monthrange(year, month)[1]+1): raise ValueError('day does not exist for specified year and month') return (day, month, year) # Returns the unique elements in a list in the order that they appear. # Also returns the indices of the original list that correspond to each output element. def orderedsetlist(fulllist): uniquelist = [] original_inds = {} for i in range(0, len(fulllist)): item = fulllist[i] # new item if item not in uniquelist: uniquelist.append(item) original_inds[item] = [i] # previously seen item else: original_inds[item].append(i) return uniquelist, original_inds # Returns elements in a list without consecutive repeated values. def orderednoconseclist(fulllist): noconseclist = [fulllist[0]] if len(fulllist) == 1: return noconseclist for i in fulllist: if i!= noconseclist[-1]: noconseclist.append(i) return noconseclist # *These downloading files gateway function rely on the Record/MultiRecord objects. # They are placed here rather than in downloads.py in order to avoid circular imports # Download WFDB files from a physiobank database # This function only targets databases with WFDB records (EDF and MIT format). # If the database doesn't have a 'RECORDS" file, it will fail. def dldatabase(pbdb, dlbasedir, records = 'all', annotators = 'all' , keepsubdirs = True, overwrite = False): """Download WFDB record (and optionally annotation) files from a Physiobank database. The database must contain a 'RECORDS' file in its base directory which lists its WFDB records. Usage: dldatabase(pbdb, dlbasedir, records = 'all', annotators = 'all' , keepsubdirs = True, overwrite = False) Input arguments: - pbdb (required): The Physiobank database directory to download. eg. For database 'http://physionet.org/physiobank/database/mitdb', pbdb = 'mitdb'. - dlbasedir (required): The full local directory path in which to download the files. - records (default='all'): Specifier of the WFDB records to download. Is either a list of strings which each specify a record, or 'all' to download all records listed in the database's RECORDS file. eg. records = ['test01_00s', test02_45s] for database https://physionet.org/physiobank/database/macecgdb/ - annotators (default='all'): Specifier of the WFDB annotation file types to download along with the record files. Is either None to skip downloading any annotations, 'all' to download all annotation types as specified by the ANNOTATORS file, or a list of strings which each specify an annotation extension. eg. annotators = ['anI'] for database https://physionet.org/physiobank/database/prcp/ - keepsubdirs (default=True): Whether to keep the relative subdirectories of downloaded files as they are organized in Physiobank (True), or to download all files into the same base directory (False). - overwrite (default=False): If set to True, all files will be redownloaded regardless. If set to False, existing files with the same name and relative subdirectory will be checked. If the local file is the same size as the online file, the download is skipped. If the local file is larger, it will be deleted and the file will be redownloaded. If the local file is smaller, the file will be assumed to be partially downloaded and the remaining bytes will be downloaded and appended. Example Usage: import wfdb wfdb.dldatabase('ahadb', os.getcwd()) """ # Full url physiobank database dburl = posixpath.join(downloads.dbindexurl, pbdb) # Check if the database is valid r = requests.get(dburl) r.raise_for_status() # Get the list of records recordlist = downloads.getrecordlist(dburl, records) # Get the annotator extensions annotators = downloads.getannotators(dburl, annotators) # All files to download (relative to the database's home directory) allfiles = [] for rec in recordlist: # Check out whether each record is in MIT or EDF format if rec.endswith('.edf'): allfiles.append(rec) else: # If MIT format, have to figure out all associated files allfiles.append(rec+'.hea') dirname, baserecname = os.path.split(rec) record = rdheader(baserecname, pbdir = posixpath.join(pbdb, dirname)) # Single segment record if isinstance(record, Record): # Add all dat files of the segment for file in record.filename: allfiles.append(posixpath.join(dirname, file)) # Multi segment record else: for seg in record.segname: # Skip empty segments if seg == '~': continue # Add the header allfiles.append(posixpath.join(dirname, seg+'.hea')) # Layout specifier has no dat files if seg.endswith('_layout'): continue # Add all dat files of the segment recseg = rdheader(seg, pbdir = posixpath.join(pbdb, dirname)) for file in recseg.filename: allfiles.append(posixpath.join(dirname, file)) # check whether the record has any requested annotation files if annotators is not None: for a in annotators: annfile = rec+'.'+a url = posixpath.join(downloads.dbindexurl, pbdb, annfile) rh = requests.head(url) if rh.status_code != 404: allfiles.append(annfile) dlinputs = [(os.path.split(file)[1], os.path.split(file)[0], pbdb, dlbasedir, keepsubdirs, overwrite) for file in allfiles] # Make any required local directories downloads.makelocaldirs(dlbasedir, dlinputs, keepsubdirs) print('Downloading files...') # Create multiple processes to download files. # Limit to 2 connections to avoid overloading the server pool = multiprocessing.Pool(processes=2) pool.map(downloads.dlpbfile, dlinputs) print('Finished downloading files') return # Download specific files from a physiobank database def dldatabasefiles(pbdb, dlbasedir, files, keepsubdirs = True, overwrite = False): """Download specified files from a Physiobank database. Usage: dldatabasefiles(pbdb, dlbasedir, files, keepsubdirs = True, overwrite = False): Input arguments: - pbdb (required): The Physiobank database directory to download. eg. For database 'http://physionet.org/physiobank/database/mitdb', pbdb = 'mitdb'. - dlbasedir (required): The full local directory path in which to download the files. - files (required): A list of strings specifying the file names to download relative to the database base directory - keepsubdirs (default=True): Whether to keep the relative subdirectories of downloaded files as they are organized in Physiobank (True), or to download all files into the same base directory (False). - overwrite (default=False): If set to True, all files will be redownloaded regardless. If set to False, existing files with the same name and relative subdirectory will be checked. If the local file is the same size as the online file, the download is skipped. If the local file is larger, it will be deleted and the file will be redownloaded. If the local file is smaller, the file will be assumed to be partially downloaded and the remaining bytes will be downloaded and appended. Example Usage: import wfdb wfdb.dldatabasefiles('ahadb', os.getcwd(), ['STAFF-Studies-bibliography-2016.pdf', 'data/001a.hea', 'data/001a.dat']) """ # Full url physiobank database dburl = posixpath.join(downloads.dbindexurl, pbdb) # Check if the database is valid r = requests.get(dburl) r.raise_for_status() # Construct the urls to download dlinputs = [(os.path.split(file)[1], os.path.split(file)[0], pbdb, dlbasedir, keepsubdirs, overwrite) for file in files] # Make any required local directories downloads.makelocaldirs(dlbasedir, dlinputs, keepsubdirs) print('Downloading files...') # Create multiple processes to download files. # Limit to 2 connections to avoid overloading the server pool = multiprocessing.Pool(processes=2) pool.map(downloads.dlpbfile, dlinputs) print('Finished downloading files') return
# For wrheader(), all fields must be already filled in and cohesive with one another other. The signals field will not be used. # For wrsamp(), the field to use will be d_signals (which is allowed to be empty for 0 channel records). # set_p_features and set_d_features use characteristics of the p_signals or d_signals field to fill in other header fields. # These are separate from another method 'setdefaults' which the user may call to set default header fields # The checkfieldcohesion() function will be called in wrheader which checks all the header fields. # The checksignalcohesion() function will be called in wrsamp in wrdat to check the d_signal against the header fields. import numpy as np import re import os import posixpath from collections import OrderedDict from calendar import monthrange import requests import multiprocessing from . import _headers from . import _signals from . import downloads # The base WFDB class to extend to create Record and MultiRecord. Contains shared helper functions and fields. class BaseRecord(object): # Constructor def __init__(self, recordname=None, nsig=None, fs=None, counterfreq=None, basecounter = None, siglen = None, basetime = None, basedate = None, comments = None, signame=None): self.recordname = recordname self.nsig = nsig self.fs = fs self.counterfreq = counterfreq self.basecounter = basecounter self.siglen = siglen self.basetime = basetime self.basedate = basedate self.comments = comments self.signame = signame # Check whether a single field is valid in its basic form. Does not check compatibility with other fields. # ch is only used for signal specification fields, specifying the channels to check. Other channels # can be None. # Be aware that this function is not just called from wrheader. def checkfield(self, field, channels=None): # Check that the field is present if getattr(self, field) is None: raise Exception("Missing field required: "+field) # Check the type of the field (and of its elements if it should be a list) self.checkfieldtype(field, channels) # Expand to make sure all channels must have present field if channels == 'all': channels = [1]*len(getattr(self, field)) # Individual specific field checks: if field == 'd_signals': # Check shape if self.d_signals.ndim != 2: raise TypeError("d_signals must be a 2d numpy array") # Check dtype if self.d_signals.dtype not in [np.dtype('int64'), np.dtype('int32'), np.dtype('int16'), np.dtype('int8')]: raise TypeError('d_signals must be a 2d numpy array with dtype == int64, int32, int16, or int8.') elif field =='p_signals': # Check shape if self.p_signals.ndim != 2: raise TypeError("p_signals must be a 2d numpy array") elif field == 'e_d_signals': # Check shape for ch in range(len(channels)): if self.e_d_signals[ch].ndim != 1: raise TypeError("e_d_signals must be a list of 1d numpy arrays") # Check dtype if self.e_d_signals[ch].dtype not in [np.dtype('int64'), np.dtype('int32'), np.dtype('int16'), np.dtype('int8')]: raise TypeError('e_d_d_signals must be a list of 1d numpy arrays with dtype == int64, int32, int16, or int8.') elif field =='e_p_signals': # Check shape for ch in range(0, len(channels)): if self.e_p_signals.ndim != 1: raise TypeError("e_p_signals must be a list of 1d numpy arrays") #elif field == 'segments': # Nothing to check here. # Record specification fields elif field == 'recordname': # Allow letters, digits, hyphens, and underscores. acceptedstring = re.match('[-\w]+', self.recordname) if not acceptedstring or acceptedstring.string != self.recordname: raise ValueError('recordname must only comprise of letters, digits, hyphens, and underscores.') elif field == 'nseg': if self.nseg <=0: raise ValueError('nseg must be a positive integer') elif field == 'nsig': if self.nsig <=0: raise ValueError('nsig must be a positive integer') elif field == 'fs': if self.fs<=0: raise ValueError('fs must be a positive number') elif field == 'counterfreq': if self.counterfreq <=0: raise ValueError('counterfreq must be a positive number') elif field == 'basecounter': if self.basecounter <=0: raise ValueError('basecounter must be a positive number') elif field == 'siglen': if self.siglen <0: raise ValueError('siglen must be a non-negative integer') elif field == 'basetime': _ = parsetimestring(self.basetime) elif field == 'basedate': _ = parsedatestring(self.basedate) # Signal specification fields. Lists of elements to check. elif field in _headers.sigfieldspecs: for ch in range(0, len(channels)): f = getattr(self, field)[ch] # The channel element is allowed to be None if not channels[ch]: if f is None: continue if field == 'filename': # Check for filename characters acceptedstring = re.match('[-\w]+\.?[\w]+',f) if not acceptedstring or acceptedstring.string != f: raise ValueError('File names should only contain alphanumerics, hyphens, and an extension. eg. record_100.dat') # Check that dat files are grouped together if orderedsetlist(self.filename)[0] != orderednoconseclist(self.filename): raise ValueError('filename error: all entries for signals that share a given file must be consecutive') elif field == 'fmt': if f not in _signals.datformats: raise ValueError('File formats must be valid WFDB dat formats: '+' , '.join(_signals.datformats)) elif field == 'sampsperframe': if f < 1: raise ValueError('sampsperframe values must be positive integers') elif field == 'skew': if f < 0: raise ValueError('skew values must be non-negative integers') elif field == 'byteoffset': if f < 0: raise ValueError('byteoffset values must be non-negative integers') elif field == 'adcgain': if f <= 0: raise ValueError('adcgain values must be positive numbers') elif field == 'baseline': # Currently original WFDB library only has 4 bytes for baseline. if f < -2147483648 or f> 2147483648: raise ValueError('baseline values must be between -2147483648 (-2^31) and 2147483647 (2^31 -1)') elif field == 'units': if re.search('\s', f): raise ValueError('units strings may not contain whitespaces.') elif field == 'adcres': if f < 0: raise ValueError('adcres values must be non-negative integers') # elif field == 'adczero': nothing to check here # elif field == 'initvalue': nothing to check here # elif field == 'checksum': nothing to check here elif field == 'blocksize': if f < 0: raise ValueError('blocksize values must be non-negative integers') elif field == 'signame': if re.search('\s', f): raise ValueError('signame strings may not contain whitespaces.') if len(set(self.signame)) != len(self.signame): raise ValueError('signame strings must be unique.') # Segment specification fields elif field == 'segname': # Segment names must be alphanumerics or just a single '~' for f in self.segname: if f == '~': continue acceptedstring = re.match('[-\w]+',f) if not acceptedstring or acceptedstring.string != f: raise ValueError("Non-null segment names may only contain alphanumerics and dashes. Null segment names must be set to '~'") elif field == 'seglen': # For records with more than 1 segment, the first segment may be # the layout specification segment with a length of 0 if len(self.seglen)>1: if self.seglen[0] < 0: raise ValueError('seglen values must be positive integers. Only seglen[0] may be 0 to indicate a layout segment') sl = self.seglen[1:] else: sl = self.seglen for f in sl: if f < 1: raise ValueError('seglen values must be positive integers. Only seglen[0] may be 0 to indicate a layout segment') # Comment field elif field == 'comments': for f in self.comments: if f=='': # Allow empty string comment lines continue if f[0] == '#': print("Note: comment strings do not need to begin with '#'. This library adds them automatically.") if re.search('[\t\n\r\f\v]', f): raise ValueError('comments may not contain tabs or newlines (they may contain spaces and underscores).') # Check the data type of the specified field. # ch is used for signal spec fields # Some fields are lists. This must be checked, along with their elements. def checkfieldtype(self, field, ch=None): item = getattr(self, field) # Record specification field. Nonlist. if field in _headers.recfieldspecs: checkitemtype(item, field, _headers.recfieldspecs[field].allowedtypes) # Signal specification field. List. elif field in _headers.sigfieldspecs: checkitemtype(item, field, _headers.sigfieldspecs[field].allowedtypes, ch) # Segment specification field. List. All elements cannot be None elif field in _headers.segfieldspecs: checkitemtype(item, field, _headers.segfieldspecs[field].allowedtypes, 'all') # Comments field. List. Elements cannot be None elif field == 'comments': checkitemtype(item, field, (str), 'all') # Signals field. elif field in ['p_signals','d_signals']: checkitemtype(item, field, (np.ndarray)) elif field in ['e_p_signals', 'e_d_signals']: checkitemtype(item, field, (np.ndarray), 'all') # Segments field. List. Elements may be None. elif field == 'segments': checkitemtype(item, field, (Record), 'none') # Ensure that input read parameters are valid for the record def checkreadinputs(self, sampfrom, sampto, channels, physical, m2s, smoothframes, returnres): # Data Type Check if not hasattr(sampfrom, '__index__'): raise TypeError('sampfrom must be an integer') if not hasattr(sampto, '__index__'): raise TypeError('sampto must be an integer') if not isinstance(channels, list): raise TypeError('channels must be a list of integers') # Duration Ranges if sampfrom<0: raise ValueError('sampfrom must be a non-negative integer') if sampfrom>self.siglen: raise ValueError('sampfrom must be shorter than the signal length') if sampto<0: raise ValueError('sampto must be a non-negative integer') if sampto>self.siglen: raise ValueError('sampto must be shorter than the signal length') if sampto<=sampfrom: raise ValueError('sampto must be greater than sampfrom') # Channel Ranges for c in channels: if c<0: raise ValueError('Input channels must all be non-negative integers') if c>self.nsig-1: raise ValueError('Input channels must all be lower than the total number of channels') if returnres not in [64, 32, 16, 8]: raise ValueError("returnres must be one of the following: 64, 32, 16, 8") if physical is True and returnres == 8: raise ValueError("returnres must be one of the following when physical is True: 64, 32, 16") # Cannot expand multiple samples/frame for multi-segment records if isinstance(self, MultiRecord): # If m2s == True, Physical must be true. There is no # meaningful representation of digital signals transferred # from individual segments. if m2s is True and physical is not True: raise Exception('If m2s is True, physical must also be True.') if smoothframes is False: raise ValueError('This package version cannot expand all samples when reading multi-segment records. Must enable frame smoothing.') # Check the item type. Vary the print message regarding whether the item can be None. # Helper to checkfieldtype # channels is a list of booleans indicating whether the field's channel must be present (1) or may be None (0) # and is not just for signal specification fields def checkitemtype(item, field, allowedtypes, channels=None): # Checking the list if channels is not None: # First make sure the item is a list if not isinstance(item, list): raise TypeError("Field: '"+field+"' must be a list") # Expand to make sure all channels must have present field if channels == 'all': channels = [1]*len(item) # Expand to allow any channel to be None if channels == 'none': channels = [0]*len(item) for ch in range(0, len(channels)): mustexist=channels[ch] # The field must exist for the channel if mustexist: if not isinstance(item[ch], allowedtypes): raise TypeError("Channel "+str(ch)+" of field: '"+field+"' must be one of the following types:", allowedtypes) # The field may be None for the channel else: if not isinstance(item[ch], allowedtypes) and item[ch] is not None: raise TypeError("Channel "+str(ch)+" of field: '"+field+"' must be a 'None', or one of the following types:", allowedtypes) # Single scalar to check else: if not isinstance(item, allowedtypes): raise TypeError("Field: '"+field+"' must be one of the following types:", allowedtypes) class Record(BaseRecord, _headers.HeadersMixin, _signals.SignalsMixin): """ The class representing WFDB headers, and single segment WFDB records. Record objects can be created using the constructor, by reading a WFDB header with 'rdheader', or a WFDB record (header and associated dat files) with rdsamp' or 'srdsamp'. The attributes of the Record object give information about the record as specified by https://www.physionet.org/physiotools/wag/header-5.htm In addition, the d_signals and p_signals attributes store the digital and physical signals of WFDB records with at least one channel. Contructor function: def __init__(self, p_signals=None, d_signals=None, recordname=None, nsig=None, fs=None, counterfreq=None, basecounter=None, siglen=None, basetime=None, basedate=None, filename=None, fmt=None, sampsperframe=None, skew=None, byteoffset=None, adcgain=None, baseline=None, units=None, adcres=None, adczero=None, initvalue=None, checksum=None, blocksize=None, signame=None, comments=None) Example Usage: import wfdb record = wfdb.Record(recordname='r1', fs=250, nsig=2, siglen=1000, filename=['r1.dat','r1.dat']) """ # Constructor def __init__(self, p_signals=None, d_signals=None, e_p_signals=None, e_d_signals=None, recordname=None, nsig=None, fs=None, counterfreq=None, basecounter=None, siglen=None, basetime=None, basedate=None, filename=None, fmt=None, sampsperframe=None, skew=None, byteoffset=None, adcgain=None, baseline=None, units=None, adcres=None, adczero=None, initvalue=None, checksum=None, blocksize=None, signame=None, comments=None): # Note the lack of 'nseg' field. Single segment records cannot have this field. Even nseg = 1 makes # the header a multi-segment header. super(Record, self).__init__(recordname, nsig, fs, counterfreq, basecounter, siglen, basetime, basedate, comments, signame) self.p_signals = p_signals self.d_signals = d_signals self.e_p_signals = e_p_signals self.e_d_signals = e_d_signals self.filename=filename self.fmt=fmt self.sampsperframe=sampsperframe self.skew=skew self.byteoffset=byteoffset self.adcgain=adcgain self.baseline=baseline self.units=units self.adcres=adcres self.adczero=adczero self.initvalue=initvalue self.checksum=checksum self.blocksize=blocksize # Equal comparison operator for objects of this type def __eq__(self, other): att1 = self.__dict__ att2 = other.__dict__ if set(att1.keys()) != set(att2.keys()): return False for k in att1.keys(): v1 = att1[k] v2 = att2[k] if type(v1) != type(v2): return False if type(v1) == np.ndarray: if not np.array_equal(v1, v2): return False else: if v1 != v2: return False return True # Write a wfdb header file and associated dat files if any. # Uses d_signals (expanded=False) or e_d_signals to write the samples def wrsamp(self, expanded=False): # Perform field validity and cohesion checks, and write the header file. self.wrheader() if self.nsig>0: # Perform signal validity and cohesion checks, and write the associated dat files. self.wrdats(expanded) # Arrange/edit object fields to reflect user channel and/or signal range input # Account for case when signals are expanded def arrangefields(self, channels, expanded=False): # Rearrange signal specification fields for field in _headers.sigfieldspecs: item = getattr(self, field) setattr(self, field, [item[c] for c in channels]) # Expanded signals - multiple samples per frame. if expanded: # Checksum and initvalue to be updated if present # unless the whole signal length was input if self.siglen != int(len(self.e_d_signals[0])/self.sampsperframe[0]): self.checksum = self.calc_checksum(expanded) self.initvalue = [s[0] for s in self.e_d_signals] self.nsig = len(channels) self.siglen = int(len(self.e_d_signals[0])/self.sampsperframe[0]) # MxN numpy array d_signals else: # Checksum and initvalue to be updated if present # unless the whole signal length was input if self.siglen != self.d_signals.shape[0]: if self.checksum is not None: self.checksum = self.calc_checksum() if self.initvalue is not None: ival = list(self.d_signals[0, :]) self.initvalue = [int(i) for i in ival] # Update record specification parameters # Important that these get updated after^^ self.nsig = len(channels) self.siglen = self.d_signals.shape[0] # Class for multi segment WFDB records. class MultiRecord(BaseRecord, _headers.MultiHeadersMixin): """ The class representing multi-segment WFDB records. MultiRecord objects can be created using the constructor, or by reading a multi-segment WFDB record using 'rdsamp' with the 'm2s' (multi to single) input parameter set to False. The attributes of the MultiRecord object give information about the entire record as specified by https://www.physionet.org/physiotools/wag/header-5.htm In addition, the 'segments' parameter is a list of Record objects representing each individual segment, or 'None' representing empty segments, of the entire multi-segment record. Noteably, this class has no attribute representing the signals as a whole. The 'multi_to_single' instance method can be called on MultiRecord objects to return a single segment representation of the record as a Record object. The resulting Record object will have its 'p_signals' field set. Contructor function: def __init__(self, segments=None, layout=None, recordname=None, nsig=None, fs=None, counterfreq=None, basecounter=None, siglen=None, basetime=None, basedate=None, segname=None, seglen=None, comments=None, signame=None, sigsegments=None) Example Usage: import wfdb recordM = wfdb.MultiRecord(recordname='rm', fs=50, nsig=8, siglen=9999, segname=['rm_1', '~', rm_2'], seglen=[800, 200, 900]) recordL = wfdb.rdsamp('s00001-2896-10-10-00-31', m2s = False) recordL = recordL.multi_to_single() """ # Constructor def __init__(self, segments=None, layout=None, recordname=None, nsig=None, fs=None, counterfreq=None, basecounter=None, siglen=None, basetime=None, basedate=None, segname=None, seglen=None, comments=None, signame=None, sigsegments=None): super(MultiRecord, self).__init__(recordname, nsig, fs, counterfreq, basecounter, siglen, basetime, basedate, comments, signame) self.layout = layout self.segments = segments self.segname = segname self.seglen = seglen self.sigsegments=sigsegments # Write a multi-segment header, along with headers and dat files for all segments def wrsamp(self): # Perform field validity and cohesion checks, and write the header file. self.wrheader() # Perform record validity and cohesion checks, and write the associated segments. for seg in self.segments: seg.wrsamp() # Check the cohesion of the segments field with other fields used to write the record def checksegmentcohesion(self): # Check that nseg is equal to the length of the segments field if self.nseg != len(self.segments): raise ValueError("Length of segments must match the 'nseg' field") for i in range(0, nseg): s = self.segments[i] # If segment 0 is a layout specification record, check that its file names are all == '~'' if i==0 and self.seglen[0] == 0: for filename in s.filename: if filename != '~': raise ValueError("Layout specification records must have all filenames named '~'") # Check that sampling frequencies all match the one in the master header if s.fs != self.fs: raise ValueError("The 'fs' in each segment must match the overall record's 'fs'") # Check the signal length of the segment against the corresponding seglen field if s.siglen != self.seglen[i]: raise ValueError('The signal length of segment '+str(i)+' does not match the corresponding segment length') totalsiglen = totalsiglen + getattr(s, 'siglen') # No need to check the sum of siglens from each segment object against siglen # Already effectively done it when checking sum(seglen) against siglen # Determine the segments and the samples # within each segment that have to be read in a # multi-segment record. Called during rdsamp. def requiredsegments(self, sampfrom, sampto, channels): # The starting segment with actual samples if self.layout == 'Fixed': startseg = 0 else: startseg = 1 # Cumulative sum of segment lengths (ignoring layout segment) cumsumlengths = list(np.cumsum(self.seglen[startseg:])) # Get first segment readsegs = [[sampfrom < cs for cs in cumsumlengths].index(True)] # Get final segment if sampto == cumsumlengths[len(cumsumlengths) - 1]: readsegs.append(len(cumsumlengths) - 1) else: readsegs.append([sampto <= cs for cs in cumsumlengths].index(True)) # Add 1 for variable layout records readsegs = list(np.add(readsegs,startseg)) # Obtain the sampfrom and sampto to read for each segment if readsegs[1] == readsegs[0]: # Only one segment to read readsegs = [readsegs[0]] # The segment's first sample number relative to the entire record segstartsamp = sum(self.seglen[0:readsegs[0]]) readsamps = [[sampfrom-segstartsamp, sampto-segstartsamp]] else: # More than one segment to read readsegs = list(range(readsegs[0], readsegs[1]+1)) readsamps = [[0, self.seglen[s]] for s in readsegs] # Starting sample for first segment. readsamps[0][0] = sampfrom - ([0] + cumsumlengths)[readsegs[0]-startseg] # End sample for last segment readsamps[-1][1] = sampto - ([0] + cumsumlengths)[readsegs[-1]-startseg] return (readsegs, readsamps) # Get the channel numbers to be read from each segment def requiredsignals(self, readsegs, channels, dirname, pbdir): # Fixed layout. All channels are the same. if self.layout == 'Fixed': # Should we bother here with skipping empty segments? # They won't be read anyway. readsigs = [channels]*len(readsegs) # Variable layout: figure out channels by matching record names else: readsigs = [] # The overall layout signal names l_signames = self.segments[0].signame # The wanted signals w_signames = [l_signames[c] for c in channels] # For each segment ... for i in range(0, len(readsegs)): # Skip empty segments if self.segname[readsegs[i]] == '~': readsigs.append(None) else: # Get the signal names of the current segment s_signames = rdheader(os.path.join(dirname, self.segname[readsegs[i]]), pbdir = pbdir).signame readsigs.append(wanted_siginds(w_signames, s_signames)) return readsigs # Arrange/edit object fields to reflect user channel and/or signal range input def arrangefields(self, readsegs, segranges, channels): # Update seglen values for relevant segments for i in range(0, len(readsegs)): self.seglen[readsegs[i]] = segranges[i][1] - segranges[i][0] # Update record specification parameters self.nsig = len(channels) self.siglen = sum([sr[1]-sr[0] for sr in segranges]) # Get rid of the segments and segment line parameters # outside the desired segment range if self.layout == 'Fixed': self.segments = self.segments[readsegs[0]:readsegs[-1]+1] self.segname = self.segname[readsegs[0]:readsegs[-1]+1] self.seglen = self.seglen[readsegs[0]:readsegs[-1]+1] else: # Keep the layout specifier segment self.segments = [self.segments[0]] + self.segments[readsegs[0]:readsegs[-1]+1] self.segname = [self.segname[0]] + self.segname[readsegs[0]:readsegs[-1]+1] self.seglen = [self.seglen[0]] + self.seglen[readsegs[0]:readsegs[-1]+1] # Update number of segments self.nseg = len(self.segments) # Convert a MultiRecord object to a Record object def multi_to_single(self, returnres): # The fields to transfer to the new object fields = self.__dict__.copy() # Remove multirecord fields del(fields['segments']) del(fields['segname']) del(fields['seglen']) del(fields['nseg']) # The output physical signals if returnres == 64: floatdtype = 'float64' elif returnres == 32: floatdtype = 'float32' else: floatdtype = 'float16' p_signals = np.zeros([self.siglen, self.nsig], dtype=floatdtype) # Get the physical samples from each segment # Start and end samples in the overall array # to place the segment samples into startsamps = [0] + list(np.cumsum(self.seglen)[0:-1]) endsamps = list(np.cumsum(self.seglen)) if self.layout == 'Fixed': # Get the signal names and units from the first segment fields['signame'] = self.segments[0].signame fields['units'] = self.segments[0].units for i in range(self.nseg): p_signals[startsamps[i]:endsamps[i],:] = self.segments[i].p_signals # For variable layout, have to get channels by name else: # Get the signal names from the layout segment fields['signame'] = self.segments[0].signame fields['units'] = self.segments[0].units for i in range(1, self.nseg): seg = self.segments[i] # Empty segment if seg is None: p_signals[startsamps[i]:endsamps[i],:] = np.nan # Non-empty segment else: # Figure out if there are any channels wanted and # the output channels they are to be stored in inchannels = [] outchannels = [] for s in fields['signame']: if s in seg.signame: inchannels.append(seg.signame.index(s)) outchannels.append(fields['signame'].index(s)) # Segment contains no wanted channels. Fill with nans. if inchannels == []: p_signals[startsamps[i]:endsamps[i],:] = np.nan # Segment contains wanted channel(s). Transfer samples. else: # This statement is necessary in case this function is not called # directly from rdsamp with m2s=True. if not hasattr(seg, 'p_signals'): seg.p_signals = seg.dac(returnres=returnres) for ch in range(0, fields['nsig']): if ch not in outchannels: p_signals[startsamps[i]:endsamps[i],ch] = np.nan else: p_signals[startsamps[i]:endsamps[i],ch] = seg.p_signals[:, inchannels[outchannels.index(ch)]] # Create the single segment Record object and set attributes record = Record() for field in fields: setattr(record, field, fields[field]) record.p_signals = p_signals return record #------------------- Reading Records -------------------# # Read a WFDB single or multi segment record. Return a Record or MultiRecord object def rdsamp(recordname, sampfrom=0, sampto=None, channels = None, physical = True, pbdir = None, m2s = True, smoothframes = True, ignoreskew=False, returnres=64): """Read a WFDB record and return the signal and record descriptors as attributes in a Record or MultiRecord object. Usage: record = rdsamp(recordname, sampfrom=0, sampto=None, channels=None, physical=True, pbdir = None, m2s=True, smoothframes = True, ignoreskew=False) Input arguments: - recordname (required): The name of the WFDB record to be read (without any file extensions). If the argument contains any path delimiter characters, the argument will be interpreted as PATH/baserecord and the data files will be searched for in the local path. - sampfrom (default=0): The starting sample number to read for each channel. - sampto (default=None): The sample number at which to stop reading for each channel. - channels (default=all): Indices specifying the channel to be returned. - physical (default=True): Flag that specifies whether to return signals in physical units in the p_signals field (True), or digital units in the d_signals field (False). - pbdir (default=None): Option used to stream data from Physiobank. The Physiobank database directory from which to find the required record files. eg. For record '100' in 'http://physionet.org/physiobank/database/mitdb', pbdir = 'mitdb'. - m2s (default=True): Flag used when reading multi-segment records. Specifies whether to directly return a wfdb MultiRecord object (False), or to convert it into and return a wfdb Record object (True). - smoothframes (default=True): Flag used when reading records with signals having multiple samples per frame. Specifies whether to smooth the samples in signals with more than one sample per frame and return an mxn uniform numpy array as the d_signals or p_signals field (True), or to return a list of 1d numpy arrays containing every expanded sample as the e_d_signals or e_p_signals field (False). - ignoreskew (default=False): Flag used when reading records with at least one skewed signal. Specifies whether to apply the skew to align the signals in the output variable (False), or to ignore the skew field and load in all values contained in the dat files unaligned (True). - returnres (default=64): The numpy array dtype of the returned signals. Options are: 64, 32, 16, and 8, where the value represents the numpy int or float dtype. Note that the value cannot be 8 when physical is True since there is no float8 format. Output argument: - record: The wfdb Record or MultiRecord object representing the contents of the record read. Note: If a signal range or channel selection is specified when calling this function, the the resulting attributes of the returned object will be set to reflect the section of the record that is actually read, rather than necessarily what is in the header file. For example, if channels = [0, 1, 2] is specified when reading a 12 channel record, the 'nsig' attribute will be 3, not 12. Note: The 'srdsamp' function exists as a simple alternative to 'rdsamp' for the most common purpose of extracting the physical signals and a few important descriptor fields. 'srdsamp' returns two arguments: the physical signals array, and a dictionary of a few select fields, a subset of the original wfdb Record attributes. Example Usage: import wfdb ecgrecord = wfdb.rdsamp('sampledata/test01_00s', sampfrom=800, channels = [1,3]) """ dirname, baserecordname = os.path.split(recordname) # Read the header fields into the appropriate record object record = rdheader(recordname, pbdir = pbdir, rdsegments = False) # Set defaults for sampto and channels input variables if sampto is None: sampto = record.siglen if channels is None: channels = list(range(record.nsig)) # Ensure that input fields are valid for the record record.checkreadinputs(sampfrom, sampto, channels, physical, m2s, smoothframes, returnres) # A single segment record if isinstance(record, Record): # Only 1 sample/frame, or frames are smoothed. Return uniform numpy array if smoothframes or max([record.sampsperframe[c] for c in channels])==1: # Read signals from the associated dat files that contain wanted channels record.d_signals = _signals.rdsegment(record.filename, dirname, pbdir, record.nsig, record.fmt, record.siglen, record.byteoffset, record.sampsperframe, record.skew, sampfrom, sampto, channels, smoothframes, ignoreskew) # Arrange/edit the object fields to reflect user channel and/or signal range input record.arrangefields(channels, expanded=False) if physical is True: # Perform inplace dac to get physical signal record.dac(expanded=False, returnres=returnres, inplace=True) # Return each sample of the signals with multiple samples per frame else: record.e_d_signals = _signals.rdsegment(record.filename, dirname, pbdir, record.nsig, record.fmt, record.siglen, record.byteoffset, record.sampsperframe, record.skew, sampfrom, sampto, channels, smoothframes, ignoreskew) # Arrange/edit the object fields to reflect user channel and/or signal range input record.arrangefields(channels, expanded=True) if physical is True: # Perform dac to get physical signal record.dac(expanded=True, returnres=returnres, inplace=True) # A multi segment record # We can make another rdsamp function (called rdsamp_segment) to call # for individual segments to deal with the skews. else: # Strategy: # 1. Read the required segments and store them in # Record objects. # 2. Update the parameters of the objects to reflect # the state of the sections read. # 3. Update the parameters of the overall MultiRecord # object to reflect the state of the individual segments. # 4. If specified, convert the MultiRecord object # into a single Record object. # Segments field is a list of Record objects # Empty segments store None. record.segments = [None]*record.nseg # Variable layout if record.seglen[0] == 0: record.layout = 'Variable' # Read the layout specification header record.segments[0] = rdheader(os.path.join(dirname, record.segname[0]), pbdir=pbdir) # Fixed layout else: record.layout = 'Fixed' # The segment numbers and samples within each segment to read. readsegs, segranges = record.requiredsegments(sampfrom, sampto, channels) # The signals within each segment to read segsigs = record.requiredsignals(readsegs, channels, dirname, pbdir) # Read the desired samples in the relevant segments for i in range(len(readsegs)): segnum = readsegs[i] # Empty segment or segment with no relevant channels if record.segname[segnum] == '~' or segsigs[i] is None: record.segments[segnum] = None else: record.segments[segnum] = rdsamp(os.path.join(dirname, record.segname[segnum]), sampfrom = segranges[i][0], sampto = segranges[i][1], channels = segsigs[i], physical = True, pbdir=pbdir) # Arrange the fields of the overall object to reflect user input record.arrangefields(readsegs, segranges, channels) # Convert object into a single segment Record object if m2s: record = record.multi_to_single(returnres=returnres) # Perform dtype conversion if necessary if isinstance(record, Record) and record.nsig>0: record.convert_dtype(physical, returnres, smoothframes) return record # Read a WFDB header. Return a Record object or MultiRecord object def rdheader(recordname, pbdir = None, rdsegments = False): """Read a WFDB header file and return the record descriptors as attributes in a Record object Usage: record = rdheader(recordname, pbdir = None, rdsegments = False) Input arguments: - recordname (required): The name of the WFDB record to be read (without any file extensions). If the argument contains any path delimiter characters, the argument will be interpreted as PATH/baserecord and the header file will be searched for in the local path. - pbdir (default=None): Option used to stream data from Physiobank. The Physiobank database directory from which to find the required record files. eg. For record '100' in 'http://physionet.org/physiobank/database/mitdb', pbdir = 'mitdb'. - rdsegments (default=False): Boolean flag used when reading multi-segment headers. If True, segment headers will also be read (into the record object's 'segments' field). Output argument: - record: The wfdb Record or MultiRecord object representing the contents of the header read. Example Usage: import wfdb ecgrecord = wfdb.rdheader('sampledata/test01_00s', sampfrom=800, channels = [1,3]) """ # Read the header file. Separate comment and non-comment lines headerlines, commentlines = _headers.getheaderlines(recordname, pbdir) # Get fields from record line d_rec = _headers.read_rec_line(headerlines[0]) # Processing according to whether the header is single or multi segment # Single segment header - Process signal specification lines if d_rec['nseg'] is None: # Create a single-segment WFDB record object record = Record() # There is at least one channel if len(headerlines)>1: # Read the fields from the signal lines d_sig = _headers.read_sig_lines(headerlines[1:]) # Set the object's signal line fields for field in _headers.sigfieldspecs: setattr(record, field, d_sig[field]) # Set the object's record line fields for field in _headers.recfieldspecs: if field == 'nseg': continue setattr(record, field, d_rec[field]) # Multi segment header - Process segment specification lines else: # Create a multi-segment WFDB record object record = MultiRecord() # Read the fields from the segment lines d_seg = _headers.read_seg_lines(headerlines[1:]) # Set the object's segment line fields for field in _headers.segfieldspecs: setattr(record, field, d_seg[field]) # Set the objects' record line fields for field in _headers.recfieldspecs: setattr(record, field, d_rec[field]) # Determine whether the record is fixed or variable if record.seglen[0] == 0: record.layout = 'Variable' else: record.layout = 'Fixed' # If specified, read the segment headers if rdsegments: record.segments = [] # Get the base record name (could be empty) dirname = os.path.split(recordname)[0] for s in record.segname: if s == '~': record.segments.append(None) else: record.segments.append(rdheader(os.path.join(dirname,s), pbdir)) # Fill in the signame attribute record.signame = record.getsignames() # Fill in the sigsegments attribute record.sigsegments = record.getsigsegments() # Set the comments field record.comments = [] for line in commentlines: record.comments.append(line.strip(' \t#')) return record # Given some wanted signal names, and the signal names contained # in a record, return the indices of the record channels that intersect. # Remember that the wanted signal names are already in order specified in user input channels. So it's good! def wanted_siginds(wanted_signames, record_signames): contained_signals = [s for s in wanted_signames if s in record_signames] if contained_signals == []: return None else: return [record_signames.index(s) for s in contained_signals] # A simple version of rdsamp for ease of use # Return the physical signals and a few essential fields def srdsamp(recordname, sampfrom=0, sampto=None, channels = None, pbdir = None): """Read a WFDB record and return the physical signal and a few important descriptor fields Usage: signals, fields = srdsamp(recordname, sampfrom=0, sampto=None, channels=None, pbdir=None) Input arguments: - recordname (required): The name of the WFDB record to be read (without any file extensions). If the argument contains any path delimiter characters, the argument will be interpreted as PATH/baserecord and the data files will be searched for in the local path. - sampfrom (default=0): The starting sample number to read for each channel. - sampto (default=None): The sample number at which to stop reading for each channel. - channels (default=all): Indices specifying the channel to be returned. Output arguments: - signals: A 2d numpy array storing the physical signals from the record. - fields: A dictionary specifying several key attributes of the read record: - fs: The sampling frequency of the record - units: The units for each channel - signame: The signal name for each channel - comments: Any comments written in the header Note: If a signal range or channel selection is specified when calling this function, the the resulting attributes of the returned object will be set to reflect the section of the record that is actually read, rather than necessarily what is in the header file. For example, if channels = [0, 1, 2] is specified when reading a 12 channel record, the 'nsig' attribute will be 3, not 12. Note: The 'rdsamp' function is the base function upon which this one is built. It returns all attributes present, along with the signals, as attributes in a wfdb.Record object. The function, along with the returned data type, have more options than 'srdsamp' for users who wish to more directly manipulate WFDB files. Example Usage: import wfdb sig, fields = wfdb.srdsamp('sampledata/test01_00s', sampfrom=800, channels = [1,3]) """ record = rdsamp(recordname, sampfrom, sampto, channels, True, pbdir, True) signals = record.p_signals fields = {} for field in ['fs','units','signame', 'comments']: fields[field] = getattr(record, field) return signals, fields #------------------- /Reading Records -------------------# # Function for writing single segment records def wrsamp(recordname, fs, units, signames, p_signals=None, d_signals=None, fmt=None, gain=None, baseline=None, comments=None, basetime=None, basedate=None): """Write a single segment WFDB record, creating a WFDB header file and any associated dat files. Usage: wrsamp(recordname, fs, units, signames, p_signals = None, d_signals=None, fmt = None, gain = None, baseline = None, comments = None) Input arguments: - recordname (required): The string name of the WFDB record to be written (without any file extensions). - fs (required): The numerical sampling frequency of the record. - units (required): A list of strings giving the units of each signal channel. - signames (required): A list of strings giving the signal name of each signal channel. - p_signals (default=None): An MxN 2d numpy array, where M is the signal length. Gives the physical signal values intended to be written. Either p_signals or d_signals must be set, but not both. If p_signals is set, this method will use it to perform analogue-digital conversion, writing the resultant digital values to the dat file(s). If fmt is set, gain and baseline must be set or unset together. If fmt is unset, gain and baseline must both be unset. - d_signals (default=None): An MxN 2d numpy array, where M is the signal length. Gives the digital signal values intended to be directly written to the dat file(s). The dtype must be an integer type. Either p_signals or d_signals must be set, but not both. In addition, if d_signals is set, fmt, gain and baseline must also all be set. - fmt (default=None): A list of strings giving the WFDB format of each file used to store each channel. Accepted formats are: "80","212","16","24", and "32". There are other WFDB formats but this library will not write (though it will read) those file types. - gain (default=None): A list of integers specifying the ADC gain. - baseline (default=None): A list of integers specifying the digital baseline. - comments (default=None): A list of string comments to be written to the header file. - basetime (default=None): A string of the record's start time in 24h HH:MM:SS(.ms) format. - basedate (default=None): A string of the record's start date in DD/MM/YYYY format. Note: This gateway function was written to enable a simple way to write WFDB record files using the most frequently used parameters. Therefore not all WFDB fields can be set via this function. For more control over attributes, create a wfdb.Record object, manually set its attributes, and call its wrsamp() instance method. If you choose this more advanced method, see also the setdefaults, set_d_features, and set_p_features instance methods to help populate attributes. Example Usage (with the most common scenario of input parameters): import wfdb # Read part of a record from Physiobank sig, fields = wfdb.srdsamp('a103l', sampfrom = 50000, channels = [0,1], pbdir = 'challenge/2015/training') # Write a local WFDB record (manually inserting fields) wfdb.wrsamp('ecgrecord', fs = 250, units = ['mV', 'mV'], signames = ['I', 'II'], p_signals = sig, fmt = ['16', '16']) """ # Check input field combinations if p_signals is not None and d_signals is not None: raise Exception('Must only give one of the inputs: p_signals or d_signals') if d_signals is not None: if fmt is None or gain is None or baseline is None: raise Exception("When using d_signals, must also specify 'fmt', 'gain', and 'baseline' fields.") # Depending on whether d_signals or p_signals was used, set other required features. if p_signals is not None: # Create the Record object record = Record(recordname=recordname, p_signals=p_signals, fs=fs, fmt=fmt, units=units, signame=signames, adcgain = gain, baseline=baseline, comments=comments, basetime=basetime, basedate=basedate) # Compute optimal fields to store the digital signal, carry out adc, and set the fields. record.set_d_features(do_adc = 1) else: # Create the Record object record = Record(recordname=recordname, d_signals=d_signals, fs=fs, fmt=fmt, units=units, signame = signames, adcgain = gain, baseline=baseline, comments=comments, basetime=basetime, basedate=basedate) # Use d_signals to set the fields directly record.set_d_features() # Set default values of any missing field dependencies record.setdefaults() # Write the record files - header and associated dat record.wrsamp() # Time string parser for WFDB header - H(H):M(M):S(S(.sss)) format. def parsetimestring(timestring): times = re.findall("(?P<hours>\d{1,2}):(?P<minutes>\d{1,2}):(?P<seconds>\d{1,2}[.\d+]*)", timestring) if not times: raise ValueError("Invalid time string: "+timestring+". Acceptable format is: 'Hours:Minutes:Seconds'") else: hours, minutes, seconds = times[0] if not hours or not minutes or not seconds: raise ValueError("Invalid time string: "+timestring+". Acceptable format is: 'Hours:Minutes:Seconds'") hours = int(hours) minutes = int(minutes) seconds = float(seconds) if int(hours) >23: raise ValueError('hours must be < 24') elif hours<0: raise ValueError('hours must be positive') if minutes>59: raise ValueError('minutes must be < 60') elif minutes<0: raise ValueError('minutes must be positive') if seconds>59: raise ValueError('seconds must be < 60') elif seconds<0: raise ValueError('seconds must be positive') return (hours, minutes, seconds) # Date string parser for WFDB header - DD/MM/YYYY def parsedatestring(datestring): dates = re.findall(r"(?P<day>\d{2})/(?P<month>\d{2})/(?P<year>\d{4})", datestring) if not dates: raise ValueError("Invalid date string. Acceptable format is: 'DD/MM/YYYY'") else: day, month, year = dates[0] day = int(day) month = int(month) year = int(year) if year<1: raise ValueError('year must be positive') if month<1 or month>12: raise ValueError('month must be between 1 and 12') if day not in range(1, monthrange(year, month)[1]+1): raise ValueError('day does not exist for specified year and month') return (day, month, year) # Returns the unique elements in a list in the order that they appear. # Also returns the indices of the original list that correspond to each output element. def orderedsetlist(fulllist): uniquelist = [] original_inds = {} for i in range(0, len(fulllist)): item = fulllist[i] # new item if item not in uniquelist: uniquelist.append(item) original_inds[item] = [i] # previously seen item else: original_inds[item].append(i) return uniquelist, original_inds # Returns elements in a list without consecutive repeated values. def orderednoconseclist(fulllist): noconseclist = [fulllist[0]] if len(fulllist) == 1: return noconseclist for i in fulllist: if i!= noconseclist[-1]: noconseclist.append(i) return noconseclist # *These downloading files gateway function rely on the Record/MultiRecord objects. # They are placed here rather than in downloads.py in order to avoid circular imports # Download WFDB files from a physiobank database # This function only targets databases with WFDB records (EDF and MIT format). # If the database doesn't have a 'RECORDS" file, it will fail. def dldatabase(pbdb, dlbasedir, records = 'all', annotators = 'all' , keepsubdirs = True, overwrite = False): """Download WFDB record (and optionally annotation) files from a Physiobank database. The database must contain a 'RECORDS' file in its base directory which lists its WFDB records. Usage: dldatabase(pbdb, dlbasedir, records = 'all', annotators = 'all' , keepsubdirs = True, overwrite = False) Input arguments: - pbdb (required): The Physiobank database directory to download. eg. For database 'http://physionet.org/physiobank/database/mitdb', pbdb = 'mitdb'. - dlbasedir (required): The full local directory path in which to download the files. - records (default='all'): Specifier of the WFDB records to download. Is either a list of strings which each specify a record, or 'all' to download all records listed in the database's RECORDS file. eg. records = ['test01_00s', test02_45s] for database https://physionet.org/physiobank/database/macecgdb/ - annotators (default='all'): Specifier of the WFDB annotation file types to download along with the record files. Is either None to skip downloading any annotations, 'all' to download all annotation types as specified by the ANNOTATORS file, or a list of strings which each specify an annotation extension. eg. annotators = ['anI'] for database https://physionet.org/physiobank/database/prcp/ - keepsubdirs (default=True): Whether to keep the relative subdirectories of downloaded files as they are organized in Physiobank (True), or to download all files into the same base directory (False). - overwrite (default=False): If set to True, all files will be redownloaded regardless. If set to False, existing files with the same name and relative subdirectory will be checked. If the local file is the same size as the online file, the download is skipped. If the local file is larger, it will be deleted and the file will be redownloaded. If the local file is smaller, the file will be assumed to be partially downloaded and the remaining bytes will be downloaded and appended. Example Usage: import wfdb wfdb.dldatabase('ahadb', os.getcwd()) """ # Full url physiobank database dburl = posixpath.join(downloads.dbindexurl, pbdb) # Check if the database is valid r = requests.get(dburl) r.raise_for_status() # Get the list of records recordlist = downloads.getrecordlist(dburl, records) # Get the annotator extensions annotators = downloads.getannotators(dburl, annotators) # All files to download (relative to the database's home directory) allfiles = [] for rec in recordlist: # Check out whether each record is in MIT or EDF format if rec.endswith('.edf'): allfiles.append(rec) else: # If MIT format, have to figure out all associated files allfiles.append(rec+'.hea') dirname, baserecname = os.path.split(rec) record = rdheader(baserecname, pbdir = posixpath.join(pbdb, dirname)) # Single segment record if isinstance(record, Record): # Add all dat files of the segment for file in record.filename: allfiles.append(posixpath.join(dirname, file)) # Multi segment record else: for seg in record.segname: # Skip empty segments if seg == '~': continue # Add the header allfiles.append(posixpath.join(dirname, seg+'.hea')) # Layout specifier has no dat files if seg.endswith('_layout'): continue # Add all dat files of the segment recseg = rdheader(seg, pbdir = posixpath.join(pbdb, dirname)) for file in recseg.filename: allfiles.append(posixpath.join(dirname, file)) # check whether the record has any requested annotation files if annotators is not None: for a in annotators: annfile = rec+'.'+a url = posixpath.join(downloads.dbindexurl, pbdb, annfile) rh = requests.head(url) if rh.status_code != 404: allfiles.append(annfile) dlinputs = [(os.path.split(file)[1], os.path.split(file)[0], pbdb, dlbasedir, keepsubdirs, overwrite) for file in allfiles] # Make any required local directories downloads.makelocaldirs(dlbasedir, dlinputs, keepsubdirs) print('Downloading files...') # Create multiple processes to download files. # Limit to 2 connections to avoid overloading the server pool = multiprocessing.Pool(processes=2) pool.map(downloads.dlpbfile, dlinputs) print('Finished downloading files') return # Download specific files from a physiobank database def dldatabasefiles(pbdb, dlbasedir, files, keepsubdirs = True, overwrite = False): """Download specified files from a Physiobank database. Usage: dldatabasefiles(pbdb, dlbasedir, files, keepsubdirs = True, overwrite = False): Input arguments: - pbdb (required): The Physiobank database directory to download. eg. For database 'http://physionet.org/physiobank/database/mitdb', pbdb = 'mitdb'. - dlbasedir (required): The full local directory path in which to download the files. - files (required): A list of strings specifying the file names to download relative to the database base directory - keepsubdirs (default=True): Whether to keep the relative subdirectories of downloaded files as they are organized in Physiobank (True), or to download all files into the same base directory (False). - overwrite (default=False): If set to True, all files will be redownloaded regardless. If set to False, existing files with the same name and relative subdirectory will be checked. If the local file is the same size as the online file, the download is skipped. If the local file is larger, it will be deleted and the file will be redownloaded. If the local file is smaller, the file will be assumed to be partially downloaded and the remaining bytes will be downloaded and appended. Example Usage: import wfdb wfdb.dldatabasefiles('ahadb', os.getcwd(), ['STAFF-Studies-bibliography-2016.pdf', 'data/001a.hea', 'data/001a.dat']) """ # Full url physiobank database dburl = posixpath.join(downloads.dbindexurl, pbdb) # Check if the database is valid r = requests.get(dburl) r.raise_for_status() # Construct the urls to download dlinputs = [(os.path.split(file)[1], os.path.split(file)[0], pbdb, dlbasedir, keepsubdirs, overwrite) for file in files] # Make any required local directories downloads.makelocaldirs(dlbasedir, dlinputs, keepsubdirs) print('Downloading files...') # Create multiple processes to download files. # Limit to 2 connections to avoid overloading the server pool = multiprocessing.Pool(processes=2) pool.map(downloads.dlpbfile, dlinputs) print('Finished downloading files') return
en
0.789103
# For wrheader(), all fields must be already filled in and cohesive with one another other. The signals field will not be used. # For wrsamp(), the field to use will be d_signals (which is allowed to be empty for 0 channel records). # set_p_features and set_d_features use characteristics of the p_signals or d_signals field to fill in other header fields. # These are separate from another method 'setdefaults' which the user may call to set default header fields # The checkfieldcohesion() function will be called in wrheader which checks all the header fields. # The checksignalcohesion() function will be called in wrsamp in wrdat to check the d_signal against the header fields. # The base WFDB class to extend to create Record and MultiRecord. Contains shared helper functions and fields. # Constructor # Check whether a single field is valid in its basic form. Does not check compatibility with other fields. # ch is only used for signal specification fields, specifying the channels to check. Other channels # can be None. # Be aware that this function is not just called from wrheader. # Check that the field is present # Check the type of the field (and of its elements if it should be a list) # Expand to make sure all channels must have present field # Individual specific field checks: # Check shape # Check dtype # Check shape # Check shape # Check dtype # Check shape #elif field == 'segments': # Nothing to check here. # Record specification fields # Allow letters, digits, hyphens, and underscores. # Signal specification fields. Lists of elements to check. # The channel element is allowed to be None # Check for filename characters # Check that dat files are grouped together # Currently original WFDB library only has 4 bytes for baseline. # elif field == 'adczero': nothing to check here # elif field == 'initvalue': nothing to check here # elif field == 'checksum': nothing to check here # Segment specification fields # Segment names must be alphanumerics or just a single '~' # For records with more than 1 segment, the first segment may be # the layout specification segment with a length of 0 # Comment field # Allow empty string comment lines # Check the data type of the specified field. # ch is used for signal spec fields # Some fields are lists. This must be checked, along with their elements. # Record specification field. Nonlist. # Signal specification field. List. # Segment specification field. List. All elements cannot be None # Comments field. List. Elements cannot be None # Signals field. # Segments field. List. Elements may be None. # Ensure that input read parameters are valid for the record # Data Type Check # Duration Ranges # Channel Ranges # Cannot expand multiple samples/frame for multi-segment records # If m2s == True, Physical must be true. There is no # meaningful representation of digital signals transferred # from individual segments. # Check the item type. Vary the print message regarding whether the item can be None. # Helper to checkfieldtype # channels is a list of booleans indicating whether the field's channel must be present (1) or may be None (0) # and is not just for signal specification fields # Checking the list # First make sure the item is a list # Expand to make sure all channels must have present field # Expand to allow any channel to be None # The field must exist for the channel # The field may be None for the channel # Single scalar to check The class representing WFDB headers, and single segment WFDB records. Record objects can be created using the constructor, by reading a WFDB header with 'rdheader', or a WFDB record (header and associated dat files) with rdsamp' or 'srdsamp'. The attributes of the Record object give information about the record as specified by https://www.physionet.org/physiotools/wag/header-5.htm In addition, the d_signals and p_signals attributes store the digital and physical signals of WFDB records with at least one channel. Contructor function: def __init__(self, p_signals=None, d_signals=None, recordname=None, nsig=None, fs=None, counterfreq=None, basecounter=None, siglen=None, basetime=None, basedate=None, filename=None, fmt=None, sampsperframe=None, skew=None, byteoffset=None, adcgain=None, baseline=None, units=None, adcres=None, adczero=None, initvalue=None, checksum=None, blocksize=None, signame=None, comments=None) Example Usage: import wfdb record = wfdb.Record(recordname='r1', fs=250, nsig=2, siglen=1000, filename=['r1.dat','r1.dat']) # Constructor # Note the lack of 'nseg' field. Single segment records cannot have this field. Even nseg = 1 makes # the header a multi-segment header. # Equal comparison operator for objects of this type # Write a wfdb header file and associated dat files if any. # Uses d_signals (expanded=False) or e_d_signals to write the samples # Perform field validity and cohesion checks, and write the header file. # Perform signal validity and cohesion checks, and write the associated dat files. # Arrange/edit object fields to reflect user channel and/or signal range input # Account for case when signals are expanded # Rearrange signal specification fields # Expanded signals - multiple samples per frame. # Checksum and initvalue to be updated if present # unless the whole signal length was input # MxN numpy array d_signals # Checksum and initvalue to be updated if present # unless the whole signal length was input # Update record specification parameters # Important that these get updated after^^ # Class for multi segment WFDB records. The class representing multi-segment WFDB records. MultiRecord objects can be created using the constructor, or by reading a multi-segment WFDB record using 'rdsamp' with the 'm2s' (multi to single) input parameter set to False. The attributes of the MultiRecord object give information about the entire record as specified by https://www.physionet.org/physiotools/wag/header-5.htm In addition, the 'segments' parameter is a list of Record objects representing each individual segment, or 'None' representing empty segments, of the entire multi-segment record. Noteably, this class has no attribute representing the signals as a whole. The 'multi_to_single' instance method can be called on MultiRecord objects to return a single segment representation of the record as a Record object. The resulting Record object will have its 'p_signals' field set. Contructor function: def __init__(self, segments=None, layout=None, recordname=None, nsig=None, fs=None, counterfreq=None, basecounter=None, siglen=None, basetime=None, basedate=None, segname=None, seglen=None, comments=None, signame=None, sigsegments=None) Example Usage: import wfdb recordM = wfdb.MultiRecord(recordname='rm', fs=50, nsig=8, siglen=9999, segname=['rm_1', '~', rm_2'], seglen=[800, 200, 900]) recordL = wfdb.rdsamp('s00001-2896-10-10-00-31', m2s = False) recordL = recordL.multi_to_single() # Constructor # Write a multi-segment header, along with headers and dat files for all segments # Perform field validity and cohesion checks, and write the header file. # Perform record validity and cohesion checks, and write the associated segments. # Check the cohesion of the segments field with other fields used to write the record # Check that nseg is equal to the length of the segments field # If segment 0 is a layout specification record, check that its file names are all == '~'' # Check that sampling frequencies all match the one in the master header # Check the signal length of the segment against the corresponding seglen field # No need to check the sum of siglens from each segment object against siglen # Already effectively done it when checking sum(seglen) against siglen # Determine the segments and the samples # within each segment that have to be read in a # multi-segment record. Called during rdsamp. # The starting segment with actual samples # Cumulative sum of segment lengths (ignoring layout segment) # Get first segment # Get final segment # Add 1 for variable layout records # Obtain the sampfrom and sampto to read for each segment # Only one segment to read # The segment's first sample number relative to the entire record # More than one segment to read # Starting sample for first segment. # End sample for last segment # Get the channel numbers to be read from each segment # Fixed layout. All channels are the same. # Should we bother here with skipping empty segments? # They won't be read anyway. # Variable layout: figure out channels by matching record names # The overall layout signal names # The wanted signals # For each segment ... # Skip empty segments # Get the signal names of the current segment # Arrange/edit object fields to reflect user channel and/or signal range input # Update seglen values for relevant segments # Update record specification parameters # Get rid of the segments and segment line parameters # outside the desired segment range # Keep the layout specifier segment # Update number of segments # Convert a MultiRecord object to a Record object # The fields to transfer to the new object # Remove multirecord fields # The output physical signals # Get the physical samples from each segment # Start and end samples in the overall array # to place the segment samples into # Get the signal names and units from the first segment # For variable layout, have to get channels by name # Get the signal names from the layout segment # Empty segment # Non-empty segment # Figure out if there are any channels wanted and # the output channels they are to be stored in # Segment contains no wanted channels. Fill with nans. # Segment contains wanted channel(s). Transfer samples. # This statement is necessary in case this function is not called # directly from rdsamp with m2s=True. # Create the single segment Record object and set attributes #------------------- Reading Records -------------------# # Read a WFDB single or multi segment record. Return a Record or MultiRecord object Read a WFDB record and return the signal and record descriptors as attributes in a Record or MultiRecord object. Usage: record = rdsamp(recordname, sampfrom=0, sampto=None, channels=None, physical=True, pbdir = None, m2s=True, smoothframes = True, ignoreskew=False) Input arguments: - recordname (required): The name of the WFDB record to be read (without any file extensions). If the argument contains any path delimiter characters, the argument will be interpreted as PATH/baserecord and the data files will be searched for in the local path. - sampfrom (default=0): The starting sample number to read for each channel. - sampto (default=None): The sample number at which to stop reading for each channel. - channels (default=all): Indices specifying the channel to be returned. - physical (default=True): Flag that specifies whether to return signals in physical units in the p_signals field (True), or digital units in the d_signals field (False). - pbdir (default=None): Option used to stream data from Physiobank. The Physiobank database directory from which to find the required record files. eg. For record '100' in 'http://physionet.org/physiobank/database/mitdb', pbdir = 'mitdb'. - m2s (default=True): Flag used when reading multi-segment records. Specifies whether to directly return a wfdb MultiRecord object (False), or to convert it into and return a wfdb Record object (True). - smoothframes (default=True): Flag used when reading records with signals having multiple samples per frame. Specifies whether to smooth the samples in signals with more than one sample per frame and return an mxn uniform numpy array as the d_signals or p_signals field (True), or to return a list of 1d numpy arrays containing every expanded sample as the e_d_signals or e_p_signals field (False). - ignoreskew (default=False): Flag used when reading records with at least one skewed signal. Specifies whether to apply the skew to align the signals in the output variable (False), or to ignore the skew field and load in all values contained in the dat files unaligned (True). - returnres (default=64): The numpy array dtype of the returned signals. Options are: 64, 32, 16, and 8, where the value represents the numpy int or float dtype. Note that the value cannot be 8 when physical is True since there is no float8 format. Output argument: - record: The wfdb Record or MultiRecord object representing the contents of the record read. Note: If a signal range or channel selection is specified when calling this function, the the resulting attributes of the returned object will be set to reflect the section of the record that is actually read, rather than necessarily what is in the header file. For example, if channels = [0, 1, 2] is specified when reading a 12 channel record, the 'nsig' attribute will be 3, not 12. Note: The 'srdsamp' function exists as a simple alternative to 'rdsamp' for the most common purpose of extracting the physical signals and a few important descriptor fields. 'srdsamp' returns two arguments: the physical signals array, and a dictionary of a few select fields, a subset of the original wfdb Record attributes. Example Usage: import wfdb ecgrecord = wfdb.rdsamp('sampledata/test01_00s', sampfrom=800, channels = [1,3]) # Read the header fields into the appropriate record object # Set defaults for sampto and channels input variables # Ensure that input fields are valid for the record # A single segment record # Only 1 sample/frame, or frames are smoothed. Return uniform numpy array # Read signals from the associated dat files that contain wanted channels # Arrange/edit the object fields to reflect user channel and/or signal range input # Perform inplace dac to get physical signal # Return each sample of the signals with multiple samples per frame # Arrange/edit the object fields to reflect user channel and/or signal range input # Perform dac to get physical signal # A multi segment record # We can make another rdsamp function (called rdsamp_segment) to call # for individual segments to deal with the skews. # Strategy: # 1. Read the required segments and store them in # Record objects. # 2. Update the parameters of the objects to reflect # the state of the sections read. # 3. Update the parameters of the overall MultiRecord # object to reflect the state of the individual segments. # 4. If specified, convert the MultiRecord object # into a single Record object. # Segments field is a list of Record objects # Empty segments store None. # Variable layout # Read the layout specification header # Fixed layout # The segment numbers and samples within each segment to read. # The signals within each segment to read # Read the desired samples in the relevant segments # Empty segment or segment with no relevant channels # Arrange the fields of the overall object to reflect user input # Convert object into a single segment Record object # Perform dtype conversion if necessary # Read a WFDB header. Return a Record object or MultiRecord object Read a WFDB header file and return the record descriptors as attributes in a Record object Usage: record = rdheader(recordname, pbdir = None, rdsegments = False) Input arguments: - recordname (required): The name of the WFDB record to be read (without any file extensions). If the argument contains any path delimiter characters, the argument will be interpreted as PATH/baserecord and the header file will be searched for in the local path. - pbdir (default=None): Option used to stream data from Physiobank. The Physiobank database directory from which to find the required record files. eg. For record '100' in 'http://physionet.org/physiobank/database/mitdb', pbdir = 'mitdb'. - rdsegments (default=False): Boolean flag used when reading multi-segment headers. If True, segment headers will also be read (into the record object's 'segments' field). Output argument: - record: The wfdb Record or MultiRecord object representing the contents of the header read. Example Usage: import wfdb ecgrecord = wfdb.rdheader('sampledata/test01_00s', sampfrom=800, channels = [1,3]) # Read the header file. Separate comment and non-comment lines # Get fields from record line # Processing according to whether the header is single or multi segment # Single segment header - Process signal specification lines # Create a single-segment WFDB record object # There is at least one channel # Read the fields from the signal lines # Set the object's signal line fields # Set the object's record line fields # Multi segment header - Process segment specification lines # Create a multi-segment WFDB record object # Read the fields from the segment lines # Set the object's segment line fields # Set the objects' record line fields # Determine whether the record is fixed or variable # If specified, read the segment headers # Get the base record name (could be empty) # Fill in the signame attribute # Fill in the sigsegments attribute # Set the comments field #')) # Given some wanted signal names, and the signal names contained # in a record, return the indices of the record channels that intersect. # Remember that the wanted signal names are already in order specified in user input channels. So it's good! # A simple version of rdsamp for ease of use # Return the physical signals and a few essential fields Read a WFDB record and return the physical signal and a few important descriptor fields Usage: signals, fields = srdsamp(recordname, sampfrom=0, sampto=None, channels=None, pbdir=None) Input arguments: - recordname (required): The name of the WFDB record to be read (without any file extensions). If the argument contains any path delimiter characters, the argument will be interpreted as PATH/baserecord and the data files will be searched for in the local path. - sampfrom (default=0): The starting sample number to read for each channel. - sampto (default=None): The sample number at which to stop reading for each channel. - channels (default=all): Indices specifying the channel to be returned. Output arguments: - signals: A 2d numpy array storing the physical signals from the record. - fields: A dictionary specifying several key attributes of the read record: - fs: The sampling frequency of the record - units: The units for each channel - signame: The signal name for each channel - comments: Any comments written in the header Note: If a signal range or channel selection is specified when calling this function, the the resulting attributes of the returned object will be set to reflect the section of the record that is actually read, rather than necessarily what is in the header file. For example, if channels = [0, 1, 2] is specified when reading a 12 channel record, the 'nsig' attribute will be 3, not 12. Note: The 'rdsamp' function is the base function upon which this one is built. It returns all attributes present, along with the signals, as attributes in a wfdb.Record object. The function, along with the returned data type, have more options than 'srdsamp' for users who wish to more directly manipulate WFDB files. Example Usage: import wfdb sig, fields = wfdb.srdsamp('sampledata/test01_00s', sampfrom=800, channels = [1,3]) #------------------- /Reading Records -------------------# # Function for writing single segment records Write a single segment WFDB record, creating a WFDB header file and any associated dat files. Usage: wrsamp(recordname, fs, units, signames, p_signals = None, d_signals=None, fmt = None, gain = None, baseline = None, comments = None) Input arguments: - recordname (required): The string name of the WFDB record to be written (without any file extensions). - fs (required): The numerical sampling frequency of the record. - units (required): A list of strings giving the units of each signal channel. - signames (required): A list of strings giving the signal name of each signal channel. - p_signals (default=None): An MxN 2d numpy array, where M is the signal length. Gives the physical signal values intended to be written. Either p_signals or d_signals must be set, but not both. If p_signals is set, this method will use it to perform analogue-digital conversion, writing the resultant digital values to the dat file(s). If fmt is set, gain and baseline must be set or unset together. If fmt is unset, gain and baseline must both be unset. - d_signals (default=None): An MxN 2d numpy array, where M is the signal length. Gives the digital signal values intended to be directly written to the dat file(s). The dtype must be an integer type. Either p_signals or d_signals must be set, but not both. In addition, if d_signals is set, fmt, gain and baseline must also all be set. - fmt (default=None): A list of strings giving the WFDB format of each file used to store each channel. Accepted formats are: "80","212","16","24", and "32". There are other WFDB formats but this library will not write (though it will read) those file types. - gain (default=None): A list of integers specifying the ADC gain. - baseline (default=None): A list of integers specifying the digital baseline. - comments (default=None): A list of string comments to be written to the header file. - basetime (default=None): A string of the record's start time in 24h HH:MM:SS(.ms) format. - basedate (default=None): A string of the record's start date in DD/MM/YYYY format. Note: This gateway function was written to enable a simple way to write WFDB record files using the most frequently used parameters. Therefore not all WFDB fields can be set via this function. For more control over attributes, create a wfdb.Record object, manually set its attributes, and call its wrsamp() instance method. If you choose this more advanced method, see also the setdefaults, set_d_features, and set_p_features instance methods to help populate attributes. Example Usage (with the most common scenario of input parameters): import wfdb # Read part of a record from Physiobank sig, fields = wfdb.srdsamp('a103l', sampfrom = 50000, channels = [0,1], pbdir = 'challenge/2015/training') # Write a local WFDB record (manually inserting fields) wfdb.wrsamp('ecgrecord', fs = 250, units = ['mV', 'mV'], signames = ['I', 'II'], p_signals = sig, fmt = ['16', '16']) # Check input field combinations # Depending on whether d_signals or p_signals was used, set other required features. # Create the Record object # Compute optimal fields to store the digital signal, carry out adc, and set the fields. # Create the Record object # Use d_signals to set the fields directly # Set default values of any missing field dependencies # Write the record files - header and associated dat # Time string parser for WFDB header - H(H):M(M):S(S(.sss)) format. # Date string parser for WFDB header - DD/MM/YYYY # Returns the unique elements in a list in the order that they appear. # Also returns the indices of the original list that correspond to each output element. # new item # previously seen item # Returns elements in a list without consecutive repeated values. # *These downloading files gateway function rely on the Record/MultiRecord objects. # They are placed here rather than in downloads.py in order to avoid circular imports # Download WFDB files from a physiobank database # This function only targets databases with WFDB records (EDF and MIT format). # If the database doesn't have a 'RECORDS" file, it will fail. Download WFDB record (and optionally annotation) files from a Physiobank database. The database must contain a 'RECORDS' file in its base directory which lists its WFDB records. Usage: dldatabase(pbdb, dlbasedir, records = 'all', annotators = 'all' , keepsubdirs = True, overwrite = False) Input arguments: - pbdb (required): The Physiobank database directory to download. eg. For database 'http://physionet.org/physiobank/database/mitdb', pbdb = 'mitdb'. - dlbasedir (required): The full local directory path in which to download the files. - records (default='all'): Specifier of the WFDB records to download. Is either a list of strings which each specify a record, or 'all' to download all records listed in the database's RECORDS file. eg. records = ['test01_00s', test02_45s] for database https://physionet.org/physiobank/database/macecgdb/ - annotators (default='all'): Specifier of the WFDB annotation file types to download along with the record files. Is either None to skip downloading any annotations, 'all' to download all annotation types as specified by the ANNOTATORS file, or a list of strings which each specify an annotation extension. eg. annotators = ['anI'] for database https://physionet.org/physiobank/database/prcp/ - keepsubdirs (default=True): Whether to keep the relative subdirectories of downloaded files as they are organized in Physiobank (True), or to download all files into the same base directory (False). - overwrite (default=False): If set to True, all files will be redownloaded regardless. If set to False, existing files with the same name and relative subdirectory will be checked. If the local file is the same size as the online file, the download is skipped. If the local file is larger, it will be deleted and the file will be redownloaded. If the local file is smaller, the file will be assumed to be partially downloaded and the remaining bytes will be downloaded and appended. Example Usage: import wfdb wfdb.dldatabase('ahadb', os.getcwd()) # Full url physiobank database # Check if the database is valid # Get the list of records # Get the annotator extensions # All files to download (relative to the database's home directory) # Check out whether each record is in MIT or EDF format # If MIT format, have to figure out all associated files # Single segment record # Add all dat files of the segment # Multi segment record # Skip empty segments # Add the header # Layout specifier has no dat files # Add all dat files of the segment # check whether the record has any requested annotation files # Make any required local directories # Create multiple processes to download files. # Limit to 2 connections to avoid overloading the server # Download specific files from a physiobank database Download specified files from a Physiobank database. Usage: dldatabasefiles(pbdb, dlbasedir, files, keepsubdirs = True, overwrite = False): Input arguments: - pbdb (required): The Physiobank database directory to download. eg. For database 'http://physionet.org/physiobank/database/mitdb', pbdb = 'mitdb'. - dlbasedir (required): The full local directory path in which to download the files. - files (required): A list of strings specifying the file names to download relative to the database base directory - keepsubdirs (default=True): Whether to keep the relative subdirectories of downloaded files as they are organized in Physiobank (True), or to download all files into the same base directory (False). - overwrite (default=False): If set to True, all files will be redownloaded regardless. If set to False, existing files with the same name and relative subdirectory will be checked. If the local file is the same size as the online file, the download is skipped. If the local file is larger, it will be deleted and the file will be redownloaded. If the local file is smaller, the file will be assumed to be partially downloaded and the remaining bytes will be downloaded and appended. Example Usage: import wfdb wfdb.dldatabasefiles('ahadb', os.getcwd(), ['STAFF-Studies-bibliography-2016.pdf', 'data/001a.hea', 'data/001a.dat']) # Full url physiobank database # Check if the database is valid # Construct the urls to download # Make any required local directories # Create multiple processes to download files. # Limit to 2 connections to avoid overloading the server
2.573053
3
dipper_methods.py
dirac-institute/ZTF_Boyajian
2
6633037
import numpy as np from scipy.ndimage import minimum_filter1d def setup_pyximport(): import pyximport pyximport.install(reload_support=True, setup_args={'include_dirs': np.get_include()}) class cython_function(): def __init__(self, module, name): self.module = module self.name = name self.function = None self.load_function() def load_function(self): setup_pyximport() self.function = getattr(__import__(self.module), self.name) def __call__(self, *args, **kwargs): if self.function is None: self.load_function() return self.function(*args, **kwargs) def __getstate__(self): # Don't return the module so that each node has to recompile it itself. state = self.__dict__.copy() state['function'] = None return state def detect_dippers(mjd, mag, magerr, xpos, ypos, catflags, verbose=False, return_mjd=False, num_sequential=3): ''' a docstring ''' # moved into here for lack of better place group_observations = cython_function('dipper', 'group_observations') if len(mjd) == 0: if return_mjd: return -1., float('nan') else: return -1. mjd = np.array(mjd) order = np.argsort(mjd) # Convert everything to numpy arrays and sort them by MJD sort_mjd = mjd[order] sort_mag = np.array(mag)[order] sort_magerr = np.array(magerr)[order] sort_xpos = np.array(xpos)[order] sort_ypos = np.array(ypos)[order] sort_catflags = np.array(catflags)[order] # Mask out bad or repeated observations. pad_width = 20 x_border = 3072 y_border = 3080 mask = ( (np.abs(sort_mjd - np.roll(sort_mjd, 1)) > 1e-5) & (sort_xpos > pad_width) & (sort_xpos < x_border - pad_width) & (sort_ypos > pad_width) & (sort_ypos < y_border - pad_width) & (sort_catflags == 0) # In the oct19 data, some observations have a magerr of 0 and aren't flagged. # This causes a world of problems, so throw them out. & (sort_magerr > 0) # In the oct19 data, a lot of dippers are the result of bad columns... # Unfortunately, in this version of the ZTF data we don't know which amplifier # everything came from. To get a reasonably clean sample (with some unnecessary # attrition), we cut any observations that are in the "bad" x ranges. & ((sort_xpos < 24) | (sort_xpos > 31)) & ((sort_xpos < 95) | (sort_xpos > 106)) & ((sort_xpos < 328) | (sort_xpos > 333)) & ((sort_xpos < 1169) | (sort_xpos > 1177)) & ((sort_xpos < 1249) | (sort_xpos > 1257)) & ((sort_xpos < 1339) | (sort_xpos > 1349)) & ((sort_xpos < 2076) | (sort_xpos > 2100)) & ((sort_xpos < 2521) | (sort_xpos > 2537)) & ((sort_xpos < 2676) | (sort_xpos > 2682)) & ((sort_xpos < 2888) | (sort_xpos > 2895)) ) if np.sum(mask) < 10: # Require at least 10 observations to have reasonable statistics. if return_mjd: return -1., float('nan') else: return -1. mask_mjd = sort_mjd[mask] mask_mag = sort_mag[mask] mask_magerr = sort_magerr[mask] # Unused for now, so don't bother calculating them. # mask_xpos = sort_xpos[mask] # mask_ypos = sort_ypos[mask] # mask_catflags = sort_catflags[mask] use_mjd, use_mag, use_magerr = group_observations(mask_mjd, mask_mag, mask_magerr) # For well-measured observations, use the core standard deviation. For poorly # measured ones, use the measured standard deviation. The core standard deviation # should be very similar to the measured ones for stable light curves, so we # shouldn't be adding these in quadrature. Instead, we take whichever value is # larger. #core_std = np.std(use_mag) # NMAD core_std = 1.4826 * np.nanmedian(np.abs(use_mag - np.nanmedian(use_mag))) use_magerr[use_magerr < core_std] = core_std scores = (use_mag - np.median(use_mag)) / use_magerr # Get the minimum score for a run. filtered_scores = minimum_filter1d(scores, num_sequential, mode='constant') max_loc = np.argmax(filtered_scores) result = float(filtered_scores[max_loc]) max_mjd = use_mjd[max_loc] if verbose: print("Max mjd: ", max_mjd) if return_mjd: return result, max_mjd else: return result def detect_dippers_row(row, band='r', *args, **kwargs): return detect_dippers(row[f'mjd_{band}'], row[f'mag_{band}'], row[f'magerr_{band}'], row[f'xpos_{band}'], row[f'ypos_{band}'], row[f'catflags_{band}'], *args, **kwargs)
import numpy as np from scipy.ndimage import minimum_filter1d def setup_pyximport(): import pyximport pyximport.install(reload_support=True, setup_args={'include_dirs': np.get_include()}) class cython_function(): def __init__(self, module, name): self.module = module self.name = name self.function = None self.load_function() def load_function(self): setup_pyximport() self.function = getattr(__import__(self.module), self.name) def __call__(self, *args, **kwargs): if self.function is None: self.load_function() return self.function(*args, **kwargs) def __getstate__(self): # Don't return the module so that each node has to recompile it itself. state = self.__dict__.copy() state['function'] = None return state def detect_dippers(mjd, mag, magerr, xpos, ypos, catflags, verbose=False, return_mjd=False, num_sequential=3): ''' a docstring ''' # moved into here for lack of better place group_observations = cython_function('dipper', 'group_observations') if len(mjd) == 0: if return_mjd: return -1., float('nan') else: return -1. mjd = np.array(mjd) order = np.argsort(mjd) # Convert everything to numpy arrays and sort them by MJD sort_mjd = mjd[order] sort_mag = np.array(mag)[order] sort_magerr = np.array(magerr)[order] sort_xpos = np.array(xpos)[order] sort_ypos = np.array(ypos)[order] sort_catflags = np.array(catflags)[order] # Mask out bad or repeated observations. pad_width = 20 x_border = 3072 y_border = 3080 mask = ( (np.abs(sort_mjd - np.roll(sort_mjd, 1)) > 1e-5) & (sort_xpos > pad_width) & (sort_xpos < x_border - pad_width) & (sort_ypos > pad_width) & (sort_ypos < y_border - pad_width) & (sort_catflags == 0) # In the oct19 data, some observations have a magerr of 0 and aren't flagged. # This causes a world of problems, so throw them out. & (sort_magerr > 0) # In the oct19 data, a lot of dippers are the result of bad columns... # Unfortunately, in this version of the ZTF data we don't know which amplifier # everything came from. To get a reasonably clean sample (with some unnecessary # attrition), we cut any observations that are in the "bad" x ranges. & ((sort_xpos < 24) | (sort_xpos > 31)) & ((sort_xpos < 95) | (sort_xpos > 106)) & ((sort_xpos < 328) | (sort_xpos > 333)) & ((sort_xpos < 1169) | (sort_xpos > 1177)) & ((sort_xpos < 1249) | (sort_xpos > 1257)) & ((sort_xpos < 1339) | (sort_xpos > 1349)) & ((sort_xpos < 2076) | (sort_xpos > 2100)) & ((sort_xpos < 2521) | (sort_xpos > 2537)) & ((sort_xpos < 2676) | (sort_xpos > 2682)) & ((sort_xpos < 2888) | (sort_xpos > 2895)) ) if np.sum(mask) < 10: # Require at least 10 observations to have reasonable statistics. if return_mjd: return -1., float('nan') else: return -1. mask_mjd = sort_mjd[mask] mask_mag = sort_mag[mask] mask_magerr = sort_magerr[mask] # Unused for now, so don't bother calculating them. # mask_xpos = sort_xpos[mask] # mask_ypos = sort_ypos[mask] # mask_catflags = sort_catflags[mask] use_mjd, use_mag, use_magerr = group_observations(mask_mjd, mask_mag, mask_magerr) # For well-measured observations, use the core standard deviation. For poorly # measured ones, use the measured standard deviation. The core standard deviation # should be very similar to the measured ones for stable light curves, so we # shouldn't be adding these in quadrature. Instead, we take whichever value is # larger. #core_std = np.std(use_mag) # NMAD core_std = 1.4826 * np.nanmedian(np.abs(use_mag - np.nanmedian(use_mag))) use_magerr[use_magerr < core_std] = core_std scores = (use_mag - np.median(use_mag)) / use_magerr # Get the minimum score for a run. filtered_scores = minimum_filter1d(scores, num_sequential, mode='constant') max_loc = np.argmax(filtered_scores) result = float(filtered_scores[max_loc]) max_mjd = use_mjd[max_loc] if verbose: print("Max mjd: ", max_mjd) if return_mjd: return result, max_mjd else: return result def detect_dippers_row(row, band='r', *args, **kwargs): return detect_dippers(row[f'mjd_{band}'], row[f'mag_{band}'], row[f'magerr_{band}'], row[f'xpos_{band}'], row[f'ypos_{band}'], row[f'catflags_{band}'], *args, **kwargs)
en
0.895893
# Don't return the module so that each node has to recompile it itself. a docstring # moved into here for lack of better place # Convert everything to numpy arrays and sort them by MJD # Mask out bad or repeated observations. # In the oct19 data, some observations have a magerr of 0 and aren't flagged. # This causes a world of problems, so throw them out. # In the oct19 data, a lot of dippers are the result of bad columns... # Unfortunately, in this version of the ZTF data we don't know which amplifier # everything came from. To get a reasonably clean sample (with some unnecessary # attrition), we cut any observations that are in the "bad" x ranges. # Require at least 10 observations to have reasonable statistics. # Unused for now, so don't bother calculating them. # mask_xpos = sort_xpos[mask] # mask_ypos = sort_ypos[mask] # mask_catflags = sort_catflags[mask] # For well-measured observations, use the core standard deviation. For poorly # measured ones, use the measured standard deviation. The core standard deviation # should be very similar to the measured ones for stable light curves, so we # shouldn't be adding these in quadrature. Instead, we take whichever value is # larger. #core_std = np.std(use_mag) # NMAD # Get the minimum score for a run.
2.332965
2
data/sampling/sample_cord-19.py
dartar/habeas-corpus
5
6633038
import csv import pandas import random SAMPLE_COUNT = 100 i = 0 with open('../cord-19/CORD19_software_mentions.csv', 'r') as csv_file: csv_reader = csv.reader(csv_file) row_count = sum(1 for row in csv_reader) rand_ints = random.sample(range(1, row_count), SAMPLE_COUNT) with open('output.csv', 'w') as output: output_writer = csv.writer(output, delimiter=',') csv_file.seek(0) for row in csv_reader: if i == 0 or i in rand_ints: output_writer.writerow(row) i += 1
import csv import pandas import random SAMPLE_COUNT = 100 i = 0 with open('../cord-19/CORD19_software_mentions.csv', 'r') as csv_file: csv_reader = csv.reader(csv_file) row_count = sum(1 for row in csv_reader) rand_ints = random.sample(range(1, row_count), SAMPLE_COUNT) with open('output.csv', 'w') as output: output_writer = csv.writer(output, delimiter=',') csv_file.seek(0) for row in csv_reader: if i == 0 or i in rand_ints: output_writer.writerow(row) i += 1
none
1
3.005735
3
H3/bundle/q1-starter.py
Cauchemare/CS224W_2020_Solutions
1
6633039
import snap import numpy as np import matplotlib.pyplot as plt def load_graph(name): ''' Helper function to load graphs. Use "epinions" for Epinions graph and "email" for Email graph. Check that the respective .txt files are in the same folder as this script; if not, change the paths below as required. ''' if name == "epinions": G = snap.LoadEdgeList(snap.PNGraph, "soc-Epinions1.txt", 0, 1) elif name == 'email': G = snap.LoadEdgeList(snap.PNGraph, "email-EuAll.txt", 0, 1) else: raise ValueError("Invalid graph: please use 'email' or 'epinions'.") return G def q1_1(): ''' You will have to run the inward and outward BFS trees for the respective nodes and reason about whether they are in SCC, IN or OUT. You may find the SNAP function GetBfsTree() to be useful here. ''' ########################################################################## #TODO: Run outward and inward BFS trees from node 2018, compare sizes #and comment on where node 2018 lies. G = load_graph("email") #Your code here: def q1_1_sub(G,StartNId): outBfs= G.GetBfsTree(StartNId,True,False) inBfs = G.GetBfsTree(StartNId,False,True) return outBfs.GetNodes(),inBfs.GetNodes() email_result = q1_1_sub( G,2018) print(G.GetMxSccSz()) print('total:{0},outgoing:{1},incoming:{2}'.format(G.GetNodes(),email_result[0],email_result[1] )) ########################################################################## ########################################################################## #TODO: Run outward and inward BFS trees from node 224, compare sizes #and comment on where node 224 lies. G = load_graph("epinions") #Your code here: epinions_result= q1_1_sub( G,224) print('total:{0},outgoing:{1},incoming:{2}'.format(G.GetNodes(),epinions_result[0],epinions_result[1] )) print(G.GetMxSccSz()) ########################################################################## print ('2.1: Done!\n') def q1_2(): ''' For each graph, get 100 random nodes and find the number of nodes in their inward and outward BFS trees starting from each node. Plot the cumulative number of nodes reached in the BFS runs, similar to the graph shown in Broder et al. (see Figure in handout). You will need to have 4 figures, one each for the inward and outward BFS for each of email and epinions. Note: You may find the SNAP function GetRndNId() useful to get random node IDs (for initializing BFS). ''' ########################################################################## #TODO: See above. #Your code here: def q1_2_sub(G,NumIds): rnd= snap.TRnd() rnd.Randomize() outNodesCnt= [] inNodesCnt =[] for i in range (NumIds): RndNId = G.GetRndNId(rnd) BfsOutTree =G.GetBfsTree(RndNId,True,False) outNodesCnt.append(BfsOutTree.GetNodes() ) BfsInTree =G.GetBfsTree(RndNId,False,True) inNodesCnt.append( BfsInTree.GetNodes() ) return sorted(outNodesCnt), sorted(inNodesCnt) def q1_2_plot(GType): x= np.linspace(0,1,100,endpoint=False) G = load_graph(GType) print('total',G.GetNodes()) outNodesCnt,inNodesCnt =q1_2_sub(G,100) fig,(ax1,ax2)= plt.subplots(1,2) fig.suptitle(GType) ax1.set_title('out') ax1.plot(x,outNodesCnt) ax2.set_title('in') ax2.plot(x, inNodesCnt) q1_2_plot('email') q1_2_plot('epinions') ########################################################################## print ('2.2: Done!\n') def q1_3(): ''' For each graph, determine the size of the following regions: DISCONNECTED IN OUT SCC TENDRILS + TUBES You can use SNAP functions GetMxWcc() and GetMxScc() to get the sizes of the largest WCC and SCC on each graph. ''' ########################################################################## #TODO: See above. #Your code here: def q1_3_sub(GType): G = load_graph(GType) MxScc = G.GetMxScc() MxWcc= G.GetMxWcc() num_disconnected= G.GetNodes() - MxWcc.GetNodes() num_scc= MxScc.GetNodes() BfsTree_in = G.GetBfsTree(20,False,True) BfsTree_out = G.GetBfsTree(20,True,False) num_in = BfsTree_in.GetNodes()- num_scc num_out= BfsTree_out.GetNodes()- num_scc num_tubes= G.GetNodes() - num_scc-num_in -num_out -num_disconnected print('DISCONNECTED {0},IN {1},OUT {2},SCC {3},TENDRILS+ TUBES :{4}' .format( num_disconnected,num_in,num_out,num_scc, num_tubes ) ) q1_3_sub('email') q1_3_sub('epinions') ########################################################################## print ('2.3: Done!\n' ) def q1_4(): ''' For each graph, calculate the probability that a path exists between two nodes chosen uniformly from the overall graph. You can do this by choosing a large number of pairs of random nodes and calculating the fraction of these pairs which are connected. The following SNAP functions may be of help: GetRndNId(), GetShortPath() ''' ########################################################################## #TODO: See above. #Your code here: def q1_4_sub(GType,num_iters= 10000): rnd_start =snap.TRnd() rnd_end = snap.TRnd() rnd_start.Randomize() rnd_end.Randomize() G = load_graph(GType) num_connected = 0 for i in range(num_iters): SrcNId= G.GetRndNId(rnd_start) DestNId= G.GetRndNId(rnd_end) if G.GetShortPath(SrcNId,DestNId,True) != -1: num_connected +=1 print('connected fraction :{0:.4f}'.format( num_connected/ num_iters ) ) q1_4_sub('email') q1_4_sub('epinions') ########################################################################## print ('2.4: Done!\n') if __name__ == "__main__": # q1_1() # q1_2() # q1_3() ''' DISCONNECTED 40382,IN 151023,OUT 17900,SCC 34203,TENDRILS+ TUBES :21706 DISCONNECTED 2,IN 24236,OUT 15453,SCC 32223,TENDRILS+ TUBES :3965 ''' q1_4() # print ("Done with Question 2!\n")
import snap import numpy as np import matplotlib.pyplot as plt def load_graph(name): ''' Helper function to load graphs. Use "epinions" for Epinions graph and "email" for Email graph. Check that the respective .txt files are in the same folder as this script; if not, change the paths below as required. ''' if name == "epinions": G = snap.LoadEdgeList(snap.PNGraph, "soc-Epinions1.txt", 0, 1) elif name == 'email': G = snap.LoadEdgeList(snap.PNGraph, "email-EuAll.txt", 0, 1) else: raise ValueError("Invalid graph: please use 'email' or 'epinions'.") return G def q1_1(): ''' You will have to run the inward and outward BFS trees for the respective nodes and reason about whether they are in SCC, IN or OUT. You may find the SNAP function GetBfsTree() to be useful here. ''' ########################################################################## #TODO: Run outward and inward BFS trees from node 2018, compare sizes #and comment on where node 2018 lies. G = load_graph("email") #Your code here: def q1_1_sub(G,StartNId): outBfs= G.GetBfsTree(StartNId,True,False) inBfs = G.GetBfsTree(StartNId,False,True) return outBfs.GetNodes(),inBfs.GetNodes() email_result = q1_1_sub( G,2018) print(G.GetMxSccSz()) print('total:{0},outgoing:{1},incoming:{2}'.format(G.GetNodes(),email_result[0],email_result[1] )) ########################################################################## ########################################################################## #TODO: Run outward and inward BFS trees from node 224, compare sizes #and comment on where node 224 lies. G = load_graph("epinions") #Your code here: epinions_result= q1_1_sub( G,224) print('total:{0},outgoing:{1},incoming:{2}'.format(G.GetNodes(),epinions_result[0],epinions_result[1] )) print(G.GetMxSccSz()) ########################################################################## print ('2.1: Done!\n') def q1_2(): ''' For each graph, get 100 random nodes and find the number of nodes in their inward and outward BFS trees starting from each node. Plot the cumulative number of nodes reached in the BFS runs, similar to the graph shown in Broder et al. (see Figure in handout). You will need to have 4 figures, one each for the inward and outward BFS for each of email and epinions. Note: You may find the SNAP function GetRndNId() useful to get random node IDs (for initializing BFS). ''' ########################################################################## #TODO: See above. #Your code here: def q1_2_sub(G,NumIds): rnd= snap.TRnd() rnd.Randomize() outNodesCnt= [] inNodesCnt =[] for i in range (NumIds): RndNId = G.GetRndNId(rnd) BfsOutTree =G.GetBfsTree(RndNId,True,False) outNodesCnt.append(BfsOutTree.GetNodes() ) BfsInTree =G.GetBfsTree(RndNId,False,True) inNodesCnt.append( BfsInTree.GetNodes() ) return sorted(outNodesCnt), sorted(inNodesCnt) def q1_2_plot(GType): x= np.linspace(0,1,100,endpoint=False) G = load_graph(GType) print('total',G.GetNodes()) outNodesCnt,inNodesCnt =q1_2_sub(G,100) fig,(ax1,ax2)= plt.subplots(1,2) fig.suptitle(GType) ax1.set_title('out') ax1.plot(x,outNodesCnt) ax2.set_title('in') ax2.plot(x, inNodesCnt) q1_2_plot('email') q1_2_plot('epinions') ########################################################################## print ('2.2: Done!\n') def q1_3(): ''' For each graph, determine the size of the following regions: DISCONNECTED IN OUT SCC TENDRILS + TUBES You can use SNAP functions GetMxWcc() and GetMxScc() to get the sizes of the largest WCC and SCC on each graph. ''' ########################################################################## #TODO: See above. #Your code here: def q1_3_sub(GType): G = load_graph(GType) MxScc = G.GetMxScc() MxWcc= G.GetMxWcc() num_disconnected= G.GetNodes() - MxWcc.GetNodes() num_scc= MxScc.GetNodes() BfsTree_in = G.GetBfsTree(20,False,True) BfsTree_out = G.GetBfsTree(20,True,False) num_in = BfsTree_in.GetNodes()- num_scc num_out= BfsTree_out.GetNodes()- num_scc num_tubes= G.GetNodes() - num_scc-num_in -num_out -num_disconnected print('DISCONNECTED {0},IN {1},OUT {2},SCC {3},TENDRILS+ TUBES :{4}' .format( num_disconnected,num_in,num_out,num_scc, num_tubes ) ) q1_3_sub('email') q1_3_sub('epinions') ########################################################################## print ('2.3: Done!\n' ) def q1_4(): ''' For each graph, calculate the probability that a path exists between two nodes chosen uniformly from the overall graph. You can do this by choosing a large number of pairs of random nodes and calculating the fraction of these pairs which are connected. The following SNAP functions may be of help: GetRndNId(), GetShortPath() ''' ########################################################################## #TODO: See above. #Your code here: def q1_4_sub(GType,num_iters= 10000): rnd_start =snap.TRnd() rnd_end = snap.TRnd() rnd_start.Randomize() rnd_end.Randomize() G = load_graph(GType) num_connected = 0 for i in range(num_iters): SrcNId= G.GetRndNId(rnd_start) DestNId= G.GetRndNId(rnd_end) if G.GetShortPath(SrcNId,DestNId,True) != -1: num_connected +=1 print('connected fraction :{0:.4f}'.format( num_connected/ num_iters ) ) q1_4_sub('email') q1_4_sub('epinions') ########################################################################## print ('2.4: Done!\n') if __name__ == "__main__": # q1_1() # q1_2() # q1_3() ''' DISCONNECTED 40382,IN 151023,OUT 17900,SCC 34203,TENDRILS+ TUBES :21706 DISCONNECTED 2,IN 24236,OUT 15453,SCC 32223,TENDRILS+ TUBES :3965 ''' q1_4() # print ("Done with Question 2!\n")
en
0.421461
Helper function to load graphs. Use "epinions" for Epinions graph and "email" for Email graph. Check that the respective .txt files are in the same folder as this script; if not, change the paths below as required. You will have to run the inward and outward BFS trees for the respective nodes and reason about whether they are in SCC, IN or OUT. You may find the SNAP function GetBfsTree() to be useful here. ########################################################################## #TODO: Run outward and inward BFS trees from node 2018, compare sizes #and comment on where node 2018 lies. #Your code here: ########################################################################## ########################################################################## #TODO: Run outward and inward BFS trees from node 224, compare sizes #and comment on where node 224 lies. #Your code here: ########################################################################## For each graph, get 100 random nodes and find the number of nodes in their inward and outward BFS trees starting from each node. Plot the cumulative number of nodes reached in the BFS runs, similar to the graph shown in Broder et al. (see Figure in handout). You will need to have 4 figures, one each for the inward and outward BFS for each of email and epinions. Note: You may find the SNAP function GetRndNId() useful to get random node IDs (for initializing BFS). ########################################################################## #TODO: See above. #Your code here: ########################################################################## For each graph, determine the size of the following regions: DISCONNECTED IN OUT SCC TENDRILS + TUBES You can use SNAP functions GetMxWcc() and GetMxScc() to get the sizes of the largest WCC and SCC on each graph. ########################################################################## #TODO: See above. #Your code here: ########################################################################## For each graph, calculate the probability that a path exists between two nodes chosen uniformly from the overall graph. You can do this by choosing a large number of pairs of random nodes and calculating the fraction of these pairs which are connected. The following SNAP functions may be of help: GetRndNId(), GetShortPath() ########################################################################## #TODO: See above. #Your code here: ########################################################################## # q1_1() # q1_2() # q1_3() DISCONNECTED 40382,IN 151023,OUT 17900,SCC 34203,TENDRILS+ TUBES :21706 DISCONNECTED 2,IN 24236,OUT 15453,SCC 32223,TENDRILS+ TUBES :3965 # print ("Done with Question 2!\n")
3.048051
3
cifar/step2/main_finetune_model_decomposed.py
chatzikon/DNN-COMPRESSION
9
6633040
from __future__ import print_function import argparse import numpy as np import os import shutil import torchnet as tnt import time import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torch.optim.lr_scheduler import MultiStepLR import random import torch.nn as nn import sys sys.path.insert(0, "../step1/cifar100/") from data_loader_100 import get_train_valid_loader, get_test_loader sys.path.insert(0, "../step1/cifar10/") from data_loader import get_train_valid_loader, get_test_loader from models import * # Training settings parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR training') parser.add_argument('--dataset', type=str, default='cifar10', help='training dataset (default: cifar10)') parser.add_argument('--refine', default='./decomposed_models/models_finetuned/resnet56_cifar10/tucker2/1.71x/layer_groups:3/t.pth.tar', type=str, metavar='PATH', help='path to the pruned model to be fine tuned') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=64, metavar='N', help='input batch size for testing (default: 256)') parser.add_argument('--epochs', type=int, default=140, metavar='N', help='number of epochs to train (default: 160)') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.1)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight-decay', '--wd', default=0, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save', default='./logs2', type=str, metavar='PATH', help='path to save prune model (default: current directory)') parser.add_argument('--arch', default='resnet', type=str, help='architecture to use') parser.add_argument('--depth', default=16, type=int, help='depth of the neural network') def seed_everything(SEED): random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) torch.cuda.manual_seed(SEED) torch.cuda.manual_seed_all(SEED) torch.backends.cudnn.deterministic = True os.environ['PYTHONHASHSEED']=str(SEED) def train(model,optimizer,train_loader,epoch): model.train() avg_loss = tnt.meter.AverageValueMeter() train_acc = 0. for batch_idx, (data, target,index) in enumerate(train_loader): data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) avg_loss.add(loss.item()) pred = output.data.max(1, keepdim=True)[1] train_acc += pred.eq(target.data.view_as(pred)).cpu().sum() loss.backward() optimizer.step() log_interval=100 if (batch_idx+1) % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}, Accuracy: {}/{} ({:.2f}%)\n'.format( epoch, (batch_idx+1) * len(data), len(train_loader.sampler), 100. * (batch_idx*len(target)) / len(train_loader.sampler), loss.item(), train_acc, (batch_idx+1) * len(data), 100. * float(train_acc) / ((batch_idx+1) * len(data)))) def test(model,test_loader): model.eval() test_loss = tnt.meter.AverageValueMeter() correct = 0 for data, target, index in test_loader: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) loss = F.cross_entropy(output, target) test_loss.add(loss.item()) # sum up batch loss pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( loss.item(), correct, len(test_loader.sampler), 100. * float(correct) / len(test_loader.sampler))) return float(correct) / float(len(test_loader.sampler)), loss.item() def save_checkpoint(state, is_best,counter, filepath): torch.save(state, os.path.join(filepath, 'checkpointB.pth.tar')) if is_best: shutil.copyfile(os.path.join(filepath, 'checkpointB.pth.tar'), os.path.join(filepath, 'modelB_best_test_acc_'+str(counter)+'_'+str(state['best_prec1'])+'.pth.tar')) def load_checkpoint(best,counter,filepath): if os.path.isfile(os.path.join(filepath, 'modelB_best_test_acc_'+str(counter)+'_'+str(best)+'.pth.tar')): print("=> loading checkpoint '{}'".format(os.path.join(filepath, 'modelB_best_test_acc_'+str(counter)+'_'+str(best)+'.pth.tar'))) checkpoint = torch.load(os.path.join(filepath, 'modelB_best_test_acc_'+str(counter)+'_'+str(best)+'.pth.tar')) print("=> loaded checkpoint '{}' Prec1: {:f}".format(os.path.join(filepath, 'modelB_best_test_acc_'+str(counter)+'_'+str(best)+'.pth.tar'), best)) else: print("=> no checkpoint found at '{}'".format(os.path.join(filepath, 'modelB_best_test_acc_'+str(counter)+'_'+str(best)+'.pth.tar'))) return checkpoint def main(): args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() seed_everything(args.seed) if not os.path.exists(args.save): os.makedirs(args.save) if args.dataset == 'cifar10': train_loader, valid_loader =get_train_valid_loader('../step1/cifar10/cifar10', args.batch_size, augment=True, random_seed=args.seed, valid_size=0.1, shuffle=True, num_workers=4, pin_memory=True) test_loader = get_test_loader('../step1/cifar10/cifar10', args.batch_size, shuffle=False, num_workers=4, pin_memory=True) elif args.dataset == 'cifar100': train_loader, valid_loader =get_train_valid_loader('../cifar100/cifar100', args.batch_size, augment=True, random_seed=args.seed, valid_size=0.1, shuffle=True, num_workers=4, pin_memory=True) test_loader = get_test_loader('../cifar100/cifar100', args.batch_size, shuffle=False, num_workers=4, pin_memory=True) #load the compressed network model=torch.load(args.refine) #sometimes there is a problem with AvgPool2d of the loaded model, if this problem occur, uncomment this line #model.avgpool = nn.AvgPool2d(kernel_size=8, stride=8, padding=0) model.cuda() optimizer = optim.SGD(model.parameters(), momentum=args.momentum, lr=args.lr, weight_decay=args.weight_decay) scheduler = MultiStepLR(optimizer, milestones=[80,120], gamma=0.1) if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) epoch = checkpoint['epoch'] print(epoch) print("=> loaded checkpoint '{}' Prec1: {:f}" .format(args.resume, best_prec1)) else: print("=> no checkpoint found at '{}'".format(args.resume)) best_prec1 = 0. for epoch in range(args.start_epoch, args.epochs): start_time = time.time() train(model, optimizer, train_loader, epoch) scheduler.step(epoch) print('learning rate') print(optimizer.param_groups[0]['lr']) prec1,_ = test(model,valid_loader) prec1=float(prec1) print(prec1) print(best_prec1) is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) print(is_best) save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer': optimizer.state_dict(), }, is_best, args.seed, filepath=args.save) elapsed_time = time.time() - start_time print(elapsed_time) checkpoint_t = load_checkpoint(best_prec1, args.seed, args.save) model.load_state_dict(checkpoint_t['state_dict']) prec_f, _ = test(model, test_loader) prec_f = float(prec_f) best_prec1 = prec_f is_best = True save_checkpoint({ 'epoch': args.epochs + 1, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer': optimizer.state_dict(), }, is_best, args.seed, filepath=args.save) if __name__ == '__main__': main()
from __future__ import print_function import argparse import numpy as np import os import shutil import torchnet as tnt import time import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable from torch.optim.lr_scheduler import MultiStepLR import random import torch.nn as nn import sys sys.path.insert(0, "../step1/cifar100/") from data_loader_100 import get_train_valid_loader, get_test_loader sys.path.insert(0, "../step1/cifar10/") from data_loader import get_train_valid_loader, get_test_loader from models import * # Training settings parser = argparse.ArgumentParser(description='PyTorch Slimming CIFAR training') parser.add_argument('--dataset', type=str, default='cifar10', help='training dataset (default: cifar10)') parser.add_argument('--refine', default='./decomposed_models/models_finetuned/resnet56_cifar10/tucker2/1.71x/layer_groups:3/t.pth.tar', type=str, metavar='PATH', help='path to the pruned model to be fine tuned') parser.add_argument('--batch-size', type=int, default=64, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=64, metavar='N', help='input batch size for testing (default: 256)') parser.add_argument('--epochs', type=int, default=140, metavar='N', help='number of epochs to train (default: 160)') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.1)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight-decay', '--wd', default=0, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save', default='./logs2', type=str, metavar='PATH', help='path to save prune model (default: current directory)') parser.add_argument('--arch', default='resnet', type=str, help='architecture to use') parser.add_argument('--depth', default=16, type=int, help='depth of the neural network') def seed_everything(SEED): random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) torch.cuda.manual_seed(SEED) torch.cuda.manual_seed_all(SEED) torch.backends.cudnn.deterministic = True os.environ['PYTHONHASHSEED']=str(SEED) def train(model,optimizer,train_loader,epoch): model.train() avg_loss = tnt.meter.AverageValueMeter() train_acc = 0. for batch_idx, (data, target,index) in enumerate(train_loader): data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) avg_loss.add(loss.item()) pred = output.data.max(1, keepdim=True)[1] train_acc += pred.eq(target.data.view_as(pred)).cpu().sum() loss.backward() optimizer.step() log_interval=100 if (batch_idx+1) % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.1f}%)]\tLoss: {:.6f}, Accuracy: {}/{} ({:.2f}%)\n'.format( epoch, (batch_idx+1) * len(data), len(train_loader.sampler), 100. * (batch_idx*len(target)) / len(train_loader.sampler), loss.item(), train_acc, (batch_idx+1) * len(data), 100. * float(train_acc) / ((batch_idx+1) * len(data)))) def test(model,test_loader): model.eval() test_loss = tnt.meter.AverageValueMeter() correct = 0 for data, target, index in test_loader: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) loss = F.cross_entropy(output, target) test_loss.add(loss.item()) # sum up batch loss pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format( loss.item(), correct, len(test_loader.sampler), 100. * float(correct) / len(test_loader.sampler))) return float(correct) / float(len(test_loader.sampler)), loss.item() def save_checkpoint(state, is_best,counter, filepath): torch.save(state, os.path.join(filepath, 'checkpointB.pth.tar')) if is_best: shutil.copyfile(os.path.join(filepath, 'checkpointB.pth.tar'), os.path.join(filepath, 'modelB_best_test_acc_'+str(counter)+'_'+str(state['best_prec1'])+'.pth.tar')) def load_checkpoint(best,counter,filepath): if os.path.isfile(os.path.join(filepath, 'modelB_best_test_acc_'+str(counter)+'_'+str(best)+'.pth.tar')): print("=> loading checkpoint '{}'".format(os.path.join(filepath, 'modelB_best_test_acc_'+str(counter)+'_'+str(best)+'.pth.tar'))) checkpoint = torch.load(os.path.join(filepath, 'modelB_best_test_acc_'+str(counter)+'_'+str(best)+'.pth.tar')) print("=> loaded checkpoint '{}' Prec1: {:f}".format(os.path.join(filepath, 'modelB_best_test_acc_'+str(counter)+'_'+str(best)+'.pth.tar'), best)) else: print("=> no checkpoint found at '{}'".format(os.path.join(filepath, 'modelB_best_test_acc_'+str(counter)+'_'+str(best)+'.pth.tar'))) return checkpoint def main(): args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() seed_everything(args.seed) if not os.path.exists(args.save): os.makedirs(args.save) if args.dataset == 'cifar10': train_loader, valid_loader =get_train_valid_loader('../step1/cifar10/cifar10', args.batch_size, augment=True, random_seed=args.seed, valid_size=0.1, shuffle=True, num_workers=4, pin_memory=True) test_loader = get_test_loader('../step1/cifar10/cifar10', args.batch_size, shuffle=False, num_workers=4, pin_memory=True) elif args.dataset == 'cifar100': train_loader, valid_loader =get_train_valid_loader('../cifar100/cifar100', args.batch_size, augment=True, random_seed=args.seed, valid_size=0.1, shuffle=True, num_workers=4, pin_memory=True) test_loader = get_test_loader('../cifar100/cifar100', args.batch_size, shuffle=False, num_workers=4, pin_memory=True) #load the compressed network model=torch.load(args.refine) #sometimes there is a problem with AvgPool2d of the loaded model, if this problem occur, uncomment this line #model.avgpool = nn.AvgPool2d(kernel_size=8, stride=8, padding=0) model.cuda() optimizer = optim.SGD(model.parameters(), momentum=args.momentum, lr=args.lr, weight_decay=args.weight_decay) scheduler = MultiStepLR(optimizer, milestones=[80,120], gamma=0.1) if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) epoch = checkpoint['epoch'] print(epoch) print("=> loaded checkpoint '{}' Prec1: {:f}" .format(args.resume, best_prec1)) else: print("=> no checkpoint found at '{}'".format(args.resume)) best_prec1 = 0. for epoch in range(args.start_epoch, args.epochs): start_time = time.time() train(model, optimizer, train_loader, epoch) scheduler.step(epoch) print('learning rate') print(optimizer.param_groups[0]['lr']) prec1,_ = test(model,valid_loader) prec1=float(prec1) print(prec1) print(best_prec1) is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) print(is_best) save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer': optimizer.state_dict(), }, is_best, args.seed, filepath=args.save) elapsed_time = time.time() - start_time print(elapsed_time) checkpoint_t = load_checkpoint(best_prec1, args.seed, args.save) model.load_state_dict(checkpoint_t['state_dict']) prec_f, _ = test(model, test_loader) prec_f = float(prec_f) best_prec1 = prec_f is_best = True save_checkpoint({ 'epoch': args.epochs + 1, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer': optimizer.state_dict(), }, is_best, args.seed, filepath=args.save) if __name__ == '__main__': main()
en
0.798905
# Training settings # sum up batch loss # get the index of the max log-probability #load the compressed network #sometimes there is a problem with AvgPool2d of the loaded model, if this problem occur, uncomment this line #model.avgpool = nn.AvgPool2d(kernel_size=8, stride=8, padding=0)
2.239001
2
src/programy/extensions/admin/client.py
whackur/chatbot
2
6633041
""" Copyright (c) 2016-2018 <NAME> http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programy.utils.logging.ylogger import YLogger from programy.extensions.base import Extension class ClientAdminExtension(Extension): # execute() is the interface that is called from the <extension> tag in the AIML def execute(self, client_context, data): YLogger.debug(client_context, "Client Admin - [%s]", data) try: commands = data.split() if commands[0] == 'COMMANDS': return "LIST BOTS, LIST BRAINS, DUMP BRAIN" elif commands[0] == 'LIST': if commands[1] == 'BOTS': ids = client_context.client.bot_factory.botids() return ", ".join(ids) elif commands[1] == 'BRAINS': botid = commands[2] bot = client_context.client.bot_factory.bot(botid) if bot: ids = bot.brain_factory.brainids() return ", ".join(ids) else: return "No client information available" elif commands[0] == 'DUMP': if commands[1] == 'BRAIN': botid = commands[2] bot = client_context.client.bot_factory.bot(botid) if bot is not None: brainid = commands[3] brain = bot.brain_factory.brain(brainid) if brain is not None: brain.dump_brain_tree() return "Brain dumped, see config for location" except Exception as e: YLogger.exception(client_context, "Failed to execute client admin extension", e) return "Client Admin Error"
""" Copyright (c) 2016-2018 <NAME> http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from programy.utils.logging.ylogger import YLogger from programy.extensions.base import Extension class ClientAdminExtension(Extension): # execute() is the interface that is called from the <extension> tag in the AIML def execute(self, client_context, data): YLogger.debug(client_context, "Client Admin - [%s]", data) try: commands = data.split() if commands[0] == 'COMMANDS': return "LIST BOTS, LIST BRAINS, DUMP BRAIN" elif commands[0] == 'LIST': if commands[1] == 'BOTS': ids = client_context.client.bot_factory.botids() return ", ".join(ids) elif commands[1] == 'BRAINS': botid = commands[2] bot = client_context.client.bot_factory.bot(botid) if bot: ids = bot.brain_factory.brainids() return ", ".join(ids) else: return "No client information available" elif commands[0] == 'DUMP': if commands[1] == 'BRAIN': botid = commands[2] bot = client_context.client.bot_factory.bot(botid) if bot is not None: brainid = commands[3] brain = bot.brain_factory.brain(brainid) if brain is not None: brain.dump_brain_tree() return "Brain dumped, see config for location" except Exception as e: YLogger.exception(client_context, "Failed to execute client admin extension", e) return "Client Admin Error"
en
0.783776
Copyright (c) 2016-2018 <NAME> http://www.keithsterling.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # execute() is the interface that is called from the <extension> tag in the AIML
1.966958
2
src/BlenderClass/importSTL.py
kazulagi/plantFEM
21
6633042
import bpy bl_info = { "name" : "import_STL_object", # プラグイン名 "author" : "<NAME>", # 作者 "version" : (0,1), # プラグインのバージョン "blender" : (2, 7, 9), # プラグインが動作するBlenderのバージョン "location" : "3DVIEW > ADD > MESH ", # Blender内部でのプラグインの位置づけ "description" : "importing STL object", # プラグインの説明 "warning" : "", "wiki_url" : "https://github.com/kazulagi/plantFEM", # プラグインの説明が存在するWikiページのURL "tracker_url" : "", # Blender Developer OrgのスレッドURL "support": "TESTING", "category" : "Object" # プラグインのカテゴリ名 } ## オブジェクト(ICO球)を生成するオペレーション #class importSTL(bpy.types.Operator): # # bl_idname = "object.create_object_STL" # bl_label = "import_STL_obj" # bl_description = "import STL" # bl_options = {'REGISTER', 'UNDO'} # # # メニューを実行した時に呼ばれる関数 # def execute(self, context): # #bpy.ops.import_mesh.stl() # bpy.ops.mesh.primitive_ico_sphere_add() # print("Imported STLs") # return{'FINISHED'} # オブジェクト(ICO球)を生成するオペレーション class CreateObjectSTL(bpy.types.Operator): bl_idname = "object.create_object5" bl_label = "objSTL" bl_description = "creating objSTL" bl_options = {'REGISTER', 'UNDO'} # メニューを実行した時に呼ばれる関数 def execute(self, context): bpy.ops.mesh.primitive_ico_sphere_add() bpy.ops.export_mesh.stl(filepath="/home/haruka/test/sphere.stl") print("created STLs") return {'FINISHED'} # メニューを構築する関数 def menu_fn(self, context): self.layout.separator() self.layout.operator(CreateObjectSTL.bl_idname) # アドオン有効化時の処理 def register(): bpy.utils.register_module(__name__) bpy.types.INFO_MT_mesh_add.append(menu_fn) print("Addon importSTL is activated [ok]") # アドオン無効化時の処理 def unregister(): bpy.types.INFO_MT_mesh_add.remove(menu_fn) bpy.utils.unregister_module(__name__) print("Addon importSTL is inactivated [ok]") # メイン処理 if __name__ == "__main__": register()
import bpy bl_info = { "name" : "import_STL_object", # プラグイン名 "author" : "<NAME>", # 作者 "version" : (0,1), # プラグインのバージョン "blender" : (2, 7, 9), # プラグインが動作するBlenderのバージョン "location" : "3DVIEW > ADD > MESH ", # Blender内部でのプラグインの位置づけ "description" : "importing STL object", # プラグインの説明 "warning" : "", "wiki_url" : "https://github.com/kazulagi/plantFEM", # プラグインの説明が存在するWikiページのURL "tracker_url" : "", # Blender Developer OrgのスレッドURL "support": "TESTING", "category" : "Object" # プラグインのカテゴリ名 } ## オブジェクト(ICO球)を生成するオペレーション #class importSTL(bpy.types.Operator): # # bl_idname = "object.create_object_STL" # bl_label = "import_STL_obj" # bl_description = "import STL" # bl_options = {'REGISTER', 'UNDO'} # # # メニューを実行した時に呼ばれる関数 # def execute(self, context): # #bpy.ops.import_mesh.stl() # bpy.ops.mesh.primitive_ico_sphere_add() # print("Imported STLs") # return{'FINISHED'} # オブジェクト(ICO球)を生成するオペレーション class CreateObjectSTL(bpy.types.Operator): bl_idname = "object.create_object5" bl_label = "objSTL" bl_description = "creating objSTL" bl_options = {'REGISTER', 'UNDO'} # メニューを実行した時に呼ばれる関数 def execute(self, context): bpy.ops.mesh.primitive_ico_sphere_add() bpy.ops.export_mesh.stl(filepath="/home/haruka/test/sphere.stl") print("created STLs") return {'FINISHED'} # メニューを構築する関数 def menu_fn(self, context): self.layout.separator() self.layout.operator(CreateObjectSTL.bl_idname) # アドオン有効化時の処理 def register(): bpy.utils.register_module(__name__) bpy.types.INFO_MT_mesh_add.append(menu_fn) print("Addon importSTL is activated [ok]") # アドオン無効化時の処理 def unregister(): bpy.types.INFO_MT_mesh_add.remove(menu_fn) bpy.utils.unregister_module(__name__) print("Addon importSTL is inactivated [ok]") # メイン処理 if __name__ == "__main__": register()
ja
0.981788
# プラグイン名 # 作者 # プラグインのバージョン # プラグインが動作するBlenderのバージョン # Blender内部でのプラグインの位置づけ # プラグインの説明 # プラグインの説明が存在するWikiページのURL # Blender Developer OrgのスレッドURL # プラグインのカテゴリ名 ## オブジェクト(ICO球)を生成するオペレーション #class importSTL(bpy.types.Operator): # # bl_idname = "object.create_object_STL" # bl_label = "import_STL_obj" # bl_description = "import STL" # bl_options = {'REGISTER', 'UNDO'} # # # メニューを実行した時に呼ばれる関数 # def execute(self, context): # #bpy.ops.import_mesh.stl() # bpy.ops.mesh.primitive_ico_sphere_add() # print("Imported STLs") # return{'FINISHED'} # オブジェクト(ICO球)を生成するオペレーション # メニューを実行した時に呼ばれる関数 # メニューを構築する関数 # アドオン有効化時の処理 # アドオン無効化時の処理 # メイン処理
2.191201
2
desktop/core/ext-py/Django-1.2.3/django/middleware/csrf.py
digideskio/hortonworks-sandbox
19
6633043
<reponame>digideskio/hortonworks-sandbox<filename>desktop/core/ext-py/Django-1.2.3/django/middleware/csrf.py """ Cross Site Request Forgery Middleware. This module provides a middleware that implements protection against request forgeries from other sites. """ import itertools import re import random from django.conf import settings from django.core.urlresolvers import get_callable from django.utils.cache import patch_vary_headers from django.utils.hashcompat import md5_constructor from django.utils.safestring import mark_safe _POST_FORM_RE = \ re.compile(r'(<form\W[^>]*\bmethod\s*=\s*(\'|"|)POST(\'|"|)\b[^>]*>)', re.IGNORECASE) _HTML_TYPES = ('text/html', 'application/xhtml+xml') # Use the system (hardware-based) random number generator if it exists. if hasattr(random, 'SystemRandom'): randrange = random.SystemRandom().randrange else: randrange = random.randrange _MAX_CSRF_KEY = 18446744073709551616L # 2 << 63 REASON_NO_REFERER = "Referer checking failed - no Referer." REASON_BAD_REFERER = "Referer checking failed - %s does not match %s." REASON_NO_COOKIE = "No CSRF or session cookie." REASON_NO_CSRF_COOKIE = "CSRF cookie not set." REASON_BAD_TOKEN = "CSRF token missing or incorrect." def _get_failure_view(): """ Returns the view to be used for CSRF rejections """ return get_callable(settings.CSRF_FAILURE_VIEW) def _get_new_csrf_key(): return md5_constructor("%s%s" % (randrange(0, _MAX_CSRF_KEY), settings.SECRET_KEY)).hexdigest() def _make_legacy_session_token(session_id): return md5_constructor(settings.SECRET_KEY + session_id).hexdigest() def get_token(request): """ Returns the the CSRF token required for a POST form. The token is an alphanumeric value. A side effect of calling this function is to make the the csrf_protect decorator and the CsrfViewMiddleware add a CSRF cookie and a 'Vary: Cookie' header to the outgoing response. For this reason, you may need to use this function lazily, as is done by the csrf context processor. """ request.META["CSRF_COOKIE_USED"] = True return request.META.get("CSRF_COOKIE", None) def _sanitize_token(token): # Allow only alphanum, and ensure we return a 'str' for the sake of the post # processing middleware. token = re.sub('[^a-zA-Z0-9]', '', str(token.decode('ascii', 'ignore'))) if token == "": # In case the cookie has been truncated to nothing at some point. return _get_new_csrf_key() else: return token class CsrfViewMiddleware(object): """ Middleware that requires a present and correct csrfmiddlewaretoken for POST requests that have a CSRF cookie, and sets an outgoing CSRF cookie. This middleware should be used in conjunction with the csrf_token template tag. """ def process_view(self, request, callback, callback_args, callback_kwargs): if getattr(request, 'csrf_processing_done', False): return None reject = lambda s: _get_failure_view()(request, reason=s) def accept(): # Avoid checking the request twice by adding a custom attribute to # request. This will be relevant when both decorator and middleware # are used. request.csrf_processing_done = True return None # If the user doesn't have a CSRF cookie, generate one and store it in the # request, so it's available to the view. We'll store it in a cookie when # we reach the response. try: # In case of cookies from untrusted sources, we strip anything # dangerous at this point, so that the cookie + token will have the # same, sanitized value. request.META["CSRF_COOKIE"] = _sanitize_token(request.COOKIES[settings.CSRF_COOKIE_NAME]) cookie_is_new = False except KeyError: # No cookie, so create one. This will be sent with the next # response. request.META["CSRF_COOKIE"] = _get_new_csrf_key() # Set a flag to allow us to fall back and allow the session id in # place of a CSRF cookie for this request only. cookie_is_new = True # Wait until request.META["CSRF_COOKIE"] has been manipulated before # bailing out, so that get_token still works if getattr(callback, 'csrf_exempt', False): return None if request.method == 'POST': if getattr(request, '_dont_enforce_csrf_checks', False): # Mechanism to turn off CSRF checks for test suite. It comes after # the creation of CSRF cookies, so that everything else continues to # work exactly the same (e.g. cookies are sent etc), but before the # any branches that call reject() return accept() if request.is_ajax(): # .is_ajax() is based on the presence of X-Requested-With. In # the context of a browser, this can only be sent if using # XmlHttpRequest. Browsers implement careful policies for # XmlHttpRequest: # # * Normally, only same-domain requests are allowed. # # * Some browsers (e.g. Firefox 3.5 and later) relax this # carefully: # # * if it is a 'simple' GET or POST request (which can # include no custom headers), it is allowed to be cross # domain. These requests will not be recognized as AJAX. # # * if a 'preflight' check with the server confirms that the # server is expecting and allows the request, cross domain # requests even with custom headers are allowed. These # requests will be recognized as AJAX, but can only get # through when the developer has specifically opted in to # allowing the cross-domain POST request. # # So in all cases, it is safe to allow these requests through. return accept() if request.is_secure(): # Strict referer checking for HTTPS referer = request.META.get('HTTP_REFERER') if referer is None: return reject(REASON_NO_REFERER) # The following check ensures that the referer is HTTPS, # the domains match and the ports match. This might be too strict. good_referer = 'https://%s/' % request.get_host() if not referer.startswith(good_referer): return reject(REASON_BAD_REFERER % (referer, good_referer)) # If the user didn't already have a CSRF cookie, then fall back to # the Django 1.1 method (hash of session ID), so a request is not # rejected if the form was sent to the user before upgrading to the # Django 1.2 method (session independent nonce) if cookie_is_new: try: session_id = request.COOKIES[settings.SESSION_COOKIE_NAME] csrf_token = _make_legacy_session_token(session_id) except KeyError: # No CSRF cookie and no session cookie. For POST requests, # we insist on a CSRF cookie, and in this way we can avoid # all CSRF attacks, including login CSRF. return reject(REASON_NO_COOKIE) else: csrf_token = request.META["CSRF_COOKIE"] # check incoming token request_csrf_token = request.POST.get('csrfmiddlewaretoken', None) if request_csrf_token != csrf_token: if cookie_is_new: # probably a problem setting the CSRF cookie return reject(REASON_NO_CSRF_COOKIE) else: return reject(REASON_BAD_TOKEN) return accept() def process_response(self, request, response): if getattr(response, 'csrf_processing_done', False): return response # If CSRF_COOKIE is unset, then CsrfViewMiddleware.process_view was # never called, probaby because a request middleware returned a response # (for example, contrib.auth redirecting to a login page). if request.META.get("CSRF_COOKIE") is None: return response if not request.META.get("CSRF_COOKIE_USED", False): return response # Set the CSRF cookie even if it's already set, so we renew the expiry timer. response.set_cookie(settings.CSRF_COOKIE_NAME, request.META["CSRF_COOKIE"], max_age = 60 * 60 * 24 * 7 * 52, domain=settings.CSRF_COOKIE_DOMAIN) # Content varies with the CSRF cookie, so set the Vary header. patch_vary_headers(response, ('Cookie',)) response.csrf_processing_done = True return response class CsrfResponseMiddleware(object): """ DEPRECATED Middleware that post-processes a response to add a csrfmiddlewaretoken. This exists for backwards compatibility and as an interim measure until applications are converted to using use the csrf_token template tag instead. It will be removed in Django 1.4. """ def __init__(self): import warnings warnings.warn( "CsrfResponseMiddleware and CsrfMiddleware are deprecated; use CsrfViewMiddleware and the template tag instead (see CSRF documentation).", PendingDeprecationWarning ) def process_response(self, request, response): if getattr(response, 'csrf_exempt', False): return response if response['Content-Type'].split(';')[0] in _HTML_TYPES: csrf_token = get_token(request) # If csrf_token is None, we have no token for this request, which probably # means that this is a response from a request middleware. if csrf_token is None: return response # ensure we don't add the 'id' attribute twice (HTML validity) idattributes = itertools.chain(("id='csrfmiddlewaretoken'",), itertools.repeat('')) def add_csrf_field(match): """Returns the matched <form> tag plus the added <input> element""" return mark_safe(match.group() + "<div style='display:none;'>" + \ "<input type='hidden' " + idattributes.next() + \ " name='csrfmiddlewaretoken' value='" + csrf_token + \ "' /></div>") # Modify any POST forms response.content, n = _POST_FORM_RE.subn(add_csrf_field, response.content) if n > 0: # Content varies with the CSRF cookie, so set the Vary header. patch_vary_headers(response, ('Cookie',)) # Since the content has been modified, any Etag will now be # incorrect. We could recalculate, but only if we assume that # the Etag was set by CommonMiddleware. The safest thing is just # to delete. See bug #9163 del response['ETag'] return response class CsrfMiddleware(object): """ Django middleware that adds protection against Cross Site Request Forgeries by adding hidden form fields to POST forms and checking requests for the correct value. CsrfMiddleware uses two middleware, CsrfViewMiddleware and CsrfResponseMiddleware, which can be used independently. It is recommended to use only CsrfViewMiddleware and use the csrf_token template tag in templates for inserting the token. """ # We can't just inherit from CsrfViewMiddleware and CsrfResponseMiddleware # because both have process_response methods. def __init__(self): self.response_middleware = CsrfResponseMiddleware() self.view_middleware = CsrfViewMiddleware() def process_response(self, request, resp): # We must do the response post-processing first, because that calls # get_token(), which triggers a flag saying that the CSRF cookie needs # to be sent (done in CsrfViewMiddleware.process_response) resp2 = self.response_middleware.process_response(request, resp) return self.view_middleware.process_response(request, resp2) def process_view(self, request, callback, callback_args, callback_kwargs): return self.view_middleware.process_view(request, callback, callback_args, callback_kwargs)
""" Cross Site Request Forgery Middleware. This module provides a middleware that implements protection against request forgeries from other sites. """ import itertools import re import random from django.conf import settings from django.core.urlresolvers import get_callable from django.utils.cache import patch_vary_headers from django.utils.hashcompat import md5_constructor from django.utils.safestring import mark_safe _POST_FORM_RE = \ re.compile(r'(<form\W[^>]*\bmethod\s*=\s*(\'|"|)POST(\'|"|)\b[^>]*>)', re.IGNORECASE) _HTML_TYPES = ('text/html', 'application/xhtml+xml') # Use the system (hardware-based) random number generator if it exists. if hasattr(random, 'SystemRandom'): randrange = random.SystemRandom().randrange else: randrange = random.randrange _MAX_CSRF_KEY = 18446744073709551616L # 2 << 63 REASON_NO_REFERER = "Referer checking failed - no Referer." REASON_BAD_REFERER = "Referer checking failed - %s does not match %s." REASON_NO_COOKIE = "No CSRF or session cookie." REASON_NO_CSRF_COOKIE = "CSRF cookie not set." REASON_BAD_TOKEN = "CSRF token missing or incorrect." def _get_failure_view(): """ Returns the view to be used for CSRF rejections """ return get_callable(settings.CSRF_FAILURE_VIEW) def _get_new_csrf_key(): return md5_constructor("%s%s" % (randrange(0, _MAX_CSRF_KEY), settings.SECRET_KEY)).hexdigest() def _make_legacy_session_token(session_id): return md5_constructor(settings.SECRET_KEY + session_id).hexdigest() def get_token(request): """ Returns the the CSRF token required for a POST form. The token is an alphanumeric value. A side effect of calling this function is to make the the csrf_protect decorator and the CsrfViewMiddleware add a CSRF cookie and a 'Vary: Cookie' header to the outgoing response. For this reason, you may need to use this function lazily, as is done by the csrf context processor. """ request.META["CSRF_COOKIE_USED"] = True return request.META.get("CSRF_COOKIE", None) def _sanitize_token(token): # Allow only alphanum, and ensure we return a 'str' for the sake of the post # processing middleware. token = re.sub('[^a-zA-Z0-9]', '', str(token.decode('ascii', 'ignore'))) if token == "": # In case the cookie has been truncated to nothing at some point. return _get_new_csrf_key() else: return token class CsrfViewMiddleware(object): """ Middleware that requires a present and correct csrfmiddlewaretoken for POST requests that have a CSRF cookie, and sets an outgoing CSRF cookie. This middleware should be used in conjunction with the csrf_token template tag. """ def process_view(self, request, callback, callback_args, callback_kwargs): if getattr(request, 'csrf_processing_done', False): return None reject = lambda s: _get_failure_view()(request, reason=s) def accept(): # Avoid checking the request twice by adding a custom attribute to # request. This will be relevant when both decorator and middleware # are used. request.csrf_processing_done = True return None # If the user doesn't have a CSRF cookie, generate one and store it in the # request, so it's available to the view. We'll store it in a cookie when # we reach the response. try: # In case of cookies from untrusted sources, we strip anything # dangerous at this point, so that the cookie + token will have the # same, sanitized value. request.META["CSRF_COOKIE"] = _sanitize_token(request.COOKIES[settings.CSRF_COOKIE_NAME]) cookie_is_new = False except KeyError: # No cookie, so create one. This will be sent with the next # response. request.META["CSRF_COOKIE"] = _get_new_csrf_key() # Set a flag to allow us to fall back and allow the session id in # place of a CSRF cookie for this request only. cookie_is_new = True # Wait until request.META["CSRF_COOKIE"] has been manipulated before # bailing out, so that get_token still works if getattr(callback, 'csrf_exempt', False): return None if request.method == 'POST': if getattr(request, '_dont_enforce_csrf_checks', False): # Mechanism to turn off CSRF checks for test suite. It comes after # the creation of CSRF cookies, so that everything else continues to # work exactly the same (e.g. cookies are sent etc), but before the # any branches that call reject() return accept() if request.is_ajax(): # .is_ajax() is based on the presence of X-Requested-With. In # the context of a browser, this can only be sent if using # XmlHttpRequest. Browsers implement careful policies for # XmlHttpRequest: # # * Normally, only same-domain requests are allowed. # # * Some browsers (e.g. Firefox 3.5 and later) relax this # carefully: # # * if it is a 'simple' GET or POST request (which can # include no custom headers), it is allowed to be cross # domain. These requests will not be recognized as AJAX. # # * if a 'preflight' check with the server confirms that the # server is expecting and allows the request, cross domain # requests even with custom headers are allowed. These # requests will be recognized as AJAX, but can only get # through when the developer has specifically opted in to # allowing the cross-domain POST request. # # So in all cases, it is safe to allow these requests through. return accept() if request.is_secure(): # Strict referer checking for HTTPS referer = request.META.get('HTTP_REFERER') if referer is None: return reject(REASON_NO_REFERER) # The following check ensures that the referer is HTTPS, # the domains match and the ports match. This might be too strict. good_referer = 'https://%s/' % request.get_host() if not referer.startswith(good_referer): return reject(REASON_BAD_REFERER % (referer, good_referer)) # If the user didn't already have a CSRF cookie, then fall back to # the Django 1.1 method (hash of session ID), so a request is not # rejected if the form was sent to the user before upgrading to the # Django 1.2 method (session independent nonce) if cookie_is_new: try: session_id = request.COOKIES[settings.SESSION_COOKIE_NAME] csrf_token = _make_legacy_session_token(session_id) except KeyError: # No CSRF cookie and no session cookie. For POST requests, # we insist on a CSRF cookie, and in this way we can avoid # all CSRF attacks, including login CSRF. return reject(REASON_NO_COOKIE) else: csrf_token = request.META["CSRF_COOKIE"] # check incoming token request_csrf_token = request.POST.get('csrfmiddlewaretoken', None) if request_csrf_token != csrf_token: if cookie_is_new: # probably a problem setting the CSRF cookie return reject(REASON_NO_CSRF_COOKIE) else: return reject(REASON_BAD_TOKEN) return accept() def process_response(self, request, response): if getattr(response, 'csrf_processing_done', False): return response # If CSRF_COOKIE is unset, then CsrfViewMiddleware.process_view was # never called, probaby because a request middleware returned a response # (for example, contrib.auth redirecting to a login page). if request.META.get("CSRF_COOKIE") is None: return response if not request.META.get("CSRF_COOKIE_USED", False): return response # Set the CSRF cookie even if it's already set, so we renew the expiry timer. response.set_cookie(settings.CSRF_COOKIE_NAME, request.META["CSRF_COOKIE"], max_age = 60 * 60 * 24 * 7 * 52, domain=settings.CSRF_COOKIE_DOMAIN) # Content varies with the CSRF cookie, so set the Vary header. patch_vary_headers(response, ('Cookie',)) response.csrf_processing_done = True return response class CsrfResponseMiddleware(object): """ DEPRECATED Middleware that post-processes a response to add a csrfmiddlewaretoken. This exists for backwards compatibility and as an interim measure until applications are converted to using use the csrf_token template tag instead. It will be removed in Django 1.4. """ def __init__(self): import warnings warnings.warn( "CsrfResponseMiddleware and CsrfMiddleware are deprecated; use CsrfViewMiddleware and the template tag instead (see CSRF documentation).", PendingDeprecationWarning ) def process_response(self, request, response): if getattr(response, 'csrf_exempt', False): return response if response['Content-Type'].split(';')[0] in _HTML_TYPES: csrf_token = get_token(request) # If csrf_token is None, we have no token for this request, which probably # means that this is a response from a request middleware. if csrf_token is None: return response # ensure we don't add the 'id' attribute twice (HTML validity) idattributes = itertools.chain(("id='csrfmiddlewaretoken'",), itertools.repeat('')) def add_csrf_field(match): """Returns the matched <form> tag plus the added <input> element""" return mark_safe(match.group() + "<div style='display:none;'>" + \ "<input type='hidden' " + idattributes.next() + \ " name='csrfmiddlewaretoken' value='" + csrf_token + \ "' /></div>") # Modify any POST forms response.content, n = _POST_FORM_RE.subn(add_csrf_field, response.content) if n > 0: # Content varies with the CSRF cookie, so set the Vary header. patch_vary_headers(response, ('Cookie',)) # Since the content has been modified, any Etag will now be # incorrect. We could recalculate, but only if we assume that # the Etag was set by CommonMiddleware. The safest thing is just # to delete. See bug #9163 del response['ETag'] return response class CsrfMiddleware(object): """ Django middleware that adds protection against Cross Site Request Forgeries by adding hidden form fields to POST forms and checking requests for the correct value. CsrfMiddleware uses two middleware, CsrfViewMiddleware and CsrfResponseMiddleware, which can be used independently. It is recommended to use only CsrfViewMiddleware and use the csrf_token template tag in templates for inserting the token. """ # We can't just inherit from CsrfViewMiddleware and CsrfResponseMiddleware # because both have process_response methods. def __init__(self): self.response_middleware = CsrfResponseMiddleware() self.view_middleware = CsrfViewMiddleware() def process_response(self, request, resp): # We must do the response post-processing first, because that calls # get_token(), which triggers a flag saying that the CSRF cookie needs # to be sent (done in CsrfViewMiddleware.process_response) resp2 = self.response_middleware.process_response(request, resp) return self.view_middleware.process_response(request, resp2) def process_view(self, request, callback, callback_args, callback_kwargs): return self.view_middleware.process_view(request, callback, callback_args, callback_kwargs)
en
0.883026
Cross Site Request Forgery Middleware. This module provides a middleware that implements protection against request forgeries from other sites. # Use the system (hardware-based) random number generator if it exists. # 2 << 63 Returns the view to be used for CSRF rejections Returns the the CSRF token required for a POST form. The token is an alphanumeric value. A side effect of calling this function is to make the the csrf_protect decorator and the CsrfViewMiddleware add a CSRF cookie and a 'Vary: Cookie' header to the outgoing response. For this reason, you may need to use this function lazily, as is done by the csrf context processor. # Allow only alphanum, and ensure we return a 'str' for the sake of the post # processing middleware. # In case the cookie has been truncated to nothing at some point. Middleware that requires a present and correct csrfmiddlewaretoken for POST requests that have a CSRF cookie, and sets an outgoing CSRF cookie. This middleware should be used in conjunction with the csrf_token template tag. # Avoid checking the request twice by adding a custom attribute to # request. This will be relevant when both decorator and middleware # are used. # If the user doesn't have a CSRF cookie, generate one and store it in the # request, so it's available to the view. We'll store it in a cookie when # we reach the response. # In case of cookies from untrusted sources, we strip anything # dangerous at this point, so that the cookie + token will have the # same, sanitized value. # No cookie, so create one. This will be sent with the next # response. # Set a flag to allow us to fall back and allow the session id in # place of a CSRF cookie for this request only. # Wait until request.META["CSRF_COOKIE"] has been manipulated before # bailing out, so that get_token still works # Mechanism to turn off CSRF checks for test suite. It comes after # the creation of CSRF cookies, so that everything else continues to # work exactly the same (e.g. cookies are sent etc), but before the # any branches that call reject() # .is_ajax() is based on the presence of X-Requested-With. In # the context of a browser, this can only be sent if using # XmlHttpRequest. Browsers implement careful policies for # XmlHttpRequest: # # * Normally, only same-domain requests are allowed. # # * Some browsers (e.g. Firefox 3.5 and later) relax this # carefully: # # * if it is a 'simple' GET or POST request (which can # include no custom headers), it is allowed to be cross # domain. These requests will not be recognized as AJAX. # # * if a 'preflight' check with the server confirms that the # server is expecting and allows the request, cross domain # requests even with custom headers are allowed. These # requests will be recognized as AJAX, but can only get # through when the developer has specifically opted in to # allowing the cross-domain POST request. # # So in all cases, it is safe to allow these requests through. # Strict referer checking for HTTPS # The following check ensures that the referer is HTTPS, # the domains match and the ports match. This might be too strict. # If the user didn't already have a CSRF cookie, then fall back to # the Django 1.1 method (hash of session ID), so a request is not # rejected if the form was sent to the user before upgrading to the # Django 1.2 method (session independent nonce) # No CSRF cookie and no session cookie. For POST requests, # we insist on a CSRF cookie, and in this way we can avoid # all CSRF attacks, including login CSRF. # check incoming token # probably a problem setting the CSRF cookie # If CSRF_COOKIE is unset, then CsrfViewMiddleware.process_view was # never called, probaby because a request middleware returned a response # (for example, contrib.auth redirecting to a login page). # Set the CSRF cookie even if it's already set, so we renew the expiry timer. # Content varies with the CSRF cookie, so set the Vary header. DEPRECATED Middleware that post-processes a response to add a csrfmiddlewaretoken. This exists for backwards compatibility and as an interim measure until applications are converted to using use the csrf_token template tag instead. It will be removed in Django 1.4. # If csrf_token is None, we have no token for this request, which probably # means that this is a response from a request middleware. # ensure we don't add the 'id' attribute twice (HTML validity) Returns the matched <form> tag plus the added <input> element # Modify any POST forms # Content varies with the CSRF cookie, so set the Vary header. # Since the content has been modified, any Etag will now be # incorrect. We could recalculate, but only if we assume that # the Etag was set by CommonMiddleware. The safest thing is just # to delete. See bug #9163 Django middleware that adds protection against Cross Site Request Forgeries by adding hidden form fields to POST forms and checking requests for the correct value. CsrfMiddleware uses two middleware, CsrfViewMiddleware and CsrfResponseMiddleware, which can be used independently. It is recommended to use only CsrfViewMiddleware and use the csrf_token template tag in templates for inserting the token. # We can't just inherit from CsrfViewMiddleware and CsrfResponseMiddleware # because both have process_response methods. # We must do the response post-processing first, because that calls # get_token(), which triggers a flag saying that the CSRF cookie needs # to be sent (done in CsrfViewMiddleware.process_response)
2.375316
2
unittests/transfer_ownership_tester.py
asford/pyplusplus
3
6633044
<reponame>asford/pyplusplus # Copyright 2004-2008 <NAME>. # Distributed under the Boost Software License, Version 1.0. (See # accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) import os import sys import unittest import fundamental_tester_base from pyplusplus import code_creators from pyplusplus import function_transformers as ft from pyplusplus.module_builder import call_policies decref_code = \ """if (this->m_pyobj) { //Py_DECREF(this->m_pyobj); this->m_pyobj = 0; }""" incref_code = \ """ if( !this->m_pyobj) { this->m_pyobj = boost::python::detail::wrapper_base_::get_owner(*this); Py_INCREF(this->m_pyobj); } """ impl_conv_code = \ """ boost::python::implicitly_convertible< std::auto_ptr< %(from)s >, std::auto_ptr< %(to)s > >(); """ class tester_t(fundamental_tester_base.fundamental_tester_base_t): EXTENSION_NAME = 'transfer_ownership' def __init__( self, *args ): fundamental_tester_base.fundamental_tester_base_t.__init__( self , tester_t.EXTENSION_NAME , *args ) def customize( self, mb ): event_clss = mb.classes( lambda cls: cls.name in ( 'event_t', 'do_nothing_t' ) ) for cls in event_clss: cls.add_destructor_code( decref_code ) cls.add_wrapper_code( 'PyObject* m_pyobj;' ) cls.set_constructors_body( 'm_pyobj=0;' ) cls.mem_fun( 'notify' ).add_override_precall_code( incref_code ) cls.mem_fun( 'notify' ).add_default_precall_code( incref_code ) cls.held_type = 'std::auto_ptr< %s >' % cls.wrapper_alias cls.add_registration_code( impl_conv_code % { 'from' : cls.wrapper_alias , 'to' : cls.decl_string } , False) for base in cls.recursive_bases: if base.access_type == 'public': cls.add_registration_code( #from class to its base impl_conv_code % { 'from' : cls.decl_string , 'to' : base.related_class.decl_string } , False) cls.add_registration_code( #from wrapper to clas base class impl_conv_code % { 'from' : cls.wrapper_alias , 'to' : base.related_class.decl_string } , False) schedule = mb.mem_fun( 'schedule' ) schedule.add_transformation( ft.transfer_ownership(0), alias='schedule' ) simulator = mb.class_( 'simulator_t' ) simulator.mem_fun( 'get_event' ).call_policies \ = call_policies.return_internal_reference() def run_tests( self, module): class py_event_t( module.event_t ): def __init__( self, container ): module.event_t.__init__( self ) self.container = container def notify( self ): self.container.append( 1 ) print('1') notify_data = [] simulator = module.simulator_t() print('2') event = py_event_t( notify_data ) print('3') simulator.schedule( event ) print('refcount: ', sys.getrefcount( event )) print('4') del event print('5') simulator.run() print('6') self.failUnless( notify_data[0] == 1 ) def create_suite(): suite = unittest.TestSuite() suite.addTest( unittest.makeSuite(tester_t)) return suite def run_suite(): unittest.TextTestRunner(verbosity=2).run( create_suite() ) if __name__ == "__main__": run_suite()
# Copyright 2004-2008 <NAME>. # Distributed under the Boost Software License, Version 1.0. (See # accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) import os import sys import unittest import fundamental_tester_base from pyplusplus import code_creators from pyplusplus import function_transformers as ft from pyplusplus.module_builder import call_policies decref_code = \ """if (this->m_pyobj) { //Py_DECREF(this->m_pyobj); this->m_pyobj = 0; }""" incref_code = \ """ if( !this->m_pyobj) { this->m_pyobj = boost::python::detail::wrapper_base_::get_owner(*this); Py_INCREF(this->m_pyobj); } """ impl_conv_code = \ """ boost::python::implicitly_convertible< std::auto_ptr< %(from)s >, std::auto_ptr< %(to)s > >(); """ class tester_t(fundamental_tester_base.fundamental_tester_base_t): EXTENSION_NAME = 'transfer_ownership' def __init__( self, *args ): fundamental_tester_base.fundamental_tester_base_t.__init__( self , tester_t.EXTENSION_NAME , *args ) def customize( self, mb ): event_clss = mb.classes( lambda cls: cls.name in ( 'event_t', 'do_nothing_t' ) ) for cls in event_clss: cls.add_destructor_code( decref_code ) cls.add_wrapper_code( 'PyObject* m_pyobj;' ) cls.set_constructors_body( 'm_pyobj=0;' ) cls.mem_fun( 'notify' ).add_override_precall_code( incref_code ) cls.mem_fun( 'notify' ).add_default_precall_code( incref_code ) cls.held_type = 'std::auto_ptr< %s >' % cls.wrapper_alias cls.add_registration_code( impl_conv_code % { 'from' : cls.wrapper_alias , 'to' : cls.decl_string } , False) for base in cls.recursive_bases: if base.access_type == 'public': cls.add_registration_code( #from class to its base impl_conv_code % { 'from' : cls.decl_string , 'to' : base.related_class.decl_string } , False) cls.add_registration_code( #from wrapper to clas base class impl_conv_code % { 'from' : cls.wrapper_alias , 'to' : base.related_class.decl_string } , False) schedule = mb.mem_fun( 'schedule' ) schedule.add_transformation( ft.transfer_ownership(0), alias='schedule' ) simulator = mb.class_( 'simulator_t' ) simulator.mem_fun( 'get_event' ).call_policies \ = call_policies.return_internal_reference() def run_tests( self, module): class py_event_t( module.event_t ): def __init__( self, container ): module.event_t.__init__( self ) self.container = container def notify( self ): self.container.append( 1 ) print('1') notify_data = [] simulator = module.simulator_t() print('2') event = py_event_t( notify_data ) print('3') simulator.schedule( event ) print('refcount: ', sys.getrefcount( event )) print('4') del event print('5') simulator.run() print('6') self.failUnless( notify_data[0] == 1 ) def create_suite(): suite = unittest.TestSuite() suite.addTest( unittest.makeSuite(tester_t)) return suite def run_suite(): unittest.TextTestRunner(verbosity=2).run( create_suite() ) if __name__ == "__main__": run_suite()
en
0.302287
# Copyright 2004-2008 <NAME>. # Distributed under the Boost Software License, Version 1.0. (See # accompanying file LICENSE_1_0.txt or copy at # http://www.boost.org/LICENSE_1_0.txt) if (this->m_pyobj) { //Py_DECREF(this->m_pyobj); this->m_pyobj = 0; } if( !this->m_pyobj) { this->m_pyobj = boost::python::detail::wrapper_base_::get_owner(*this); Py_INCREF(this->m_pyobj); } boost::python::implicitly_convertible< std::auto_ptr< %(from)s >, std::auto_ptr< %(to)s > >(); #from class to its base #from wrapper to clas base class
1.869387
2
ex03/hello.py
Juju-62q/docker-handson
1
6633045
<filename>ex03/hello.py<gh_stars>1-10 print ("Hello Dockerfile COPY command!")
<filename>ex03/hello.py<gh_stars>1-10 print ("Hello Dockerfile COPY command!")
none
1
1.28737
1
src/valid_num.py
qtKite/leetcode-submissions
0
6633046
def isNumber(s): # can only contain 1 e # only one decimal # no other chars allowed # only one sign bit which is the left most # can contain spaces on left and right and not in between s = s.strip() decimal_count = 0 e_count = 0 e_pos = 0 sign_count = 0 sign_pos = 0 index = 0 num_arr = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9') has_error = False num_of_nums = 0 for i in s: if i == '-': sign_count += 1 sign_pos = index if i == '+': sign_count += 1 sign_pos = index if i not in num_arr: if i != 'e': if i != '.': has_error = True else: e_count += 1 e_pos = index else: num_of_nums += 1 if i == '.': decimal_count += 1 index += 1 if e_count > 1: print("1") has_error = True if e_count == 1 and num_of_nums == 0: print("2") has_error = True if e_count >= 1 and e_pos == 0: print("3") has_error = True if sign_count > 1: print("4") has_error = True if sign_count == 1 and sign_pos != 0: print("5") has_error = True if decimal_count > 1: print("6") has_error = True if num_of_nums == 0: print("7") has_error = True return not has_error print(isNumber('-1.'))
def isNumber(s): # can only contain 1 e # only one decimal # no other chars allowed # only one sign bit which is the left most # can contain spaces on left and right and not in between s = s.strip() decimal_count = 0 e_count = 0 e_pos = 0 sign_count = 0 sign_pos = 0 index = 0 num_arr = ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9') has_error = False num_of_nums = 0 for i in s: if i == '-': sign_count += 1 sign_pos = index if i == '+': sign_count += 1 sign_pos = index if i not in num_arr: if i != 'e': if i != '.': has_error = True else: e_count += 1 e_pos = index else: num_of_nums += 1 if i == '.': decimal_count += 1 index += 1 if e_count > 1: print("1") has_error = True if e_count == 1 and num_of_nums == 0: print("2") has_error = True if e_count >= 1 and e_pos == 0: print("3") has_error = True if sign_count > 1: print("4") has_error = True if sign_count == 1 and sign_pos != 0: print("5") has_error = True if decimal_count > 1: print("6") has_error = True if num_of_nums == 0: print("7") has_error = True return not has_error print(isNumber('-1.'))
en
0.904763
# can only contain 1 e # only one decimal # no other chars allowed # only one sign bit which is the left most # can contain spaces on left and right and not in between
3.655346
4
mmtbx/disorder/analyze_model.py
hbrunie/cctbx_project
2
6633047
<filename>mmtbx/disorder/analyze_model.py<gh_stars>1-10 from __future__ import absolute_import, division, print_function from mmtbx.disorder import backbone from scitbx.array_family import flex from scitbx.matrix import col from libtbx.str_utils import format_value as fv from libtbx import Auto, slots_getstate_setstate import math import sys from six.moves import range # XXX in order to make this run in parallel over many PDB IDs, I need to cheat # slightly and substitute pickle-able objects for the original classes in # iotbx.pdb.hierarchy. Note that parent relationships will be lost in the # process. class residue_group_proxy(slots_getstate_setstate): """Pickle-able stand-in for iotbx.pdb.hierarchy.residue_group.""" __slots__ = ["resseq", "icode", "_atom_groups", "_id_str", ] def __init__(self, residue_group): self.resseq = residue_group.resseq self.icode = residue_group.icode self._id_str = residue_group.id_str() self._atom_groups = [ ] for ag in residue_group.atom_groups(): self._atom_groups.append(atom_group_proxy(ag)) def id_str(self): return self._id_str def atom_groups(self): return self._atom_groups class atom_group_proxy(slots_getstate_setstate): """Pickle-able stand-in for iotbx.pdb.hierarchy.atom_group.""" __slots__ = [ "resname", "altloc", "_atoms", ] def __init__(self, atom_group): self.resname = atom_group.resname self.altloc = atom_group.altloc self._atoms = atoms_proxy(atom_group.atoms()) def atoms(self): return self._atoms class atoms_proxy(slots_getstate_setstate): """ Pickle-able stand-in for af::shared<atom> array, using the atom_with_labels objects as elements. """ __slots__ = [ "_atoms" ] def __init__(self, atoms): self._atoms = [ a.fetch_labels() for a in atoms ] def __getitem__(self, idx): return self._atoms[idx] def extract_occ(self): return flex.double([ a.occ for a in self._atoms ]) def extract_b(self): return flex.double([ a.b for a in self._atoms ]) class disordered_segment(object): """ A group of one or more adjacent residues presumed to form continuous alternate conformations. """ def __init__(self, residue_group): self.residue_groups = [ ] self.outliers = {} self.rotamers = {} self.ramachandran = {} self.backrubs = [] self.append_residue_group(residue_group) def __str__(self): if (self.n_residues() == 1): return self.residue_groups[0].id_str() else : return "%s --> %s" % (self.residue_groups[0].id_str(), self.residue_groups[-1].id_str()) def show(self, prefix="", out=sys.stdout): if (self.n_residues() == 1): print(prefix + "Segment: 1 residue (%s), %d conformers" % \ (self.residue_groups[0].id_str(), self.n_confs()), file=out) else : print(prefix+"Segment: %d residues (%s --> %s), %d conformers" %\ (self.n_residues(), self.residue_groups[0].id_str(), self.residue_groups[-1].id_str(), self.n_confs()), file=out) for i_res, rg in enumerate(self.residue_groups): print(prefix+" residue_group=%s" % rg.id_str(), file=out) for ag in rg.atom_groups(): rama = rota = None for o in self.ramachandran.get(rg.id_str(), []): if (o.altloc == ag.altloc): rama = o break for o in self.rotamers.get(rg.id_str(), []): if (o.altloc == ag.altloc): rota = o break print(prefix + " " + \ "atom_group=%1s %3s occ=%.2f phi=%-6s psi=%-6s rot=%-7s" %\ (ag.altloc, ag.resname, flex.mean(ag.atoms().extract_occ()), fv("%.1f", getattr(rama, "phi", None)), fv("%.1f", getattr(rama, "psi", None)), getattr(rota, "rotamer_name", None)), file=out) if (len(self.backrubs[i_res]) > 0): for backrub in self.backrubs[i_res] : backrub.show(out=out, prefix=prefix+" ") outliers = self.outliers[rg.id_str()] if (len(outliers) > 0): print(prefix+" MolProbity outliers:", file=out) for outlier in outliers : print(prefix+" %s: %s" % (type(outlier).__name__, str(outlier)), file=out) def get_previous_conformer(self, index=0): rg = self.residue_groups[-1] i_group = 0 for atom_group in rg.atom_groups(): if (atom_group.altloc.strip() != ''): if (i_group == index): return atom_group else : i_group += 1 return None def is_part_of_segment(self, other, ignore_inconsistent_occupancy=False, ignore_inconsistent_n_conformers=False, max_peptide_bond_distance_within_conformer=2.0): """ Determine whether a residue_group object is part of the same continuous disordered segment. The precise meaning of this can be adjusted depending on user preferences; by default a continuous segment must have the same number of conformers for each residue, and occupancies must be constrained for each conformation. The latter assumption will probably be violated most often. """ other_groups = other.atom_groups() assert len(other_groups) >= 2 if (len(other_groups) != len(self.residue_groups[-1].atom_groups())): if (not ignore_inconsistent_n_conformers): return False i_group = 0 for atom_group in other_groups : if (atom_group.altloc != ''): other_atoms = atom_group.atoms() prev_group = self.get_previous_conformer(index=i_group) if (prev_group is None): assert ignore_inconsistent_n_conformers break i_group += 1 if (prev_group.altloc != atom_group.altloc): return False prev_atoms = prev_group.atoms() if (prev_atoms[0].occ != other_atoms[0].occ): if (not ignore_inconsistent_occupancy): return False curr_n, prev_c = None, None for atom in prev_atoms : if (atom.name == " C "): prev_c = atom.xyz break for atom in other_atoms : if (atom.name == " N "): curr_n = atom.xyz break if (curr_n is None) or (prev_c is None): return False dist = abs(col(curr_n) - col(prev_c)) if (dist > max_peptide_bond_distance_within_conformer): return False return True def append_residue_group(self, rg): self.residue_groups.append(residue_group_proxy(rg)) rg_backrubs = backbone.find_backrubs(residue_group=rg) self.backrubs.append(rg_backrubs) def detect_sequence_disorder(self): """ Find any residue groups with heterogeneous chemical identity. """ disordered = [] for rg in self.residue_groups : resnames = set([ ag.resname.upper() for ag in rg.atom_groups() ]) if (len(resnames) > 1): disordered.append((rg.id_str(), sorted(list(resnames)))) return disordered def n_residues(self): return len(self.residue_groups) def n_partial_splits(self, join_at_calpha=False): """ Count the number of residues where not all atoms have alternates. """ n_partial = 0 for residue_group in self.residue_groups : for atom_group in residue_group.atom_groups(): if (atom_group.altloc.strip() == ''): if (join_at_calpha): for atom in atom_group.atoms(): if (atom.name == " CA "): n_partial += 1 break else : n_partial += 1 break return n_partial def n_confs(self): """ Count the number of alternate conformations. Sometimes this may not be the same for all residue groups, in which case a list is returned. """ all_n_confs = [] for residue_group in self.residue_groups : all_n_confs.append(0) for atom_group in residue_group.atom_groups(): if (atom_group.altloc.strip() != ''): all_n_confs[-1] += 1 all_n_confs_uniq = set(all_n_confs) if (len(all_n_confs_uniq) != 1): return sorted(list(all_n_confs_uniq)) return all_n_confs_uniq.pop() def n_confs_max(self): n_confs = self.n_confs() if isinstance(n_confs, int): return n_confs return max(n_confs) def minimum_atom_group_occupancy(self): occ_min = 1. for rg in self.residue_groups : for ag in rg.atom_groups(): ag_atoms = ag.atoms() total = 0 n_non_hd = 0 for atom in ag.atoms(): if (atom.element.strip() not in ["H", "D"]) and (atom.occ != 0): total += atom.occ n_non_hd += 1 if (total != 0): occ_mean_ag = total / n_non_hd occ_min = min(occ_min, occ_mean_ag) return occ_min def get_all_conformer_distances(self, backbone=None): n_confs = self.n_confs() assert isinstance(n_confs, int) pairwise_distances = [] for i_conf in range(n_confs - 1): indices = [i_conf, i_conf + 1] pairwise_distances.append(self.get_conformer_distances( conformer_indices=indices, backbone=backbone)) return pairwise_distances def get_conformer_distances(self, conformer_indices=Auto, backbone=None): """ Calculate the distances between atoms in the specified pair of conformers (must be present for all residue groups). """ # XXX the way this is handled is somewhat clumsy, but necessary because # there is no requirement that atom groups have the same number of atoms or # even the same chemical identity (although they are assumed to be amino # acids) distances = [] for rg in self.residue_groups : i_ag = 0 atom_groups = rg.atom_groups() if (conformer_indices is Auto): if (atom_groups[0].altloc.strip() == ''): if (len(atom_groups) <= 2): continue else : conformer_indices = (1,2) else : conformer_indices = (0,1) else : assert (len(conformer_indices) == 2) ag1 = rg.atom_groups()[conformer_indices[0]] ag2 = rg.atom_groups()[conformer_indices[1]] if ((ag1.altloc.strip() == '') and (conformer_indices[0] == 0) and (len(atom_groups) >= 3)): ag1 = rg.atom_groups()[conformer_indices[0]+1] ag2 = rg.atom_groups()[conformer_indices[1]+1] for atom1 in ag1.atoms(): name = atom1.name.strip() element = atom1.element.upper().strip() if (element in ["H","D"]): continue if (backbone is not None): if (((backbone) and (not name in ["C","CA","N","O"])) or ((not backbone) and (name in ["C","CA","N","O"]))): continue for atom2 in ag2.atoms(): if (atom1.name == atom2.name): distances.append(abs(col(atom1.xyz) - col(atom2.xyz))) return distances def max_distance_between_conformers(self, backbone=None): paired_distances = self.get_all_conformer_distances(backbone=backbone) paired_max = [] for distances in paired_distances : if (len(distances) > 0): paired_max.append(max(distances)) if (len(paired_max) > 0): return max(paired_max) return None def max_rmsd_between_conformers(self, backbone=None): paired_distances = self.get_all_conformer_distances(backbone=backbone) rmsd_max = None for distances in paired_distances : if (len(distances) == 0): continue rmsd = math.sqrt(sum([ dxyz**2 for dxyz in distances]) / len(distances)) if (rmsd_max is None) or (rmsd > rmsd_max): rmsd_max = rmsd return rmsd_max def extract_validation_results(self, multi_criterion): """ Find the matching validation result objects from the multi-criterion object (see mmtbx/validation/molprobity/__init__.py). """ for rg in self.residue_groups : self.outliers[rg.id_str()] = [] self.rotamers[rg.id_str()] = [] self.ramachandran[rg.id_str()] = [] results = multi_criterion.get_residue_group_data(rg) for result in results.outliers : if result.is_outlier(): self.outliers[rg.id_str()].append(result) if type(result).__name__ == "rotamer" : self.rotamers[rg.id_str()].append(result) elif type(result).__name__ == "ramachandran" : self.ramachandran[rg.id_str()].append(result) def n_rotamer_changes(self, resname=None): n_changes = 0 for rg in self.residue_groups : resnames = set([ ag.resname.upper() for ag in rg.atom_groups() ]) if (len(resnames) > 1): continue elif (resname is not None) and (resnames.pop() != resname.upper()): continue rotamers = set(self.rotamers.get(rg.id_str(), [])) if (len(rotamers) > 1): n_changes += 1 return n_changes def find_peptide_flips(self, angle_cutoff=150): residues_and_angles = [] for rg in self.residue_groups : peptide_angle = carbonyl_oxygen_angle(rg) if (peptide_angle >= angle_cutoff): residues_and_angles.append((rg.id_str(), peptide_angle)) return residues_and_angles def n_cbeta_outliers(self): return self.n_outliers_of_type(analysis_type='cbeta') def n_outliers_of_type(self, analysis_type): n_outliers = 0 for rg in self.residue_groups : results = self.outliers.get(rg.id_str(), []) for result in results : if (type(result).__name__ == analysis_type) and result.is_outlier(): n_outliers += 1 return n_outliers #----------------------------------------------------------------------- # utility methods def is_joined_at_calpha(residue_group): for atom_group in residue_group.atom_groups(): if (atom_group.altloc.strip() == ''): for atom in atom_group.atoms(): if (atom.name == " CA "): return True return False def carbonyl_oxygen_angle(residue_group): """ Calculate angles between carbonyl oxygen (C=O) bonds in each pair of atom groups, and return the maximum value (or None if fewer than two such bonds are found). """ c_o_vectors = [] for atom_group in residue_group.atom_groups(): c_xyz = o_xyz = None for atom in atom_group.atoms(): if (atom.name.strip() == "O"): o_xyz = col(atom.xyz) elif (atom.name.strip() == "C"): c_xyz = col(atom.xyz) if (not None in [c_xyz, o_xyz]): c_o_vectors.append(c_xyz - o_xyz) if (len(c_o_vectors) >= 2): angles = [] i_ag = 0 while (i_ag < len(c_o_vectors) - 1): angles.append(c_o_vectors[i_ag].angle(c_o_vectors[i_ag+1], deg=True)) i_ag += 1 return max(angles) return None def only_amide_hydrogen_split(residue_group): """ Detect cases where the only alternate conformation is for the amide hydrogen, presumably because the previous residue was split and Reduce was used to add hydrogens. These residues are ignored in our analyses. """ for atom in residue_group.atoms(): labels = atom.fetch_labels() if (labels.altloc.strip() != '') and (atom.name != " H "): return False return True # XXX unused? def get_nconfs(pdb_hierarchy): """ Count the number of conformers in a structure. """ if (len(pdb_hierarchy.models()) > 1): n_confs = -1 # multiple MODELs aren't handled else : for chain in pdb_hierarchy.only_model().chains(): if (chain.is_protein()): confs = chain.conformers() if (len(confs) > n_confs): n_confs = len(confs) return n_confs #----------------------------------------------------------------------- class process_residue_groups(object): def __init__(self, chain, multi_criterion_validation=None, ignore_inconsistent_occupancy=False, log=sys.stdout): self.segments = [] self.chain_id = chain.id self.n_residue_groups = 0 self.n_disordered = 0 self.residue_counts = {} self.disordered_residue_counts = {} assert chain.is_protein() segment = None for residue_group in chain.residue_groups(): self.n_residue_groups += 1 atom_groups = residue_group.atom_groups() resname_1 = atom_groups[0].resname if (not resname_1 in self.residue_counts): self.residue_counts[resname_1] = 0 self.residue_counts[resname_1] += 1 if (len(atom_groups) > 1): self.n_disordered += 1 if only_amide_hydrogen_split(residue_group): print(" residue %s only has alt. confs. for H" % \ residue_group.id_str(), file=log) segment = None continue else : if (not resname_1 in self.disordered_residue_counts): self.disordered_residue_counts[resname_1] = 0 self.disordered_residue_counts[resname_1] += 1 if (segment is None): segment = disordered_segment(residue_group) self.segments.append(segment) else : if segment.is_part_of_segment(other=residue_group, ignore_inconsistent_occupancy=ignore_inconsistent_occupancy): segment.append_residue_group(residue_group) else : segment = disordered_segment(residue_group) self.segments.append(segment) else : segment = None if (multi_criterion_validation is not None): for segment in self.segments : segment.extract_validation_results(multi_criterion_validation) def show(self, prefix="", out=sys.stdout): print(prefix+"Chain '%s': %d residues, %d disordered" % ( self.chain_id, self.n_residue_groups, self.n_disordered), file=out) for segment in self.segments : segment.show(out=out, prefix=prefix+" ") class process_pdb_hierarchy(object): def __init__(self, pdb_hierarchy, validation, ignore_inconsistent_occupancy=False, log=sys.stdout): self.chains = [] self.n_residue_groups = 0 self.n_disordered = 0 self.sequence_disorder = [] self.n_rama_outliers = validation.ramalyze.n_outliers self.n_rota_outliers = validation.rotalyze.n_outliers self.n_cbeta_outliers = validation.cbetadev.n_outliers multi_criterion_validation = None if (validation is not None): multi_criterion_validation = validation.as_multi_criterion_view() for chain in pdb_hierarchy.only_model().chains(): if (chain.is_protein()): print(" processing chain '%s'" % chain.id, file=log) chain_info = process_residue_groups(chain=chain, multi_criterion_validation=multi_criterion_validation, ignore_inconsistent_occupancy=ignore_inconsistent_occupancy, log=log) self.chains.append(chain_info) self.n_residue_groups += chain_info.n_residue_groups self.n_disordered += chain_info.n_disordered for segment in chain_info.segments : self.sequence_disorder.extend(segment.detect_sequence_disorder()) else : print(" skipping non-protein chain '%s'" % chain.id, file=log) # TODO post-analysis @property def segments(self): for chain in self.chains : for segment in chain.segments : yield segment def max_rmsd_between_conformers(self, backbone=None): rmsd_max = segment_max = None for segment in self.segments : rmsd = segment.max_rmsd_between_conformers(backbone=backbone) if (rmsd_max is None) or (rmsd > rmsd_max): rmsd_max = rmsd segment_max = segment return rmsd_max, segment_max def max_distance_between_conformers(self, backbone=None): dist_max = segment_max = None for segment in self.segments : dist = segment.max_distance_between_conformers(backbone=backbone) if (dist_max is None) or (dist > dist_max): dist_max = dist segment_max = segment return dist_max, segment_max def show(self, out=sys.stdout, verbose=True): print("", file=out) print("Overall: %d protein chain(s)" % len(self.chains), file=out) print(" %d residues" % self.n_residue_groups, file=out) print(" %d disorered in %d segments" % (self.n_disordered, sum([ len(c.segments) for c in self.chains ])), file=out) if (len(self.sequence_disorder) > 0): print("%d heterogeneous residues:" % len(self.sequence_disorder), file=out) for rg_id, resnames in self.sequence_disorder : print(" %s (%s)" % (rg_id, ",".join(resnames))) n_rotamer_changes = n_cbeta_dev = n_partial_splits = 0 peptide_flips = [] for segment in self.segments : n_rotamer_changes += segment.n_rotamer_changes() n_cbeta_dev += segment.n_cbeta_outliers() n_partial_splits += segment.n_partial_splits(join_at_calpha=True) peptide_flips.extend(segment.find_peptide_flips()) print("%d disordered residues have multiple rotamers" % \ n_rotamer_changes, file=out) if (n_partial_splits > 0): print("%d disordered residues have a single C-alpha atom" % \ n_partial_splits, file=out) if (n_cbeta_dev > 0): print("%d disordered residues have C-beta deviations" % \ n_cbeta_dev, file=out) if (len(peptide_flips) > 0): print("%d apparent peptide flips:", file=out) for residue_id_str, angle in peptide_flips : print(" %s (angle=%.1f)" % (residue_id_str, angle), file=out) # distances and RMSDs rmsd_max, segment_max = self.max_rmsd_between_conformers() rmsd_mc_max, segment_mc_max = self.max_rmsd_between_conformers( backbone=True) assert (rmsd_max is not None) print("Max. RMSD between conformers:", file=out) print(" %6.3f (%s) [all non-H atoms]" % (rmsd_max, segment_max), file=out) if (rmsd_mc_max is not None): print(" %6.3f (%s) [backbone only]" %(rmsd_mc_max, segment_mc_max), file=out) dist_max, segment_max = self.max_distance_between_conformers() dist_mc_max, segment_mc_max = self.max_distance_between_conformers( backbone=True) assert (dist_max is not None) print("Max. distance between conformers:", file=out) print(" %6.3f (%s) [all non-H atoms]" % (dist_max, segment_max), file=out) if (dist_mc_max is not None): print(" %6.3f (%s) [backbone only]" %(dist_mc_max, segment_mc_max), file=out) # verbose output if (verbose): for chain in self.chains : chain.show(out=out) else : print("Run with --verbose to show per-residue results.", file=out) print("", file=out)
<filename>mmtbx/disorder/analyze_model.py<gh_stars>1-10 from __future__ import absolute_import, division, print_function from mmtbx.disorder import backbone from scitbx.array_family import flex from scitbx.matrix import col from libtbx.str_utils import format_value as fv from libtbx import Auto, slots_getstate_setstate import math import sys from six.moves import range # XXX in order to make this run in parallel over many PDB IDs, I need to cheat # slightly and substitute pickle-able objects for the original classes in # iotbx.pdb.hierarchy. Note that parent relationships will be lost in the # process. class residue_group_proxy(slots_getstate_setstate): """Pickle-able stand-in for iotbx.pdb.hierarchy.residue_group.""" __slots__ = ["resseq", "icode", "_atom_groups", "_id_str", ] def __init__(self, residue_group): self.resseq = residue_group.resseq self.icode = residue_group.icode self._id_str = residue_group.id_str() self._atom_groups = [ ] for ag in residue_group.atom_groups(): self._atom_groups.append(atom_group_proxy(ag)) def id_str(self): return self._id_str def atom_groups(self): return self._atom_groups class atom_group_proxy(slots_getstate_setstate): """Pickle-able stand-in for iotbx.pdb.hierarchy.atom_group.""" __slots__ = [ "resname", "altloc", "_atoms", ] def __init__(self, atom_group): self.resname = atom_group.resname self.altloc = atom_group.altloc self._atoms = atoms_proxy(atom_group.atoms()) def atoms(self): return self._atoms class atoms_proxy(slots_getstate_setstate): """ Pickle-able stand-in for af::shared<atom> array, using the atom_with_labels objects as elements. """ __slots__ = [ "_atoms" ] def __init__(self, atoms): self._atoms = [ a.fetch_labels() for a in atoms ] def __getitem__(self, idx): return self._atoms[idx] def extract_occ(self): return flex.double([ a.occ for a in self._atoms ]) def extract_b(self): return flex.double([ a.b for a in self._atoms ]) class disordered_segment(object): """ A group of one or more adjacent residues presumed to form continuous alternate conformations. """ def __init__(self, residue_group): self.residue_groups = [ ] self.outliers = {} self.rotamers = {} self.ramachandran = {} self.backrubs = [] self.append_residue_group(residue_group) def __str__(self): if (self.n_residues() == 1): return self.residue_groups[0].id_str() else : return "%s --> %s" % (self.residue_groups[0].id_str(), self.residue_groups[-1].id_str()) def show(self, prefix="", out=sys.stdout): if (self.n_residues() == 1): print(prefix + "Segment: 1 residue (%s), %d conformers" % \ (self.residue_groups[0].id_str(), self.n_confs()), file=out) else : print(prefix+"Segment: %d residues (%s --> %s), %d conformers" %\ (self.n_residues(), self.residue_groups[0].id_str(), self.residue_groups[-1].id_str(), self.n_confs()), file=out) for i_res, rg in enumerate(self.residue_groups): print(prefix+" residue_group=%s" % rg.id_str(), file=out) for ag in rg.atom_groups(): rama = rota = None for o in self.ramachandran.get(rg.id_str(), []): if (o.altloc == ag.altloc): rama = o break for o in self.rotamers.get(rg.id_str(), []): if (o.altloc == ag.altloc): rota = o break print(prefix + " " + \ "atom_group=%1s %3s occ=%.2f phi=%-6s psi=%-6s rot=%-7s" %\ (ag.altloc, ag.resname, flex.mean(ag.atoms().extract_occ()), fv("%.1f", getattr(rama, "phi", None)), fv("%.1f", getattr(rama, "psi", None)), getattr(rota, "rotamer_name", None)), file=out) if (len(self.backrubs[i_res]) > 0): for backrub in self.backrubs[i_res] : backrub.show(out=out, prefix=prefix+" ") outliers = self.outliers[rg.id_str()] if (len(outliers) > 0): print(prefix+" MolProbity outliers:", file=out) for outlier in outliers : print(prefix+" %s: %s" % (type(outlier).__name__, str(outlier)), file=out) def get_previous_conformer(self, index=0): rg = self.residue_groups[-1] i_group = 0 for atom_group in rg.atom_groups(): if (atom_group.altloc.strip() != ''): if (i_group == index): return atom_group else : i_group += 1 return None def is_part_of_segment(self, other, ignore_inconsistent_occupancy=False, ignore_inconsistent_n_conformers=False, max_peptide_bond_distance_within_conformer=2.0): """ Determine whether a residue_group object is part of the same continuous disordered segment. The precise meaning of this can be adjusted depending on user preferences; by default a continuous segment must have the same number of conformers for each residue, and occupancies must be constrained for each conformation. The latter assumption will probably be violated most often. """ other_groups = other.atom_groups() assert len(other_groups) >= 2 if (len(other_groups) != len(self.residue_groups[-1].atom_groups())): if (not ignore_inconsistent_n_conformers): return False i_group = 0 for atom_group in other_groups : if (atom_group.altloc != ''): other_atoms = atom_group.atoms() prev_group = self.get_previous_conformer(index=i_group) if (prev_group is None): assert ignore_inconsistent_n_conformers break i_group += 1 if (prev_group.altloc != atom_group.altloc): return False prev_atoms = prev_group.atoms() if (prev_atoms[0].occ != other_atoms[0].occ): if (not ignore_inconsistent_occupancy): return False curr_n, prev_c = None, None for atom in prev_atoms : if (atom.name == " C "): prev_c = atom.xyz break for atom in other_atoms : if (atom.name == " N "): curr_n = atom.xyz break if (curr_n is None) or (prev_c is None): return False dist = abs(col(curr_n) - col(prev_c)) if (dist > max_peptide_bond_distance_within_conformer): return False return True def append_residue_group(self, rg): self.residue_groups.append(residue_group_proxy(rg)) rg_backrubs = backbone.find_backrubs(residue_group=rg) self.backrubs.append(rg_backrubs) def detect_sequence_disorder(self): """ Find any residue groups with heterogeneous chemical identity. """ disordered = [] for rg in self.residue_groups : resnames = set([ ag.resname.upper() for ag in rg.atom_groups() ]) if (len(resnames) > 1): disordered.append((rg.id_str(), sorted(list(resnames)))) return disordered def n_residues(self): return len(self.residue_groups) def n_partial_splits(self, join_at_calpha=False): """ Count the number of residues where not all atoms have alternates. """ n_partial = 0 for residue_group in self.residue_groups : for atom_group in residue_group.atom_groups(): if (atom_group.altloc.strip() == ''): if (join_at_calpha): for atom in atom_group.atoms(): if (atom.name == " CA "): n_partial += 1 break else : n_partial += 1 break return n_partial def n_confs(self): """ Count the number of alternate conformations. Sometimes this may not be the same for all residue groups, in which case a list is returned. """ all_n_confs = [] for residue_group in self.residue_groups : all_n_confs.append(0) for atom_group in residue_group.atom_groups(): if (atom_group.altloc.strip() != ''): all_n_confs[-1] += 1 all_n_confs_uniq = set(all_n_confs) if (len(all_n_confs_uniq) != 1): return sorted(list(all_n_confs_uniq)) return all_n_confs_uniq.pop() def n_confs_max(self): n_confs = self.n_confs() if isinstance(n_confs, int): return n_confs return max(n_confs) def minimum_atom_group_occupancy(self): occ_min = 1. for rg in self.residue_groups : for ag in rg.atom_groups(): ag_atoms = ag.atoms() total = 0 n_non_hd = 0 for atom in ag.atoms(): if (atom.element.strip() not in ["H", "D"]) and (atom.occ != 0): total += atom.occ n_non_hd += 1 if (total != 0): occ_mean_ag = total / n_non_hd occ_min = min(occ_min, occ_mean_ag) return occ_min def get_all_conformer_distances(self, backbone=None): n_confs = self.n_confs() assert isinstance(n_confs, int) pairwise_distances = [] for i_conf in range(n_confs - 1): indices = [i_conf, i_conf + 1] pairwise_distances.append(self.get_conformer_distances( conformer_indices=indices, backbone=backbone)) return pairwise_distances def get_conformer_distances(self, conformer_indices=Auto, backbone=None): """ Calculate the distances between atoms in the specified pair of conformers (must be present for all residue groups). """ # XXX the way this is handled is somewhat clumsy, but necessary because # there is no requirement that atom groups have the same number of atoms or # even the same chemical identity (although they are assumed to be amino # acids) distances = [] for rg in self.residue_groups : i_ag = 0 atom_groups = rg.atom_groups() if (conformer_indices is Auto): if (atom_groups[0].altloc.strip() == ''): if (len(atom_groups) <= 2): continue else : conformer_indices = (1,2) else : conformer_indices = (0,1) else : assert (len(conformer_indices) == 2) ag1 = rg.atom_groups()[conformer_indices[0]] ag2 = rg.atom_groups()[conformer_indices[1]] if ((ag1.altloc.strip() == '') and (conformer_indices[0] == 0) and (len(atom_groups) >= 3)): ag1 = rg.atom_groups()[conformer_indices[0]+1] ag2 = rg.atom_groups()[conformer_indices[1]+1] for atom1 in ag1.atoms(): name = atom1.name.strip() element = atom1.element.upper().strip() if (element in ["H","D"]): continue if (backbone is not None): if (((backbone) and (not name in ["C","CA","N","O"])) or ((not backbone) and (name in ["C","CA","N","O"]))): continue for atom2 in ag2.atoms(): if (atom1.name == atom2.name): distances.append(abs(col(atom1.xyz) - col(atom2.xyz))) return distances def max_distance_between_conformers(self, backbone=None): paired_distances = self.get_all_conformer_distances(backbone=backbone) paired_max = [] for distances in paired_distances : if (len(distances) > 0): paired_max.append(max(distances)) if (len(paired_max) > 0): return max(paired_max) return None def max_rmsd_between_conformers(self, backbone=None): paired_distances = self.get_all_conformer_distances(backbone=backbone) rmsd_max = None for distances in paired_distances : if (len(distances) == 0): continue rmsd = math.sqrt(sum([ dxyz**2 for dxyz in distances]) / len(distances)) if (rmsd_max is None) or (rmsd > rmsd_max): rmsd_max = rmsd return rmsd_max def extract_validation_results(self, multi_criterion): """ Find the matching validation result objects from the multi-criterion object (see mmtbx/validation/molprobity/__init__.py). """ for rg in self.residue_groups : self.outliers[rg.id_str()] = [] self.rotamers[rg.id_str()] = [] self.ramachandran[rg.id_str()] = [] results = multi_criterion.get_residue_group_data(rg) for result in results.outliers : if result.is_outlier(): self.outliers[rg.id_str()].append(result) if type(result).__name__ == "rotamer" : self.rotamers[rg.id_str()].append(result) elif type(result).__name__ == "ramachandran" : self.ramachandran[rg.id_str()].append(result) def n_rotamer_changes(self, resname=None): n_changes = 0 for rg in self.residue_groups : resnames = set([ ag.resname.upper() for ag in rg.atom_groups() ]) if (len(resnames) > 1): continue elif (resname is not None) and (resnames.pop() != resname.upper()): continue rotamers = set(self.rotamers.get(rg.id_str(), [])) if (len(rotamers) > 1): n_changes += 1 return n_changes def find_peptide_flips(self, angle_cutoff=150): residues_and_angles = [] for rg in self.residue_groups : peptide_angle = carbonyl_oxygen_angle(rg) if (peptide_angle >= angle_cutoff): residues_and_angles.append((rg.id_str(), peptide_angle)) return residues_and_angles def n_cbeta_outliers(self): return self.n_outliers_of_type(analysis_type='cbeta') def n_outliers_of_type(self, analysis_type): n_outliers = 0 for rg in self.residue_groups : results = self.outliers.get(rg.id_str(), []) for result in results : if (type(result).__name__ == analysis_type) and result.is_outlier(): n_outliers += 1 return n_outliers #----------------------------------------------------------------------- # utility methods def is_joined_at_calpha(residue_group): for atom_group in residue_group.atom_groups(): if (atom_group.altloc.strip() == ''): for atom in atom_group.atoms(): if (atom.name == " CA "): return True return False def carbonyl_oxygen_angle(residue_group): """ Calculate angles between carbonyl oxygen (C=O) bonds in each pair of atom groups, and return the maximum value (or None if fewer than two such bonds are found). """ c_o_vectors = [] for atom_group in residue_group.atom_groups(): c_xyz = o_xyz = None for atom in atom_group.atoms(): if (atom.name.strip() == "O"): o_xyz = col(atom.xyz) elif (atom.name.strip() == "C"): c_xyz = col(atom.xyz) if (not None in [c_xyz, o_xyz]): c_o_vectors.append(c_xyz - o_xyz) if (len(c_o_vectors) >= 2): angles = [] i_ag = 0 while (i_ag < len(c_o_vectors) - 1): angles.append(c_o_vectors[i_ag].angle(c_o_vectors[i_ag+1], deg=True)) i_ag += 1 return max(angles) return None def only_amide_hydrogen_split(residue_group): """ Detect cases where the only alternate conformation is for the amide hydrogen, presumably because the previous residue was split and Reduce was used to add hydrogens. These residues are ignored in our analyses. """ for atom in residue_group.atoms(): labels = atom.fetch_labels() if (labels.altloc.strip() != '') and (atom.name != " H "): return False return True # XXX unused? def get_nconfs(pdb_hierarchy): """ Count the number of conformers in a structure. """ if (len(pdb_hierarchy.models()) > 1): n_confs = -1 # multiple MODELs aren't handled else : for chain in pdb_hierarchy.only_model().chains(): if (chain.is_protein()): confs = chain.conformers() if (len(confs) > n_confs): n_confs = len(confs) return n_confs #----------------------------------------------------------------------- class process_residue_groups(object): def __init__(self, chain, multi_criterion_validation=None, ignore_inconsistent_occupancy=False, log=sys.stdout): self.segments = [] self.chain_id = chain.id self.n_residue_groups = 0 self.n_disordered = 0 self.residue_counts = {} self.disordered_residue_counts = {} assert chain.is_protein() segment = None for residue_group in chain.residue_groups(): self.n_residue_groups += 1 atom_groups = residue_group.atom_groups() resname_1 = atom_groups[0].resname if (not resname_1 in self.residue_counts): self.residue_counts[resname_1] = 0 self.residue_counts[resname_1] += 1 if (len(atom_groups) > 1): self.n_disordered += 1 if only_amide_hydrogen_split(residue_group): print(" residue %s only has alt. confs. for H" % \ residue_group.id_str(), file=log) segment = None continue else : if (not resname_1 in self.disordered_residue_counts): self.disordered_residue_counts[resname_1] = 0 self.disordered_residue_counts[resname_1] += 1 if (segment is None): segment = disordered_segment(residue_group) self.segments.append(segment) else : if segment.is_part_of_segment(other=residue_group, ignore_inconsistent_occupancy=ignore_inconsistent_occupancy): segment.append_residue_group(residue_group) else : segment = disordered_segment(residue_group) self.segments.append(segment) else : segment = None if (multi_criterion_validation is not None): for segment in self.segments : segment.extract_validation_results(multi_criterion_validation) def show(self, prefix="", out=sys.stdout): print(prefix+"Chain '%s': %d residues, %d disordered" % ( self.chain_id, self.n_residue_groups, self.n_disordered), file=out) for segment in self.segments : segment.show(out=out, prefix=prefix+" ") class process_pdb_hierarchy(object): def __init__(self, pdb_hierarchy, validation, ignore_inconsistent_occupancy=False, log=sys.stdout): self.chains = [] self.n_residue_groups = 0 self.n_disordered = 0 self.sequence_disorder = [] self.n_rama_outliers = validation.ramalyze.n_outliers self.n_rota_outliers = validation.rotalyze.n_outliers self.n_cbeta_outliers = validation.cbetadev.n_outliers multi_criterion_validation = None if (validation is not None): multi_criterion_validation = validation.as_multi_criterion_view() for chain in pdb_hierarchy.only_model().chains(): if (chain.is_protein()): print(" processing chain '%s'" % chain.id, file=log) chain_info = process_residue_groups(chain=chain, multi_criterion_validation=multi_criterion_validation, ignore_inconsistent_occupancy=ignore_inconsistent_occupancy, log=log) self.chains.append(chain_info) self.n_residue_groups += chain_info.n_residue_groups self.n_disordered += chain_info.n_disordered for segment in chain_info.segments : self.sequence_disorder.extend(segment.detect_sequence_disorder()) else : print(" skipping non-protein chain '%s'" % chain.id, file=log) # TODO post-analysis @property def segments(self): for chain in self.chains : for segment in chain.segments : yield segment def max_rmsd_between_conformers(self, backbone=None): rmsd_max = segment_max = None for segment in self.segments : rmsd = segment.max_rmsd_between_conformers(backbone=backbone) if (rmsd_max is None) or (rmsd > rmsd_max): rmsd_max = rmsd segment_max = segment return rmsd_max, segment_max def max_distance_between_conformers(self, backbone=None): dist_max = segment_max = None for segment in self.segments : dist = segment.max_distance_between_conformers(backbone=backbone) if (dist_max is None) or (dist > dist_max): dist_max = dist segment_max = segment return dist_max, segment_max def show(self, out=sys.stdout, verbose=True): print("", file=out) print("Overall: %d protein chain(s)" % len(self.chains), file=out) print(" %d residues" % self.n_residue_groups, file=out) print(" %d disorered in %d segments" % (self.n_disordered, sum([ len(c.segments) for c in self.chains ])), file=out) if (len(self.sequence_disorder) > 0): print("%d heterogeneous residues:" % len(self.sequence_disorder), file=out) for rg_id, resnames in self.sequence_disorder : print(" %s (%s)" % (rg_id, ",".join(resnames))) n_rotamer_changes = n_cbeta_dev = n_partial_splits = 0 peptide_flips = [] for segment in self.segments : n_rotamer_changes += segment.n_rotamer_changes() n_cbeta_dev += segment.n_cbeta_outliers() n_partial_splits += segment.n_partial_splits(join_at_calpha=True) peptide_flips.extend(segment.find_peptide_flips()) print("%d disordered residues have multiple rotamers" % \ n_rotamer_changes, file=out) if (n_partial_splits > 0): print("%d disordered residues have a single C-alpha atom" % \ n_partial_splits, file=out) if (n_cbeta_dev > 0): print("%d disordered residues have C-beta deviations" % \ n_cbeta_dev, file=out) if (len(peptide_flips) > 0): print("%d apparent peptide flips:", file=out) for residue_id_str, angle in peptide_flips : print(" %s (angle=%.1f)" % (residue_id_str, angle), file=out) # distances and RMSDs rmsd_max, segment_max = self.max_rmsd_between_conformers() rmsd_mc_max, segment_mc_max = self.max_rmsd_between_conformers( backbone=True) assert (rmsd_max is not None) print("Max. RMSD between conformers:", file=out) print(" %6.3f (%s) [all non-H atoms]" % (rmsd_max, segment_max), file=out) if (rmsd_mc_max is not None): print(" %6.3f (%s) [backbone only]" %(rmsd_mc_max, segment_mc_max), file=out) dist_max, segment_max = self.max_distance_between_conformers() dist_mc_max, segment_mc_max = self.max_distance_between_conformers( backbone=True) assert (dist_max is not None) print("Max. distance between conformers:", file=out) print(" %6.3f (%s) [all non-H atoms]" % (dist_max, segment_max), file=out) if (dist_mc_max is not None): print(" %6.3f (%s) [backbone only]" %(dist_mc_max, segment_mc_max), file=out) # verbose output if (verbose): for chain in self.chains : chain.show(out=out) else : print("Run with --verbose to show per-residue results.", file=out) print("", file=out)
en
0.833865
# XXX in order to make this run in parallel over many PDB IDs, I need to cheat # slightly and substitute pickle-able objects for the original classes in # iotbx.pdb.hierarchy. Note that parent relationships will be lost in the # process. Pickle-able stand-in for iotbx.pdb.hierarchy.residue_group. Pickle-able stand-in for iotbx.pdb.hierarchy.atom_group. Pickle-able stand-in for af::shared<atom> array, using the atom_with_labels objects as elements. A group of one or more adjacent residues presumed to form continuous alternate conformations. Determine whether a residue_group object is part of the same continuous disordered segment. The precise meaning of this can be adjusted depending on user preferences; by default a continuous segment must have the same number of conformers for each residue, and occupancies must be constrained for each conformation. The latter assumption will probably be violated most often. Find any residue groups with heterogeneous chemical identity. Count the number of residues where not all atoms have alternates. Count the number of alternate conformations. Sometimes this may not be the same for all residue groups, in which case a list is returned. Calculate the distances between atoms in the specified pair of conformers (must be present for all residue groups). # XXX the way this is handled is somewhat clumsy, but necessary because # there is no requirement that atom groups have the same number of atoms or # even the same chemical identity (although they are assumed to be amino # acids) Find the matching validation result objects from the multi-criterion object (see mmtbx/validation/molprobity/__init__.py). #----------------------------------------------------------------------- # utility methods Calculate angles between carbonyl oxygen (C=O) bonds in each pair of atom groups, and return the maximum value (or None if fewer than two such bonds are found). Detect cases where the only alternate conformation is for the amide hydrogen, presumably because the previous residue was split and Reduce was used to add hydrogens. These residues are ignored in our analyses. # XXX unused? Count the number of conformers in a structure. # multiple MODELs aren't handled #----------------------------------------------------------------------- # TODO post-analysis # distances and RMSDs # verbose output
1.837649
2
tree.py
andribas404/fluffy-palm-tree
0
6633048
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Имплементация алгоритма Дейкстры с использованием Фибоначчиевых куч. With zero dependencies (no import). class FibonacciHeap - Фибоначчиева куча. class Graph - Граф с вершинами и ребрами. class AlgorithmDijkstra - Реализация алгоритма Дейкстры. """ class FibonacciHeap: """Фибоначчиева куча.""" class Node: """Heap Node.""" def __init__(self, x, key): """Node initialization.""" # Содержимое узла. self.x = x # Ключ self.key = key # Предок узла self.parent = None # Левый братский / сестринский узел self.left = None # Правый братский / сестринский узел self.right = None # Прямой потомок узла self.child = None # Ранг узла = кол-во прямых потомков self.rank = 0 # Перемещались ли ранее потомки этого узла self.marked = False def _extract(self): """Удаление связей перед переносом узла.""" self.parent = None self.left = None self.right = None def __repr__(self): """Node representation.""" return 'Node(x={})'.format(self.x) def __init__(self, node=None): """ Создание новой фибоначчиевой кучи. Время работы: O(1) """ self.min_node = node def insert(self, node): """ Вставка узла node в список корневых узлов. Время работы: O(1) """ h2 = FibonacciHeap() h2._set_min(node) self.meld(h2) def _set_min(self, node): """ Установка минимального узла. Время работы: O(1) """ self.min_node = node def _update_min(self, node): """ Обновление минимального узла, если ключ меньше. Время работы: O(1) """ current = self.find_min() if not current: self._set_min(node) elif node and node.key <= current.key: self._set_min(node) def find_min(self): """ Поиск минимального узла. Время работы: O(1) """ return self.min_node def meld(self, h): """ Объединение двух фибоначчиевых куч. Время работы: O(1) """ node1 = self.find_min() node2 = h.find_min() # Склеивание двух двусвязных списков (колец) # x - удаляемая связь # left1 <-x node1 -> right1 # X # left2 <-x node2 -> right2 # Добавляемая куча пуста if not node2: return # Исходная куча пуста if not node1: self._set_min(node2) return # Поскольку список двусвязный кольцевой, то если есть левый узел, # то существует правый (равен левому или другому) # Если в списке 1 элемент, то он не указывает сам на себя = None left1 = node1.left left2 = node2.left # В исходной куче 1 корневой узел if not left1: if left2: # По левому узлу второй кучи # node1 # | | # left2 <-x node2 node1.left = left2 node1.right = node2 left2.right = node1 node2.left = node1 else: # В обеих кучах 1 корневой узел # node1 # | # node2 node1.left = node1.right = node2 node2.left = node2.right = node1 else: # Склеиваем через левый корневой узел второй кучи if left2: # left1 <-x node1 # X # left2 <-x node2 # наискосок left1.right = node2 node1.left = left2 left2.right = node1 node2.left = left1 # Во второй куче 1 корневой узел else: # left1 <-x node1 # | | # node2 node2.left = left1 node2.right = node1 left1.right = node2 node1.left = node2 # Если нужно, обновляем минимум self._update_min(node2) def delete_min(self): r""" Извлечение минимального узла. x / | \ c1 c2 c3 Амортизированное время работы: O(log n) """ root = self.find_min() if not root: raise ValueError('Куча пуста') # Устанавливаем временно минимальный узел на левый self._set_min(root.left) # Удаляем из списка минимальный узел self._unlink(root) # Создаем новую кучу из потомков root (у них прежний parent) h = FibonacciHeap(root.child) self.meld(h) self._consolidate() root._extract() root.child = None return root def _unlink(self, node): """ Извлечение узла из двухсвязного списка. Возвращает левый узел из оставшихся в списке, либо None left - node - right = left - right Время работы: O(1) """ left = node.left right = node.right # В списке 1 элемент - удаляемый if not left: return None if left == right: # В списке было 2 элемента left.left = left.right = None else: left.right = right right.left = left return left def _consolidate(self): """ Уплотнение списка корней - склеивание деревьев с одинаковым рангом. Обновляет минимальный узел и устанавливает parent=None для всех корневых узлов Время работы: O(log n) """ # временный минимальный узел root = self.find_min() if not root: return # Словарь корневых узлов вида ранг -> узел ranked = dict() ranked[root.rank] = root root.parent = None node = root.right while node: # У корня нет предков node.parent = None # Текущий узел melded = node # Следующий просматриваемый узел node = node.right if ranked.get(node.rank, None) == node: # Мы там уже были, поэтому эта итерация последняя node = None while melded.rank in ranked: # В списке корней есть дерево с таким же рангом. rank = melded.rank # Склеиваем melded = self._link(melded, ranked[rank]) # и удаляем из словаря прежний ранг del ranked[rank] # обновляем с новым значением ранга получившееся дерево ranked[melded.rank] = melded # Обновляем минимальный узел self._update_min(melded) def _link(self, node1, node2): """ Склеивание двух корней. Корнем становится узел с меньшим ключом, второй - его потомком Возвращает получившийся корень Время работы: O(1) """ if node1.key > node2.key: node1, node2 = node2, node1 # node1 node1 # | -> | # child node2 - child # node2 извлекается из списка корней self._unlink(node2) node2._extract() # убирается отметка node2.marked = False # и он становится потомком node1 node2.parent = node1 # Обновляем ранг получившегося дерева node1.rank += 1 # Потомок первого корня child = node1.child if not child: # Если нет потомков node1.child = node2 else: left = child.left if not left: # Один потомок # child - node2 child.left = child.right = node2 node2.left = node2.right = child else: # left <-x child # | | # node2 node2.left = left node2.right = child left.right = node2 child.left = node2 return node1 def decrease_key(self, node, newkey): """ Уменьшение ключа узла node до значения newkey. Время работы: O(1) """ assert newkey < node.key node.key = newkey if not node.parent: # Узел - корневой self._update_min(node) return parent = node.parent parent.rank -= 1 parent.child = self._unlink(node) self._cascading_cut(parent) node._extract() self.insert(node) def _cut(self, node): """ Подрезка дерева - перенос node в список корней. Время работы: O(1) """ assert node is not None parent = node.parent if not parent: # Узел уже корневой return parent.rank -= 1 parent.child = self._unlink(node) node._extract() self.insert(node) def _cascading_cut(self, node): """ Каскадная подрезка дерева. Начиная от узла node, и пока предшествующий узел имеет отметку о перемещении (marked = True), все они становятся корневыми. Время работы: O(log n) """ parent = node while parent: if not parent.marked: parent.marked = True return else: node = parent parent = node.parent self._cut(node) def delete(self, node): """ Удаление узла node. Амортизированное время работы: O(log n) """ if node == self.find_min(): # Узел - минимальный return self.delete_min() parent = node.parent if not parent: # Узел - корневой self._unlink(node) else: parent.rank -= 1 parent.child = self._unlink(node) self._cascading_cut(parent) h = FibonacciHeap(node.child) self.meld(h) self._consolidate() node._extract() node.child = None return node class Graph: """Граф с вершинами и ребрами.""" class Vertex: """Вершина графа.""" def __init__(self, x): """Vertex initialization.""" self.x = x self.edges = [] def __init__(self, n, edges): """ Инициализация графа. Вершины пронумерованы от 1 до n edges - список ребер в формате [(вершина1, вершина2, вес ребра),...] Полагаем, что веса неотрицательные """ # self.nodes[i] = Vertex(i+1) self.nodes = [Graph.Vertex(x) for x in range(1, n+1)] for v1, v2, weight in edges: node1 = self.nodes[v1-1] node2 = self.nodes[v2-1] node1.edges.append((node2, weight)) node2.edges.append((node1, weight)) class AlgorithmDijkstra: """ Реализация алгоритма Дейкстры. Находит кратчайший путь от заданной вершины до всех других вершин графа. """ class Link: """ Link structure. Связывает вершину исходного графа, соответствующий ей узел в очереди на просмотр, текущее расстояние до нее, а также предшествующую ей вершину в оптимальном маршруте """ UNLABELED = 'unlabeled' LABELED = 'labeled' SCANNED = 'scanned' def __init__(self, v): """Link initialization.""" self.vertex = v self.heap_node = None self.distance = None self.count = 0 self.pred = None self.label = AlgorithmDijkstra.Link.UNLABELED def __init__(self): """Graph initialization.""" pass def solve(self, graph, start_ind): """ Находит кратчайший путь. Находит кратчайший путь от вершины с номером start_ind до всех других вершин графа graph. """ links = [AlgorithmDijkstra.Link(v) for v in graph.nodes] heap = FibonacciHeap() heap_node = FibonacciHeap.Node(start_ind, 0) link_start = links[start_ind - 1] link_start.distance = 0 link_start.count = 1 link_start.heap_node = heap_node link_start.label = AlgorithmDijkstra.Link.LABELED heap.insert(heap_node) while True: try: # Извлекаем из очереди вершину с минимальным расстоянием до нее heap_node = heap.delete_min() link = links[heap_node.x - 1] link.label = AlgorithmDijkstra.Link.SCANNED # Проход по всем вершинам, смежных с текущей for vertex, weight in link.vertex.edges: # Суммарное расстояние до смежной distance = link.distance + weight # Индекс смежной вершины vertex_ind = vertex.x # Соответствующая запись в таблице связей link_next = links[vertex_ind - 1] if link_next.label == AlgorithmDijkstra.Link.SCANNED: continue if link_next.distance is None: # Если ранее в этой вершине не были то добавляем ее # в очередь на просмотр с ключом равным текущему # расстоянию и сохраняем связь heap_node = FibonacciHeap.Node(vertex_ind, distance) heap.insert(heap_node) link_next.heap_node = heap_node link_next.distance = distance link_next.pred = [link.vertex.x] link_next.count = link.count link_next.label = AlgorithmDijkstra.Link.LABELED else: # Вершина уже находится в очереди на просмотр if distance < link_next.distance: # и расстояние через текущую вершину короче heap.decrease_key(link_next.heap_node, distance) link_next.distance = distance link_next.pred = [link.vertex.x] link_next.count = link.count elif distance == link_next.distance: link_next.pred.append(link.vertex.x) link_next.count += link.count except ValueError: # Конец очереди break return links def find_distances(self, links, start_ind): """Возвращаем список расстояний до вершин.""" # Возвращаем список расстояний до вершин пропуская вершину s # Всего (n-1) значение. Если вершина недостижима, расстояние = -1 distances = [] for link in links: if link.vertex.x == start_ind: continue if link.distance is None: distances.append(-1) else: distances.append(link.distance) return distances def find_num_of_shortest_paths(self, links, start_ind, finish_ind): """Возвращаем количество крайтайших расстояний.""" finish_link = links[finish_ind - 1] return finish_link.count
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Имплементация алгоритма Дейкстры с использованием Фибоначчиевых куч. With zero dependencies (no import). class FibonacciHeap - Фибоначчиева куча. class Graph - Граф с вершинами и ребрами. class AlgorithmDijkstra - Реализация алгоритма Дейкстры. """ class FibonacciHeap: """Фибоначчиева куча.""" class Node: """Heap Node.""" def __init__(self, x, key): """Node initialization.""" # Содержимое узла. self.x = x # Ключ self.key = key # Предок узла self.parent = None # Левый братский / сестринский узел self.left = None # Правый братский / сестринский узел self.right = None # Прямой потомок узла self.child = None # Ранг узла = кол-во прямых потомков self.rank = 0 # Перемещались ли ранее потомки этого узла self.marked = False def _extract(self): """Удаление связей перед переносом узла.""" self.parent = None self.left = None self.right = None def __repr__(self): """Node representation.""" return 'Node(x={})'.format(self.x) def __init__(self, node=None): """ Создание новой фибоначчиевой кучи. Время работы: O(1) """ self.min_node = node def insert(self, node): """ Вставка узла node в список корневых узлов. Время работы: O(1) """ h2 = FibonacciHeap() h2._set_min(node) self.meld(h2) def _set_min(self, node): """ Установка минимального узла. Время работы: O(1) """ self.min_node = node def _update_min(self, node): """ Обновление минимального узла, если ключ меньше. Время работы: O(1) """ current = self.find_min() if not current: self._set_min(node) elif node and node.key <= current.key: self._set_min(node) def find_min(self): """ Поиск минимального узла. Время работы: O(1) """ return self.min_node def meld(self, h): """ Объединение двух фибоначчиевых куч. Время работы: O(1) """ node1 = self.find_min() node2 = h.find_min() # Склеивание двух двусвязных списков (колец) # x - удаляемая связь # left1 <-x node1 -> right1 # X # left2 <-x node2 -> right2 # Добавляемая куча пуста if not node2: return # Исходная куча пуста if not node1: self._set_min(node2) return # Поскольку список двусвязный кольцевой, то если есть левый узел, # то существует правый (равен левому или другому) # Если в списке 1 элемент, то он не указывает сам на себя = None left1 = node1.left left2 = node2.left # В исходной куче 1 корневой узел if not left1: if left2: # По левому узлу второй кучи # node1 # | | # left2 <-x node2 node1.left = left2 node1.right = node2 left2.right = node1 node2.left = node1 else: # В обеих кучах 1 корневой узел # node1 # | # node2 node1.left = node1.right = node2 node2.left = node2.right = node1 else: # Склеиваем через левый корневой узел второй кучи if left2: # left1 <-x node1 # X # left2 <-x node2 # наискосок left1.right = node2 node1.left = left2 left2.right = node1 node2.left = left1 # Во второй куче 1 корневой узел else: # left1 <-x node1 # | | # node2 node2.left = left1 node2.right = node1 left1.right = node2 node1.left = node2 # Если нужно, обновляем минимум self._update_min(node2) def delete_min(self): r""" Извлечение минимального узла. x / | \ c1 c2 c3 Амортизированное время работы: O(log n) """ root = self.find_min() if not root: raise ValueError('Куча пуста') # Устанавливаем временно минимальный узел на левый self._set_min(root.left) # Удаляем из списка минимальный узел self._unlink(root) # Создаем новую кучу из потомков root (у них прежний parent) h = FibonacciHeap(root.child) self.meld(h) self._consolidate() root._extract() root.child = None return root def _unlink(self, node): """ Извлечение узла из двухсвязного списка. Возвращает левый узел из оставшихся в списке, либо None left - node - right = left - right Время работы: O(1) """ left = node.left right = node.right # В списке 1 элемент - удаляемый if not left: return None if left == right: # В списке было 2 элемента left.left = left.right = None else: left.right = right right.left = left return left def _consolidate(self): """ Уплотнение списка корней - склеивание деревьев с одинаковым рангом. Обновляет минимальный узел и устанавливает parent=None для всех корневых узлов Время работы: O(log n) """ # временный минимальный узел root = self.find_min() if not root: return # Словарь корневых узлов вида ранг -> узел ranked = dict() ranked[root.rank] = root root.parent = None node = root.right while node: # У корня нет предков node.parent = None # Текущий узел melded = node # Следующий просматриваемый узел node = node.right if ranked.get(node.rank, None) == node: # Мы там уже были, поэтому эта итерация последняя node = None while melded.rank in ranked: # В списке корней есть дерево с таким же рангом. rank = melded.rank # Склеиваем melded = self._link(melded, ranked[rank]) # и удаляем из словаря прежний ранг del ranked[rank] # обновляем с новым значением ранга получившееся дерево ranked[melded.rank] = melded # Обновляем минимальный узел self._update_min(melded) def _link(self, node1, node2): """ Склеивание двух корней. Корнем становится узел с меньшим ключом, второй - его потомком Возвращает получившийся корень Время работы: O(1) """ if node1.key > node2.key: node1, node2 = node2, node1 # node1 node1 # | -> | # child node2 - child # node2 извлекается из списка корней self._unlink(node2) node2._extract() # убирается отметка node2.marked = False # и он становится потомком node1 node2.parent = node1 # Обновляем ранг получившегося дерева node1.rank += 1 # Потомок первого корня child = node1.child if not child: # Если нет потомков node1.child = node2 else: left = child.left if not left: # Один потомок # child - node2 child.left = child.right = node2 node2.left = node2.right = child else: # left <-x child # | | # node2 node2.left = left node2.right = child left.right = node2 child.left = node2 return node1 def decrease_key(self, node, newkey): """ Уменьшение ключа узла node до значения newkey. Время работы: O(1) """ assert newkey < node.key node.key = newkey if not node.parent: # Узел - корневой self._update_min(node) return parent = node.parent parent.rank -= 1 parent.child = self._unlink(node) self._cascading_cut(parent) node._extract() self.insert(node) def _cut(self, node): """ Подрезка дерева - перенос node в список корней. Время работы: O(1) """ assert node is not None parent = node.parent if not parent: # Узел уже корневой return parent.rank -= 1 parent.child = self._unlink(node) node._extract() self.insert(node) def _cascading_cut(self, node): """ Каскадная подрезка дерева. Начиная от узла node, и пока предшествующий узел имеет отметку о перемещении (marked = True), все они становятся корневыми. Время работы: O(log n) """ parent = node while parent: if not parent.marked: parent.marked = True return else: node = parent parent = node.parent self._cut(node) def delete(self, node): """ Удаление узла node. Амортизированное время работы: O(log n) """ if node == self.find_min(): # Узел - минимальный return self.delete_min() parent = node.parent if not parent: # Узел - корневой self._unlink(node) else: parent.rank -= 1 parent.child = self._unlink(node) self._cascading_cut(parent) h = FibonacciHeap(node.child) self.meld(h) self._consolidate() node._extract() node.child = None return node class Graph: """Граф с вершинами и ребрами.""" class Vertex: """Вершина графа.""" def __init__(self, x): """Vertex initialization.""" self.x = x self.edges = [] def __init__(self, n, edges): """ Инициализация графа. Вершины пронумерованы от 1 до n edges - список ребер в формате [(вершина1, вершина2, вес ребра),...] Полагаем, что веса неотрицательные """ # self.nodes[i] = Vertex(i+1) self.nodes = [Graph.Vertex(x) for x in range(1, n+1)] for v1, v2, weight in edges: node1 = self.nodes[v1-1] node2 = self.nodes[v2-1] node1.edges.append((node2, weight)) node2.edges.append((node1, weight)) class AlgorithmDijkstra: """ Реализация алгоритма Дейкстры. Находит кратчайший путь от заданной вершины до всех других вершин графа. """ class Link: """ Link structure. Связывает вершину исходного графа, соответствующий ей узел в очереди на просмотр, текущее расстояние до нее, а также предшествующую ей вершину в оптимальном маршруте """ UNLABELED = 'unlabeled' LABELED = 'labeled' SCANNED = 'scanned' def __init__(self, v): """Link initialization.""" self.vertex = v self.heap_node = None self.distance = None self.count = 0 self.pred = None self.label = AlgorithmDijkstra.Link.UNLABELED def __init__(self): """Graph initialization.""" pass def solve(self, graph, start_ind): """ Находит кратчайший путь. Находит кратчайший путь от вершины с номером start_ind до всех других вершин графа graph. """ links = [AlgorithmDijkstra.Link(v) for v in graph.nodes] heap = FibonacciHeap() heap_node = FibonacciHeap.Node(start_ind, 0) link_start = links[start_ind - 1] link_start.distance = 0 link_start.count = 1 link_start.heap_node = heap_node link_start.label = AlgorithmDijkstra.Link.LABELED heap.insert(heap_node) while True: try: # Извлекаем из очереди вершину с минимальным расстоянием до нее heap_node = heap.delete_min() link = links[heap_node.x - 1] link.label = AlgorithmDijkstra.Link.SCANNED # Проход по всем вершинам, смежных с текущей for vertex, weight in link.vertex.edges: # Суммарное расстояние до смежной distance = link.distance + weight # Индекс смежной вершины vertex_ind = vertex.x # Соответствующая запись в таблице связей link_next = links[vertex_ind - 1] if link_next.label == AlgorithmDijkstra.Link.SCANNED: continue if link_next.distance is None: # Если ранее в этой вершине не были то добавляем ее # в очередь на просмотр с ключом равным текущему # расстоянию и сохраняем связь heap_node = FibonacciHeap.Node(vertex_ind, distance) heap.insert(heap_node) link_next.heap_node = heap_node link_next.distance = distance link_next.pred = [link.vertex.x] link_next.count = link.count link_next.label = AlgorithmDijkstra.Link.LABELED else: # Вершина уже находится в очереди на просмотр if distance < link_next.distance: # и расстояние через текущую вершину короче heap.decrease_key(link_next.heap_node, distance) link_next.distance = distance link_next.pred = [link.vertex.x] link_next.count = link.count elif distance == link_next.distance: link_next.pred.append(link.vertex.x) link_next.count += link.count except ValueError: # Конец очереди break return links def find_distances(self, links, start_ind): """Возвращаем список расстояний до вершин.""" # Возвращаем список расстояний до вершин пропуская вершину s # Всего (n-1) значение. Если вершина недостижима, расстояние = -1 distances = [] for link in links: if link.vertex.x == start_ind: continue if link.distance is None: distances.append(-1) else: distances.append(link.distance) return distances def find_num_of_shortest_paths(self, links, start_ind, finish_ind): """Возвращаем количество крайтайших расстояний.""" finish_link = links[finish_ind - 1] return finish_link.count
ru
0.993883
#!/usr/bin/env python # -*- coding: utf-8 -*- Имплементация алгоритма Дейкстры с использованием Фибоначчиевых куч. With zero dependencies (no import). class FibonacciHeap - Фибоначчиева куча. class Graph - Граф с вершинами и ребрами. class AlgorithmDijkstra - Реализация алгоритма Дейкстры. Фибоначчиева куча. Heap Node. Node initialization. # Содержимое узла. # Ключ # Предок узла # Левый братский / сестринский узел # Правый братский / сестринский узел # Прямой потомок узла # Ранг узла = кол-во прямых потомков # Перемещались ли ранее потомки этого узла Удаление связей перед переносом узла. Node representation. Создание новой фибоначчиевой кучи. Время работы: O(1) Вставка узла node в список корневых узлов. Время работы: O(1) Установка минимального узла. Время работы: O(1) Обновление минимального узла, если ключ меньше. Время работы: O(1) Поиск минимального узла. Время работы: O(1) Объединение двух фибоначчиевых куч. Время работы: O(1) # Склеивание двух двусвязных списков (колец) # x - удаляемая связь # left1 <-x node1 -> right1 # X # left2 <-x node2 -> right2 # Добавляемая куча пуста # Исходная куча пуста # Поскольку список двусвязный кольцевой, то если есть левый узел, # то существует правый (равен левому или другому) # Если в списке 1 элемент, то он не указывает сам на себя = None # В исходной куче 1 корневой узел # По левому узлу второй кучи # node1 # | | # left2 <-x node2 # В обеих кучах 1 корневой узел # node1 # | # node2 # Склеиваем через левый корневой узел второй кучи # left1 <-x node1 # X # left2 <-x node2 # наискосок # Во второй куче 1 корневой узел # left1 <-x node1 # | | # node2 # Если нужно, обновляем минимум Извлечение минимального узла. x / | \ c1 c2 c3 Амортизированное время работы: O(log n) # Устанавливаем временно минимальный узел на левый # Удаляем из списка минимальный узел # Создаем новую кучу из потомков root (у них прежний parent) Извлечение узла из двухсвязного списка. Возвращает левый узел из оставшихся в списке, либо None left - node - right = left - right Время работы: O(1) # В списке 1 элемент - удаляемый # В списке было 2 элемента Уплотнение списка корней - склеивание деревьев с одинаковым рангом. Обновляет минимальный узел и устанавливает parent=None для всех корневых узлов Время работы: O(log n) # временный минимальный узел # Словарь корневых узлов вида ранг -> узел # У корня нет предков # Текущий узел # Следующий просматриваемый узел # Мы там уже были, поэтому эта итерация последняя # В списке корней есть дерево с таким же рангом. # Склеиваем # и удаляем из словаря прежний ранг # обновляем с новым значением ранга получившееся дерево # Обновляем минимальный узел Склеивание двух корней. Корнем становится узел с меньшим ключом, второй - его потомком Возвращает получившийся корень Время работы: O(1) # node1 node1 # | -> | # child node2 - child # node2 извлекается из списка корней # убирается отметка # и он становится потомком node1 # Обновляем ранг получившегося дерева # Потомок первого корня # Если нет потомков # Один потомок # child - node2 # left <-x child # | | # node2 Уменьшение ключа узла node до значения newkey. Время работы: O(1) # Узел - корневой Подрезка дерева - перенос node в список корней. Время работы: O(1) # Узел уже корневой Каскадная подрезка дерева. Начиная от узла node, и пока предшествующий узел имеет отметку о перемещении (marked = True), все они становятся корневыми. Время работы: O(log n) Удаление узла node. Амортизированное время работы: O(log n) # Узел - минимальный # Узел - корневой Граф с вершинами и ребрами. Вершина графа. Vertex initialization. Инициализация графа. Вершины пронумерованы от 1 до n edges - список ребер в формате [(вершина1, вершина2, вес ребра),...] Полагаем, что веса неотрицательные # self.nodes[i] = Vertex(i+1) Реализация алгоритма Дейкстры. Находит кратчайший путь от заданной вершины до всех других вершин графа. Link structure. Связывает вершину исходного графа, соответствующий ей узел в очереди на просмотр, текущее расстояние до нее, а также предшествующую ей вершину в оптимальном маршруте Link initialization. Graph initialization. Находит кратчайший путь. Находит кратчайший путь от вершины с номером start_ind до всех других вершин графа graph. # Извлекаем из очереди вершину с минимальным расстоянием до нее # Проход по всем вершинам, смежных с текущей # Суммарное расстояние до смежной # Индекс смежной вершины # Соответствующая запись в таблице связей # Если ранее в этой вершине не были то добавляем ее # в очередь на просмотр с ключом равным текущему # расстоянию и сохраняем связь # Вершина уже находится в очереди на просмотр # и расстояние через текущую вершину короче # Конец очереди Возвращаем список расстояний до вершин. # Возвращаем список расстояний до вершин пропуская вершину s # Всего (n-1) значение. Если вершина недостижима, расстояние = -1 Возвращаем количество крайтайших расстояний.
3.117894
3
vgg.py
brekkanegg/cram
1
6633049
<reponame>brekkanegg/cram import tensorflow as tf import os, sys import numpy as np slim = tf.contrib.slim class VGG(): def __init__(self, config, inputs): self.config = config self.image_size = inputs.image_size self.image_shape = [self.image_size, self.image_size] self.class_num = inputs.class_num self.model_name = "VGG16.model" if config.saliency: # rgbs or rgb self.x = tf.placeholder(tf.float32, shape=[None, self.image_size, self.image_size, 4], name='x') else: self.x = tf.placeholder(tf.float32, shape=[None, self.image_size, self.image_size, 3], name='x') # self.y = tf.placeholder(tf.float32, shape=[None, self.class_num], name='y') self.y = tf.placeholder(tf.int32, shape=[None], name='y') self.is_training = tf.placeholder(tf.bool, name='is_training') self.learning_rate = tf.placeholder(tf.float32, name='learning_rate') self.build_model() self.build_loss_and_optimizer() self.merge_summary() def build_model(self): # input net = self.x print(net.shape) if self.image_size == 224: # vgg16 filters = [64, 64, 128, 128, 256, 256, 256, 512, 512, 512, 512, 512, 512] strides = [1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2] gp = 7 hiddens = [4096, 4096] if self.image_size == 32: # vgg16 filters = [64, 64, 128, 128, 256, 256, 256, 512, 512, 512, 512, 512, 512] strides = [1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2] gp = 1 hiddens = [4096, 4096] # elif self.image_size == 32: # filters = [32, 64, 64, 128, 128] #, 128, 128] #256, 256, 256, 256] # strides = [2, 1, 2, 1, 2] #, 1, 2] #, 1, 2, 1, 2] # gp = 4 # hiddens = [200, 200] #, 100] with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=None, weights_initializer=tf.contrib.layers.xavier_initializer(), weights_regularizer=slim.l2_regularizer(0.001)): with slim.arg_scope([slim.batch_norm], decay=0.95, center=True, scale=True, activation_fn=tf.nn.elu, updates_collections=None, is_training=self.is_training): # vgg - conv for i in range(len(strides)): net = slim.conv2d(net, filters[i], 3, stride=strides[i], padding='SAME', scope='conv{}'.format(i)) net = slim.batch_norm(net, scope='bn{}'.format(i)) print(net.shape) # vgg - fc, (=1x1 conv) net = slim.conv2d(net, hiddens[0], gp, stride=1, padding='VALID', scope='fc{}'.format(i+1)) net = slim.batch_norm(net, scope='bn{}'.format(i + 1)) net = slim.dropout(net, keep_prob=0.25, is_training=self.is_training, scope='dropout{}'.format(i + 1)) print(net.shape) net = slim.conv2d(net, hiddens[1], 1, stride=1, padding='SAME', scope='fc{}'.format(i+2)) net = slim.batch_norm(net, scope='bn{}'.format(i + 2)) net = slim.dropout(net, keep_prob=0.25, is_training=self.is_training, scope='dropout{}'.format(i + 2)) print(net.shape) net = slim.conv2d(net, self.class_num, 1, stride=1, padding='SAME', scope='fc{}'.format(i + 3)) print(net.shape) self.logits = slim.flatten(net) print(self.logits.shape) # vgg - fc # net = slim.flatten(net) # for ii in range(len(hiddens)): # net = slim.fully_connected(net, hiddens[ii], scope='fc{}'.format(i+1+ii)) # print(net.shape) # logits # self.logits = slim.fully_connected(net, self.class_num, scope='logits') # print(self.logits.shape)[ def build_loss_and_optimizer(self): # self.cross_entropy_loss = tf.losses.softmax_cross_entropy(onehot_labels=self.y, logits=self.logits) # self.accuracy = tf.metrics.accuracy(labels=tf.argmax(self.y, axis=1), # predictions=tf.argmax(self.logits, axis=1))[1] self.cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.y) self.cross_entropy_loss = tf.reduce_mean(self.cross_entropy) self.accuracy = tf.metrics.accuracy(labels=self.y, predictions=tf.argmax(self.logits, axis=1))[1] self.optimizer = tf.train.AdamOptimizer(self.learning_rate, beta1=self.config.beta1) #fixme: # gvs = self.optimizer.compute_gradients(self.cross_entropy_loss) # capped_gvs = [(tf.clip_by_value(grad, -5., 5.), var) for grad, var in gvs] # self.train_op = self.optimizer.apply_gradients(capped_gvs) self.train_op = self.optimizer.minimize(self.cross_entropy_loss) def merge_summary(self): summaries = [] summaries += [tf.summary.image("image", self.x[:, :, :, :3], max_outputs=4)] if self.config.saliency: self.s = tf.reshape(self.x[:, :, :, -1], shape=[-1, self.image_size, self.image_size, 1]) summaries += [tf.summary.image("saliency", self.s, max_outputs=4)] summaries += [tf.summary.scalar("cross_entropy_loss", self.cross_entropy_loss)] summaries += [tf.summary.scalar("accuracy", self.accuracy)] self.summary_merge = tf.summary.merge(summaries)
import tensorflow as tf import os, sys import numpy as np slim = tf.contrib.slim class VGG(): def __init__(self, config, inputs): self.config = config self.image_size = inputs.image_size self.image_shape = [self.image_size, self.image_size] self.class_num = inputs.class_num self.model_name = "VGG16.model" if config.saliency: # rgbs or rgb self.x = tf.placeholder(tf.float32, shape=[None, self.image_size, self.image_size, 4], name='x') else: self.x = tf.placeholder(tf.float32, shape=[None, self.image_size, self.image_size, 3], name='x') # self.y = tf.placeholder(tf.float32, shape=[None, self.class_num], name='y') self.y = tf.placeholder(tf.int32, shape=[None], name='y') self.is_training = tf.placeholder(tf.bool, name='is_training') self.learning_rate = tf.placeholder(tf.float32, name='learning_rate') self.build_model() self.build_loss_and_optimizer() self.merge_summary() def build_model(self): # input net = self.x print(net.shape) if self.image_size == 224: # vgg16 filters = [64, 64, 128, 128, 256, 256, 256, 512, 512, 512, 512, 512, 512] strides = [1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2] gp = 7 hiddens = [4096, 4096] if self.image_size == 32: # vgg16 filters = [64, 64, 128, 128, 256, 256, 256, 512, 512, 512, 512, 512, 512] strides = [1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2] gp = 1 hiddens = [4096, 4096] # elif self.image_size == 32: # filters = [32, 64, 64, 128, 128] #, 128, 128] #256, 256, 256, 256] # strides = [2, 1, 2, 1, 2] #, 1, 2] #, 1, 2, 1, 2] # gp = 4 # hiddens = [200, 200] #, 100] with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn=None, weights_initializer=tf.contrib.layers.xavier_initializer(), weights_regularizer=slim.l2_regularizer(0.001)): with slim.arg_scope([slim.batch_norm], decay=0.95, center=True, scale=True, activation_fn=tf.nn.elu, updates_collections=None, is_training=self.is_training): # vgg - conv for i in range(len(strides)): net = slim.conv2d(net, filters[i], 3, stride=strides[i], padding='SAME', scope='conv{}'.format(i)) net = slim.batch_norm(net, scope='bn{}'.format(i)) print(net.shape) # vgg - fc, (=1x1 conv) net = slim.conv2d(net, hiddens[0], gp, stride=1, padding='VALID', scope='fc{}'.format(i+1)) net = slim.batch_norm(net, scope='bn{}'.format(i + 1)) net = slim.dropout(net, keep_prob=0.25, is_training=self.is_training, scope='dropout{}'.format(i + 1)) print(net.shape) net = slim.conv2d(net, hiddens[1], 1, stride=1, padding='SAME', scope='fc{}'.format(i+2)) net = slim.batch_norm(net, scope='bn{}'.format(i + 2)) net = slim.dropout(net, keep_prob=0.25, is_training=self.is_training, scope='dropout{}'.format(i + 2)) print(net.shape) net = slim.conv2d(net, self.class_num, 1, stride=1, padding='SAME', scope='fc{}'.format(i + 3)) print(net.shape) self.logits = slim.flatten(net) print(self.logits.shape) # vgg - fc # net = slim.flatten(net) # for ii in range(len(hiddens)): # net = slim.fully_connected(net, hiddens[ii], scope='fc{}'.format(i+1+ii)) # print(net.shape) # logits # self.logits = slim.fully_connected(net, self.class_num, scope='logits') # print(self.logits.shape)[ def build_loss_and_optimizer(self): # self.cross_entropy_loss = tf.losses.softmax_cross_entropy(onehot_labels=self.y, logits=self.logits) # self.accuracy = tf.metrics.accuracy(labels=tf.argmax(self.y, axis=1), # predictions=tf.argmax(self.logits, axis=1))[1] self.cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.y) self.cross_entropy_loss = tf.reduce_mean(self.cross_entropy) self.accuracy = tf.metrics.accuracy(labels=self.y, predictions=tf.argmax(self.logits, axis=1))[1] self.optimizer = tf.train.AdamOptimizer(self.learning_rate, beta1=self.config.beta1) #fixme: # gvs = self.optimizer.compute_gradients(self.cross_entropy_loss) # capped_gvs = [(tf.clip_by_value(grad, -5., 5.), var) for grad, var in gvs] # self.train_op = self.optimizer.apply_gradients(capped_gvs) self.train_op = self.optimizer.minimize(self.cross_entropy_loss) def merge_summary(self): summaries = [] summaries += [tf.summary.image("image", self.x[:, :, :, :3], max_outputs=4)] if self.config.saliency: self.s = tf.reshape(self.x[:, :, :, -1], shape=[-1, self.image_size, self.image_size, 1]) summaries += [tf.summary.image("saliency", self.s, max_outputs=4)] summaries += [tf.summary.scalar("cross_entropy_loss", self.cross_entropy_loss)] summaries += [tf.summary.scalar("accuracy", self.accuracy)] self.summary_merge = tf.summary.merge(summaries)
en
0.255005
# rgbs or rgb # self.y = tf.placeholder(tf.float32, shape=[None, self.class_num], name='y') # input # vgg16 # vgg16 # elif self.image_size == 32: # filters = [32, 64, 64, 128, 128] #, 128, 128] #256, 256, 256, 256] # strides = [2, 1, 2, 1, 2] #, 1, 2] #, 1, 2, 1, 2] # gp = 4 # hiddens = [200, 200] #, 100] # vgg - conv # vgg - fc, (=1x1 conv) # vgg - fc # net = slim.flatten(net) # for ii in range(len(hiddens)): # net = slim.fully_connected(net, hiddens[ii], scope='fc{}'.format(i+1+ii)) # print(net.shape) # logits # self.logits = slim.fully_connected(net, self.class_num, scope='logits') # print(self.logits.shape)[ # self.cross_entropy_loss = tf.losses.softmax_cross_entropy(onehot_labels=self.y, logits=self.logits) # self.accuracy = tf.metrics.accuracy(labels=tf.argmax(self.y, axis=1), # predictions=tf.argmax(self.logits, axis=1))[1] #fixme: # gvs = self.optimizer.compute_gradients(self.cross_entropy_loss) # capped_gvs = [(tf.clip_by_value(grad, -5., 5.), var) for grad, var in gvs] # self.train_op = self.optimizer.apply_gradients(capped_gvs)
2.513392
3
hupwatch/command.py
swistakm/hupwatch
8
6633050
# -*- coding: utf-8 -*- import atexit import os import time import signal import logging from hupwatch.service import Service from hupwatch.args_parser import parse_args logger = logging.getLogger(__name__) delayed_exit = False def setup_logging(verbosity): ilogger = logging.getLogger(__name__) if verbosity: handler = logging.StreamHandler() if verbosity == 1: handler.setLevel(logging.ERROR) if verbosity == 2: handler.setLevel(logging.WARNING) if verbosity >= 3: handler.setLevel(logging.DEBUG) else: handler = logging.NullHandler() formatter = logging.Formatter( '=> HUP watch [%(levelname)-8s]: %(message)s' ) handler.setFormatter(formatter) ilogger.setLevel(logging.DEBUG) ilogger.addHandler(handler) def main(): args, command = parse_args() setup_logging(args.verbose) logger.info("Starting HUP watch (%s)" % os.getpid()) # use list becasue Python 2 does not provide nonlocal statement services = [Service(command)] services[0].start() logger.info("Child process {pid} started".format( pid=services[0].process.pid )) def hup_handler(*_): logger.debug("HUP: >>>") try: old_service = services.pop() except IndexError: logger.error("HUP: Received HUP while service list is empty") return new_service = Service(command) new_service.start() logger.debug("HUP: Waiting for process ({pid}) to warm up".format( pid=new_service.process.pid, )) time.sleep(args.warmup_time) if new_service.is_up(): logger.debug("HUP: Sending SIGTERM to old process ({pid})".format( pid=old_service.process.pid, )) old_service.process.send_signal(signal.SIGTERM) logger.debug("HUP: Waiting for process ({pid}) to quit...".format( pid=old_service.process.pid )) logger.info( "HUP: Old process quit with code: {code}".format( code=old_service.process.wait() ) ) services.append(new_service) else: # note: It may look like there is a small race condition between # SIGHUP and SIGCHLD but sigchld_handler will check if # current service is running so hupwatch won't quit eagerly # note: We may think about getting rid of SIGCHLD handler anyway # and simply poll service[0] process later in the main loop. # This may simplify things a bit logger.error("HUP: new process failed to start. Abort reload") services.append(old_service) logger.debug("HUP: <<<") def sigchld_handler(*_): logger.debug("CHLD: >>>") try: service = services.pop() except IndexError: logger.info("CHLD: Child process quit") else: if service.is_up(): logger.warning( "CHLD: Primary child process quit, quitting" ) exit(1) else: logger.info( "CHLD: Primary process is up, continuing..." ) services.append(service) logger.debug("CHLD: <<<") def term_handler(*_): logger.debug("TERM: >>>") try: service = services.pop() except IndexError: # note: apparently we have interrupted other signal handler # so raise alarm that will try to run this handler again logger.info( "TERM: TERM/ALARM received during other signal handling. Defer." ) signal.alarm(1) else: if service.is_up(): if args.kill_at_exit: logger.warning( "TERM: Quiting with --kill-at-exit and running " "child process. Killing it!" ) service.kill() else: logger.warning( "TERM: Quiting with running child process. " "Doing nothing, child will be detached to new parent." ) else: logger.debug("Child process not up. Quiting.") services.append(service) logger.debug("TERM: <<<") exit() signal.signal(signal.SIGHUP, hup_handler) signal.signal(signal.SIGCHLD, sigchld_handler) signal.signal(signal.SIGTERM, term_handler) signal.signal(signal.SIGALRM, term_handler) atexit.register(term_handler) while services[0].is_up(): logger.info("Pausing for signal") signal.pause() if delayed_exit: logger.info("delayed exit") exit()
# -*- coding: utf-8 -*- import atexit import os import time import signal import logging from hupwatch.service import Service from hupwatch.args_parser import parse_args logger = logging.getLogger(__name__) delayed_exit = False def setup_logging(verbosity): ilogger = logging.getLogger(__name__) if verbosity: handler = logging.StreamHandler() if verbosity == 1: handler.setLevel(logging.ERROR) if verbosity == 2: handler.setLevel(logging.WARNING) if verbosity >= 3: handler.setLevel(logging.DEBUG) else: handler = logging.NullHandler() formatter = logging.Formatter( '=> HUP watch [%(levelname)-8s]: %(message)s' ) handler.setFormatter(formatter) ilogger.setLevel(logging.DEBUG) ilogger.addHandler(handler) def main(): args, command = parse_args() setup_logging(args.verbose) logger.info("Starting HUP watch (%s)" % os.getpid()) # use list becasue Python 2 does not provide nonlocal statement services = [Service(command)] services[0].start() logger.info("Child process {pid} started".format( pid=services[0].process.pid )) def hup_handler(*_): logger.debug("HUP: >>>") try: old_service = services.pop() except IndexError: logger.error("HUP: Received HUP while service list is empty") return new_service = Service(command) new_service.start() logger.debug("HUP: Waiting for process ({pid}) to warm up".format( pid=new_service.process.pid, )) time.sleep(args.warmup_time) if new_service.is_up(): logger.debug("HUP: Sending SIGTERM to old process ({pid})".format( pid=old_service.process.pid, )) old_service.process.send_signal(signal.SIGTERM) logger.debug("HUP: Waiting for process ({pid}) to quit...".format( pid=old_service.process.pid )) logger.info( "HUP: Old process quit with code: {code}".format( code=old_service.process.wait() ) ) services.append(new_service) else: # note: It may look like there is a small race condition between # SIGHUP and SIGCHLD but sigchld_handler will check if # current service is running so hupwatch won't quit eagerly # note: We may think about getting rid of SIGCHLD handler anyway # and simply poll service[0] process later in the main loop. # This may simplify things a bit logger.error("HUP: new process failed to start. Abort reload") services.append(old_service) logger.debug("HUP: <<<") def sigchld_handler(*_): logger.debug("CHLD: >>>") try: service = services.pop() except IndexError: logger.info("CHLD: Child process quit") else: if service.is_up(): logger.warning( "CHLD: Primary child process quit, quitting" ) exit(1) else: logger.info( "CHLD: Primary process is up, continuing..." ) services.append(service) logger.debug("CHLD: <<<") def term_handler(*_): logger.debug("TERM: >>>") try: service = services.pop() except IndexError: # note: apparently we have interrupted other signal handler # so raise alarm that will try to run this handler again logger.info( "TERM: TERM/ALARM received during other signal handling. Defer." ) signal.alarm(1) else: if service.is_up(): if args.kill_at_exit: logger.warning( "TERM: Quiting with --kill-at-exit and running " "child process. Killing it!" ) service.kill() else: logger.warning( "TERM: Quiting with running child process. " "Doing nothing, child will be detached to new parent." ) else: logger.debug("Child process not up. Quiting.") services.append(service) logger.debug("TERM: <<<") exit() signal.signal(signal.SIGHUP, hup_handler) signal.signal(signal.SIGCHLD, sigchld_handler) signal.signal(signal.SIGTERM, term_handler) signal.signal(signal.SIGALRM, term_handler) atexit.register(term_handler) while services[0].is_up(): logger.info("Pausing for signal") signal.pause() if delayed_exit: logger.info("delayed exit") exit()
en
0.931599
# -*- coding: utf-8 -*- # use list becasue Python 2 does not provide nonlocal statement # note: It may look like there is a small race condition between # SIGHUP and SIGCHLD but sigchld_handler will check if # current service is running so hupwatch won't quit eagerly # note: We may think about getting rid of SIGCHLD handler anyway # and simply poll service[0] process later in the main loop. # This may simplify things a bit # note: apparently we have interrupted other signal handler # so raise alarm that will try to run this handler again
2.349403
2